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ABSTRACT

It is well known that along-isobath flow above a sloping bottom gives rise to cross-isobath Ekman transport

and therefore sets up horizontal density gradients if the ocean is stratified. These transports in turn eventually

bring the along-isobath bottom velocity, hence bottom stress, to rest (‘‘buoyancy arrest’’) simply by means of

the thermal wind shear. This problem is revisited here. A modified expression for Ekman transport is ra-

tionalized, and general expressions for buoyancy arrest time scales are presented. Theory and numerical

calculations are used to define a new formula for boundary layer thickness for the case of downslope Ekman

transport, where a thick, weakly stratified arrested boundary layer results. For upslope Ekman transport,

where advection leads to enhanced stability, expressions are derived for both the weakly sloping (in the sense

of slope Burger number s 5 aN/f, where a is the bottom slope, N is the interior buoyancy frequency, and f is

the Coriolis parameter) case where a capped boundary layer evolves and the larger s case where a nearly

linearly stratified boundary layer joins smoothly to the interior density profile. Consistent estimates for the

buoyancy arrest time scale are found for each case.

1. Introduction

In a stratified ocean, cross-isobath Ekman transport

(associated with an along-isobath flow) causes vertical

motions and therefore contributes to the development

of a horizontal density gradient. In the initial stages of

adjustment, turbulent mixing and dissipation are im-

portant; however, with time, a nonturbulent equilibrium

can be established. Regardless of the upslope or down-

slope sense of the Ekman transport, the horizontal

density gradient acts, through thermal wind balance, to

bring the along-isobath velocity adiabatically toward

rest at the bottom. These insights go back to at least

Weatherly and Martin (1978, hereafter WM78) and

have been further developed and refined by others (e.g.,

Thorpe 1987; MacCready and Rhines 1991; Trowbridge

and Lentz 1991, hereafter TL91; MacCready and Rhines

1993; Garrett MacCready and Rhines 1993; Ramsden

1995, Middleton and Ramsden 1996, hereafter MR96).

These authors all concentrated on an initial-value prob-

lem where a steady interior flow is suddenly started and

then the boundary layer adjusts until there is no longer

any along-isobath bottom stress.

Although the published results have presented in-

creasingly refined estimates of boundary layer thickness

and adjustment times, there is still room for improve-

ment. For example, Lentz and Trowbridge (1991) point

out that downslope Ekman transport leads to a bottom

boundary layer that, although thickened because of gravi-

tational instability, retains a finite stratification. Although

this phenomenon was explored by MR96, they did not

provide an expression for the boundary layer thickness

that accounts accurately for this added stability. Further,

previous authors have generally not dealt in much detail

with the case of upwelling Ekman transport. In this case,

there is competition between the stabilizing effects of

upslope transport of dense water and the development

of the turbulence that characterizes the evolving bottom

boundary layer. Thus, one might expect that model re-

sults depend strongly on how a particular turbulence pa-

rameterization balances these competing effects.

We revisit the buoyancy arrest initial-value problem

here to present two classes of results. First, we obtain

general expressions for the Ekman transport and buoy-

ancy shutdown time scales. Second, we derive new scales

for boundary layer thickness (hence adjustment time)

that account for finite boundary layer static stability in

both the upwelling and downwelling cases. These results
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are a necessary prelude to the development of models for

time-dependent boundary layer flow above a sloping

bottom (Brink and Lentz 2010, hereafter Part II).

