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ABSTRACT

Many features of the oceanic plates cannot be explained
by conductive cooling with age. A number of these anomalies
require additional convective thermal sources at depths
below the plate: mid-plate swells, the evolution of fracture
zones, the mean depth and heat flow relationships with age
and the observation of small scale (150-250 km) geoid and
topography anomalies in the Central Pacific and Indian
oceans. Convective models are presented of the formation
and evolution of these features. In particular, the effect
of a shallow low viscosity layer in the uppermost mantle on
mantle flow and its geoid, topography, gravity and heat flow
expression is explored. A simple numerical model is
employed of convection in a fluid which has a low viscosity
layer lying between a rigid bed and a constant viscosity
region. Finite element caiculations have been used to
determine the effects of (1) the viscosity contrast between
the two fluid layers, (2) the thickness of the low viscosity
zone, (3) the thickness of the conducting lid, and (4) the
Rayleigh number of the fluid based on the viscosity of the
lower layer.

A model simple for mid-plate swells is that they are
the surface expression of a convection cell driven by a heat
flux from below. The low viscosity zone causes the top
boundary layer of the convection cell to thin and, at high
viscosity contrasts and Rayleigh numbers, it can cause the
boundary layer to go unstable. The low viscosity zone also
mitigates the transmission of normal stress to the
conducting lid so that the topography and geoid anomalies
decrease. The geoid anomaly decreases faster than the
topography anomaly, however, so that the depth of
compensation can appear to be well within the conducting
lid. Because the boundary layer is thinned, the elastic
plate thickness also decreases and, since the low viscosity
allows the fluid to flow faster in the top layer, the uplift
time decreases. as well. We have compared the results of
this modeling to data at the Hawaii, Bermuda, Cape Verde and
Marquesas swells, and have found that it can reproduce their
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observed anomalies. The viscosity contrasts that are
required range from 0.2-0.01, which are in agreement with
other estimates of shallow viscosity variation in the upper
mantle. Also, the estimated viscosity contrast decreases as
the age of the swell increases. This trend is consistent
with theoretical estimates of the variation of such a low
viscosity zone with age.

Fracture zones juxtapose segments of the oceanic plates
of different ages and thermal structures. The flow induced
by the horizontal temperature gradient at the fracture zone
initially downwells immediately adjacent to the fracture
zone on the older side, generating cells on either side of
the plume. The time scale and characteristic wavelength of
this flow depends initially on the viscosity near the
largest temperature gradient in the fluid which, in our
model, is the viscosity of the low viscosity layer. They
therefore depend on .both the Rayleigh number and the
viscosity contrast between the layers. Eventually the flow
extends throughout the box, and the time scales and the
characteristic wavelengths of the flow depend on the
thickness and viscosity of both layers. When the Rayleigh
number based on the viscosity of the top later, and the
depth of both fluid layers, is less than 10 , the geoid
anomalies of these flows are dominated by the convective
signal. When this Rayleigh number exceeds 10 6 , the geoid
anomalies retain a step across the fracture zone out to
large ages. We have compared our results to geoid anomalies
over the Udintsev fracture zone, and have found that the
predicted geoid anomalies, with high effective Rayleigh
numbers, agree at longer wavelengths with the observed
anomalies and can produce the observed geoid slope-age
behaviour. We have also compared the calculated topographic
steps to those predicted by the average depth-age
relationships observed in the oceans. We have found that
only with a low viscosity zone will the flow due to fracture
zones not disturb the average depth versus age
relationships.

We have also applied the model to a numerical study of
the effect of a low viscosity zone in the uppermost mantle
on the onset and surface expression of convective
instabilities in the cooling oceanic plates. We find that
the onset and magnitude of the geoid, topography and heat
flow anomalies produced by these instabilities are very
sensitive to the viscosity contrast and the Rayleigh number,
and that the thickness of the low viscosity zone is
constrained by the wavelength of the observables. If the
Rayleigh number of the low viscosity zone exceeds a critical
value then the convection will be confined to the low
viscosity zone for a period which depends on the viscosity
contrast and the Rayleigh number. The small scale
convection will eventually decay into longer wavelength
convection which extends throughout the upper mantle, so
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that the small scale convective signal will eventually be
succeeded by a longer wavelength signal. We compare our
model to the small scale geoid and topography anomalies
observed in the Southeast Pacific. The magnitude (0.50-0.80
m in geoiu and 250 m in topography), early onset time (5-10
m.y.) and lifetime (over 40 m.y.) of these anomalies suggest
a large viscosity contrast of greater than two orders of
magnitude. The trend to longer wavelen~ths also suggests a
high Rayleigh number of near or over 10 and their original
150-250 km wavelength indicates a low viscosity zone of 75­
125 km thickness. We have found that the presence of such
small scale convection does not disturb the slope of the
depth-age curve but elevates it by up to 250 m, and it is
not until the onset of long wavelength convection that the
depth-age curves radically depart from a cooling halfspace
model. In the Pacific, the depth-age curve is slightly
elevated in the region where small scale convection is
observed and it does not depart from a halfspacecooling
model until an age of 70 m.y .. Models that produce the
small scale anomalies predict a departure time between 55
and 65 m.y .. These calculations also predict an asymptotic
heat flow on old ocean floor which is higher than the plate
model and between 50 and 55 mW/m2 . This value agrees with
measurements of heat flow on old seafloor in the Atlantic.

In conclusion, we prefer an approximate model for the
viscosity structure of the upper mantle which initially has
a 125 km thick low viscosity zone that represents a
viscosity contrast of two orders of magnitude. The
viscosity contrast decreases as the plate ages to one order
of magnitude or less by 130 m.y., and the. low viscosity zone
may also thicken with age. Finally, the Rayleigh number of
the upper mantle is at least 105 and may be as large as 10 7 .
With this model, the evolution of the surface plates would
initially involve small scale convection which is driven by
shear coupling to instabilities downstream and to small
scale convection associated with fracture zones. This
convective flow would begin at close to 5 m.y. and remain
confined to the low viscosity zone until nearly 40 m.y .. As
this convective flow cools the upper mantle beneath the low
viscosity zone, longer wavelength convection begins
throughout the upper (or whole) mantle, and the heat
transport from the longer wavelength convection flattens the
depth-age curve and may form swells.

Thesis Supervisor: Barry Parsons
Reader of Geodesy, Oxford University UK
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Note

Each chapter was written to stand alone as a

description of one or all of the problems considered in this

thesis. The reader may then pick and choose the chapters

that he/she would like to read, and expect to fully

understand the problem and its resolution. However, a

certain amount of repetition must then occur between the

chapters, and I hope that the more comprehensive reader will

forgive the extra explanation.
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Chapter 1: INTRODUCTION

1.1 Overview

The Earth's mantle deforms >in response to a number of

driving forces inclUding earthquakes and glacial loads.

However, the dominant form of deformation in the mantle is

due to convective currents, driven by the residual heat from

the formation of the Earth and the decay of radioactive

elements (Turcotte and Oxburgh, 1967; Knopoff, 1967;

McKenzie, 1969; Richter, 1973; McKenzie et al., 1974; Yuen

et al., 1981). The discovery of viscous flow in the mantle

grew out of the plate tectonic revolution in the earth

sciences during the mid-1960's. In particular, the plate

tectonic description of the deformation of the surface of

the Earth established that seafloor is continually destroyed

at subduction zones and replenished at mid-ocean ridges, and

consequently that the mantle must flow to accommodate this

transport of material (Turcotte and Oxburgh, 1967; Richter

and McKenzie, 1978).

As developments in the plate tectonic hypothesis

continued, the driving force for the movement of the oceanic

plates was presumed to be forces exerted on the plates by

convection in the mantle (Turcotte and Oxburgh, 1967;

Peltier, 1974; Yuen et al., 1981). Under this assumption,

the plates are the visible expression of the top boundary of

a convection cell and the convective flow represented by the

plates is the dominant large scale flow pattern in the
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mantle. However, the connection between the convective flow

in the mantle and the motions of the plates at long

wavelengths remains unclear (Forsyth and Uyeda, 1975). In

particular, the description of the oceanic plates as a

conductively cooling thermal boundary layer has proved

inadequate in explaining a number of observed features of

the plates (Parsons and Sclater, 1977; Detrick, 1981).

In this thesis, we explore models of the formation of

the most prominent of these features: mid-plate swells

(Chapters 2, 3 and 5), the geoid anomalies and geoid-age

relationships at fracture zones (Chapter 4), the flattening

of the depth-age and the heat flow-age curves (Chapter 5),

and the recent observations of short wavelength geoid

anomalies in the SEASAT data over the Central Pacific and

Indian oceans (Chapter 5). The important similarity between

these features is that they each require a thermal source or

non-conductive cooling at depth. We briefly present them

here in order of decreasing wavelength.

At young ages in the oceanic plates, conductive cooling

mechanisms in the mantle can produce the observed depth-age

and heat flow-age relationships (Parsons ~nd Sclater, 1977).

In Figure 1.1, we have drawn the mean depth data as a

function of the square root of time in the North Pacific and

North Atlantic (from Parsons and Sclater, 1977). For

comparison, we have also drawn the depth-age curve that is

predicted by conductive coaling in the mantle. At ages

above 70 m.y., the depth-age curve departs from the
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conductive cooling model, and the conductive cooling

mechanism appears to be retarded. Evidence also suggests

that the heat flow-age curve flattens (Sclater and

Francheteau, 1970; Parsons and Sclater, 1977). Estimates of

the initial time of flattening in the heat flow-age

relationship have until recently been close to 120 m.y.

(Parsons and Sclater, 1977), but recent evidence suggests

that it may flatten earlier (Detrick et al., 1986; Louden et

al., 1987). To produce these deviations in the depth-age

and heat flow-age curves, a thermal source is required to

supply heat to the base of the plate, over and above that

supplied by conductive mechanisms. Parsons and McKenzie

(1978) hypothesize that the flattening of the depth-age and

heat flow-age relationships may be due to heat transport

from convective instabilities in the cooling oceanic plates.

In fact, Parsons and McKenzie (1978) have showed that

oceanic plates can go convectively unstable in the region

under the rigid portion of the plate in their lifetimes, and

Houseman and McKenzie (1982) have also showed that these

instabilities would flatten the depth-age curve.

Mid-plate swells are regions of the seafloor associated

with geoid, gravity, topography and heat flow highs in an

intermediate (1000-2000 km) wavelength range (Dietz and

Menard, 1953; Crough, 1978; Detrick and Crough, 1978). In

Figure 1.2, we show the geoid field over the Bermuda swell.

The characteristics of swells are described in greater

detail in Chapters 2 and 3. Since the heat flow is elevated
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underneath swells in comparison to the surrounding plate,

however, a thermal source must exist below the surface.

Such a thermal anomaly can also explain the geoid, gravity

and topography anomalies (Dietz and Menard, 1953; Crough,

1978; Detrick and Crough, 1978; Von Herzen et al., 1982;

McNutt and Shure, 1986). Many researchers believe that this

thermal anomaly is created by an upwelling in the mantle and

that mid-plate swells are the surface expression of

concentrated upwellings in a convective flow (Dietz and

Menard, 1953; McKenzie et al., 1980).

Other observed but currently unexplained features are

the geoid slope-age relationships that are inferred from the

geoid anomalies at fracture zones. Fracture zones are

boundaries between plate segments of different age. In the

conductive cooling models of the plates, since each plate

segment has undergone a different amount of cooling, the

depth and geoid heights differ across the fracture zone and,

in both depth and geoid, the anomalies contain a step at the

fracture zone. Recent data which constrains the geoid-age

relationship at fracture zones shows that steps are evident

in the geoid anomalies (see Figure 4.17) but that they do

not evolve, as the plate segments cool, in accordance with

either the halfspace or thermal plate models (see Figure

4.18). Furthermore, the observed geoid slope-age

relationships vary from fracture zone to fracture zone

(Cazenave et al., 1984). For example, entirely different

geoid slope-age relationships are found at the Mendocino,
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E1tanin, Udintsev and Falkland-Agulhas fracture zones

(Sandwell and Schubert, 1981; Detrick, 1982; Cazenave et

al., 1984; Driscoll and Parsons, 1987; Freedman and Parsons,

1987). The geoid slope-age relationship measures long

wavelength changes in the geoid field at fracture zones.

Therefore, the deviations from the conductive cooling models

that are observed in the geoid slope-age relationships at

fracture zones and the variability between fracture zones

must be due to sources that are not confined to an area near

each fracture zone, but that affect the broad regions around

them. Since the temperature gradient between lithosphere of

differing age across the fracture zone will drive convection

in a viscous Earth, the variability in the geoid anomalies

and the geoid-age relationships at fracture zones may also

be explained by the convective flow underneath them (Craig

and McKenzie, 1986).

The final unexplained feature of the oceanic plates was

discovered in the SEASAT data set. The SEASAT satellite

samples the surface height of the oceans which closely

approximates the Earth's geoid (Ta1wani, 1970). This data

set has an accuracy of better than 10 cm and a ocean-wide

coverage with a resolution of near 100 km between tracks

(Tapley et al., 1982). In the Central Pacific at ages of 5­

40 m.y. and in the Central Indian Ocean, 150-250 km

wavelength geoid anomalies with amplitudes of 0.50-0.80 m

have been observed, with a possible trend towards longer

wavelengths with age (Haxby and Weissel, 1986; Cazenave et
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a1., 1987). The anomalies are 1ineated parallel to the

motion of the Pacific plate (Haxby and Weisse1, 1986). A

shipboard study along several SEASAT tracks over young ocean

floor in the Central Pacific found that the geoid anomaly

was also associated with a topographic anomaly of close to

250 m (pers. comm. Parsons, 1987). The shiptracks and two

sets of the gravity and topography lines from this oceanic

cruise are drawn in Figure 1.3. In line 1 (Figure 1.3(a»,

just west of the East Pacific Rise, no signal is present.

By line 2, however, which is parallel to the East Pacific

Rise on 6 m.y. old crust, a 150-250 km wavelength signal is

apparent. The signal in the gravity line correlates with

the signal in the topography line, and its magnitude, 10-15

mgals, confirms the geoid estimates of the anomaly. Since

the geoid and topography anomalies correlate between tracks

in a direction that is oblique to the fracture zone trend

but parallel to plate motion, they most likely must also be

due to a source beneath the plates (Haxby and weissel,

1986). Buck and Parmentier (1986) and Haxby and Weissel

(1986) propose that these anomalies are the surface

expression of instabilities in the cooling oceanic plates

which were originally hypothesized to produce the flattening

of the depth-age and heat flow-age curves. However, an

immediate problem is apparent with this explanation, since

the small scale anomalies are evident at 5-40 m.y. in age

and the flattening of the depth-age curve does not occur



17

until 70 m.y .. Nevertheless, this explanation seems likely

given the nature of the lineated anomalies.

In summary, each of these features requires a thermal

source at depths beneath the rigid portion of the plates.

Two processes produce thermal anomalies in the mantle:

enhanced radioactivity and thermal convection (Roberts,

1967; Runcorn, 1969; McKenzie et al., 1974; Jarvis and

Peltier, 1982). However, in an explanation of each of the

above features, a convective source seems most likely.

Since very different convective flows can produce the

same geoid, gravity, topography and heat flow anomalies at

the surface, the inversion of the data for the thermal

source function is nonunique (Parker, 1977). Since the

inverse problem is not well posed (at least at present),

however, we can only forward model each of the problems,

i.e. take a parameterized model of the mantle and vary its

parameters until a good fit to the data is achieved. With

this approach, there is no guarantee that the set of

parameters which give the best fit to the data is unique and

that the correct solution has been isolated (Backus and

Gilbert, 1967; Backus and Gilbert, 1968). However, given

the correct rheological structure for the mantle and the

boundary conditions on the flow and the temperature that

bound it, the convective flow is then determined. The

inverse problem is then reduced to the determination of the

nature of the rheological structure and the boundaries on

flow in the mantle. Therefore, the emphasis must be placed
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on gaining an understanding of the essential physics which

governs the variation of these parameters and, as more

constraints are placed on the flow and on the rheological

properties of the mantle by the data, a better model can be

achieved.

1.2 Forward Modelling of Convective Flow

The first mathematical descriptions of thermal

convection were developed in the late 19th century. Two of

the most significant theoretical developments towards the

understanding of convective flow were made by Lord Rayleigh

and Osborne Reynolds. They found that, given a set of

boundary conditions, any convective flow can be

characterized by two nondimensional numbers which are now

called the Rayleigh number (Rayleigh, 1916) and the Reynolds

number. In practice, the Rayleigh number is proportional to

the ratio between the time that it takes to heat a layer of

fluid by conduction and the time that it takes a particle of

fluid to circulate once around the convective cell. The

Reynolds number represents the ratio of the inertial forces

to the viscous forces. Since the Reynolds number in the

Earth is very small (around 10-10 ), the inertial forces are

negligible when compared with the viscous forces (Turcotte

and Oxburgh, 1967; McKenzie, 1969; McKenzie et al., 1974).

In the mantle, the Rayleigh number is the most

significant parameter that governs the flow (Turcotte and

Oxburgh, 1967; McKenzie, 1969; McKenzie et al., 1974).
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without the effects of internal heat generation included,

the Rayleigh number, Ra, can be given by:

Ra = g<X.dTd3/I.lK

where g is the acceleration of gravity, a is the thermal

expansion coefficient, AT is the temperature difference

across the fluid layer, d is the depth of the fluid layer, 1.1

is dynamic viscosity and K is thermal diffusivity.

Estimates of the magnitude of the Raleigh number in the

upper mantle in the literature range from 10 6 to 10 7 , where

the variation in the estimate is due to the uncertainty in

the magnitude of the physical parameters, g, a, AT, d, 1.1

and K, (McKenzie, 1967; Richter, 1973; McKenzie et al.,

1974). Since the Rayleigh number can scale laboratory

results to apply to mantle flow, experiments have been done

that empirically, as well as theoretically, reveal the

nature of Rayleigh-Bernard convective flow in a viscous

fluid as its Rayleigh number increases to mantle values in

three-dimensions (Busse, 1967; Busse and Whitehead, 1971).

Below a critical Rayleigh number, the fluid will not

convect, but transport heat by conduction. Above this

critical number, which is near 10 3 and depends upon the

boundary conditions, the fluid convects in two dimensional

cylindrical cells and arranges its "plan form" (the spatial

orientation of the convective flow pattern) in response to

the initial temperature disturbance. When the Rayleigh

number is increased to values above 2x10 4 , from an initial

two dimensional cylindrical flow pattern, two dimensional
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cells are no longer stable and the flow becomes three

dimensional. Another set of cells grows up perpendicular to

them, forming an overall pattern which is called "bimodal"

convection. Above a Rayleigh number of 105 , the bimodal

convection pattern in turn becomes unstable and the flow

assumes a "spoke" pattern. The spoke pattern is

characterized by thin, intense sites of upwelling and broad,

diffuse downwellings. Above this range of Rayleigh numbers,

laboratory experiments with a negligible Reynolds number are

very difficult (Busse and Whitehead, 1971; Busse and

Whitehead, 1974; Richter and Parsons, 1975; McKenzie, 1983).

Therefore, most of our knowledge or flow at these Rayleigh

numbers comes from numerical models of the flow.

1.3 Numerical Modelling of High Rayleigh Number Convection

In 1974, McKenzie et al. pUblished the first numerical

model of flow in the mantle at Rayleigh numbers up to 10 6 .

Using finite difference numerical techniques and assuming

that the flow was two-dimensional and that the viscosity of

the fluid was constant, they confirmed the theoretical

prediction that the advection of heat would occur primarily

in small boundary layers at the edges of the cell and that

the interior of the cell was nearly isothermal. As the

Rayleigh number increased, the vigor of the convection

increased and the boundary layers thinned.

Many researchers have since explored more realistic

rheological models of the mantle than a uniform constant
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viscosity upper mantle. In particular, studies with a

temperature and pressure dependent viscosity structure and

other nonlinear rheologies have provided insights into the

effects of the rheology on convective flow at high Pradtl

numbers (parmentier, 1978; Yuen et al., 1981; Yuen and

Fleitout, 1984; Fleitout and Yuen, 1~84a; Buck and

Parmentier, 1986). However, these studies are time

consuming on computers and are therefore expensive, so that

only a limited number of rheologies have been tested. Since

we do not know the exact rheology of the mantle, the results

are very difficult to apply to mantle flow.

We approach the problem differently. Instead of

attempting to understand the fluid flow in the presence of a

complex rheology, we try instead in one suite of

calculations to fully explore the effect of only one feature

which is expected from estimates of the rheology of the

mantle and from observational data. Then the physical

effect of that component of the model can be built upon as

more complex models are studied. In this thesis, we have

built upon studies of the effect of a conducting lid at the

surface of the mantle, representing an oceanic plate, and

have added a low viscosity zone in the uppermost mantle.

Such a layer is indicated not only by theoretical results

but observational results as well.

As a note, because the computer time that would be

required to fully explore the flow in three dimensions is

prohibitively large, these results and the results that we
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present in this thesis are limited to two dimensions.

However, we know that at large Rayleigh numbers, the flow is

three-dimensional as in the "spoke" pattern. With a two­

dimensional model, flow in and out of the plane of the

calculation, the effects of three-dimensional perturbations

to the flow and three-dimensional instabilities are not

included. These effects may strongly affect the results

and, in each of the problems that we consider, we will

discuss the specific effects that we have ignored by only

addressing two-dimensional flow.

1.4 The Viscosity Structure of the Upper Mantle

Due to the large temperature gradient from the surface

to the interior of the mantle, the largest viscosity change

in the mantle is at the surface of the Earth and results in

the strength of the surface plates. The presence of plates,

which act dynamically like conducting lids at the surface,

affects the convective flow in three ways. First, since the

thermal structure of the top portion of the plates is cool

enough so that the plate is rigid, the mantle can flow

beneath it, separate from the conducting lid. Second, the

convective temperature anomalies are depressed to greater

depths than in a constant viscosity model. Third, the

plates absorb a portion of the temperature difference

between the interior of the convection cell and the surface

through conduction, so that the magnitude of the temperature

anomalies decreases as the thickness of the conducting lid
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increases (Houseman and McKenzie, 1982; Jaupart and Parsons,

1985; Buck and Parmentier, 1986). Due to the last two

effects, the geoid, gravity, topography and heat flow

anomalies decrease as the plate ·thickness increases in

thickness (Buck and Parmentier, 1986).

The viscosity structure of the mantle beneath the

plates is not well known. What little evidence of the

viscosity structure in the upper and lower mantles comes

from laboratory results, inferences from seismic velocity

anomalies, modelling of post-glacial rebound, and

theoretical calculation of the viscosity structure based on

estimates of the temperature and pressure structures in the

mantle. According to each of the indicators (that would be

sensitive to viscosity changes in 100-200 km layers),

however, the most prominent feature in the uppermost mantle

is a low viscosity zone underneath the oceanic plates

(Anderson and Sammis, 1970; Solomon, 1972; Peltier, 1974;

Weilandt and Knopoff, 1982; Bott, 1985). Cooper and

Kohlstedt (1984) have shown with laboratory experiments on

olivine that melt in the intersections between grains will

cause the diffusion path length through an aggregate of

these grains to decrease. Therefore, the presence of melt

in the uppermost mantle would decrease its viscosity and

change its deformation behavior. From calculations of

partial melting in the mantle, melt production is thought to

be confined to the top 200 km of the upper mantle (e.g.

McKenzie, 1982). Moreover, seismic evidence also exists for
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a shallow layer with a small degree of melt throughout the

oceanic mantle underneath the plates (Anderson and Sammis,

1970; Solomon, 1972). In particular, the most prominent

seismic feature in the uppermost mantle is a low velocity

zone extending from near 60 km to 150 km (Weilandt and

Knopoff, 1982; Bott, 1985). Since this region is also

associated with high attenuation, the most widely accepted

explanation of its origin is that it contains a small

fraction of melt (Anderson and Sammis, 1970). Therefore,

the presence of the melt in the top 200 km of the mantle

would create a low viscosity zone which extends from the

base of the rigid portion of the plates to 200 km. Finally,

the experimentally determined exponential relationship

between viscosity and temperature and pressure also predicts

a low viscosity zone underneath the plates (Parmentier,

1978; Fleitout and Yuen, 1984; Buck and Parmentier, 1986).

In the thermal boundary layer at the surface, the viscosity

will rapidly decrease due to the large temperature gradient

with depth. Then, in the adiabatic mantle the viscosity

will increase due to the increase in pressure with depth.

Beneath the plates and before the pressure causes the

viscosity to increase to larger values, the viscosity is

low, effectively creating a low viscosity zone underneath

the plates (of at least one or two orders of magnitude less

than the ambient mantle viscosity) .

Theoretical calculations of the viscosity structure

with temperature and pressure also predict that the low
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viscosity zone will decrease in magnitude and thicken with

age (Buck and Parmentier, 1986). However, theoretical

constraints on melting in the mantle indicate that melting

will always be confined by the effects of pressure to a

depth above 200 km in the uppermost mantle (e.g. McKenzie,

1981). Therefore, when both the temperature and pressure

and the melting effects are included in the calculation of a

theoretical viscosity structure, the low viscosity zone may

remain close to its original thickness (above 200 km in

depth and below the conducting lid) and viscosity contrast

for longer than predicted when only the effects of

temperature and pressure included. In fact, seismic

evidence indicates that a low velocity zone (and, therefore,

a region of partial melt) is measurable in the uppermost

mantle, above 200-400 km, throughout much of the oceanic

mantle (Weilandt and Knopoff, 1982).

1.5 This Thesis

In this thesis, we have explored the effect of a low

viscosity zone on mantle flow and its geoid, gravity,

topography and heat flow expression at the surface of the

Earth. In particular, we have modelled the anomalous

features that were described in section 1.1. We use a

finite element numerical method to model the flow with a

simple three layer viscosity structure for the upper mantle

(Hughes et al., 1979; Daly and Raefsky, 1985). The

numerical method is discussed in detail in the appendix.
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The viscosity model consists of a conducting lid overlying a

low viscosity zone which in turn overlies a constant

viscosity layer. The simplicity of the model allows us to

explore a number of models where we vary the layer

thicknesses, the viscosity contrast (the ratio of the

viscosity contrast in the top layer, ~t' to that in the

bottom layer: ~t/~b) and the Rayleigh number of the fluid.

To calculate the gravity, g~oid, topography and heat flow

anomalies at the surface that result from the flow, we use a

Green's function method (Parsons and Daly, 1983).

We have found that with the addition of the low

viscosity zone the convective model not only qualitatively

fits the observed anomalous features in the oceanic plates

but quantitatively fits them as well. The convective models

of mid-plate swells (Chapter 2 and 3), of fracture zones

(Chapter 4) and of the stability of the cooling oceanic

plates (Chapter 5) are all very sensitive to a shallow low

viscosity zone. With our model, by specifying only the

thermal boundary conditions and the three layered viscosity

structure, we are able to produce a complete model for the

formation of mid-plate swells, in which both the surface

anomalies and the origin of the thermal source was

explained. The same model (with the same range in the

parameters which describe the viscosity structure) also

predicts the geoid slope-age and depth-age behavior at

fracture zones, the origin of the small scale anomalies in

the Central Pacific and Indian oceans, and the flattening of



27

the depth-age and heat flow-age curves. Therefore, we are

able to place significant constraints on the viscosity

contrast and the thickness of the low viscosity zone, which

are consistent with theoretical estimates of the mantle

viscosities. In particular, the viscosity contrast was

constrained to be greater than 0.1; the thickness of the low

viscosity zone was determined to be 75-125 km. with the

addition of a low viscosity zone, therefore, a convective

model can produce many of the observed anomalous features in

the oceanic plates.
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Figure Captions

Figure 1.1: The depth-age data for the North Pacific and

the North Atlantic oceans (solid line) plotted versus the

square root of time. Figure taken from Parsons and Sclater

(1977). The predictions of the conductive cooling model are

also drawn (dashed line).

Figure 1.2: Geoid anomalies in the region of the western

North Atlantic which encompasses the Bermuda swell. The

anomalies are derived from the SEASAT altimeter data set by

removing a GEM 9 reference field up to degree and order 10

and by smoothing the resulting geoid anomalies onto a

uniform 50 km grid. Contour interval 1 m. Figure taken

from Detrick et al. (1986).

Figure 1.3: (a) The shiptracks in the Central Pacific. (b)

The gravity and topography data collected from lines 1 and

2, in Figure 2(a). The scales are alongside the lines. In

line 1, which is just west of the East Pacific Rise, there

is no small wavelength signal. However, by line 2, which is

on 6-10 m.y. old crust, the small wavelength signal is

visible in both the gravity and topography data.
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CHAPTER 2: THE APPARENT COMPENSATION OF MID-PLATE SWELLS

2.1 Introduction

Hot spot volcanic cnains usually crest large regions of

anomalously shallow seafloor, where the generally linear

relationship between the long wavelength geoid and

topography anomalies supports a Pratt compensation model for

the uplift. Analyses of the geoid and topography anomalies

at most swells, however, give a depth of compensation for

the swell topography which appears shallower than the

thermal plate thickness (Haxby and Turcotte, 1978; Crough,

1978). Estimates at various hotspot chains indicate depths

of compensation of 60-90 kmfor the Hawaiian swell (Crough,

1978; McNutt and Shure, 1986), 40-70 km for the Bermuda Rise

(Haxby and Turcotte, 1978), and 40-60 km for the Marquesas

swell (Crough and Jarrard, 1981; Fischer et al., 1986).

Because thermal cooling is thought to extend to near 125 km

in depth underneath the seafloor surrounding these swells

(Parsons and Sclater, 1977), and because, when cooled,

mantle materials no longer deform so readily, these shallow

compensation deptns seem to pose a problem for the

explanation of hotspot swells as a natural consequence of

mantle and plate dynamics.

The anomalous heat flow associated with mid-plate

swells argues for a thermal origin for their uplift (Von

Herzen at al., 1982; Detrick et al., 1986). Detrick and

Crough (1978) pointed out that, by elevating the
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temperatures underneath the Hawaiian swell, one could

explain its shallow depths and subsidence. If one assumes

that the plate behaves rigidly down to depths near the

thermal plate thickness, as calculated from thermal cooling

models (e.g. Parsons and Sclater, 1977), the elevation of

the temperature structure must be accompanied by thinning of

the rigid plate to a certain depth. By simply prescribing

this depth, beneath which the plate is replaced by material

at the ambient mantle temperature, one can fit the gravity

and topography anomalies and the subsequent subsidence seen

at Hawaii (Detrick and Crqugh, 1978; McNutt, 1984). The

shallow depth of compensation is then a reflection of this

thinner plate. The plate thinning that is required to

produce the observed anomalies is very large, as in the case

of Hawaii, where the plate must be thinned from over 100 km

in depth to just 40 km. However, the uplift time seen at

Hawaii is very short, between 5 and 8 m.y. and, to produce

the observed geoid and topography anomalies through

conduction within this uplift time, the heat flux that is

required is excessively large (Detrick and Crough, 1978;

Emerman and Turcotte, 1983).

These short uplift times suggest an advective

mechanism. Other models of swells describe the uplift as

the surface expression of a convection cell (McKenzie et

al., 1980; Detrick et al., 1986). These models in principle

provide a mechanism to instigate and maintain the swell and

can qualitatively produce the observed anomalies. They also
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explain the frequency and separation between swells as a

consequence of the convection plan form in the upper mantle

but, if the thermal plate behaves rigidly down to depths

corresponding to the full thermal plate thickness, they

cannot produce the shallow depths of compensation.

However, the viscosity of mantle material is

temperature and pressure dependent, so that the plate does

not act rigidly to depths corresponding to the thermal plate

thickness. To a rough approximation, one can divide the

plate into two parts, the boundary between which is governed

by the temperature (Parsons and McKenzie, 1978). In the

upper portion, the conducting lid, the temperatures are

sufficiently low that the material behaves rigidly. In the

lower portion of the plate where the temperatures are

higher, the material can deform ductily and can participate

in the mantle flow. An upwelling plume can penetrate this

layer and replace it with the hotter material. The

conducting lid behaves rigidly but, on a conductive time

scale, thins due to heating from the plume.

Theoretical considerations and observational evidence

suggest that the viscosity at depths around the thermal

plate thickness can be quite small and that these low

viscosities extend to depths in the mantle below the thermal

plate thickness. First, theoretical calculations of the

viscosity with depth, which assume an exponential

temperature and pressure dependence and a temperature

structure consistent with high Rayleigh number convection,
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show that the viscosity will decrease sharply to the base of

the top thermal boundary layer in the mantle. In the

adiabatic region immediately below it, the pressure gradient

with depth will cause the viscosity to slowly rise again

forming a low viscosity zone (Buck and Parmentier, 1986).

Second, since the presence of melt at grain boundary triple

junctions may shorten the diffusive path length through a

conglomerate of grains thereby enhancing the creep rate, the

segregation of melt in the upper mantle may produce a layer

with an effectively lower viscosity (Cooper and Kohlstedt,

1984; McKenzie, 1985). Seismic studies of the asthenosphere

and upper mantle show a marked increase in attenuation and a

decrease in velocity beneath the lithosphere which is often

interpreted as the seismic expression of a layer with a

large proportion of melt (Anderson and Sammis, 1970;

Solomon, 1972). If this region is partially molten then, as

predicted by the laboratory experiments of Cooper and

Kohlstedt (1984), there should be changes not only in its

elastic behavior but in its deformational behavior as well.

Third, Craig and McKenzie (1986) have studied convection at

fracture zones, which is induced by the horizontal

temperature gradient at the base of the oceanic lithosphere.

Their model is two-dimensional, and consists of a fluid

layer overlain by a conducting lid. They find that a thin,

150 km thick, low viscosity zone with an upper bound on the

viscosity of 1.5x1019 Pa.s (approximately two orders of

magnitude less than the average viscosity of the upper
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mantle as determined from studies of post-glacial rebound)

under a conducting lid of 75 km can produce the general

character of the geoid and topography signatures at fracture

zones.

Since in any convective model for mid-plate swells, the

flow reflected by the swell and the large scale circulation

containing the plates are decoupled, one might argue that a

low viscosity zone is inherent in convective models of mid­

plate swells. Without decoupling, localized upwellings

would be sheared by the surface flow due to the plates.

This decoupling requires a region of the mantle such as a

low viscosity zone whose physical properties mitigate the

transmission of shear stress between the two flow regimes.

