electronic papers

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

# The new chiral ligand 3-ethoxy-4-[(1*R*,2*S*)-(2-hydroxy-1,2-diphenylethyl)amino]-3-cyclobutene-1,2-dione

Haibing Zhou, Yi Yuan, Albert S. C. Chan, Teng-Kuei Yang and Rugang Xie

Copyright © International Union of Crystallography

This paper is published electronically. It meets the data-validation criteria for publication in *Acta Crystallographica Section C*. The submission has been checked by a Section C Co-editor though the text in the "Comments" section is the responsibility of the authors.

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

# The new chiral ligand 3-ethoxy-4-[(1*R*,2SS)-(2-hydroxy-1,2-diphenylethyl)amino]-3-cyclobutene-1,2-dione

### Haibing Zhou,<sup>a</sup> Yi Yuan,<sup>a</sup> Albert S. C. Chan,<sup>b</sup> Teng-Kuei Yang<sup>c</sup> and Rugang Xie<sup>a</sup>\*

<sup>a</sup>Institute of Bioorganic Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, <sup>b</sup>Union Laboratory of Asymmetric Synthesis and Department of Applied Biology, and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, and <sup>c</sup>Department of Chemistry, Chung-Hsing University, Taichung, Taiwan

Correspondence e-mail: schemorg@mail.sc.cninfo.net

Received 22 December 1999

Data validation number: IUC0000001

The asymmetric unit of  $C_{20}H_{19}NO_4$  contains two molecules with slightly different conformations. In the crystal, the molecules are linked by O-H···O and N-H···O hydrogen bonds [O···O 2.764 (3) and 2.811 (3) Å; N···O 2.907 (3) and 2.968 (3) Å] to form a two-dimensional network.

### Comment

Squaric acid and its derivatives have long been known as aromatic ring systems having unique characteristics and wide application, but reports on the synthesis of chiral derivatives of squaric acid are few and their application in asymmetric catalytic reactions is totally unprecedented. We report herein for the first time the crystal structure of the new chiral ligand 3-ethoxy-4-[(1R,2SS)-(2-hydroxy-1,2-diphenylethyl)amino]-3cvclobutene-1,2-dione, (I), which contains two independent molecules with slightly different conformations, they are linked by O-H···O and N-H···O hydrogen bonds (see Table 1) to form a two-dimensional network. This ligand may provide an effect chiral environment for coordination of the substrate in the reactions, such as the enantioselective catalytic borane reduction of prochiral ketones and addition of dialkylzinc to aldehydes etc, ascribed to the combining the aromatic squaric acid moiety of rigidity tetracarbon ring and



flexible ethoxy group with the chiral aminoalcohol, that proved to be the effective catalyst for the reactions mentioned above when the new ligand was used. The title compound was prepared by reaction of 3,4-diethoxy-3-cyclobutene-1,2-dione and (1S,2R)- $(\pm)$ -2-amino-1,2-diphenylethanol in the presence of triethylamine (molar ratio 1.1:1:1) in ethanol and recrystallized from it.

Crystal data

 $C_{20}H_{19}NO_4$   $M_r = 337.36$ Monoclinic,  $P2_1$  a = 10.758 (2) Å b = 15.879 (3) Å c = 11.040 (2) Å  $\beta = 112.740$  (10)° V = 1739.3 (6) Å<sup>3</sup> Z = 4

#### Data collection

Bruker P4 diffractometer  $\omega$  scans 5817 measured reflections 4871 independent reflections 3018 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.016$  $\theta_{\text{max}} = 28.50^{\circ}$ 

#### Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.038$   $wR(F^2) = 0.073$  S = 0.8464871 reflections 456 parameters H-atom parameters constrained

 $D_x = 1.288 \text{ Mg m}^{-3}$ Mo K\$\alpha\$ radiation Cell parameters from 25 reflections \$\theta\$ = 3.41-17.40° \$\mu\$ = 0.090 mm^{-1}\$ \$T\$ = 296 (2) K Flake, colourless 0.48 \$\times\$ 0.38 \$\times\$ 0.36 mm

 $h = -1 \rightarrow 14$   $k = -1 \rightarrow 21$   $l = -14 \rightarrow 14$ 3 standard reflections every 97 reflections intensity decay: 3.98%

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0321P)^2] \text{ where } \\ &P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{\text{max}} = 0.001 \\ &\Delta\rho_{\text{max}} = 0.159 \text{ e } \text{ Å}^{-3} \\ &\Delta\rho_{\text{min}} = -0.141 \text{ e } \text{ Å}^{-3} \\ &\text{Extinction correction: } SHELXL97 \\ &(\text{Sheldrick, 1997a}) \\ &\text{Extinction coefficient: } 0.0168 (8) \end{split}$$

#### Table 1

Hydrogen-bonding geometry (Å, °).

| $D - H \cdot \cdot \cdot A$             | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------------------|------|-------------------------|--------------|---------------------------|
| O1-H1O···O3 <sup>i</sup>                | 0.82 | 2.01                    | 2.811 (3)    | 165                       |
| $O1' - H1'O \cdot \cdot \cdot O3'^{ii}$ | 0.82 | 1.95                    | 2.764 (3)    | 173                       |
| N−H···O2′ <sup>iii</sup>                | 0.86 | 2.06                    | 2.907 (3)    | 169                       |
| $N'-H'\cdots O2$                        | 0.86 | 2.15                    | 2.968 (3)    | 159                       |

Symmetry codes: (i)  $1 - x, y - \frac{1}{2}, 1 - z$ ; (ii)  $-x, \frac{1}{2} + y, -z$ ; (iii) 1 + x, y, 1 + z.