2. Formulation

The ocean is assumed to have a constant initial ver-

tical density gradient rIz everywhere and to lie above

a sloping bottom at z9 5 2h0 1 ax9. In a coordinate

system where the z9 axis is perfectly vertical, all fields are

initially uniform in both x9 (cross-isobath direction) and

y9 (along-isobath direction). The depth-independent in-

terior flow vI is purely along isobaths and is impulsively

started at time t 5 0. The equations of motion are ro-

tated into a reference frame where z is perpendicular to

the bottom, and the fields are broken into interior

components (vI and rI) and boundary layer components

(uE, vE, and rE) that vanish far above the bottom. The

equations governing the boundary layer variables, for

small slope a ’ sina, then become (e.g., WM78)
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and the interior density component is governed by
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Subscripts with regard to an independent variable in-

dicate partial differentiation; A and K are the eddy

viscosity and eddy diffusivity, respectively; and uE, vE,

and rE are boundary layer rotated cross-isobath velocity,

along-isobath velocity, and density, respectively. Here, f

is the Coriolis parameter, a is the (constant, small) bot-

tom slope, and g is the acceleration due to gravity. For all

cases given here, a $ 0. Because diffusivity outside the

bottom boundary layer is small, the diffusive term in (1d)

is small there; therefore, the interior (well above the bot-

tom boundary layer) buoyancy frequency squared is a

constant, N2 5 2grIz/r0. The eddy coefficients are taken

to depend on time and height. The beauty of this formu-

lation is that a physically two-dimensional problem is re-

duced to a one-dimensional system.

Solutions to (1) are matched to a turbulent loga-

rithmic layer at height z 5 zT above the physical bottom,

so that
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is the bottom drag coefficient. The bottom roughness is

described by z0, and k 5 0.4 is von Kármán’s constant.

Note that using this boundary condition assumes that

the physical logarithmic layer is no thinner than zT

but that it can extend higher into the numerical grid.

Other boundary conditions are that there is no density

flux through the bottom and that (AuEz)z 5 (AvEz)z 5

(Krz)z 5 0 far from the bottom (at the top of the grid,

normally at least z 5 60 m, when the problem is solved

numerically). This upper density boundary condition is

numerically convenient but does allow a small vertical

flux because the background eddy diffusivity is non-

zero (the alternative of no flux would disturb the linear

density profile). The stress conditions are chosen for

consistency and always result in no stress at the upper

boundary.

Numerical solutions to the system (1) are obtained

using implicit time stepping. In practice, (1c) and (1d)

are added, so we solve for total density plus the bound-

ary layer velocity components. The code is written such

that the eddy coefficients can be found using a variety of

closures: Mellor–Yamada 2.0 (as used by WM78), Mellor–

Yamada 2.5, k–« (both implemented as in Wijesekera et al.

2003), Pacanowski and Philander (1981), or constant

coefficients. The Mellor–Yamada 2.5 scheme is used

throughout the following unless otherwise noted. A sam-

pling of runs was repeated with Mellor–Yamada 2.0 and

with k–«, and there were some quantitative differences

(typically 20% or less in boundary layer thickness for

Mellor–Yamada 2.0 versus either Mellor–Yamada 2.5 or

k–«, which tend to be very similar). Following WM78,

a roughness height of z0 5 0.03 cm is used in most ex-

amples given here. Several approaches were taken to the

vertical grid scheme, including logarithmic spacing (as in

WM78; Romanou and Weatherly 2001). The ultimate

choice of scheme (after sensitivity studies) was a constant

vertical grid spacing (20 cm) matched to a logarithmic

layer at a height of zT 5 50 cm above the true bottom

(combined with the choice z0 5 0.03 cm, this yields cD 5

0.0029 for most of the model runs reported here). The

advantage of the constant grid spacing is that it gives good

resolution throughout the water column, so it does not

‘‘smear out’’ any density or velocity jumps across the top

of the bottom boundary layer. Results here differ quan-

titatively from those of WM78 because of grid resolution,

turbulence parameterization, and duration of model run.
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All model runs reported here are at least 25 days in

duration.