Because viscosity variations in the mantl·e can strongly

alter the topographic and gravitational response to the

dynamic processes beneath the plate, convection models must

include such a zone to accurately represent the formation of

the swell.

To study the effect of a low viscosity zone on the

convective formation of mid-plate swells, we have simplified

the viscosity structure to a three layer model consisting of

a conducting lid overlying a low viscosity zone which in

turn overlies a constant viscosity layer extending to the

base of the upper mantle (Figure 2.1). In this paper we

discuss the effect of varying the thickness of the low

viscosity zone, the viscosity contrast and the overall

Rayleigh number (based on the bottom viscosity) on the
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gravity, topography and geoid signatures of the flow and on

the inferred depth of compensation for the swell topography.

In particular, for given conducting lid and low viscosity

zone thicknesses, we will show that by lowering the

viscosity in the layer we can produce arbitrarily small

apparent depths of compensation.

2.2 Convection Calculations

The numerical model consists of a low viscosity layer

sandwiched between a conducting lid and a constant viscosity

layer, with uniform heating from below through a stress-free

boundary and with a constant temperature condition on the

top boundary (see Figure 2.1). We have replaced the

dimensional variables (denoted with primes) with their

nondimensional counterparts through the following

transformations:

Il' '" 110 11

(x',z') '" d(x,z)

T' '" ~T T

t' '" (d2 /K) t

P' '" Po P
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(2.lf)

where F is the prescribed flux and Cp the specific heat. To

scale the results, we used the values for the physical

parameters given in Table 2.1.

Omitting the primes, the equation of motion, the heat

transport equation and the equation of state are given by,

V.a = -R(T-To)~

;1T!Clt + u.\7T = '72T

1 - a~T(T - To) = P

(2.2)

(2.3)

(2.4)

(2.5)

where u is the velocity vector, a is the thermal expansion

coefficient, ~ is a vertical unit vector, To is the

reference temperature, Q is the stress tensor given by:

aij = -POij + ~ (OUi~Xj + ~Ujroxi)

with p the pressure and R the Rayleigh number:

R = goa~Td3!~oK (2.6)

where go is the acceleration of gravity. These equations

are solved using a velocity based finite element method

(Daly and Raefsky, 1985). Although the incompressibility

equation:

V.u = 0 (2.7)

is never solved explicitly, a penalty function treatment of

the pressure forces incompressibility (Hughes et al., 1979).

The boundary conditions on the flow are summarized in Figure

2.1.

All of the convection calculations were run to steady

state with the implicit time stepping method described in

Brooks (1981). To resolve the boundary layer flow, we often



40

used a nonuniform grid with double or quadruple the number

of grid points in the vertical direction in the low

viscosity zone. We checked the resolution and steadiness of

the flow by comparing the average flux through the elements

at different depths to their steady state equilibrium

values. Also, due to the complex interaction of the up and

downwelling plumes with the low viscosity zone, we ran the

most extreme models on a uniform grid with an explicit

finite difference time stepping routine for a convective

overturn time to check for convergence.

In Table 2.2, we present the parameters for three

suites of calculations chosen to illustrate the effect of a

low viscosity zone on the convection and on the

corresponding surface observables. In all of these

calculations, the shear stress and vertical velocity are

zero on the bottom boundary, and both components of velocity

are zero at the base of the conducting lid, which is 0.125

(75 km) thick. In runs l(a-c) in Table 2.2, we varied the

viscosity in the low viscosity layer with a 0.21 (125 km)

thick low viscosity zone and a Rayleigh number equal to 105.

In Figure 2.2, results for viscosity contrasts of 100, 10 1

and 102 are presented, and the variation of the horizontally

averaged temperature and the longest wavelength component of

the temperature structure with depth are given in Figure

2.3. Two essential points are illustrated by these

calculations. First, since the low viscosity zone causes

the local Rayleigh number of the fluid encompassing the top
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boundary layer to increase, the boundary layer thins.

Second, the low viscosity zone reduces the stresses near the

base of the rigid lid facilitating horizontal fluid flow.

We compared these runs to ones w.ith no conducting lid and a

free top boundary. We found that this stress reduction and

increased horizontal flow near the boundary caused the top

boundary to look more like a free boundary to the rest of

the flow and the boundary layer was correspondingly thinner.

In general, an order of magnitude decrease in viscosity in

the low viscosity zone will thin the boundary layer to a

thickness corresponding to an order of magnitude or more

increase in the local Rayleigh number. At high viscosity

contrasts, the upper boundary layer can surpass its local

critical Rayleigh number and become unstable, generating

instabilities which sweep into the downgoing plume. The

instabilities grow with a period much less than the overturn

time but have a negligible effect on the longest wavelength

geoid, gravity and topography signals. Due to our limited

computational ability at present, however, we cannot check

the resolution of this instability and do not present cases

in which the Rayleigh number based on the top viscosity

exceeds 10 7 .

In runs 2(a-c) in Table 2.2, we varied the Rayleigh

number in the convecting layer from 10 4 to 10 6 , with a 0.21

(125 km) thick low viscosity zone at a viscosity contrast of

0.1 and a 0.125 (75 km) thick conducting lid (Figure 2.4).

Figure 2.5 shows the mean and first harmonics of the
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temperature structures. As in Rayleigh-Bernard convection

in a constant viscosity layer, the boundary layer thickness

and mean tempe+ature decrease with increasing Rayleigh

number (if dT is held constant) .

In the final series of calculations (Figure 2.6), we

varied the thickness of th~ low viscosity layer (parameter

'a' in Figure 2.1). In particular we compared two runs at a

Rayleigh number of 105 where the top layer has either a

thickness of 0.08 (50 km) or of 0.5 (300 km) to the

calculation already discussed where the top layer is 0.21

(125 km) thick. Figure 2.7 contains the mean and first

harmonic temperature profiles for these runs. Initially, as

the thickness of the low viscosity layer increases, the mean

temperature decreases; and, at the intermediate layer

thickness of 0.21 (125 km), the magnitude of the mean

temperature profile is at a minimum for these runs. As the

layer thickness increases further, however, the mean

temperature profile returns to the profile for the very thin

low viscosity layer. This nonlinear behavior in the mean

temperature profile reflects the trade off between the

increase in the local Rayleigh number and the effective

change in the top boundary condition which can appear

stress-free rather than rigid. When the low viscosity layer

is thin, the boundary layer is not thinned by the change in

the effective Rayleigh number of the top layer, but by the

change in the apparent boundary condition. At the

intermediate layer thickness, the boundary layer is thinned
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by both the change in the effective Rayleigh number and the

change in the apparent boundary condition to the minimum

thickness observed. At a layer thickness of half of the

fluid layer depth, however, the boundary condition agains

appears to be rigid, so that even though the layer is

thinned by the change in the effective Rayleigh number of

the top layer, the boundary layer is not as thin as in the

case of the intermediate layer thickness.

For a layer 0.21 (125 km) or 0.5 (300 km), the

viscosity layering also modifies the side boundary layers.

It makes the downwelling plume, which originated in the low

viscosity zone, much thinner than expected for the given

Rayleigh number and it pinches the upwelling plume as it

enters the top layer. At the intermediate layer thickness,

the viscosity transition occurs very near the regions of

high vorticity of the convection cell and the spread of

pinch-off of the flow that occurs as the plumes hit the

viscosity contrast augments the vorticity. This increase in

vorticity may help to instigate the instabilities seen at

high local Rayleigh numbers.

2.3 The Topography. Geoid and Gravity Response Functions

To calculate the gravity, geoid and topography

anomalies for these calculations, we use the Green's

function method formulated by Parsons and Daly (1983) in

which the temperature field is decomposed into its Fourier

components and, at each wavenumber, k, the Green's function
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response of the gravity and topography to the temperature

field, the gravity and topography kernels respectively, are

calculated. The surface topography kernel represents the

effect of a density anomaly at a depth, z, on the surface

topography through the transmission of normal stress. It i p

always positive, and varies from one at the surface to zero

at the bottom boundary. On the top boundary, the topography.

fully reflects a pressure perturbation at the surface so

that the kernel equals one. On the bottom boundary, since

the normal velocity is zero, the pressure perturbation is

fUlly compensated by the topography on the bottom boundary

and the kernel is zero. The gravity kernel, on the other

hand, represents the sum of the gravitational effects of the

topography on the boundaries and the density variations in

the layer. Since a temperature source at a boundary

produces topography with unit weighting and since the

topography and temperature variations are both at the

boundary, their gravitational effects cancel and the gravity

kernel is always zero at the boundaries. Because the

gravity kernel reflects a trade off between the effect of

boundary topography and temperature variations within the

layer it can change sign in the fluid layer.

The dimensional topography in the Fourier domain, h(k)

is given by:

h' (k) =[Pol (Po-Pw) ]MTd h (k)

=[Po/(Po-Pw)]MTd ;::(k,Z)T(k,Z) dz (2.8)
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where H(k,z) is the topography kernel and where the prime

denotes the nondimensional variable. The dimensional

gravity, g(k), can also be written:

g' (k')=2~GPoaATd g(k)=2~GPoaATd t~(k'Z)T(k,Z) dz (2.9a)
c

where G(k,z) is the gravity kernel and G is the Universal

Gravitational Constant. The gravity kernel can be expressed

as the sum of contributions from the surface topography, the

internal density differences and the bottom boundary

topography attenuated by the depth of the layer:

G(k,z) = H(k,z) -exp(-Iklz) + exp(-lkl)Hb(k,z) (2 . 9b)

where Hb(k,z) is the kernel for the bottom boundary

topography. Low viscosities in the top layer reduce the

stress transmitted across the layer from buoyancy forces

beneath it, so that the low viscosity zone primarily effects

the first term in equation (2.9b). The low viscosity zone

also alters the temperature structure in equation (2.9a),

but this effect is minimal when compared to its effect on

the gravity kernels. Finally, the geoid anomaly is derived

from the gravity anomaly using Brun's formula:

N' (k ) = g'(k) / Ik'i go = [2~GPoaATd2/g01 g (k) /k (2.10)

where N is the dimensional geoid. For a two layer viscosity

model, the kernels can be calculated analytically (Daly et

al., 1984). For a general variable viscosity structure,

however, we must numerically calculate them using a

predictor-corrector algorithm.

In Figure 2.8, we have drawn the gravity and topography

kernels corresponding to runs l(a-c) with a 0.125 (75 km)
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conducting lid and a 0.21 (125 km) low viscosity zone. In

the lid we have set the viscosity to 103 , which effectively

mimics rigid behavior. The low viscosity varies from 1.0 to

0.01. As the viscosity contrast increases, the low

viscosity zone damps the surface topography kernels at depth

and their power is concentrated in the top portions of the

model. The surface observables are dominated by the k=n

wavenumber, and can be well approximated by the effect of

this harmonic alone. To calculate the observables, we have

obtained the kernels for each of the runs out to wavenumber

k=8n. For the shorter wavelengths (less than A=0.25), we

have approximated the kernels by those for a two layer

structure of a rigid lid overlying a constant viscosity

zone. Since the surface topography kernels are effectively

zero before the base of the low viscosity zone, they are not

affected by the viscosity jump. At the wavelength, A=2, the

topography kernels are effectively zero at the base of the

low viscosity zone for a viscosity contrast of two orders of

magnitude. By this viscosity contrast, therefore, the

topographic response to the underlying convection is limited

to depths corresponding to the conducting lid and the low

viscosity zone. The gravity and geoid kernels, on the other

hand, become negative at depth as the viscosity contrast

increases, so that the positive contributions from the

shallow temperature anomalies are counteracted by those from

deeper temperature variations. In the bottom layer, both

the gravity and topography kernels tend quickly to zero so
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that the effect of the bottom boundary on the observables is

minimized.

2.4 ResUlts

In Figure 2.9, we present the gravity, geoid and

topography anomalies for the central series of calculations

(la-c in Table 2.2) with the conducting lid 0.125 thick and

the low viscosity layer 0.21 thick. Although not included

in the previous section and figures we also performed

calculations with viscosity contrasts of 0.075, 0.050 and

0.025. In general the profiles are positive over the

upwellings and negative over the downwellings, and are

dominated by the longer wavelengths. As the viscosity

contrast increases, the shape of the topography profile

remains constant while its magnitude decreases. Thegravity

and geoid profiles follow the same behaviour until a

critical viscosity contrast near 0.075 where the gravity

kernel of the longest wavelength which dominates the

observables (k=~) becomes negative at depth. At this and

higher viscosity contrasts, the gravity and geoid profiles

begin to flatten in the middle sections across the top of

the box, and their peak-to-peak magnitude decreases sharply

with an increase in viscosity contrast, more sharply than

the peak-to-peak magnitude of the topography anomalies with

the same increase in viscosity.

To calculate an apparent depth of compensation from the

calculated geoid and topography profiles, we assume Pratt
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compensation which is often used to calculate the

compensation depth at mid-plate swells (Haxby and Turcotte,

1978; Crough, 1978). The geoid anomaly due to a topography

anomaly of wavenumber k, which is compensated by horizontal

variations in density above a depth 2dc ' is given by:

N'(k) = [2ltG (Po-Pw) dc/go] h'(k) (2.11)

for wavelengths large compared to d c ' In the limit where

equation (2.11) is valid, i.e. when the compensation depth

is much less than the wavelength of the geoid anomaly, then

the result also holds for Airy compensation if d c is

interpreted in that case as the depth at which the

compensating masses are concentrated.

In Figure 2.10, we have drawn a sample geoid versus

topography plot along with a linear relation fit by eye.

Since the depth of compensation is proportional to the slope

of the geoid plotted versus the topography, and since at

viscosity contrasts greater than 0.075 the magnitude of the

geoid anomaly decreases faster than that of the topography,

the apparent depth of compensation will decrease rapidly.

In Figure 2.11, we have plotted the depth of

compensation results for each of our runs. For the central

series of calculations, the depth of compensation decreases

uniformly with viscosity contrast until it reaches a

viscosity ratio of near 0.075 where it begins to drop

rapidly with viscosity contrast. The mean temperature

profile and the temperature structures at the longest

wavelength k=lt are shown in Figure 2.3. The variation of
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the k=~ component of the temperature structures with depth

is dominated by two peaks, one associated with each of the

horizontal boundary layers. An increase in viscosity

contrast leads to a relative decrease in the magnitude of

the top peak (in the low viscosity zone) compared to the

bottom peak in addition to a shift in the peak close to the

upper boundary. At the viscosity contrast of 0.075, the

gravity kernels have become partially negative at depth

augmenting the effect of the changing temperature structure

and, as the viscosity contrast increases, the gravity

anomaly decreases much more rapidly than the topography

anomaly. Therefore, the inferred depth of compensation can

become arbitrarily small and even "negative", when the

negative contribution of the gravity kernels dominates the

total anomaly so that the geoid and topography anomalies

become negatively correlated.

Calculating the gravity, geoid and topography anomalies

for the second set of convection results in which we vary

the Rayleigh number, we find that as we increase the

Rayleigh number the apparent depth of compensation

decreases. Since the kernels are the same for each of the

calculations in this series, the depth of compensation can

change only in response to the thinning of the boundary

layers with the increased Rayleigh number (Figure 2.5).

Although we have only three calculations to constrain the

behaviour, the depth of compensation appears to decrease

linearly with the logarithm of the Rayleigh number, as
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expected from the results for constant viscosity convection

under a conducting lid (Parsons and Daly, 1984). The total

variation for a one order of magnitude change in the

Rayleigh number is about 0.013 (8 km), and is much less than

that seen for an order of magnitude change in viscosity in

the low viscosity layer.

If we allow the thickness of the low viscosity layer to

vary, we can again compare the effects of the thinning of

the top boundary layer and the damping of the topography

kernels on the depth of compensation. If the low viscosity

zone is thinner than tbe depth to the base of the top

boundary layer, then the ~oundary. layer does not thin

appreciably. The kernels also are not affected much by the

low viscosity zone, so that this case approximates a

conducting lid overlying a constant viscosity layer with

only a slight decrease in the effective depth of

compensation to 0.17 (102 km). As the low viscosity zone

thickens to half of the box, it encompasses the top boundary

layer allowing the layer to thin in response to the change

in local Rayle~gh number (Figure 2.7). The kernels,

however, become less concentrated at shallow depths, so that

this case produces a larger depth of compensation than that

for the intermediate layer thickness of 0.21 (125 km),

approximately 0.15 (90 km).

With the Green's function formulation we can test

whether a Pratt compensat~on model is appropriate for the
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compensation in these calculations. For Pratt compensation,

where we have nondimensionalized the density by PoaAT:

N' (k ) = 2~GPoaATd2/go [~ dp(k,z) dz (2.12)

where dp(k,z) equals a constant above a depth 2dc and zero

elsewhere. Rewriting equation (2.10) in the same form as

equation (2.12):

N' (k ) = 2~GPoaATd2/go LZ[G(k,Z)T(k,Z)/ZlkIJ dz (2.13)

reduces the analysis to a comparison of [G(k,z)T(k,z)/zlk\J

to the gravitational mass distribution, dp(k,z). In Figure

2.12, we plot the most influential harmonic, k=~, of the

effective mass distribution for viscosity contrasts between

the two layers of 100, 10 1 and 10 2 along with that for a

Pratt model which also satisfies the calculated geoid and

topography. At each viscosity contrast, the Pratt

compensation model overestimates the magnitude and

underestimates the maximum depth of the effective density

anomaly required to produce the surface observables. At

higher viscosity contrasts, the change in sign of the

gravity kernels produces "negative" effective masses at

depth which further complicates the structure and which can

not be accommodated by a Pratt model.

In summary, the apparent depth of compensation is very

sensitive to the viscosity structure and, in particular, to

the presence of low viscosities beneath the conducting lid.

The overall Rayleigh number and the thickness of the low

viscosity zone also affect the apparent depth of

compensation, but to a lesser degree. Furthermore, the
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Pratt compensation model severely underestimates the

complexity and overestimates the relative magnitudes of the

effective masses for the geoid anomaly. In particular,

density variations may extend to a depth much greater than

the apparent depth of compensation and, for even constant

viscosity convection under a conducting lid, the

compensating mass distribution is not well approximated by

Airy, Pratt of similar compensation mechanisms. Rather, the

depth under which no effective mass anomalies exist cannot

be well constrained without knowledge of the viscosity

structure.

2.5 Conclusions

We assume a model for mid-plate swells where the swell

topography is dynamically maintained by convection beneath a

conducting lid. Using an idealized viscosity structure

consisting of a low viscosity layer underneath the

conducting lid and overlying a constant viscosity region, we

have explored the effect of the low viscosities, the layer

thickness and the Rayleigh number on the flow and on the

inference of a compensation mechanism from the associated

gravity, geoid and topography anomalies.

If the viscosity is allowed to decrease in the top

layer, the low viscosities decrease the stress coupling

between the lid and the convecting region. Also, due to the

change in viscosity, the local Rayleigh number increases

which thins the boundary layer and controls the magnitude of
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the mean temperature increase across the top boundary layer.

If the low viscosity layer is comparable in size to the

convective boundary layer, the concentration of high

velocities and low stresses near the boundary causes it to

appear like a free boundary. Furthermore, the low

viscosities damp the response of the surface topography to

the temperature variations at depth and cause the gravity

and geoid kernels to change sign at a depth inside the low

viscosity zone. By increasing the viscosity contrast,

therefore, the inferred depth of compensation decreases. At

small viscosity contrasts, the depth of compensation

decreases slowly as with a simple increase in Rayleigh

number in the convecting region. At greater viscosity

contrasts where the gravity kernels become negative at depth

for the dominant wavelengths, the geoid-topography slope

flattens rapidly and the depth of compensation can be made

arbitrarily small. The viscosity contrast required to match

the depths of compensation seen at Hawaii, Bermuda, the

Marquesas Islands and elsewhere, therefore, is less than two

orders of magnitude for a layer thickness of 125 km and the

depth of compensation is very sensitive to the exact

viscosity contrast underneath the swell.

The effect of the layer thickness on the flow and on

the apparent compensation mechanism is more complicated. If.

the thickness of the low viscosity zone is smaller than the

thermal boundary layer of the convecting cell, then the low

viscosity layer has not m~ch effect on the geometry of the
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flow. The kernels are also not much affected by the low

viscosity zone. The depth of compensation is therefore

similar to that of a constant viscosity region overlain by a

conducting lid. As the layer thickness increases, the

boundary layer thins to a minimum thickness, but the

behavior of the kernels is more complicated. Since the

kernels are strongly affected by the shape of the viscosity

structure at depth, at greater layer thicknesses, they must

tend back to the kernels of a constant viscosity layer. As

the low viscosity layer thickness increases to intermediate

thicknesses, therefore, the depth of compensation decreases.

As the thickness increases still further, the depth of

compensation tends to that of a conducting lid over a

constant viscosity layer with a lower viscosity and

correspondingly higher Rayleigh number. Indeed, at large

layer thicknesses, the effect of the changing viscosity

contrast is comparable to the effect of changing the overall

Rayleigh number of the convecting layer. The viscosity and

thickness of the low viscosity zone also trade off in a

comparison of the overall magnitude of the surface

observables.

Because the effective mass distribution for the geoid

anomaly in convective models of swell formation are complex,

simple compensation models cannot effectively explain the

compensation mechanism. Since we can evaluate the

distribution exactly from our numerical results, we have

tested the assumptions that are used to calculate
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compensating density distributions for hot spot swells. The

Pratt compensating mass distribution used by Haxby and

Turcotte (1978) and Crough (1978) severely underestimates

the depth and the complexity of the effective mass

distribution for these calculations. Without knowledge of

the viscosity structure, the inferred depth of compensation

from Pratt or Airy models cannot constrain the actual

distribution of the compensating masses.

Even though we have scaled our calculations using a

layer depth appropriate for upper mantle convection, the

results will also apply to whole mantle convection. Since

the topography and gravity kernels are effectively zero near

the bottom of the fluid layer (see Figure 2.8) and since the

temperature anomalies for the dominant wavelength peak at

the top and bottom boundary layers of the convecting cell

(see Figure 2.3), the topography and gravity anomalies will

be determined by the temperature variations in the upper

boundary layer. Moreover, because these anomalies represent

integrals over depth of the temperature variations

multiplied by the appropriate kernels (equations (2.8),

(2.9) and (2.10», their magnitude will depend primarily on

the thickness of the top boundary layer. Since the

thickness of the top boundary layer remains constant for

high Rayleigh number convection as the depth of the layer is

increased with the other parameters fixed, and since the

temperature drop across the top boundary layer is prescribed

by the value of the mean heat flux, the magnitude of the
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topography and geoid anomalies, and therefore the depth of

compensation, should be insensitive to the depth of

convection.

In summary, these calculations show that a simple plume

model with stratified viscosity variations of less than two

orders of magnitude near the surface can produce the range

of depths of compensation seen at mid-plate swells. Shallow

depths of compensation, therefore, cannot be used to argue

against dynamic models for the formation of hot spot swells.

In a subsequent paper, we will present a more complete

parameter study of the flow and its applications to a model

for the uplift of mid-plate swells. In particular, with a

quantitative comparison of the calculations to the data at

Hawaii and elsewhere, it should be possible to constrain the

viscosity and thickness of the low viscosity zone.
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Table 2.1

Description

depth scale

flux on the bottom
boundary

average mantle density

density of water

reference kinematic
viscosity

surface gravitational
acceleration

average mantle thermal
diffusivity

Value

600 km

1 H.F.U.

3300 kg/m3

1000 kg/m3

2x10 17 m2 /s

10 m/s 2
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tl th 1 2x10-5 oC-1average man e erma
expansion coefficient

specific heat

temperature contrast
across the depth of
the box

900 J/kg.oC

8656 °c
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Table 2.2

RUN Viscosity in Top layer Rayleigh Elements
top layer thickness number in (x, z)

1a 1.0 0.21 105 24,27
1b 0.1 0.21 10 5 24,42*#
1c 0.01 0.21 105 24,42*#

2a 0.1 0.21 10 4 24,32&
2b 0.1 0.21 105 24,42*#
2c 0.1 0.21 10 6 24,42*#

3a 0.1 0.083 10 5 24,29&
3b 0.1 0.21 105 24,42*#
3c 0.1 0.5 105 24,39&#

& - double the resolution in the z-direct~on in the low
viscosity zone.

* - quadruple the resolution in the z-direction in the low
viscosity zone.

# - tested for convergence on 49 by 55 element, uniform
grid.
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Figure Captions

Figure 2.1: Geometry of the model: b=1.125 for all of the

calculations in this paper. u is the horizontal velocity

and w is the vertical velocity. T is the temperature and a

is the shear stress. 'c' is a constant.

Figure 2.2: Steady state temperature (top) and stream

function (bottom) plots for the runs: (a) 1a ; (b) 1b ; (c)

1c (where the numbers refer to Table 2.2). The temperature

contour intervals are (a) 190 °C; (b) 160 °C; (c) 140 °C;

and the ticks mark the boundaries of the low viscosity zone.

Figure 2.3: The mean and first harmonic (k=x, where k is

the nondimensional average number) temperature structures

versus z for cases: la (line), Ib (long dash), 1c (short

dash) .

Figure 2.4: Steady state temperature (top) and stream

function (bottom) plots for the convection runs: (a) 2a ;

(b) 2b ; (c) 2c (numbers refer to Table 2.2). The

temperature contour intervals are: (a) 220 °C; (b) 160 °C;

140 °C; with the ticks marking boundaries of the low

viscosity zone.
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Figure 2.5: The mean and first harmonic (k=n) temperature

structures versus z for cases: 2a (line), 2b (long dash),

2c (short dash) .

Figure 2.6: Steady state temperature (top) and stream

function (bottom) plots for the convection runs: (a) 3a ;

(b) 3b ; (c) 3c (numbers refer to Table 2.2). The

temperature contours represent 160 °C, with the ticks on the

boundaries of the low viscosity zone.

Figure 2.7: The mean and first harmonic (k=n) temperature

structures versus z for cases: 3a (line), 3b (long dash),

3c (short dash).

Figure 2.8: The topography and gravity kernels versus z'

corresponding to the viscosity structures for runs: (a) 1a;

(b) 1b; (c) 1c; where the numbers refer to Table 2.2.

(Continuous line-k=n, long dash-k=2n, medium dash-k=3n,

short dash-k=4n.)

Figure 2.9: The topography, gravity and geoid signatures

versus x for runs: 1a (line), 1b (long dash), 1c (short

dash); the runs are catalogued in Table 2.2. The scales are

nondimensional, but if we use the dimensionalization in the

text then: distance, 1=600 km; topography, 1=103,872 m;

gravity 1=0.1402272 m/s; geoid, 1=8414 m.
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Figure 2.10: An example of the best-straight-line-fit-by­

eye to a plot of geoid vs. topography. This plot is for

case 1c of Table 2.2. The axes are dimensionalized as in

the text.

Figure 2.11: The apparent depth of compensation in

kilometers versus the nondimensional viscosity for the runs

as in Table 2.2: O-cases 1 (a-c) plus some others with

intermediate viscosities; + - 2a; ~ - 2c; 0 - 3a; X - 3c.

Figure 2.12: The first harmonic of the effective

compensating density distribution versus z' for the geoid

anomalies (line) with the corresponding Pratt compensation

model (dash) for the cases from Table 2.2: (a) 1a; (b) 1b;

(c) 1c.



Figure 2.1

fiT =0
fix

Oxz=O

uzO

( 1.0)

(1,1)

( 1,b)

( 1,a)

u=w=O, T=O

)
conducting lid

uzw=O

)
low viscosity layer

)

)

)

unit constant viscosity layer

W=O,Oxz=O, fiT =c
fiz

uzO

(0,1

(O,a)

(O,b)

(0,0)

6T
fix =0

Oxz=O

er­
N



...
o

·0

C'l
<Ii....
::I...
iL

.....
u.....

63

...
o

.....
.c.....

.....
<II.....



64

MEAN T

1.2

I,
0.8

I
I
I
I

Z I
I
I
I

0.4
I
I,,
I \\, "-"

0.0
...~ .........

0.00 0.10 0.20 0.30

FIRST HARMONIC
1.2c------------.--

0.010 0.020

0.4

0.01 ......
",,,, 0.1 ..,), ......, ......, /'

{ /
\ I
\ \
\\
\\',,­

........~:"..
....................

" ">
/'/'

0.0~_"""'_..L..._"""_.L-_L-1

0.000

0.8

z

Figure 2.3



65

....
CD..
::I

'"ii:
'"0..
"

....... 0

a:
.....

'"o..
"..
a:



66

MEAN T
1.2s:---------~

0.8 I
I

z I,
0.4 I

I J
: I:,

0.0
' .... , ................

0.00 0.10 0.20 0.30

FIRST HARMONIC
1.2r:-..;...--------.......,

0.0300.015

..~
....'::' ..........

I ........
", ;I, /

f 106 /
I / 105
I I
I I
: \
\ \, "­
\ .......

'..... "-
) /

0.0............_---'''-- "''''--'-.....- ......
0.000

0.4

0.8

z

Figure 2.5



'"<Ii
II>..
:I
Q
ii:

E...
0

,...,
0 t)... .....

67

E...
II>..
~

......

.0.....



68

MEAN T

0.200.10

1.2s:----------..,

0.4

0.8

0.0 I;;L.._..L---.JL.-.-J._......._.L---I

0.00

z

FIRST HARMONIC

c:-----------.,1.2

z
0.8

0.4

0.010 0.020

Figure 2.7



69

CD
N.....
:>
01
ii:

o
.;

.. ..
o 0

N

..

.;

=-----;~

..

.;

..

.;

0
.;

C! .. .. .. .. C!- .; .; .; .; 0

N

'"Qj '"
..

c ~ Qj .;... ..
CD 11\ .; c
:.:: ...

II~ CD ..
>- '\ :.:: .; ~
.t: II >- .c
0. 11\ .. - '""'" .; '> ..... ~\CI '" .;
0 II, ...
0. II ...... " \'--:
0 \'- .......- 0 ~-'="::"-':"=-= 0I-

-- .._..__'-.:::
.; .;

C! .. .. .. .. C! .. .. .. .. 0
.; 0 0 0 - 0 0 0 0 0

N N

":'\ ..
'1\ I, ).. 0
\1\ ..

0 tl 11\h I ' ..
,I \ ~ II \

.; ~
'"II \ 1\ \ '""1\ .. "1\ \ 0 \ \ \ ..

\ \ \. \\ , 0

\' "" \, .........
',"'" ....... 0 " ....... 0.....~~_'::..""::=.

0
-...::'-,,- --- 0

C! .. ... .. .. C! .. ... .. .. 0- 0 0 0 0 - 0 0 0 0 0
N N



70

DISTANCE

-­/'
"/ ---­

// --",--

---~
/

,/

-0.02

0.02~-------.

>- 0.01
..c
a.
~ 0.00
0'

~ -0.01
o.....

0.0 0.4 0.8

-,,/
/'

::::-'- - - -- -

0.80.4

0.010

0.005

£ 0.000 -----
> /?

~ -0.005 ,//

-0.010

- a.a15 '-I----"-----'I.--..l---..L----lI

0.0

0.002

] 0.000
CI>
0'

-0.002

------
,../,

,/-
- a.004 C--J...---l._L.-...l...---ll

0.0 0.4 0.8

Figure 2.9



>­
J:

00.
to...
Cl
o
0.
o-

o..
N

7'.~

It) 0 It) 0 It) 0 It)
0) C'I) CO CO C'I) 0).

ci
.... ... 0 ... ...

I I

(W) Ploa15

It)
CO
..q-
I



......
N..
~

::J

'"u::

C\l
I

o....

a:
w
>­
oct:
....J

>­
f--rno
(J
rn

'7 >
~3:

o
....J

Z

>­
f--rno
(J.
rn
>

o
C\I

o
('I)

o
'01:/'

o
10

o
CO

o.....

<l

o
CO

o 0o 0)....

<> +x

r--------------------..,Oo....

(v-l>f) NOI.lVSN3dv-lOO =10 H.ld30 .lN3t:lVddV



1.2(':',-----..,
I

i0.8 L.••••••__._ (a)

Z
0.4

0.01:..l............. ~

-0.04 0.00

1.2 I

I0.8 L_•••••••••••__• (b)

Z
0.4

0.0"-_............._.....",.
·0.06 -0.03 0.00

1.2 L....•..•._.....q (e)

0.8
Z

0.4

0.0_~~:-,-"",,~
·0.06 0.00

DISTANCE

Figure 2.12

73



74

Chapter 3: THE FORMATION OF MID-PLATE SWELLS

3.1 Introduction

Mid-plate swells are regions of the seafloor associated

with large long wavelength (1000-2000 km) topographic, geoid

and heat flow highs (Betz and Hess, 1942; Dietz and Menard,

1953; Crough, 1978; Detrick and Crough, 1978; Von Herzen et

al., 1982). Often they are crested by hotspot volcanism,

creating such spectacular hotspot island chains as the

Hawaiian and Marquesas islands. Since mid-plate swells

cannot be explained by thermal cooling of the plates or by

lithospheric faulting or deformation, they must be

associated with processes that originate in the mantle

(Dietz and Menard, 1953; Crough, 1978; Detrick and Crough,

1978). In this paper, we present a convective model of

their formation.

From detailed geophysical studies at a number of

swells, we can draw some broad conclusions about mid-plate

swells (Crough, 1978). First, swells typically rise to 1-2

km above the average depth for seafloor of similar age, with

the Cape Verde Rise having the largest amplitude at over 2

km in height (Crough, 1982; McNutt, 1987). The geoid and

heat flow anomalies for most swells range between 6-13 m and

6-16 mW/m2 , respectively, with Cape Verde again the largest

with a geoid anomaly of nearly 13 m and a heat flow anomaly

of 16 mW/m2 (Detrick et al., 1981; Von Herzen et al., 1982;

Detrick et al., 1986; Courtney and White, 1987; McNutt,



75

1987). Second, the geoid and topography anomalies are in

general linearly related, giving depths of compensation

which lie between 45-70 km, well within the thermal plate

thickness (Crough, 1978; Haxby and Turcotte, 1978; Detrick

et a1., 1981; McNutt and Shure, 1986; Fischer et al., 1986):

Finally, recent studies of the flexure at swells have shown

that they can also be characterized by thin elastic plates,

which are thinner than the thickness expected for

lithosphere of equivalent age (Watts, 1978; McNutt and

Shure, 1986).

