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ABSTRACT

Low frequency acoustic propagation in shallow water is examined from a normal
mode context. By modelling the far ficld pressure field as a modal sum, propagating mode
characteristics of wavenumber, initial phase, attenuation and amplitude may be estimated
using a high resolution parameter modeling technique. The advantages of such an
algorithm are the resolution of closely spaced modes in a range independent environment
and the ability to analyze range dependent waveguides.

This thesis presents the application of a Prony algorithm to the shallow water
environment. The algorithm operates directly on the signal matrix. Synthetically
generated, range independent pressure fields are used to analyze the technique's
performance and to observe its sensitivity to variations in model specifications. Noise is
added to determine the threshold of acceptable performance. As a consequence of field data
tests, further enhancements to the algorithm are suggested.

Range dependent performance is evaluated on a coastal wedge example and
geoacoustic parameter shift example.

Thesis advisor: George V. Frisk, Associate Scientist, Woods Hole Oceanographic
Institution
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Chapter 1
Introduction

1.1 Introduction

In this thesis, we shall investigate the application of a signal processing technique to
acoustic propagation in a shallow water waveguide. As is the case in many disciplines,
advances in the ocean acoustics comumunity tend to occur in incremental steps. Often, the
approaches used in acoustic problem formulation or analysis are successfully applied in other
reéearch efforts. Examples include ray theory (from optics), mcfhod of images
(electromagnetic theory ) and fast field programs (digitalz signal processing). We shall examine
the application of Prony's method to the problem of resolving normal modes in CW data
obtained on a horizontal array in shallow water. We expect to formulate a technique which
requires the researcher to incorporate knowledge of the acoustic propagation into a signal
modelling problem. In return for this bounding or constraint of the problem, we anticipate a
gain in two areas. First, in the range independent waveguide, Prony's method should allow
the resolution of closely spaced propagating modes. Second, in a range dependent waveguide,
the short apertures used by the high resolution techniques may permit estimation of waveguide
parameters by an adiabatic assumption.

To obtain such high resolution using conventional discrete Hankel transforms and FET
beamforming techniques requires a large aperture since the resolution is inversely proportional
to the length of the amray[1]. In theoretical or computer generated fields, this length of data
may be easily obtained. Shallow water data rarély meets this criterion since ocean waveguides
which are invariant over an interval of kilometers (which is needed to obtain the desired
resolution) are not generally found in practice.

Applications of Prony's method may be found in a variety of disciplines. Research
examples include seismic exploration{2], acoustic echo reduction[3], subsurface radar[4],
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beamforming[5], and structural analysis[6] . The specific use of Prony's method in a shallow
water waveguide modal context has been explored in parallel with this thesis development by
Shang, et al.[7]. The Shang study considers the algorithm in a scheme to localize a source and
provide some waveguide characterization. Their characterization approach differs from this
thesis in order selection, filter coefficient determination and attenuation parameter estimation,
Such differences in implementation emphasizes the flexible nature of algorithm structure within
the framework of Prony's method.

The motivation for exploring this approach is to assist in the effort to solve the inverse
problem of determining geoacoustic parameters. Specifically, the geoacoustic parameter
inverse technique requires the set of horizontal wavenumbers of the propagating modes as
input data[8-11]. The signal processing method used provides a means to identify the
horizontal wavenumber of an acoustic field. Ultimately, we envision measurements of the
pressure field in the water column yielding a set of wavenumbers which may then be used to
infer bottom properties.

There are two sets of field data which have been collected to date. These provide a test
environment of the algorithm in the real world. The first set was collected in May of 1984 off
the coast of Nantucket Island, MA at 140 Hz and 220 Hz[ 10} and the other set was obtained in
September of 1985 off the coast of Corpus Christi, TX at 50 Hz and 140 Hz[12]. These sites
were selected since the bottoms are reasonably flat and other studies of bottom properties are
available for comparison of the geoacoustic parameters. The experimental setup uses a small
vessel which tows a two frequency CW source at a fixed depth{&]. The source is towed away
from two fixed moored receivers and the horizontal source-receiver range is monitored via a
radar tracking system. The data collection technique consists of drifting away from the
receivers. The drift rate must be low (< 0.5 knots) to provide adequate sampling (to avoid
aliasing) of the pressure field. The hydrophones are part of a larger BODIS assembly which
removes harmonic time dependence of the pressure data by quadrature demodulation. |
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The effect of the drift scheme and quadrature demodulation is to model the data set as being

collected on a synthetic array. The physical setup is summarized in figure 1.1.1.

1

Radar ranging system

Synthetic array .|/ Source
/1N
E]] Receiver 2
(BODIS 2)
Receiver 1
E]] (BODIS 1)

Fig 1.1.1 Experimental setup for data collection



1.2 Outline

Chapter 2 provides a basic review of normal mode theory in an acoustic waveguide by
developing the mathematical description in terms of a Sturm Liouville problem. The second
section provides a derivation of the Prony model and explores the nuances of the algorithm
used. The last part of the chapter casts the normal mode environment in terms of the model and
illustrates its validity. Two examples are provided: the first involves the application of the
method to synthetic pressure field data, while the second demonstrates the ability of the
technique to extract mode shapes through use of a vertical array.

In Chapter 3, the depth dependent Green's function is rcﬁcwed and the Prony energy
spectral density (ESD) is introduced. The ESD is used as a tool to transform all parameter
estimates into a simple graphical display. As such, it acts as a tool to aid in waveguide
analysis. Additional tools are developed and examined, and the algorithm is tested using these
tools on two synthetically generated sets of data. The effect of changes in input variables on
parameter estimates 1s examined and ranked according to sensitivity. This ranking leads to the
development of a set of empirically derived guidclinc_s to specify a model order, aperture size
and averaging. The chapter concludes with a pcrfom;mce evaluation on field data.

Range dependent performance 1s addressed in Chapter 4. Two examples of a range-
dependent environment are provided. One waveguide consists of an upslope propagation in a
coastal wedge scenario. The second contains a step change in bottom geoacoustic properties.

Chapter 5 provides a "wish list" of enhancements and considerations in further versions
of this high resolution scheme. Topping the list is the issue of more robust performance in
noisy environments. An example of a bandpass filter scheme to address this issue is also

provided.



Chapter 2
Basic Theory

2.1 Normal Mode Theory Review

A review of basic normal mode theory is important to emphasize assumptions made
in the development of the description of the acoustic field and in the application of the
Prony model to this environment. An advantage of the normal mode approach is that it
allows us to build on previous results as the boundary conditions become more complex.
It will be shown that this method makes the problem tractable bf castng the linear, second
order differential equation arising from the boundary value problem in terms of a Sturm-
Liouville problem, This allows us to apply the rich existing mathematical theory for the
subject.

In this thesis, sound propagation in shallow water will be treated as a field
propagating within a waveguide constrained by the surface and the bottom. The field
distribution within the waveguide is affected by the boundary characteristics so that the
local modes act as a sampling mechanism for the properties of the boundaries. It is
assumed that the top boundary condition remains constant (in this case, a pressure release
surface) while the mode wavenumbers are affected by changes in the dimension of the
waveguide (bathymetry) and bottom properties (such as sound speed, density and
attenuation) (see fig 2.1.1). The water column is the region of interest for measurement
purposes since the pressure field may be easily obtained by real towed or synthetic aperture
arrays. In this section, we will assume that the wavegude is locally range-independent.
After presenting some general normal mode theory, this section will use hard bottom and

Pekeris waveguides to emphasize salient points.
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Fig 2.1.1. Shallow Water Waveguide Model

In the ocean acoustics waveguide, the governing equation for the acoustic pressure,
P, is the time dependent wave equation[13]:

(V23 ~ P = -4rrc @.1.1)

where E(1,t) is a source function. For the case of interest, we will consider a harmonic
point source function, We therefore let P(r,t) = p(r)edi® and F(r,0)=f(0)ed®t which
transforms the wave equation to the inhomogeneous Helmholtz equation:

(V2H+I2)p@) = 4 f(D) , k() = c(_) (2.1.2)

The point source is modelled as an impulse function of strength S, ie:
(V2+K2(0)p(r) = -41 S 8( - 1) (2.1.3)
- In eylindrical coordinates, assurmng horizontal stratification k(r) = k(z) and a with ¢(r) =

p(@) and a source located at (g zp 80), the Helmholtz equation is[14]:
10, dp, 1 82p d2p 14,00 ro)
FuiUew )
Tor or 882 0z2

P 2@ p 8(z-7m 8(6-8p)  (2.1.4)
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Assuming cylindrical symmetry, p(r) = p(r,z), and rp=0,the Helmholtz equation may be

integrated with respect to O to remove angular dcpendency:

f[——( ap % k2(z) p] d6= -4xc olr )8( -70) (2.1.5)
r 822
which leads to:
19 ap 92 d’p ()
+K2@)p=-222s 2.1.6
330 T2 @p= (z-20) (2.1.6)

The pressure field is constrained by the following boundary conditions:

= p(r,0) = 0 (pressure release surface)

» a bottom impedence boundary condition

and a Sommerfeld radiation condition (which specifies energy from the source as
propagating outward)[14].

The two dimensional Green's function can be expanded in a complete orthonormal
set of the eigenfunctions of depth, z[15,16]. The method of solving an inhomogeneous
Sturm Liouville equation (see Appendix A) may be used as follows. First, the
eigenfunctions, up(z), are found by solving the homogeneous Helmholtz equation by

separation of variables. This yields an equation for the up(z):
d?u

oz + [k2- kﬁ}u =0 and kﬁ is the separation constant. 2.1.7)

[==]

The solution for p is then assumed to have the form p(r,z) = Y Ry(r)ua(2z) and the assumed
n=1
solution is substituted into equation (2.1.6), the inhomogeneous Helmheltz equation.

Then, the orthogonality and completeness characteristics of the eigenfunctions, uy(z), are

used to find the coefficients Ry(r). For an arbitrary k(z), the solution may be expressed as,

oo

() =51 " uy(20) wale) H g ) +16) (2.1.8)

n=1
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in which H((l))(knr) is a Hankel function of the first type and is generated by the solution to

equation (2.1.7). While the discrete sum corresporids to the trapped modes, the continuum
contribution, I(r), consists of branch lin¢ integrals and "improper” modes (depending on
the branch cut selection)[17-20].

Restricting our attention to the hard bottom case requires imposing a bottom

boundary condition of ?)- Iz =k = 0. The hard bottom isovelocity case yields an analytic

Z |
solution for up(z){14]:
p@rz) =jn Esin('ynzo) sin(ynz) H') (ko) where 1=~ / K2- k2 (2.1.9)
n=1 .
= vertical wavenumber
@-P=
- h

Although a perfectly reflecting (hard) bottom is not found in nature, this simple
model allows identification of three important normal mode characteristics which may be

used in more complex models. First, as the range from the source increases, the Hankel

function may be replaced by an asymptotic approximation{21}:

3] ’ 7, _E
0( nt) . kot 4 (2 )

Second, a propagating mode may be viewed as a cjlindn'cally spreading, outgoing wave

with a vertical shape determined by the mode eigenfunctions, uy(z)[22]. Third, the
placement of source and receiver directly affects mode amplitudes. In equations (2.1.8)
and (2.1.9), we can see the product of the source and receiver eigenfunctions determine the
mode excitation available at the receiver.

A more complex model introduced by Pekeris in 1948 consists of approximating

the bottom by a half space with a constant density and sound speed[23]. The resulting
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eigenvalue spectrum consists of two seperate regions; one region of the spectrum has a
discrete spectrum and the other region has a continuous spectrum. This change in spectrum

characteristics is due to the bottom boundary defined as an impedence condition:

Lop| 1| 4 (2.1.11)
podz =" py dz [ =

P |z=h =Pb Iz=h
The horizontal wavenumber which separates the discrete and continuous regions is known

as the cutoff wavenumber is delineated by the wavenumber of the bottom half space, which
has sound speed ¢, and density py. This discrete/continuous split spectrum is found in
more complex models in which the horizontally stratified layers that make up the bottom
profile are usually terminated at an arbitrary depth by an isovelocity halfspace. The cutoff
wavenumber is set by this layer's wavenumber|24].

An intutive approach to cutoff is formulated by alternately posing the modal

description as a superposition of up and down going plane waves(since uy(z) = sin(yyz) =

eimz _ g-jmz . .. . s .
T)[B,ZS]. This expression is well suited to identifying modes which will

propagate.

Fig 2.1.2 - Plane Waves Incident on Boftom

-13.




As shown in figure 2.1.2, the downgoing plane wave is incident on the bottom at an angle
kn

Op, which is defined by Oy = tan‘l(-———-) . As the mode number, n, increases, the angle 6,

Yn

decreases and so the inclination of the plane waves becomes more nearly vertical. As ky
approaches zero and becomes imaginary, the mode changes from a propagating mode to an
exponentially decaying, inhomogencous wave. This situation in which the sound energy is
present as a heavily attenuated field is known as cutoff; the angle at which this occurs is
known as the critical angle, 6¢[26]. An incident plane wave associated with a propagating
_ mode will experience total reflection at the bottom; in the sediment, the sopxnd pressure is,
| exponentially damped (Fig 2.1.3).This "impedance condition" dictates the existence of a
mechanism fo account for energy "leaking” into the bottom since the plane waves (the
modes are being modelled as a superposition of up and downgoing plane waves) incident
on the bottom are no longer being perfectly reflected.

By decomposing the depth eigenfunctions into plane waves , the plane wave
incident angles which lead to prepagating modes may be divided into two regions[{27]:

* 8 > 6. : Region of perfect reflection resulting in a discrete set of trapped modes in

water column and exponential decay in the bottom.

* 8 < 8. : Region known as the continuum which is propagation region where leaky
(or virtual) modes can exist. These heavily attennated modes allow energy to leak
into the bottom; some of this energy may be directed back into the waveguide by

the bottom's velocity/density profile.
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Water Column

Sediment
, C
pb b

R e

Fig 2.1.3 Pekeris Mode Shapes for Modes 1 and 2

The anticipated loss of amplitude with respect to range in a lossless waveguide

should be % This expected decrease is due to the cylindrical spreading term contained in
r

the Hankel function. The observed rate of decrease is higher than this and is due to
absorption in the water column and dissipation of energy by the sediment{26].
Mathematically, this may be treated by allowing the horizontal wavenumber to have a small
~ imaginary component, ie kn— kp +j 8kp[28]. By using this perturbative approach , some
conclusions can be made regarding the effect of the attenuation on the modal sum
description. The mode attenuation coefficient, 8k, is proportional to the percentage of

mode shape in the bottom. If the mode has significant amplitude in a lossy bottom there
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will be high attenuation with respect to range. 'While the water column mode shapes
won't change when attenuation is taken into account, different modes will have different
attenuation rates.  This is evident if the plane wave decomposition of the modes approach
is used. The higher order modes are incident on the bottom with s‘t'ceper angles (closer to
normal incidence). These modes undergo more reflections for a given horizontal range
than modes which are incident closer to grazing.

The cursory review of normal mode theory of this section was meant to emphasize
key aspects of the shallow water waveguide problem. The hard bottom waveguide
example demonstrated the modal sum form. The asymptotic behavior of the Hankel
function was stated as well as characteristics of the propagating energy{27]. The
substitution of an impedance condition for the formerly hard bottom results in two distinct
regions in the spectrum. In one, the spectrum is discrete and in the other, it is continuous.
The distinction between the discrete and continuous spectrum may be set by the
wavenumber of a "basement” isovelocity halfspace. The general pressure field description

consists of a modal sum and continuum as in:

p(nz) = jm zu:(zg) un(2) B () + 10 (2.1.12)
n=1
Attenuation effects are incorporated by a small imaginary term in the horizontal
wavenumber, k;;.
If the asymptotic form of the Hankel function is used (equation 2.1.10) and the attenuation

term is included, the pressure field description becomes:
p

p(r,z) =i E aqu:;(zo) ug(z) V:Zn”;_ el (kaqr - Ti“) +0qr (2.1.13)

g=1
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2.2 Prony's Method

Prony's method is a parameter estimation technique in which the model parameters
are varied to fit the observed data. Parameter estimation approaches involve the use of a
priori knowledge in the intelligent selection of an appropriate model[29]. In Prony's
method, the signal is considered to be composed of a linear combination of damped
complex exponentials[30]. Prony's method is by no means the only model which may be
applied to the ocean waveguide (for example Pisarenko or autoregressive moving average
(ARMA) modelling might also be used)[31]. The use of Prony's algorithm was driven by
two factors. First, the method has the advantage of requiring shoﬁ data lengths ( a small
range aiperturc) to yield high resolution wavenumber estimates. Second, the modal
structure of far field propagation in the shallow water waveguide can fit the Prony model
very well. These two characteristics lend credibility to the application of the technique to
shallow water waveguide propagation.

In 1795, Gaspard Riche, Baron de Prony, proposed an interpolation scheme in
which a deterministic model was assumed and the equally spaced data was used to fit this
deterministic model[31]. The method consisted of an exact fit of the data points to
exponentials; the evolution of the algorithm since then has been significant. The insight of
the solution method and the ensuing three step process has endured although the expanded
algorithms additionally address issues such as stability, robusmess in noise and least
square fits.

The model used by the algorithm is a weighted sum of complex damped
exponentials. Consideration of the exactly determined case allows identification of the
steps used in the algorithm; the development of the extended Prony method(least squares

fit for an overdetermined system) is an enhancement of this basic procedure.

-17-




The observed data, y[n], is assumed to fit the model:

y[n] = i\Aqexp{(ocq + jkgInT + j8g] . (2.2.1)
0

with
p = model order
T = sampling range
Agq=amplitde
0q= damping factor
kq = wavenumber
0q = initial phase
Regrouping terms: 1
yln] = szk 7 (2.2.2)
g=0
where
Vg = Agexp(iBq)
zq = expl{og + jkg) T

For p data points, the system may be expressed in matrix form:

0 0 0 vQ y[0]
4 251
1 1 1 vi y[1]
oA -1 =} (2.2.3)
p-l 1;-1 1;-1 - .
Zo % 1/ \vpa (p-11/

or

7. =

o

In order to solve for the complex quantities vq and zq, we will decouple equation ( 2.2.3)

by solving for the z4's. The insight offered by Prony in this scheme was that one approach’

18-




for finding the zg's is the solution of a homongeneous linear constant coefficient difference

equation (LCCDE).

The first two steps of Prony's method solve for the zg's as follows:

Consider the observed signal,y[n}], to be the output of an all pole filter driven by an unit

impulse function (Fig 2.2.1):

x[n] = 8[n] Y() yln]

Ho= 3o P

Fig 2.2.1 Filter Model of Observed Signal

For this model:
H(z) =

1 1
T p-1
1+ iaq 74 h(l - 7z 1)
q=1 =0

Since H(z) is defined as %, cross multiplying equation (2.2.4) yields:

Y(z)[l + iaq z‘qi| = X(z)
g=1

Defining ag = 1 and taking the inverse Z transform results in an LCCDE:
p
x[n}= ¥ aqy[n-q]
g0

The homogeneous portion of the LCCDE is:

P
Y agyln-ql =0
q=0

Expanding by one term (recall ag = 1):

P
ylnl+ ¥ agyln-q] =0
a1

_19-
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This yields a set of equations over the observed data range 0 £n < 2p-1:

yip-11  ylp2l ... ylO0] a1 yIpl
vipl  ylp-11 ... ¥l ap ylp+1]

= (2.2.9)
viZzp-2] yi2p-31 ... ylp-11 ap [2p-1]

The first step of Prony's method involves obtaining the coefficients aq4's by solving
equation (2.2.9) using the 2p complex data points y[n]. Notice that the a4's were defined
in equation (2.2.4) as the coefficients of a polynomial which:had the zg's as the roots.
Obtaining the roots of the equationis the second step of the process. Now that the zg's aﬁ:
available, the third and final step of the process is to solve the exactly determined sytem
defined by equation (2.2.3). The nonlinear aspect of the problem has been isolated in the
second step. An attempt to solve equation (2.2.1) directly by an error minimization scheme
results in a nonlinear set of equations which must be solved by Newton's method or some
other iterative approach.

In the last section, we identified the three steps used to fit observed data to a model
defined by an exactly determined set of equations. In practice, the amount of data typically
exceeds the model order, which allows extension Qf the procedure to encompass a least
squares estimation, The advantage of the least squares technique is that the issues of noise
and stability may be approached using the rich theoretical material available in linear
prediction, lattice, and autoregressive (AR) filter design[32]. This section will take a closer
- look at the three éteps in Prony's method and identify the algorithm used in our work.

The first step contains the greatest variety of approaches. The identification of the
"best" polynomial coefficients 1s complicated by the overdetermined situation; instead of

solving equation (2.2.9) directly, an error criterion must be minimized. There are three
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general ways in which the error criterion is minimized, one "direct” and two “indirect”.