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *SHELXTL*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*b*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation of China for financial support.

### References

Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany. Sheldrick, G. M. (1997b). SHELXS97. University of Göttingen, Germany. Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

# supporting information

Acta Cryst. (2000). C56, e57 [doi:10.1107/S0108270100000378]

# The new chiral ligand 3-ethoxy-4-[(1*R*,2*S*)-(2-hydroxy-1,2-diphenylethyl)amino]-3-cyclobutene-1,2-dione

# Haibing Zhou, Yi Yuan, Albert S. C. Chan, Teng-Kuei Yang and Rugang Xie

## **Computing details**

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *SHELXTL*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997b); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997a); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

## 3-Ethoxy-4-[(1'R,2'S)-(2'-hydroxy-1',2'-diphenyl)ethylamino]-3-cyclobutene- 1,2-dione

| Crystal data                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{20}H_{19}NO_4$ $M_r = 337.36$ Monoclinic, $P2_1$ $a = 10.758$ (2) Å $b = 15.879$ (3) Å $c = 11.040$ (2) Å $\beta = 112.74$ (1)° $V = 1739.3$ (6) Å <sup>3</sup> $Z = 4$ $F(000) = 712$                                                      | $D_x = 1.288 \text{ Mg m}^{-3}$<br>Melting point = 481–483 K<br>Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 25 reflections<br>$\theta = 3.4-17.4^{\circ}$<br>$\mu = 0.09 \text{ mm}^{-1}$<br>T = 296  K<br>Flake, colourless<br>$0.48 \times 0.38 \times 0.36 \text{ mm}$                                                            |
| Data collection                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                        |
| Bruker P4<br>diffractometer<br>Radiation source: normal-focus sealed tube<br>Graphite monochromator<br>$\omega$ scans<br>5817 measured reflections<br>4871 independent reflections<br>3018 reflections with $I > 2\sigma(I)$                    | $R_{int} = 0.016$<br>$\theta_{max} = 28.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$<br>$h = -1 \rightarrow 14$<br>$k = -1 \rightarrow 21$<br>$l = -14 \rightarrow 14$<br>3 standard reflections every 97 reflections<br>intensity decay: 4.0%                                                                                                                             |
| Refinement                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                        |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.038$<br>$wR(F^2) = 0.073$<br>S = 0.85<br>4871 reflections<br>456 parameters<br>1 restraint<br>Primary atom site location: structure-invariant<br>direct methods | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H-atom parameters constrained<br>$w = 1/[\sigma^2(F_o^2) + (0.0321P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 0.16$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.14$ e Å <sup>-3</sup> |

# Extinction correction: *SHELXL97* (Sheldrick, 1997a), $Fc^*=3DkFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

## Extinction coefficient: 0.0168 (8)

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) = are estimated using the full covariance matrix. The cell e.s.d.'s are = taken into account individually in the estimation of e.s.d.'s in distances, = angles and torsion angles; correlations between e.s.d.'s in cell parameters are = only used when they are defined by crystal symmetry. An approximate = (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. = planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR = and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based = on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $= F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and = is not relevant to the choice of reflections for refinement. *R*-factors = based on  $F^2$  are statistically about twice as large as those based on *F*, and = *R*- factors based on ALL data will be even larger.

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(A^2)$ |
|-----------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------|

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|--------------|-----------------------------|
| 01  | 0.3818 (2)   | 0.06773 (12) | 0.6832 (2)   | 0.0486 (5)                  |
| H1O | 0.3916       | 0.0169       | 0.6962       | 0.058*                      |
| O2  | 0.32990 (19) | 0.27491 (13) | 0.32206 (16) | 0.0507 (5)                  |
| O3  | 0.5318 (2)   | 0.40081 (12) | 0.25040 (16) | 0.0494 (5)                  |
| O4  | 0.77171 (18) | 0.34608 (13) | 0.53789 (16) | 0.0474 (5)                  |
| Ν   | 0.5751 (2)   | 0.23305 (14) | 0.60626 (18) | 0.0370 (5)                  |
| H0  | 0.6560       | 0.2255       | 0.6625       | 0.044*                      |
| C1  | 0.6479 (3)   | 0.01575 (18) | 0.5883 (3)   | 0.0474 (7)                  |
| H1  | 0.7156       | 0.0219       | 0.6714       | 0.057*                      |
| C2  | 0.6721 (3)   | -0.0313 (2)  | 0.4944 (3)   | 0.0612 (9)                  |
| H2  | 0.7550       | -0.0576      | 0.5151       | 0.073*                      |
| C3  | 0.5737 (4)   | -0.0392 (2)  | 0.3703 (3)   | 0.0610 (9)                  |
| Н3  | 0.5900       | -0.0703      | 0.3066       | 0.073*                      |
| C4  | 0.4521 (4)   | -0.0010 (2)  | 0.3416 (3)   | 0.0638 (9)                  |
| H4  | 0.3854       | -0.0060      | 0.2578       | 0.077*                      |
| C5  | 0.4275 (3)   | 0.0449 (2)   | 0.4358 (2)   | 0.0504 (8)                  |
| Н5  | 0.3440       | 0.0704       | 0.4150       | 0.061*                      |
| C6  | 0.5251 (2)   | 0.05343 (16) | 0.5606 (2)   | 0.0347 (6)                  |
| C7  | 0.4963 (2)   | 0.10123 (16) | 0.6653 (2)   | 0.0366 (6)                  |
| H7  | 0.5747       | 0.0967       | 0.7484       | 0.044*                      |
| C8  | 0.4650 (2)   | 0.19442 (15) | 0.6333 (2)   | 0.0324 (5)                  |
| H8  | 0.3830       | 0.1982       | 0.5532       | 0.039*                      |
| C9  | 0.4399 (2)   | 0.24145 (15) | 0.7424 (2)   | 0.0336 (6)                  |
| C10 | 0.3102 (3)   | 0.25466 (18) | 0.7345 (2)   | 0.0467 (7)                  |
| H10 | 0.2377       | 0.2351       | 0.6618       | 0.056*                      |
| C11 | 0.2865 (3)   | 0.2964 (2)   | 0.8329 (3)   | 0.0574 (9)                  |
| H11 | 0.1986       | 0.3042       | 0.8266       | 0.069*                      |
| C12 | 0.3921 (3)   | 0.3265 (2)   | 0.9399 (3)   | 0.0563 (8)                  |
| H12 | 0.3762       | 0.3548       | 1.0063       | 0.068*                      |
| C13 | 0.5213 (3)   | 0.3146 (2)   | 0.9482 (3)   | 0.0551 (8)                  |
| H13 | 0.5933       | 0.3354       | 1.0202       | 0.066*                      |
| C14 | 0.5453 (3)   | 0.27216 (18) | 0.8511 (2)   | 0.0464 (7)                  |