The Hawaiian swell in the Pacific is perhaps the best

studied swell to date and has provided insight into the

formation of mid-plate swells. It appears to have been

active over at least the last 60 m.y. and to have created

the Emperor and Hawaiian seamount chains, which are

elongated in the direction of plate motion. It has a

topography anomaly of 1.0-1.4 km, a geoid anomaly of 6-10 m

and a heat flow anomaly of 5-9 mW/m2 , along with an apparent

depth of compensation of 60-80 km and an elastic plate

thickness of 25-35 km (Watts, 1978; Detrick and Crough,

1978; Von Herzen et al., 1982; Haxby and Weissel, 1986;

McNutt and Shure, 1986). Throughout the Emperor and

Hawaiian seamount chains, the seamounts become progressively

younger towards the islands of Hawaii and the newly forming

Loihi (Jarrard and Clague, 1977). Under the youngest

islands, the swell is at a maximum in both its topography

and geoid anomalies. From the first upstream evidence of
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the swell to the location of these maximums, the plate ages

by less than 10 m.y. (Detrick and Crough, 1978; McNutt and

Shure, 1986). Downstream along the swell, the topography

and geoid anomalies subside in a manner similar to the

thermal subsidence of normal seafloor of effectively younger

age (Detrick and Crough, 1978).

From the general characteristics of swells and from the

case of the Hawaiian swell, we can place some constraints on

their formation. Because swells exhibit high heat flow

anomalies and are often crested by hotspot volcanism, their

uplift is probably related to a thermal source (Detrick et

al., 1981; Von Herzen et al., 1982; Detrick et al., 1986).

This thermal source is capable of maintaining the uplift

observed at swells for periods greater than 60 m.y., such as

at the Hawaiian swell, and often without continuous

volcanism at the surface, as in the case of Bermuda and Cape

Verde. Furthermore, since the relative motion between

hotspots is much less than that between the surface plates,

they form a reasonably consistent reference frame over times

much longer than the creation and destruction of the plates

(Molnar and Atwater, 1973). When distant from this source,

the swell subsides in accordance with conductive cooling

and, from the depth and geoid-age data at the Hawaiian

swell, it also appears that the major uplift of the swell

occurs within 10 m.y. of passing over the hotspot source

(Crough, 1978; Detrick and Crough, 1978; McNutt and Shure,

1986). Because conductive cooling through the oceanic
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plates is characterized by a much longer time scale, such a

short uplift time points to a dynamic mechanism for the

uplift of swells.

Two classes of models have been proposed for the

formation of mid-plate swells. The first class - conductive

cooling models - assert that the isotherms at depth with in

the lithosphere have been displaced upwards by tens of

kilometers by an unspecified mechanism. This compression of

the temperature structure to shallower depths produces

depth, geoid and heat flow highs. Moreover, the depth of

compensation becomes shallower. In one permutation of this

model (called "plate thinning"), Crough (1978) and Detrick

and Crough (1978) suggested that the plate acts rigidly down

to depths corresponding to the thermal plate thickness, but

underneath swells it has been thinned and the temperatures

under a depth d t have been reset to Tm, the average

temperature of the uppermost mantle. The material is then

allowed to cool both above and below the depth d t .

These simple one parameter models produce a remarkable

fit to the data at many swells, but not at all of them

(McNutt, 1987). For example, the depth anomaly, elastic

plate thickness and heat flow anomaly at the Hawaiian swell

can be explained by thinning the 80 m.y. old plate on which

it resides to 40 km (Detrick and Crough, 1978; Menard and

McNutt, 1982), but the Cape Verde rise cannot be explained

by plate thinning (Courtney and White, 1986; McNutt, 1986).

Moreover, the mechanism which emplaces these high
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temperatures at shallow depths within the short rise times

measured at Hawaii is not apparent. In particular, Emerman

and Turcotte (1983) showed that if the plate acts rigidly

down to the thermal plate thickness, as in the original

plate thinning models, the advective mechanisms cannot

produce the required lithospheric thinning in the time

allowed. Yuen and Fleitout (1985) demonstrated, however,

that if the plate does not act rigidly down to these depths,

but has a viscosity which depends on temperature and

pressure, then convective flow may be sufficient to thin the

plate.

The second class of models are convective or "plume"

models as proposed originally by Dietz and Menard (1953)

In these models, swells are the surface expression of

convection cells. In the upper portion of the thermal

plate, the plate behaves rigidly, but below this rigid

portion the plate can deform ductily and participate in the

flow (Parsons and McKenzie, 1977; Parmentier, 1978). In

particular, a plume can penetrate and replace the

conductively cooled layer with hot upwelling material. When

the viscosity is constant throughout the mantle beneath the

conducting lid, a convective model can produce the general

shape of the swells but not their shallow depths of

compensation or their elastic plate thicknesses, with the

possible exception of the very large amplitude Cape Verde

swell (Courtney and White, 1986).
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However, the viscosity of the upper mantle is not

thought to be constant and, in particular, the uppermost

mantle is most likely characterized by low viscosities.

Much evidence suggests that a low viscosity zone exists

beneath the surface plates from (1) theoretical calculations

of the viscosity structure with depth in the oceanic mantle

(Turcotte and Oxburgh, 1967; Parmentier, 1978; F1eitout and

Yuen, 1984; Buck and Parmentier, 1986), (2) experimental

results on the presence of melt in olivine and studies of

melt production in the upper mantle (Cooper and Koh1stedt,

1984; McKenzie, 1984), (3) seismic studies of the uppermost

oceanic mantle (Anderson and Sammis, 1970; Solomon, 1972;

Forsyth, 1977; Wei1andt and Knopoff, 1982), and (4) studies

of the evolution of the thermal structure at fracture zones

(Craig and McKenzie, 1986; Robinson et al., 1987b, see

Chapter 4). Robinson et al. (1987a; Chapter 2) showed that

apparently shallow depths of compensation can result from

convective processes in the mantle when a low viscosity zone

exists in the uppermost mantle. Therefore, shallow depths

of compensation cannot be used to argue against the dynamic

uplift of mid-plate swells.

In this paper, we extend the results of Robinson et al.

(1987a; Chapter 2) to a complete study of the effect of the

low viscosity zone on the formation of mid-plate swells. To

isolate the effect of a low viscosity zone on mantle flow

and its surface observables, we have simplified the

viscosity structure in our model to a three layered
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structure, consisting of a conducting lid overlying a low

viscosity layer which in turn overlies a constant viscosity

layer extending to the base of the upper mantle. We have

ignored, however, the effects of temperature and pressure on

the viscosity and the changes in the viscosity structure

with time resulting from its temperature dependence.

Instead, we vary the Rayleigh number, layer thicknesses and

viscosity contrast in the model to approximate the range of

possible viscosity structures.

The paper is divided into three parts. First, we

calculate the convective temperature and velocity solutions

for different combinations of the viscosity in the top

layer, the fluid layer thicknesses and the Rayleigh number

based on the viscosity in the bottom layer. Second, from

these temperature solutions, we calculate the geoid,

topography and heat flow anomalies, the elastic plate

thickness, the depth of compensation and an upper bound on

the uplift time that result from the flow. Finally, we

compare the results of our calculations to data at the

Hawaii, Bermuda, Cape Verde and Marquesas swells.

We have found that we can explain the anomalies

observed at these four mid-plate swells with reasonable

values for the Rayleigh number, layer thickness and

viscosity contrast, taking into account the thickening of

the lithosphere with age. We cannot constrain the thickness

of the low viscosity zone from the data at swells. Rather,

its depth is constrained by seismic observations of a low
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velocity zone (e.g. weilandt and Knopoff, 1982) and by the

wavelength of the small scale instabilities in the cooling

oceanic plates (Haxby and Weissel, 1986; Robinson and

Parsons, 1987; Chapter 5). Both of these observations give

estimates for the thickness of the low viscosity zone which·

range from 100-200 km. Since the Rayleigh number and

viscosity contrast have the same effect on the observables

(but not to the same extent), we cannot predict the exact

values of the parameters underneath the swells from the

anomalies. However, the depth of compensation is very

sensitive to the viscosity contrast, so that we can estimate

the viscosity contrast and the best fitting Rayleigh number.

The viscosity contrasts required underneath the swells range

from 0.1-0.2 at Cape Verde Rise to 0.01-0.03 at the

Marquesas swell at a Rayleigh number of 10 6 . Furthermore,

the viscosity contrasts that are required at each of the

swells decreases as the age of the lithosphere on which the

swell resides increases, which is consistent with

theoretical predictions of the viscosity from the

temperature and pressure conditions thought to exist in the

upper mantle (Fleitout and Yuen, 1984; Buck and Parmentier,

1986) .

3.2 The Numerical Model of the Flow

We use a finite element numerical mesh with three

horizontal layers to model the flow (Figure 3.1). The

uppermost layer is a rigid conducting lid. Beneath the lid
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is a low viscosity layer, and underly~ng the low viscosity

layer is a constant viscosity layer which extends to the

base of the upper mantle. The two fluid layers together

have an aspect ratio of one. We impose a constant heat flux

through the bottom boundary and hold the temperature at zero

on the top of the conducting lid which initiates convection

throughout the two fluid layers. Both side walls are

stress-free and have reflective boundary conditions on the

temperature. The conducting lid is rigid and the bottom

boundary is stress-free. We have nondimensionalized the

governing equations with the following transformations:

Jl' = 110 11 (3.1a)

(x',z') = d (x, z) (3.1b)

T' = LlT T (3.1c)

t' = (d2 /lC) t (3.1d)

P' = Po P (3.1e)

where primes denote dimensional quantities and 110 is the

kinematic viscosity of the bottom constant viscosity layer,

x and z are the horizontal and vertical coordinates

respectively, d is the depth of the convecting layer, lC is

the thermal diffusivity, Po is the reference density and LlT

is the reference temperature given by the constant flux

condition:

(3. If)

where F is the prescribed flux and Cp the specific heat. We

used the values for these parameters as given in Table 3.1.
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The equations of motion, heat transport and state are

then given by (omitting the primes) :

V.a -R(T-To ) 1\= Z

OT/()t + u .'i1T = V2 T

1 - a~T(T-TO) = p

(3.2)

(3.3)

(3.4)

(3.5)

where u is the velocity vector, a is the thermal expansion

coefficient, ~ is a vertical unit vector, a is the stress

tensor given by:

aij = -p 0ij + ~(4Ui!OXj + OUj/oXi)

and R is the Rayleigh number:

R = goa~Td3/~oK (3.6)

where go is the acceleration of gravity. These equations

are solved using a velocity based finite element method

(Daly and Raefsky, 1985). Although the incompressibility

equation:

'i7. u = 0 (3.7)

is never explicitly solved, a penalty function treatment of

the pressure (Hughes et al., 1979) ensures

incompressibility. In the conducting lid the velocities,

set to zero, mimic infinite viscosity (Jaupart and Parsons,

1985). The boundary conditions are summarized in Figure

3.1.

All of the convection calculations were run to steady

state with the implicit time stepping method described by

Brooks (1981). To resolve the boundary layer flow, we often

used a nonuniform grid with double or quadruple the number
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of grid points in the vertical direction in the low

viscosity zone.

We first checked the resolution and steadiness of this

flow by comparing the average flux at different depths to

their steady state values. Due to the complex interaction

of the boundary layers with the low viscosity zone, we also

checked, for convergence, the runs on uniform grids with an

explicit finite difference time stepping routine (Brooks,

1981) for a convective overturn time. To ensure that we had

also resolved the flow, however, we ran a number of the

calculations on very large uniform grids where we doubled,

and in some cases tripled, the number of nodes in both

directions and compared the results of these runs to those

on the smaller grids.

In Table 3.2, we have listed the parameters for all of

the runs in this parameter study. We have primarily varied

the relative viscosity in the two layers, the Rayleigh

number and the relative thicknesses of the layers. However,

we have also chosen different boundary conditions for the

bottom boundary, and have compared calculations with and

without the conducting lid. We ran most of our models with

a conducting lid thickness of 0.125 (75 km) and a top layer

thickness of 0.21 (125 km), encompassing the top 200 km of

the upper mantle. We chose these parameters to agree with

the seismic evidence and small scale convection anomalies

which constrain the low viscosity zone to near a 125 km

thickness (Weilandt and Knopoff, 1982; Robinson and Parsons,
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1987), and to agree with the melting models of the upper

mantle (e.g. McKenzie, 1984) which place the region of high

mantle melt within the top 200 km. The conducting lid

corresponds to the mechanical portion of a 80 m.y. (or

older) plate.

3.3 The Convective Flow

To approximate the convective flow at swells, we have

run our calculations to steady state where possible. In

Figure 3.2, we show the temperature solutions for a Rayleigh

number of 10 5 and a top layer thickness of 125 km, as we

vary the viscosity contrast from 1.0 to 0.001. In Figure

3.3, we have drawn the steady state temperature solutions at

a viscosity contrast of 0.01 and a top layer thickness of

125 km as we vary the Rayleigh number from 10 4 to 10 6 . In

Figure 3.4(a) and 3.4(b), we have drawn the horizontally

averaged temperature structure for the solutions shown in

Figures 3.2 and 3.3, respectively. As the low viscosity

decreases and as the Rayleigh number increases, the mean

temperature in the interior of the cell decreases (if~T is

held constant). Furthermore, as we increase the effective

Rayleigh number in the top layer, either by increasing the

overall Rayleigh number or decreasing the viscosity in the

layer, the top boundary layer thins. Where the viscosity

jumps across the boundary between the layers, the upwelling

and downwelling plumes are pinched and expanded,
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respectively, to accommodate the change in the boundary

layer thickness.

In Figure 3.5, we have plotted the top boundary layer

thickness versus the viscosity contrast for a number of

Rayleigh numbers. We defined the boundary layer thickness

in the same manner as Jaupart and Parsons (1985), i.e. the

depth at which the boundary layer temperature equals the

interior temperature when the boundary layer temperatures

are extrapolated linearly downward with a slope equal to the

mean surface gradient. As expected, when the Rayleigh

number increases the boundary layer thickness decreases.

What is perhaps more interesting is that an order of

magnitude decrease in the viscosity of the low viscosity

layer produces a thinner boundary layer than an order of

magnitude increase in the Rayleigh number keeping the

viscosity contrast constant. However, the effect of an

order of magnitude increase in the viscosity contrast would

be equivalent to an order of magnitude increase in the

Rayleigh number if only the change in the Rayleigh number of

the boundary layer were considered (McKenzie et al., 1974).

The extra boundary layer thinning occurs in response to

an apparent change in the top boundary condition. The base

of the conducting lid is rigid, but the presence of a low

viscosity layer next to it reduces the transmission of

stress at the boundary as compared with. the constant

viscosity case. Also, due to the change in the effective

Rayleigh number of the boundary layer as discussed above,
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the velocities in the boundary layer immediately next to the

rigid boundary increase and the boundary layer thins.

However, these are also the effects of a no-slip boundary if

the viscosity in the layer were not reduced. The boundary

appearsj therefore, like a no-slip boundary to the flow in

the bottom layer, causing the extra boundary layer thinning

observed in the calculations. Furthermore, when the

effective Rayleigh number in the top boundary layer

increases above its critical Rayleigh number, the boundary

layer can become unstable as in Figure 3.2 and 3.4. This

instability begins downstream of the upwelling plume with a

wavelength of close to 200 km before it is swept downstream

into the downwelling.

In Figure 3.6, we have plotted the average temperature

of the convecting cell and the conducting lid for all of the

calculations with a low viscosity zone that is 0.21 (125 km)

thick. As the viscosity contrast increases, the average

temperature decreases and, at a viscosity contrast of 0.001,

the average temperature decreases to half of its value with

no viscosity contrast. Together the boundary layer

thickness and the average temperature provide a useful

characterization of the flow (McKenzie et al., 1974).

In Figure 3.7, we present the temperature solutions as

we vary the thickness of the low viscosity layer. We have

kept the viscosity contrast constant at 0.1 and the Rayleigh

number at 105. In Figure 3.4(c), we have drawn the mean
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temperature structure with depth for the runs pictured in

Figure 3.7 and run 29 where the low viscosity zone fills

half of the box. At the intermediate layer thickness of

0.21 (125 km), the mean temperature in the adiabatic portion

of the cell is the least of the four runs. This behavior in

the mean temperature as a function of the layer thickness

reflects the effect of the apparent boundary condition as

discussed above. At a layer thickness which is slightly

greater than the top boundary layer thickness, the low

viscosity layer can effectively alter the velocity gradient

in just the top boundary layer so that the flow in the

bottom layer responds as if the top boundary conditions were

no-slip conditions. If the low viscosity layer is much

thinner than the top boundary layer, however, it cannot

effectively thin the top boundary layer. Also if the low

viscosity layer is much thicker than the top boundary layer,

it alters the thickness and temperature drop across the side

boundary layers as well, so that the flow in the bottom

layer responds as if the Rayleigh number of the fluid layers

was increasing. Therefore, a low viscosity zone with a

thickness comparable to the top boundary layer thickness

will be most effective at decreasing the boundary layer

thickness and the temperature drop across it.

3.4 Calculation of the Surface Expression of the Flow

At the Hawaiian, Bermuda, Cape Verde and Marquesas

swells, we can measure the peak-to-peak amplitudes of the
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topography and geoid anomalies. Estimates also exist for

their depths of compensation and elastic plate thicknesses.

Only at Hawaii, however, do we have an estimate of the

uplift time and we do not have reliable heat flow

measurements at the Marquesas. In this section, we will

describe how we generate theoretical uplift, geoid, heat

flow, and elastic plate' thickness from the temperature

structure derived from a convective model.

3.4.1 Topography, Gravity and Geoid

To calculate the topography and geoid anomalies, we use

the Green's function method developed by Parsons and Daly

(1983). Robinson et a1. (1987a; Chapter 2) have discussed

in detail the application of this method to a three layered

viscosity model. Briefly, however, it decomposes the

temperature field into its Fourier components in the

horizontal direction. At each wavenumber, k, the Green's

function response of the geoid and topography to the

temperature anomalies with depth, the gravity and topography

kernels, are calculated. The Fourier components of the

temperature are then integrated with depth weighted by the

appropriate kernel, and then Fourier transformed back to

produce the surface anomaly.

The low viscosity zone strongly affects the response of

the topography, gravity and geoid fields to the temperature

structure at depth. Since the low viscosity zone decreases

the transmission of normal stress through the low viscosity

layer, it diminishes the effect of the temperature
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anomalies, in and below the low viscosity zone, on the

surface topography. The gravity anomaly, however,

represents the sum of the gravitational contribution from

the topography on the boundaries and the density variation

within the layer. Because the low viscosity zone decreases

the response of the surface topography to the temperature

anomalies in and below the low viscosity zone, the internal

density distribution dominates the gravitational

contribution from a depth inside or below the low viscosity

zone. Therefore, the positive temperature anomalies in this

region counteract the positive effects from shallower

temperature variations.

3.4.2 Heat Flow

The heat flow reflects the near surface temperature

gradients and is given by:

q' = k c dT'/dz' (3.8)

where k c is the thermal conductivity. To calculate dT/dz,

we take the vertical derivative of the temperature between

the top two grid points of the finite element mesh.

3.4.3 Depth of Compensation

The depth of compensation is usually defined as the

depth under which there does not exist a horizontal pressure

gradient due to the source of the topography. Since

convective flow extends to large depths in the mantle, this

definition does not apply directly to a convective mechanism

for the uplift of the swell. Nevertheless, we can calculate

an "apparent depth of compensation" for our models assuming
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Pratt compensation (which is often used to calculate the

depth of compensation of mid-plate swells). With Pratt

compensation, the topography is supported by horizontal

density variations above a depth 2dc ' where d c is the

equivalent Airy compensation depth (Haxby and Turcotte,

1978; Parsons and Daly, 1983). Below the compensation depth

the pressure due to the topography is zero. The geoid

anomaly due to a topography anomaly of wavenumber, k, which

is compensated by a horizontal variation in density above a

depth2dc is then given by:

N' (k ) = [21tG (Po-Pw) dc/gol h' (k ) (3.9)

at wavelengths large compared with d c . Plots of topography

versus the geoid over a swell would then have a slope

proportional to d c ' We estimate this slope as outlined in

Robinson et al. (1987a; Chapter 2) .

3.4.4 Elastic Plate Thickness

In "normal' oceanic lithosphere, the elastic plate

thickness is roughly proportional to the square root of the

age of the lithosphere when loaded (Watts, 1978). Because

the elastic properties of the plates depend on temperature

and because the isotherms in a conductively cooling plate

deepen as a function of the square root of age, this result

is often interpreted to indicate that the elastic plate

thickness is controlled by an isotherm (Watts, 1978; McNutt

and Menard, 1982). Estimates for the temperature

represented by this isotherm vary from 450 °c to 600 °c

(Watts, 1978; McNutt and Menard, 1982). Therefore, we
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estimate a range of values for the elastic plate thickness

from the depths to the 450 °C-600 °c isotherms underneath

the apex of the swell.

3.4.5 Uplift Time

Since we cannot directly model the onset of a swell

with the results of steady state calculations, we performed

a time dependent calculation in which we solved the

equations of motion and incompressibility on a finite

element grid and the temperature equation on a finite

difference grid. We first replaced the temperatures at the

grid points in the top layer in our steady state solutions

with their horizontally averaged mean values. We then let

the flow progress and re-establish the convective cell. We

defined the "replenishment time" as the time required for

the peak-to-peak amplitudes of the topography and geoid

anomalies to reach 95% of their steady state values.

Because the flow is three dimensional and because this model

represents the extreme case of the emplacement of an

isolated plume, this estimate of the uplift time can only be

an upper bound. Still it gives a good indication of the

effect of the low viscosity zone on an upwelling plume as it

encounters a conducting boundary layer.

In Figure 3.8, we plot the peak-to-peak amplitude of

the topography anomaly through such a calculation at a

Rayleigh number of 105 , a viscosity contrast of 0.1 and a

layer thickness of 0.21 (125 km). The peak-to-peak anomaly

initially rises and overshoots the steady state value of
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1.25 km but, after 100 m.y., it begins to decrease to the

steady state value. The initial overshoot of the steady

state value is due to the localized effects of the upwelling

and downwelling plumes on the initial horizontally averaged

temperature structure. As the cell reaches steady state the

upwelling and downwelling have spread out in the low

viscosity zone and the temperature differences are less

localized, so that the resultant topography is smaller. As

the viscosity contrast increases and the plumes can spread

into the top layer more quickly, the amount that the peak­

to-peak topography anomalies overshoot their steady state

values decreases and, by a viscosity contrast of 0.01, the

peak-to-peak values do not overshoot their steady state

values, but rise smoothly to them.

3.5. The Surface Expression of the Flow

Since it is difficult to obtain a profile over a swell

in which the topography and geoid anomalies result from only

the convective temperature anomalies at depth, we do not

compare our results to the anomalies across the swell, but

predict their peak-to-peak amplitudes. Furthermore, since

the scaling factors for the topography geoid and heat flow

anomalies depend on the constants, a and K, which are not

well known, we present in this section only nondimensional

values for the anomalies.

In Figures 3.9(a) and 3.9(b), we have drawn the

nondimensional geoid and topography anomalies for run 1b
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(from Table 3.2). In general these anomalies are dominated

by the longest wavelength in the box - twice the depth of

the fluid layer - and are elevated above upwelling and

depressed above downwellings. Swell anomalies are also

dominated by their longest wavelengths corresponding to

their full widths of 1000-2000 km (Crough, 1978). In

Figures 3.10 and 3.11, we have plotted the estimated peak­

to-peak amplitudes of the geoid and topography anomalies,

respectively, versus the viscosity of the top layer for all

of the runs with a top layer thickness of 125 km and

Rayleigh numbers of 105, 3.2xl05 or 10 6 (Table 3.2). As

expected, the magnitude of the geoid and topography

anomalies decrease with increasing Rayleigh number. Also,

as the viscosity in the top layer decreases, the amplitudes

of the geoid and topography anomalies decrease. In

particular, for both the geoid and topography anomaly, an

order of magnitude decrease in the viscosity of the top

layer produces a greater reduction in the peak-to peak

amplitude of the anomaly than an order of magnitude decrease

in the Rayleigh number. This behavior primarily reflects

the effect of the viscosity structure on the kernels. Below

a viscosity of 0.075 in the top layer for a layer thickness

of 0.21 (125 km), the geoid kernels are negative at depth,

so that the temperature anomalies below this depth

counteract the geoid effect of the anomalies above it. The

topography kernels, on the other hand, remain positive

everywhere. At viscosity contrasts greater than this
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critical viscosity contrast, therefore, the geoid anomalies

decrease much faster than the topography anomalies.

In Figure 3.9(c}, we present the nondimensional heat

flow anomaly for run lb (from Table 3.2). In general, as

for the geoid and topography anomalies, the heat flow

anomaly is dominated by the longest wavelength in the box

(twice the fluid layer depth) and is elevated above the

upwellings while depressed above the downwellings. Because

the heat flow anomaly results from conduction through the

lid, however, it is much smoother than the geoid and

topography anomalies. In Figure 3.12, we have plotted the

peak-to-peak amplitudes of the heat flow anomalies for all

of the runs in Table 3.2 versus the viscosity in the top

layer. Because the heat flow anomaly is controlled

primarily by the temperature contrast across the top

boundary layer, the amplitude of the heat flow anomaly

decreases both with an increase in Rayleigh number (if ~T

is held constant) and an increase in viscosity contrast.

In Figure 3.13, we have plotted the dimensional

apparent depth of compensation in kilometers versus the

viscosity in the top layer for runs in Table 3.2 where the

top layer thickness is 125 km and the Rayleigh number is

10 4 , 10 5 or 10 6 . A detailed discussion of the behavior of

the depth of compensation is presented in Robinson et al.

(1987a). In general, the depth of compensation depends

weakly on the Rayleigh number of the fluid; an order of

magnitude increase in the overall Rayleigh number causes the
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depth of compensation to decrease by nearly 6 km. The depth

of compensation depends much more strongly on the viscosity

structure of the top layer. In particular, for viscosity

contrasts less than 0.075 and for a layer thickness of 0.21

(125 km), an order of magnitude increase in the viscosity

contrast will produce a 15-20 km decrease in the depth of

compensation, but for greater viscosity contrasts, the depth

of compensation decreases much more rapidly. For example,

at a Rayleigh number of 105 and a layer thickness of 0.21

(125 km), the depth of compensation at a viscosity contrast

of 0.1 is close to 80 km, but with a viscosity contrast of

0.01 the depth of compensation has decreased to 20 km.

Since the depth of compensation is essentially the ratio of

the peak-to-peak magnitudes of the geoid and topography

anomalies, it is very sensitive to their behavior. This

rapid decrease in the depth of compensation can, therefore,

be explained by the rapid decrease of the geoid anomaly in

comparison to the topography anomaly as discussed in

Robinson et al. (1987a; Chapter 2).

For all of our runs with a conducting lid thickness of

75 km, the elastic plate thickness lies between 24-31 km

using the 450 °c isotherm for the base of the elastic plate

and 28-36 km using the 600 °C. These values are very

similar to the elastic plate thicknesses found at most mid­

plate swells (see Table 3.3) (Watts, 1978; McNutt and Shure,

1986; Fischer et al., 1986; McNutt, 1987). For runs where

we have varied the lid thickness (numbers 30-32 in Table
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3.2), we see a change in elastic plate thickness. For

example, with a conducting lid thickness of 50 km, the

elastic plate thicknesses reduce to 17-23 km using the 450

°c isotherm and 21-27 km using the 600 °c isotherm.

In Figure 3.14, we have plotted the replenishment times

in millions of years for all of the runs in Table 3.2, with

a top layer thickness of 125 km and Rayleigh numbers of 10 4 ,

10 5 and 10 6 . The replenishment time decreases with an

increase in the Rayleigh number and with a decrease in the

viscosity of the top layer. At a Rayleigh number of 10 6 and

a viscosity contrast of 0.01, the replenishment time

decreases to 20 m.y .. This simple model cannot, therefore,

explain the uplift times, but shows how the time scales

decrease rapidly with Rayleigh number and, in particular,

viscosity contrast. Furthermore, as discussed in the

previous sections, the uplift time obtained by this method

is an upper bound on the uplift times expected from

convective mechanisms in the Earth.

3.6 Comparison to the Data

The theoretical results apply to the peak-to-peak

amplitudes of the topography and geoid anomalies over

swells. Since, at many swells, the topography and geoid

anomalies are not estimated as peak-to-peak values, we have

re-examined plots of the topography and geoid around the

swells and estimated peak-to-peak values. Since heat flow

anomalies are usually estimated as peak-to-peak amplitudes
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(Von Herzen et al., 1982; Detrick et al., 1986; and Courtney

and White, 1987), however, we can take these values

directly. Given the sparse coverage over the swell, it is

very likely that the measurements miss the heat flow peaks,

so that these values often underestimate the true heat flow

anomaly (Von Herzen et al., 1982). Since the depth of

compensation is estimated from the ratio of the topography

and geoid anomalies, the estimate of the depth of

compensation is fairly robust, as are the estimates of the

elastic plate thicknesses and the estimate of the rise time

at Hawaii. These values are summarized in Table 3.3.

There are also two points which we must consider when

we apply the results of our model to data. First, and

perhaps most important, is that we must choose appropriate

values for the scaling constants, a and K. These

"constants" vary throughout the mantle. In particular, the

thermal expansion coefficient is thought to vary with depth

with higher values near the surface and lesser values at

depth. The variation of K is not well known. In our

calculations, since the kernels sample the upper portions of

the mantle to a greater extent, we should choose values for

these parameters between the surface and deep mantle values.

For consistency, we have chosen values which are acceptable

for the upper mantle (see Table 3.1) .

Second, since we wish to illustrate that the

observables are most sensitive to the viscosity contrast, we

have kept the other variables held fixed at reasonable
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values and have varied only the viscosity in the low

viscosity zone. From the convection and observable analyses

presented earlier, we can extrapolate th~se results to

different Rayleigh numbers, layer thicknesses and conducting

lid thicknesses. However, we show that, by only varying the

viscosity contrast and by taking into account the variation

in lid thickness with age, we can explain the observables at

the four swells.

We have chosen the fixed values for the Rayleigh

number, layer thickness and conducting lid thickness from

current estimates in the literature. First, estimates of

the Rayleigh number in the upper mantle range from 10 6 to

10 7 and possibly to 10 8 (McKenzie et al., 1974; Houseman and

McKenzie, 1982) but, in our computer modelling, we have

resolution only up to a Rayleigh number of 10 6 . Therefore,

we have held this parameter at 10 6 , keeping in mind that the

Rayleigh number might well be higher and that a higher

Rayleigh number would lead to smaller observables and

shorter uplift times (if ~T is held constant). Second, the

empirical relation of viscosity to temperature and pressure

predicts a broad diffuse low viscosity zone underneath the

plates, but the presence of melt further decreases the

viscosity (Cooper and Kohlstedt, 1984). Since the presence

of melt is thought to be constrained to the top 200 km of

the mantle (McKenzie, 1984), a low viscosity zone resulting

from both of these processes would have its most significant

variation above 200 km in depth, corresponding to a low
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viscosity zone of 125 km in our model~ Finally, we have

assumed that the conducting lid is 75 km thick. For Hawaii,

Bermuda and Cape Verde, which lie on 80 m.y., 110 m.y. and

130 m.y. old plates, respectively, this value is

appropriate. However, for the Marquesas swell, which lies

on 45 m.y. old lithosphere (Fischer, et al,; 1986), this

thickness is acceptable but large, and we have found that a

conducting lid thickness of 40-50 km provides a better fit

to its elastic plate thickness.

3.6.1 Hawaii

We need only a viscosity contrast of slightly more than

an order of magnitude to reproduce the peak-to-peak

observables at the Hawaiian swell with our model. For a

viscosity contrast of 0.04 - 0.06 and a Rayleigh number of

10 6, the anomalies obtained from the model are: geoid = 8­

10 m; topography = 1.2-1.5' km ; and heat flow = 9-10 mW/m2 .

The depth of compensation is 65-75 km, and the elastic plate

thickness is 25-30 km with a 450 °c isotherm as the base of

the elastic plate and 29-34 km with a 600 °c isotherm. The

values compare favorably with those observed at Hawaii (see

Table 3.3), except for perhaps the heat flow value. Since

the heat flow coverage at large ages and across the swell is

not complete, however, the actual value may be higher than

measured.

3.6.2 Bermuda

The Bermuda Rise sits off the eastern coast of North

America at close to 30 degrees north. Volcanism appears to
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have begun at Bermuda close to 45 m.y. ago and to have

ceased 33 m.y. ago. Since there appears to have been little

subsidence of the swell, it is assumed that, although there

is no surface volcanism at present, the hotspot is still

active underneath the swell (Detrick et al., 1986).

with a viscosity contrast of 0.03 to 0.05, our model

agrees with the measured observables at the Bermuda Rise

(Table 3.3). The geoid anomaly lies between 6 and 9 m; the

topography anomaly ranges between 1.0 and 1.2 m; the heat

flow anomaly lies between 8.0 and 9.5 mW/m2 ; and the depth

of compensation ranges between 55 and 70 km.

3.6.3 Cape Verde

Cape Verde, one of the largest swells, sits just off

the west coast of North Africa on a flow line from Bermuda

across the Mid-Atlantic Ridge. It rises to a height of 2

(+/-0.2) km on plots of residual topography with some

estimates ranging up to 2.4 km (McNutt, 1987). The oldest

volcanics date in the lower Cretaceous (Dash et al., 1976,

Stillman et al., 1982), but the bulk of the volcanics appear

to have been deposited in the Neogene, 12-15 Ma, with

intermittent activity to the present. Interpretations

differ as to when the major uplift took place creating the

swell. DSDP drill cores show that the crest of the swell

went above the carbonate compensation depth around 19 Ma

(Lancelot et al., 197'7), but Knill (1985) has estimated,

from 40Ar /39Ar measurements on alkaline basaltic clastics

from Maio, that the uplift occured around 40 Ma. Since the
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time of uplift, however, there has been little subsidence,

so that the source of the swell is most likely active today.

With a viscosity contrast of 0.1-0.2, the least

required by any of these swells, we can reproduce the

observed anomalies at Cape Verde (Table 3.3). Our geoid

anomaly lies between 13 and 15 m; the topography anomaly

ranges between 1.8 and 2.2 km; and the heat flow anomaly

lies between 12 and 13.5 mw/m2 . The depth of compensation

is also 75-80 km, and the elastic plate thickness is 27-31

km with a 450 °c isotherm and 31-35 km with a 600 °C.