The use of "indirect” and "direct" qualifiers is an identification of how the coefficient vector
is determined. In the "direct" method, operations take place directly on the signal matrix
while the “indirect” procedures use the observed data to generate an exactly determined set
of linear equations. The "indirect" methods are the techniques most frequently used and
will be discussed first.

The “indirect” methods will be presented here from the viewpoint of linear
prediction theory[29,32-34]. A simple way of expressing the linear prediction philosophy
is that the p+1 output, ie y[p+1], may be predicted by using a 1inéaf combination of the last
p outputs, ie. ylp], y[p-11...y{1]. By using our all pole model in Figure 2.2.1, we can
make use of its LCCDE (equation (2.2.6)) and replace the input, x[n], by d[n].

Since ag = 1, LCCDE may be rewritten as: |
yln}=- q)p_glaq ylo-q} + &[n] _ (2.2.10)

Denoting O as the predicted estimate of y[p+1]:
(2.2.11)

P
B=- ¥ agy[n-q}
1

The error,e[n], is now defined as the difference between the observed and predicted value:
e[n] =y[n]- ¢ (2.2.12)
The coefficients ag which minimize the energy in the error signal are found by the “normal
equations”. In matrix form, the quantity to be minimized is:
e=¢le (2.2.13)
The error cquatiops of equation (2.2.12) may be gathered in matrix form:
y-Ca=e (2.2.14)
Expanding (2.2.13) and minimizing yields the following relationship:

CHCa = CHy C(2.2.15)
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which are known as the "normal equations”. These equations exploit the orthogonality of
the error vector to the basis -sef formed by the columns of the signal matrix. The range of
values over which the error is minimized differentiates the two "indirect" methods, which
are known as the autocorrelation and autocovariance methods[33].

The autocorrelation method minimizes the error over an infinite duration signal,
The method assumes a stationary process and yields a matrix system which has a Toeplitz
structure, This synunetric, positive semidefinite characteristic allows the use of Levinson's
recursions for an efficient solution algorithm. The main advantage of the autocorrelation
method is that the ensuing filter is theoretically guaranteed to be établc {(all of the poles
within the unit circle of the z plane). Care must be taken in the numerical implemeﬁtation of
the technique to avoid accurnulated roundoff errors from making the autocorrelation matrix
ill conditioned.

The disadvantages stem from the minimization of the error over an infinite interval.
In an all pole model, the impulse response will be infinite in duration. The finite amount of
data available to the user is an implicit windowing of an infinite duration signal. This
windowing effect chang;s the autocorrelation coefficients in the matrix, forcing an estimate
(rather than determination) of the autocorrelation coefficients. The result of spreading the
error over an infinite interval is that the model generated from all pole data will not match
the actual system. Zero padding and application of windows to the available data minimize
the effects of finite data length but these techniques may be hazardous in a high resolution
spectrurn analyzer situation, |

The more common "indirect” approach in use today is the autocovariance
method[3,35,36]. The error is minimized over the finite length of data. In stochastic
theory this equates to the nonstationary case modelled as locally stationary. The matrix
system which is solved for the ag's is positive semi-definite but not Toeplitz. Although
Levinson's recursions cannot be used to solve the system, there are algorithms, most
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notably Marple's, which address efficient solution techniques for this method. -By
minimizing the error over a finite interval, the autocovariance method will match all imle
data to the generating system. As the data length increases, the covariance method will
approach the autocorrelation technique.

A drawback to the covariance method is the lack of a stability theorem to guarantee
the filter coefficients will describe a stable filter. This drawback was addressed by Burg,
who developed an algorithm which constrained the problem to yield a stable filter{37,38].
Specifically, this is done by changing the error minimization problem. In addition to the
error defined above, called the forward error, a new error, callcd the backwards error, is
specified. Burg's rationale was that the stationary signal should "look" the same going
forward and backwards through the data set. The error criteria to be minimized in a Burg
algorithm is the sum of the forward and backward errors. Although sumfning the error
over twice as many points is advantageous in a short data set, blind application of Burg's
algorithm (also known as the modified covariance method) is dangerous. Specifically, the
problem lies in the assumption of the signal appearing the same regardless of the direction
of data set traversal. A sinusoid does indeed have this characteristic but the presence of
damping (placing an exponential decaying envelope on the sinusoid) requires careful
examination of the physical system before applying the Burg forward-backward error
sum[2]. Inthe tradeoff between damping and stability, the decision is usually made to
assume an undamped system in return for the assured stability. In the shallow water
waveguide, constraining the pressure field to consist of undamped sinusoids is reasonable
for propagating modes but not for the leaky or virtual modes which may be represented as
damped sinusoids. In addition, although the assumption that the wavenumbers are real (no
damping) is acceptable since the propagating modes have small damping factors, the user

must then have other methods available to estimate mode attenuation.

-23-




The approach explored in this thesis is the "direct” method in which the least
squares operation is performed directly on the signal matrix. The technique is hampered by
the lack of a stability theorem but this was not found to be a problem in practice. In the
"direct" approach, a QR decomposition is used. The QR decomposition is a very stable,
fast technique which uses Houscholder (orthogonal) matrices to orthogonalize the original
matrix[39,40]. The use of Householder matrices results in a decomposition of the A
matrix into

Apxq=QpxpRpxq (2.2.16)
in which the first g columns of QQ form an orthonormal basis for &e column space of A and
the last p-q columns form a basis for the left nullspace of A (ie, the last p-q columns are
perpendicular to the first g columns). The first n rows of R form an upper triangular
matrix; the columns of R are formed by successive Householder matrices operating on
corresponding columns of A.

The least squares problem may be solved by considering:

Ax=b (2.2.17)
with

A =p x g matrix (p > q since overdetermined)

x =qx 1 vector (in Prony's method, these are the ag's)

b =px 1 vector.
Next, the normal equations for the complex matrix A are expressed as:

AHA x = AHpb, (2.2.18)

Substituting QR for A in this system yields the following:

(REHQH) QR x = RHQH b (2.2.19)
QHQRx=QHp (2.2.20)
Rx=QHb. , | (2.2.21)

So,
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x=RIQHp (2.2.22)
The advantage to using tl}is approach over the normal equations is evident when the
columns of A are barely uncorrelated. The ensuing calculation of AHA will amplify round
off errors due to this matrix being ill conditioned. The orthogonal matrix decomposition
approach avoids this problem and the round off error accumulations are at a minimum{41].

Specification of a model order is inherent in the first step. The determination of a
"good" order is complicated by using an all pole (also kmown as an autoregressinve [AR])
model to represent a pole zero (also knowns as ARMA) process. Even if the number of
poles are known apriori, use of the exact number of system poléé may not yield a good
result . If the model order is underdetermined, the “spectrum” will be smooth and
smeared. If the order is overdetermined, the model is likely to have spurions peaks[32].
The empirical rule used by the signal processing community of overestimating the model
order is supported by two assumptions. First, underestimation of model order will not
identify true poles while overestimation will tend to identify these poles. Although the
model is forced to find parameters to fit the specified system, the energy of the arbitrary
poles (ie, those in excess of actual system order) is quite small. Second, the presence of
noise in the data may be modelled as zeros{31]. An ARMA process represented by an AR
model requires overspecification of model order (actually, the bias of the estimation
decreases as the order increases).

Various researchers have suggested analytical methods to estimate model
order[33,42-44]. Akaike[42] has suggested a final prediction error method and a cost
minimization method in which a cost is assigned for extra coefficients which do not reduce
" model order. Criticism of the final prediction method is that it yields too low a model order
while the cost minimization method is said to have statistical inconsistencies. To date, there
is no common approach for identifying a good model order. In the algorithm used here, . .
the model order specification is left (o the user. A first approach used an singular value
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decomposition(SVD) of the signal matrix to obtain singular values of the system. A
sudden decrease in the magnitude of the singular values was the breakpoint of estimating
the actual modes of the system. Two problems with this approach are that the "breakpoint”
is not clearly defined as noise is introduced and the optimum model order is still not
specified by examining the singular values. A more subjective approach made possible by
the interactive nature of the algorithm was to increase the order and examine the outputs.
‘When the number and values of the wavenumbers of propagating modes (identified by low
damping and high amplitude) stopped changing as order increased, the model was said to
have sufficient order.

Polynomial rooting IS the second §'tep of the Prony process. Since this is done
numerically, a robust algorithm must be used. The nonlinear aspect of the parameter fitting
is located in this portion of the algorithm; slight errors in the coefficients fnay result in
significant changes in the roots[41]. For example, the polynomial x4 - 10x3 + 35x2 - 50x
+ 24 has roots of (x - 1)(x - 2)(x - 3)(x - 4). A change of 0.5% 1in the second coefficient
yields a polynomial of x# - 10.05x3 + 35x2 - 50x + 24, which has roots of (x - 0.992)(x -
2.340 - j0.2269)(x -2.340 + j0.2269)(x - 4.378). The choice of a comiplex rooting routine
by Jenkins and Traub and double precision calculations are the tools used to reduce errors
in this section of the algorithm[45]. While the three stage rooting algorithm has performed
well, the sensitivity of the roots of a polynomial to the coefficient values indicates the
choice of algorithrs in step one may be the major contributing factor to the accuracy of the
final model

The third and final step of the routine is the solution of the overdetermined version
of the linear system expressed in equation (2.2.3). The minimization of least square error
technique is used; the result 1s the normal equations approach outlined in equation (2.2.15).
A QR decomposition or the usual least squares technique (x = (AHA)-JAH b ) may be
used[46]. The algorithm exercised in the thesis research used the second method and
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incorporated a Cholesky decomposition scheme to exploit the Hermitian symmetry of

A4,
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2.3 Application of Prony's Method to the Shallow
Water Waveguide

In the section on underwatm:r acoustic theory, an expression for the far field acoustic
pressure as a sum of normal modes was developed. While the algorithm for using Prony's
method to fit parameters to a deterministic model was outlined in the last section, the task
of transforming the pressure field to a suitable form remains. We will now develop a
model of the shallow water waveguide in a format which fits that assumed in the last
section.

From equation (2.1.8),the pressure field may be expressed as{13]:

P
p(r,7) = jm zaq ' (z0) ug(z) HY Geqp) +10) L @31)

g=1

The far field contribution of the continuum, I(r), may be neglected and the asymptotic

approximation for the Hankel function of

H{kgr) = /;—-{ ef (kar - 59) (2.3.2)
is substituted into equation (2.3.1) to yield:
P
. * 7 . T
p(r,z) =jm E g U (Z0) ug(2) \/ - e (kar - °r) + oqr (2,3 .3)
=1

Since the pressure field is measured on a horizontal array, p(r,z) will be expressed as p(r)

and the depth dependence will be incorporated into a constant, Ag, in the following manner:

P
p() = 2 é}%cxp[(aq + jka)r + §8q] (2.3.4)
¢=1

The data available for processing are actually samples of the pressure field rather
than the continuous pressure field itself. The discrete samples allow r in equation (2.3.4)
to be replaced by nT in which T is the sampling range. This assumes equally spaced data |
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points; in practice, a cubic spline interpolation scheme is used to ensure proper spacing of
the input data.to the algorithm. Experimental results indicate the sampling must be dense
enough to meet the Nyquist criteria to avoid aliasing.[25].

The last step in modeling the pressure field in a Prony format is the elimination of

the \!L_tcrm in equation (2.3.4). The data is multiplied by the VT to yield the model:
T

-1
y[n] =p@r= PZ Agq expl(oq + jkg)nT + jOq] (2.3.5)
=0

where .
Ag=ljn aquq(zg) ug(z)l = amplitude
oq = Im(ky) = damping
kq = Re(ky} = modal eigenvalues
0q =7+ £ [inag u;(zo) uq(z)] = initial phase

This model may be further compacted in the form of equation (2.2.2)
-1

y[n] = 2 vq 7zl (2.3.6)

where
vg = Agexp(ifg)
zq = expl(og + jkq) ]

Once the vq and zg's are obtained through Prony's method, the parameters of the model are
generated via:

. _ (zq)
tan-1 Re(zg) ,
ke 23.7)

o T
g = 1nr}zgl
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.1 {Imlvg)
0q = tan-1 R—cﬁ[)‘)

An examination of the output of the program for a simple model is useful as a guide |
to gaining physical insight into the analysis results. The algorithm described in section 2.1
was incorporated in a FORTRAN program called PRAWNS (PRony Analysis of
Waveguide for Nominal Spectrum). A sound speed profile (summarized in figure 2.3.1)
was developed and the corresponding complex pressure field versus range data was
generated by SNAP[47]. The sound speed profile is a simplified version of the
experimentally determined profile of the water column and sediment layers off Nantucket
Island in Massachusetts. SNAP, a normal mode acoustic propagation modelling program,
generates a far field approximation of a pressure field from a user defined profile and
frequency (in this case, 220 Hz). In addition to a pressure vs. range output, SNAP
provides a list of the modal eigenvalues (the wavenumbers), the normalized eigenfunctions
(the ug(z)'s) and the attenuation coefficients. This "ground truth” permits a reasonable
method of examining the PRAWNS output.
Table 2.3.1 provides the SNAP attenuation and wavenumber outputs for this
profile. Table 2.3.21isa I;E;rual PRAWNS output of two different range intervals. (The
specific relationship among the model specifications listed in table 2.3.2 is covered in
Chapter 3). A brief examination of the PRAWNS outputs in table 2.3.2 will highlight |
some program characteristics; the information provided by this simple analysis is rich.
First, the PRAWNS analysis provides a means of identification of the propagating modes
in the overspecified Prony model.  As expected, the propagating modes are marked by
high amplitude and low damping. As the model order is increased, the damping and

amplitude remained constant for a given range block. When the order is vastly

overspecitied, there is a small change in the propagating mode amplitudes as the energy 1s
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Fig 2.3.1 Nantucket Profile Used in SNAP Program
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forced to be distributed among the user specified order. In viewing the tabular data, high
amplitude and low damping proved to be a good indicator as to the actual order of the
system (as mentioned in section 2.2.1, an analytic approach to obtain actual system order
may be performed by an SVD of the signal matrix). Second, as mentioned in the
introduction, the primary objective of the analysis is to obtain accurate wavenumber data.
Comparison of the first three indices of table 2.3.2 with the modes of table 2.3.1 show a
wavenumber match to five significant digits. This is most satisfying given that the aperture
size 1s 90 meters (30 points of data used). Third, the damping factors output by PRAWNS
are quite reasonable given the small aperture. It is expected that the small decay in energy
of a propagating mode over the 90 meter range aperture would lead to difficulties in
accurate estimation of the attenuation factor. There are two ways to atteropt to improve this
accuracy. The first method is to increase the range aperture and allow the energy of a given
mode a greater distance to decay. The second method uses the amplitudes of a given mode
as outlined in figure 2.3.2. The origin is set to some reference ran ge and the PRAWNS
algorithm is used on the range interval R to R'. Since attenuvation will cause an exponential
decay of the amplitude of a given mode with respect to range, the amplitude of a particular

mode, A(rp), estimated by PRAWNS at a local reference range, rg, is given by:

Alrg) = A(O)expla rg] = A(Q)exploc Rlexplo: 5t (2.3.5)
where
R >> &r
=Fo
or
|
r=0 r=R r=R

Fig 2.3.2 Amplitude decay vs range
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While the PRAWNS aperture may be too small to yield accurate attenuation estimates, the
use of amplitude estimates from seperate range blocks may permit a better attenuation

value. For a numerical example, consider the amplitude of mode 1 in the 1002 - 1149 m
and the 1350 - 1497 m range blocks. Using a range difference of 1350 - 1002 =348 m =

Ar, set up a simple ratio which takes into account the effect of attenuation in the model:

]A%= e % AT where Apq = mode p amplitude in range block g. (2.3.6)
Substituting,
1 . (0.1044188Y
o= 373 1‘(0.1076169) =-8.67 E-05 (2.3.7)

Comparing the results in equation (2.3.7) to mode 1 of Table 2.3.1, we see this method is
not a good choice in this trial. This may be due to poor amplitude estimates or a short range

interval.

-33.




Table 2.3.1 SNAP Output for Nantucket Profile

Mode No. Wavenumber (m-1) Attenuation

1 0.9074474 7.995E-05
2 0.8546543 2.422E-04
3 0.7758756 1.067E-03

Table 2.3.2 PRAWNS Qutput for Nantucket Profile

Total No. of points: 166

Avg. block: 50 pts.
Processing block: 30

Model Order: 10

Overlap: 0 pts.

Samp. Range: 3.0000 m.

Starting Range: 1002.0000 m. Final Range: 1149.0000 m.

INDEX WAVENUMBER DP;MPING AMPLITUDE

PHASERAD)
1 0.9074478 -0.0000796 0.1076169 -0.4942496
2 0.8546547 -0.0002414 0.1850737 1.5719849
3 0.7758779 -0.0010739 0.0055408 -1.1877416
4 -0.8612481 0.0390015 0.0000000 1.5355707
5 -0.6309471 -0.0971785 0.0000136 0.4525263
6 0.4507092 -0.1030366 0.0000168 -1.8049235
7 -0.4826431 -0.1153568 0.0000122 0.2122693
8 -0.3845713 0.1321304 0.0000194 -0.9443646
9 -0.1642203 -0.1529004 0.0000423 0.2692317
10 0.1153333 0.1621337 0.0000536 2.5536927

Total No. of points: 166
Processing block: 30
Overlap: 0 pts.

Avg. block: 50 pts.
Model Order: 10
Samp. Range: 3.0000 m.

Starting Range: 1350.0000 m. Final Range: 1497.0000 m.

INDEX WAVENUMBER DAMPING AMPLITUDE PHASE(RAD)
1 0.9074471 -0.0000800 0.1044188 -3.0543090
2 0.8546540 -0.0002421 0.1688871 -2.0942594
3 0.7758755 -0.0010671 0.0036974 -0.0749611
4 0.2020056 -0.0030457 0.0000000 -2.3543923
5 0.3843271 -0.0272609 0.0000000 0.6840160
6 -0.5876253 -0.0380173 0.0000000 2.2279577
7 -0.86810644 -0.0567308 0.0000000 -0.6433010
8 -0.0685432 -0.0614808 0.0000000 0.5810484
9 -0.3724043 -0.0977833 0.0000001 0.9746809
10 -0.4323751 -0.1299475 0.0000001 -2.0567591

34-




As the range between the analysis blocks increases, the decay in energy will be greater and
the attenuation estimate should improve. This alternate method of estimating attenuation is
also prone to noise effects manifested in amplitude estimations.

Because of the isovelocity water column of the Nantucket profile of figure 2.3.2,
the mode shapes in the water column are not distorted by gradients. The mode shapes
provided as part of the SNAP output may be used as a comparison to the Prony analysis
for a vertical array. This was synthesized by using the sound speed profile of figure 2.3.1
but changing the receiver depth. The receiver depth was changed in half meter increments
from 0.5 to 13.5 meters. A range aperture of 375 meters was specified and the PRAWNS

program was used to analyze the modal structure at 500, 1000 and 1400 meters (see figure
2.3.3).

Range aperture —#{ 375 m [€4—

Receiver depth changed in
0.5 m depths from 0.5 to
13.5 m.

- Bottom profllc of ﬁg 2.3. 1

s-.«l.-ﬂ--.--.--_'.-,-
_‘-' [ u'_'l‘ T

Fig 2.3.3 Vertical Array of Nantucket Profile
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SNAP and PRAWNS mode shapes (500 m)
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Figure 2.3.4 Vertical Mode Shapes for PRAWNS and SNAP
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The resulting amplitudes for each mode were scaled to match the normalized SNAP mode
shapes at a particular depth (10 meters). The resulting close agreement is evident in figure
2.3.4. The larger aperture presents another opportunity to try the attenuation estimation
method in equation (2.3.6). With a range interval of 249 meters and receiver depth of 10

meters, the results are summarized in table 2.3.3:

Table 2.3.3 Attenuation Estimation using Nantucket Profile

Mode No. Amplitnde 1 Amplitude 2  Attenuation

1 0.2270556  0.2225807 -7.994E-05
2 0.0687738  0.0647491 -2.422E-04

3 0.0054065  0.0041446 -1.068E-03

The results are much closer to the SNAP results in Table 2.3.1.

37




2.4 Summary

The cursory review of normal mode theory of section 2.1 was meant to emphasize
key aspects of the shallow water waveguide problem. A general form for the pressure field
was developed in the form of a modal sum and a continuum. A hard bottom example was
used to demonstrate the form of the pressure field, the asyrmptotic form of the Hankel
function and the effect of source receiver geometry. The Pekeris example demonstrated the
discrete spectrum and continuous spectrum regions of more complex bottom models. The
distinction between the discrete and continuous spectrum may be set by the wavenumber of
a "basement" isovelocity halfspace. Attenuation effects were incorporated by a small
imaginary term in the horizontal wavenumber, ky.