Two important nondimensional parameters arise from

the system (1) (e.g., TL91). First, there is a Burger number,

s 5
aN

f
, (3a)

which measures the importance of bottom slope (large

s means that buoyancy transport effects are important

in this problem). Second, there is a friction parameter,

d 5 c
D

N

f
. (3b)

3. General considerations

a. Boundary layer transport

The bottom Ekman transport is substantially modified

by effects of the bottom slope, even well before buoy-

ancy arrest is reached. This result was stated by MR96,

but a derivation is presented here to clarify the un-

derlying assumptions and its generality. The system (1)

is integrated from the bottom to some large height

(where all boundary layer variables vanish) to yield
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and (tx, ty) is the bottom stress, which is determined by

potentially complex interactions between the interior

and boundary layer flows. For most bottom boundary

layer formulations, the turbulent mixing coefficients ap-

proach zero near the bottom, so we neglect the right-hand

side of (4c).

Under steady conditions, (4b) reduces to the familiar

bottom Ekman transport relation, but (4c) under steady

conditions requires that UE 5 0, so that

fU
E

5�ty

r
0

5 0, (5)

as long as arIz 6¼ 0. This is simply a statement that

buoyancy arrest occurs in the bottom boundary layer

(i.e., that the steady state has no Ekman transport).

We now consider the time-dependent version of (5)

with an eye toward treating the buoyancy arrest prob-

lem. Straightforward manipulation of (4) yields
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For buoyancy arrest problems, it is often reasonable to

expect that the adjustment time scale T is long relative to

the inertial time scale f21, so that, following TL91, the

time derivatives in (6a), but not (6b), can safely be ne-

glected. The result is a modified relation between bot-

tom stress and boundary layer transport:

f *2U
E

5 � f ty

r
0

, (7a)

where

f *2 5 ( f 2 1 a2N2) 5 f 2(1 1 s2) $ f 2. (7b)

Thus, for slowly varying time-dependent stratified prob-

lems over a sloping bottom, the bottom Ekman transport

is always weaker than would be expected for s 5 0. For

perfectly steady flow with stratified conditions over a

sloping bottom, UE 5 0; however, the traditional non-

zero expression for Ekman transport derived naively

from (4b) should never be expected to hold for s 6¼ 0

until arrest occurs.

The sloping-bottom Ekman relation (7a) could be de-

rived by neglecting the acceleration UEt in (4a) but not VEt

in (4b). This slowly varying approximation filters out the

natural oscillations at frequency near f*. The discrepancy

between (7a) and the traditional Ekman transport relation

(5) is then clearly associated with the deceleration [in (4b)]

of the along-isobath flow resulting from buoyancy ad-

justment. Specifically, inserting (7a) into (4b) yields

V
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The natural oscillations in the system are simply near-

inertial internal waves that propagate such that velocity

normal to the bottom is zero. Examination of system (1)

shows that the oscillations can have vertical phase shifts

(as are sometimes evident in calculations) or frequencies

differing from f* only when the eddy viscosity is non-

zero. Our calculations show that, in most cases where the

APRIL 2010 B R I N K A N D L E N T Z 623



oscillations are present, the eddy viscosity peaks about

once per cycle (in association with peaking shears) but is

clearly not steady enough to be idealized as a constant.

b. Adjustment time scales

To estimate the arrest time scale, it is useful to hy-

pothesize (motivated by MacCready and Rhines 1991)

that, during the course of adjustment, the along-isobath

bottom stress can be described by

ty 5 r
0
u

0
*2u, (9a)

where

u
0
*2 5 b2c

D
jv

I
jv

I
(9b)

is the stress in the absence of any buoyancy arrest b2 5

0.4 (Part II) and u is an unknown dimensionless function

of time that must approach zero for t / ‘. Further, we

assume that (9a) has a well-defined time integral from

zero to ‘ (until buoyancy arrest).