3.6.4 The Marquesas

The Marquesas islands in the Southwest Pacific lie atop

a swell which rises to near a kilometer in height. This

island chain is lineated, much like Hawaii, but not in the

direction of plate motion. The Marquesas swell exhibits an

anomalously shallow elastic plate thickness of 21 (+/-2 km)

and a depth of compensation of 40-50 km (Fischer et al.,

1986) .

For a viscosity contrast of 0.01 to 0.03, the lowest

required by any of these swells, the surface anomalies at

the Marquesas can be easily reproduced by the model, except

for the elastic plate thickness (Table 3.3). The geoid

anomaly lies between 3 and 6 m; the topography anomaly,

between 800 and 1000 m; and the heat flow anomaly, between

5.5 and 8.0 mw/m2 . The depth of compensation is between 45

and 55 km.
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The elastic plate thickness is near 26 km with a 450

0c isotherm as the base of the elastic plate and 31 km with

a 600 °c isotherm - 5 km and 9 km too thick for the estimate

of Fischer et al. (1986) for the· Marquesas swell (21 +/- 2

km), respectively. However, the elastic plate thickness

decreases as the thickness of the conducting lid decreases.

Since the Marquesas islands sit on crust with an age of 45

m.y., the conducting lid may only extend to 40-50 km in

depth. If we reduce the conducting lid thickness to 50 km,

the apparent elastic plate thickness is 17-23 km for a 450

0c isotherm and 21-27 km with a 600 °c isotherm, both of

which are in agreement with the estimates of Fischer et al.

(1986) .

3.7 Discussion

One implication of this study is that, since we do not

disturb the physical integrity of the conducting lid and

since we can still reproduce the surface observables

measured at a number of swells, significant lithospheric

"thinning" above a depth of 75 km on old oceanic lithosphere

(such as at Hawaii, Bermuda and Cape Verde) or above a depth

of 50 km at the Marquesas is not required by the data. The

temperature structure is elevated above this depth, but the

convective stress can be applied to the plate at depths

below 75 km.

Although we have scaled the results to the upper

mantle, our results can also be applied to the case of whole
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mantle convection. Since the topographic and geoid response

to the convective temperature anomalies at depth is nearly

zero near the base of the fluid layers (Robinson et a1.,

1987a; Chapter 2) and since the principal long wavelength

temperature variations are confined to the boundary layers

(see Figure 3.2), the topography and geoid anomalies will

reflect primarily the temperature variations in the top

boundary layer. In particular, because these anomalies

represent integrals of the temperature variations and the

appropriate response functions, they will depend on the

thickness of the top boundary layer and the temperature

contrast across it. A property of high Rayleigh number

convection is that the physical thickness of the top

boundary layer remains constant as the depth of convection

increases with all of the other parameters fixed.

Therefore, since the temperature drop across the top

boundary layer is determined from the prescribed heat flux,

the topography and geoid anomalies as well as the depth of

compensation, elastic plate thickness, and uplift time

should be insensitive to the depth of the convecting layer.

Another implication of these results is that, if

convection in the mantle does have a widespread and long­

wavelength effect on the topography and geoid anomalies in

the ocean basins, then it is important to correct for this

effect when calculating the values for the parameters of the

thermal plates. Theoretically, a reference depth-age

relationship could be derived for the plates by a
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complicated average over the dominant wavelengths of the

convection. In practice, such averaging is impossible,

since we do not know the wavelengths or amplitude of the

convection or the precise viscosity structure for the upper

mantle. Parsons and Sclater (1977) tried to approximate

such an analysis by eliminating the largest topography

associated with swells. They then averaged over the ocean

basin. However, since the upwellings are pronounced whereas

the downwellings are much more diffuse in a three­

dimensional convective flow, this depth-age relationship

could be biased to deeper values.

3.8 Conclusions

We have investigated the effect of a low viscosity zone

on the uplift produced by a convection cell, and have

applied this model to the formation of mid-plate swells. We

have found that, by prescribing the viscosity structure and

the heat flux alone, we can produce all of the surface

observables seen at four of the most well documented swells.

The viscosity structures required to produce the appropriate

uplift have low viscosity layer in the uppermost mantle with

a viscosity which is one to two orders of magnitude less

than the viscosity of the rest of the upper mantle.

We used an idealized finite element model of the

material in the upper mantle to explore the effect of such a

low viscosity zone on the formation of mid-plate swells.

The model consists of three layers: a conducting lid, which
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overlies a low viscosity zone, which in turn overlies a

constant viscosity layer. We varied the viscosity contrast,

the Rayleigh number, and the layer thicknesses.

Since the low viscosity zone decreases the stress

transmitted to the base of the conducting lid from the fluid

flow, the surface topography decreases in magnitude as the

viscosity in the low viscosity zone is decreased.

Furthermore, because the geoid anomaly is the sum of the

positive gravitational effects from the surface topography

and the negative effects from the internal density

differences, it decreases in magnitude much faster than the

topography anomaly for higher viscosity contrasts. In

general, the topography and geoid anomalies show an

approximately linear relationship over convective flows so

that, when a depth of compensation is calculated from Pratt

and Airy models, the depth of compensation decreases very

quickly as the viscosity contrast increases. In fact, the

depth of compensation can appear to be well inside the

conducting lid for sufficiently large viscosity contrasts.

Because the temperature structure is elevated underneath the

swell the elastic plate thickness decreases in the presence

of convection. Since this model reflects a convective time

scale, it results in very short uplift times. In

particular, the low viscosity zone increases the rate that

the material can flow underneath the conducting lid, so that

it decreases the uplift rate.



107

We find that we can produce the topography, geoid and

heat flow anomalies, as well as the depths of compensation

and elastic plate thicknesses observed at the swells

associated with the Hawaiian islands, Bermuda, the Marquesas

islands and Cape Verde. Our preferred model has a Rayleigh

number of 10 6 and a low viscosity layer thickness of 125 km.

This Rayleigh number is consistent with estimates of the

Rayleigh number for the upper mantle (McKenzie et al., 1974;

Houseman and McKenzie, 1984), and the low viscosity layer

thickness is consistent with estimates from studies of small

scale convective anomalies in the oceanic geoid (Haxby and

Weissel, 1986; Robinson and Parsons, 1987; Chapter 5),

seismic tomography (Forsyth, 1977; Weilandt and Knopoff,

1982) and melt production (e.g. McKenzie, 1984). The

differences between the swells can then be accommodated by

changing the viscosity in the low viscosity zone. At Cape

Verde a viscosity contrast of one order of magnitude Or

slightly less is required. At Hawaii, Bermuda and the

Marquesas, low viscosity zones representing a one to two

order of magnitude change in viscosity are required. The

viscosity contrast underneath the swells decrease as their

lithospheric age increases. This trend is consistent with

theoretical predictions of the magnitude of the low

viscosity zone as it ages from the temperature and pressure

dependence of viscosity and the thermal evolution of the

oceanic plates.
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Although the above model is preferred because it is

consistent with the results of other studies (Forsyth, 1977;

Weilandt and Knopoff, 1982; McKenzie, 1984; Craig and

McKenzie, 1986; Robinson et a1., 1987b; Robinson and

Parsons, 1987), this study cannot uniquely constrain the

Rayleigh number, low viscosity layer thickness or viscosity

contrast, because these parameters often have similar

effects on the observables. For example, the Rayleigh

number could be greater than 10 6 . The uplift time would

then be shorter and the observables smaller, so that smaller

viscosity contrasts would be required at depth. Also, since

there exist no shorter wavelength features at swells that

can be ascribed to convection in a low viscosity zone, it is

very difficult to directly constrain the thickness of the

low viscosity zone beneath them. However, the depth of

compensation is sensitive in particular to the viscosity

contrast and, from the depths of compensation, we can

estimate within reasonable errors the viscosity contrast at

depth. Given these viscosity contrasts, the Rayleigh

numbers and low viscosity layer thicknesses can be further

constrained and are found to be consistent with estimates

from the literature.

In conclusion, the uplift seen at swells can be

explained by a convection model, where we prescribe only the

viscosity structure and the heat flux at the base of the

fluid. The presence of the low viscosity zone immediately

beneath the mechanical portion of the plate is critical in
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the application of this model to mid-plate swells. The

viscosities that are required range from 0.2 to 0.01 of the

viscosity in the lower portions of the upper mantle, and are

very easily produced by the temperature and pressure

variations that thought to be present in the upper mantle.
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Table 3.1

Variable Description Value

d depth scale 600 km

F flux on the bottom boundary 1 H. F. U.

Po average mantle density 3300 kg/m3

Pw density of water 1000 kg/m3

go surface gravitational acceleration 10 m/s 2

110

1C average mantle thermal diffusivity 10- 6 m2 /s

E

v

average mantle thermal
expansion coefficient

specific heat

conductive temperature across
the depth of the box

Young's modulus

Poisson's ratio

thermal conductivity

scaling value for geoid

scaling value for gravity

scaling value for topography

scaling value for heat flow

900 K/kg·oC

8656 °c

0.25

3.0 W/m' °c

8414 m

0.1402 m/s

103,872 m

42.8 mW/m2



Table 3.2

RUN LID LVL RAYLEIGH Ilt/llb GRID FIGURE
THICK. THICK. NUMBER SIZE NUMBER

1. 0.125 0.0 1. Ox10 4 1.0 24x27 3.5,6,13,14
2. 0.125 0.21 1. Ox10 4 0.1 24x32 3.5,6,13,14
3. 0.125 0.21 1.0x10 4 0.01 24x42 3.3,4-6,14
4. 0.125 0.21 1. Ox10 4 0.001 24x42# 3.5,6

5. 0.125 0.0 3.2x10 4 1.0 24x27 3.5,6
6. 0.125 0.21 3.2x10 4 0.1 24x32 3.5,6
7. 0.125 0.21 3.2x10 4 0.01 24x42 3.5,6

8 . 0.125 0.0 1.0x105 1.0 24x27 3.2,4-6,10-14
9. 0.125 0.21 1. Ox10 5 0.1 24x42# 3.2-14
10. 0.125 0.21 1.0x105 0.075 24x42 3.5,6,10-14
11. 0.125 0.21 1. Ox10 5 0.050 24x42 3.5,6,10-14
12. 0.125 0.21 1.0x105 0.025 24x42 3.5,6,10-14
13. 0.125 0.21 1. Ox10 5 0.01 24x42# 3.2,4-6,10-14
14. 0.125 0.21 1. Ox10 5 0.001 24x42# 3.5,6,10-14

15. 0.125 0.0 3.2x10 5 1.0 24x27 3.5,6,10,11
16. 0.125 0.21 3.2x105 o. 1 24x42 3.5,6,10,11
17. 0.125 0.21 3.2x10 5 0.01 24x42 3.5,6,10,11

18. 0.125 0.0 1.0x10 6 1.0 24x27 3.5,6,10-14
19. 0.125 0.21 1. Ox10 6 0.1 24x42# 3.3,4,5,6,10-14
20. 0.125 0.21 1.0x10 6 0.01 24x42# 3.5,6,10-12,14

21. 0.125 0.083 1. Ox10 4 0.1 24x29
22. 0.125 0.083 1. Ox10 5 0.1 24x29 3.4,3.7
23. 0.125 0.083 1. Ox10 5 0.01 24x29#
24. 0.125 0.083 1. Ox10 5 0.001 24x29#

25. 0.125 0.5 1. Ox10 4 0.1 24x40
26. 0.125 0.5 1. Ox10 5 0.1 24x40# 3.4,3.7
27. 0.125 0.5 1. Ox10 5 0.01 24x40#

28. 0.125 0.75 1. Ox10 4 0.1 24x46
29. 0.125 0.75 1.0x105 0.1 24x46 3.4

30. 0.0 0.0 1. Ox10 5 1.0 24x24
31. 0.042 0.0 1. Ox10 5 1.0 24x25
32. 0.083 0.0 1.0x105 1.0 24x26

# - checked for convergence and resolution.

111



112

Table 3.3

GEOID
ANOMALY #
(in m)

TOPOGRAPHY
ANOMALY#
(in km)

HEAT FLOW
ANOMALY# :
(in mw/m2 )

DEPTH OF
COMPENSATION:
(in km)

ELASTIC PLATE
THICKNESS
(in km)

UPLIFT TIME
(in m. y. )

HAWAII

6-10 1

1.0-1.42

5-93

60-80 4 ,5

25-35 1 ,5,6

< 10 4 ,5

BERMUDA

6-107

40-70 4 ,8

CAPE VERDE

11-159 ,10

1.8-2.2 9 ,10

12-20 9

59-7910

MAROUESAS

4-8 11 ,12

0.8-1.2 11 ,12

35-5512

19-2312

# - peak-to-peak anomalies

References: 1-estimated from Watts (1976); 2-estimated from
Haxby and Weissel (1986); 3-Von Herzen et al. (1982); 4­
Crough (1978); 5-McNutt and Shure (1986); 6-Haxbyand
Turcotte (1978); 7-estimated from Detrick et al. (1986); 8­
Watts (1978); 9-estimated from Courtney and White (1986);
10-estimated from McNutt (1987); 11-Crough and Jarrard
(1981); 12-Fischer et al. (1986).
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Figure Captions

Figure 3.1: Geometry of the model. u is the horizontal

velocity and w is the vertical velocity. T is the

temperature and cr is the shear stress. "C" is a constant;

"b" is the depth of the entire model; and "a" is the depth

of the constant viscosity layer.

Figure 3.2: Steady state temperature plots for runs where

the Rayleigh number is lOS, the low viscosity layer

thickness is 0.21 and the conducting lid thickness is 0.125.

All of the temperature structures were interpolated onto a

49x55 grid before contouring. The viscosity contrast, ~c'

varies: (a) no viscosity contrast (run 8); (b) ~t/~b= 0.1

(run 9); (c) ~t/~b=O.Ol (run 13); (d) ~/~b=O.OOl (run 14)

(where the numbers refer to Table 3.2). The temperature

contour intervals are, to the nearest SoC: (a) 150 °C; (b)

135 0C; (c) 120 0C; (d) 115 °C. The tick marks on the

sidewalls mark the boundaries of the low viscosity zone.

Figure 3.3: Steady state temperature plots for runs where

the viscosity contrast is 0.1 , the low viscosity layer

thickness is 0.21 and the conducting lid thickness is 0.125.

All of the temperature structures were interpolated onto a

49x55 grid before contouring. The Rayleigh number varies:

(a) Ra=10 4 (run 2); (b) Ra=10 5 (run 9); (c) Ra=10l; (run 19)

(where the numbers refer to Table 3.2). The temperature
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contour intervals are: (a) 160 °C; (b) 120 °C; (c) 100 °C;

and the tick marks mark the boundaries of the low viscosity

zone.

Figure 3.4: Mean temperature (nondimensional) plotted versus

z' for runs (a) where we have varied the viscosity contrast:

8 (line), 9 (long dash), 13 (medium dash) and 14 (short

dash); (b) where we have varied the Rayleigh number: 2

(line), 9 (long dash) and 19 (medium dash); (c) where we

have varied the low viscosity layer thickness: 22 (line), 8

(long dash), 26 (medium dash), and 29 (short dash) (The

numbers refer to Table 3.2.)

Figure 3.5: The log of the top boundary layer thickness

plotted versus the log of the viscosity contrast for the

runs with a layer thickness of 0.21. The runs with the same

Rayleigh number and a top layer thickness of 0.21 (125 km)

are all joined. The circles are for a Rayleigh number of

10 4 ; the triangles are for Ra=3.2x10 4 ; the plus signs are

for Ra=10 5 ; the crosses are for Ra=3.2x10 5 ; and the diamonds

are for Ra=10 6 .

Figure 3.6: The log of the average temperature of the model

plotted versus the log of the viscosity contrast for the

runs with a layer thickness of 0.21. The runs with the same

Rayleigh number and a top layer thickness of 0.21 (125 km)

are all joined. The circles are for a Rayleigh number of
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10 4 ; the triangles are for Ra=3.2x10 4 ; the plus signs are

for Ra=10 5 ; the crosses are for Ra=3.2x10 5 ; and the diamonds

are for Ra=10 6 .

Figure 3.7: Steady state temperature plots for runs in

which the viscosity contrast equals 0.1 and the Rayleigh

number equals 105 and where the low viscosity layer

thickness varies: (a) the thickness equals 0.083 (run 22);

(b) the thickness equals 0.21 (run 9); (c) the thickness

equals 0.5 (run 26) (where the numbers refer to Table 3.2) .

The temperature contour intervals are at every 135 °C, and

the tick marks mark the boundaries of the low viscosity

zone. All of the temperature structures were interpolated

onto a 49x55 grid before contouring.

Figure 3.8: An example of the variation of the peak-to-peak

topography anomaly with time during a replenishment

calculation with the Rayleigh number at 10 5 , the viscosity

contrast at 0.1 and the top layer thickness at 0.21 (125 km)

(run 9).

Figure 3.9: Examples of the steady state nondimensional (a)

topography; (b) geoid; and (c) heat flow anomalies for a

calculation with the Rayleigh number at 105 , the viscosity

contrast at Q.1 and the top layer thickness at 0.21 (125 km)

(run 9, as labeled in Table 3.2). The appropriate scaling
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factors for these anomalies are: geoid, No = 8414 m;

topography, h o = 103,872 m; heat flow, qo = 42.8 mW/m2 .

Figure 3.10: The peak-to-peak nondimensional values of the

geoid anomalies plotted versus the viscosity contrast for

runs where the layer thickness equals 0.21. Runs with a

Rayleigh number of 105 are denoted with circles, 3.2x10 5

with triangles and 10 6 with plus signs.

Figure 3.11: The peak-to-peak nondimensional values of the

topography anomalies plotted versus the viscosity contrast

for runs where the layer thickness equals 0.21. Runs with a

Rayleigh number of 105 are denoted with circles, 3.2x10 5

with triangles and 10 6 with plus signs.

Figure 3.12: The peak-to-peak nondimensiona1 values of the

heat flow anomalies plotted versus the viscosity contrast

for runs where the layer thickness equals 0.21. Runs with a

Rayleigh number of 10 4 are denoted with circles, 105 with

triangles and 10 6 with plus signs.

Figure 3.13: The depth of compensation plotted versus the

viscosity contrast for runs where the layer thickness equals

0.21.
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Figure 3.14: The replenishment time, or "rise time", plotted

versus the viscosity contrast for runs where the layer

thickness equals 0.21.
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Chapter 4: MANTLE FLOW AND GEOID ANOMALIES AT FRACTURE ZONES

4.1 Introduction

Simple conductive cooling cannot explain the depth-age

relationships observed for old oceanic plates. In

particular, for ages greater than 70 million years, the

depth-age curve is shallower than that of a half-space

cooling model (Sclater and Francheteau, 1970; Sclater et

al., 1971; Parsons and Sclater, 1977). One, somewhat

artificial, means of producing the observed deviation from

the half-space cooling model is to fix the temperature at a

given depth, called the thermal plate thickness (Langseth et

al., 1966; McKenzie, 1967; Parsons and Sclater, 1977). This

option, which we call the plate model, requires additional

heat input into the base of the plate to maintain the higher

temperatures within the lithosphere. Crough (1979a) and

Heestand and Crough (1981) suggest, however, that the

apparent flattening of the depth-age curve is not due to a

thermal source which acts everywhere on the base of old

lithosphere, but represents the accumulation of thermally

rejuvenated lithosphere from hot-spot traces.

Recent global altimeter studies of the oceanic geoid by

the GEOS-3 and SEASAT satellites have provided data for

another test of the plate model. The plate model predicts a

geoid-age relationship which should depart from that of the

half-space cooling model near 40 million years (Parsons and

Richter, 1980). However, since there are other sources for
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geoid anomalies at wavelengths comparable to plate

dimensions which are not related to lithospheric cooling, it

is very difficult to separate the geoid-age relationship

directly from the global geoid (Detrick, 1981; Cazenave,

1984). Many researchers have tried, therefore, to infer the

geoid-age relationship from shorter wavelength geoid

anomalies over fracture zones, which are distant from

anomalous thermal sources (Crough, 1979b; Detrick, 1981;

Sandwell and Schubert, 1982; Cazenave et al., 1982; Driscoll

and Parsons, 1987).

Oceanic fracture zones juxtapose oceanic lithosphere

with different ages and different thermal structures

(Parsons and Sclater, 1977). This abrupt change in the

thermal structure results in a rapid change in the height of

the geoid and the seafloor depth. For the half-space model,

since the geoid height is directly proportional to the age

of the lithosphere, assuming the thermal offset between the

plate segments remains constant, the geoid step does not

decay with time but remains at its initial value (Detrick,

1981; Sandwell and Schubert, 1982). On the other hand, the

plate model predicts that, since the lithosphere on either

side of the fracture zone decays to the same thermal

structure at large ages, the geoid step should decrease with

age to zero for very old plates (Detrick, 1981).

Because the Mendocino fracture zone represents a 27

m.y. age offset and because it is isolated from any major

hot-spot or site of anomalous crustal structure, it is an
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ideal fracture zone with which to study the geoid slope-age

relationship. From geoid profiles obtained by the SEASAT

mission, Detrick (1981), Sandwell and Schubert (1982) and

Cazenave et al. (1982) estimated geoid offsets across the

Mendocino fracture zone. They found that the geoid slope­

age relationship decayed with age in accordance with a 100­

120 km thick thermal plate. Furthermore, since the

Mendocino fracture zone is far away from any hot spot

traces, neither its depth-age nor its geoid slope-age

behavior can be explained by the effects of thermal

rejuvenation as proposed by Crough (1979) and Heestand and

Crough (1981).

However, recent work on the geoid anomalies at fracture

zones other than the Mendocino have found behavior that is

not explained by the plate model. In particular, Cazenave

(1984), in a study of 15 fracture zones including the

Udintsev and the Eltanin fracture zones, and Driscoll and

Parsons (1987), in a detailed study of the Udintsev and

Eltanin fracture zones, have found that the geoid step

decays, but not as predicted by a plate model. Driscoll and

Parsons (1987) also find that, on profiles that are less

than 100 km apart, the geoid steps can vary radically in

magnitude. by up to 0.75 meters. Finally, and perhaps most

surprising, is that, at the Falkland-Agulhas fracture zone,

Freedman and Parsons (1987) have found that the geoid step

reverses in sign. In order to fully understand the geoid

anomalies observed over fracture zones, therefore, we must



137

understand the effects of other processes than conductive

cooling which affect the fracture zone thermal structure.

At short distances from the fracture zone, lateral heat

conduction and thermal stresses are important (Sandwell,

1984; Parmentier and Haxby, 1986). These processes alter

the appearance of the slope and produce short wavelength

features around the fracture zone. Specifically, flexural

effects are important in the formation of the "trough"

observed on the older side of many fracture zones (Sandwell,

1984). At longer wavelengths, flow beneath the lithosphere

plays a dominant role. Since the geoid slope is a long

wavelength feature, to understand the geoidslope-age

relationship, we must study the flow underneath the fracture

zone.

A fracture zone creates a horizontal temperature

gradient at the upper boundary of the viscous portion of the

upper mantle, and this thermal gradient drives a convective

flow. Craig and McKenzie (1986) looked at the effect of

such a flow on the geoid and topographic expression of a

fracture zone and, in particular, the Mendocino fracture

zone. They found that, for an upper mantle viscosity which

is consistent with post-glacial rebound values, the geoid

signature due to the flow would dominate the observables so

that the anomaly due to the change in lithospheric age would

not be visible. Since the geoid profiles near the Mendocino

fracture zone do not contain this strong convective signal,

Craig and McKenzie postulated the existence of a low
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viscosity zone near the surface which reduces the

temperature variations in the convective flow and the

magnitude of the resulting geoid anomalies. They presented

a model of the uppermost 225 km of the mantle with a low

viscosity channel (150 km thick) beneath a mechanical plate

(75 km thick). This model produced geoid profiles which

generally agreed with the observed profiles seen at the

Mendocino, demonstrating that models which include the

effect of flow underneath a fracture zone can explain the

geoid and geoid slope-age behavior seen at the Mendocino

fracture zone as well as the thermal plate model. However,

Craig and McKenzie (1982) did not model the flow in the

mantle below the low viscosity layer that is induced by the

fracture zone flow, nor did they explore the effect of the

layer thickness or other parameters on their results. Both

of these considerations can strongly affect the theoretical

predictions of the geoid anomalies over the fracture zone.

Nevertheless, it is clear that a viscosity which is lower

than that predicted by the results of post glacial rebound

is required in the uppermost oceanic mantle by the geoid

anomalies at fracture zones.

The existence of a low viscosity zone which would

provide such low viscosities near the base of the thermal

plate has been suggested by a number of researchers. Cooper

and Kohlstedt (1984) in laboratory experiments on olivine

have shown that melt in the triple junction intersections

between grains will cause the diffusion path length through
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an aggregate of grains to decrease. The presence of melt in

the uppermost mantle would therefore decrease its viscosity

and change its deformation behavior. Anderson and Sammis

(1970) and Solomon (1972) explain the seismic low velocity

zone underneath the plates as a region with a high

proportion of melt. Therefore, this low velocity zone most

likely reflects a low viscosity zone. Finally, the

empirical relationship between viscosity and temperature and

pressure predicts a low viscosity zone underneath the plates

(Parmentier, 1978; Fleitout and Yuen, 1984a; Buck and

Parmentier, 1986). In the thermal boundary layer at the

surface, the viscosity will rapidly decrease due to the

large temperature gradient with depth. Then, in the

adiabatic mantle the viscosity will increase due to the

increase in pressure with depth, effectively creating a low

viscosity zone underneath the plates.

In this paper, we present a parameter study of the

effects of a low viscosity zone on the thermal evolution of

fracture zones throughout the upper mantle. To isolate the

effect of a low viscosity channel, we have simplified the

model to a three layer viscosity structure with a conducting

lid overlying the low viscosity zone which in turn overlies

a constant viscosity layer extending to the base of the

upper mantle. With this model we have studied the effect on

the flow induced in the upper mantle by the fracture zone

thermal structure by varying (1) the viscosity in the low

viscosity zone, (2) the Rayleigh number based on the full
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layer depth and on the viscosity of the bottom layer, and

(3) the low viscosity layer thickness. By isolating these

parameters, we can explore the effects of a variable

viscosity structure with depth underneath a fracture zone

(Parmentier, 1978). After looking at the characteristics of

the flow, we calculate the geoid profiles and the geoid

slope-age relationships. We compare these results with

sample geoid profiles from the Udintsev fracture zone.

Finally, we calculate the topographic step versus age

relationship from our calculations and compare it with that

predicted by the average depth versus age relationships that

are observed in the oceanic plates.

4.2 The Convective Flow

The numerical model consists of three layers: a low

viscosity layer sandwiched between a conducting lid and a

constant viscosity layer (see Figure 4 . 1) . The boundary

conditions are given by:

w = 0, z = 0,1, b (4.1a)

u = 0, z = 1, b x = O,h (4 . 1b)

O"xz = 0, z = 0 x = O,h (4.1c)

T = 0, z = b (4.1d)

dT/ox = 0, x = o,h (4.1e)

oT/oz = 0, z = 0 (4.1f)

T = 1, z < b, t = 0 (4.1g)

where u is the horizontal velocity, w is the vertical

velocity, T is the tempreature, t is the time, x is the
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horizontal coordinate, z is the vertical coordinate and crxz

is the shear stress.

We have nondimensionalized the equations through the

following transformations:

Il' = flo fl (4.2a)

(x',z') = d (x, z) (4 . 2b)

T' = t1T T (4.2c)

t' = (d2 /lC) t (4.2d)

P' = Po P (4. 2e)

where the primes denote dimensional quantities and flo is the

viscosity of the bottom layer, d is the depth of the

convecting layer, lC is the thermal diffusivity, Po is the

reference density and t1T is the initial temperature

contrast between the bottom and top boundaries. To scale

the results we used the values for these parameters as given

in Table 4.1.

The equation of motion, the heat transport equation and

the equation of state are then given by (omitting the

primes),

'V.cr = -R(T-To ) 1

aT/at + u.VT = V2 T

1 - aL\T(T-T o ) = P

(4.3)

(4.4)

(4.5)

where u is the velocity vector, a is the thermal expansion

coefficient, ~ is a vertical unit vector, cr is the stress

tensor given by:

cr l, J' = -p /)' , +" (ou' /ox' + eu '/'dx ' )lJ" l J J l (4.6)

where p is the pressure and R is the Rayleigh number:
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R = go~Td3/~OK (4.7)

where go is the acceleration of gravity. These equations

are solved using a velocity based finite element method with

explicit time stepping (Daly and Raefsky, 1985), which has

been modified to solve the heat equation with a finite

difference method. Although the incompressibility equation:

'\7. u = a (4 .8)

is never explicitly solved, a penalty function treatment of

the pressure forces incompressibility (Hughes et al., 1979).

We tested the resolution of each run by repeating the

calculation on a larger grid, usually double the size, and

comparing the results.

All of the convection calculations began with the same

idealized initial temperature structure at (t=O).

T = 0, z = b (4. 9a)

T = 1, z <"b, x < h/2 (4.9b)

T = erf (z/l('ta)' x > h/2 (4. 9c)

where t a is the age offset across the fracture zone.

Although large fracture zones are not usually spaced more

than 1000 km apart in the North Pacific for example, we have

limited our study to the effects of one age offset for

simplicity.

We experimented with a number of box widths. Since the

flow migrates away from the fracture zone, however,

eventually every box will be too small. For most of our

runs, an aspect ratio of 4 to 1 was sufficient but, as soon

as the flow was significantly affected by the sidewalls (so
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that the flow was constrained to wavelengths that were

integer divisions of the total horizontal length scale in

the box), we ended the calculations. Because, at high

Rayleigh numbers and viscosity contrasts, the grid must be

very dense, some of the resolution calculations were run on

a 2 by 1 grid and many of these runs had to be terminated at

young ages.

The simplification of the model to three layers

involved a number of assumptions about the viscosity

structure and thermal source. The first was the

approximation of the mechanical portion of the lithosphere

by a conducting lid (Jaupart and Parsons, 1985), which was

of equal thickness on either side of the fracture zone.

Furthermore, since we could not incorporate any growth of

the lid with time, its thickness had to be an average of the

appropriate thickness for the initial structure and for

older ocean floor. As a result the lid is too thick at

young ages. To compensate for this shortcoming, we ran the

model for a number of lid thicknesses from 0 to 100 km thick

and found that the form of the instabilities and the ensuing

flow did not vary appreciably. For much thicker conducting

lids which approach the thickness of the fluid layer, the

lid increases the aspect ratio of the cells (Craig and

McKenzie, 1986). Only the time of the onset of the

instability was delayed by a thicker lid. Since this two­

dimensional calculation cannot hope to give an accurate

estimate of the initial time scale of the flow, but only an
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upper bound, we felt that this approximation was justified.

We chose a conducting lid thickness of 50 km for the

parameter study which corresponds to a 30-50 m.y. old plate.

In all of these calculations, we concentrated on the

flow due to the horizontal temperature gradient at the

fracture zone. We neglected other thermal sources such as

internal heating or heating from below. Since the upper

mantle is believed to have a low concentration of

radioactive elements and since we are studying processes

which operate on short time scales, we can safely ignore

internal heating (McKenzie and Richter, 1981). The omission

of heating from below is harder to justify. We ran a number

of calculations which included heating from below and found

that it did not effect the time scale or initial form of the

flow, but that it did increase the vigor of the convection

once it was established. In Figure 4.2, we have drawn the

temperature anomalies for the same flow model with (Figure

4.2(a)) and without (Figure 4.2(b)) heating from below

(dT/dz equals a constant of nondimensional unit value) .

There is a 27 m.y. offset across the fracture zone and there

is no viscosity contrast between the layers, the Rayleigh

number is 4.5x10 5 , and the lid thickness is 75 km. Depicted

are the temperature structures at 100 m.y. and 180 m.y. (the

convective flow becomes appreciable at approximately 80

m.y.). The temperature boundary layer first downwells at

approximately the same time in both of these models, but by

150 m.y. the flow which is heated from below is much more
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vigorous and well developed than the flow without the

additional heat flux. The model with heating from below

corresponds to the model CMl in Craig and McKenzie (1986)

and our results agree very well with theirs.

Since we eventually wanted to compare our results to

geoid profiles from the Udintsev fracture zone, we performed

the parameter study with an age offset of 15 m.y .. Because

the age offset across the Udintsev is variable from 9-20

m.y., a 15 m.y. offset represents an average of the offsets.

In Figure 4.2(c), we have drawn the flow produced by the

model in Figure 4.2(b) with an age offset of 15 m.y. instead

of 27 m.y .. With the smaller age offset, the flow becomes

appreciable 30 m.y. later, but the development of the flow

is very similar. We have shown the temperature anomalies at

130 m.y. and 210 m.y. - corresponding to the same time

intervals after the flow becomes apparent in the temperature

structure as in cases 2(a) and 2(b). For the larger age

offset, where the initial temperature anomaly represents 27

m.y. of conductive cooling, the flow is stronger and the

downwellings are fairly uniformly spaced whereas, for the 15

m.y. offset, the flow is weaker and the downwellings are

more irregularly spaced. The larger age offset, therefore,

drives a stronger, more regular flow which begins earlier.

with this viscosity model of the upper mantle

consisting of three horizontal fluid layers and driven by a

conductive cooling profile with a 15 m.y. age offset in the

center, therefore, we explored the effect on the convective
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flow of (1) low viscosities in the upper layer, (2) the

Rayleigh number of the fluid layer, based on the viscosity

of the bottom layer, and (3) the relative thicknesses of the

two fluid layers. In Table 4.2 are listed the parameters

for the runs which we shall discuss.

The first parameter suite varies the Rayleigh number

with no viscosity contrast between the fluid layers. In

Figure 4.3, we compare the temperature structure at various

times for runs with Rayleigh numbers of (a) 10 6 and (b) 10 7 .

These values bracket most estimates of the Rayleigh number

in the upper mantle (McKenzie, 1967; Jarvis and Peltier,

1980; McKenzie et al., 1980). The initial downwelling

occurs close to the fracture zone under the older

lithosphere, initiating a downward flow. In each of these

cases the flow becomes appreciable very quickly at near 20

m.y. for (a) and 10 m.y. for (b). We measure the

development time through the kinetic energy, the sum over

all of the elements in the grid of the mass multiplied by

the averaged velocity squared for each element. Although

the kinetic energy is a positive definite measure of the

onset time, it does not affect the energy balance in this

problem and is very small since it is scaled by the inverse

of the Prandtl number. However, the kinetic energy

exponentially increases as flow begins in the fluid, and we

took our definition of the development time to be the time

at which this exponential behavior commences. The

development times for these runs are delayed by the presence
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of the conducting lid and would also occur earlier in the

mantle due to perturbations from other flows, so we consider

these values to be upper bounds on the onset time. The

downgoing plume is quite thin and near the fracture zone.