In section 2.2, the basic three steps of Prony’s method were developed. Upon
closer examination of these steps, some of the options and rationale for choosing them
were explained. The algorithm used in the remainder of the paper was presented; the
particular method chosen for further investigation is different from the forms commonly
found in the signal processing literature.

Section 2.3 tailored the modal sum representation of the pressure field into a form
suitable for processing via Prony's method. Two applications of the method were
presented. The first was a straightforward horizontal array application with a range
aperture of 90 meters on data generated synthetically by SNAP. This application
demonstrated the good agreement of wavenumbers between PRAWNS and SNAP; in
addition, the distinguishing characteristics of propagating modes were presented. The
second application simulated a vertical array by analysis of the same range blocks at
- different receiver depths. This example demonstrated use of the PRAWNS mode
amplitudes to obtain vertical eigenfunction shapes and an alternate method for obtaining

mode attenuation.
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-Cha ter 3
*Pronys Method Evaluation

3.1 Depth Dependent Green's Function

In the previous chapter, the pressure field was represented by a modal sum and
continuum contribution. While the modal nature of sound propagation may be observed in the
pressure field as an interference pattern, this is not the optimum domain for modal analysis. As
the number of modes increases, the interference pattern becomes increasingly complex, An
alternate description of the modal information may be obtained through a Hankel transform of
the pressure field[48-50]. The result of this transformation is known as a depth dependent
Green's function. This section outlines tﬁe form of the depth dependent Green's function.

A zero order Hankel transform is defined as[21]:

o)

H{ F(r) } = fikp) ={{F(r) Jolky r) r dr (3.1.1)

With an inverse of:

©o

H{ fkp) } =F@ = 0Jf(kr) Jo(kr 1) kr dky (3.1.2)
That is, the Hankel transform is its own inverse. From equation (2.16), recall,

1 g ap 2p 5 o(r)

rar a —)+ R 2+k (z )p—-Z—S(z—zo) (3.1.3)

By taking the Hankel transform of both sides, the equation yields an ordinary differential
equation:

d2
I: o2 —+ k2(z) - K> ] glkr,z,20) = - 2 8(z-2p) (3.1.4)

In obtaining this equation, the following relationship is used:

H{ L Lrgy )} = -1 £(k) (3.1.5)
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The solution to equation (3.1.4), g(kr,z,20), is known the depth dependent Green's function.
An analytical solution to the equation may be found by application of Sturm Liouville theory.
For a waveguide with the surface at z=0 and bottom at z=h, the impedance boundary
conditions may be expressed in the form:

A19'0) +B1 ¢@) =0 | (3.1.6)

AP +Bao®=0
Defining the Wronskian, W, as W = ¢g ¢b - Op ¢, permits the solution to equation (3.1.4) to be

expressed as:

e~ {wag) 4t k0 0s25% (3.1.7)
8 ={tg) Ostkero) duted) 0<z<h

The determination of the Green's function now requires identifying ¢p, and ¢g, which
are two solutions to a Sturm Liouville problem. Both solutions satisfy the homogeneous
equation (3.1.4) and ¢y, satisfies the bottom boundary condition while ¢ satisfies the surface
boundary condition. In terms of reflection coefficients, for an isovelocity waveguide, the
solutions at the surface, ¢, and bottom, ¢y, the superposition of up and downgoing plane
waves are[9,26]:

0s=A [e- 112 + Ry(ky) iz ] and (3.1.8)

dp=B [z + Rp(k,) et ?h-2) ]

Substitution of these into the equation for the Green's function, equation (3.1.4), yields:

j[e-iviz-zgl 4+ Ry eff(z+zg) + Ry, eiY 2h (e-i%(z+2) + Ry - Y 122y |
g f=

. 3.1.9
v[1 - RpR e27h] (3-1.9)

In the simple waveguide examples of chapter 2, the surface reflection coefficient is Ry = -1; ie,
the upper boundary is treated as a pressure release. The expression above holds equally well in

multilayer waveguides in which the upper layer boundary condition is not constrained to be a
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pressure release mechanism. By the definition of the Hankel transform pair given above, the

_rciationship between the depth dependent Green's function and the pressure field is then[14]:

o3

p(r.z,20) = | glkr,z,20) Jo(ket) kr dky  and (3.1.10)
0

(=]

glkrz,20) = A p(r,z,z0) Jo(ks) r dr

The transformation of the pressure field to a depth dependent Green's function is a
particularly useful tool in examining the modal behavior of the waveguide. The depth
dependent Green's function (which will be called the Green's function hereafter), is a function
of the horizontal wavenumber, k., and the source and receiver depths, zg and z respectively. It
is in the examination of the horizontal wavenumber spectra that the influence of the boundaries
on the modal strocture is easily observed.

In chapter 2, the pressure field was also expressed as a sum of a modal portion and a
continuous contribution. Current studies of the normal mode approach have shown this

decomposition carries over to the Green's function in the following manner{25]:

L ©)
p(r) = Jmnzzjlankmﬁo (k) +P.(0) (3.1.11)
) i
A ] !
2km (.1.12)
glk,) = Z (2-k2) i)
n=1 m

That is, the modal portion of the pressure field is dirc;:tly related to the modal portion of the
Green's function through a zero order Hankel transform. The coefficient, ay, is the residue
(from the Cauchy residue theorem) for a given kq; that is, the coefficient is defined as  ap =
o B0 (k- k) glko). An alternate expression for the coefficient in terms of the vertical

eigenfunctions, vy, isf25]:
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(k) = 20fZ0) Un(z). (3.1.13)
) == ) ke

For a Pekeris waveguide, the specific coefficients may be found using:
sin(Yoz) sin(yozo)

a = kr = 3.1.14
nfk) ( sin(2yph) . b sinz('ygh)) femn ( )
kel h - + j
40 n
where
b=- 10 " l kr = km and the subscripts 0 and 1 denote the water column and half
Imn _
space respectively.

There are two additional items which should be noted with regard to the Green's
function. The first characteristic concerns the rational form expression for the Green's

function. In equation (3.1.12), the modal portion of the Green's function, gn, is given as:

N
g = % (3.1.15)
& - k2)
n=1

where both the numerator and denominator of the expression have zeroes at locations other
than zero and infinity. In signal processing parlance, this is a pole-zero or ARMA
(autoregressive moving average) model. The zeroes of the denominator correspond to
singularities and are called the poles of the system. In the above expression, the poles are
expressed in terms of the horizontal wavenumber and are located at ky =+ k;y(as expected
since the Green's function is an even function). The zeroes of the numerator are the nulls of
the system and are found through the identification of the coefficients a,(k,), which may be
done analytically or numerically.

The second fact regarding the Green's function is based on the physical interpretation

of equation (3.1.9). The poles of the equation are functions of the waveguide environment
since the numerator is a function of Ry, Rg, h and k; (recall the horizontal wavenumber, ki, is

related to the vertical wavenumber, v, by k= \/ k2 - 42 ). The numerator of the Green's
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function has zeroes which are determined by the waveguide environment and the geometry of
source and receiver. As the source and receiver positions are varied within a given waveguide,
we expect a shift in the zero locations and a corresponding change in the null locations on a
spectral plot of the Green's function. At certain source-receiver geometries, the zero will

cancel a pole and the mode will not propagate.

43



3.2 Prony Energy Spectral Density

In the last section, the modal behavior of the waveguide was available for examination
through the Green's function. The Green's function is related to the pressure field through a
zero order Hankel transform. Prony's method is a model parameter estimation approach rather
than a spectral estimation technique. Since Prony's method estimates the system poles ( the
k) as one of the model variables, we wish to developl a spectral plot which incorporates this
and the other parameter values.

The first step in defining a spectrum for the method is an assumption of the behavior of
the data outside the processing interval. Marple presents three possible spectra which start
from different interpretations of data characteristics[31]. In this study, the data is assumed to
have even pressure characteristics with respect to the origin, that is, p(r) = p(-r). Physically,
this may be justified by considering the symmetry assumptions made in the analytical solution
to the waveguide problem. In chapter 2, a circular symmetry assumption was invoked to aliow
removal of 6 dependency through integration. In terms of measurements, if we place our
spatial array at a horizontal range xg from the origin, we would expect the same measurements
if the array was located at -xg. Simply put, this assumption requires the effects of attenuation,
spreading, etc. to be the same on either side of the origin.

This symmetry is incorporated in the spectrum by assuming a two sided function which

is defined as:

-1
y[n] = ivq z:; fornz=0 (3.2.1)
=0
-1
= i Vg (z,;)'Il forn<Q
=0

The z-transform of this model is{51]:
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p-1

1 1
Y() = E :vq( T T T (z*z)~1) (3.2.2)
q

¢=0
Using the definitions of the roots zg and z; :

zg  =explogT +j kgT) (3.2.3)
(z;‘)-l_= exp(-oqT +j kqT) (3.2.4)

and assuming the spectral radius of the poles is less than one, a discrete time Fourier transform

(DTFT) may be found. The DTFT is:

Si1k) =T Y@ |zcexpgiemy (3.2.5)
p-1
_ . [ T [exp (eqT) - exp(-oqT) Jexp(ilkeq - keI T) ]
Z U 1- [exp (oqT) - exp(-0qT) lexp(ilkeq - krlT) + exp(i2[keq - kelT)
=0

The energy spectral density (ESD) is found by the magnitude squared of the DTFT, ie S(ky) = -
1S1(kp)2. We will refer to this function as the ESD in the rest of the thesis.

The z transform of the two sided function demonstrates a characteristic of the Prony
method; the model is an all pole system. Rewriting the z transform of equation (3.2.1) in

terms of a common denominator:

p-1
1- (z:;z)‘l - (1 - zgz*1)
Y(z)= vq = (3.2.6)
(1- qu'l) (1-(z zyD
q
_____ =0
_ [zq - (zq)'l]r1

. (3.2.7)
(1-2gz”)) (1 - (z @) ,

In the above representation, it is readily apparent the numerator of the z transform has no

zeroes except at zero and infinity for all q.
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The all pole nature of the Prony ESD dictates the appearance of the spectral plot. The
singularities of the system, the poles, yield a typical spectrum which has sharp peaks. In

contrast, an all zero (MA or FIR) filter has sharp nulls. The pole-zero model (ARMA) has both
sharp nulls and peaks in the spectral plot{51].

AR model
4
£
i
Frequency or Wavenumbey
MA model
g
=
4
Frequency or Wavenumber
ARMA model
2
4

Frequency or Wavenumber

Fig 3.2.1 Comparison of typical AR, MA and ARMA spectra
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In the last section, the pole-zero nature of the Green's function was evident. Indeed, a
plot of the Green's function for synthetically generated data confirms this characteristic (see,
for example, fig 3.3.3). Instead of taking a Hankel transform of the pressure field, the Prony
ESD is achieved by a DTET of the square root of the range times the modal portion of the
discrete pressure field. While the ESD of the resulting all pole model not the Green's function,
it is related to it. The Wold decomposition theory states that we may model an ARMA or MA
filter with an infinite order AR filter{32]. Given the constraint of a finite filter, the relationship
between the AR filter coefficients and the ARMA coefficients and the AR filter length should be
explored. Consider the Green's function as an ARMA model of s poles and r zeroes. Then,

using the analogy of a filter driven by a unit impulse:

T
Y blm] z-m
_B(z) _ m=0
H(z) = D@~ s (3.2.8)
Za[q] zq
g=0
with b[0] = a[0] = 1. To match this with an all pole filter specified by:
1 1
V(z) = G@) = - (3.2.9)
Y glwl zw
w=0
requires H(z) = V(z). Substituting the above expressions:
B 1
D_%: Stz = B@ 6@ =D@) (3.2.10)
The multiplication in the z domain is equivalent to convolution in the tine domain, so:
bfn] * g[n] =d[n] = Z(blk] gln-k]) = d[n] (3.2.11)
k:-oo

Since there are s poles in the ARMA model, d[n] =0 forn > s and

r

gln} =- kﬁl(b{k} gln-ki) +d[n] O<n<s (3.2.12)
r .
=- Z(blk] gl-kD n >s
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This expression assumes g[n] is causal and g[0] = 1. The validity limits for the expressions:
are due to the number of ARMA poles while the number of ARMA zeroes defines the
convolution length. In the AR approximation, these gin], the all pole filter coefficients, are set
equal to zero for n > r+s. As shown above, the poles and zeroes of the ARMA filter influence
the output's first s points. After that, only the poles influence the system output. To determine
the ARMA parameters given an AR approximation, the above equations may be used to find

the numerator and denominator terms using r+s+1 output points:

cfs] c[s-1] ... clsr+l] (1] cfp+1]
cs+1] c[s] vee C[s-r42] b[2] cfp+2]
= . (3.2.13)
c[s+r-1] cfp+q-2] ... clpl blr] c[p+ql
and
afn] =c[n] + ki:){k}c[n—k} (3.2.14)

In other words, the expressions for g[n] are forcing these coefficients to match the first r+s+1

~ coefficients of the infinite length inverse ARMA polynomial X(z) where
X(2) = 7= B = Y x[k]zk. (3.2.15)

The last section contained a description of the Green's function as a superposition of a modal

and continuous portion. The modal sum in the Green's function may be expressed by[25]:
N

gmke) = (—éa“—i"i—)- (3.2.16)
T m
thre an — Un(ZO) uﬂ(z)
p(z0) kin

This may be cast in the form of an ARMA model with kyreplaced by z. However, the

expression for the coefficients ay, s, in general, not trivial and requires substitutions and/or
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series expansions to yield a polynomial form in the numerator. A direct comparision of the
Green's function and Prony ESD is not useful; the quantiﬁes are not the same since the
Green's function is an ARMA process and the Prony ESD is an AR process. The poles of the
Green's function will, however mathc those of the Prony ESD; the ESD will also yield relative
energy levels of the system modes. The Green's function is related to the pressure field by a
zero order Hankel transform while the Prony ESD is related to the square root of the range
times the pressure field by a discrete time Fourier transform.

The ESD uses all of the information generated by the Prony estimation algorithm. This
presentation has two distinct advantages. First, the tabular form is transformed to a graphical
representation. The total effect of all model parameters is summarized in a concise output
which allows easy assimilation of the algorithm output. Second, the ESD is a tool which
allows comparision of range blocks. The present algorithm has no constraints on continuity of
parameter values between subsequent range blocks; each block is evaluated as a "stand alone”
entity. Changes in bathymetry and waveguide boundaries may be observed in shifts in the
ESD peaks and levels between blocks of interest. This range dependent performance is further

explored in the next chapter.
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3.3 Algorithm Performance in Range Independent
Waveguides

In this section, we will explore the application of the Prony algorithm to a synthetically
generated pressure field. The algorithm explored was outlined in chapter two; in brief, itis a
three step process. The first step consists of obtaining a least squares (LS) fit of the
polynomial coefficients for a specified model order. After using a QR decomposition to obtain
these coefficients, a numerical rooting program finds the roots of the polynomial. The last step
is the LS fit of the data to the remaining model parameters. The parameters specified by the
users include the starting and stopping range, the model order, the processing block size,
processing block overlap and averaging block size. The relationship of the last three variables

is outlined below and in figure 3.3.1.
Starting

Range, Processing Processing,
block 4bl°_Ck>l
7 NN

Ending
Range

|

% N =

AN

f——— > . L— Overlap
Processing -
block Averaging block

Fig 3.3.1 Range aperture block constituents

The processing block is the number of points used for each three step iteration of the method.
The processing block overlap allows the user to set the starting and stopping ranges of each

block so that adjacent blocks may overlap one another. The averaging block size permits the
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parameter values within a given range interval to be averaged together. In figure 3.3.1, an
averaging block is shown with three processing blocks overlapping by one-third. It should be
emphasized that this is not an averaging of spectra as is usually encountered in the signal
processing literature. Rather, the averaging is among the parameter values; it takes place
before the ESD is calculated.

Before exploring the utility of the ESD in evaluating the Prony algorithm performance,
we will describe another analysis tool which may be used to obtain a quantitative assessment of
the modelling process. As shown in figure 3.3.2 below, the observed data (the square root of
the range times the sampled pressure field) is assumed to be the output of an ARMA filter. The
all pole filter of Prony's method uses the observed data, y[n], to estimate the Prony filter
coefficients, V(z). Given the all pole filter, V(z), we want to develop a method of assessing
how well the actual data fits the all pole model. If s[n], the output of the Prony filter, was used
as input of the inverse filter, G(z) = _Vl("i)" the output, r{n], would be a unit impulse[51].
Instead of using s[n] as input to G(z), the observed data is used. If H(z) was, in fact, all pole,
and matched by V(z), then the output of G(z) would be an impulse of height equal to the gain
term of H(z) (because \7(2) assumes a gain of 1), If H(z) is an ARMA process and/or there is
noise in the system, then using y[n] as input to the inverse filter will yield a data sequence

which has nonzero terms at other than the origin. The residue is the normalized total energy of
N

this sequence: R = IEI_ r{n] r*[n]. The smaller the residue, the better the actual data fits an
n=1

all pole model since there is less energy in the residual. The last statement requires a
qualification for completeness. The residue information yields a quantitative measurement of
observed data fit to an all pole model; it makes no statement regarding the accuracy of the

parameter values to the actual waveguide values.
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Actual ARMA process All pole model

S[nl B(z) yin] o[n] sin}
I CE— H — L D V T ————
#) =3 @ / (z)

Residue determination

y[n] o 1 r{n]
(z) = V)

Fig 3.3.2 Residue determination

With these caveats, it is acceptable to add the residue to the performance evaluation
tools. The four tools which will be used are the ESD, residue, wavenumber vs. range and pole
positions in the complex z plane. Each of these serves to highlight specific characteristics of
the waveguide performance. The ESD is best used to summarize the modal behavior of the
system including range dependent features (which will be covered in chapter 4). The residue
and wavenumber plots are useful for determining when a "good" system order is reached and
the pole plots assist in identifying actual modes from the arbitrary system poles.

One of the classical difficulties facing the researcher implementing Prony's method is
the specification of a model order. This parameter is distinct from the system order, The
system order (the number of modes actually propagating) may be obtained by inspection or
numerically. The Green's function (which is generated by numerically Hankel transforming
the pressure field) may be used to estimate the number of system modes. However, large
apertures are necessary for accurate discrete Hankel transform results. To numerically extract
the number of system modes, an SVD of the signal matrix is the recommended
procedure{36,37,43-44}. Ordering of the singular values by magnitude will illustrate the drop

in singular value magnitude for singular values greater than the actual system order ( ie, if the
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model order is ten and the system order is six, the first 51x largest singular values will be
significantly higher than the remaining singular values). The addition of noise to the system
complicates both of these procedures.

The specification of a "good" model order is more of an art. If the order specified is
too low, the resulting parameter estimation will be poor as the system energy is constrained to
be distributed among the specified order. Empirically, this situation results in the identification
of some of the actual modes, generally the strongest (which are determined by source-receiver
geometry). The sytem description is, nonetheless, incomplete. If, on the other hand, the
model order is too high, the output may contain spurious peaks and/or the signal matrix may be
singular[32]. While the noise and non modal components of the energy field { the continuum)
may prevent the matrix from actually becoming singular, the matrix becomes more ill
conditioned as order increases. This may make numerical determination of the actual system
order easier since the larger singular values get larger and the smaller singular values get
smaller near singularity{40,41]. Since we do not specifically use the actual system order, this
small positive feature of largely overspecified models is negated by the problems associated
with decomposition of the ill conditioned matrix. The spurious peaks are usually of low
energy and have little effect. In some trials, the small but finite energy in these poles robbed
the valid modes of energy resulting in a poorer fit of data to an all pole model. The
development of an analytical method to determine an appropriate model order is a current
research effort. In a recent paper, Braun and Ram describe an SVD approach which yields
effective results especially in noisy situations[6].

The approach used in this study to examine the effect of model order on parameter
estimation was iterative in nature. Two different schemes were used. In the first, the model
order was increased and the total residue for the range interval was obtained. The residue
dropped to a plateau after a certain amount of overdetermination. The second scheme examined
parameter "wander" with respect to increases in model order. Both pole plots and wavenumber
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vs. range plots were examined with increases in model order. Initially, if the model was
underspecified in order, the wavenumbers and other parameters were found to change slightly
as the order was increased. At a certain point in overspecification, the wavenumber change
was negligible for increase in model order. The pole plot proved to be more effective in
determining actual modes rather than in assisting in parameter wander identification.

In exercising the algorithm, two bottom models were chosen. The first was a Nantucket
type bottom with source frequencies of 140 and 220 Hz. The second bottom profile was
similar to the type of bottom found off the coast of Corpus Christi with source frequencies of
50 and 140 Hz. The bottom models were chosen because they approximated the experimental
environments. The sound fields were generated using the SAFARI code which utilizes a
propagator matrix approach[55,56]. Unlike SNAP, continuum contributions are addressed by
SAFARI. Because of the continuum contribution, we expect the all pole model not to fit the
pressure field as well as a SNAP generated data set. The continuum effects are near field; at
long ranges, their effect should be quite small.