| H14       | 0.6336        | 0.2640       | 0.8585        | 0.056*      |
|-----------|---------------|--------------|---------------|-------------|
| C15       | 0.5584 (2)    | 0.27859 (16) | 0.5017 (2)    | 0.0315 (6)  |
| C16       | 0.4473 (3)    | 0.29696 (17) | 0.3756 (2)    | 0.0363 (6)  |
| C17       | 0.5413 (3)    | 0.35431 (16) | 0.3423 (2)    | 0.0362 (6)  |
| C18       | 0.6450 (3)    | 0.33035 (16) | 0.4681 (2)    | 0.0338 (6)  |
| C19       | 0.8392 (3)    | 0.4036 (2)   | 0.4807 (3)    | 0.0526 (8)  |
| H19A      | 0.8149        | 0.4613       | 0.4900        | 0.063*      |
| H19B      | 0.8133        | 0.3916       | 0.3880        | 0.063*      |
| C20       | 0.9872 (3)    | 0.3908 (2)   | 0.5528 (3)    | 0.0756 (11) |
| H20A      | 1.0117        | 0.4043       | 0.6439        | 0.091*      |
| H20B      | 1.0354        | 0.4267       | 0.5162        | 0.091*      |
| H20C      | 1.0094        | 0.3331       | 0.5448        | 0.091*      |
| 01′       | -0.12148 (19) | 0.38791 (12) | 0.1911 (2)    | 0.0507(5)   |
| H1′O      | -0.0871       | 0.4343       | 0.2143        | 0.061*      |
| 02′       | -0.16835 (19) | 0.19230 (14) | -0.18421 (17) | 0.0558 (6)  |
| 03′       | 0.0141 (2)    | 0.04816 (12) | -0.24695(17)  | 0.0556 (6)  |
| 04'       | 0.26944(17)   | 0.11000 (12) | 0.02442 (16)  | 0.0441 (5)  |
| 0'.<br>N' | 0.0825 (2)    | 0.24079(13)  | 0.08601(18)   | 0.0358(5)   |
| H'        | 0.1540        | 0.2364       | 0.1565        | 0.043*      |
| C1′       | 0.0554 (3)    | 0.20636 (18) | 0.3724 (2)    | 0.0445(7)   |
| H1'       | 0.1442        | 0.2195       | 0.3868        | 0.053*      |
| C2′       | 0.0295 (3)    | 0.1424(2)    | 0.4433 (3)    | 0.0552 (9)  |
| H2′       | 0.1007        | 0.1128       | 0.5046        | 0.066*      |
| C3′       | -0.1003(4)    | 0.1220 (2)   | 0.4241 (3)    | 0.0607 (9)  |
| H3′       | -0.1177       | 0.0798       | 0.4738        | 0.073*      |
| C4′       | -0.2050 (3)   | 0.1646 (2)   | 0.3307 (3)    | 0.0614 (9)  |
| H4′       | -0.2936       | 0.1501       | 0.3153        | 0.074*      |
| C5′       | -0.1788(3)    | 0.22893 (19) | 0.2595 (3)    | 0.0503 (7)  |
| H5′       | -0.2504       | 0.2574       | 0.1968        | 0.060*      |
| C6′       | -0.0478 (2)   | 0.25167 (16) | 0.2801 (2)    | 0.0364 (6)  |
| C7′       | -0.0186(2)    | 0.32683 (16) | 0.2115 (2)    | 0.0372 (6)  |
| H7′       | 0.0685        | 0.3511       | 0.2676        | 0.045*      |
| C8′       | -0.0169 (2)   | 0.30707 (16) | 0.0763 (2)    | 0.0352 (6)  |
| H8′       | -0.1063       | 0.2860       | 0.0201        | 0.042*      |
| C9′       | 0.0120 (3)    | 0.38485 (15) | 0.0112 (2)    | 0.0347 (6)  |
| C10′      | -0.0860(3)    | 0.4190 (2)   | -0.1005(3)    | 0.0514 (8)  |
| H10′      | -0.1708       | 0.3942       | -0.1364       | 0.062*      |
| C11′      | -0.0585 (4)   | 0.4891 (2)   | -0.1587 (3)   | 0.0618 (9)  |
| H11′      | -0.1259       | 0.5118       | -0.2327       | 0.074*      |
| C12′      | 0.0660 (4)    | 0.5265 (2)   | -0.1100 (3)   | 0.0591 (9)  |
| H12′      | 0.0841        | 0.5732       | -0.1514       | 0.071*      |
| C13′      | 0.1627 (3)    | 0.4936(2)    | 0.0006 (3)    | 0.0554 (8)  |
| H13′      | 0.2473        | 0.5188       | 0.0356        | 0.066*      |
| C14′      | 0.1371 (3)    | 0.42341 (18) | 0.0614 (3)    | 0.0461 (7)  |
| H14′      | 0.2044        | 0.4019       | 0.1366        | 0.055*      |
| C15′      | 0.0633 (2)    | 0.18835 (16) | -0.0116 (2)   | 0.0315 (6)  |
| C16′      | -0.0529 (3)   | 0.16716 (17) | -0.1328 (3)   | 0.0376 (6)  |
| C17′      | 0.0330 (3)    | 0.10166 (17) | -0.1615 (2)   | 0.0383 (6)  |
|           | × /           | · /          | × /           |             |