Downwellings away from the fracture zone do not appear until

much later. At a Rayleigh number of 107 (Figure 4.3(b),

the flow consists of very thin downwelling plumes which

stretch to the bottom of the box. The first downwelling

appears in the temperature structure at close to 10 m.y ..

This downwelling alone destroys the step in the temperature

structure very close to the fracture zone, but also

introduces temperature anomalies at greater depths. Other

downwellings appear close to 30 m.y. later due to stress and

thermal coupling with the initial downwelling and/or simple

conductive cooling of the fluid layer.

The development of this flow is different from that

seen in small scale convection which is only driven by

thermal instabilities in a cooling thermal boundary layer

(Foster, 1965a; Foster, 1965b). In that case there is no

horizontal temperature gradient to drive the flow, rather

the flow is due to internal convective instabilities and can

be characterized by the wavelength at which it initially

goes unstable. In the case of a fracture zone, a

multiplicity of wavelengths are excited, but most of the

flow is generated by the initial convection cell and then

migrates away from the fracture zone. Simple cooling

instabilities can and may occur far from the fracture zone,



148

especially at high viscosity contrasts. Since they are less

vigorous and are at the same scale as the fracture zone

convection cells, they can be easily incorporated into the

flow. This study cannot resolve the differences between

downwelling plumes that are generated by shear and thermal

coupling and those that are instigated by boundary layer

instabilities.

In the second series of runs, we held the Rayleigh

number constant at 10 5 and the low viscosity layer thickness

at 125 km and varied the viscosity contrast from 1.0 to 10-3

(Figure 4.4). As the viscosity contrast increases, the

development time of the flow decreases and the

characteristic wavelength of the downgoing plume shortens.

For a viscosity contrast of one order of magnitude (Figure

4.4(b)}, the plume is distorted as it encounters the

significant horizontal flow in the low viscosity zone. As

the viscosity contrast increases by another order of

magnitude (Figure 4.4(c)}, the flow initially fills the

whole box but then is quickly confined to the low viscosity

layer, with the most vigorous flow near the fracture zone.

(Near and above a viscosity contrast of 1.lxl02 , the

effective Rayleigh number in the low viscosity zone is

greater than that for the whole layer, so that it can more

easily support convection.) The small scale convection

therefore cools the fluid beneath the low viscosity zone

near the fracture zone much more effectively. The

horizontal temperature gradient near the base of the top
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layer then drives a larger scale flow which extends to the

base of the two fluid layers. This larger scale flow

eventually dominates the small scale convection, although

the signature at the wavelengths due to the small scale flow

in the temperature structure persist for a greater length of

time. Therefore, even though the low viscosities can

initially confine the flow to the top layer, permanent

confinement cannot be attained.

In the third parameter suite we varied the Rayleigh

number while holding the viscosity contrast at two orders of

magnitude and the layer thickness at 125 km (Figure 4.5 and

Figure 4.4(c». The progression of the flow with time in

these calculations is very similar to that in the previous

series. It begins with a mantle wide flow, followed by a

period of confinement of the most vigorous flow to the low

viscosity zone. The small scale flow is concentrated near

the fracture zone so that cools preferentially underneath

it. This cooling leads to a longer wavelength horizontal

temperature gradient which reinvigorates convection in the

lower layer. This larger scale flow then wipes out the

small scale convection. As the overall Rayleigh number

increases, the effective Rayleigh number in the top layer

also increases, so that the low viscosity zone can more

easily concentrate the flow in the uppermost mantle.

Otherwise varying the Rayleigh number with a fixed viscosity

contrast has much the same effect as in the first parameter

suite where there was no viscosity contrast: as the Rayleigh
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number increases, the development time and the dominant

wavelengths of the flow are shorter, and the downwellings

occur closer to the fracture zone.

In the final parameter study, we have varied the

thickness of the low viscosity zone while keeping the

Rayleigh number at 105 and the viscosity contrast at 0.1

(Figure 4.6 and Figure 4.4(b)). With this suite of

calculations, we can specifically address. the effect of

introducing a second scale length, the depth of the low

viscosity zone. When the layer thickness is very thin, near

50 km (Figure 4.6(a)), the flow resembles that of cooling

beneath a conducting lid into a constant viscosity fluid.

However, the development time of the flow is much shorter

and the next set of convection cells occur much closer to

the fracture zone. As the layer thickness increases

(Figures 4.4(b) and 4.6(b)), the low viscosity zone can more

efficiently concentrate the temperature anomalies. When the

low viscosity zone fills half of the box (Figure 4.6(b)),

the downwellings occur in uneven intervals and migrate so

that, by 110 m.y., the center downwellings have grouped into

one strong downwelling.

In summary, these calculations show that the fracture

zone thermal structure will generate convection cells which

act to erase the initial thermal step. The effect of the

flow far from the fracture zone trace depends on the time in

which the convection cells are generated away from the

thermal step. For a constant viscosity layer underneath a
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conducting lid, this migration time depends on the scale

length and vigor of the cells which fill the whole fluid

layer. Increasing the Rayleigh number and the viscosity

contrast quickens the development of the convection cells

and shortens the characteristic wavelength of the

downwelling plumes, concentrating their effects near the

fracture zone. However, the low viscosity zone also

introduces a second time and a second length scale into the

flow: the lifetime and the characteristic wavelength of the

smaller scale convection respectively. When the Rayleigh

number of the low viscosity zone becomes greater than that

of the bottom fluid layer, initially the flow will extend

through both of the layers, but small scale flow in the low

viscosity zone will quickly dominate. Since the small scale

convection is concentrated near the fracture zone, it

preferentially cools the fluid beneath it, creating a long

wavelength horizontal temperature gradient which

reinvigorates the flow in the whole layer. Varying the

layer thickness causes the secondary scale length and,

therefore, the confinement time of the small scale

convective flow to vary. The destruction of the thermal

step very near the fracture zone, the length and time

scales, and the deep cooling will all be apparent in the

topography and geoid anomalies calculated for these fracture

zone structures.
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4.3 Calculation of the Geoid and Topography Anomalies

To calculate the geoid and topography anomalies for the

above runs, we follow the Green's function method developed

by Parsons and Daly (19B3). The temperature field is

decomposed into each of its Fourier components and, at each

wavenumber, k, the kernels, which are the Green's function

response of the observables to the temperature field, are

calculated. The surface topography kernel represents the

effect of a density anomaly at a depth, z, on the surface

topography, through the transmission of normal stress. The

gravity kernel, on the other hand, represents the sum of the

gravitational effects of the topography on the boundaries

and the density variations in the layer.

The dimensional topography in the Fourier domain, h(k),

is then given by:

b

h' (k) = [Pol (Po-Pw) ]a~Td LH (k, z) T (k, z) dz (4.10)

where H(k,z) is the topography kernel. The dimensional

gravity, g(k), can be written in the same way:

g' (k) = 21tGPoMTd (~(k,Z)T(k,Z) dz)t (4.lla)

where G(k,z) is the gravity kernel and G is the Universal

Gravitational Constant. The gravity kernel can be expressed

as the sum of the contributions from the surface topography,

the internal density variations and the bottom boundary

topography attenuated by the depth of the layer:

G(k,z) = H(k,z) - exp(-Iklz) + exp(-lkl)Hb(k,z) (4.llb)
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where Hb(k,z) is the bottom boundary topography kernel. We

have calculated the gravity and topography kernels as in

Robinson et al. (1987a). Finally the geoid anomaly can be

derived from the gravity anomaly with Brun's formula:

N' (k) = g' (k) /k' go = (d/go ) g (k) /k (4.12)

where N(k) is the dimensional geoid in the Fourier domain

and go is the acceleration of gravity.

In Figure 4.7, we have drawn the geoid and topography

kernels for the runs in the second parameter suite where the

low viscosity layer thickness is 125 km. We have drawn the

kernels for a range of wavelengths from the longest

wavelength in the box (twice the width of the box) to the

wavelength equal to half the depth of the box. As the

viscosity in the top layer decreases, the magnitude of both

the topography and geoid kernels decreases. Since the low

viscosity layer inhibits the transmission of normal stress

to the surface, the topography kernels are significantly

damped in the low viscosity zone. Because the gravity

kernels are the sum of the surface topography kernels with

the gravitational response to the internal density

distribution and to the bottom topography, the decrease in

magnitude of the surface topography kernel allows the

negative contribution of the internal density variations to

the gravity anomaly to dominate the kernels at depth. The

gravity kernels are, therefore, negative at depth for high

viscosity contrasts at the shorter wavelengths in Figure

4.7. This negative portion of the gravity kernel
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counteracts the positive effects of the shallower

temperature anomalies. Therefore, the magnitude of the

geoid anomaly decreases faster than that of the topography

as the viscosity contrast increases. In particular, at high

viscosity contrasts, the temperature variation due to the

small scale convection can subtract from the gravitational

effect of the temperature step in the conducting lid, so

that the thermal step appears reduced and perhaps even

reversed.

Since the mechanical portion of the lithosphere can

deform elastically, we explored the effects of an elastic

plate on the geoid and topography anomalies. Sandwell and

Schubert (1982) have presented a model of flexure at

fracture zones and, from a comparison to profiles across the

Mendocino fracture zone, they conclude that the plate is

elastically continuous across the fracture zone. This

elastic behavior in our model was represented by including

an additional factor, V, in the surface topography kernel

IDetrick et al. 1 1986}:

V(k) = [1 + (k/p)4]-1

where p4 = 1211-V2)go(po-Pw}/EITe}3

and where Te is the elastic plate thickness, E is Young's

modulus and v is Poisson's ratio. Values for these

parameters are given in Table 4.1. In Figure 4.8, we have

drawn the geoid anomalies for runs l(a) and l(b) with and

without a 10 km elastic plate which is a lower bound on the

elastic plate thickness for a 30-50 m.y. old plate (Watts,
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1978). The elastic plate reduces the amplitude of the

shorter wavelengths in the geoid. In other calculations,

the wavelengths of the convective instabilities which are

confined to the low viscosity zone are affected the most by

the elastic portion of the plate. Indeed, the geoid signal

from a temperature anomaly with a200 km dominant wavelength

(roughly corresponding to the wavelength of a small scale

flow confined to a 100 km thick low viscosity zone) is

reduced by 33% in the profiles which include the effects of

a 10 km thick elastic plate. Although the elastic plate

reduces the slope of the step, it does not affect its

overall magnitude which is a longer wavelength signal.

Nevertheless, to facilitate a comparison to the Udintsev

fracture zone, in the following calculations, we will

include the effect of a 10 km elastic plate.

4.4 The Geoid Anomaly and the Geoid Slope with Age

At most fracture zones, the topography is not well

known but, since the SEASAT mission, many fracture zones

have very good coverage of the geoid over their whole

length. We have, therefore, concentrated on the behavior of

the geoid anomaly and have calculated the geoid anomalies

for all of the runs in the parameter study.

In Figure 4.8, we have drawn the geoid anomalies for

runs l(a) and l(b) from Table 4.2 at various times. In

general, the geoid anomalies are depressed over downwellings

and elevated over upwellings and the characteristic
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wavelength of the perturbation to the geoid anomaly directly

corresponds to the characteristic wavelength of the flow.

In Figure 4.8(a) (run 1a) at 25 m.y., the profile still

resembles a step modified by horizontal conductive cooling.

By 60 m.y., the first downwelling has developed in the flow

(see Figure 4.3) causing a depression in the geoid on the

older side. At 75 m.y., the magnitude of this depression is

as big as the step itself and, by 90 m.y., features caused

by the adjacent cells are apparent in the geoid. At 90

m.y., two humps have formed next to the depression, one on

the younger side next to the fracture zone and one adjacent

to the depression on the older side. They reflect the

upwellings on either side of the initial downwelling. In

Figure 4.8(b) (run 1b), the geoid profile follows the same

general progression as seen in Figure 4.8(a), but much more

quickly. By 50 m.y., the convective signal dominates the

geoid profile with small wavelength (approximately 500 km)

undulations with amplitudes of over one meter.

In Figure 4.9, we have included a sample fit to the

geoid anomaly (from run 2b) from which we estimate the

magnitude of the step. We estimate the geoid and

topographic steps by fitting a second order polynomial and a

step function to the calculated geoid and topography

profiles (Crough, 1979). In order to calculate the geoid

step as in Driscoll and Parsons (1987) across the Udintsev

fracture zone, 200 km of the geoid profile to each side of

the fracture zone was excluded from the least squares
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fitting procedure. The total length of the profile used was

then 1400 km (where we have also omitted the end effects) .

Since the flow extends well away from the fracture zone, the

estimate of the geoid and topographic step can be quite

dependent on the length of the profile that we choose. We

do not use the entire length of the geoid and topography

anomaly to avoid the effects of the side wall and to mimic

the real conditions, but we have run all of the calculations

with varying lengths of the profile as a check to see if our

preferred 1400 km profile length has severely biased the

results. We calculate the geoid slope as the geoid step

divided by the age difference across the fracture zone. In

many of the geoid profiles for the cases in this study, the

step has disappeared. We only calculate the geoid slope-age

relationship, however, using geoid steps from profiles that

contain a visible step.

In Figure 4.10, we have drawn the geoid slope-age

relationship for these two runs (runs 1a and 1b). Initially

the geoid slope-age relationship behaves like a half-space

model but, after the temperature variations due to the flow

become appreciable in the fluid layer, it departs from the

conductive cooling models. In the case where the Rayleigh

number equals 10 6, the step initially decays and then

increases, due to the combined effects of the rise and

depression near the fracture zone, before finally

decreasing. In the case where the Rayleigh number equals

10 7 , the step initially decays, but then decreases very
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rapidly, increasing slightly between 40 and 45 m.y. and

becoming negative in portions of the relationship. The

geoid slope-age relationship cannot therefore be

characterized by a simple model; rather its behavior is

quite complicated. However, in both of these cases without

a low viscosity zone, after the initial downwelling becomes

appreciable the magnitude of the step at first increases

reflecting the perturbation in the geoid anomaly very near

the step. As the convection cell develops, the older side

of the fracture zone initiates a downwelling which depresses

the geoid whereas the other side of the fracture zone

experiences an upwelling elevating the geoid. These effects

combined cause a rapid increase in the apparent step height

in run l(a). When there is an appreciable viscosity

contrast at depth, however, this long wavelength effect is

minimized.

As we vary the viscosity contrast through runs 2(a)­

2(c) (from Table 4.2) the characteristic wavelength and

magnitude of the convective perturbations to the geoid

anomalies decrease (Figure 4.11). For the case of a

constant viscosity fluid at a Rayleigh number of 105 (run

2a), the geoid signal from the flow dominates the anomaly

and swamps the step signature. At a viscosity contrast of

one order of magnitude (run 2b), although the convective

signal eventually swamps the step signature until ages over

100 m.y., the step signature remains visible. By a

viscosity contrast of two orders of magnitude (run 2c),
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however, the magnitude of the convective perturbations to

the geoid are much less than the step signature and they are

of relatively short wavelength. Because the kernels become

negative in the low viscosity zone at this viscosity

contrast, the enhanced cooling underneath the fracture zone

on the older side counteracts the effects of the shallower

conductive cooling and the direction of the step is

reversed. In Figure 4.12, we have drawn the geoid slope-age

behavior for these runs. For run 2(a), the step does not

decay and is eventually dominated by the convective signal.

At the intermediate viscosity contrast (run 2b), the step

does decay somewhat, before the convective signal takes over

and the estimated step increases. For run 2(c) (Figure

4.11(c)), however, the step signal quickly decreases and

eventually reverses sign. The profiles containing the step

reversal are similar to profiles seen at the Falkland-Agulas

fracture zone (Freedman and Parsons, 1987).

As we vary the Rayleigh number for a viscosity

structure with a viscosity contrast at 175 km depth of two

orders of magnitude (runs 3 and 2c in Table 4.2, see Figure

4.11 and 4.13), we find very similar behavior as in runs

2(a)-2(c) (Figure 4.11) where we increased the viscosity

contrast. The characteristic wavelength of the geoid

anomaly and the departure time from the half-space cooling

model decreases, and the step signature remains for longer

times before being destroyed by the convective signal. In
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Figure 4.14, we have drawn the geoid slope-age relationships

for these runs.

When we varied the thickness of the low viscosity zone

(runs 4a, 2b and 4b in Table 4.2), we found that the thin

layers (50 km and 125 km) produced very similar geoid

anomalies (Figure 4.15) and geoid slope-age behavior (Figure

4.16). When the low viscosity zone fills half of the box,

however, the topography and geoid profiles change in

character and the step signature disappears more quickly,

because the longer scale length for the flow in the low

viscosity zone causes the geoid perturbations to extend to

greater distances from the step, destroying the geoid slope­

age relationship.

From the previous discussion, it is evident that the

onset and magnitude of the downwellings depend on the

viscosity of the fluid in the cooling boundary layer. We,

therefore, assign to each of our runs an "effective Rayleigh

number" which is based on the full depth of the fluid layer

but on the viscosity of the top layer. (Note: the Rayleigh

number for the top layer should more properly be defined

with the depth of the top layer but, to compare runs with

different low viscosity zone thicknesses, we have used the

depth of the total fluid layer. We also do not mean to

suggest that this effective Rayleigh number can be

rigorously related to the Nusselt number or any other

parameter of the flow.) For the runs at an effective

Rayleigh number of 105, the geoid slope-age relationship
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initially remains constant until the convective temperature

variations become appreciable, swamping the geoid step, and

the geoid slope-age relationship increases. At an effective

Rayleigh number of 10 6 , the geoid step initially decreases

slightly until the initially downwelling in the temperature

structure commences at 40-80 m.y., distorting the geoid

step. At an effective Rayleigh number of 10 7 , the first

temperature downwelling occurs at 10 m.y. with a magnitude

small compared to the initial thermal step and the geoid

step decays very rapidly.

4.5 Comparison to the Udintsev Fracture Zone

In Figure 4.17, we have drawn geoid profiles from the

east and west sides of the Udintsev fracture zone obtained

from SEASAT altimetry, with the GEM9 field removed, up to

and including degrees of order 1=m=10, and the regional

field removed (Driscoll and Parsons, 1987). These profiles

show a clear step across the fracture zone which decays with

age but, at wavelengths of 300-600 km, the profiles are in

general highly variable.

In Figure 4.18, we show the geoid slopes estimated from

the profiles in Figure 4.17 and others over the Udintsev

fracture zone (Driscoll and Parsons, 1987). The geoid step

does decay, but not in accordance with a thermal plate

model. Perhaps the most striking feature is the variability

in the geoid slope over short time scales. Geoid profiles

less than 200 km from each other can have steps which differ
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in size by as much as 75 cm. However, the general trend of

the data on both sides of the fracture zone is to decay

initially but then to level off with some long wavelength

fluctuation with age.

In Figure 4.19, we have drawn the geoid profiles

predicted by run 5 in Table 4.2. The viscosity contrast in

this run is 0.1, the Rayleigh number is 3.2xl05 (giving n

effective Rayleigh number of 3.2xl06 ), the conducting lid

thickness is 50 km and the layer thickness is 125 km. Since

the precise shape of the geoid profile depends on the

deformation properties of the plate, we are hesitant to

produce a model which attempts to fit the short wavelength

data exactly. In particular, most of the smaller wavelength

features in the data near the fracture zone can be explained

as a result of the flexure and thermal stresses at the

fracture zone (Sandwell, 1984; Parmentier and Haxby, 1986).

However, the theoretical profiles are in general agreement

with the longer wavelength anomalies, at which convective

flow has a dominant effect. The geoid step is clearly

visible out to ages greater than 50 m.y. and, as in the

observed profiles, the effects of the convection at depth

are not marked in the theoretical geoid profiles. In Figure

4.20, we have drawn the geoid slope-age relationship from

this run. The geoid slope initially decays with age, but

after 40 m.y. it rises again due to the increasing geoid low

on the older side. This variation is similar in character

to the geoid slope-age relationship on both sides of the
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Udintsev fracture zone, but is perhaps most like that on the

eastern side.

The geoid anomalies and geoid-slope behaviour of run 5

(Figures 4.19 and 4.20) which reproduce the geoid steps and

geoid slope-age relationship at the Udintsev are typical of

the runs in this study with an effective Rayleigh number of

10 6 Or above, excepting those cases at an effective Rayleigh

number of 10 7 where the step reverses. At the Udintsev

fracture zone, no step reversals are seen, but at the

Falkland-Agulas fracture zone step reversals are evident

(Freedman and Parsons, 1987) and perhaps a model with a

higher effective Rayleigh number is required. The remaining

question is whether this set of convective models, with

effective Rayleigh numbers above 10 6 , can also explain the

depth-age data for the oceanic plates.

4.6 Depth Versus Age

With the assumption of isostatic compensation, the

geoid anomaly is a vertical integral over the depth of the

density structure weighted inversely with the depth. The

topography anomaly is the same integral, but not weighted

with depth so that it is less sensitive to the deep

convective temperature anomalies. Rather the topography

anomaly is predominantly affected by the temperature

structure in the conducting lid, which is controlled by

conduction. Furthermore, as the viscosity contrast

decreases, the response of the topography anomaly to the
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convective anomalies at depth below the fracture zone

decreases (see Figure 4.7). In fact, the topographic

kernels are near zero under the low viscosity zone at a

viscosity contrast of two orders of magnitude.

Since the topographic step is a long wavelength

feature, it must satisfy the average depth versus age

relationship that is observed in the oceans. In Figure

4.21, we have drawn the topographic step with age for a

fracture zone, with a 15 m.y. offset, that is predicted by

the best fitting curves to the average depth versus age data

in the North Pacific (Parsons and Sclater, 1977). Along

with this theoretical curve, we have drawn the topographic

step-age relationships for four calculations: (1) no

viscosity contrast with a Rayleigh number of 10 6 (run 1a);

(2) no viscosity contrast at a Rayleigh number of 10 7 (run

1b); (3) two orders of magnitude viscosity contrast with a

Rayleigh number of 105 (run 2c); and (4) an order of

magnitude viscosity contrast with a Rayleigh number of

3.2x10 5 (run 5).

When there is no viscosity contrast, the longer

wavelength topography anomalies, corresponding to convection

throughout the box, quickly destroy the topographic step and

replace the conductive step signature with a convective

anomaly. As the viscosity contrast increases, the

convective wavelengths shorten and decrease in magnitude, so

that they do not obscure the topographic step. In these

cases, the topographic step follows the predicted step from
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the average depth versus age relationships closely.

Eventually, as seen in the convection calculations, the

convective flow will fill the whole box and the longer

wavelength temperature anomalies will destroy the appearance

of the step. The low viscosity zone, however, delays the

appearance of this longer wavelength convection so that it

becomes appreciable only when the topographic step is

already small. These runs correspond to effective Rayleigh

numbers of (1) 10 6 ; (2) 10 7 ; (3) 3.2x10 6; and (4) 10 7 . The

effective Rayleigh number, therefore, does not govern the

behavior of the step. Rather, at these Rayleigh numbers, a

viscosity contrast is required at a shallow depth in the

upper mantle to shorten the wavelength and decrease the

magnitude of the convective anomalies, and to downweight the

effect of the temperature anomalies at depth through the

kernels.

In summary, if flow under fracture zones is an

important phenomenon in the Earth's mantle, then it is

important that some mechanism, such as that exerted by a low

viscosity zone on the flow, be present to diminish the

effect of longer wavelength temperature anomalies on the

topography anomalies. The low viscosity zone decreases both

the wavelength and magnitude of the temperature anomalies.

It also concentrates the response of the topography anomaly

to shallower depths and, for a viscosity contrast of two

orders of magnitude, the kernels are effectively zero

beneath the low viscosity zone. In particular, run 5 which
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produces geoid anomalies and a geoid slope-age relationship

that are in general agreement with the observed geoid

anomalies at the Udintsev fracture zone also produces a•
depth-age relationship which is consistent with the observed

depth-age relationships.

4.7 Discussion

Subject to the assumptions made in this study, some

further conclusions can be drawn about the effect of a low

viscosity zone on the flow at fracture zones and the

calculation of its surface observables. First, the

temperature anomalies at depths below the low viscosity zone

very important in the calculation of the surface

observables, but perhaps less so than if the low viscosity

zone did not exist in the case of topography. In the case

, I

of constant viscosity convection, the topography and geoid

kernels are appreciable down to great depths (see Figure

4.7). As the viscosity in the top layer decreases, the

topography kernels decrease in magnitude at depth below the

low viscosity zone. The geoid kernels are more complicated

and change sign at depth. To accurately calculate the geoid

and topography anomalies for a convective system, therefore,

one must include the temperature anomalies down to the

bottom of the convective layer.

Second, although the convective flow at a fracture

zone, with a very high viscosity contrast in the viscosity

structure, will initially prefer the low viscosity zone, the
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flow will never be confined to it. Because of the presence

of the initial temperature gradient, the flow near the

fracture zone will have a greater amplitude that the flow

farther away from the fracture zone. This flow

preferentially cools underneath the fracture zone and

instigates convection throughout the fluid layer, and the

longer wavelength flow will eventually dominate the fluid

flow. The low viscosity zone, therefore, only delays the

instigation of appreciable longer wavelength convective

flow. Craig and McKenzie (1986) did not include the effects

of the temperature anomalies at depths below 225 km in the

upper mantle for their models representing a low viscosity

zone. They artificially placed a boundary at 225 km depth,

which constrains the convective flow to shorter wavelengths

and bars the effects of cooling at greater depths.

Finally, in the Earth, the average topography data

supports the simple plate cooling models. The geoid

anomalies at fracture zones do not in many cases. It has

been puzzling that these two observables predict different

conclusions since, in constant viscosity convection, they

operate in tandem. However, with the addition of a low

viscosity zone, the topography and geoid anomalies behave

very differently at these short wavelength. In particular,

in the above examples, with convection beginning at 50 km in

depth, the assumptions of the plate model are violated, yet

the observed depth-age relationship which follows the plate

model can be satisfied. This model is further evidence that
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the plate model description of the depth-age relationship is

not unique.

There are three major assumptions inherent in our model

which could strongly effect the above conclusions. First,

we approximate the viscosity structure with only three

layers of constant viscosity and neglect the effects of

temperature and pressure on the viscosity. This assumption

imposes a depth scale into the fluid layer, corresponding to

the depth of the low viscosity zone, which remains

throughout the calculation and does not vary with time as

when the effects of temperature and pressure are included.

This depth scale controls the wavelength of the small scale

convection which is in turn reflected in the observables.

It does not, however, affect our conclusions that the low

viscosity zone induces small scale convection, that

significant cooling occurs below the low viscosity zone, and

that the low viscosities downweight the effect of the

temperature anomalies at depth on the surface topography.

Second, we assume that the fluid in the two dimensional

plane of the model remains in that plane and that advection

perpendicular to the plane is negligible. We, therefore,

ignore the effects of a shear flow perpendicular to the

plane associated with the motion of the conducting lid. This

shear flow would primarily affect the time scales of the

onset of the different wavelength flows and, in particular,

the onset of the longest wavelength flows, corresponding to

twice the depth of the fluid layer. These flows would
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occur earlier due to shear and thermal coupling in three

dimensions and might, in fact, occur so early that they

eliminate the period of confinement to the low viscosity

zone. However, the effect of shear and thermal coupling may

be diminished by the low viscosity zone and by the direction

of relative motion which, since fracture zones are often not

aligned in the direction of motion of the plate, might not

be directly perpendicular to the plane of the calculation.

Nevertheless, the effect of advection perpendicular to the

plane of our calculations could affect the relative timing

of the stages in the convective flow, especially as regards

the confinement of the flow to the low viscosity zone.

Finally, we constrain the fluid to circulate in a

region corresponding to only the upper mantle. This

assumption limits the longer wavelength flow to wavelengths

near twice the depth of the box or 1200 km, in our

calculations. Since this wavelength is close to the mean

length of the observed SEASAT geoid and topography profiles

over fracture zones, it has a strong effect on the predicted

depth-age and geoid slope-age relationships. If our model

instead included the whole of the mantle and the 670 km

discontinuity was not a significant fluid boundary, then

this wavelength of convection would not be so pronounced in

the observables. However, the low viscosity zone would

still be required to dampen the effects of temperature

variations beneath the plates in order to satisfy the depth­

age relationship, and to introduce the time dependence and
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small scale variability seen in the geoid slope-age

relationship.

4.8 Conclusions

With a finite element numerical method, we have

examined the flow in the upper mantle driven by a fracture

zone thermal structure. Our model assumes a simple three

layer viscosity structure consisting of a rigid conducting

lid overlying a low viscosity layer which in turn overlies a

unit viscosity layer extending to the base of the upper

mantle (Figure 4.1). We have studied the effects of varying

the viscosity in the low viscosity zone, the Rayleigh number

based on the viscosity of the lower layer and the thickness

of the low viscosity layer, on the flow and on the

topographic and geoid expression of the fracture zone.

The flow initially acts to decrease the thermal step,

and the first convection cell grows immediately beneath the

conducting lid at the fracture zone, advecting hotter

material from the younger side of the fracture zone to the

colder side. Other cells grow later through shear and

thermal coupling, and from boundary layer instabilities away

from the fracture zone. In general, the flow is very time

dependent and becomes more so as the Rayleigh number and

viscosity contrast of the fluid layers are increased. Also,

as they increase, the characteristic wavelengths and

temperature variations in the convection cells decrease.
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We have found that the flow is primarily dependent on

the viscosity of the top layer where the temperature

gradients are initially the strongest, and we have defined

an effective Rayleigh number for our calculations which is

based on the viscosity of the top layer and the depth of the

whole fluid layer (the top and bottom layers together) .

When this Rayleigh number is less than 10 6 , the convective

anomalies dominate both the topographic and geoid

observables and, after very young ages, the step signature

of the conductively cooling thermal plates is no longer

visible in the topography and geoid anomalies. Above an

effective Rayleigh number of 10 6, however, the convection

anomalies are smaller in wavelength and amplitude and the

step signature remains visible out to larger ages. Rayleigh

numbers of 10 6 to 10 7 and low viscosity zones of one to two

orders of magnitude of viscosity lower than the rest of the

upper mantle have been estimated for the upper mantle, so

that an effective Rayleigh number (based on the viscosity of

the top layer and the depth of the top and bottom layers

combined) of 10 6 or greater is not unrealistic for the

uppermost mantle.

Since the convective flow acts to decrease the thermal

step across the fracture zone, the geoid and topography

relationships with age are different than would be produced

by conductive cooling of the plates alone. In general the

geoid slope-age relationship is time dependent and

nonmonotonic, and can even produce step reversals. This



172

behavior has been observed at a number of fracture zones,

including the Udintsev, the Eltanin, the Falkland-Agulhas

and the Amsterdam fracture zones (Cazenave et al., 1982;

Driscoll and Parsons, 1987; Freedman and Parsons, 1987).

The topographic anomaly, on the other hand, follows the

theoretical curve produced by the average depth-age

relationships in the oceans, but only if there exists a low

viscosity zone in the model. Otherwise, the convective flow

extending throughout the upper mantle destroys the

appearance of the topographic step.

Craig and McKenzie (1986) found that a fluid model of a

150 km thick low viscosity zone under a conducting lid of 75

km with a viscosity that is two orders of magnitude below

the post-glacial rebound value can reproduce the general

characteristics of the geoid profiles over the Mendocino

fracture zone. If this model were posed in the geometry of

our model, it would have a Rayleigh number of 4.5xl0 7 .

Their model differs from most of those presented in this

paper since it represents a 27 m.y. offset and includes

heating from below, so that the predicted flow would be more

vigorous. Nevertheless, the basic effect of a low viscosity

zone on the geoid profiles at the fracture zone are

illustrated by their model, and the effective Rayleigh

number which they present for the Mendocino fracture zone is

in the range of models that we present for the Udintsev.

Since they do not include the effects of cooling below the

low viscosity zone, however, their calculations of the geoid
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are not fully correct and this is illustrated in that their

model does not predict step reversals seen in our model at

effective Rayleigh numbers of 107 or above.

Through the paramter study, we have found that a range

of models reproduce the data at the Udintsev fracture zone.

From the geoid data, the thickness of the low viscosity zone

is not constrained, except where step reversals are

observed. In fact, a model with a viscosity that is one or

more orders of magnitude below the post-glacial rebound

value throughout the mantle would produce reasonable geoid

profiles. However, the topography step-age data requires a

low viscosity zone which 100-300 km thick. Furthermore,

since it is the viscosity of the top layer which controls

the character of the flow (as reflected in the effective

Rayleigh number), the exact value of the viscosity contrast

and the Rayleigh number are not well constrained. A

viscosity contrast of at least 0.1-0.01 is required,

however, to dampen and switch the sign of the kernels at

depth in and below the low viscosity zone. Therefore,

models can fit the data with a low viscosity zone which is

100-300 km thick, a viscosity contrast which is greater than

one order of magnitude and a Rayleigh number which is at

least 105.

We have presented in detail the geoid anomalies, geoid

slope-age and depth-age results of one calculation (run 5,

Table 4.2) which is an example of the set of runs with an

effective Rayleigh number of 10 6 or over. The viscosity
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contrast is 0.1, the Rayleigh number is 3.2x105 , (the layer

thickness is 125 km and the conducting lid thickness is 50

km), so that its effective Rayleigh number is 3.2x10 6 . This

run produces the long wavelength features of the observed

geoid anomalies at the Udintsev (Figures 4.17 and 4.19), and

it also predicts the geoid slope-age relationship and the

depth-age relationship (Figure 4.18, 4.20 and 4.21). This

run is typical of the calculations with an effective

Rayleigh number of 10 6 or higher, effective for runs at or

above an effective Rayleigh number of 107 where the step

reverses.

In conclusion, the geoid and topography profiles over a

fracture zone are very sensitive to flow beneath it and to

the exact viscosity structure of the uppermost mantle. This

flow is time dependent and involves a multiplicity of length

scales. When the Rayleigh number based on the full layer

depth and the viscosity of the top layer is greater than

10 6 , a convective model can explain the geoid slope-age

behavior that is observed at the Udintsev fracture zone.