If u 5 u(t/T), thenð
u(t/T)dt 5 T

ð
u(j) dj 5 TF, (10)

where the integration is from 0 to ‘ and F is an O(1)

constant. Then, integrating (6b) in time from zero to ‘

and substituting in (7a), (9a), and (10) yields the final state

B
E‘

5�aN2 f *�2fu
0
*2TF. (11)

Thus, if the final depth-integrated buoyancy change BE‘

is known, it is straightforward to estimate the arrest time

scale T. However, because the physical processes in-

volved in upslope and downslope Ekman transport are

rather different, we anticipate that there will be different

u functions (uU and uD, respectively) and time scales

(TU and TD, respectively) in the two cases.

If the arrest function u depends on more than one

time scale, (10) and (11) are no longer valid; however, it

can still be straightforward to estimate the adjustment

time scale using the general logic leading to (11).

4. The downwelling case

In the case of a downwelling-favorable flow (vI . 0),

downslope Ekman transport gravitationally destabilizes

the bottom boundary layer, and it becomes quite thick.

A representative plot of the evolution of the density

field in this case is shown in Fig. 1. After the onset of an

interior flow, a capped bottom mixed layer forms and

quickly deepens over the first half pseudoinertial period

p/f* (0.3 days). Not long after this initial phase, the

upper part of the mixed layer starts to develop a con-

tinuous stratification, while the upper boundary of the

layer continues to move upward. This continued growth,

which is due to destabilizing downslope transport, is

generally accompanied by substantial oscillations with

frequency near f* having amplitudes (for both u and v)

of typically 2–10 cm s21. During this extended growth

phase, there is generally not a density cap at the top of

the bottom boundary layer, although some long runs do

develop a weak density cap, evidently because of entrain-

ment related to oscillation-induced shear at the top of the

boundary layer. After buoyancy adjustment is completed

(see Fig. 2, heavy line, for a computed example), the

density field, averaged over an oscillation period, is con-

tinuously stratified in the boundary layer, with density and

velocity structures like those sketched in Fig. 3.

TL91 show that, if the steady, arrested boundary layer

is perfectly well mixed, its thickness is

hTL 5
v

I

(N s)
. (12)

However, TL91 and Lentz and Trowbridge (1991) note

that observations frequently show that the bottom bound-

ary layer associated with downwelling-favorable along-

shore flow is weakly but stably stratified. The occurrence

of stratification in the boundary layer might be expected

because, as Tandon and Garrett (1994) point out, a geo-

strophically adjusted boundary layer, in the presence of

lateral density gradients, is expected to have a Richardson

number .0.25. MR96 considered this stability effect, but

they assumed small s and consequently simply recovered

hTL for the layer thickness.

The boundary layer stratification is modeled here by

hypothesizing that the time-averaged (over a natural

FIG. 1. Time–height contours of total density (contour interval 5

0.000 02 gm cm23) for downwelling model run 89c (s 5 0.98).
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oscillation period) gradient Richardson number Ri 5

N2/jvEzj2 is constant within the boundary layer. Within

the layer, shear and stratification are also taken to be con-

stant. Outside the boundary layer, the ambient density

(which is also the initial density) is given by

r
I
5 r

0
1 r

Iz
z, (13)

so the total density gradient within the bottom boundary

layer (see Fig. 3) is rBz 1 rIz. The total density difference

across the boundary layer dr is

�dr

h
5 r

Ez
1 r

Iz
, (14)

where h is the boundary layer thickness. The boundary

layer component of density is then (with the constant of

integration chosen so that rE 5 0 at the top of the

boundary layer)

r
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5 (h� z)r
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h
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The boundary layer component of along-isobath flow, in

the final state, is geostrophically balanced, so that (1a),

with no remaining mixing or time dependence, is
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Insisting that the gradient Richardson number
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(r
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(which neglects uEz as being very small in the steady

state) is constant at a critical value RiD, using (14), and

estimating vEz 5 vI/h then closes the problem by re-

quiring that

dr 5
r

0
RiDv2

I

(gh)
. (21)

Using (21) in (19) and then solving for h yields (using the

positive root in the quadratic)

hD 5 [v
I
/(2Ns)] [1 1 (1 1 4RiDs2)1/2]

5 [v
I
/(Ns)]G(s), (22)

where

G(s) 5
1 1 (1 1 4RiDs2)1/2
h i

2
$ 1. (23)

FIG. 2. Final (arrested) state density, averaged over a natural

oscillation period, for downwelling run 193 (heavy line; s 5 1.38)

and for upwelling runs 182 (solid curve; s 5 1.38; a smooth profile)

and 187 (s 5 0.33; a capped profile).