# supporting information

| C18′ | 0.1416 (3) | 0.12883 (16) | -0.0418 (2) | 0.0335 (6) |  |
|------|------------|--------------|-------------|------------|--|
| C19′ | 0.3314 (3) | 0.0519(2)    | -0.0384 (3) | 0.0544 (8) |  |
| H19C | 0.2973     | 0.0626       | -0.1321     | 0.065*     |  |
| H19D | 0.3097     | -0.0057      | -0.0250     | 0.065*     |  |
| C20′ | 0.4790 (3) | 0.0644 (2)   | 0.0201 (3)  | 0.0657 (9) |  |
| H20D | 0.5002     | 0.1201       | 0.0000      | 0.079*     |  |
| H20E | 0.5217     | 0.0236       | -0.0153     | 0.079*     |  |
| H20F | 0.5110     | 0.0576       | 0.1137      | 0.079*     |  |
|      |            |              |             |            |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| 01  | 0.0624 (14) | 0.0358 (11) | 0.0616 (12) | -0.0064 (11) | 0.0391 (11) | -0.0014 (11) |
| O2  | 0.0331 (11) | 0.0647 (14) | 0.0441 (10) | -0.0087 (10) | 0.0036 (9)  | 0.0040 (10)  |
| O3  | 0.0676 (13) | 0.0447 (11) | 0.0352 (9)  | -0.0033 (11) | 0.0191 (9)  | 0.0067 (9)   |
| O4  | 0.0344 (11) | 0.0594 (13) | 0.0448 (10) | -0.0109 (10) | 0.0114 (8)  | 0.0041 (10)  |
| Ν   | 0.0245 (11) | 0.0487 (13) | 0.0304 (10) | -0.0016 (11) | 0.0025 (9)  | 0.0082 (10)  |
| C1  | 0.0414 (16) | 0.0514 (18) | 0.0519 (16) | 0.0042 (15)  | 0.0207 (13) | 0.0054 (15)  |
| C2  | 0.064 (2)   | 0.054 (2)   | 0.082 (2)   | 0.0116 (18)  | 0.047 (2)   | 0.0060 (19)  |
| C3  | 0.089 (3)   | 0.0481 (19) | 0.069 (2)   | -0.0051 (19) | 0.055 (2)   | -0.0104 (17) |
| C4  | 0.072 (2)   | 0.075 (2)   | 0.0468 (18) | -0.009 (2)   | 0.0248 (16) | -0.0136 (17) |
| C5  | 0.0466 (18) | 0.062 (2)   | 0.0416 (15) | 0.0029 (16)  | 0.0161 (14) | -0.0070 (15) |
| C6  | 0.0382 (15) | 0.0333 (14) | 0.0367 (12) | -0.0055 (12) | 0.0188 (12) | 0.0008 (11)  |
| C7  | 0.0348 (14) | 0.0392 (15) | 0.0335 (12) | -0.0006 (12) | 0.0106 (11) | 0.0004 (11)  |
| C8  | 0.0270 (12) | 0.0373 (14) | 0.0296 (11) | -0.0049 (11) | 0.0072 (10) | 0.0019 (11)  |
| C9  | 0.0367 (14) | 0.0276 (13) | 0.0336 (12) | -0.0008 (12) | 0.0106 (11) | 0.0046 (11)  |
| C10 | 0.0405 (16) | 0.0516 (18) | 0.0464 (14) | -0.0039 (15) | 0.0150 (12) | -0.0028 (14) |
| C11 | 0.058 (2)   | 0.062 (2)   | 0.0619 (18) | 0.0059 (18)  | 0.0338 (17) | -0.0062 (18) |
| C12 | 0.073 (2)   | 0.0517 (19) | 0.0445 (15) | 0.0154 (18)  | 0.0232 (16) | -0.0043 (15) |
| C13 | 0.062 (2)   | 0.0523 (19) | 0.0399 (15) | 0.0071 (18)  | 0.0070 (14) | -0.0076 (15) |
| C14 | 0.0424 (16) | 0.0468 (17) | 0.0425 (14) | 0.0039 (14)  | 0.0081 (13) | -0.0055 (13) |
| C15 | 0.0277 (13) | 0.0336 (14) | 0.0307 (12) | -0.0008 (11) | 0.0086 (10) | -0.0033 (11) |
| C16 | 0.0356 (16) | 0.0396 (15) | 0.0316 (12) | -0.0009 (14) | 0.0108 (11) | -0.0023 (12) |
| C17 | 0.0466 (17) | 0.0318 (14) | 0.0308 (13) | 0.0016 (13)  | 0.0157 (12) | -0.0037 (12) |
| C18 | 0.0326 (15) | 0.0357 (14) | 0.0323 (12) | 0.0000 (13)  | 0.0118 (11) | -0.0027 (12) |
| C19 | 0.0468 (19) | 0.0526 (18) | 0.0672 (18) | -0.0105 (16) | 0.0317 (16) | -0.0011 (17) |
| C20 | 0.0472 (19) | 0.086 (3)   | 0.104 (3)   | -0.014 (2)   | 0.0407 (19) | -0.029 (2)   |
| 01′ | 0.0600 (14) | 0.0360 (11) | 0.0675 (13) | 0.0087 (11)  | 0.0373 (11) | 0.0045 (11)  |
| O2′ | 0.0351 (12) | 0.0644 (14) | 0.0525 (11) | 0.0074 (11)  | -0.0002 (9) | -0.0066 (11) |
| O3′ | 0.0629 (14) | 0.0490 (12) | 0.0447 (10) | 0.0041 (11)  | 0.0094 (10) | -0.0123 (10) |
| O4′ | 0.0351 (11) | 0.0540 (12) | 0.0408 (9)  | 0.0130 (10)  | 0.0120 (8)  | -0.0052 (9)  |
| N′  | 0.0315 (12) | 0.0382 (12) | 0.0303 (10) | 0.0083 (10)  | 0.0039 (9)  | -0.0029 (10) |
| C1′ | 0.0411 (16) | 0.0423 (16) | 0.0473 (14) | 0.0002 (14)  | 0.0139 (13) | 0.0008 (13)  |
| C2′ | 0.060 (2)   | 0.0472 (18) | 0.0484 (17) | 0.0053 (17)  | 0.0105 (15) | 0.0091 (16)  |
| C3′ | 0.079 (3)   | 0.0433 (18) | 0.067 (2)   | -0.0036 (18) | 0.0367 (18) | 0.0083 (17)  |
| C4′ | 0.051 (2)   | 0.053 (2)   | 0.086 (2)   | -0.0125 (18) | 0.0333 (18) | 0.003 (2)    |
| C5′ | 0.0438 (17) | 0.0481 (17) | 0.0558 (16) | -0.0005 (15) | 0.0155 (13) | 0.0056 (15)  |
| C6′ | 0.0401 (15) | 0.0338 (14) | 0.0371 (13) | 0.0002 (13)  | 0.0168 (12) | -0.0038 (11) |