However, a low viscosity zone in the uppermost part of the

mantle is required to produce the long wavelength depth-age

relationship observed in the oceans.
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Table 4.1

Variable Description

d <depth scale

Po average mantle
density

Pw density of water

go surface gravitational
acceleration

K average mantle thermal
diffusivity

average mantle thermal
expansion coefficient

elastic plate thickness

Value

600 km

3330 kg/m3

1025 kg/m3

9.82 m/s 2

10 km

176

v

~T

E

Poisson's ratio

Temperature contrast
across the box

Young's Modulus

0.25

1365 °c

8x10 10 N/m2
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Run Rayleigh Viscosity Layer Grid Figure
Number Contrast Thickness (elems) Number#

i 4.2xl05 1.0 n .lo 192x27 1 4.2a
ii 4.2xl0 5 1.0 n .lo 192x27 2 4.2b
iii 4.2xl0 S 1.0 n.lo 192x27 3 4.2c

la 10 6 1.0 n .lo 200xSO 4.3/4.8/4.10/4.21
lb 10 7 1.0 n .lo 200x50 4.3/4.8/4.10/4.21

2a 105 1.0 n .lo 140x38 4.4/4.11/4.12
2b lOS 0.1 125 km 200x50* 4.4/4.11/4.12
2c 105 0.01 125 km 200xSO* 4.4/4.11/4.12/4.21

3 10 4 0.01 125 km 200xSO 4.S/4.13/4.14

4a lOS 0.1 50 km 140x38 4.6/4.15/4.16
4b 105 0.1 300 km 200x50 4.6/4.15/4.16

S 3.2xl05 0.1 125 km 200xSO* 4.19/4.20/4.21

n.l. - no low viscosity layer
1 - 8xl box, with a 27 m.y. offset across the fracture

zone and a conducting lid thickness of 75 km
2 - as for 1 and with heating from below (1 H.F.U.)
3 - 8xl box, with a 15 m.y. offset across the fracture

zone and a conducting lid thickness of 75 km
* - tested on a 146x79 (2xl) grid for accuracy
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Figure Captions

Figure 4.1: Geometry and boundary conditions of the model

where "a" is the thickness of the bottom layer, "b" is the

thickness of the whole box, "c" is the prescribed flux and

"h" is the width of the box.

Figure 4.2: Temperature contours of the runs discussed in

the text with Ra=4.2x10 5 , no viscosity contrast at depth, a

conductive lid of 75 km (with tick marks marking its lower

boundary), and an 8x1 box with 192x27 elements. (a) has a 27

m.y. age offset and heating from below (run i); (b) has a 27

m.y. age offset but no heating from below (run ii); and (c)

has a 15 m.y. age offset and no heating from below (run

iii). The temperature contours represent 136 °c increments.

Figure 4.3: Temperature contours for runs with no viscosity

contrast: (a) with a Rayleigh number of 10 6 (run 1a); and

(b) with a Rayleigh number of 10 7 (run 1b) from Table 4.2.

The temperature contours represent 90 °c increments and the

ticks mark the lower boundary of the conducting lid.

Figure 4.4: Plots of the temperatures and streamlines for

runs with a Rayleigh number of 105, a low viscosity zone

thickness of 125 km: (a) with no viscosity contrast (run

2a); (b) with an order of magnitude viscosity contrast (run

2b); and (c) with a viscosity contrast of two orders of
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magnitude (run 2c), from Table 4.2. The temperature contours

represent 90 °c increments except for (c) where they

represent only 75 °C, and the ticks mark the boundaries of

the low viscosity zone.

Figure 4.5: Plots of the temperatures for run 3 with a

Rayleigh number of 10 4 , a viscosity contrast of two orders

of magnitude and a top layer thickness of 125 km from Table

4.2. The temperature contours represent 90 °c increments,

and the ticks mark the boundaries of the low viscosity zone.

Figure 4.6: Plots of the temperatures for runs with a

Rayleigh number of 10 5 , a viscosity contrast of one oder of

magnitude: (a) a top layer thickness of 50 km (run 4a); and

(b) a top layer thickness of 300 km (run 4b) from Table 4.2.

The temperature contours represent 136 °c increments, and

the ticks mark the boundaries of the low viscosity zone.

Figure 4.7: The topography and gravity kernels for

wavelengths: 8d-solid line, 2d-long dash, d-medium dash, and

(d/2)-short dash, for a top layer thickness of 125 km and a

viscosity contrast ·of: (a) 1.0; (b) 0.1; (c) 0.01.

Figure 4.8: The geoid profiles at various times for runs:

(a) l(a); and (b) l(b), from Table 4.2 as in Figure 4.3. The

geoid is in meters and the distance in kilometers. The
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dashed line is without an elastic plate and the solid line

includes a 10 km elastic plate.

Figure 4.9: A sample fit to the geoid versus distance plot

(from run 2b) from which we estimate the magnitude of the

step.

Figure 4.10: The geoid slope versus age relationships for

runs l(a) and l(b) (with a Rayleigh number of 10 6 and 10 7 ,

respectively, and no viscosity contrast) from Table 4.2. For

comparison, we have drawn the predicted geoid slope versus

age relationships for plate models with 75 km (s~dash)

and 125 km ( \"'<"':\ dash) thick plates.

Figure 4 .11: The geoid profiles for runs: (a) 2 (a); (b)

2(b); and (c) 2(c), from Table 4.2 as in Figure 4.4. The

geoid is in meters and the distance in kilometers.

Figure 4.12: The geoid slope versus age relationships for

runs 2(a), 2(b) and 2(c) (with a Rayleigh number of 10 5 , a

top layer thickness of 125 km and a visosity contrast of

1.0, 0.1 and 0.01, respectively) from Table 4.2. For

comparison, we have drawn the predicted geoid slope versus

age relationships for plate models with 75 km (S~ovtdash)

and 125 km ( 161,') dash) thick plates.
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Figure 4.13: The geoid profiles for run 3 from Table 4.2 as

in Figure 4.5. The geoid is in meters and the distance in

kilometers.

Figure 4.14: The geoid slope versus age relationships for

runs 3 and 2(c) (with a viscosity contrast of 0.01, a top

layer thickness of 125 km and a Rayleigh number of 10 4 and

105, respectively) from Table 4.2. For comparison, we have

drawn the predicted geoid slope versus age relationships for

plate models with 75 km (~Wv·l- dash) and 125 km ( ltn<J dash)

thick plates.

Figure 4.15: The geoid profiles for runs: (a) 4(a); and (bl

4(b), from Table 4.2 as in Figure 4.6. The geoid is in

meters and the distance in kilometers.

Figure 4.16: The geoid slope versus age relationships for

runs 4(a), 4(b) and 2(b) (with a Rayleigh number of 105, a

viscosity contrast of 0.1 and a top layer thickness of 50,

300 and 125 km, respectively) from Table 4.2. For

comparison, we have drawn the predicted geoid slope versus

age relationships for plate models with 75 km (S\VVT dash)

and 125 km (Ienj dash) thick plates.

Figure 4.17: Sample geoid profiles over the Udintsev

fracture zone from the SEASAT mission, with the GEM9 field

removed up to and including degrees 1=m=10 and with the
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regional field removed with a best fit to a second order

polynomial: (a) from the western side of the fracture zone;

(b) from the eastern side of the fracture zone.

Figure 4.18: Observed geoid slopes versus age from the

Udintsev fracture zone: (a) from the western side of the

fracture zone; (b) from the eastern side. The predicted

geoid slope-age relationships for plate models with 75 km

and 125 km thermal plates are drawn for comparison.

Figure 4.19: Geoid profiles for run 5 with a Rayleigh number

of 3.2xI05 , a viscosity contrast of 0.1 and a top layer

thickness of 125 km. The geoid is in meters and the

distance in kilometers.

Figure 4.20: The geoid slope versus age relationships for

run 5, where the viscosity contrast is 0.1, the Rayleigh

number is 3.2x10 5 and the low viscosity layer thickness is

125 km. For comparison, we have drawn the predicted geoid

slope versus age relationships for plate models with 75 km

( $ 'vy"t dash) and 125 km (, e "'3 dash) thick plates.

Figure 4.21: The topographic step versus age for run l(a)

(with a Rayleigh number of 10 6 and no viscosity contrast),

run l(b) (with a Rayleigh number of 10 7 and no viscosity

contrast), run 2(c) (with a Rayleigh number of 105, a top

layer thickness of 125 km and a viscosity contrast of 0.01),



and run 5 (with a Rayleigh number of 3.2x105 , a top layer

thickness of 125 km and a viscosity contrast of 0.1). For

comparison, we have drawn the step predicted from the

average depth-age relationship for the North Pacific from

Parsons and Sclater (1977).
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Chapter 5: INSTABILITIES IN THE COOLING OCEANIC PLATES

5.1 Introduction

Conductive cooling of the oceanic plates can explain

the depth-age relationship until ages near and greater than

70 m.y. (Parsons and Sclater, 1977). At 70 m.y., the depth­

age curve flattens, probably reflecting an increased heat

transport over and above that produced by conduction to the

base of the lithosphere (McKenzie, 1967). This extra heat

supply implies the existence of an advective mechanism which

transfers heat from the mantle to the surface plate. Many

explanations have been put forward to explain the flattening

of the subsidence data that involve advection (McKenzie,

1967; Schubert et al., 1976; Parsons and Sclater, 1977;

Parmentier and Turcotte, 1977; Parsons and McKenzie, 1978;

Heestand and Crough, 1981; Jarvis and Peltier, 1982;

Fleitout and Yuen, 1984a). However, recent observations of

small scale (150-500 km in wavelength) geoid anomalies in

the Central Pacific (Haxby and Weissel, 1986) and Central

Indian oceans (Cazenave et al., 1987) have renewed interest

in the explanations of the depth-age relationships that

involve small scale (150-250 km wavelength) convective

instabilities underneath the cooling plates.

Parsons and McKenzie (1978) showed that an oceanic

plate can become convectively unstable as it Cools. They

divided the thermal plate into a rigid layer and a ductile

layer where the boundary between the layers is controlled by
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the temperature. They then defined a local Rayleigh number,

Rab' in the ductile portion of the boundary layer:

Rab = goadTbdb3/K~b

where go is the surface acceleration of gravity, a is the

coefficient of thermal expansion, K is the thermal

diffusivity, and ATb is the temperature difference, db is

the thickness and ~b is the viscosity of the ductile portion

of the thermal boundary layer. Since conductive cooling of

the oceanic plates follows an error function temperature

solution:

(5.2)

one can calculate the local Rayleigh number for the boundary

layer. If this Rayleigh number exceeds a critical Rayleigh

number Racr ' the lower portions of the plate will convect,

increasing the heat flux into the base of the plate.

Parsons and McKenzie (1978) demonstrated that, with

appropriate values for the thermal constants in the upper

mantle but with a viscosity which is one order of magnitude

less than the viscosity that is consistent with post-glacial

rebound, the oceanic plates would go unstable near a plate

age of 70 m.y .. In a study of the onset of convective flow

beneath a conducting lid, Houseman and McKenzie (1982)

showed that the heat flux from convective instabilities can

produce the observed depth-age relationship in the oceans.

Yuen et al. (1981) also analyzed the local convective

stability of a surface boundary layer due to large scale

convective circulations in the mantle. They used a frozen-
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time eigenvalue analysis and assumed that the viscosity

depends only on temperature. They found that the large

viscosity of the cold thermal boundary layer at the surface

exerts a stabilizing influence on the formation of

convective instabilities. Yuen et al. (1981) also found

that convective instabilities will grow either if the

viscosity of the upper mantle is one order of magnitude less

than the value which is consistent. with post-glacial rebound

data (10 20 Pa.s) or if there exists a low viscosity zone in

the uppermost part of the mantle with a viscosity of 10 20

Pa.s. Jaupart and Parsons (198S) also concluded that, to

produce convective instabilities within the lifetime of the

oceanic plates, the viscosity of the uppermost mantle would

need to be, at most, 10 21 Pa.s.

Yuen and Fleitout (1984), Fleitout and Yuen (1984a) and

Fleitout and Yuen (1984b) have studied the effect of

temperature and pressure on the viscosity structure of the

mantle and the development of convective instabilities at

the base of the lithosphere. They found that the

temperature and pressure dependence creates a low viscosity

zone in the uppermost mantle beneath the lithosphere, with

viscosities that are one to four orders of magnitude less

than 10 21 Pa.s. They also found that, in this region,

convective instabilities could have fast growth rates.

Recent analyses of the SEASAT altimeter measurements of

the geoid in the Central Pacific ocean (Haxby and Weissel,

1986) and the Central Indian ocean (Cazenave et al., 1987)
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have revealed a small wavelength (150-500 km) geoid signal

which is 0.50-0.80 m in magnitude. These geoid anomalies

are evident over seafloor of 5-10 m.y. in age and extend out

to ages greater than 30-40 m.y., with a possible trend to

longer wavelengths at older ages. The signal is correlated

across satellite tracks which are 80-120 km apart, so that

the anomalies appear as long rolls which stretch in the

direction of absolute plate motion. In particular, the

direction of lineation is oblique to the Pacific-Farallon

fracture zone traces, so the anomalies can not be due to

ridge processes. Haxby and Weissel (1986) interpreted this

signal as the direct reflection of small scale convection in

the uppermost mantle, confined to a layer near 100 km thick.

In order to produce an onset in the convective flow at 5-10

m.y., they postulated that the viscosity in this layer is

three orders of magnitude below post-glacial rebound values.

Buck and Parmentier (1986) analyzed the onset and

development of convective instabilities in the upper mantle

with a finite difference, two-dimensional fluid model. They

used a relationship for the dynamic viscosity which depended

on both temperature and pressure. Buck and Parmentier found

that the convective flow could produce the observed

magnitude and wavelengths of the SEASAT geoid anomalies, but

not the persistence of the anomalies to older ages, in some

cases to ages greater than 50 m.y .. They explained the long

life of the anomalies as evidence that the early instability

had been "frozen in" to the elastic lithosphere. They also
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found that this convective flow which begins at young ages,

does not perturb the mean depth-age relationship from the

squareroot of age dependence of the conductive cooling

solution, so that it cannot produce flattening at ages near

70 m.y ..

Although the temperature and pressure dependence of the

viscosity produces a low viscosity zone in the shallowmost

mantle, the low viscosity zone thickens and decreases in

magnitude with age. Its effects are therefore diminished

with increasing age, reducing the small scale convective

flow and its effect on the depth-age relationship. However,

small degrees of melt have also been shown to decrease the

viscosity of mantle material (Cooper and Kohlstedt, 1984).

Since the presence of melt is thought to be confined to the

top 200 km of the mantle (Anderson and Sammis, 1970;

McKenzie, 1982), the low viscosity zone may be enhanced

above 200 km and may persist to greater ages than predicted

when just the effects of the temperature and pressure

variations are considered. In this paper, we have studied

the effects of a low viscosity zone in the uppermost mantle

on instabilities in the cooling oceanic plates.

We have approximated the viscosity structure in the

upper mantle by three layers consisting of a conducting lid,

overlying the low viscosity zone which in turn overlies a

constant viscosity layer extending to the base of the upper

mantle. Using a finite element numerical method, we study

the effect of the low viscosities, the layer thicknesses and
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the overall Rayleigh number on the convective instabilities

and the surface anomalies which reflect them. We explore

the effect of these parameters on the convective flow and

its surface geoid, gravity and topographic expression.

We have also found that the low viscosity zone enhances

the development of convective instabilities in the uppermost

mantle. At reasonable viscosity contrasts the flow is first

confined to the low viscosity zone, but eventually the

horizontal temperature gradients at the base of the low

viscosity zone will cause the bottom layer to go unstable as

well. The time at which the first instability occurs

depends upon the viscosity in the top layer, and the period

for which it is confined to the low viscosity zone depends

on the viscosity contrast between the layers. Moreover, the

low viscosity zone reduces, but does not negate, the effect

of the temperature anomalies due to convection in the bottom

layer and in the lower part of the low viscosity zone, on

the surface geoid, gravity and topography fields.

For reasonable values of the viscosities and viscosity

contrast, the model produces the observed small scale geoid

and topography anomalies. However, it cannot reproduce both

the magnitude and the onset time of the observables with the

same model. This limitation of the method is expected given

the inherent limitations of a two-dimensional model in

predicting a three-dimensional onset time, since we cannot

model the effect of perturbations from three-dimensional

flows or advection in and out of the plane of the



220

calculation. Also, since we do not include the effects of

any perturbations and since we use a conductive lid with a

constant thickness which is too thick at young ages, we

underestimate the onset time in the Earth. Therefore, we do

not use the onset time as a constraint. We also calculate

the mean depth-age, geoid-age and heat flow-age

relationships from the flow. We find that the initial small

scale flow causes these relationships to take on slightly

shallower values but does not alter the squareroot of age

dependence. However, when convection extends throughout the

whole layer, the mean depth-age, geoid-age and heat flow-age

relationships flatten. Therefore, the apparent conflict

presented by the observations that small scale convection

starts at near 5-10 m.y. in the Pacific but that the

flattening in the depth-age relationship does not occur

until 70 m.y. can be resolved. Furthermore, the model

predicts that the heat flow-age curve flattens earlier and

reaches higher values at large ages than the plate model;

And, recent measurements of heat flow on old seafloor in the

Atlantic ocean support this early departure time and higher

asymptotic value for the heat flow-age curve (Davis et al.,

1984; Detrick et al., 1986; Louden et al., 1987).

5.2 The Numerical Model

We have nondimensionalized the equations of motion,

heat transport and state through the following

transformations:
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J!' = J!o J! (503a)

(x',z') = d (x, z) (5 03b)

T' = l1T T (503c)

t' = (d2 /K) t (503d)

P' = Po P (5 . 3e)

where primes denote dimensional quantities andJ!o is the

viscosity of the bottom layer, x and z are the horizontal

and vertical coordinates respectively, d is the depth of the

convecting layer, Po is the reference density and l1T is the

initial temperature contrast between the bottom and top

boundaries. We used the values for the physical constants

given in Table 5.1.

After this transformation, the equation of motion, the

heat equation and the equation of state are given by,

l70cr = -R(T-To)i

ClT /dt + u 0\7T = V2 T

1 - o.l1T(T-T o ) = p

(504)

(5.5)

(506)

where u is the velocity vector, ~ is a vertical unit vector,

cr is the stress tensor given by:

(507)

where p is the pressure, and R is the Rayleigh number:

(508)

We solved these equations using a velocity based finite

element method, which has been modified to solve the heat

equation on finite difference grid, and followed the flow in

time with an explicit time stepping method (Daly and

Raefsky, 1985). Although the incompressibility equation:
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(5. 9)

is never explicitly solved, a penalty function treatment of

the pressure forces incompressibility (Hughes et al., 1979).

We tested the resolution of each run by repeating the

calculation on a larger grid, usually double the size, and

comparing the results. We also looked at enlarged portions

of the temperature field in detail to insure that the

contours were smooth and that no spurious values had entered

the calculation.

All of the convection calculations began with the same

idealized initial temperature structure and were subject to

the same boundary conditions:

w 0, z = O,l,b (5.10a)

u = 0, z = 1, b x = 0, h (5.10b)

O"xz = 0, z = 0 x = 0, h (5.10c)

T = 0, z = b (5.10d)

aT/ox = 0, x = O,h (5.10e)

crT /az 0, z = 0 (5.10f)

T 1, z < b, t = 0 (5.10g)

where u is the horizontal velocity and w is the vertical

velocity. These boundary conditions are also summarized in

Figure 5.1.

We experimented with a number of box widths. Since all

of the fluid will eventually convect, a compromise had to be

found between the resolution of the flow (since there were

limits on the total number of mesh points) and the

disturbances due to the sidewalls. To test the effects of
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the sidewalls on our results, we ran a number of

calculations on a series of grids with different aspect

ratios: 8-by-1 (8x1), 6x1, 4x1 and 2x1 boxes. In all of the

calculations in our parameter suite, except for those at

very low Rayleigh numbers and viscosity contrasts, we found

that the 8x1, 6x1 and 4x1 boxes gave similar results within

two or three percent in the mean flux. We chose a box

length of 4x1 for most of our runs, therefore. However,

because, at high Rayleigh numbers and viscosity contrasts,

the grid must be very dense, some of the runs and many of

the resolution calculations were run on a 2x1 grid.

To obtain this simplified model, a number of

assumptions have been made. The first was to approximate

the mechanical portion of the lithosphere by a conducting

lid (Jaupart and Parsons, 1985). Since we could not

incorporate any growth of the lid with time, its thickness

had to be an average of the appropriate thickness at all

ages. As a result the lid was too thick at young ages. To

investigate the effect of the lid on the flow and it surface

anomalies, we ran calculations for a number of lid

thicknesses, 0 km, 25 km and 50 km thick, and found that the

form of the instabilities and the ensuing flow did not vary

appreciably. As expected the onset of the instability was

delayed by a thicker lid, and the surface anomalies reduced.

in amplitude. We will discuss the runs in which we have

varied the conducting lid thickness in more detail in the

following sections, but we chose a conducting lid thickness
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of 50 km for the bulk of the parameter study, corresponding

to a 30-50 m.y. old plate.

Because we concentrated on the flow due to convective

instabilities instigated by conductive cooling at the top of

the layer, we neglected internal heating and heating from

below. Since the upper mantle is believed to have a low

concentration of radioactive elements, whose effects are in

any case limited on the short time scales on which these

processes are important, we can ignore internal heating

(McKenzie and Richter, 1981). The effects due to heating

from below are more difficult to assess. Since the

instabilities in the top layer develop very quickly, they

may reach the bottom layer before it goes unstable. Then,

heating from below will only reinforce the flow due to the

instabilities at the surface. At large Rayleigh numbers,

the effects of instabilities in the bottom boundary layer

must nevertheless be taken into account and, most certainly

at large times, the effect of heating from below on the

magnitude of the temperature difference across the fluid

layers must be considered.

The third simplification is that our model is two­

dimensional and we have ignored the effects of advection in

and out of the plane of the calculation. As a first

approximation, however, a two dimensional model is adequate.

Such an advective flow has been modelled in the laboratory

by Parsons and Richter (1975), in a fluid tank with a top

boundary which is rigid and moving with constant velocity.
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These experiments show that convective instabilities in a

fluid with such a rigid moving top boundary will align

themselves in the direction of motion of the boundary and

that a two dimensional description of the flow is useful.

The fourth assumption is in our choice for the physical

parameters used in the scaling constants from the best

estimates in the literature. These parameters are not

always well known, especially at depths where convection is

important. Since the small scale instabilities occur

predominantly in the uppermost part of the mantle, we have

chosen values for the constants which agree primarily with

surface data (Table 5.1). The notable exception is the

value for K, the thermal diffusivity. Since the thermal

diffusivity only enters into the scaling of time and since

the onset times are controlled by the material in the fluid

upper mantle, we chose a value that is appropriate for the

uppermost mantle.

A final consideration is the effect of the sidewalls.

In our calculations due to the velocity boundary conditions

on the sidewalls, the flow must either center on an

upwelling or downwelling at a sidewall. Therefore, our

estimates of the wavelengths of the convection are only

approximately the wavelengths expected in the mantle. It is

unclear whether the Earth has features that act in a way

similar to sidewalls. Fracture zones and continental

shelves might exert such an influence but, for a comparison



226

to data, we will try to omit the features in the flow and in

the surface anomalies produced by the sidewalls.

With this viscosity model of the upper mantle,

consisting of a conducting lid, a low viscosity zone and a

constant viscosity layer extending to the base of the upper

mantle, we explored the effect on the convective flow of (1)

low viscosities in the upper layer, (2) the Rayleigh number

of the fluid layer, based on the viscosity of the bottom

layer, (3) the relative thicknesses of the two fluid layers,

and (4) the thickness of the conducting lid. In Table 5.2,

we list the parameters for the runs that we shall present.

5.3 Convection Induced by Cooling from Above

Four suites of calculations are presented (see Table

5.2) In the first suite, we varied the viscosity contrast

while keeping the other parameters constant. For the second

suite, we changed both the Rayleigh number based on the

viscosity of the bottom layer and the Rayleigh number based

on the viscosity of the top layer. In the third suite, we

varied the relative thicknesses of the two fluid layers.

Finally, for the fourth suite, we changed the thickness of

the conducting lid.

In Figures 5.2, 5.3 and 5.4, we have drawn the

temperature structures for three calculations in which we

have held the Rayleigh number at 10 5 , the layer thickness at

0.21 (125 km) and the conducting lid thickness at 0.087 (50

km), while varying the viscosity contrast from 1.0 to 0.01.
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In Figure 5.2, we present the temperature structures for no

viscosity contrast (run 1 in Table 5.2) at 720 m.y. and 770

m.y .. We defined the onset time in these calculations as

the time at which the kinetic energy (the sum of the square

of the velocities at each node in the numerical grid)

exponentially increases due to the increase in the

convective velocities. The onset time for this flow is at

700 m.y., so these frames represent the flow 20 m.y. and 70

m.y., respectively, after its onset. We defined the

wavelength of the flow as the distance between the centers

of adjacent downgoing plumes. Although the plumes are

slightly irregularly spaced, the flow can be characterized

by -an 800 km wavelength. The horizontal temperature

difference across the plume reaches a peak of 700 °e but, by

770 m.y., it has decreased to 450 °e and, by 800 m.y., it

has decreased to 250 °e.

In Figure 5.3, we have drawn the temperature structure

for the second run in the first suite of calculations which

has a viscosity contrast of 0.1 (run 2). The onset time for

this flow is at 380 m.y. and we have presented the

temperature structures for this run at 400 m.y. and 450

m.y .. These frames are 20 m.y. and 70 m.y., after the onset

of the flow, respectively, which are the same intervals as

presented for run 1. The sidewalls are again sites of

downwelling, but the characteristic wavelength of the flow

(800 km) is more regular than in the case with no viscosity

contrast. Because the local Rayleigh number in the low



228

viscosity zone has increased, the top boundary layer inside

the low viscosity zone is thinner than for the case of no

viscosity contrast. The magnitude of the temperature

contrast across the plume reaches nearly 750 °e but, by 450

m.y., it has decreased to 240 °e. Therefore, although the

initial instability has the same magnitude as in the

previous calculation with no viscosity contrast, it

decreases more quickly.

With the same model geometry but a viscosity contrast

of two orders of magnitude (run 3), the effect of the low

viscosity zone dominates the flow. The effective Rayleigh

number of the low viscosity zone, which is 9.26xl0 4 (using

the thickness and viscosity of the top layer, with ~Tb

equal to one), is near to the overall Rayleigh number of 10 5

and the flow is initially confined to the low viscosity

zone. The onset time for this flow is 85 m.y. and we have

drawn the calculation at 91 m.y., 110 m.y. and 130 m.y.

(Figure 5.4). The wavelength of the small scale flow is 150

km and its magnitude reaches 450 °c at 91 m.y .. By 6 m.y.

later, however, the magnitude of the flow has decreased to

100 °e. Since the short wavelength flow is uneven, as it

cools beneath the top layer, it sets up longer wavelength

temperature gradients which cause the bottom layer also to

convect. This longer wavelength flow begins near 99 m.y.,

and its contribution to the energy of the flow can be seen

clearly in a plot of the kinetic energy with time (Figure

5.5(a». By 110 m.y. (Figure 5.4), this long wavelength
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convection can be seen in the temperature structure and its

magnitude is close to 250 °e. At 130 m.y., the flow has

become even more complicated. It is dominated by

downwellings on either side of the box, with convective

instabilities forming repeatedly in the top boundary layer.

These instabilities are most often swept into the downgoing

plume before initiating a significant flow of their own, and

the downgoing plume exhibits these disturbances.

Since the lateral temperature variation is most

important in calculating the geoid, topography, gravity and

heat flow anomalies seen at the surface, we have presented

it in detail here. However, the horizontal mean temperature

structure is most important in the depth-age, geoid-age and

heat flow-age relationships. In Figure 5.5(b), we have

drawn the mean temperature structures for the last

calculation (run 3 in Table 5.2) at 60 m.y., 91 m.y., 110

m.y. and 130 m.y. (see the figure caption for details). At

60 m.y., the mean temperature structure reflects simple

conductive cooling. By 91 m.y., a convective flow has

formed in the low viscosity zone so that the mean

temperatures are increased at the top of the layer and

decreased at the bottom. At 100 m.y., longer wavelength

convection has begun and the mean temperatures have been

disturbed from their conductive cooling profile down to

depths greater than 350 km; and, by 130 m.y., these

temperature differences extend to the base of the box.

Therefore, from these mean temperature structures, it is
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clear that the convective flow will alter the depth-age

relationship from a conductive cooling curve (Houseman and

McKenzie, 1982).

In the second suite of calculations in Figures 5.6 and

5.7, we have varied the Rayleigh number between 10 4 and 10 6 ,

while holding the top layer thickness at 0.21 (125 km), the

conducting lid thickness at 0.087 (50 km) and the viscosity

contrast at 0.1 (runs 5 and 6 in Table 5.2). In Figure 5.6,

we have drawn the temperature structure at 1750 m.y. for a

calculation at a Rayleigh number of 10 4 , where convection

began at 1650 m.y .. We have already discussed a calculation

where the Rayleigh number is 10 5 , run 2 in Figure 5.3. In

Figure 5.7, we have drawn the temperature structure at 89

m.y. in a 2x1 box, for a Rayleigh number of 10 6 . At this

Rayleigh number, the effective Rayleigh number of the top

layer is 9.26x10 4 . Since the Rayleigh number for the whole

layer is an order of magnitude higher than this effective

Rayleigh number, however, a longer wavelength flow begins at

nearly the same time. The small scale flow has a wavelength

of 160 km and the longer wavelength flow superimposed on top

of it has a wavelength of near 800 km. The effect of

increasing the Rayleigh number is very similar to increasing

the viscosity contrast, except that the effective Rayleigh

number of the low viscosity layer changes with that of the

whole layer. The low viscosity zone is therefore not

effective at confining the flow to the top layer at this

viscosity contrast.



231

We have also studied a set of calculations where we

have kept constant a Rayleigh number based on the viscosity

of the top layer. Runs 4, 11, 12 and 13 have a Rayleigh

number of 3.2x10 7 based on the lower viscosity. Since the

absolute viscosity of the top layer is then effectively

constant, the onset time for the small scale convection is

identical in these calculations. However, as the Rayleigh

number based on the viscosity of the bottom layer decreases

and the viscosity contrast increases, the onset of long

wavelength convection is delayed (see Table 5.2).

In Figures 5.8, we present calculations in which we

have varied the thickness of the low viscosity zone, while

holding the Rayleigh number at 10 5 , the conducting lid

thickness at 0.087 (50 km) and the viscosity contrast at

0.1. In Figure 5.8(a), we have drawn the temperature

structure at 520 m.y. for a calculation with a low viscosity

zone which is 0.087 (50 km) thick (run 7 in Table 5.2). The

onset time for this flow is 465 m.y., and we have drawn the

flow 55 m.y. later. The characteristic wavelength of the

flow has been reduced by the low viscosity zone to 600 km.

In Figure 5.8(b), we have drawn the temperature structure at

270 m.y. for a calculation with the top layer thickness at

300 km (run 8 in Table 5.2). The onset time for this flow

is 250 m.y. for the convective flow which is confined to the

low viscosity zone. It has a wavelength of 370 km at 250

m.y., but quickly decays into a longer wavelength flow

commencing at 285 m.y .. Therefore, if the effective
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Rayleigh number of the top layer is large enough so that

small scale convection begins, the depth of the low

viscosity zone controls the wavelength of the shallow

convective cells. However, the small scale flow will

eventually decay into a longer wavelength flow, where the

depth of the total fluid layer and the side boundaries

control the wavelength of the flow.

In the final set of calculations, we have varied the

conducting lid thickness to 25 km and Okm, while holding

the Rayleigh number at 10 5 , the low viscosity zone thickness

at 0.21 (125 km) and the viscosity contrast at 0.01. In

Figure 5.9(a), we have drawn the temperature structure at 58

m.y. for the run with a 25 km thick lid and, in Figure

5.9(b), we have drawn it at 41 m.y. for a 0 km thick lid.

The characteristic wavelengths of these flows are the same

at 150 km, but their onset' times, the times at which they

develop longer wavelength flows and their magnitudes are

different. The onset times for runs with a 50 km, 25 km and

o km lid are, respectively, 85 m.y., 54 m.y. and 37 m.y.,

and they develop the longer wavelength (1200 km) flows 14

m.y., 11 m.y. and 7 m.y. later. Therefore, the conducting

lid delays the instigation of a small scale convective flow

and its development into a longer wavelength flow.

In Figure 5.10, we plotted the initial onset times, of

flow within either of the fluid layers versus the viscosity

contrast at different Rayleigh numbers (based on the

viscosity of the bottom layer), for calculations with a low
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viscosity zone thickness of 0.21 (125 km) and a conducting

lid thickness of 0.087 (50 km). From the simple boundary

layer argument given in the introduction, with ~T fixed,

the onset time is related to the viscosity in the layer by:

log to( Slog J.t (5.11)

with S = 2/3. In our suite of calculations, S is not

constant but is close to 1/2. The failure of the boundary

layer argument reflects the transition in the flow from

convection that fills both fluid layers at low viscosity

contrasts to small scale convection at large viscosity

contrasts. From this simple boundary layer argument, one

can also derive a relationship between the Rayleigh number

and the onset time, which gives a log-log slope of -2/3.

For the second suite of calculations in which we vary only

the Rayleigh number at a viscosity contrast of 0.1, the

onset times do not closely follow this relationship as well,

especially at a Rayleigh number of 10 6 where the small scale

and longer scale convection begin at near the same time.

In summary, we have found that the magnitude and onset

time of the flow is very sensitive to the viscosity

structure. In particular, the initial onset time depends on

the absolute viscosity of the top layer. If the viscosity

contrast is large enough so that the local Rayleigh number

in the top layer is comparable to the Rayleigh number for

the whole fluid layer, then the flow will remain in the low

viscosity zone for a period, but will eventually decay into
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a longer wavelength flow extending throughout both fluid

layers.