In the Nantucket model, the bottom profile of figure 2.3.1 was used with an attenuation
of 0.07 dB/A. The three propagating modes are well defined and widely spaced; this bottom is
not particularly sensitive to model parameter variations in model order, processing block,
averaging or overlap. Nonetheless, the bottom model serves to illustrate some basic
performance aspects of the algorithm in a “realistic” (but still noisefree) environment. The ESD
provides a useful tool for the overall modal behaivor of the waveguide. In this respect, the
ESD is comparable to the Green's function (figure 3.3.3) since it indicates energy in the
various modes. In figure 3.3.4, a small aperture model is used to estimate the parameters for
the ESD. The total number of points needed for each range block is 15 points at 3.2 meter

spacing.
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Fig 3.3.3 Green's function of Nantucket profile
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Fig 3.3.4 ESD of PRAWNS oufput on Nantucket profile at 4000 m
(15 points, 0 avg, 3.2 m spacing, model order 7)

The accuracy of the PRAWNS algorithm output vs the Green's function pole locations

is best seen in table 3.3.1. The Green's function pole locations were found through use of a
peak finding routine. The PRAWNS wavenumbers are the tabular values of the model
specified in figure 3.3.4 at 4000 meters. The range of 4000 meters refers to the first
processing block which contains that user specified range; the 4000 meter point may occur
anywhere within this processing block. This manner of specifying a range will be the |
convention in the rest of this thesis.

Table 3.3.1 Comparision of PRAWNS and Green's function pole locations

(Nantucket profile)
Mode Horizontal Wavenumber (m-1)
PRAWNS Green's Function

1 0.9077464  0.507701
2 0.8569943  0.856988
3 0.7822649  0.782204

The Nantucket profile provides the opportunity to demonstrate the utility of the pole
plots. This is a Z plane representation of the wavenumber and damping parameters using the

information generated as follows:

-56-




Pole magnitude = \/ ZrealZ + Zimag2 (3.3.1)
= tap-1{ Zimag
Pole angle = tan (Zércal )

where Zreal = e42mping * T cos( wavenumber * T)

Zimag = €%2mPing * T gin( wavenumber * T)
for each damping and wavenumber term. Identifying valid modes among the arbitrary poles
estimated by the overspecified system is performed by recognizing that the valid modes won't
change with variations in order while the arbitrary modes will. Figure 3.3.5 illustrates the
model poles for various orders and the overlap situation which allows pole identification.

The use of residues as a method of determining a "good" model order was not

particularly successful in this example. A plot of the total residue versus model order is given
in figure 3.3.6. Note the drop in residue level dfter model order 15. This would indicate that
the parameter estimation is closest to an all pole model after this order. However, it says

nothing regarding the accuracy of the parameters.
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Fig 3.3.5 Comparision of pole plots for model orders 7 and 20
(Nantucket profile,50 pt, 3.2 m spacing, 0 overlap)
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Fig 3.3.5 {continued) Comparision of pole plots for model orders 7 and 20
(Nantucket profile,50 pt, 3.2 m spacing, 0 overlap)
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Fig 3.3.6 Total residue vs. model order for Nantucket profile
(50 pt, 3.2 m spacing, 0 overlap) '

An examination of the wavenumber for a particular mode as model order varies demonstrates
the conservative nature of using the breakpoint to determine overspecification. Figure 3.3.7

demonstrates the need for overspecifying model order. The wavenumber of the third mode for
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a fourth order model is erratic and does not agree with the wavenumbers of the higher order

model.
Mode 1
1.00 ] A“/
ogo T T T Mode 2
1 (Modc 3 == QOrder 20 Mode 1
0.60 ~ —  QOrder 20 Mode 2

4 —  Qrder 20 Mode 3
0404 o o g 8@ o8 o008 86 OderdModel
020 _ *  Order 4 Mode 2
O Order4 Mode 3

0.00 4= . r .
3000 4000 5000

Horizontal Wavenumber (m-1)

Range (m)

Fig 3.3.7 Comparision of wavenumbers for model orders 4 and 20
(Nantucket profile,50 pt, 3.2 m spacing, 0 overlap)

While figure 3.3.7 indicates the need to overspecify, we can see in figure 3.3.8 that the model
order need not be greater than 15 to obtain excellent wavenumber estimation.of using the
residue to mark the breakpoint for specifying the amount of overdetermination of model order.
The Nantucket pressure field was found to be insensitive to the amount of overlap,
averaging and aperture. The use of overlap and averaging is an aid in parameter estimation in
noise; since the system was not corrupted by noise, the averaging scheme had no effects on the
output. The absence of noise is responsible for the wide tolerance in aperture size. The effects
of the continuum are quite small at the range of interest (3000 m); the system was essentially a

pure normal mode system.
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Fig 3.3.8 Comparision of 7 and 20 order model wavenumbers
(Nantucket profile, 50 pt, 3.2 m spacing, 0 overlap)

In the Corpus Christi model (fig 3.3.9), a deeper water depth was used (30 m) with a
bottom density of 1.56 g/cm3 and bottom attenuation of 0.07 db/A. The resulting modes are
closely spaced and more numerous. The selection of parameters was more critical in this
situation than for the Nantucket case. Using an aperture of 340 m (100 pts at 3.4 m spacing)
and model order 15, the ESD of figure 3.3.11 is compared to the Green's function of the

pressure data in figure 3.3.10.
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Fig 3.3.9 Corpus Christi SVP
The ESD provides a quick method of examining the overall effects of a parameter change. In
figure 3.3.12, the aperture is reduced to 50 points with all other parameters constant, The six
medes of figure 3.3.11 have been reduced to three. In some cases, the number of points may

be increased by performing a spline fit with a finer grid.
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3.3.10 Green's function for Corpus Christi profile
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Fig 3.3.11 ESD of 100 point sample at 4000 m for Corpus Christi profile
(3.4 m spacing, model order 15)
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Fig 3.3.12 ESD of 50 point sample at 4000 m for Corpus Christi profile
(3.4 m spacing, model order 15)

Table 3.3.2 summarizes the accuracy of the PRAWNS wavenumber estimates compared to the

Green's function. As in the Nantucket case, the Green function peaks were found through a

peak searching routine. The PRAWNS wavenumbers are taken at 4000 m of a model order
24, 100 point trial.
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Table 3.3.2 Comparision of PRAWNS andA Green's function pole locations @
(Corpus Christi profile)

Mode Horizontal Wavenumber (m-1)
PRAWNS Green's Function

1 0.8932641  0.892875
2 0.8857910  0.886250
3 0.8708455  0.872031
4 0.8505248  0.869968
5 0.8283763  0.828010
6 0.8137148  0.813453
7 0.8098074  0.803125

In the beginning of the section, mention was made of the iterative methods used to
estimate model order. The Nantucket profile was not particularly sensitive to model order

specification. The Corpus Christi profile[8] provides an opportunity to explore the agreement

between the two methods. The first approach in model order determination involved
measuring the total residue for a range interval as the model order is increased. The residue is
expected to drop to a lower level after a specific model order. This order represents the
breakpoint; any model order higher than this should yield good results.  As we have pointed
out previously, a good overall fit to an all pole model does not necessarily imply accurate
parameter estimations but the method empirically does yield valid results as far as mode! order
selection is concerned. Figure 3.3.13 illustrates the application of this technique on an 340 m

aperture (100 points at 3.4 m spacing) for an arbitrary range interval.
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Fig 3.3.13 Total residue vs model order for Corpus Christi profile
(100 pt, 3.4 m spacing, 0 overlap)

The second approach for determining model order entails tracking the wavenumbers as
the model order is increased. This method assumes that after a certain order is achieved, all of
the propagating modes will be found and further increases in order will yield only arbitrary
poles rather than valid modes. Figure 3.3.14 illustrates the point; the seven modes found by -
PRAWNS are plotted for varying model order. The two approaches are in agreement in this
example. Both recommend specification of a model order higher than 25 (actually, 23 in the
wavenumber scheme). The close agreement supports the use of either technique; in the

Nantucket case, the wavenumber approach worked much better.
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Fig 3.3.14 PRAWNS modes vs model order for Corpus Christi profile
(100 pt, 3.4 m spacing, 0 overlap)

The graph also illustrates a shortcoming of the ESD plot. The ESD shows only six modes due
to the damping effect (which controls the width of the ESD plot peaks) and a weak seventh
mode amplitude. The seven wavenumbers found by PRAWNS algorithm are contained in the
ESD graph; this is not evident until the tabular results are compared to the Green's function
{which shows seven modes).

The pole plots for varying orders (figure 3.3.15) illustrate the pole wander effect of
specifying the model order less than the system order ( shown for order = 5) or specifying a
model order which is higher than the actual order but not high enough (order =10). The slight
variations in the pole locations are best seen in an overlap situation as depicted in figure 3.3.16.
Even though model order 10 appears acceptable, close examination shows aberrations with

respect to higher model order pole locations.
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Fig 3.3.15 Pole plots of Corpus Christi data for varying model orders
(100 pt, 3.4 m spacing, 0 overlap)
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Pole plot for model order 15
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Fig 3.3.15(cont.) Pole plots of Corpus Christi data for varying model orders
(100 pt, 3.4 m spacing, 0 overlap)
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Comparision of model order 10 and 25
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Fig 3.3.16 Overlay of model order 10 and 25 poles
In addition to model order selection, the effect of the amount of overlap on parameter
estitmation was examined. Overlap did not affect the resultant poles for actual modes. There
was slight variation among the arbitrary poles with changes in overlap but there was no
correlation. Figure 3.3.17 illustrates the invariance for the case of a 100 point aperture (3.4 m
Epacing) 15 mode model. Figure 3.3.18 demonstrates the same behavior for a different

aperture (200 points at 3.4 m spacing).
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Fig 3.3.18 Overlap comparision of wavenumbers for model order 30
(Corpus Christi profile, 200 pt, 3.4 m spacing)}

The arbitrary poles of the system varied with aperture size; indeed, the variation among these

poles was even greater when model order and aperture were varied (figure 3.3.19). The
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wavenumber values for the propagating modes did not change since both the aperture and

model order were large enough for an accurate estimation.
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Fig 3.3.19 Comparision of 15 and 30 mode model wavenumbers
(Corpus profile,15 mode= 100 pt, 30 mode=200 pt, 3.4 m spacing)

Averaging had an interesting effect on the PRAWNS output. When averaging was
used, the wavenumber variation was quite small. Recall that the averaging is not a frequency
domain periodogram but rather an average of the discrete parameter components according to

wavenumber. This process had little effect on the wavenumbers as illustrated in figure 3.3.20.
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Fig 3.3.20 Wavenumber comparision for various averaging blocks
{ Corpus Christi, 50 point proc. block, § overlap, model order 20)

Figure 3.3.21 illustrates the drop in total residue as the number of processing blocks averaged
increases. The better fit to an all pole model may result in the averaging scheme being used as

an effective tool in a noisy environment.
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Fig 3.3.21 Wavenumber comparision for various averaging blocks
(Corpus Christi, 50 point processing block, 0 overlap and model order 20)
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3.4 Prony's Method in a Noisy Environment

The feasibility of Prony's method with synthetically generated sound pressure fields
has been demonstrated in the previous section. A major artificiality which has more effect than
the approximations made in the synthetic pressure field generation algorithms is the absence of
noise in the data. The experimental setup described in the first chapter is rife with opportunities
for data corruption from measurement error, environmental sources and processing
assumptions. This, then, is the ultimate test for the algorithm; how well does it perform in the
real world?

Historically, Prony's method is particularly vulnerable to noise{3,4,43,44].
Methods such as the covariance or autocorrelation approaches discussed in chapter 2 for the
first step of the process provide smoothing of data. The signal matrix approach used here does
not provide any filtering except through the interpolation scheme used to obtain an evenly
spaced set of data points. As a quantitative measure of the effects of noise, z; Ganssian normal
distribution routine (adapted from IMSL routine GGNML) was used[57]. The synthetic
pressure field (generated by SAFARI) was corrupted with user set levels of noise. The effects
‘o{ the noise were easily compensated for until the SNR reached 30 dB. The compensation
took the form of larger apertures and use of overlap and averaging, and increases in model
order. Overlapping was found effective up to approximately the 50% level; ie, each processing
block overlapped the other by 50% and the results were averaged. At levels higher than 50%,
the additional overlap did not provide better results. The wavenumber degradation with respect
to noise is shown in figures 3.4.1 through 3.4.4. In this particular example, compensation for
the noise addition was through increases in model order. Note the better estimation of the
higher order models at lower SNR. The other compensation used in conjunction with this was
increasing the aperture size. Below a certain level, which was between 20 and 30 dB, the
compensation did not correct for the effects of noise. Other preprocessing techniques are
necessary to obtain satisfactory results at the higher noise levels. It is interesting to note the

74




degradation with respect to SNR is lowest for the lowest order modes although with the
- source-receiver geometry configuration of figure 2.3.1, at 220 Hz, mode 2 has the strongest

amplitude as seen in figure 3.3.3.
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Fig 3.4.1 Wavenumber degradation for model order 6 of Nantucket profile
(50 pt, 3.4 m spacing, model order 6, 50% overlap)
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Fig 3.4.3 Wavenumber degradation for model order 10 of Nantucket profile
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Fig 3.4.4 Wavenumber degradation for model order 15 of Nantucket profile
(50 pt, 3.4 m spacing, model order 15, 50% overlap)

Application of Prony's method to experimental data provides insight into the
shortcomings of the present algorithm. The first set of field data was collected near Nantucket
Islénd, MA in 1984. The bathymetry for the experiment is shown in figure 3.4.5. Note the
depth change at approximately 600 m. This change in waveguide dimensions should lead to a

shift in modal peaks. Changes in the bottom sound speed profile will also affect pole values.
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The Green's function for this region is shown in figures 3.4.6 and 3.4.7 for the upper
hydrophone at 140 and 220 Hz respectively. The Green's function was obtained by
interpolating the data onto an evenly spaced grid and numerically Hankel transforming the
entire data set. This assumes boundary condition invariance throughout the region of interest.
From the bathymetry plot, it is obvious this condition is not met. The consequences of thisisa

spectrum with split modes (one set of modes before the bottom drop and one set after the drop)

or smearing.
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For Prony's method on the same data, the short aperture allows a much better
approximation to range invariance. An aperture of 64 meters (100 points at .64 m spacing)
was chosen to exercise the algorithm for the 140 Hz and 220 Hz data sets. Since there is no
"ground truth” for absolute comparision, the output of the PRAWNS code is best evaluated by
comparing the two hydrophones for the same frequency. The different placement of the
receivers changes the amount of energy in the modes but we expect the two ESDs to be similar.
Figures 3.4.8 and 3.4.9 illustrate the good agreement for the 140 Hz. case while figures
3.4.10 and 3.4.11 show the results of the 220 Hz case. The agreement between the

corresponding hydrophones is obvious.
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The Corpus Christi bathymetry is outlined in figure 3.4.12[24]. The frequencies used
in this experiment were 50 Hz and 140 Hz. The first hydrophone was moored 1.5 m from the
bottom, the second was 30 m from the bottom. The water coluron depth at the receivers was
62.3 m. The Green's function for each frequency is shown for the upper hydrophones
(BODIS 2) in figures 3.4.13 and 3.4.14. Figures 3.4.15 through 3.4.18 illustrate the
PRAWNS outputs for the experiment. The agreement between the hydrophones is again quite

good.

60.00 1Source depth 9.14 m l N/
50.00 A O—
] / \

D #€— 30 m from bottom (BODIS 2)

1.5 m from bottom (BODIS 1)
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Fig 3.4.12 Corpus Christi bathymetry
The shortcomings of the present algorithm lie not in inconsistent results but rather in the
lack of robust processing in noise. The modes are smeared together on the ESD plots. An
additional preprocessing step is required to reduce the sensitivity of the method to noise.

Chapter 5 contains one such proposed scheme for improved performance in noise.
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Fig 3.4.15 PRAWNS ESD for Corpus Christi 50 Hz, upper hydrophone
(100 pt, 50 pt overlap, 1.23 m spacing, model order 25)
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3.5 Summary

This chapter introduced the energy spectral density (ESD) which may be used as a tool
similar to a plot of the Green's function. The Green's function may be modelied as an ARMA
process while the ESD is an AR process. The advantage of the ESD in analysis using Prony's
method is that the ESD provides a compact view of the effects of all of the estimated parameters
in the range block of interest. The effect of high damping is a broad peak; since virtual modes
may be modelled as highly damped propagating modes, limited tracking of virtual modes is
possible.

Another tool used in the performance analysis is the residue which measures the fit of
the observed data to an all pole model via an inverse filter, A low residue number indicates a
good fif; this does not necessarily indicate accurate results. Empirically, it was found that
examining the residue with respect to model order did result in good parameter estimates,
While the plateau was inaccurate in the first case (Nantucket profile), it matched well with the
the other model order selection effort in the second case (Corpus Christi). The second method
for model order selection entailed observing pole "wander" and assumed the wavenumbers or
poles would stop changing as model order was increased beyond a "breakpoint" order.

The sensitivity of the algorithm to input parameters leads to a group of empirically
derived guidelines for applying Prony's method to a set of evenly spaced data. The first step is
selection of a model order. Empirically,we found the model order should be two to three times
the actual system order. This agrees with other investigators' results[32]. The actual system
order may be obtained by inspection (from the numerically obtained Green's function) or
numerically (SVD breakpoint identification). The first method is sensitive to aperture size and
both of these approaches suffer in the presence of noise. The iterative schemes to obtain model
order used in this study were based on residue and wavenumber evolution with changes in
model order. Once the model order is identified, an aperture should be chosen. The
processing block, as measured in points, must be more than the theoretical low limit of twice
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the model order, however, if the aperture is this small, the model order large and the data is
noiseless, the matrix is likely to be singular. The upper limit of the aperture is the range
interval of interest and the capabilities of the QR and rooting implimentations. The overlap and
averaging are constrained by the processing and aperture sizes and are not particularly
significant compared to the other parameters.

The Prony. algorithm does suffer from noise corruption below 30 dBSNR. Since
experimental data is frequently below this signal strength, some action is necessary to provide
acceptable results. The runs made on the data demonstrate the correlation of results between
the two hydrophones, but the ESD does not indicate the modes seen in the Green's function.
One can either try more points (by splining), adjust the aperture and overlap/averaging or
preprocess the data. The preprocessing may take the form of a filter or other noise reduction
technique such as an SVD based scheme. Past research has demonstrated a tendency for the

equations to become more ill conditioned as the sampling rate increases[63].
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4.1 Range Dependent Performance

In the previous sections, we made the assumption that the environment was
horizontally stratified. This range independent constraint is not particularly limiting
although natural occurances of pure stratification are unlikely. This section will examine
the performance of the Prony algorithm in two cases of waveguide range dependence[68].
The justification for application of the high resolution technique is based on finding local
modes in an adiabatic environment,

A phenomenon associated with range dependent waveguides is coupled modes, in
which the energy of a particular mode may be transferred to another mode{59,61]. A brief
development of the theory will serve to identify the consequences of ignoring mode
coupling. Using the ability to expand an arbitrary function in terms of eigenfunctions, we

define
p(r,2) = O Ry(r) ¢n(z1) 4.1.1)
n=1

If the assumed solution is substituted into the equation:
V2 p(1,z) + kX(r,2)p(r,z) = 0 (4.1.2)
and angular symmetry is assumed, then the equation in cylindrical coordinates is:
aan aR]‘laq)Il R naq)n ¢ naRﬂ 82(%)11 azq)n 2
E [_‘q’arz st 20 o T rar T oror tRagg t Rap ot ke ||=0

I

(4.1.3)
Utilizing the properties of a complete orthonormal set, the orthogonal eigenfunctions will

satisfy:
OJ p(z) On(z.r) dm(zr) dz = Snm (4.1.4)

Multiplying equation (4.1.3) by p(z) ¢m(z.r) and integrating with respect to depth, we

obtain:
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+ %dfi{rm + kranm =T 2 {Amn(r)Rn + an(l’)[% + 2(1%&]} (4.1.5)

n

where Amn(r) and By () are coupling coefficients defined as:

h
. 1 azé)l'l(zsr)
Amn(r)-o - om(an) ds (4.1.6)
h
Pl Eﬁaaﬂg%cm dz

This yields the set of coupled equations for R(r). The boundary conditions become more

complex and are stated by Boyles as the radiation condition in the form([14]:
o [ G- fenRa | =0 (“.17)

I—c0

and for the source located atr =0:

lim [ an(E)] _ $n(0,0)
E—g |~

E—po0 21 pol0)

(4.1.8)

The coupled equations describe the exchange of energy between the modes . As the
medium approaches the horizontally stratified model of the previous sections, the coupling
coefficients approach zero[59].