FIG. 3. Sketch of the geometry for a fully adjusted downwelling

(vI . 0) bottom boundary layer: (left) total density and (right) total

velocity.
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Thus, the TL91 result (which is the RiD 5 0 limit of 22) is

always an underestimate relative to the present formu-

lation. The superscript D is introduced as a reminder

that its numerical value is specific to the downwelling

case, averaged over a free oscillation period.

The predicted boundary layer thickness is compared

to hq, the height above the bottom where turbulent ki-

netic energy vanishes (WM78), from numerical model

calculations (Fig. 4; Table 1). Results are only used here

when the model has been run long enough to reach a

steady boundary layer thickness. Because there is little

or no density jump at the top of the adjusted bottom

boundary layer (Figs. 1–3), hD is most readily associated

with hq rather than, for example, the height where den-

sity stratification is at a maximum hr. A least squares fit

of (22) to the numerically calculated thickness hq yields

RiD 5 0.7. The present results are a substantial im-

provement over the earlier TL91 formulation (crosses in

Fig. 4). The current model yields an rms difference

(hD versus numerical results) of 3.5 m, whereas the TL91

rms difference is 10.0 m for 13 runs. The one outlier

on Fig. 4 is a case where a density cap forms at the top

of the layer at large times. This cap is evidently associ-

ated with shear because of the continuing (and even

growing) natural oscillations. The somewhat large gradi-

ent Richardson number (0.7) applies to density and ve-

locity fields averaged over an oscillation period, whereas

the instantaneous values within the boundary layer (not

shown) span a much wider range of values.

The optimal Richardson number depends upon the

turbulent mixing scheme. For example, experiments us-

ing the Philander and Pacanowski scheme (where the

parameter dependence is relatively clear-cut) yield an

RiD range of 0.8–2.1 over a reasonable range of maximum

eddy viscosities and cutoff Richardson numbers (larger

RiD for larger maximum viscosity, and for larger cut

off Richardson number). Repeated runs with Mellor–

Yamada 2.0 and 2.5 and with k–« models suggest that

a reasonable uncertainty for RiD is about 15% among

the more realistic closure models.

Given the downwelling boundary layer structure conjec-

tured earlier, it is straightforward to estimate the integrated

boundary layer density in the final, arrested state. Specifi-

cally (Fig. 3), from (15), using (17) to replace dr/h, and the

condition that n 5 0 at the bottom (so that vEz 5 vI/h),

r
E‘

5�[r
0
fv

I
/(ga)](hD � z)/hD, (24)

FIG. 4. Comparison of theoretical downwelling boundary layer

thickness hD (theoretical) vs results from numerical model runs

(numerical) using Mellor–Yamada 2.5 turbulence closure. Crosses

represent the model of TL91 result (12), and solid circles represent

the present model result (22). The numerical results presented here

are from model runs of 25–200-days duration, depending on the

time needed to adjust to a steady layer thickness.

TABLE 1. Downwelling Ekman transport model runs (only equilibrated runs are listed).