5.4 Geoid, Topography, Gravity and Heat Flow

To calculate the geoid, gravity and topography

anomalies from these temperature structures, we have used

the Green's function method described by Parsons and Daly

(1983). The temperature field is decomposed into its

Fourier components and, at each wavenumber, the Green's

function response to the temperature anomalies at depth, the

kernel, is calculated for each observable. The surface

topography kernel represents the effect of a density

anomaly, at depth z, on the surface topography through the

transmission of normal stress. We have also included the

effect of a 10 km elastic plate into the surface topography

kernel (Detrick et al., 1986), which is a lower bound on the

elastic plate thickness for a 30-50 m.y. old plate (Watts,

1978). The gravity kernel includes the effect of both the

topography on the boundaries and the density variations in

the layer. Finally, the geoid kernel can be derived from

the gravity kernel through Brun's formula:

N' (k) = g' (k) !k' go = (d!go) g' (k) !k (5.12)

where N is the geoid anomaly, go is the acceleration of

gravity and k is the wavenumber. The components of the

temperature field are weighted by the kernels at each depth

and integrated over the depth, and the resulting one­

dimensional array is Fourier transformed back to produce the
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anomaly. The application of the method to this model is

discussed in detail in Robinson et al. (1987a; Chapter 2) .

The heat flow, q, at the surface of the model can be

written:

q' = k c ~T:/~z: (5.13)

where k c is the thermal conductivity. We calculate ~T, and

~Zl by differencing the temperature values and depths,

respectively, for the top two rows of nodes.

In Figure 5.11, we have drawn the geoid, topography,

gravity and heat flow anomalies at 400 m.y. for run 2 (see

Table 5.2). Each of the anomalies are elevated above the

upwellings and depressed above the downwellings. Convection

has begun in the layer at an 800 km wavelength and these

anomalies exhibit that wavelength as well. Initially we

estimated the amplitudes of the different wavelength

anomalies with a Fourier decomposition of the total anomaly.

We found, however, the estimates taken by eye were very

close to those given by the Fourier analysis, and we have

since relied on the estimated values. The geoid anomaly in

this run is very large reaching a magnitude of near 14

meters, and the topography anomaly is similarly large at 3.3

km. The gravity and heat flow anomalies reach a magnitude

of 110 mgals and 1.3 mW/m2 , respectively. These anomalies

represent the flow 20 m.y. after its onset. By 50 m.y.

after the onset, the geoid, topography, gravity and heat

flow anomalies have reached magnitudes of about 3 m, 1.2 km,

35 mgals and 12 mW/m2 . The geoid and gravity anomalies
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reach their maximum amplitudes quickly, whereas the heat

flow anomaly is delayed by the time it takes for the

perturbed temperatures to diffuse into the lid.

As we increase the viscosity contrast, however, the

magnitude of the surface anomalies decrease. In Figure

5.12, we have drawn the surface anomalies for run 3 which

has the same geometry as the previous run, but a viscosity

contrast of 0.01. In this figure, we have included two time

slices, at 91 and 110 m.y .. The onset time is 85 m.y. for

the small scale convection in this run, so that, by 91 m.y.,

the small scale convection is already established. The

anomalies reflect the 150 km wavelength of the convective

flow, but also exhibit some long wavelength behavior. The

magnitude of the small wavelength anomalies averages about

40 em for the geoid, 250 m for the topography, 15 mgals for

the gravity and 0.07 mw/m2 for the heat flow. These

magnitudes persist until the onset of the longer wavelength

convection. However, these values have decreased by over an

order of magnitude from the previous case. The long

wavelength convective flow is evident in the kinetic energy

by 99 m.y. and, by 110 m.y., and the geoid anomaly reflects

this longer wavelength first among the different

observables. The appearence of longer wavelength anomalies

in the heat flux is delayed due to the presence of the

conducting lid. The magnitude of the longer wavelength

signal reaches over 1.5 m in the geoid and 450 m in the
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topography. The small scale anomalies are superimposed on

top of it, and their amplitudes are irregular.

Finally, in Figure 5.13, we have drawn the surface

anomalies at 89 m.y. for run 6, where the viscosity

structure is the same as in our first example but the

Rayleigh number has been increased by an order of magnitude

to 10 6 . The anomalies are again dominated by shorter

wavelengths of near 150 km. The small wavelength anomalies

range from 20 cm to 60 cm in the geoid and 200 m to 400 m in

the topography. These values persist until the longer

wavelength convection is fully developed and are comparable

to those for the last case (run 2) that had a viscosity

contrast of two orders of magnitude and a Rayleigh number of

10 5 .

Because of the variability with time, with distance

across the box and with wavelength, it is very difficult to

characterize the behavior of the anomalies with the

parameters in the model and we can only draw some very broad

conclusions. In Table 5.2, we have listed the onset times

of the small and longer wavelength flows. Alongside these

times, we have catalogued the times and the amplitudes at

which the geoid and topography anomalies reach their maxima

for each of these flows. In all of the cases that we

examined, the geoid and topography anomalies reached their

maxima at similar times, so that we list only one time for

each flow. After reaching these maximum values, the small

scale anomalies persist at that amplitude until the longer



238

wavelength convection develops. In order to minimize the

effects of the sidewalls, we excluded the portions of the

profile 200 km from either sidewall.

As the viscosity contrast increases, the geoid and

topography kernels decrease sharply in magnitude in the low

viscosity zone. They therefore reduce the effect of the

longer wavelength temperature anomalies on the geoid and

topography anomalies. Also, as mentioned above, the geoid

kernels become negative at depth for viscosity contrasts

near and above two orders of margnitude which counteracts

the positive contributions from shallower depths. The geoid

anomalies, therefore, decrease faster than the topography

anomalies as the viscosity contrast increases (Figure 5.12).

These effects can be seen in the first suite of calculations

where we have changed only the viscosity contrast (Table

5.2) .

In the suite of calculations where we have kept the

viscosity in the top layer constant (runs 4, II, 12 and 13)

the magnitude of the small scale convective anomalies is

similar. As the viscosity in the bottom layer increases,

the onset of longer wavelength convection is delayed but the

temperature anomalies are increased. However, since the

viscosity contrast increases as the viscosity in the bottom

layer increases, the change in the kernels with the

viscosity contrast counteracts the increasing temperature

anomalies, so that the geoid and topography anomalies

decrease overall.



239

5.5 Depth-Age, Geoid-Age and Heat Flow-Age

In the plate model, the mean depth and geoid values are

given by integrals over the thermal plate thickness of the

mean temperature profile, with unit weighting for the depth

integral and with a weighting of z (representing depth in

the model) for the geoid integral (Haxby and Turcotte,

1978). However, these weightings and the cutoff point at

the base of the thermal plate are based on assumptions,

where the most important is that convective temperature

anomalies immediately beneath the thermal plate are not

reflected in the mean depths and geoid values. The plate

model, nevertheless, reproduces the observed depth-age

relationship.

Houseman and McKenzie (1984), Fleitout and Yuen (1984a)

and Buck and Parmentier (1986) extended this method of

calculating the geoid and topography anomalies from the

plate model to their calculations of the surface expression

of convective anomalies. In a convective flow, however, the

temperature variations are significant throughout the fluid.

Extending the formalism of the plate model to convective

calculations will, therefore, lead to errors in interpreting

the observables. In our calculations, we use the Green's

function method to obtain an approximate weighting and

integrate the temperature structure down to the base of the

fluid layer.
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The best calculation for the depth-age and geoid-age

relationships given the results of our convection modelling

would embed the temperature structures in a three­

dimensional viscosity structure representing the oceanic

mantle and, with three-dimensional kernels, to calculate the

mean depths with age. Unfortunately, this calculation is

very difficult and, furthermore, it would be premature since

the temperature calculations were only formulated on a two­

dimensional grid. Instead, since our calculations give the

temperature structure at a specific age, we have

approximated the above method by integrating the mean

temperature structure at each age and weighting it with the

kernel for the longest wavelength in the ocean basin. For

the Pacific, this wavelength is near 10,000 and, for the

North Atlantic, it is near 3,000. We have therefore chosen

a wavelength, to approximate all of the ocean basins, of

4800 km which corresponds to 8d in our model. The choice of

the specific wavelength is not crucial, since at these long

wavelengths the kernels do not change rapidly with

wavelength.

We have drawn the kernel for the geoid and topography

anomalies at a 4800 km wavelength for viscosity contrasts

between 1.0 and 0.001 in Figure 5.16. At this wavelength,

the viscosity contrasts of 0.1 and 0.01 do not seriously

effect the topography kernel, but a viscosity contrast of

0.001 depresses the kernel below the low viscosity zone to

less than 30-40% of its value with no viscosity contrast.
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The gravity kernels are more strongly affected by the

viscosity contrast. By a viscosity contrast of 0.01, the

kernel has an overall magnitude of less than half of its

value with no viscosity contrast. By a viscosity contrast

of 0.001, the kernel has become negative at depths in and

below the low viscosity zone.

The behavior of the topography kernels with the

addition of a low viscosity zone indicates why the simple

weighting in the plate model, of unit value down to the base

of the thermal plate and zero below, leads to the correct

depth-age relationship. In Figure 5.14, the kernels have

unit value in the conducting lid. In the low viscosity zone

below the lid, if the viscosity contrast is large enough,

the kernels fall to much lower values. This structure

approximates that used in the thermal plate calculations,

but is due to the influence of the low viscosity layer and

not to the absence of strong temperature anomalies below the

plate. The observation that the depth-age anomaly follows a

thermal plate calculation is, therefore, a strong argument

for the existence of a low viscosity zone at depth in the

mantle.

In order to significantly effect the depth-age

relationships, cooling must extend to a depth where the

kernels downweight the contribution of the relatively cooler

material in the bottom boundary layer of the convecting

cells in comparison to the heated material in the top

boundary layer. Before cooling extends to such depths, the
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heated and cooled materials, when integrated to form the

depth-age relationship, cancel each other out and the result

appears like conductive cooling. In the presence of small

scale convection, since the kernels decrease with depth in

the low viscosity zone, the relatively cooler bottom

boundary layer of the small wavelength convection cells is

somewhat downweighted in comparison with the top boundary

layer. However, this effect is not significant until the

non-dimensional viscosity in the top layer is equal to or

greater than 0.001, where the kernels reach 40% of their

initial value by the bottom of the low viscosity zone.

In Figure 5.15, we have drawn the depth-age

relationships for runs 1, 2, 3 and 4. These runs have a

Rayleigh number of 105, a low viscosity zone of 125 km, a

conducting lid thickness of 50 km and a viscosity contrast

which ranges from 1.0 to 0.0032. When the viscosity is 0.1

or less, since convection has not begun in the layer, the

depth-age follows a curve proportional to the square root of

age. Because the kernels are not the same as the depth

weighting for the cooling halfspace model (i.e. are not one

everywhere), this curve is not the curve for a cooling

halfspace model, but it is linear with the square root of

time. For a viscosity contrast of 0.01 or greater, small

scale convection begins in the layer at young ages. In run.

3, small scale convection begins at 85 m.y .. Since the

kernels decrease in the low viscosity zone with depth, the

depth-age curve is retarded slightly at times near those
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with the maximum temperature anomalies in the small scale

flow, 90-95 m.y. (Table 5.2). Run 4 also is retarded after

the onset of small scale convection.

However, when long wavelength convection begins in the

layer, the decrease in the kernels with depth, as they go to

zero at the bottom boundary of the box, significantly

downweights the relatively cooler bottom boundary layer of

the convection cell. The depth-age relationship also begins

to oscillate when the long wavelength convection becomes

pronounced in the layer, as for run 3 after 120 m.y. (figure

5.15). This oscillation resembles in detail the depth-age

relationships calculated by Houseman and McKenzie (1982) of

a model of convection underneath a conducting lid in a

constant viscosity layer. They found that if the convection

is initiated with a perturbation then the oscillations are

damped and the depth-age curve flattens smoothly in

agreement with the mean depth-age data. We do not include

such a perturbation in our calculations, but it would have

the same effect in this model, limiting the size of the

initial departure from the conductive cooling depth-age

curve and causing the depth-age curve to flatten as in the

depth-age data (Houseman and McKenzie, 1982).

In Figure 5.16, we have drawn the depth-age

relationships for the suite of calculations where the

Rayleigh number based on the top layer viscosity has been

held constant at 3.2x10 7 . The onset times of small scale

convection in these calculations are the same within 1 m.y.,
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so that the initial departure from the square root of age

dependence, the conductive cooling solution, is at the same

time. Since the kernels decrease faster in the low

viscosity zone as the viscosity contrast increases, however,

the departure is larger for the larger viscosity contrasts.

As the Rayleigh number based on the viscosity of the bottom

layer increases, the onset time of the long wavelength

convection decreases and the large departure due to the

onset of the long wavelength convection occurs earlier. For

a Rayleigh number based on the bottom layer viscosity of

10 6 , the onset of the long wavelength convection occurs very

close to the short wavelength convection.

The geoid-age relationship is also strongly affected by

the behavior of gravity and geoid kernels with depth, except

for the fact that the kernels can go negative with depth at

high viscosity contrasts. 'Then the relatively cooler bottom

boundary layer of the small wavelength anomalies is not

downweighted but adds to the effect of the heated top

boundary layer. Therefore, the separation of heat by the

small scale convection in the top and bottom boundary layers

of the convection cells is more pronounced in the geoid-age

relationship.

In Figure 5.17, we have drawn the nondimensional geoid­

age relationships for runs 1, 2, 3 and 4. When the

viscosity contrast is equal to or less than 0.1, the geoid­

age curves follow that of a conductively cooling halfspace,

which is proportional to age. When the viscosity contrast
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is 0.01 and small scale convection has begun in the low

viscosity layer, since the geoid kernel is still positive

everywhere, the geoid-age curve departs slightly from the

halfspace solution but, after long wavelength convection

begins, its departure is mor~pronounced. In the case of a

viscosity contrast of 0.0032, however, the geoid kernel has

become negative inside the low viscosity zone and the run

departs from linear behavior immediately after the onset of

small scale convection. After the onset of long wavelength

convection, the geoid-age relationship departs still further

from the geoid-age relationship for a halfspace and is very

time dependent. For this high viscosity contrast,

therefore, the small scale convective temperature anomalies

are seen in the geoid-age relationship whereas they have

little effect on the depth-age relationship.

In Figure 5.18, we have drawn the geoid-age curves for

the set of runs where the viscosity of the top layer has

been held constant, and the Rayleigh number based on the

viscosity of the top layer is 3.2xl07 . As in the last suite

of calculations, the geoid-age curves depart much more

dramatically for large viscosity contrasts than the depth­

age curve. At a viscosity contrast of 0.001, in particular,

the kernels are very negative, so that the geoid actually

increases above its initial value at the ridge.

In Figure 5.19, we have drawn the heat flow-age

relationships for runs I, 2, 3 and 4. The heat flow-age

relationship can be calculated by applying equation (5.13)
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to mean temperature profiles for various ages. Unlike the

geoid and topography relationships, the heat flow-age

relationship directly reflects the temperature structure in

the conducting lid with time. As in the depth-age and

geoid-age relationships, because convection has not yet

started in the runs at a viscosity contrast of 1.0 and 0.1,

the heat flow-age relationship follows that of a cooling

ha1fspace. At viscosity contrasts of 0.01 and 0.0032,

however, the heat flow-age relationship departs from the

halfspace curve earlier than predicted by the plate model

and soon after the onset of small scale convection. The

time interval between the onset of convection at depth and

its effect on the heat flow-age curve is close to the

conductive time constant for a 50 km thick conducting lid of

7 m.y .. The heat flow also further increases after the

onset of long wavelength convection.

5.6 Comparison to the Observations

We can compare the surface anomalies, that are produced

by the cooling instabilities, to the observations of small

scale geoid and topography anomalies and to the depth-age,

geoid-age and heat flow-age relationships in the Pacific.

Small scale anomalies have been observed in the SEASAT data

sets in a number of oceanic regions, including the Central

Pacific ocean and the Central Indian ocean (Haxby and

Weissel, 1986; Cazenave et al., 1986). However, since a

shipboard data set of gravity and topography, which shows
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the small scale anomalies, exists in the Southeast Pacific,

we will perform our analysis in this region.

In the SEASAT data set over the Southeast Pacific,

there is a signal that is lineated in the direction of plate

motion which is oblique to the Pacific-Farallon fracture

zone trends, of small undulations with a magnitude of 50-80

cm (Haxby and Weissel, 1986). Their wavelength ranges from

150-500 km with a possible trend to longer wavelengths with

increasing age. The signal becomes apparent in the geoid

field at a plate age of 5-10 m.y. and persists to ages

greater than 30-40 m.y .. Haxby and weissel (1986) interpret

this signal as a reflection of small scale convection

underneath the Pacific plate, in a low viscosity layer with

a viscosity contrast that is three orders of magnitude below

the estimate of the upper mantle viscosity based on post­

glacial rebound.

Since this small wavelength signal is near the limits

of the resolution of the SEASAT data set, a shipboard study

was undertaken to test its existence and to measure the

topographic signal, if any, that accompanies it (Parsons et

al., 1985). Seven long lines of gravity and topography data

were collected: one in a region where no signal was seen by

SEASAT and which was very close to the East Pacific Rise,

three where the signal was clearly seen but close to its

onset over 6 m.y. old seafloor, and three over much older

30-40 m.y. old seafloor. The study confirmed the SEASAT

results by finding a-IS mgal gravity signal at a wavelength
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of 150-250 km away from the ridge. The signal can also be

correlated across the lines as in the SEASAT data. A -250 m

topographic signal was also found which correlated with the

gravity anomalies.

In these calculations the conducting lid thickness is

too large to compare to the small scale anomalies observed

on 5-40 m.y. old lithosphere in the Pacific. In particular,

the reduction of the conducting lid thickness to 25 km

increases the anomalies by 50% in the geoid and over 100% in

the topography. Given this correction, the magnitude of

these small scale surface anomalies are in the range that is

observed (see Table 5.2, runs 2, 3, 4, 11 and 12). Their

wavelength is constrained by the thickness of the low

viscosity zone so that, to produce an initial wavelength of

150-250 km, a thickness of 75-125 km is required.

In our model with atop layer thickness of 125 km, the

predominant wavelengths are 150-250 km at young ages but

then trend to longer wavelengths, as the bottom layer begins

to convect. After the onset of long wavelength convection,

the longer wavelength anomalies are superimposed on the

shorter wavelength anomalies. As the temperature

differences which drive the small scale flow decay, the

smaller wavelength anomalies die out, and the longer

wavelengths dominate. When the Rayleigh number is greater

than 10 6, the small wavelengths enter the observables at a

young age and trend smoothly to longer wavelengths, which is

in accordance with what is observed. Therefore, a Rayleigh



249

number of 10 6 or greater is favored by this data set.

Furthermore, since an increase in the viscosity contrast

further delays the onset of long wavelength convection, the

persistence of the shorter wavelength signal for over 30

m.y. also indicates a large viscosity contrast at depth of

at least 0.01.

When the viscosity contrast is two orders of magnitude

or greater at high Rayleigh numbers, the long wavelength

amplitudes are similar to the amplitudes of the smaller

wavelength anomalies (see Table 5.2). However, in this

model, we have neglected heating from below which at large

ages would strengthen the long wavelength anomalies, so that

they would be visible as large geoid and topographic

anomalies in the ocean basins. Since many long wavelength

features are observed in the Pacific at large ages, most

notably mid-plate swells, the data might not require small

amplitudes in these long wavelength anomalies. In

particular, since swells have the same shape as the longer

wavelength anomalies in the model, the long wavelength

signal would be indistinguishable from that of mid-plate

swells (Robinson and Parsons, 1987; Chapter 3). Robinson

and Parsons (1987) have applied this viscosity model to the

case of upper mantle convection heated from below and found

that the swells at Hawaii, Bermuda, the Marquesas and Cape

Verde can be explained as the surface expression of these

convecting cells with a viscosity contrast which is 0.4-0.01

in magnitude. An interpretation of the data in the Pacific
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is, therefore, that the breakdown of small scale convective

flow underneath the plate is succeeded by the formation of

longer wavelength features such as mid-plate swells.

One observation that we cannot interpret properly with

our two-dimensional model is the onset time of the small

scale convection. As mentioned above, in a three­

dimensional model, advection perpendicular to the plane

would communicate the presence of temperature anomalies due

to the instability at greater ages to the fluid under the

younger plate. This shear and thermal coupling would then

cause the boundary layer to go unstable at a younger age and

at one that might be in agreement with the data.

In the depth-age relationship over the cooling

instabilities, the small scale convection does not strongly

affect the squareroot of age dependence, but the depths are

slightly shallower. In the region of the central Pacific

where the small scale anomalies are observed, the depths are

also shallower with age then observed elsewhere in the

Pacific. In the models, significant departures in the

theoretical depth-age relationship occur only after the

onset of the longer wavelength convection and, in the

Pacific, the depth-age curve departs from that of a

conductively cooling halfspace near 70 m.y .. Therefore,

although this two-dimensional model cannot accurately

predict the initial convective onset time, it predicts the

general behavior of the depth-age curve. Furthermore, the

departure times from the conductive cooling depth-age curve
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in the models with the parameters which fit the small scale

anomalies are between 50 and 80 m.y. (see Table 5.2). In

particular, if run 12, with a Rayleigh number of 3.2xl05 and

a viscosity contrast of 0.01, were scaled so that the

Rayleigh number was 10 6 , then the departure time would lie

between 55-65 m.y .. However, if the low viscosity zone were

due primarily to the temperature and pressure conditions in

the mantle then the low viscosity zone would have decreased

in magnitude from its initial value under young seafloor

(Fleitout and Yuen, 1984a). Therefore, the viscosity

contrast would be nearer 0.1 and would give a slightly

retarded onset time for the long wavelength convection.

This onset time would be no greater than for the calculation

with a continuous viscosity contrast of 0.1 (run 6), so that

the onset time is bounded above by 90 m.y ..

In the geoid-age relationship, if the viscosity

contrast is small enough so that the kernels remain positive

throughout the layer, then the departures from a squareroot

of age dependence are at the same age as those observed in

the depth-age relationship. However, if the viscosity

contrast is large enough so that the kernels are negative at

depth, then the geoid-age relationship will depart from the

halfspace model after the onset of small scale convection

which is much earlier than predicted in the depth-age

relationship. Unfortunately little data exists to constrain

the geoid-age relationship in the oceans except from the

study of fracture zones which may strongly affected by the
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local mantle flow connected with the fracture zone (Craig

and McKenzie, 1982; Robinson et al., 1987b; Chapter 4).

Finally, in the heat flow-age relationship, the

increased advection of heat due to the convection at depth

affects the surface heat flow quickly after the onset of

convection. Recent observations indicate that the heat

flow-age relationship in the Atlantic does not follow a

plate model at large ages. On old seafloor in the Atlantic,

far away from swells or any other known thermal sources, the

heat flow values are 50-53 mW/m2 whereas the plate model

predicts values between 40 and 45 mW/m2 (Davis et al., 1984;

Detrick et al., 1986; Louden et al., 1987). These values

point to either an earlier departure time from the

conductive cooling curve than in the plate model (i.e.

earlier than 120 m.y.), or an increase in the heat flow with

age. Because the conducting lid is 50 kmthick, these

calculations predict an earlier departure time than the

plate model. For at least one of these calculations (run

3), the heat flow also rises at large ages. However, in all

of the runs with a viscosity contrast which is greater than

two orders of magnitude, the theoretical heat flow values at

older ages are between 50 and 55 mW/m2 . These values agree

with those observed in the West Atlantic (Detrick et al.,

1986; Louden et a1., 1987). At a Rayleigh number of 10 6 and

a viscosity contrast of 0.01, the heat flowage curve falls

between runs 3 and 4 in Figure 5.19, so that it is also in
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agreement with the measured heat flow values in the

Atlantic.

In summary, with a Rayleigh number of 10 6 , a low

viscosity zone thickness of 125 km and a viscosity contrast

of 0.01, the model predicts the magnitude and wavelength of

the short wavelength anomalies seen in the SEASAT and

shipboard data. It also produces flattening in the depth­

age relationship between 55 and 65 m.y .. Since a two­

dimensional model cannot approximate the correct three­

dimensional onset time, it cannot exactly reproduce the

early onset times observed for small scale convection in the

Pacific. Rather a model, which includes the shear and

thermal coupling of the convective instability to the fluid

under younger seafloor, is needed to constrain the onset

time. The shear coupling would produce onset times very

much younger than that predicted by boundary layer stability

calculations and by two-dimensional convective flow

calculations. We also cannot predict the exact values of

the Rayleigh number and the viscosity contrast. Both of

these parameters effect the local Rayleigh number in the low

viscosity zone.

5.7 Conclusions

We have applied a finite element model to the study of

convective instabilities in a conductive boundary layer,

formed by cooling through the top surface. We compared our

results to two sets of observations thought to reflect
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convective instabilities in the oceanic plates: (1) small

scale geoid and topography anomalies in the Southeast

Pacific and (2) the flattening of the mean depth-age and

heat flow-age relationships.

Much evidence exists for a low viscosity zone in the

uppermost mantle from seismic studies (Anderson and Sammis,

1970; Solomon, 1972; Forsyth, 1977; Weilandt and Knopoff,

1982), studies of the flow underneath fracture zones (Craig

and McKenzie, 1986; Robinson et al., 1987b), and studies of

the presence of melt in the upper mantle (Cooper and

Kohlstedt, 1984; McKenzie, 1984). Most importantly,

however, theoretical calculations of the viscosity structure

with depth which is dependent on temperature and pressure

predict a low viscosity zone (Fleitout and Yuen, 1984a; Buck

and Parmentier, 1986).

In our model, we do not assume that the viscosity

depends solely on temperature and pressure. Rather we

suppose that a low viscosity zone retains its initial

thickness out to large ages both for simplicity and to

reflect the effect of the presence of melt above 200 km in

depth. The small scale convection cells in this model

therefore exhibit a small wavelength until long wavelength

convection is instigated in the box, and the transition to

longer wavelengths in the anomalies is more abrubt than in

calculations where only the effects of temperature and

pressure are considered. Since we include the effects on

the surface anomalies of the convective temperature
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differences to the base of the box, the model produces a

large departure from the depth-age curve for conductive

cooling.

As we decrease the viscosity contrast between the

layers and as we increase the Rayleigh number, the

convective onset time decreases. The relationship between

the onset time and the viscosity contrast in the

calculations is nearly logarithmic with a slope which is not

constant, but is close to 1/2. As the viscosity contrast

becomes large enough so that the Rayleigh number for the low

viscosity zone is greater than the critical Rayleigh number,

small scale convection cells form which remain inside the

low viscosity zone, and later decay into long wavelength

convective anomalies which extend throughout the whole

layer. The small scale convective cells persist for a time

which increases as the viscosity contrast increases, but

decreases as Rayleigh number of the two fluid layers

increases (Table 5.2, runs 3 and 12).

Small scale anomalies have been seen in the geoid field

of the Central Pacific, and are roughly 50-80 cm in

magnitude with wavelengths ranging from 150 km to 500 km

which trend towards the longer wavelengths at older ages. A

shipboard study was also completed in this area and it

observed 250 m topography anomalies correlated with the

gravity and geoid anomalies. The short wavelength of these

anomalies requires the existence of a low viscosity zone.

In particular, the convective flow must be confined for some
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time to a low viscosity zone approximately 100-150 km in

depth and with a viscosity contrast of one order of

magnitude or more. At a Rayleigh number of 105 -107 , a layer

thickness of 125 km and a viscosity contrast of 0.01-0.001

taking into account the effect of the conducting lid

thickness, the magnitude of the observed small scale

anomalies, their persistence in magnitude until the

development of longer wavelength convection and the

departure of the depth-age relationship in the Pacific from

a curve proportional to the square root of time can be

reproduced.

A trend in the small wavelength convective anomalies to

longer wavelengths with age is observed in the data and is

also predicted by the model. In particular, as the small

scale flow begins to decay into longer wavelength flows, the

longer wavelength will dominate the surface observables.

Because the transition from a 150 km wavelength to a 500 km

wavelength is smooth, a Rayleigh number of over 10 6 is

indicated; and, since the small scale convective anomalies

persist for 30-35 m.y. in the geoid field, this long

lifetime suggests a large viscosity contrast of over two

orders of magnitude.

The onset of the convective flow is very young, at 5-10

m.y., and from the local critical Rayleigh number this onset

time would indicate a viscosity contrast of at least 0.001

(Haxby and Weissel, 1986). However, since three dimensional

coupling would cause the instability to occur much more
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quickly than indicated by these arguments, this large

viscosity contrast may not be required by this onset time.

Finally, the predicted depth-age, geoid-age and heat

flow-age relationships were compared to those observed in

the oceans. We have shown that the small scale convective

flow that is confined to the low viscosity zone does not

greatly alter the depth-age relationship, although it

produced a slightly elevated depths for a given age by 250­

1000 m. In the region where the small scale anomalies are

observed in the pacific, the depths are slightly elevated by

250-750 m (McNutt and Fischer, 1987). The onset of the

longer wavelength flow, however, radically affects the

relationship, as predicted by Houseman and McKenzie (1982)

and the depth-age curve flattens away from a halfspace

cooling model. This prediction reconciles the observation

of small scale convection at young ages in the Pacific with

the departure of the depth-age relationship at 70 m.y ..

Furthermore, this model predicts that the onset of

longer wavelength flow will lead to the formation of longer

wavelength features, such as swells, at ages greater than

the age at which the depth-age curve departs from a

halfspace model. It is observed that the onset of many

swells in the Pacific and the Atlantic commences primarily

at ages greater than 70 m.y., such as the Hawaiian, Reunion;

Society, Bermudan and Cape Verde swells (Crough, 1978). The

onset of these mid-plate swells may result from this process
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and then can be viewed in part as a natural consequence of

aging in the oceanic plates.

In conclusion, if the small scale anomalies that are

observed in the Southeast Pacific are due to a convection at

depth, then a low viscosity zone exists which is 100-150 km

thick with a viscosity contrast of more than 0.01 in an

upper mantle which has a Rayleigh number of over 10 6 . The

low viscosity zone confines the convective flow to shallow

depths for a period, but eventually convective flow is

instigated throughout the upper mantle. The small scale

convective flow has only small effects on the depth-age

relationship until the onset of this mantle-wide flow, at

which point the depth-age curve flattens as predicted by the

plate model (Houseman and McKenzie, 1982). The heat flow

age curve flattens earlier than the plate model, but the

predicted heat flow values agree well with heat flow

measurements on old Atlantic seafloor (Louden et al., 1987).

The onset of the longer wavelength flow also produces

features which resemble mid-plate swells after the onset of

long wavelength convection (i.e. after the flattening of the

depth-age curves).
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Table 5.1

Variable Description

d depth scale

Po average mantle
density

Pw density of water

go surface gravitational
acceleration

K average mantle thermal
diffusivity

average mantle thermal
expansion coefficient

elastic plate thickness

Value

600 km

3330 kg/m3

1025 kg/m3

9.82 m/s 2

10 km

259

v

~T

Poisson's ratio

Temperature contrast
across the box

Young's Modulus

Scaling time

0.25

1365 °c

11407 m.y.



Table 5.2

* Ra LVL# LID$'tons t max Nmax hmax 'tons 'tmax Nmax hmax Grid& FigureRun 111/112
Th. ~ (short wavelength) {long wavelength) INXxNZ) Numbers 5.1

1 1.0 105 0 50 --- ---- ---- ---- 700 720 28.9 4720 140x384 2,15,17,19
2 0.1 105 125 50 --- ---- ---- ---- 380 410 14.4 3370 200x50 4 3,11,15,17,19
3 0.01 105 125 50 85 91 0.58 340 99 115 2.8 850 146x792 4,5;12,15,17,19
4 0.0032 105 125 50 54 59 0.29 210 68 77 0.72 350 146x792 16,18

5 0.1 10 4 125 50 --- ---- ---- ---- 1650 nr nr nr 140x38 4 6
6 0.1 10 6 125 50 86 89 0.59 350 88 92 4.2 1340 146x792 7,13

7 0.01 105 50 50 --- ---- ---- ---- 465 515 21.9 3870 146x792 8a
8 0.01 105 300 50 250 268 5.8 1680 285 295 8.1 1850 146x792 8b

9 0.01 105 125 25 54 57 0.87 840 65 nr nr nr 146x792 9a
10 0.01 105 125 0 37 39 1.15 1180 44 49 1.6 1350 146x792 9b

11 0.001 3.2x10 4 125 50 55 58 0.28 200 72 nr nr nr 146x792 16,18
12 0.01 3.2x105 125 50 54 58 0.29 185 63 72 0.87 500 146x792 16,18
13 0.032 10 6 125 50 54 58 0.29 200 60 66 1.15 610 146x792 16,18

* - viscosity contrast
# - low viscosity layer thickness in kilometers
$ - conducting lid thickness in kilometers
& - (elements in the x-direction)x(elem's in the z-dir.)
'tons - onset time in million years
Nmax - the maximum geoid anomaly in meters
hmax - the maximum topography anomaly in meters
'tmax - the time, in million years, at which the anomalies

attain their maximum values
nr - not reached in the calculation
2 - the grid has an aspect ratio of 2
4 - the grid has an aspect ratio of 4

N
cr­
o
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Figure Captions

Figure 5.1: Geometry and boundary conditions of the model

where "a" is the thickness of the bottom layer, "b" is the

thickness of the whole box, and "h" is the width of the box.

Figure 5.2: Temperature contours for run 1 in Table 5.2, at

720 m.y. and 770 m.y., where the Rayleigh number is 105, the

low viscosity layer thickness is 125 km, the lid thickness

is 50 km and there is no viscosity contrast. The ticks mark

the bottom of the conducting lid. The temperature contours

mark 136 °c intervals.

Figure 5.3: Temperature contours for run 2 in Table 5.2, at

400 m.y. and 450 m.y., where the Rayleigh number is 105, the

low viscosity layer thickness is 125 km, the lid thickness

is 50 km and the viscosity contrast is 0.1. The ticks mark

the boundaries of the low viscosity zone. The temperature

contours mark 136 °c intervals.

Figure 5.4: Temperature contours for run 3 in Table 5.2, at

91 m.y. 110 m.y. and 130 m.y., where the Rayleigh number is

10 5 , the low viscosity layer thickness is 125 km, the lid

thickness is 50 km and the viscosity contrast is 0.01. The

ticks mark the boundaries of the low viscosity zone. The

temperature contours mark 136 °c intervals.
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Figure 5.5: (a) The nondimensional kinetic energy versus

dimensional time for run 3 in Table 5.2, where the Rayleigh

number is 105, the low viscosity layer thickness is 125 km,

the lid thickness is 50 km and the viscosity contrast is

0.01. The first peak corresponds to the onset and

development of the small scale convection with the onset

time marked by ~s' The second peak corresponds to the onset

and development of convection of a longer wavelength with

the onset time marked by ~l' (b) The horizontally averaged

nondimensional temperature with the nondimensional depth for

run 3 in Table 5.2. The solid line is at 60 m.y.; the long

dashed line is at 91 m.y.; the medium dashed line is at 110

m.y. and the short dashed line is at 130 m.y ..