In certain situations, mode coupling is assumed not to occur; this is known as the
adiabatic approximation. Each mode retains its initial energy; if the mode is cutoff, it's
energy is lost rather than transferred to the propagating modes. By an adiabatic change in a
parameter, we mean the parameter does not vary locally; for example, using sound speed,
¢, as the adiabatic parameter:

g;———) 0 locally and (4.1.9)
R

dJ
gcr:—dr = Ac for a large R
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This assumption holds quite well in slowly changing environments. An additional
assumption-made in the derivation of coupicd mode theory is that of angular independence
(cylindrical symumetry). This is not strictly true, such as in a coastal wedge situation, but
the approximation is frequently used because of the small slopes involved.

A solution to equation (4.1.2) may be found by applying the WKB approximation
in range to the differential equation for R, The WKB method assumes a slowly varying
medium and neglects the second derivative terms since they are negligible with respect to
the lower order terms. Defining a new function, Fy(r) = Y1 Ry(r) and applying the
adiabatic approximation (no mode coupling) the new equation is:

a_ijL [k‘i(r) + ;?]Fm(r) =0 (4.1.10)

By neglecting the second term in the brackets and using the asymptotic form of the Hankel

function, the acoustic pressure field is[62]:

T
plzx) = ;e‘jjf Eun(zo,()) up(z.r) \[1_6(1' (J; krn dr) (4.1.11)

kenr

n

The exponential term with the integral is a phase accumulation mechanism. As the kg,
change for each range interval of interest, the rate of phase accumulation changes.

The application of Prony's method to small range apertures is made within the
context of the adiabatic approximation. The parameters estimated and the ensuing ESD are
valid only for the interval of interest; there is no system constraint to join the analysis of
one section to that of adjoining range intervals. Within each range interval, the waveguide
parameters, including bathymetry, are assumed to be constant. Changes in the wavegunide
boundary conditions will result in a smearing of the estimated parameters and ESD.
Conventional spectrum estimation techniques are frequent victims of changes in waveguide
boundary conditions over the interval of interest. In Fourier techniques, the resolution is

related to the length of the data segment. In order to achieve high resolution, large
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apertures are used; the assumption of constant boundary conditions and environmental
conditions under these circumstances is poor. The application of high resolution
techniques to the same environment permits a smaller aperture to be used and the locally
range independent assumptions should be easter to justify.

In an effort to examine the performance of the Prony algorithm in an environment
with range dependencies, two test environments are developed. The first contains a
bathymetry change; it consists of a parallel plate region which evolves into an upslope
wedge section. In the second, the bathymetry is constant while the bottom parameters
undergo a step change at a given range. The fields for both of these examples were
generated using a parabolic equation approach in which the elliptic Helmholtz equation is

approximated by a parabolic equation{64-66].

-110-



4.2 Ramp Example
The first test of the adiabatic modes was conducted using a parallel plate region abutting
a wedge. The environment is the same as that used by Jensen and Kuperman in their analysis ;

of sound propagation in a wedge shaped ocean with a penetrable bottom[66].
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Fig 4.2.1 Coastal Wedge Geometry

The placement of the source and receiver is such that there are two modes excited; the first and
third mode propagate while the source is in the null of the second mode. As stated in the
previous chapter, adiabatic mode propagation is assumed; ie, mode coupling is not considered.
This assumption is plausible with the small slope and widely separated wavenumbers.

Providing a valid reference spectrum in the range dependent environment is 2 difficult
task for two reasons. First, since the range dependent field generation is done through an
approximation method (the parabolic equation), the field generation program in addition to the
analysis algorithm may introduce output aberrations. Second, the range dependent nature of

the waveguide raises the question as to the definition of an appropriate reference spectrum [63].
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As ountlined in section 4.1, the adiabatic approximation is used. Since the bottom velocity
profile used in this case is an isovelocity one, the Pekeris waveguide was used as a reference
for wavenumber accuracy. For each processing block, the mean depth of the range interval
was used as the depth of a Pekeris waveguide with bottom parameters identical to the wedge.
Given the source-receiver geometry, waveguide depth and the bottom parameters, the local
Pekeris waveguide may be analyzed for the "reference" wavenumbers. The Prony
wavenumbers plotted are the parameter outputs from the algorithm . The graph of figure 4.2.2
used a 250 meter aperture and a model order of five. In the initial 1500 meters, the startup
phenomenon of the PE approximation method causes the aberrations and oscillatory behavior,
Once the field generation program stabilizes, the agreement between the Prony's method and
the Pekeris reference is quite good. An interesting trait of the algorithm is the limited ability to
track modes past cutoff. These virtual modes may be modelled as highly damped
modes[19,20,67].
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Fig 4.2.2 Pekeris vs PRAWNS analysis for coastal wedge
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The energy from the virtual modes is "dumped" into the penetrable bottom; the detectable
amplitude will significantly decrease for each range block until that mode can no longer be
detected.

As the specified model order varies, the residue should decrease somewhat as the larger
model order is available to account for the moving average portion of the system. Graphs of
the residues(figures 4.2.3 and 4.2.4) for several orders show this general trend. By holding
the other parameters constant (250 m aperture or averaging block with a processing block of 50
points at 5 meter spacing, no overlap) and varying the model order, the effect of the specified
number of modes becomes clear. As the amount of overspecification increases, the system
more closely matches the all pole environment. In the residue graphs for model orders 4 and 6,
the best match to an all pole system is in the region from 3000 to 5000 meters after the PE
generating algorithm has stabilized and before the upslope region. A model order of 10 or 20
yields a better match across the entire range block. The cause of large residue spikes in the

4000 m range interval of the large order models is not known.
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Fig 4.2.3 Residue graphs for ramp model orders 4 and 6
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Fig 4.2.4 Residue graphs for ramp model orders 10 and 20
The use of this type of residue is not, however, the only consideration for selecting the
"best" model order for the problem. In figures 4.2.5 and 4.2.6, the small residues associated
with the exact model order and the associated wavenumber graph are shown., While the
residues have small magnitudes over the entire range interval, the accuracy of the estimated
wavenumbers does not match the over specified model order evaluations of the same
environment. Even a graph of the total residue (fig 4.2.7), obtained by summing the individual
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range block residues does not show the drawback of using a model order equal to the exact
system order. The total residue does indicate the general "better fit" of the higher order

models.
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Fig 4.2.7 Total residue sum vs. model order

The ESD is particulary useful in examining the changes in the modal structure in the
range dependent waveguide. Figure 4.2.8 demonstrates this utility; it is a progressive
collection of ESD for various range blocks. The transformation of the tabular data into a
spectal presentation allows a physical interpretation of the propagating field. The initial startup
of the PE code (PAREQ) is evident as is the "steady state" condition in the parallel plate region.
The upslope transition at 5000 m causes the mode energy to move toward cutoff. After mode 3
cuts off, this peak becomes broad as energy is being dissipated(into the bottom) from the
mode. The location of the peak energy in the remaining mode moves toward lower
wavenumbers (and cutoff). The mode shape is compressed as the channel dimensions narrow
causing the peak energy in mode 1 to increase. The ESD plot in figure 4.2.8 indicates that both

modes have catoff by 11500 m.
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By collecting the ESD for each range block and integrating the results in a contour plot,

the shift in wavenumber and changes in energy level are summarized in figure 4.2.9.
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Fig 4.2.9 Contour plot of ramp example
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4.3 Geoacoustic Parameter Shift Example

The second environment for an evaluation of the Prony's method in a range dependent
waveguide is a parallel plate region with a step change in bottom sound speed and density. The
values used in the bottom intervals are from Hamilton's compilation of bottom types and their
representative parameters[69]. Again, the source-receiver geometry is such that there are two
modes propagating in the water colurnn; the source is in the null of mode 2, which does not

propagate. The bottom variation was chosen to force one of the modes into cutoff.
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Fig 4.3.1 Botfom Parameter Shift Example
The performance of the Prony algorithm with model order changes for this waveguide was

similar to that of the ramp example of the last section. The graph of figure 4.3.2 shows the

close tracking of the PRAWNS output with the Pekeris reference. The wavenumber amplitude
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tended to die out reasonably quickly. Figure 4.3.2 also indicates the startup phenomenon of

the PE equation method used to generate the field.
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Fig 4.3.2 Pekeris v¢ PRAWNS analysis for parameter step shift

In figure 4.3.2, the shift in mode 1 is obscured by the symbols used to mark the PRAWNS
output. The shift in the mode 1 wavenumber is small; the initial Pekeris wavenumber is
.103874 m-1 while the Pekeris wavenumber after the bottom shift is .103958 m'1. The
algorithm tracks this change but even the difference plot of figure 4.3.3 does not clearly
indicate the error ( the error is the difference between the Pekeris and PRAWNS valuesin a

given range interval). The average error magnitude for mode 1 is 4.3 E-05 and for mode 3 it is

3.6 E-04,
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Fig 4.3.3 Wavenumber error vs. range for bottom shift model
(50 pt, 5 m spacing, 0 overlap, model order 20)

The use of the residue as an analytical tool in this environment is summarized in figures
4.3.4 and 4.3.5. The residue decreases for higher order model but again the larger order

models have residue spikes in the region prior to the wavenumber shift,
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Fig 4.3.4 Residue graphs for step change model orders 4 and 6
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Fig 4.3.5 Residue graphs for step change model orders 10 and 15

The total residue (the sum of the individual residues for each range block) found in
figure 4.3.6 shows the general trend of the decrease of total residue with increasing model
order. The increase in total residue from an order 15 model to an order 18 model is due to the
residue spikes in the higher order model. The 18 order model residue does, however, have a
lower value than order 10 and most earlier models.
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Fig 4.3.6 Total residues for step change case
(50 pt, 5 m spacing, 0 overlap)

The low residues in the situations where order equals two or three is misleading as
demonstrated in the residue graph of figure 4.3.7 and the corresponding wavenumber graph of
figure 4.3.8. Although the residue does, in fact, indicate the observed data fits an all pole
model, the accuracy of the parameters found by an exactly specified case is questionable.

The ESD of the process indicates there is still energy in the region of the cutoff mode as
the range interval from cutoff increases. The ESD also clearly indicates the spectral spreading

and dissipative nature of the cutoff mode.
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As a last confirmation of the algorithm's performance, the contour plot of the ESD for a variety
of ranges in figure 4.3.10 shows the dissapation of mode 3 after the bottom transition at 5000 -

m. The concentration of energy for both modes is narrow with an easily discernable peak.
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Fig 4.3.10 Contour plot of step change example ESD
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4.4 Summary

This chapter demonstrated the performance of Prony's method in arange dependent
environment. The examples used consisted of fields generated by a parabolic equation
algorithm (PAREQ) in waveguides which had bathymetry changes or bottom parameter shifts.
The assumption of local adiabatic propagation was made; ie each section was considered to
have locally invariant boundary conditions. The small apertures (250 m) proved more than
sufficient for accurate determination of waveguide parameters.

VVhiE the determination of the residue allowed a quantitative assessment of the
parameter choice, the residue is not recommended as a primary or exclusive evaluation
method. At model orders which are the exact or close to the exact system order, the residue
indicated an excellent fit to an all pole filter while the estimated parmeters were inaccurate when
compared with the reference values (Pekeris waveguide). The ESD proved a more useful tool

in this situation; the ESD also uses all estimated model parameters.
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5.1 Recommendations and Future Considerations

This study has exercised a specific algorithm designed for estimating modal
wavenumbers, amplitudes, and attenuations to identify the strengths and shortcomings of this
approach. In this section, we will briefly discuss areas which have been identified as requiring
more attention and effort. Each of these areas deserves a separate study and should be
considered for future successful employment of Prony's method. One such envisioned
application of the high resolution technique is as a tool by which measured data may be
manipulated to yield wavenumber estimates of propagating modes. These estimates can act as
input for a perturbative scheme to bottom profile determination. Effectively, this treats the
water column as a measurable medium which allows determination of the geoacoustic bottom
parameters by recognizing the modal structure of the waveguide as a sampling mechanism,

Noise performance is the major obstacle in implementing this bottom evaluation
scheme. The current algorithm's noise threshold of 30 dB SNR requires restructuring of the
approach and, possibly, the experimental setup. One experimental change which would aid in
processing the data would be the use of multiple data runs at the same site. This would permit
an ensemble of data for processing rather than the "single snapshot” data series available in the
current setup. Within the confines of the current experiment, each receiver was treated
separately. A more sophisticated approach would correlate the data received by the two
hydrophones. Care is required in associating the data from the two receivers; the different
depth placement of the “vertical array" elements equates to different source receiver geometry.
The field at each receiver will be influenced by the local sound velocity profile, source-receiver
geometry and frequency. There are steps which should be investigated which may improve
performance of the algorithm without changes in the experimental setup. These efforts may be
broadly divided into pre-PRAWNS data processing and changes in the PRAWNS algorithm

itself.
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One pre-PRAWNS processing approach which has met with limited success is a ky
domain bandpass filter. In this scenario, the data is numerically Hankel transformed, bandpass
filtered about user specified wavenumbers and inverse Hankel transformed back to a new
pressure field. The ensuing pressure field is used as input to the Prony algorithm above. The
bandpass filter used in the study was wider than the wavenumber section of interest since a
specific window was not applied to the data.

To examine the effects of such filtering, we consider the Nantucket profile, with a
SAFARI generated pressure field again. Without the bandpass filtering, the modal structure is
as shown in the ESD plots of figure 5.1.1. If the same pressure field is first notched filtered in
the kr domain and all PRAWNS inputs kept the same as the earlier plots, the ESD plot of figure
5.1.21s obtained. Notice the "outlier" peaks of energy at the bandpass wavenumbers. While
these outliers are distracting, they are due to the particular filter implimentation used. The
wavenumbers of the three propagating modes is the same in each case. A better filtering

scheme would use a finite impulse response (FIR) or smoothing filter on the pressure data[51].

40.
20.
a.
—Z0
—40.
-0,

. b40o  baso—Db sse —beexu— G720 bosce  b.sso  bosso  h.edo

Horizontal Wavenumber(m'l)

Magnitude (dB)

Fig 5.1.1 PRAWNS ESD for unfiltered 220 Hz Nantucket pressure ficld
(SAFARI field, 100 pt, 50 pt overlap, 0.64 m spacing, model order 15)
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Fig 5.1.2 PRAWNS ESD for bandpass filtered 220 Hz Nantucket pressure
field
(SAFARI field,100 pt, 50 pt overlap, 0.64 m spacing, model order 15)
(Passband from 0.7 to 1.0 m-1)

The merits of this crude filtering are evident when the technique is used on real data.
Consider the ESD of the Nantucket field experiment of chapter 3 (figures 3.4.8 through
3.4.11). The low SNR (the Green's function of figure 3.4.6 has modal peaks roughly 6 dB
above background) resulted in only one PRAWNS mode identification in each case. Figures
5.1.3 through 5.1.6 illustrate the effects of bandpass filtering on the pressure fields of actual
data. The ESDs of these figures were generated using the same PRAWNS inpauts as the non
filtered versions of chapter 3. The outlier peaks are present; the 140 Hz field had a passband
of 0.4 10 0.8 m1 while the 220 Hz field passband was 0.7 to 1.0 m-1. Notice the additional
mode(s) found in the ESD. Wavenumber plots of the modes identified show reasonable
agreement between both hydrophones and , apparently, a correlation with the bathymetry
(figures 5.1.7 through 5.1.9). Table 5.1.1 lists the wavenumbers of the peak values of the
Green's function over the entire aperture. The wavenumbers are shown as "reference”
wavenumbers in figures 5.1.7 and 5.1.8; actually, the numerical Hankel transform used has
problems. The difficulty is that the Hankel transform assumes boundary condition invariance
. over the interval of interest. Changes in bathymetry or bottom properties will change the
parameter estimates; however, as boundary conditions become complex, the shift in parameter
estimates for a given boundary condition variation becomes less predictable. The PRAWNs

approach also makes the adiabatic approximation; the smaller aperture of this method makes
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the validity of the assumption more likely. Future improvements in this approach include a
more sophisticated filtering scheme to improve mode resolution and to eliminate the bandpass
wavenumber "outlier" spikes.

Changing the algorithm used may also improve performance in noise. A prime
candidate for enhancing the current method is the SVD based approach espoused by Tufts and
Kumaresan[44,45]. The method adjusts the matrix used to determine filter coefficients by
evaluating the matrix for breakpoints in the singular values. This may require the assumption
of no damping (ie, real eigenvalues) and then solving for damping by other means such as the
consecutive block scheme of chapter 2.

| The alogrithm may be altered to use a modified Prony's method with an autocorrelation
or autocovariance matrix used in place of the signal matrix. Use of these matrices have not yet
been explored in depth for this application and may prove more robust in noise than the present
approach. Another method used by researchers seeking a stable filter with robust noise
performance is the forward backward linear predictor (FBLP)[31]. The FBLP assumes real
eigenvalues to satisfy the stationary attributes of the signal; the signal should look the same in
the forward or backward directions. This can not strictly be satisfied by a decaying
exponential. If no attenuation is assumed to occur, this method might be used to identify the
wavenumbers and initial phase for the propagating modes. This information could then be
used in the current algorithm to reduce the order of the problem by, in effect, factoring the
known information from the polynomial to be rooted{31]. Similarly, the incorporation of the
PRAWNS algorithm into a perturbative or itefaﬁve scheme to correct parameter estimates may
provide a more robust method. Throughout the exploration of alternate methods, maintaining
the short apertures of the approach studied here must be emphasized. The advantage of a high
resolution scheme and parameter model is that it allows a priori knowledge of the acoustic

propagation to be used to shape the model. This allows short data sets to be used which are
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BODIS1 BODIS2
140 Hz Mode 1 0.5637019 0.5670657
Mode 2 0.4955879 (0.4935128

220Hz Mode 1 0.9207131 0.9182185
Mode 2 (.8502503 0.8494114

Table 5.1.1 Reference wavenumber values for Nantucket data
(From peak values of Green's function over entire data set)

essential in the range dependent waveguides found in field experiments. Large apertures may
improve performance in noise but the cost of using additional data must not be taken lightly.

While the incorporation of a noise reduction scheme is necessary, there are other areas
which should be addressed in future work. The incorporation of an analytic method to

determine model order would greatly ease the work of an experimenter. An SVD scheme
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similar to that of Braun and Ram warrants investigation. One particular feature of the
PRAWNS code which was not exploited was the theoretical ability to detect a reflected wave.
This was beyond the scope of this initial study. Once a reliable means of generating such data
is identified, the results should provide more information on new algorithms to test.

Additionally, the near field environment was not addressed in this study.
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5.2 Conclusions

The Prony model has been shown to fit the far field modal structure of a shallow water
waveguide quite well. The implementation of this parameter estimation aproach has several
important implications.

With this technique, the experimenter has a fast, efficient tool to use to examine the
modal structure of a waveguide. The parameter estimates may be manipulated and transformed
to provide energy information as well as tabular values. The four tools presented in this study
to assist the researcher include the energy spectral density (ESD), wavenumber, residue and
pole plots. The advantage of each was outlined in chapter 3. The ESD essentially provides an
overall summary of propagating and virtual modes. The wavenumber and residue plots are
used in an iterative scheme to obtain a good model order. Pole plots are used to identify
propagating modes among the arbitrary modes.

A parameter estimation model directly generates desired properties of the sound energy
field. Other methods, such as a pertubative inverse solution to the bottom profile make use of
these wavenumber estimates as inputs. Prony's method may replace less accurate methods,
which were required in the past, such as peak searching routines with short aperture Hankel
transforms, to find these values. Additionally, properties such as the attenuation are directly
accessible as a result of the use of the Prony fit.

The use of a high resolution approach permits use of a short range aperature which
allows exploration of range dependent features. Chapter 4 presented examples of shifts in
bathymetry and bottom properties. The ability to track range dependent waveguide aspects is
available through the adiabatic propagation assumption; the waveguide boundary conditions
are assumed to be invariant over the local (processing block) range of interest.

A major shortcoming of the current algorithm is its sensitivity to noise. For SNR

below 30 dB, estimation of model parameters tended to be both biased and to have a large
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variance; ie the estimates were inaccurate. Further exploration is necessary to formulate a more
robust algorithm for use in a field environment.