# supporting information

| C7′  | 0.0360 (14) | 0.0369 (15) | 0.0380 (13) | 0.0030 (12)  | 0.0134 (11) | 0.0012 (12)  |
|------|-------------|-------------|-------------|--------------|-------------|--------------|
| C8′  | 0.0291 (13) | 0.0383 (14) | 0.0333 (12) | 0.0050 (12)  | 0.0068 (10) | -0.0024 (11) |
| C9′  | 0.0389 (14) | 0.0348 (15) | 0.0327 (12) | 0.0056 (13)  | 0.0162 (11) | -0.0029 (11) |
| C10′ | 0.0495 (19) | 0.0546 (19) | 0.0428 (15) | 0.0051 (16)  | 0.0100 (14) | 0.0051 (15)  |
| C11′ | 0.074 (2)   | 0.059 (2)   | 0.0468 (17) | 0.0112 (19)  | 0.0180 (16) | 0.0192 (16)  |
| C12′ | 0.088 (3)   | 0.0454 (19) | 0.0613 (19) | 0.0021 (19)  | 0.0487 (19) | 0.0081 (16)  |
| C13′ | 0.054 (2)   | 0.0554 (19) | 0.065 (2)   | -0.0053 (17) | 0.0322 (17) | 0.0021 (18)  |
| C14′ | 0.0436 (17) | 0.0484 (17) | 0.0459 (15) | 0.0035 (14)  | 0.0168 (13) | 0.0064 (14)  |
| C15′ | 0.0328 (14) | 0.0324 (14) | 0.0286 (12) | -0.0005 (12) | 0.0113 (11) | 0.0016 (11)  |
| C16′ | 0.0334 (17) | 0.0389 (16) | 0.0373 (13) | -0.0008 (13) | 0.0101 (12) | 0.0003 (12)  |
| C17′ | 0.0422 (17) | 0.0374 (15) | 0.0319 (12) | 0.0003 (14)  | 0.0107 (12) | -0.0014 (13) |
| C18′ | 0.0323 (15) | 0.0357 (15) | 0.0324 (12) | 0.0043 (13)  | 0.0125 (11) | 0.0028 (12)  |
| C19′ | 0.0486 (19) | 0.0586 (19) | 0.0619 (17) | 0.0151 (17)  | 0.0280 (15) | -0.0040 (17) |
| C20′ | 0.0481 (19) | 0.078 (2)   | 0.078 (2)   | 0.0199 (19)  | 0.0313 (16) | 0.014 (2)    |
|      |             |             |             |              |             |              |