Run No. N2 3 104 (s22) f 3 104 (s21) vI (cm s21) a s d hq (m) hD (m)

81 0.9515 1.00 20.0 0.0050 0.49 0.28 47.3 48.2

82 0.9515 1.00 20.0 0.0025 0.24 0.28 88.5 87.4

84 0.9515 1.00 20.0 0.0100 0.98 0.28 32.0 30.6

86 0.9515 1.00 10.0 0.0050 0.49 0.28 24.1 24.1

89b 1.9029 1.00 20.0 0.0050 0.69 0.40 27.5 26.6

89c 0.9515 0.50 20.0 0.0050 0.98 0.57 30.8 30.6

190 2.8544 1.00 20.0 0.0050 0.84 0.49 21.3 21.1

191 2.8544 1.00 20.0 0.0100 1.69 0.49 16.9 16.9

192 0.9515 1.00 30.0 0.0100 0.98 0.28 48.7 43.3

193 1.9029 1.00 20.0 0.0100 1.38 0.40 20.5 20.5

194 0.9515 1.00 20.0 0.0075 0.73 0.28 37.1 36.7

195 2.8544 0.50 20.0 0.0025 0.84 0.98 20.7 20.3

196 0.9151 1.00 20.0 0.0050 0.49 0.28 59.5 59.1
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so that

B
E‘

5�0.5( fv
I
/a)hD (25a)

5�0.5(v2
I /s2)G(s). (25b)

For downwelling, the numerical model results are con-

sistent with the form u 5 u(t/T), so (10) and (11) are

valid. Substitution of (25) into (11) then yields the

downwelling arrest time scale

jFDTDj5 G(s)(1 1 s2)(2 f b2ds3)�1, (26)

where FD is an unknown and O(1) is constant. This

time-scale estimate can be compared with that of MR96

(in our notation):

TDMR 5
(1 1 s2)(1�RiMRs2)

( f s3d)
. (27)

Their Richardson number is RiMR ’ 0.15. The primary

difference between the two formulations is replacement

of G(s) in (26) with (1 2 RiMRs2), a rather curious con-

trast that is evidently related to their small s expansion

and perhaps to some notational issues.

It is straightforward to test the conjectured temporal

scaling (26) for the downwelling case by using outputs

from the downwelling numerical model runs summarized

in Table 1, plus two unequilibrated runs. Specifically, for

each model run, a time series of along-isobath bottom

stress ty (each plotted value being the average over an

oscillation period 2p/f*) is obtained, and its amplitude is

then normalized by the stress that would exist if there

were no bottom slope, b2cDjvIjvI. Then, the time scale for

each run is normalized by FDTD from (26). The binned

mean curve is then integrated to obtain FD 5 0.81, and

the model time is then renormalized by only TD. Both the

unscaled and normalized time series are shown in Fig. 5

(positive values). The collapse of the 15 time series onto

a single curve (bottom panel) is quite striking, with a

nondimensional rms scatter about the binned mean curve

of about 0.008 for nondimensional time ,5.

5. The upwelling case

a. Overview

When vI , 0, the bottom Ekman transport carries

water upslope and the bottom boundary layer becomes

increasingly stable. Thus, the final layer is thinner than

in the case with a flat bottom, where turbulence is not so

strongly inhibited. MR96 observed this tendency toward

shallower bottom mixed layers in their model runs and

found empirically that their results were fit well by the

functional form (in our notation)

hMR 5 hF
0 (1 1 s)�1, (28a)

where (e.g., Thompson 1973)

hF
0 5 (2R

b
)1/4u

0
*(fN)�1/2

5
bc jv

I
jd1/2

N

(28b)

is the turbulent bottom boundary layer thickness over

a flat bottom (superscript F is to point out that this is for

a flat bottom and subscript 0 accentuates that this is for

zero frequency), Rb is a bulk Richardson number, and

c 5 (2Rb)1/4. MR96 did not provide a derivation for

(28a). Given their form for the boundary layer thickness,

it is straightforward to approximate BE‘ by the upwell-

ing equivalent of (25a) and use (28a) in (11) to derive

their buoyancy adjustment time for upwelling

jFMRTMRj5 (1 1 s2)[(1 1 s)s2fd1/2]�1. (29)