The search for analysis techniques for studying the ocean environment is continuing to
generate new approaches to old problems. While the approach first postulated by Gaspard
Riche in 1795 hardly ranks as a new concept, this application has the effect of a fresh look at
the shallow water environment. Continued development and improvement of such high

resolution techniques should provide the researcher with a formidable tool indeed.
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Appendix A. Essentials of Sturm Liouville
Problems

Sturm Liouville Problem
If a given, second order, differential equation may be cast in the form:
Lim(x) 2+ [q&) + Prely =0 (A1)
with:
+ m,q,r real and continuous over the interval[a,b]
+ 3 = separation constant
» r = weighting coefficient

« homogeneous boundary conditions at x=a,b of
A | Bya)=0

O by =0

then the problem is known as a Starm Liouville problem[15]. The solution to the boundary
value problem has eigenvalues which are real and non-negative. In addition the
eigenfunctions associated with the eigenvalues form an orthonormal set which is complete.
The implications of this characteristic include:

+ the eigenfunctions, ¢(x), are unique to within a multiplicative constant
b

+ the eigenfunctions are orthonormal, ie. J.r(x)npn(x)d)k(x)dx = &pk

a

+ any arbitrary function of x can be expressed as a weighted sum of eigenfunctions,

ie. f(x) =Ecn¢n(x) where ¢, = a coefficient of f with respect to the orthonormal set {¢}.
n

An inhomogeneous Sturm Liouville problem has the form (where A =B):
d,d
T rna){-] + qy + Ary = f(x) (A2)

with the homogeneous boundary conditions above satisfied.
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It has the solution:

At
Z APa (B3

n
in which:

* { are the eigenfunctions which satisfy the homogeneous equation (A.1)
with eigenvalues By,

* A, are found by using % = apdy(x) and exploiting the orthogonality
property of ¢n.

« A is arbitrary and not influenced by boundary conditions.
For the case of an iﬁhomo geneous Sturm Liouville problem where f(x) = (x-xg), the
solution to the inhomogeneous equation is known as the Green's function and denoted
G(x,x0). This G(x,x0) may be expanded in terms of eigenfunctions of the homogeneous
equation. A last note before moving from this extremely cursory treatment of the subject
area is that the Green's function may be shown to be symmetric so that G{x,xg) = G(xg,x).
The consequence of this symmetry is evident in the solution to the pressure field in the
waveguide in which source and receiver may be interchanged with no change in the field

distribution; this trait is commonly referred to as acoustic reciprocity.
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Appendix B - Some Signal Processing Basics

As is often the case in signal processing problems, the algorithms described in this
paper use discrete samples. There are distinctions in the discrete sample environment from
the continuous time(or spatial) case. In many cases, direct analogies may be made[51].
Linear Constant Coefficient Difference Equations (I.CCDE)

Given a differential equation with linear constant coefficients of the form:
gk ds
PIE-H
k 8

to specify an output, y(r), homogeneous and particular solutions to the differential equation
must be determined. Particular solutions are dependent on initial conditions (n conditions
are required for an nth order system). If the system is causal (or non anticipatory) and
linear, the inital conditions are equal to zero.

The discrete time (or, in this casé, discrete space) analogy to the differential
equations are difference equations. The difference equation used to describe the system is:

P M
Y akyln-k] = % bgx[n-s] (B.2)
k=0 =0

As in the case of the continuous time case, the difference equation system solution, y[n], is
P
the sum of a homogeneous ( 3, ax y[n-k] = 0) and particular solution. The description of a
k=0

discrete system by a LCCDE results in a rational system function. The homogeneous

solution of the difference equation has the form:

P
yaln] = 3 Ag 2% (B.3)
k=0

Signal processing literature and texts make reference to linear time invariant (LTI) systems.
A more accurate description is linear shift invariant (L.SI) systems since the data may
represent a spatial sampling. A shift invariant system has the following property: if an
input x[n] yields an output y[n] then x[n - ng] will result in an output y[n - ng]. For a L.S]
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system, causality is met by the necessary and sufficient condition hin] = 0 forn <0.
Physical systems are usually modelled as causal since the system output doesn't depend on:
the future value of the input (or, equivalently, the system is non anticipatory). The
assumption of LSI is common; if the system is not, in fact, LS], a given segment of the
data is assumed LSI and the parameters are calculated for each section.

Z Transforms

The bilateral z transform is defined as:

o3

X(z)= Y, x[n] z® . (B.4)
n=-co

Input Filter Output
P

x[n] hin] yln]
] [
H 4 4

X(z) H(z) Y(z)

Fig B.1 Discrete Filter Model

The z transform of a discrete series is an analytic function inside the region of convergence.

The z transform of an LCCDE leads to a system function ( H(z) = %;%)which is rational,

The zeroes of the denominator of H(z) are singularities known as poles. The zeroes of the
numerator are known as zeroes of the system. If the poles of the sytem function are plotted
on the complex z plane, the following rules may be applied:

- in order for a system to be stable, the region of convergence (ROC) must contain

the unit circle
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- ROC for a right sided sequence is the area outside a circle with a radius of the
outermost pole's magnitude
- for a causal and stable system described by LCCDE, the poles must lie within the
unit circle
- the discrete Fourier transform (DFT) is equivalent to evaluating the z transform at
equally spaced points on the unit circle.
All Pole Filters
Using the LCCDE description of a system, the system function is found by taking
the z transform of both sides:
M
Ebs z8
H(z) = —=2 - (B.5)

1+ Zakz-k
k=1

This H(z) is a general pole-zero or autoregressive moving average (ARMA) model

If all of the numerator coefficients except by are zero, the system function is:

He) = ——20 ®.6)
1+ i ag z°k
k=1
This defines an all pole (also known as an AR or IIR) filter.
Equivalently,
H(z) = - bo (B.7)
H (1-zgzK)

k=1

This may be represented by a partial fraction expansion as:

P
H(z) = Z — z—k) (B.8)
k=1
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Appendix C - Prawns Program Listing

 The listing below is the PRAWNS algortihm used in this thesis. Many of the routines
are based on those found in Chapter 11 of Marple[31]. Although many of the variable names
and comments are the same as Marple's, the PRAWNS program differs markedly. The
libraries used include IMSLI57] and PORT[70].

PROGRAM PRAWNS

sk sk ok ok ok e e sk ok s sk skl sk sk ok ek sk ok e ofe sk e st e s sheofe sfeole e ofe ok e sl sk st ok ko e sk ok sl sl sk oo sk skale sk ke sk e ke e sk akok

PRony Analysis of Waveguide for Nominal Spectrum

This program acts as a driver program for PRONY's method.
INPUTS-
FILENAM - Name of file containing data for evaluation.
IORD - Order of model,output will have IORD variables.
TRANG - Sampling range in meters
NPROC - Number of data points analyzed in one pass
NTOT - Total number of data points analyzed
NBLOCK - Number of points in block to be averaged
NOVER - Overlap of data samples

OUTPUTS-
AMP - Array containing averaged amplitude estimation
PHASE - Array containing averaged phase estimation
FREQ - Array containing averaged wavenumber estimate =

DAMP - Array contatning averaged estimate of damping

seske sk afe seofe sfe sk ofe she sk sk s sk ok sk ok sk sl sk e ofe sk ke e sk sk sk ook sk sk skeoste ok ekl ok e skeok sk sk ko sk e kol ke ko ke e ok

* VERSION 10  WRITTEN BY F.J. DIEMER EMAR 87  *
kskdeok koo dokdodokdok ok dolok ok ok sokok ok s dokok ook s ok ok seokok sk Rk ok ko sk ok sokkosk ek

ololiolololieielieclelolelolicivivivivivivioiviCivION®

PARAMETER(NXDATA=6000) IMAX # OF DATA POINTS READ IN
PARAMETER(MAXPROC=500) IMAX # OF POINTS PROCESSED
PARAMETER(MAXMODE =50) IMAX NUMBER OF MODES
PARAMETER(MAXBLOC =500) = 'MAX NUMBER OF PTS IN BLLOCK
COMMON/BIGUN/FR,DA,AM,PH
COMMON/AUTOFIL/PREAL,PIMAG,RANGE,SSTART,SSTOP,JPROC,JAVG,
1 JORD,JOVER

REAL#*8 FREQ(MAXMODE),DAMP(MAXMODE),PHASE(MAXMODE)
REAL*§ AMP(MAXMODE)

REAL PREAL(NXDATA),PIMAG(NXDATA),RANGE(NXDATA),R(NXDATA)
REAL SSTART(100},SSTOP(100)

REAL*8 FRIMAXMODE MAXBLOC),DAMAXMODE MAXBLOC)

REAL*8 AM(MAXMODE MAXBLOC),PHMAXMODE MAXBLOC)
INTEGER JPROC(100),JAVG(100),JORD(100),JOVER{100)
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QOO0

oo O

C
C
50

COMPLEX X(NXDATA),Y(NXDATA)

COMPLEX*16 HMMAXMODE),Z(MAXMODE)

LOGICAL*4 FIRST,AUTO,NEWBLOCK,FINISH,INFILE, RUNONE
CHARACTER*60 FILENAM,BACK REPEAT,JUNK ,BASFIL

e st ke e she sk sheofe e sk ok ol oo st sk e st ofe Sfe e ofe Sk ofe sk S sk 3 e e ok e ek ke et i s ke steofe s sdeoR ke sk sk A s sk sk s ke oiok e ko

INTITTALIZATION BLOCK-READ IN DATA AND MULTIPLY BY SQRT

#h afe e s e sl sfe sk sk o sk e s sl e sfeofe sk sfe she ook ok ok sk e sk sk ke ok ok ol e ok ok e e e sfe e she s e e sesfeosteoskesk skoak ke sk kool sk ko skeok Sk akokeale sk

AUTO = .FALSE.
INFILE = .FALSE.
RUNONE = .TRUE.
BACK = "JUNK'
NUNIT=6

FIRST = .TRUE.

WRITE(*,*) ' Input name of data file to be processed: '
WRITE(*,*) '(Be sure to include any extensions such as .DAT)’
READ(*,1000)FILENAM
Check to see if input is via an input file
IF( FILENAM .EQ. **"THEN
INFILE = .TRUE.,
NUNIT = 8
READ(*'(AYYBACK
OPEN(17,FILE = BACK,STATUS ="'0OLD"
READ(17,'(A))FILENAM
NLOCS = INDEX(FILENAM,'.")
BASFIL = FILENAM(1:NLOCS5-1)
ENDIF

OPEN(3,FILE=FILENAM,STATUS="0LD")
Do loop justs skips header and near field data

DO10IZ=1,6
READ(3,1000)JUNK

READ(3,* END=20)(RANGE(I),PREAL(D),PIMAG(),I=:1, NXDATA)
ICOUNT=I-1
DO 40 JT =1,I-1

PREAL(JT)=PREAL(JT)*SQRT(RANGE(T))
PIMAG(IT)=PIMAG(T)*SQRT(RANGE(T))

TRANG=RANGE(2)-RANGE(1)

IF(INFILE .EQ. .FALSE.)THEN
Reads from keyboard vice input file
WRITE(*,*)"
WRITE(*,*)' Data are available within the following range:’
WRITE(*,1005)RANGE(1),RANGE(ICOUNT),TRANG
WRITE(* *)" '

-157-




olple

WRITE(*,%) Input INTEGER value of START range(in meters):'
CALL READIN(FIRST,MSTART)
RSTART=FLOAT(MSTART)

WRITE(*,*)" '

WRITE(*,*)" Input INTEGER value of STOP range(in meters):'
CALL READIN(FIRST,MSTOP)

RSTOP=FLOAT(MSTOP)

Determine correct starting and stopping ranges and no of points

RS=((RSTART-RANGE(1))/TRANG)+1
IBEGIN=IFIX(RS)

IF(RS-FLOAT(IBEGIN) .NE. 0.0) IBEGIN=IBEGIN+1
ISTOP=IFIX((RSTOP-RANGE(1))/ TRANG)+1
NTOT=(ISTOP-IBEGIN)+1

IY=1

DO 60 JT = IBEGIN,ISTOP
R(IY)=RANGE(T)
Y(TY)=CMPLX(PREALQJT),PIMAGQJT))

60 IY=IY+1

C

=l

olpiplele

ololple

ICOUNT=NTOT
WRITE(*,*)"

0 WRITE(*,1010)NTOT

ke sk 2 2k sk ok ok sfe e obe she sfe sde ale e ok sfe sk sk sk sk ok ok s e e ke o sl she s sbe e s sk sl ke sk sk e sk e ke e s ok el st e sk e ek e e sl ik

MANUAL AND INITIAL PARAMETER SET BLOCK
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WRITE(*,*)' Enter file name for output file or
WRITE(*,*)' hit RETURN to output to screen.'
READ(*,'(AYJUNK

IF(JUNK .EQ.'") THEN

NUNIT =6
ELSE

NUNIT =8

OPEN(NUNIT,FILE = JUNK, STATUS ='NEW")
ENDIF

WRITE(*,*)Input number of points in each processing block:’
NTRIAL=MIN(MAXPROC,NTOT)

WRITE(*,1040)NTRIAL

CALL READIN(FIRST,NPROC)

If user requests more than MAXPROC points or more than NTOT
default value of NPROC =20 is assigned.

IF(NPROC .GT. AMINO(MAXPROCNTOT)NPROC=AMINO(20,NTOT)
IF(ICOUNT/2 .EQ. 0) NPROC = NTEMP
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WRITE(*,*)' Input number of points overlap between blocks:’
WRITE(*,1050)NPROC-1
JTEMP=NOVER
CALL READIN(FIRST,NOVER)
IF(NOVER .GT. (NPROC-1)) NOVER = NPROC/2
IF((JTEMP .EQ. 0) .AND. (NOVER .EQ. 0) .AND. (NOT. FIRST))
1 NOVER=0
IF(JTEMP .NE. 0) .AND. (NOVER .EQ. 0) .AND. (NOT. FIRST))
1 NOVER =JTEMP
IMAX=MINO(50,NPROC/2)
C
WRITE(*,*)’ What order system do you want to model: '
WRITE(*,1040)IMAX :
CALL READIN(FIRST,IORD)
IFJORD .LE. NPROC/2) GOTO 80
WRITE(*,*¥)' Desired order is too high for processing block’
GO TO 70
C
80 WRITE(*,%)'""
WRITE(*,*)" Input number of points in averaging block:'
WRITE(*,1070)NPROCNTOT
CALL READIN(FIRST,NBLOCK)
IF(NBLOCK .LT. NPROC) NBLOCK =NPROC  !Min size of block=NPROC
IFE(NBLOCK .GT. ntot) NBLOCK=NTOT
GOTO 110

ELSE ! Alternate to sequence started near label 40

Reads input selections from the input file

Qoo G

READ(17,%)NENTRY
DO 610 JS = 1,NENTRY
610  READ(17,NUMZ,SSTART(IS),SSTOP(JS),JPROC(US),JOVER(S),
1 JORD(S),JAVG(S)
NAUTO = 1
CALL

INAUTOR,Y,NPROC,NOVER,NBLOCK,JORD,BASFIL ,NAUTO,TRANG,NTOT)

ENDIF
C
C  Inital settings for XSET
C
110 IBLOCK = NBLOCK
NEWBLOCK = .TRUE.
IEND =0
120 ISTART =1
M=1
TRES =0.

e s she sk e sk sk sk sk sk sfeshe s e sfe e o sfe e e she e sfe ole sk s e e s sfe ok sk ok sk sk sk sk sk sk ok ke ok ok ok sdesle e sl e s sk s s kool sk sk sk

CALCULATION AND LOOP BLOCK

LRSS A e L L EEEEEEELESSEEEEIEEIEELEL LS B EEEE TR RS

aaoan
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C READ IN CURRENT BLOCK OF DATA
C
130 CALL
XSET(Y ISTART,IEND,IBLOCK,NTOT,NPROC,NBLOCK,NOVER, NEWBLOCK,
1 FINISH,X)
IF(NEWBLOCK) THEN
ILAST=IEND
IFIRST=IEND+1-NBLOCK
ENDIF
C
140 CALL PRONY(NPROC,IORD,X,H,Z,RES,ISTAT)
IFUSTAT .EQ. 0) GOTO 150
WRITE(*,*) 'PROGRAM HALTED - ERROR NO. ' ISTAT
GOTO 200

ek ok ofe e s s sk sl ol sk sl ke ook o e sk o ok e e e sl e o s sfesfe e i sbeole s stesbe e sk sfese sfe e sk sk sleofe sk e sk sk sk sk ol sk ek

The call to EXPARAMS will transform H and Z arrays to final

output form ( Z-->DAMP,FREQ and H--> AMP,PHASE)
skl sk ok bkl sk etk ek ek ks ks ok ke ok ke o s ol o ot o ok ke ook

elelvieiele!

50 CALL EXPARAMS(IORD,TRANGH,Z, AMP,DAMP,FREQ,PHASE}

s afe she sk sl she e sk ok sk ok e o ke ol i sk sbesfe sfe e sbeofe s e sfesfe e ofe oo e sfesfesfe e sl e sfe ok stk ksl skoke ke sk kol sk sk sk ok ok

CALL SORT(FREQ,AMP,DAMP PHASE,IORD,0)

O ao

DO 160 NA =1,JORD
AM(NA,M) = AMP(NA)
DA(NA,M) = DAMP(NA)
FR(NA,M) = FREQ(NA)

160 PH(NA,M) = PHASE(NA)

C

TRES=TRES +RES

M=M+1

IF(NOT. NEWBLOCK) GOTO 130

M=M-1

TRES=TRES/M

CALL WHEADNUNIT,FILENAM,NTOT NBLOCK,NPROC,JORD ,NOVER,TRANG,
1  R{FIRST),RILAST),AUTO,BACK,IMIN,

1 IMAX,TRES)

CALL THREAD(FREQ,AMP,DAMP,PHASE,M,IORD)

CALL SORT(FREQ,AMP,DAMP,PHASE,IORD, 1)

CALL WDATA(NUNIT,JVARY FREQ,AMP,DAMP,PHASE,JORD,AUTO)

M=1
FIRST=FALSE.
JF(NOT. FINISIDGOTO 130  !CHECK TO SEE IF AT END OF RANGE
WRITE(NUNIT, 1060)
WRITE(NUNIT, 1060)
JF(INFILE EQ. .TRUE. .AND. NAUTO NE. NENTRY)THEN
NAUTO = NAUTO +1
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CALL
INAUTO(R,Y,NPROC, NOVER NBLOCK,JORD,BASFIL ,NAUTO,TRANG,NTOT)
GOTO 110
ELSE IF(INFILE .EQ. .FALSE.)THEN
C
WRITE(*,*)'Do you want a repeat run of same file with change in’
WRITE(*,*)'order or method (Y or N)?'
READ(*,1000)REPEAT
IF(REPEAT .EQ. 'Y' .OR. REPEAT .EQ. 'y") GOTO 50

C
ENDIF
C
200 WRITE(,*)Done’
C
1000 FORMAT(A)
1005 FORMAT(1X,Closest point: ',£9.2,' m.",3x,'Farthest point: ',F9.2,
1 "m'/1x,'Sampling interval: 'f7.4,' m.")
1010 FORMAT(1X,' There are ',i5,' samples in the range interval’)
1040 FORMAT(1X, (MAX value=',i5,"")
1050 FORMAT(1X, (Min overlap = 0, Max overlap = ",i3,)")
1060 FORMAT(1X,
r**************************************************************?
1070 FORMAT(3X,'(For no averaging between blocks, enter ',i5/t4,
1 'For averaging over complete range, enter ',i5/t4,
1 'Intermediate values will set up blocks of your entry and'/3x,
1  ‘average within the block.)")
1080 FORMAT(1X,'Completed analysis with ',a6," = ',i53)

C
END

C

C

P S S U S S Y S S S BT SV VA S S S BN SV AL SF Y S B S SIS WA S MUY

C

I T S B S S s S T LS e s T

SUBROUTINE INAUTO(R,Y,JA,JB,JC,JD FILENAM,NAUTO,TRANG,NTOT)

ok ok ok ok obe sk ok she oo e s sk e she s e she e e st ok s ok sl o ke s st ok e ol st e ke s si e e ke sl ol ok sfeofe o e afe e sde s ek s ke ok sk sl s ek sk sk ok

INAUTO assigns the next set of inputs from the input file to

the variable names used by PRONY. In addition , the range block
interest is read into the R and Y arrays and an output file is
opened under NUNIT = 8.