Geometric parameters (Å, °)

| 01—C7      | 1.423 (3) | O2'—C16'    | 1.216 (3) |
|------------|-----------|-------------|-----------|
| O2—C16     | 1.221 (3) | O3′—C17′    | 1.227 (3) |
| O3—C17     | 1.226 (3) | O4′—C18′    | 1.319 (3) |
| O4—C18     | 1.305 (3) | O4′—C19′    | 1.461 (3) |
| O4—C19     | 1.453 (3) | N'—C15'     | 1.314 (3) |
| N—C15      | 1.315 (3) | N'—C8'      | 1.475 (3) |
| N—C8       | 1.463 (3) | C1′—C2′     | 1.375 (4) |
| C1—C6      | 1.372 (3) | C1′—C6′     | 1.383 (3) |
| C1—C2      | 1.382 (4) | C2′—C3′     | 1.368 (4) |
| С2—С3      | 1.376 (4) | C3′—C4′     | 1.376 (4) |
| C3—C4      | 1.363 (5) | C4′—C5′     | 1.382 (4) |
| C4—C5      | 1.377 (4) | C5′—C6′     | 1.387 (4) |
| C5—C6      | 1.379 (3) | C6′—C7′     | 1.510 (3) |
| С6—С7      | 1.512 (3) | C7′—C8′     | 1.532 (3) |
| С7—С8      | 1.528 (3) | C8′—C9′     | 1.521 (3) |
| С8—С9      | 1.527 (3) | C9′—C14′    | 1.384 (4) |
| C9—C10     | 1.381 (4) | C9′—C10′    | 1.386 (3) |
| C9—C14     | 1.383 (3) | C10'—C11'   | 1.374 (4) |
| C10-C11    | 1.378 (4) | C11′—C12′   | 1.370 (4) |
| C11—C12    | 1.370 (4) | C12'—C13'   | 1.366 (4) |
| C12—C13    | 1.371 (4) | C13'—C14'   | 1.383 (4) |
| C13—C14    | 1.373 (4) | C15'—C18'   | 1.390 (3) |
| C15—C18    | 1.396 (3) | C15′—C16′   | 1.474 (4) |
| C15—C16    | 1.471 (3) | C16'—C17'   | 1.505 (4) |
| C16—C17    | 1.508 (4) | C16'—C18'   | 2.033 (4) |
| C17—C18    | 1.456 (3) | C17'—C18'   | 1.450 (3) |
| C19—C20    | 1.493 (4) | C19'—C20'   | 1.478 (4) |
| O1′—C7′    | 1.423 (3) |             |           |
| C18—O4—C19 | 116.5 (2) | C3'—C2'—C1' | 120.4 (3) |
| C15—N—C8   | 124.3 (2) | C2'—C3'—C4' | 119.4 (3) |