Figure 5.6: Temperature contours for run 5 in Table 5.2,

where the Rayleigh number is 10 4 , the low viscosity layer

thickness is 125 km, the conducting lid thickness is 50 km

and the viscosity contrast is 0.1. The ticks mark the

boundary of the low viscosity zone and the temperature

contours represent intervals of 136 °C.

Figure 5.7: Temperature contours for run 6 in Table 5.2,

where the Rayleigh number is 10 6, the low viscosity layer

thickness is 125 km, the conducting lid thickness is 50 km

and the viscosity contrast is 0.1. The ticks mark the
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boundary of the low viscosity zone and the temperature

contours represent intervals of 136 °C.

Figure 5.8: Temperature contours for (a) run 7 and (b) run

8 in Table 5.2, where the Rayleigh number is 105, the low

viscosity layer thickness is (a) 50 km and (b) 300 km, the

conducting lid thickness is 50 km, and the viscosity

contrast is 0.1. The ticks mark the boundary of the low

viscosity zone and the temperature contours represent

intervals of 136 °C.

Figure 5.9: Temperature contours for (a) run 9 and (b) run

10 in Table 5.2, where the Rayleigh number is 105, the low

viscosity layer thickness is 125 km, the conducting lid

thickness is (a) 25 km and (b) 0 km, and the viscosity

contrast is 0.01. The ticks mark the boundary of the low

viscosity zone and the temperature contours represent

intervals of 136 °C.

Figure 5.10: The convective onset time, as defined in the

text, versus the viscosity contrast, for runs where the low

viscosity layer thickness is 125 km and the conducting lid

thickness is 50 km. We have plotted the runs in three

groups with different Rayleigh numbers (10 4 , 105 and 10 6) .

Some of the results presented here are from runs not listed

in Table 5.2.
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Figure 5.11: The geoid, topography, gravity and heat flow

anomalies across the top of the box at 400 m.y. for run 2 in

Table 5.2. The Rayleigh number is 105 , the low viscosity

layer thickness is 125 km, the conducting lid thickness is

50 km and the viscosity contrast is 0.1.

Figure 5.12: The geoid, topography, gravity and heat flow

anomalies across the top of the box for run 3 in Table 5.2.

The Rayleigh number is 10 5 , the low viscosity layer

thickness is 125 km, the conducting lid thickness is 50 km

and the viscosity contrast is 0.01. (a) at 91 m.y.; and (b)

at 110 m.y ..

Figure 5.13: The geoid, topography, gravity and heat flow

anomalies across the top of the box at 89 m.y. for run 6 in

Table 5.2. The Rayleigh number is 10 6, the low viscosity

layer thickness is 125 km, the conducting lid thickness is

50 km and the viscosity contrast is 0.1.

Figure 5.14: The topography and gravity kernels at a

wavelength of eight times the depth of the fluid layers.

The low viscosity layer thickness is 0.21 and it lies

between 0.79 and 1.0 in the depth scale. The solid lines

are the kernels with no viscosity contrast; the long dash

lines represent a viscosity contrast of 0.1; the medium dash

lines represent a viscosity contrast of 0.01; and the short

dash lines represent a viscosity contrast of 0.001.
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Figure 5.15: The subsidence-age relationships (versus the

square root of the age) for runs 1 (solid line), 2 (long

dash), 3 (medium dash) and 4 (short dash). See Table 5.2

for details of the runs. The geometry of the model and the

Rayleigh number are the same in each of these runs, but we

vary the viscosity contrast from 1.0 to 0.0032 (noted by

each curve) .

Figure 5.16: The subsidence-age relationships (versus the

square root of the age) for runs 13 (solid line), 12 (long

dash), 4 (medium dash) and 11 (short dash). See Table 5.2

for details of the runs. The geometry of the viscosity

structure and the Rayleigh number based on the viscosity of

the top layer is 3.2x10 7 in each of these calculations, but

we vary the Rayleigh number based on the viscosity in the

bottom layer from 3.2x10 4 to 10 6 .

Figure 5.17: The geoid-age relationships for runs 1 (solid

line), 2 (long dash), 3 (medium dash) and 4 (short dash), as

in Figure 5.15. The viscosity contrast is noted by each

curve.

Figure 5.18: The geoid-age relationships for runs 13 (solid

line), 12 (long dash), 4 (medium dash) and 11 (short dash),

as in Figure 5.16. The viscosity contrast is noted by each

curve.



Figure 5.19: The heat flow-age relationships (versus the

square root of the age) for runs 1 (solid line), 2 (long

dash), 3 (medium dash) and 4 (short dash), as in Figure

5.15. The viscosity contrast is noted by each curve.
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Chapter 6: CONCLUSIONS

We have explored the effect of a low viscosity zone in

the uppermost mantle on mantle flow and its expression in

gravity, geoid, topography and heat flow anomalies at the

surface of the Earth. We examined three convective systems

that are thought to exist in the mantle: (1) convection

driven predominantly by heating from below (Chapters 2 and

3); (2) flow driven by the horizontal temperature gradient

at a fracture zone (Chapter 4); and (3) instabilities under

the cooling oceanic plates (Chapter 5). In each case, the

same numerical model was employed, so that the results can

be compared. In this chapter, we would like to take

advantage of this similarity to draw some broad conclusions

concerning the effect of a low viscosity zone on mantle

convection and the oceanic plates.'

6.1 The Convective Flow

In order to study the effect of a low viscosity zone on

the flow, we simplified the finite element numerical model

of the upper mantle to allow only three horizontal layers in

the viscosity structure. The model consists of a conducting

lid over a low viscosity zone which in turn is over a

constant viscosity region extending to the base of the upper

mantle. We can vary the box length, the thicknesses of the

layers, the overall Rayleigh number, the method of heating,

the boundary conditions and the viscosity contrast between

the layers. As we vary these parameters, we explore the
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range of possible viscosity structures for the upper mantle.

The numerical method is described in detail in the appendix.

The viscosity enters the governing equations through

the equation of motion. In particular, for a purely

Newtonian fluid, the spatial derivatives of the velocity are

scaled by the viscosity. Therefore, the velocities can

change more rapidly inside the low viscosity zone than in

the constant viscosity region, so that the top boundary

layer encompasses higher velocities and the boundary layer

is thinner. In the steady state convection problem driven

by heating from below, this change in the velocity field

causes the top boundary on the base of the conducting lid to

appear, not rigid but, quasi-stress-free to the rest of the

flow. Finally, in each of the problems, the transmission of

normal stress to the conducting lid is diminished.

The response of the temperature field to changes in the

velocity and stress fields depends on the temperature

boundary conditions. In the steady state convection problem

driven by a constant heat flux from below (Chapters 2 and

3), the temperature structure consists of cells with nearly

constant temperatures in the interior encircled by thin,

boundary layers. Inside the low viscosity zone, the

boundary layers are thinner than those in the constant

viscosity region (Figure 2.2). Since the heat flux is

conserved in this model, the mean horizontal temperature

gradient near the top boundary has the same magnitude in

each case, but the isothermal region enlarges as we increase
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the viscosity contrast (Figure 2.2). Therefore, the mean

temperature of the fluid decreases as the viscosity contrast

increases.

In convective systems that are driven by a horizontal

temperature gradient near the surface or driven by

instabilities in a cooling boundary layer (Chapters 4 and

5), the low viscosity zone has the greatest influence on the

first stages of the flow. If the viscosity contrast is high

enough so that flow is confined to the low viscosity zone

for a period of time, the convective flow is efficient at

cooling the upper layer. The convection heats the uppermost

parts of the low viscosity zone and cools the low portion of

the layer. However, since the cooling is uneven (due to the

initial temperature gradient in the fracture zone problem

and due to quasi-random formation of instabilities in the

small scale convection problem), a horizontal temperature

gradient is created at the top of the lower layer.

Convection then begins in the bottom layer and the flow

eventually fills both layers. In fact, these results show

that, due to the temperature gradients set up by the small

scale convection atop a fluid with a supercritical Rayleigh

number, flow will never be confined indefinitely to such a

low viscosity zone. Once the temperature anomalies extend

to the bottom boundary, the flow tends towards cells with an

aspect ratio of one to one, and the boundary layers of these

cells experience the same thinning as in the steady state

convection problem.
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6.2 The Topographic, Geoid, Gravity and Heat Flow Response
to Convective Temperature Anomalies at Depth.

The convective flow creates topography, geoid, gravity

and heat flow anomalies at the surface through the exertion

of normal stress onto the surface and through the presence

of temperature anomalies. Since the low viscosity zone

alters both the transmission of normal stress to the top

boundary, it effects the response of the surface anomalies

to the temperature anomalies at depth, as well as the

convective flow. We calculate the response of the geoid,

gravity and topography anomalies with a Green's function

method which is explicitly discussed in Parsons and Daly

(19B3) (see Chapter 2 for the application of the method to

these problems). With this method, since the viscosity

structure is constant in the horizontal direction, the

horizontal wavelengths decouple. We can then calculate the

response of each wavelength in the anomalies to the

temperature anomalies at depth.

We have drawn, in Figure 2.B, the appropriate response

function, the "kernel", for the topography and gravity

anomalies at a number of wavelengths for the viscosity

structure defined in the figure caption. Because the low

viscosity zone decreases the transmission of normal stress

through the top layer, the topography kernel decreases with

depth inside the low viscosity zone. In fact, at a

viscosity contrast of two orders of magnitude and at

wavelengths shorter than 600 km, the topography kernel is

almost zero below the low viscosity zone. Therefore, in the
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presence of a viscosity contrast, the temperature anomalies

below this layer cannot effect the surface topography.

The kernels for the gravity and geoid anomalies are

more complicated. The gravity and geoid fields reflect the

sum of the gravitational effects of (1) the bottom boundary

topography, (2) the top boundary topography and (3) the

internal density distribution. The contributions of the

latter two factors dominate the observables. Since the low

viscosity zone blocks the effect on the surface topography

of the temperature anomalies below the low viscosity zone

and the topography decreases, the overall magnitude of the

gravity anomalies also deCreases. Moreover, because the

effect of the internal density distribution does not change

with the viscosity contrast, except through changes in the

convective temperature distribution, the gravitational

response of the internal density distribution to the

temperature anomalies is larger than that of the surface

topography at depths below the low viscosity zone at high

viscosity contrasts. Since the response of the internal

density distribution is opposite to that of the surface

topography, the overall response of the gravity and geoid

fields to the temperature anomalies below the low viscosity

zone can be negative. This negative response counteracts

the positive contributions to the temperature anomalies at

shallower depths, so that the gravity and geoid anomalies

decrease faster with viscosity contrast than the topography

anomalies.
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The Green's function method to calculate the surface

anomalies illustrates the importance of the viscosity

structure in the response of the surface anomalies to

temperatures at depth. Methods of calculating these

anomalies which do not recognize these effects usually

assume that the gravitational and topographic effects of the

temperature anomalies below a certain depth, dp ' are

negligible (McKenzie, 1967; Fleitout and Yuen, 1984b; Buck

and Parmentier, 1986). Therefore, they are approximately

correct for shorter wavelength features, near wavelengths

comparable to dp ' but not for longer wavelengths.

Furthermore, since the low viscosity zone diminishes the

effect of temperature anomalies below its depth in the

topography anomaly, but not in the gravity or geoid

anomalies, these methods may predict topography (in part, by

picking dp to be close to the base of the low viscosity zone

at 200 km in depth), but radically err in predicting gravity

and geoid.

6.3 Constraints on the Viscosity Structure of the Upper
Mantle

Applying the results of this model to the Earth's

mantle involves a number of assumptions. First, the

viscosity structure is horizontally averaged and held

constant throughout the calculation. This simplification is

required to reduce the computing time. However, it is also

advantageous since the parameters of the calculation are

more easy to control and specify, and the effects of the low
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viscosity zone are easier to identify. With the kernel

method and a horizontally averaged viscosity structure, we

can correctly calculate the topography and geoid anomalies

for the convective system.

Second, our model is two-dimensional and advection in

and out of the box is ignored. In particular, the shear

flow due to the movement of the plates and to three­

dimensional coupling between the convective flows has been

neglected. Some researchers are now exploring three

dimensional models of the convective flow in the mantle and,

perhaps soon, we will be able to quantify the effect of a

third dimension in these convective systems.

Third, we have assumed that the convection is confined

to the upper mantle. In each of the chapters, we discussed

the effect of this bottom boundary on the convection and

found that it had little effect on the surface observables,

except in the fracture zone problem where the wavelength of

the longest convective anomaly depends primarily on the

depth of the fluid layer. Therefore, the results from these

analyses can be applied to a whole mantle convection system

with adjustments to the Rayleigh number and the scaling

factors.

Finally, in order to compare the results of our model

to data, we must use estimates for the scaling constants

(Tables 2.1, 4.1 and 5.1). When the convection is

predominantly near the surface, as in the fracture zone and

small scale convection problems (Chapters 4 and 5), we chose
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values similar to the surface values. When the convection

extends throughout the upper mantle, we used values

appropriate for the upper mantle. However, since the

kernels sample from all depths in the fluid, we have most

likely erred in our selection of these constants.

Ultimately other lines of evidence, such as those from

experimental petrology, must be used to gauge accurately

these constants.

With these caveats in mind, we can summarize the

constraints that are placed on the viscosity structure of

the uppermost mantle by the results of the studies in this

thesis. The one observational constraint on the thickness

of the low viscosity zone is the wavelength of the observed

small scale convective anomalies in the Central Pacific

(Chapter 5). Using the initial wavelength of 150-250 km,

the low viscosity zone must at first have a thickness of 75­

125 km. Theoretical predictions of the development of a low

viscosity zone in the uppermost mantle indicate that the

zone would thicken with age. In these calculations, to

produce the observed depth-age relationships, the small

scale convection and fracture zone models (Chapters 4 and 5)

require a low viscosity zone at large ages. However, the

low viscosity zone may thicken to 300-450 km as its effects

are diminished.

The magnitude of the viscosity contrast is constrained

in each of the studies. Both of the depth-age relationships

predicted in the small scale convection and fracture zone
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problems (Chapters 4 and 5) require an average viscosity

contrast at depth of at least two orders of magnitude until

approximately 100 m.y .. The existence of the long lived

small scale anomalies in the SEASAT data set also requires a

shallow low viscosity zone with a viscosity contrast of

nearly two orders of magnitude in the uppermost mantle at

ages up to 60 m.y .. Furthermore, if the average viscosity

of the upper mantle were the value given by post-glacial

rebound (10 21 Pa.s; Peltier, 1974), then the size of the

small scale anomalies and the absence of distinct convective

anomalies in the fracture zone problem would require a

viscosity contrast at depth of nearly two orders of

magnitude. However, there is no independent evidence that

the post-glacial rebound value of viscosity is correct and

these observables, in particular, cannot distinguish between

a overall lower viscosity for the upper mantle or a low

viscosity zone.

The swell problem samples the viscosity structure of a

small region. From our analyses of the Hawaiian swell, the

Bermudan swell, the Cape Verde Rise and the Marquesas swell,

we have four sample "points" (Chapter 3). Although the

interpretation of these results are complicated by the

presence of hot temperatures associated with the plume which

might decrease the overall viscosity underneath the plume, a

distinct viscosity contrast was required at depth at each of

the four swells that we studied. The magnitude of the

viscosity contrast decreased with age from two orders of
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magnitude at the Marquesas swell (on 45 m.y. old

lithosphere) to one order of magnitude at the Cape Verde

Rise (on 130 m.y. old lithosphere, McNutt, 1987).· The

magnitude of the viscosity contrasts required by the small

scale convection, fracture zone and swell calculations and

the decrease in magnitude with age as observed in the swell

problem are consistent with theoretical temperature and

pressure calculations of viscosity.

Since the viscosities in the top layer of the model

contribute to the overall Rayleigh number of the fluid

layers and significantly affect the shallow temperature

anomalies which dominate the surface observables, we cannot

accurately constrain the overall Rayleigh number of the

upper mantle. In fact, with sufficient viscosity contrasts,

Rayleigh numbers of 10 5 to 10 7 are consistent with our

results (Chapters 3, 4 and 5) .

6.4 Final Conclusions

We therefore prefer an approximate model for the

viscosity structure of the upper mantle which initially has

a 125 km thick low viscosity zone that represents a

viscosity contrast of two orders of magnitude. The

viscosity contrast decreases as the plate ages to one order

of magnitude or less by 130 m.y., and the low viscosity zone

may also thicken with age. Finally, the Rayleigh number of

the upper mantle is at least 105 and may be as large as 10 7 .

With this model, the evolution of the surface plates would
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initially involve small scale convection which is driven by

shear coupling to instabilities downstream and to small

scale convection associated with fracture zones. This

convective flow would begin at close to 5 m.y. and remain

confined to the low viscosity zone until nearly 40 m.y .. As

this convective flow cools the upper mantle beneath the low

viscosity zone, longer wavelength convection begins

throughout the upper (or whole) mantle, and the heat

transport from the longer wavelength convection flattens the

depth-age curve and may influence the formation of swells.

This model can then address and explain to some degree (1)

the observed anomalies at mid-plate swells, (2) the

evolution of the geoid and topographic steps at fracture

zones, (3) the effect of the flow at fracture zones on the

depth-age curve, (4) the small wavelength and coherent

anomalies observed in the SEASAT data set in the Central

Pacific, (5) the gravity and topographic anomalies observed

aboard ship in the SEASAT anomaly region, (6) the flattening

of the depth-age curve in the oceans, (7) the anomalously

high heat flow values in comparison with the plate model

observed at large ages in the Atlantic away from known

thermal sources, and (8) the formation of those mid-plate

swells which appear as the depth-age curve flattens.
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Appendix: THE NUMERICAL METHOD

To perform the convective flow calculations, we have

used a velocity based finite element method. In this

appendix, we describe here the formulation of the governing

equations in finite element form, and give a rule of thumb

which specifies the required grid size to resolve convective

flows at a given Rayleigh number.

A.1 The Stokes Flow Formulation for Finite Elements

The equation of motion describing Stokes flow can be

written using Einstein summation notation:

0"" , + f l' = 0lJ,J (A.1)

where O"ij is the deviatoric stress tensor and fi contains

the body forces. In this thesis, we have restricted

ourselves to the case of a Newtonian fluid for which the

constitutive equation is given by:

(A. 2)

where p is the pressure, 0ij is the Kronecker delta, ~ is

the dynamic viscosity and ui the velocity. The temperature

structure is controlled by the heat equation:

dT/dt + U.Ti,j = K Ti,j,i (A. 3)

where K is the thermal diffusivity. We shall also assume

that the flow is incompressible.

u' , = 01,1 (A. 4)

A.2 The Penalty Function Formulation of the Pressure

In principle the finite element procedure can solve

equations (A.1)-(A.4) with arbitrary boundary conditions.

However, for numerical simplicity, we formulate the above
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equations using a penalty function representation for the

pressure (Hughes et al.,1979). The constitutive equation

can then be written:

(J (A) , , = -p (A) /)" + "(u (A). . + u (A), ,)
~J ~J'" ~,J J,~

where

(A.5)

(A. 8)

ptA) = -AU(A)k,k (A.6)

and where the magnitude of the parameterA (>0) is a machine

dependent constant. The advantage of the penalty function

method is that it eliminates the unknown variable p and the

necessity of independently satisfying the incompressibility

condition. When the velocity is interpreted as a

displacement vector, the equations of Stokes flow are the

equations of isotropic, incompressible elasticity. With the

penalty formulation, they are the equations of isotropic,

compressible elasticity, and A and Il are the Lame

parameters. Physically, in the fluids problem, the mass

conservation equation is approximated so the associated

errors represent net fluid loss or gain.

Temam (1977) has proved that the penalty function

solution converges to the Stokes flow solution. We outline

his proof as follows. Subtract (2) from (5) to obtain

Il(U O·)i - ui),jj - (pO,,) - P),i = 0 (A.7)

MUltiplying each term by (U(A)i - ui)' integrating over the

fluid volume, 0 and employing the Hl norm, given by:

lui = [Jo (uu + u,iu,i) dO ]1/2

we obtain:

(A. 9)
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Therefore, as A-> ,U(A)_>U and p(A)_>p. We shall use this

method throughout the appendix, dropping the A superscripts.

with use of the penalty method, some numerical points

must be considered. The first concerns the size of A, the

penalty parameter. We need A large enough so that the

compressibility is negligible, yet not so large as to

produce numerical instability. Experimentation produces a

condition on A as a function of the dynamic viscosity, ~

(Hughes et al., 1979):

A = c~ (A.10)

where c depends on the word length characteristics of the

computer. On Sun Microsystem workstations, on Apollo

workstations and on a VAX780, in double precision, we set A

equal to 10 7 (~= 1.0).

Another concern is the description of the pressure

field. The pressure is constant in each element, but

discontinuous between elements. Since bilinear elements

cannot constrain pressure oscillations between elements, a

"checkerboard" pattern can appear in the pressure field due

to the element discontinuities. Despite these oscillations,

the velocity field is accurate (Hughes et al., 1979).

However, to obtain a reasonable representation of the

pressure field, we must filter out the checkerboard mode.

Through a least squares smoothing procedure which redefines

the pressure field in terms of the bilinear shape functions,

we can both smooth the field and remove the checkerboard

pattern to obtain a better picture of the pressure field.
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A.3 Matrix Formulation of the Stokes Flow Problem

We discretize our fluid volume, n, into a number of

elements, nee' with volumes, n e , and surfaces, reo

Associated with each of these elements are nodal points with

indices: I = (1,2, ... ,nnp)' The position vector of the i­

th node is denoted ~i and the associated shape function is

S·l.

If we write the constitutive equation for each element

as:

(A. 11)

where Be is the local strain interpolation matrix, De is the

local stress strain matrix and Qe stores the local nodal

point coordinates, then the stiffness matrix C will have two

parts. The first corresponds to the pressure term in the

Stokes equation:

and the second part to the viscous terms:

~(ui,j + Uj,i) = De~ Be Qe

The components of the stiffness matrix can then be

(A. 12)

(A. 13)

calculated using:

Ceab = fne (Bea)T De A Beb dn + .rne (Bea)T De~ Beb dn (A.14)

For a two-dimensional finite element model, the stress-

strain matrices are simply:

1 OJ
1 °
o °

(A.15)

and the strain interpolation matrix can be written:
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(A. 16)

The body forces, surface forces and concentrated forces can

be summed into one vector, Be , given by:
p::;op

Be
p = foe sea f p dO + fre Ne a hp dr - Lce

pq geq (A.17)
~",

where f p is the body force, hp is the surface force and geq

is the concentrated load on node q. ne
np is the number of

nodal points in the element e and is equal to four for all

of the bilinear (rectangular) elements. These matrices can

be assembled to form a matrix equation in the global

coordinate system:

c II = B (A. 18)

Given the velocity field we can time step equation

(A.3). Following the results of Brooks (1981) we use the

streamline upwind Petrov-Galerkin method to treat the

advective terms in the equation. Simple central difference

methods produce solutions that do not exhibit enough

diffusion. Upwind methods, on the other hand appear, overly

diffuse. In one dimension, the upwind Petrov-Galerkin

method optimizes a linear combination of the central

difference method and upwind methods to produce the proper

amount of diffusion and is nodally exact. To extend the

method to two-dimensional flows, since the upwind effect is

relevant only in the direction of flow, we apply it along

streamlines. Using the above procedure for the advective

term, the time stepping is performed using a predictor-

corrector algorithm.
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A.4 Resolution as a Function of Grid Size

When using finite difference methods, a rule of thumb

is that, to resolve a convective flow, three nodes are

needed across each convective boundary layer. We tried to

formulate a similar rule of thumb for our finite element

procedure. We took the case of a convective flow in a one­

by-one box with a constant viscosity fluid interior, with

rigid top and bottom boundaries, and with no-slip side

boundaries. The flow is maintained by a heat flux through

the bottom of the box; the temperature is held constant at

the top of the box (T=O); and reflective boundary conditions

are imposed on the side boundaries.

With normalization, the heat flux should equal one

throughout the box at steady state, so that no element is

perpetually losing or gaining heat. Since the heat flux

measures the accuracy at which the numerical solution is

modelling the conductive and advective processes in the box,

we will take as our convergence criterion a bound on the

amount of variation in the heat flux with depth about the

expected unit value. In finite difference calculations, the

flow is considered to be resolved if the heat flux deviates

by less than 1% (pers. comm. Steve Daly) .

The heat flux, q, can be written as the sum of the

conductive and the advective fluxes:

q = -~T/Oz + wT (A. 19)

With bilinear elements, dT/az, the conductive heat flux,

only varies in the horizontal direction throughout each
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element; however, wT is a quadratic term. Therefore, to

accurately integrate the flux, one needs a 2x2 Gaussian

integration rule. Using such an integration scheme, the

heat flux was calculated for each element in a layer, then

summed by layer and normalized by the volume of the layer.

As expected, the maximum errors in heat flux occur in

the boundary layers. At a Rayleigh number of 10 4 , the

boundary layers are not well defined but each encompasses

about one fourth of the fluid depth. Therefore, a 16x16

grid has four elements in the boundary layer, an 8x8 grid

has two elements in the layer and a 4x4 grid has one

element. In this calculation, the 4x4 grid has a maximum of

8% error, the 8x8 grid has less than 2% error and the 16x16

grid has less than 0.8% error. At a Rayleigh number of 10 5 ,

the boundary layer is about 3/16 of the layer depth so that

a 16x16 grid has three elements in the layer, an 8x8 grid

has less than two and a 4x4 grid has less than one. In this

calculation, the 4x4 grid errs by a maximum of 12%, the 8x8

grid errs by less than 4% and the 16x16 grid errs by less

than 1%. In the middle of the box, in general, the errors

are smaller. For example, they are below 0.1% for the 16x16

grid at a Rayleigh number of 10 4 . However, if we require

less than 1% accuracy in the estimation of heat flow

throughout the box then, at both Rayleigh numbers, only the

16x16 case resolves the flow.

Therefore, as with the finite difference techniques,

close to three elements are required to span the boundary
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layer in order to obtain a resolved solution. In the

calculations for this thesis, we followed this rule of thumb

as an outer bound and three is the minimum number of

elements that we used to resolve the boundary layer flow.
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LIST OF RUNS

SWELL PROBLEM (Chapters 2 and 3) :

RUN LID LVL RAYLEIGH Jlt/Jlb GRID FIGURE$
THICK. THICK. NUMBER SIZE NUMBER

1. 0.125 0.21 1.0x10 4 1.0 24x27
2. 0.125 0.21 1.0x10 4 0.1 24x32 2.4,3.3
3. 0.125 0.21 1. Ox10 4 0.01 24x42
4 . 0.125 0.21 1. Ox10 4 0.001 24x42it

5. 0.125 0.21 3.2x10 4 1.0 24x27
6. 0.125 0.21 3.2x10 4 0.1 24x32
7. 0.125 0.21 3.2x10 4 0.01 24x42

8 . 0.125 0.21 1. Ox10 5 1.0 24x27 2.2,3.2
9. 0.125 0.21 1.0x105 0.1 24x42it 2.2,3.2
10. 0.125 0.21 1.0x105 0.075 24x42
11. 0.125 0.21 1.0x105 0.050 24x42
12. 0.125 0.21 1. Ox10 5 0.025 24x42
13. 0.125 0.21 1. Ox10 5 0.01 24x42it 2.2,3.2
14. 0.125 0.21 1. Ox10 5 0.001 24x42it 3.2

15. 0.125 0.21 3.2x10 5 1.0 24x27
16. 0.125 0.21 3.2x10 5 0.1 24x42
17. 0.125 0.21 3.2x10 5 0.01 24x42

18. 0.125 0.21 1.0x10 6 1.0 24x27
19. 0.125 0.21 1.0x10 6 0.1 24x42it 2.4,3.3
20. 0.125 0.21 1.0x10 6 0.01 24x42it

21. 0.125 0.083 1.0x10 4 0.1 24x29
22. 0.125 0.083 1.0x105 o. 1 24x29it 2.6,3.7
23. 0.125 0.083 1. Ox10 5 0.01 24x29it
24. 0.125 0.083 1.0x105 0.001 24x29it

25. 0.125 0.5 1. Ox10 4 0.1 24x40
26. 0.125 0.5 1. Ox10 5 0.1 24x40 2.6,3.7
27. 0.125 0.5 1.0x105 0.01 24x40it

28. 0.125 0.75 1. Ox10 4 0.1 24x46
29. 0.125 0.75 1. Ox10 5 0.1 24x46

30. 0.0 0.0 1. Ox10 5 1.0 24x24
31. 0.042 0.0 1. Ox10 5 1.0 24x25
32. 0.083 0.0 1.0x105 1.0 24x26

it - checked for convergence and resolution.
$ - in which the temperature structure is displayed
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FRACTURE ZONE PROBLEM (Chapter 4):

RUN LID LVL RAYLEIGH Ilt / llb GRID FIGURE$
THICK. THICK. NUMBER SIZE NUMBER

1. 0.083 0.0 1. Ox10 4 1.0 140x38
2. 0.083 0.21 1. Ox10 4 0.1 200x50
3. 0.083 0.21 1. Ox10 4 0.01 200x50# 4.5
4 . 0.083 0.21 1. Ox10 4 0.001 146x79#

5. 0.083 0.0 3.2x10 4 1.0 140x38
6. 0.083 0.21 3.2x10 4 0.1 200x50
7. 0.083 0.21 3.2x10 4 0.01 200x50

8. 0.083 0.0 1. Ox10 5 1.0 140x38 4.4
9. 0.083 0.21 1. Ox10 5 0.1 200x50 4.4
10. 0.083 0.21 1. Ox10 5 0.01 146x79# 4.4
11. 0.083 0.21 1.0x105 0.001 146x79#

12. 0.083 0.0 3.2x10 5 1.0 140x38
13. 0.083 0.21 3.2x10 5 0.1 200x50#
14. 0.083 0.21 3.2x10 5 0.01 146x79*

15. 0.083 0.0 4.2x105 1.0 192x27 1 4.2
16. 0.083 0.0 4.2x10 5 1.0 192x272 4.2
17. 0.083 0.0 4.2x10 5 1.0 192x27 3 4.2

18. 0.083 0.0 1. Ox10 6 1.0 200x50# 4.3
19. 0.083 0.21 1.0x10 6 0.1 146x79#
20. 0.083 0.21 1. Ox10 6 0.01 146x79*

21. 0.083 0.0 1.0x107 1.0 200x50# 4.3

22. 0.083 0.083 1. Ox10 4 0.1 140x38
23. 0.083 0.083 1. Ox10 5 0.1 200x50# 4.6
24. 0.083 0.083 1. Ox10 5 0.01 146x79#
25. 0.083 0.083 1. Ox10 5 0.001 146x79#

26. 0.083 0.5 1. Ox10 4 0.1 200x50
27. 0.083 0.5 1.0x105 0.1 200x50# 4.6
28. 0.083 0.5 1.0x105 0.01 146x79#

29. 0.083 0.75 1. Ox10 4 0.1 200x50
30. 0.083 0.75 1.0x105 0.1 200x50#

31. 0.0 0.21 1. Ox10 4 0.1 200x50
32. 0.042 0.21 1. Ox10 4 0.1 200x50
33. 0.0 0.21 1. Ox10 5 1.0 200x50
34. 0.042 0.21 1. Ox10 5 1.0 200x50
# - checked for convergence and resolution.
* - unable to reach convergence
$ - in which the temperature structure is displayed
1 - Age contrast of 27 m.y.
2 - Age contrast of 15 m.y. (normal)
3 - Includes heating from below



COOLING INSTABILITIES PROBLEM (Chapter 5):

RUN LID LVL RAYLEIGH ~t/~b GRID FIGURE$
THICK. THICK. NUMBER SIZE NUMBER

1. 0.083 0.0 1. Ox10 4 1.0 140x38
2. 0.083 0.21 1.0x10 4 0.1 200x50 5.6
3. 0.083 0.21 1. Ox10 4 0.01 200x50#
4 . 0.083 0.21 1. Ox1 04 0.001 146x79#

5. 0.083 0.0 3.2x10 4 1.0 140x38
6. 0.083 0.21 3.2x10 4 0.1 200x50
7. 0.083 0.21 3.2x10 4 0.01 200x50#
8. 0.125 0.21 3.2x10 4 0.001 146x79#

9. 0.083 0.0 1. Ox10 5 1.0 140x38 5.2
10. 0.083 0.21 1.0x105 0.1 200x50 5.3
11. 0.083 0.21 1. Ox10 5 0.01 146x79# 5.4
12. 0.083 0.21 1. Ox1 05 0.0032 146x79#
13. 0.083 0.21 1.0x105 0.001 146x79#

14. 0.083 0.0 3.2x105 1.0 140x38
15. 0.083 0.21 3.2x10 5 0.1 200x50#
16. 0.083 0.21 3.2x10 5 0.01 146x79*

17. 0.083 0.0 1.0x10 6 1.0 200x50#
18. 0.083 0.21 1.0x10 6 0.1 146x79# 5.7
19. 0.083 0.21 1.0x10 6 0.032 146x79*
21. 0.083 0.21 1.0x10 6 0.01 146x79*

22. 0.083 0.0 1.0x107 1.0 200x50#

23. 0.083 0.083 1. Ox1 04 0.1 140x38
24. 0.083 0.083 1.0x105 0.1 200x50#
25. 0.083 0.083 1. Ox10 5 0.01 146x79# 5.8
26. 0.083 0.083 1. Ox1 05 0.001 146x79#

27. 0.083 0.5 1. Ox10 4 0.1 200x50
28. 0.083 0.5 1. Ox10 5 0.1 200x50#
29. 0.083 0.5 1. Ox10 5 0.01 146x79# 5.9

30. 0.083 0.75 1. Ox10 4 0.1 200x50
31. 0.083 0.75 1.0x105 0.1 200x50#

32. 0.0 0.21 1. Ox10 4 0.1 200xSO
33. 0.042 0.21 1. Ox10 4 0.1 200xSO
34. 0.0 0.21 1.0x10S 0.1 200xSO
35. 0.042 0.21 1. Ox10 S 0.1 200xSO
36. 0.0 0.21 1.0x10S 0.01 146x73# S.10
37. 0.042 0.21 1. Ox10 S 0.01 146x76# S .11

# - checked for convergence and resolution.
* - unable to reach convergence
$ - in which the temperature structure is displayed