*****************************************************************

olololiolioiolole

PARAMETER(NXDATA=6000)

COMMON/AUTOFIL/PREAL, PIMAG,RANGE,SSTART,SSTOP,JPROC JAVG,
1 JORD,JOVER

REAL PREAL(NXDATA),PIMAG(NXDATA),RANGE(NXDATA),SSTART(100)
REAL SSTOP(100),RINXDATA)

COMPLEX Y(NXDATA)

INTEGER JAVG(100),JORD(100),JPROC(100),JOVER(100)

CHARACTER*80 FILENAM,SCRATCHA,SCRATCHB

-161-



C
10

20

C

60
C

C

RSTART = SSTART(NAUTO)
RSTOP = SSTOP(NAUTO)
JA = JPROC(NAUTO)

JB = JOVER(NAUTO)

JC = JAVG(NAUTO)

JD = JORD(NAUTO)

WRITE(SCRATCHB,'(I3))NAUTO
NLOC2 = INDEX(SCRATCHB,' ")
IF(NLOC2 .EQ. 1)THEN
SCRATCHB=SCRATCHB(2:79)
GOTO 10
ENDIF
NLOC1 = INDEX(FILENAM,,' ")
SCRATCHA = FILENAM(1:NLOCI1-1)//SCRATCHB (1:NLOC2-1)// PRA'
OPEN(8,FILE=SCRATCHA,STATUS = 'NEW")

RS=((RSTART-RANGE(1))/TRANG)+1
IBEGIN=IFIX(RS)

IF(RS-FLOAT(IBEGIN) .NE. 0.0) IBEGIN=IBEGIN+1
ISTOP=IFIX((RSTOP-RANGE(1))/TRANG)+1
NTOT=(ISTOP-TBEGIN)+1

IY=1

DO 60 JT = IBEGIN,ISTOP

R(IY)=RANGE(JT)

Y({IY)=CMPLX(PREAL(T),PIMAG(IT))
TY=TY+1

RETURN
END

I B S T T 2 T B
+++

C

i o L e B o o B o R =
4+
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SUBROUTINE SORT(FREQ,AMP,DAMP,PHASE,IORD,IVAR)
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Performs bubble sort of AMPLITUDE data with largest value index 1.

Performs bubble sort of Damping data with ivar=1
5 o o sk ke e sfe Sfe e vk e ofe sfe s s sk ste ke o s sl sk kol e ok ke ke sk sk sk sk sk ke sk sl sl sk ol ok e e sk sk ke ok s ok sk kR sk ek R ok R ok ek sk sk ok

PARAMETER(MAXMODE =50 IMAX NUMBER OF MODES
REAL*8 FREQ(MAXMODE),DAMP(MAXMODE),AMP(MAXMODE)
REAL*8 PHASE(MAXMODE), TEMP

IF(IVAR NE. 1) THEN
DO 20 J=I0RD,1,-1
DO10I=1J
IF(AMP(1) LT. AMP(1+1)) THEN
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TEMP = AMP(I+1)
AMP(I+1)=AMP(I)
AMP()=TEMP
TEMP = DAMP(I+1)
DAMP(I+1)=DAMP()
DAMP()=TEMP
TEMP = PHASE(I+1)
PHASE(I+1)=PHASE)
PHASE()=TEMP
TEMP = FREQ(1+1)
FREQUI+1)=FREQ()
FREQ(I)=TEMP
ENDIF
10 CONTINUE
20 CONTINUE
C
ELSE
C
DO 40K = IORD,1,-1
DO30OM=1K
IF(ABS(DAMP(M)) .GT. ABS(DAMP(M+1))) THEN
TEMP = AMP(M+1)
AMP(M+1)=AMP(M)
AMP(M)=TEMP
TEMP = DAMP(M+1)
DAMP(M+1)=DAMP(M)
DAMP(M)=TEMP
TEMP = PHASE(M+1)
PHASE(M+1)=PHASE(M)
PHASE(M)=TEMP
TEMP = FREQ(M+1)
FREQ(M+1)=FREQ(M)
FREQ(M)=TEMP
ENDIF
30 CONTINUE
40 CONTINUE
C
ENDIF
:¥%.g. C
' RETURN
END
C
C
B N A I 0 B B O B o o o o O O I
C
B T T 1 o T I S5 B B B S B RN SS BE B BN R SE S WA S
SUBROUTINE WHEAD(NU,FIL,NT,NB,NP,IP,NO, TR, RSTART,RSTOP,AUTO,
1  BACK,IMIN,IMAX,RES)

sfe st o ofe o e sk o o e sk s s e o sk e seofe e sheobe st e o o sfese s ool s ok ok ofe ol ok e o o e o s i sl sl ol e st e sk ol ok ok ok ok

WHEAD writes header information into file denoted by NU

QOGO
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CHARACTER*60 FLBACK
LOGICAL AUTO

WRITE(NU,1050)

WRITE(NU, 1000)F,NT,NB,NP,IP,NO, TR
WRITE(NU,1010)RSTART,RSTOP
WRITE(NU,1040)RES

JF(AUTO)THEN
WRITE(NU,1020)BACK,IMIN,IMAX,BACK
ELSE
WRITE(NU,1030)INDEX', WAVENUMBER',DAMPING',AMPLITUDE),
1 PHASE(RAD)'
ENDIF
C
1000 FORMAT(1X,'Prony Analysis of: ',a60//t10, Total No. of points: ',
1 15,13x,'Avg. block:",i3," pts.'/t10, Processing block: ',
1 i3,17x,'Model Order: ',i2/t10,'Overlap: ',i3,' pts.',21x,
1 ‘Samp. Range: "£7.4,' m.")
1010 FORMAT(1X,T10, Starting Range: ',f10.4,' m.",8x,'Final Range:,
1 f10.4,' m."
1020 FORMAT(1X,A6, varied from ', I3, to I3/T2,A6,5%,
1 "Wavenumber',5x,' Amplitude’)
1030 FORMAT(1X,A5,3X,A10,6X,A7,7X,A9,6X,A10)
1040 FORMAT(9X,Residue of model for this range interval: ',

1 F8.5/)
1050 FORMAT(1X,
1

B I B B B B B O e o o 2 s 2 L O o O o B T I o S o 2
1 +++')
C
RETURN
END
C
C
e T A e A e B B B B B T B o T o e
C
I a0 8 T T o O o
SUBROUTINE WDATA(NUNIT,JV,FREQ,AMP,DAMP,PHASE,IORD,AUTO}

0

sk s sk o ke e s sfe s o sk sfe sk sk seske sk sk o sbe sk sk sk ok ool e afe ke s ohe sl sfe e she ool sk sk st ke etk ekl el sk ikl skok ke ok ok dekok

C
C WDATA writes appropriate data to file specified by NUNIT
C
C

e o ok s s e 3K o e ok o she o o ke ok Sk ke ke sk s ok skeskeske s el sk s s e ok ool sl she sk sl e s sl e sk st ok ol sk kekoR R ok sk ek

PARAMETER(MAXMODE =50) {MAX NUMBER OF MODES
REAL*8 FREQMMAXMODE),DAMP(MAXMODE), AMP(MAXMODE)
REAL*8 PHASE(MAXMODE)

LOGICAL AUTO

IF(AUTO) THEN
DO 10 J=LIO0RD
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10 WRITEQNUNIT,1000)JV,FREQ(),AMP(T)
ELSE
DO 20 M=1,JORD
20  WRITE(NUNIT,1020)M,FREQ(M),DAMP(M), AMP(M) PHASE(M)
ENDIF
C
1000 FORMAT(1X,13,5X,2(F10.6,2X))
1020 FORMAT(1X,I12,4(5X,F10.7))
C
RETURN
END
C
C
++++++++++ 4+ A
C
++++++++++H e e e e e e
SUBROUTINE
XSET(Y,JSTART,IEND,JBLOCK,JFINAL,NPROC,NBLOCK,NOVER,
1 NEWBLOCK FINISH,X)

s ake s she s sfe ke e e she s sk st e ok e she b e s sk s i e sfeofe e Sfe st ofe e e o e sfe el e o ok sk ok sk ek ok ke e s ek ok ok ke sl ey

Xset is a routine to output the correct X array for PRONY

analysis. The routine uses values from Y and takes into account

the processing block,averaging block and total range covered.

Variables beginning with "N" indicate number of points while

variables beginning with “I" indicate index pointer.

e s she sk e ke s sk e o sk e s s o e ok s s st e s o sk st sk e s o e s o e s S skl sl sk e e o s e sl sk sk sk sl ke sk sleoskoR ol ook o

ololeleleivieiely!

PARAMETER (NXMAX = 100)
PARAMETER (NYMAX = 600)
COMPLEX X(NXMAX),Y(NYMAX)
LOGICAL NEWBLOCK,FINISH

0

FINISH = .FALSE,

IF(END .EQ. IFINAL) THEN
FINISH = .TRUE.
NEWBLOCK = .TRUE.
RETURN

ENDIF

IF ( NOT. NEWBLOCK) THEN

IF((IEND + NPROC - NOVER) .LT. IBLOCK) THEN
ISTART = IEND +1-NOVER
IEND = ISTART + NPROC - 1
ELSE
IEND = IBLOCK
ISTART = IEND +1 - NPROC
NEWBLOCK = .TRUE.
IBLOCK =IBLOCK + NBLOCK
IF(IBLOCK .GT. IFINAL) IBLOCK = IFINAL
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ENDIE
C .
ELSE ! Start a new block of data
ISTART= IBLOCK - (NBLOCK-1)
IEND = ISTART + NPROC -1
NEWBLOCK = FALSE.
ENDIF
C
J=1
DO 10I=1START,IEND
XD=Y(D
10 J=J+1
C
RETURN
END
C
C
T N B B B B B A I 1 1 s o I T S L 0 o e o o e O B O S S
C
IR ST EE BT AT I K RE ST SR B S S S B S B B B I B o e S
SUBROUTINE READIN(FIRST,NVAR)

e o ofe e abe ok e afe s ok she sk o she st e sfe s e sl sl e sl sl e el ok sl ol sk el sl ok ook sk sk sk sleok ek deajeolok okl ok ok ok

READIN is a routine to read data from terminal with option
of maintaining current integer value as default value if RTN
is user response to inquiry after first pass. The routine
is set up for integer values but may be adjusted for real

variables with additional index and internal read statements.
sfeoke ofe sfe s o ke s ol sle sl ok e ok ok e ok sk ke e s sl e e e sl e se s s sk sk sk sk e sk ke R e sk s sk e sk R sk sk ke R koR sk sk kR kR R ok
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_ CHARACTER*80 STRING,CLOC,NFFOR
LOGICAL FIRST
IF(NOT. FIRST)WRITE(*,1010)NVAR

C
10  READ(*,'(A))STRING
NLOC = INDEX(STRING,' ")
IF (NLOC .NE. H)THEN
NLOC=NLOC-1
WRITE(CLOC,(ID)YNLOC  !'Assumes less than 10 digits
NFOR = '(I'//CLOC(1: D)/
READ(STRING,NFOR)NVAR
ENDIE
C
1010 FORMAT(1X,' [Current value: 15,7
RETURN
END
C
C
T T S e o e T I T T 0 L B o o o S B
C
O A 0 S o e e 2 T L T 2 2 T B =
SUBROUTINE THREAD(FREQ,AMP,DAMP,PHASE MRUNS,IORD)
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- THREAD is an attempt at a more sophisticated averaging scheme
rather than blindly adding terms. It averages like components

in adjacent blocks by checking list for closest matches.
sk stk e ok ol e sk e she ok el e ook sl el sk sfe s ¢ sleok sl ek sl sk okl sk sk ek sk ok ok koo ook skokok sl sk e ek ek

ololelpiplp:

PARAMETER(MAXMODE =50) IMAX NUMBER OF MODES
PARAMETER(MAXBLOC =500) !MAX NUMBER OF PT IN BLOCKS
COMMON/BIGUN/FR,DA,AM,PH

REAL*8 FR(IMAXMODE,MAXBLOC),DAMAXMODE,MAXBLOC)
REAL*$ AM(MAXMODE,MAXBLOC),PH(MAXMODE,MAXBLOC)
REAL*8 DAMP(MAXMODE),AMP(MAXMODE),PHASE(MAXMODE)
REAL*§ FREQ(MAXMODE), TEMP(MAXMODE,MAXMODE)

REAL*38 BDAMP(MAXMODE),BAMP(MAXMODE) BPHASE(MAXMODE)
REAL*$ BEREQ(MAXMODE)

DO 10 1R = 1,JORD
AMP(IR) = AM(IR,1)/DFLOAT(MRUNS)
FREQ(IR) = FR(IR,1)/DFLOAT(MRUNS)
PHASE(IR)= PH(IR,1)/DFLOAT(MRUNS)
10 DAMP(IR) = DA(IR,1)/DFLOAT(MRUNS)
C

DO 80 M =1, MRUNS-1

DO 20 1= LLIORD

DO 30J=1,I0RD
30 TEMPQ.)) = ABS(FR(J,M+1) - FR(I,M))
20 CONTINUE
C

C

DO 60 M2="1,IORD

DO 401A = 1,JORD
DO 50 JA=1,JORD
IF(IA .EQ. 1 .AND. JA EQ. 1) THEN
TLOW = TEMP(IA,JA)
LROW =1
LCOL =1
ELSE
IF(TEMP(IA,JA) .LT. TLOW) THEN
TLOW = TEMP(IA,JA)
LROW =TA
LCOL =JA
ENDIF
ENDIF
50 CONTINUE
40 CONTINUE
C
NBIG = 1000
DO 100 I=1,JORD
100 TEMP(LROW.J) = NBIG
C
DO 120 J= 1,JORD
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120 TEMPQJ,LCOL) = NBIG

C .
AMP(LCOL) = AMP(LCOL) + (AM(LROW,M+1)/DFLOAT(MRUNS))
BAMP(LROW) =AMP(LCOL)
FREQ(LCOL) = FREQ(LCOL) + (FR(LROW,M+1)/DFLOAT(MRUNS))
BFREQ(LROW) = FREQ(LCOL)
PHASE(LCOL) = PHASE(LCOL) + (PH(LROW,M+1)/DFLOAT(MRUNS))
BPHASE(LROW) = PHASE(LCOL)
DAMP(LCOL) = DAMP(LCOL) + (DA(LROW,M+1)/DELOAT(MRUNS))
BDAMP(LROW) = DAMP(LCOL)
60 CONTINUE
C
DO 70 M3 = 1,JORD
DAMP(M3) = BDAMP(M3)
FREQ(M3) = BEREQ(M3)
PHASE(M?3)= BPHASE(M3)
70 AMP(M3)=BAMP(M3)
C
80 CONTINUE
C
RETURN
END
SUBROUTINE PRONY (N,IP,X,H,Z ERR,ISTAT)

Solves for the exponential model parameters by the Prony
method
Input parameters:

N -Number of data samples (integer)
IP  -Order of exponential model (integer)
X -Array of complex data samples X(1) through X(N)

Output parameters:

H -Array of exponential model complex amplitudes
zZ -Array of exponential model complex exponents
ISTAT -Integer status indicator at time of exit

4 - error exists in routine CHOLESKY

Notes:

External arrays H,Z muust be dimensioned .GE. IP and array X
must be dimensioned .GE. N in calling program. Internal array

B must be dimensioned .GE. IP(IP+1)/2; arrays A, ROOTR, ROOTI
must be dimensioned .GE. IP; arrays PR,PI must be dimensioned
.GE. IP+1. Array G must be dimensioned .GE. 1P/2,

Subroutine CHOLESKY required.

olelsicoioivicoiclivlieolviclieivicivieivicliviolivoivivivinle.

PARAMETER (NMAX=500) IMAX NUMBER OF POINTS PROCESSED
PARAMETER (MAXMODE=50) IMAX NUMBER OF MODES
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C
C
C
C
C

150 NROW =N-IP

COMMON /SCTAK/DSTAK(1500)
DOUBLE PRECISION DSTAK
COMPLEX*16 HMMAXMODE),Z(MAXMODE),A(100),B(2000),G(100)
COMPLEX X(NMAX)
REAL*4 PE,PB PS,EPS
REAL*8 AR(NMAX,MAXMODE),AIINMAX,MAXMODE),BR(NMAX),BI(NMAX)
REAL*8 XR(MAXMODE),XIIMAXMODE)
REAL*$ PR(MAXMODE+1),PIMAXMODE+1)
REAL*§ ROOTR(MAXMODE),ROOTI(MAXMODE)
REAL*8 C1,C2,C3,C4,C5,C6,.SUMR,SUMI,SUM
LOGICAL#*4 FAIL ,TSHOOT

CALL ISTKIN(1500,4)
ISTAT=0

S ok e sfe e oo sk o e e 3 s sk e ook ok s 2 e o s sk sk stk s e e kol oo st ke sk s ok e sl kol sk s e kol e iR skeslok stk ok skok

* FIRST STEP: Find coeffients of polynomial to be rooted *
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NCOL =IP

DO 210 I=1,NCOL
DO 220 J=1,NROW
IC=((NCOL-1)+J)-(I-1)
AR(J,)=DBLE(REAL(X(IC)))

220  AIJ)=DBLE(AIMAG(X{IC)))
210 CONTINUE

C

%30 BI(ID)=-DBLE(AIMAG(X(IH))) -

C

DO 230 ID=1,NROW
IH=NCOL+ID
BR(ID)=-DBLE(REAL(X(IH)))

CALL DCLST2(NMAX,MAXMODE,NROW,NCOL.AR,ALBR B,
1 XR,XT)

PR(1)=1.D0

PI(1)=0.D0

DO 240 IV=1,NCOL !sets up roots for DCPOLY
PR(IV+1)=XR(IV)

240 PIAV+1D=XI(V)

<o

0

O a2Oo0conn

e the she sk o e sfeake oo ok ook sheske st e ok sk e s sk o ofe sk sk sk sk ok e sk st ofe st ook sbe ok ok ok ok e e e sk stk sk ke sk sk sk sk sk sleok ok ok ok

* SECOND STEP: Polynomial rooting for complex exponential *

* parameters
e sfe e ok ok ok ok o ok ok sk s sk sk sk sk ok sk o sk st sk e she sl ofe e ke sk ofe sk ok e sk s ok sk sk sl ot e ofe s sk ke ok ok s sl e sk ke sl sfe sl sk ke e o e s oo

CALL DCPOLY (IP,PR,PLROOTR,ROOTI)

DO 60 K. = 1,IP
Z(K)=DCMPLX(ROOTR(K),ROOTI(K))
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¥ THIRD STEP: Complex amplitude parameter estimates *
sfe sfe s e e ofe e e o sk shesfe o ok ofe sk ok sk sk s ok sk sl e ol sk e ok sk ek s sk ke skl o sk sl e ook ek ke sk e okl sk Aok ekl sk sk ok

elelele

=0
DO 100 K=1,]p

C1=ROOTR(K)

C2=ROOTI(K)

DO 80 J=1,K
SUMR=C1*ROOTR(J)+C2*ROOTI()
SUMI=C2*ROOTR(J)-C1*ROOTI()
=1+1
C3=SUMR*SUMR+SUMI*SUMI
SUM=C3-2.D0*SUMR+1.D0
IF(SUM .EQ. 0.D0) GOTO 70
C3=C3**N
C3=DSQRT(C3)
C4=DATAN2(SUMILSUMR)*N
C5=C3*DCOS(C4)-1.D0
C6=C3*DSIN(C4)
SUMR=SUMR-1.D0
SUMI=-SUMI
C3=(SUMR*C5-SUMTI*C6)/SUM
C4=(SUMR*C6+SUMI*C5)/SUM
B(I)=DCMPLX(C3,C4)

GOTO 80
70 B(I)=DCMPLX(DFLOAT(N),0.D0)
80 CONTINUE
C

SUMR=REAL(X(1))
SUMI =AIMAG(X(1))
C2=-C2

(3=1.D0

C4=0.D0

DO 90 J=2,N
SUM=C3
C3=SUM*C1-C4*C2
C4=SUM*C2+C4*C1
SUMR=SUMR-+C3*REAL(X(]))-C4*AIMAG(X()))
90  SUMI=SUMI+C4*REALX()+CI*AIMAGX (D)
C
100 H(K)=DCMPLX(SUMR,SUMI)
C

CALL CHOLESKY (IP,EPS,B,H,ISTA’I:)

C
IFJSTAT .NE. 0) ISTAT=4
C
C e o e e sl ok s s i ook sk sk st sk sl e s sk e sk e s s sk e o sk ke sk sk sk s sl sl ste sk ale ke sk ofe s ok dfe s sk sl sk sk sk ok sk ol skt sk oheskeole e ok
C * Computation of residue ®

C ****************x*r***************x****x*****************%xm***

C
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CALL RESIDUAL(X,PR,PLIP,N ERR)