| C6—C1—C2                                           | 120.8 (3)              | C3'—C4'—C5'                      | 120.1 (3)            |
|----------------------------------------------------|------------------------|----------------------------------|----------------------|
| C3—C2—C1                                           | 120.1 (3)              | C4′—C5′—C6′                      | 121.1 (3)            |
| C4—C3—C2                                           | 119.4 (3)              | C1'—C6'—C5'                      | 117.4 (3)            |
| C3—C4—C5                                           | 120.5 (3)              | C1′—C6′—C7′                      | 121.2 (2)            |
| C4—C5—C6                                           | 120.8 (3)              | C5'—C6'—C7'                      | 121.3 (2)            |
| C1—C6—C5                                           | 118.4 (2)              | O1'—C7'—C6'                      | 108.58 (19)          |
| C1—C6—C7                                           | 120.8 (2)              | O1'—C7'—C8'                      | 106.67 (18)          |
| C5—C6—C7                                           | 120.7 (2)              | C6'—C7'—C8'                      | 114.2 (2)            |
| O1—C7—C6                                           | 111.3 (2)              | N'—C8'—C9'                       | 109.79 (19)          |
| O1—C7—C8                                           | 105.63 (19)            | N'—C8'—C7'                       | 110.92 (18)          |
| C6—C7—C8                                           | 113.6 (2)              | C9'—C8'—C7'                      | 112.1 (2)            |
| N—C8—C9                                            | 111.07 (19)            | C14′—C9′—C10′                    | 118.1 (3)            |
| N—C8—C7                                            | 109.3 (2)              | C14′—C9′—C8′                     | 121.0 (2)            |
| C9—C8—C7                                           | 112.38 (19)            | C10'—C9'—C8'                     | 120.9 (2)            |
| C10—C9—C14                                         | 118.1 (2)              | C11′—C10′—C9′                    | 120.4 (3)            |
| C10—C9—C8                                          | 120.5 (2)              | C12′—C11′—C10′                   | 121.5 (3)            |
| C14—C9—C8                                          | 121.4 (2)              | C13'-C12'-C11'                   | 118.5 (3)            |
| C11-C10-C9                                         | 120.9(3)               | C12'-C13'-C14'                   | 121.1(3)             |
| C12-C11-C10                                        | 120.3(3)               | C13'-C14'-C9'                    | 120.5(3)             |
| $C_{11} - C_{12} - C_{13}$                         | 1194(3)                | N' - C15' - C18'                 | 120.2(3)<br>135.2(2) |
| C12 - C13 - C14                                    | 1205(3)                | N' - C15' - C16'                 | 133.2(2)<br>134.3(2) |
| C13 - C14 - C9                                     | 120.8(3)               | C18'-C15'-C16'                   | 90.4(2)              |
| N-C15-C18                                          | 132.8(2)               | 02'-C16'-C15'                    | 1347(3)              |
| N - C15 - C16                                      | 136.5(2)               | 02' - C16' - C17'                | 1367(3)              |
| C18 - C15 - C16                                    | 90.8 (2)               | $C_{15'} - C_{16'} - C_{17'}$    | 88.5 (2)             |
| 02-C16-C15                                         | 1353(2)                | 02'-C16'-C18'                    | 177.8(2)             |
| 02-C16-C17                                         | 1361(2)                | $C_{15}'-C_{16}'-C_{18}'$        | 43 13 (14)           |
| $C_{15}$ $C_{16}$ $C_{17}$                         | 88.6 (2)               | C17'-C16'-C18'                   | 45 41 (15)           |
| 03-017-018                                         | 137.3 (3)              | $O_{3'} - C_{17'} - C_{18'}$     | 138.0 (3)            |
| 03-017-016                                         | 135.7(2)               | $O_{3'} - C_{17'} - C_{16'}$     | 1350(3)              |
| C18 - C17 - C16                                    | 87.02 (19)             | C18'-C17'-C16'                   | 86 9 (2)             |
| 04-C18-C15                                         | 1274(2)                | 04'-C18'-C15'                    | 1283(2)              |
| 04-C18-C17                                         | 138.9(2)               | 04'-C18'-C17'                    | 120.5(2)<br>1376(2)  |
| $C_{15}$ $C_{18}$ $C_{17}$                         | 93.6 (2)               | $C_{15'} - C_{18'} - C_{17'}$    | 94 1 (2)             |
| 04-C19-C20                                         | 106.9 (2)              | O4' - C18' - C16'                | 1747(2)              |
| C18' - O4' - C19'                                  | 116 72 (19)            | C15'-C18'-C16'                   | 46 46 (15)           |
| $C_{15'} - N' - C_{8'}$                            | 120 86 (19)            | C17'-C18'-C16'                   | 47.66 (15)           |
| $C_{2}^{\prime} - C_{1}^{\prime} - C_{6}^{\prime}$ | 120.50(1))<br>121.5(3) | O4' - C19' - C20'                | 1085(3)              |
| 62 61 60                                           | 121.5 (5)              | 04 019 020                       | 100.5 (5)            |
| C6 - C1 - C2 - C3                                  | 15(5)                  | C4'—C5'—C6'—C1'                  | 14(4)                |
| C1-C2-C3-C4                                        | -0.6(5)                | C4'C5'C6'C7'                     | -174.4(2)            |
| $C_{2} - C_{3} - C_{4} - C_{5}$                    | -0.2(5)                | C1' - C6' - C7' - O1'            | -1445(2)             |
| $C_{3}$ $C_{4}$ $C_{5}$ $C_{6}$                    | 0.3(5)                 | C5'-C6'-C7'-O1'                  | 31.2 (3)             |
| $C_2 - C_1 - C_6 - C_5$                            | -1.5(4)                | C1'-C6'-C7'-C8'                  | 96.7 (3)             |
| $C_2 - C_1 - C_6 - C_7$                            | 176 9 (3)              | C5'-C6'-C7'-C8'                  | -877(3)              |
| C4 - C5 - C6 - C1                                  | 0.6 (4)                | $C_{15'} = N' = C_{8'} = C_{9'}$ | -864(3)              |
| C4-C5-C6-C7                                        | -177.8(3)              | $C_{15}' - N' - C_{8}' - C_{7}'$ | 149 2 (2)            |
| $C_1 - C_6 - C_7 - O_1$                            | -1225(3)               | 01'-C7'-C8'-N'                   | -1772(2)             |
|                                                    | 122.0 (3)              |                                  | 1 / / .2 (2)         |