RETURN
END
SUBROUTINE RESIDUAL(X,PR,PLIORD,NPROC ERR)
s o sk sk ok e ske o 2o sk sl ok sk ok sl ke e ok ke sk e s e sk R ok sl sk siealle ok sk sk sk s sk ok s ok ok sk sk sfe skl s kool sk ok ek sk sk e sk ik ok sk ok
RESIDUAL is a routine which computes energy of error between
model and the data. The data is modelled as an all pole filter
and, if the data is passed through FIR filter with same
filter coefficients as denominator of IIR model, should yield
an impulse. An impulse is subtracted from convolution of
data and FIR filter and remaining energy is found (as ERR).
e o sf¢ she o e ok Sfe o ok e e e ot o ke st e sl sk ok e s ke SRk e s e o she ke ke o o sk sk ok sk kol ke sk e stk sk sk kil kol okofor R
REAL*8 PR(1),PI(1)
REAL FILR(4096),FILI(4096),V ALR(4096),V ALI(4096)
COMPLEX X(1)
LOGICAL SKIP
SKIP = FALSE,
NCONV =10RD + NPROC !Required length of conv/FET
NFFT =0
C Find FFT order-should be radix 2 .GE. NPPROC + (IORD+1) - 1
DO 1011 =1,12
IE(SKIP) GOTO 10
NTRY = 2%*1
IF(NTRY .GE. NCONV) THEN
NFFT =11
SKIP = .TRUE.
ENDIF
10 CONTINUE
C  Order of FFT is NFFT. Now zero pad array
DO 20J1=1,NTRY
FILR(J1)=0.0
FILIQJ1) =0.0
VALR(J1)=0.0
20 VALI(J1)=0.0
C Fill FFT input arrays with values
DO30M2=1JI0RD +1
FILR(M2) = SNGL(PR(M2))
30 FILI(M2) = SNGL({PI(M2))
DO 40 M3 = 1,NPROC
VALR(M3) = REAL(X(M3))
40 VALI(M3) = AIMAG(X(M3))
C  Call FFT program; convolution is accomplished by FFT of input
C and filter, multiplying result point by point and IFFT,
CALL FFT842(0,NTRY ,FILR FILI)
CALL FFT842(0,NTRY,VALR,VALI)
C  Point by point multiplication
DO 5S0M =1, NTRY
TEMPR = FILR(M) * VALR(M) - FILI(M) * VALI(M)
TEMPI = FILR(M)*VALI(M) + FILIOM)*VALR(M)
VALRM) = TEMPR
50 VALI(M) = TEMPI

ololoivielolply!
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C Now IFFT for convolution result- perfect model yields impulse
CALL FFT842(1,NTRY,VALR,VALY)
C  Subtract impulse and sum residual for energy
ERR= 0.0 :
C SUMFROM 1ST POINT AWAY FROM ORIGIN TO LENGTH OF SEQUENCE
DO 60 M4 =2 NTRY
60 ERR =ERR + (VALR(M4) *VALR(M4) + VALI(M4)*VALI(M4))
ERR = ERR/(NTRY-1)
RETURN
END

C
C SUBROUTINE: FFT842

CFAST FOURIER TRANSFORM FOR N=2**M
C COMPLEX INPUT

C

C
SUBROUTINE FFT842(IN, N, X, Y)

C
C THIS PROGRAM REPLACES THE VECTOR Z=X+1Y BY ITS FINITE
C DISCRETE, COMPLEX FOURIER TRANSFORM IF IN=0, THE INVERSE
TRANSFORM
C IS CALCULATED FOR IN=1. IT PERFORMS AS MANY BASE
C 8 ITERATIONS AS POSSIBLE AND THEN FINISHES WITH A BASE 4 ITERATION
C OR A BASE 2 ITERATION IF NEEDED.
C
C THE SUBROUTINE IS CALLED AS SUBROUTINE FFT842 (IN,N,X,Y).
C THE INTEGER N (A POWER OF 2), THE N REAL LOCATION ARRAY X, AND
C THE N REAL LOCATION ARRAY Y MUST BE SUPPLIED TO THE SUBROUTINE.
C .

DIMENSION X(2), Y(2), L(15)

COMMON /CON2/ P12, P7

EQUIVALENCE (L15,L(1)), (L14,L(2)), (L13,L(3)), (L12,L(4)),

* (L11,L(5)), (L10,L(6)), (L9,L(7)), (L8, L(8), (L7,L(9)),

* (L6,L(10)), (L5,L(11)), (L4,1(12)), (L3,L(13)), (L2,L(14)),

* (LLL{A5)
C

C
CIW IS A MACHINE DEPENDENT WRITE DEVICE NUMBER
C
IW = IIMACH(2)
C

PI2 = 8 *ATAN(L)
P7 = 1./SQRT(2)
DO 101=1,15
M=1
NT = 2#+]
IF (N.EQ.NT) GO TO 20
10 CONTINUE
WRITE (IW,9999)
9999 FORMAT (35H N IS NOT A POWER OF TWO FOR FFT842)
STOP
20 N2POW =M
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NTHPO =N
FN = NTHPO
IF (IN.EQ.1) GO TO 40
DO 30I=1,NTHPO
YD =-Y(D)
30 CONTINUE
40 NSPOW = N2POW/3
IF (NSPOW.EQ.0) GO TO 60

C
C RADIX 8 PASSES,IF ANY.
C
DO 50 IPASS=1,N8POW
NXTLT = 2#*(N2POW-3*IPASS)
LENGT = 8*NXTLT
CALL RSTX(NXTLT, NTHPO, LENGT, X(1), X(NXTLT+1), X(2*NXTLT+1),
*  X(3*NXTLT+1), X(4*NXTLT+1), X(S*NXTLT-+1), X(6¥*NXTLT+1),
% X(T*NXTLT+1), Y(1), YONXTLT+1), YQ*NXTLT+1), Y(3*NXTLT+1),
*  Y(A*NXTLT+1), Y(5*NXTLT+1), Y(6*NXTLT+1), Y(7*NXTLT+1))
50 CONTINUE
C
C IS THERE A FOUR FACTOR LEFT
C
60 IF (N2POW-3*NSPOW-1) 90, 70, 80

C
C GO THROUGH THE BASE 2 ITERATION
C
C
70 CALL R2TX(NTHPO, X(1), X(2), Y(1), Y(2))
GO TO 90
C
C GO THROUGH THE BASE 4 ITERATION
C
80 CALL RATX(NTHPO, X(1), X(2), X(3), X(4), Y(1), Y(2), Y(3), Y(4))
C
90 DO 1103=1,15
L)=1
IF (J-N2POW) 100, 100, 110
100 L)) = 2¥*(N2POW+1-1)
110 CONTINUE
IT=1
DO 130 J1=1,L1
DO 130 2=J1,L2, L1
DO 130 J3=J2.0.3.1.2
DO 130 J4=J3 1413
DO 130 J5=J4.L5.L4
DO 130 J6=J5,L6,L5
DO 130 J7=16 L7.L6
DO 130 J8=J7.L8.L7
DO 130 J9=T8.1.9,L.8
DO 130 J10=J9,L.10,L9
DO 130 J11=J10,L11,L10
DO 130 J12=111.L.12.L.11
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DO 130 713=J12,L.13,L.12
DO 130 J14=J13,L14,L13
DO 130 JI=114,L15.1.14

IF (U-JI) 120, 130, 130

120 R =X(J)

X)) =X

X =R

Fl=Y@) -

Y@ = Y@L

IF (IN.EQ.1) GO TO 150
DO 140 I=1,NTHPO
YD) =-Y()
140 CONTINUE
GOTO 170
150 DO 160 I=1,NTHPO
X(D) = X(D/FN
Y{I) = Y(/EN
160 CONTINUE
170 RETURN
END
C

C —
C SUBROUTINE: R2TX

CRADIX 2 ITERATION SUBROUTINE

C
C

SUBROUTINE R2TX(NTHPO, CR0, CR1, CI0, CI1)
DIMENSION CRO(2), CR1(2), CI0(2), CI11(2)
DO 10 K=1,NTHPO,2
R1 = CRO(K) + CRI(K)
CRI(K) = CRO(K) - CR1(K)
CRO(K) = R1
FI1 = CIO(K) + CT1(K)
CI1(K) = CIO(K) - CII(K)
CIO(K) = FI1
10 CONTINUE
RETURN
END
C
C - -
C SUBROUTINE: RATX
C RADIX 4 ITERATION SUBROUTINE
C
C
SUBROUTINE RATX(NTHPO, CR0, CR1, CR2, CR3, CI0, CI1, CI2, CI3)
DIMENSION CRO(2), CR1(2), CR2(2), CR3(2), CI0(2), CI1(2), CI2(2),
¥ CI3(2)
DO 10 K=1,NTHPO 4
R1 = CRO(K) + CR2(K)
R2 = CRO(K) - CR2(K)
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R3 = CR1(K) + CR3(K)
R4 = CR1(K) - CR3(K)
FI1 = CI0(K) + CI2(K)
FI2 = CI0(K) - CI2(K)
FI3 = CI1(K) + CI3(K)
FI4 = CI1(K) - CI3(K)
CRO(K) =R1 +R3
CIO(K) = FI1 + FI3
CR1(K) =R1-R3
CI1(K) = FII - FI3
CR2(K) = R2 - Fl4
CI2(K) = FI2 + R4
CR3(K) = R2 + FI4
CI3(K) = FI2 - R4
10 CONTINUE
RETURN
END
C
C
C SUBROUTINE: R8TX
C RADIX 8§ ITERATION SUBROUTINE
C — —
C

SUBROUTINE R8TX(NXTLT, NTHPO, LENGT, CRO, CR1, CR2, CR3, CR4,
% (RS, CR6, CR7, CI0, CI1, CI2, CI3, CH4, CI5, CI6, CI7)
. DIMENSION CRO(2), CR1(2), CR2(2), CR3(2), CR4(2), CR5(2), CR6(2),
*  CR7(2), CI1(2), CI2(2), CI3(2), CI4(2), CI5(2), CI6(2),
¥ CI71(2), CI0(2)
COMMON /CON?2/ P12, P7
C
SCALE = PI2/FLOAT(LENGT)
DO 30 J=1,NXTLT
ARG =FLOAT(J-1)*SCALE
Cl = COS(ARG)
S1 = SIN(ARG)
C2 = C1#%2 - §1%%2
S2 = C1*81 + C1*S1
C3 = C1*C2 - S1*S2
S3 = C2*S1 + S2*C1
C4 = C2#4%2 - S2%%)
S4 = C2%S2 + 0282
C5 = C2*C3 - $2+83
S5 = C3%82 + §3%C2
C6 = C3#%2 - §3%#)
S6 = C3*83 + C3*S3
C7 = C3#%C4 - $3%54
S7 = C4*S3 + S4*C3
DO 20 K=J,NTHPO,LENGT
ARO = CRO(K) + CR4(K)
ARI = CRI(K) + CR5(K)
AR2 = CR2(K) + CR6(K)
AR3 = CR3(K) + CR7(K)
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10

AR4 = CRO(K) - CR4(K)

AR5 = CRI(K) - CR5(K)

ARG = CR2(K) - CR6(K)
AR7 = CR3(K) - CR7(K)
AI0 = CIO(K) + CI4(K)
ATl = CIL(K) + CI5(K)
AI2 = CI2(K) + CI6(K)
AT3 = CI3(K) + CI7(K)
AT4 = CI)(K) - CI4(K)
AI5 = CIL(K) - CI5(K)
Al6 = CI2(K) - CI6(K)
AT7 = CI3(K) - CI7(K)
BRO = ARO + AR2
BR1 = ARI + AR3
BR2 = ARO - AR2
BR3 = ARI - AR3
BR4 = AR4 - A6
BRS = ARS - Al7
BR6 = AR4 + AI6
BR7 = AR5 + AI7
BIO = AI0 + AI2
BI1 = AIl + AT3
BI2 = AI0 - AI2
BI3 = AIl - AI3
BI4 = A4 + ARG
BI5 = AIS + AR7
BI6 = Al4 - ARG
BI7 = AIS - AR7
CRO(K) = BRO + BR1
CIO(K) = BIO + BI1
IF (J.LE.1) GO TO 10
CR1(K) = C4*(BRO-BR1) - S4%(BI0-BI1)
CI1(K) = C4*(BI0-BI1) + S4*(BR0O-BR1)
CR2(K) = C2%(BR2-BI3) - S2*(BI2+BR3)
CI2(K) = C2*(BI2+BR3) + S2*(BR2-BI3)
CR3(K) = C6*(BR2+BI3) - S6*(BI2-BR3)
CI3(K) = C6%(BI2-BR3) + S6*(BR2+BI3)
TR = PT*(BRS5-BI5)
TI = P7*(BR5+BI5)
CRA(K) = CI*(BR4+TR) - SI*(BI4+TI)
CI4(K) = C1#(BI4+TI) + S1*(BR4+TR)
CR5(K) = C5*(BR4-TR) - S5*(BI4-TT)
CIS(K) = CS*(BI4-TI) + S5*(BR4-TR)
TR = -P7*(BR7+BI7)
TI = PT*(BR7-BI7)
CR6(K) = C3*(BR6+TR) - S3*(BI6+TI)
CI6(K) = C3#(BI6+TI) + S3*(BR6+TR)
CR7(K) = CT*(BR6-TR) - ST*(BI6-TI)
CI7(K) = CT*(BI6-TI) + ST*(BR6-TR)
GO TO 20
CRI1(K) = BRO - BR1
CI1(K) = BIO - BI1
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CR2(K) = BR2 - BI3
CI2(K) = BI2 + BR3

 CR3(K) = BR2 + BI3
CI3(K) = BI2 - BR3
TR = P7*(BR5-BI5)
TI = P7*(BR5+BI5)
CR4(K) = BR4 + TR
CI4(K) = BI4 + TI
CR5(K) = BR4 - TR
CI5(K) = B4 - TI
TR = -P7*(BR7+BI7)
TI = P7*(BR7-BI7)
CR6(K) = BR6 + TR
CI6(K) = BI6 + TI
CR7(K) = BR6 - TR
CI7(K) = BI6 - TI

20 CONTINUE
30 CONTINUE
RETURN
END

FUNCTION: IITMACH

THIS ROUTINE IS FROM THE PORT MATHEMATICAL SUBROUTINE LIBRARY
IT IS DESCRIBED IN THE BELL LABORATORIES COMPUTING SCIENCE
TECHNICAL REPORT #47 BY P.A. FOX, A.D. HALL AND N.L. SCHRYER

'INTEGER FUNCTION I1MACH()
1/0 UNIT NUMBERS.
IIMACH( 1) = THE STANDARD INPUT UNIT,
1IMACH( 2) = THE STANDARD OUTPUT UNIT.
IIMACH( 3) = THE STANDARD PUNCH UNIT.
1IMACH( 4) = THE STANDARD ERROR MESSAGE UNIT.
WORDS.
IIMACH( 5) = THE NUMBER OF BITS PER INTEGER STORAGE UNIT.
IIMACH( 6) = THE NUMBER OF CHARACTERS PER INTEGER STORAGE UNIT.,
INTEGERS.
ASSUME INTEGERS ARE REPRESENTED IN THE S-DIGIT, BASE-A FORM
SIGN ( X(S-1)*A%(S-1) + ... + X(1)*A + X(0) )

olololoiolvivieieioivivieloieivIPIPIPICIvICIC OIS IIoIoIpIoly
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WHERE 0 .LE. X(I) .LT. A FOR I=0,...,S-1.
TIMACH(7) = A, THE BASE.
I1MACH( 8) = S, THE NUMBER OF BASE-A DIGITS.
TIMACH( 9) = A**S - 1, THE LARGEST MAGNITUDE.
FLOATING-POINT NUMBERS.

ASSUME FLOATING-POINT NUMBERS ARE REPRESENTED IN THE T-DIGIT,
BASE-B FORM

SIGN (B**E)*( (X(1)/B) + ... + K(T)/B**T) )

WHERE 0 .LE. X(I) LT. B FOR I=1,....T,
0 LT. X(1), AND EMIN .LE. E LE. EMAX.

I1IMACH(10) = B, THE BASE.
SINGLE-PRECISION
IIMACH(11) = T, THE NUMBER OF BASE-B DIGITS.
IIMACH(12) = EMIN, THE SMALLEST EXPONENT E.
ITMACH(13) = EMAX, THE LARGEST EXPONENT E,
DOUBLE-PRECISION
IIMACH(14) = T, THE NUMBER OF BASE-B DIGITS.
IIMACH(15) = EMIN, THE SMALLEST EXPONENT E.
IIMACH(16) = EMAX, THE LARGEST EXPONENT E.

ololoielelvivicioioleiciviciolieiviciciclcicivivivivivicieivivivivivivle

C TO ALTER THIS FUNCTION FOR A PARTICULAR ENVIRONMENT,

C THE DESIRED SET OF DATA STATEMENTS SHOULD BE ACTIVATED BY
C REMOVING THE C FROM COLUMN 1. ALSO, THE VALUES OF

C IIMACH(1) - IIMACH®4) SHOULD BE CHECKED FOR CONSISTENCY

C WITH THE LOCAL OPERATING SYSTEM.

INTEGER IMACH(16),OUTPUT
EQUIVALENCE (IMACH(4),0UTPUT)

MACHINE CONSTANTS FOR THE VAX-11 WITH
FORTRANIV-PLUS COMPILER

oo o 0

DATA IMACH( 1)/ 5/
DATA IMACH(2)/ 6/
DATA IMACH(3)/ 5/
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DATA IMACH(4)/ 6/
DATA IMACH(5)/ 32/
DATA IMACH(G)/ 4/
DATA IMACH(7)/ 2/
DATA IMACH(8)/ 31/
DATA IMACH( 9) / 2147483647 /
DATA IMACH(10)/ 2/
DATA IMACH(11)/ 24/
DATA IMACI(12) /-127 /
DATA IMACH(13)/ 127/
DATA IMACH(14)/ 56/
DATA IMACH(15) /-127 /
DATA IMACEI(16) / 127/

IFI.LT.1 .OR. I.GT. 16) GOTO 10

IIMACH=IMACH(®)
RETURN
C
10 WRITE(OUTPUT,9000)
9000 FORMAT(39H1ERROR 1 INIIMACH - I OUT OF BOUNDS)
C

C

STOP

END
SUBROUTINE CHOLESKY (M,EPS,A,B,ISTAT)

This program solves a hermitial symmetric set of complex linear
simultaneaous equations using the Cholesky decomposition method.

AX=B
Input Parameters:

M  -Order of the matrix (#of linear equations)

EPS -Epsilon{quantity for testing loss of significance;
depends on machine precision, suggest 1.E-15)

A -Array of complex matrix elements sored columnwise
(ie A(1,1) is stored as A(1),A(1,2) as A(2),
A(2,2) as A(3), etc. Only the top triangular part of the
A matrix is stored since the other half is obtained by
Hermitian symmetry)

B -Array of complex elements of right hand side vextor

Output Parameters:

B -Complex solution X vector stored in place of B vector
ISTAT -Integer status indicator at time of exit
0 for normal exit
-1 if matrix is singular
+k if there is loss of numerical significance or if
a nonpositive-definite matrix detected at pivot K

elvivieipivivieivivivivieliviviolivivivivivivinioIvly!
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Notes:

External array A must be dimensioned .GE. M(M+1)/2 and array
B must be dimensioned .GE. M in the calling program. Array A
is destroyed when this routine is called.

ololeieiviele!

IMPLICIT BOUBLE PRECISION (A-H,0-Z)
COMPLEX*16 A(1),B(1),SUM
REAL EPS

Factor into triangular and diagonal form

olele!

DEPS=DBLE(EPS)
ISTAT=0
KPIV=0
DO 100 K=1,M
KPIV=KPIV+K
IND=KPIV
LEND=K-1
TINY=DABS(DEPS*DREAL(A(KPIV)))
DO 100 I=K.M
SUM=(0.D0,0.D0)
IF (LEND .EQ. 0) GOTO 40
LPIV=KPIV
DO 30 L=1,LEND
LPIV=LPIV+L-K-1
30 SUM=SUM+DREAL(A(LPIV))*A(IND-L)*DCONIG(A(KPIV-L))
40 SUM=A(IND)-SUM
IF (I NE. K) GOTO 80
C
C  Test for negative pivot element and loss of significance
C
IF (DREAL(SUM) .GT. TINY) GOTO 90
IF (DREAL(SUM) .GT. 0.D0) GOTO 70
ISTAT=-1
RETURN
70 IF{STAT.GT.0) GOTO90
ISTAT =K
90 A(KPIV)=DCMPLX(DREAL(SUM),0.D0)
DPIV=(1.DO)/REAL(SUM)
GOTO 100
80 A(ND)=SUM*DPIV
100 IND=IND+I
C
C  Solve for intenmediate column vector solution
C
KPIV=1
DO 200 K=2.M
KPIV=KPIV+K
SUM=B(K)
DO 210 I=1 K-1
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210 SUM=SUM-B(X-J)*DCONJG(A(KPIV-I))
200 B(K)=SUM
C

C Solve for final column vector solution
C
KPIV=(M*(M+1))/2
BM)=B(M)/DREAL(A(KPIV))
DO 300 K=M,2,-1
KPIV=KPIV-K
IND=KPIV
SUM=B(K-1)/DREAL(A(KPIV))
DO 310 J=KM
IND=IND+(J-1)
310 SUM=SUM-B(1)*A(IND)
300 B(K-1)=SUM
RETURN
END
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