| C5-C6-C7-O1     | 55.9 (3)     | C6'—C7'—C8'—N'      | -57.2 (3)  |
|-----------------|--------------|---------------------|------------|
| C1—C6—C7—C8     | 118.5 (3)    | O1′—C7′—C8′—C9′     | 59.7 (2)   |
| C5—C6—C7—C8     | -63.2 (3)    | C6'—C7'—C8'—C9'     | 179.7 (2)  |
| C15—N—C8—C9     | -106.2 (3)   | N'                  | -55.8 (3)  |
| C15—N—C8—C7     | 129.2 (2)    | C7'—C8'—C9'—C14'    | 67.9 (3)   |
| O1—C7—C8—N      | -176.97 (19) | N'-C8'-C9'-C10'     | 123.9 (2)  |
| C6—C7—C8—N      | -54.7 (2)    | C7'—C8'—C9'—C10'    | -112.4 (2) |
| O1—C7—C8—C9     | 59.3 (2)     | C14′—C9′—C10′—C11′  | -0.1 (4)   |
| C6—C7—C8—C9     | -178.5 (2)   | C8′—C9′—C10′—C11′   | -179.8 (3) |
| N               | 140.4 (2)    | C9'—C10'—C11'—C12'  | 1.1 (5)    |
| C7—C8—C9—C10    | -96.8 (3)    | C10'—C11'—C12'—C13' | -1.6 (5)   |
| N               | -39.4 (3)    | C11'-C12'-C13'-C14' | 1.0 (4)    |
| C7—C8—C9—C14    | 83.4 (3)     | C12'—C13'—C14'—C9'  | -0.1 (4)   |
| C14—C9—C10—C11  | -0.7 (4)     | C10'—C9'—C14'—C13'  | -0.4 (4)   |
| C8—C9—C10—C11   | 179.5 (2)    | C8'—C9'—C14'—C13'   | 179.3 (2)  |
| C9—C10—C11—C12  | 0.8 (5)      | C8'—N'—C15'—C18'    | 169.2 (3)  |
| C10-C11-C12-C13 | -0.1 (5)     | C8'—N'—C15'—C16'    | -13.0 (4)  |
| C11—C12—C13—C14 | -0.7 (5)     | N'-C15'-C16'-O2'    | 2.1 (5)    |
| C12—C13—C14—C9  | 0.7 (5)      | C18'—C15'—C16'—O2'  | -179.5 (3) |
| C10-C9-C14-C13  | 0.0 (4)      | N'-C15'-C16'-C17'   | -177.2(3)  |
| C8—C9—C14—C13   | 179.8 (3)    | C18′—C15′—C16′—C17′ | 1.3 (2)    |
| C8—N—C15—C18    | 168.6 (3)    | N'-C15'-C16'-C18'   | -178.5 (4) |
| C8—N—C15—C16    | -11.3 (5)    | O2'—C16'—C17'—O3'   | -2.7 (6)   |
| N-C15-C16-O2    | -1.4 (6)     | C15'—C16'—C17'—O3'  | 176.5 (3)  |
| C18—C15—C16—O2  | 178.7 (3)    | C18'—C16'—C17'—O3'  | 177.7 (4)  |
| N-C15-C16-C17   | 178.6 (3)    | O2'—C16'—C17'—C18'  | 179.6 (3)  |
| C18—C15—C16—C17 | -1.3 (2)     | C15'—C16'—C17'—C18' | -1.2 (2)   |
| O2—C16—C17—O3   | 2.2 (6)      | C19'—O4'—C18'—C15'  | -172.6 (3) |
| C15—C16—C17—O3  | -177.8 (3)   | C19′—O4′—C18′—C17′  | 7.5 (4)    |
| O2—C16—C17—C18  | -178.8 (3)   | C19'—O4'—C18'—C16'  | -162 (2)   |
| C15—C16—C17—C18 | 1.2 (2)      | N'                  | -2.8(5)    |
| C19—O4—C18—C15  | -179.2 (2)   | C16'—C15'—C18'—O4'  | 178.7 (3)  |
| C19—O4—C18—C17  | -0.8 (5)     | N'-C15'-C18'-C17'   | 177.1 (3)  |
| N-C15-C18-O4    | 0.4 (5)      | C16'—C15'—C18'—C17' | -1.4 (2)   |
| C16—C15—C18—O4  | -179.7 (3)   | N'-C15'-C18'-C16'   | 178.5 (4)  |
| N-C15-C18-C17   | -178.5 (3)   | O3'—C17'—C18'—O4'   | 3.7 (6)    |
| C16—C15—C18—C17 | 1.3 (2)      | C16'—C17'—C18'—O4'  | -178.7 (3) |
| O3—C17—C18—O4   | -1.0 (6)     | O3'—C17'—C18'—C15'  | -176.3 (3) |
| C16—C17—C18—O4  | 180.0 (3)    | C16'—C17'—C18'—C15' | 1.3 (2)    |
| O3—C17—C18—C15  | 177.7 (3)    | O3'—C17'—C18'—C16'  | -177.6 (4) |
| C16—C17—C18—C15 | -1.3 (2)     | O2'—C16'—C18'—O4'   | -1 (8)     |
| C18—O4—C19—C20  | -162.0 (2)   | C15'—C16'—C18'—O4'  | -11 (2)    |
| C6'—C1'—C2'—C3' | -0.2 (4)     | C17'—C16'—C18'—O4'  | 171 (2)    |
| C1'—C2'—C3'—C4' | 1.8 (5)      | O2'—C16'—C18'—C15'  | 10 (6)     |
| C2'—C3'—C4'—C5' | -1.8 (5)     | C17'—C16'—C18'—C15' | -178.2 (3) |
| C3'—C4'—C5'—C6' | 0.2 (5)      | O2'—C16'—C18'—C17'  | -172 (6)   |
| C2'—C1'—C6'—C5' | -1.4 (4)     | C15'—C16'—C18'—C17' | 178.2 (3)  |
| C2'—C1'—C6'—C7' | 174.4 (2)    | C18'—O4'—C19'—C20'  | 157.6 (2)  |

| D—H···A                             | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|-------------------------------------|-------------|-------|--------------|------------|
| 01—H10···O3 <sup>i</sup>            | 0.82        | 2.01  | 2.811 (3)    | 165        |
| O1′—H1′ <i>O</i> …O3′ <sup>ii</sup> | 0.82        | 1.95  | 2.764 (3)    | 173        |
| N—H···O2′ <sup>iii</sup>            | 0.86        | 2.06  | 2.907 (3)    | 169        |
| N'—H'…O2                            | 0.86        | 2.15  | 2.968 (3)    | 159        |

# Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1; (ii) -*x*, *y*+1/2, -*z*; (iii) *x*+1, *y*, *z*+1.