Our numerical model runs for upwelling typically show

two different end states when results are averaged over

a natural oscillation period (Fig. 2). For large s (large

nondimensional bottom slope), run 182 (light solid line

in Fig. 2) is typical: density varies linearly with height

FIG. 5. (top) Bottom stress for a variety of model runs as

a function of dimensional time and (bottom) nondimensionalized

stress (by r0cDb2vI
2) vs nondimensional time for initial-value

problems with steady flow imposed. Solid lines (positive stresses) in

(top) result from the downwelling problem (vI . 0), and dashed

lines result from upwelling (vI , 0). (bottom) Black dots are values

from downwelling runs, red dots are from upwelling smooth runs,

and blue dots are from upwelling capped runs. All time series are

smoothed by averaging over successive natural oscillation periods.

Time is nondimensionalized by T US [in (37)] or T UC [in (45)] for

the upwelling cases and by T D [in (26)] for the downwelling case.

Upwelling runs with s , 0.1 are not included, because they appear

to obey a different temporal scaling.
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within the bottom boundary layer and this profile con-

nects directly to the linearly stratified interior region. We

call this type of adjusted density profile ‘‘smooth.’’ In

other cases, where s is smaller (e.g., run 187: the dashed

line in Fig. 2), the final density profile always consists of

linearly stratified regions within and outside of the bot-

tom boundary layer; however, they are separated by

a sharp density jump across the top of the layer. We call

this type of profile ‘‘capped,’’ and it appears to include all

of the MR96 upwelling runs (e.g., their Figs. 6, 8). Over

a flat bottom, there is typically a sharply defined bottom

mixed layer (e.g., Thompson 1973; WM78), so a cap is

expected, although a density gradient below the cap

would not be found over a flat bottom.

The two cases have somewhat different time evolu-

tions. In the smooth case (Fig. 6a), the buoyancy adjust-

ment occurs quickly, as might be expected from (29) for

large s: stratification is reestablished at all depths by

around day 1. Initially, a bottom mixed layer is formed, as

would be expected in a turbulent bottom boundary layer

before the stabilizing effects of lateral density advection

are felt. The transient bottom mixed layer is capped by

a sharp density gradient. However, around day 0.5, the

boundary layer (defined, in this figure, as the height to

which otherwise horizontal isopycnals are disturbed)

suddenly thickens by about 1 m beyond the initial mixed

layer depth and the upper part of the boundary layer

becomes continuously stratified. From this time, the top

of the bottom boundary layer is no longer characterized

by a density jump. With time, the stratified region spreads

downward from the top of the bottom boundary layer

toward the bottom. The remaining mixed layer is where

the remaining Ekman transport occurs, and it becomes

denser and thinner with time, whereas its density cap

increasingly weakens. Its instantaneous thickness is evi-

dently governed by a bulk Richardson number criterion.

Throughout the process, oscillations at a frequency near

f* are prominent in the stabilized part of the boundary

layer. All of the smooth model runs follow the same

pattern of a jump in boundary layer thickness, stabiliza-

tion from the top down, an internal density jump that

eventually vanishes, and prominent oscillations.

In the capped case (Fig. 6b), adjustment time scales

are typically much longer, as would be expected from

(29) with smaller values of s. In this case, a bottom mixed

layer forms with a distinct density cap that becomes

somewhat less sharp with time but persists at the depth

established early on (by day 5 in this example). At some

time (day 6 here), the outer part of the boundary layer

begins to stabilize, and the bottom mixed layer (which

does not itself have a sharp density cap) becomes in-

creasingly thin with time. The instantaneous thickness of

the mixed layer within the bottom boundary layer scales

roughly as instantaneous u*/f *: that is, like the thickness

of a turbulent Ekman layer in an unstratified fluid (e.g.,

Wimbush and Munk 1970). Thus, as the bottom stress

weakens, the advecting Ekman layer thins as well,

leaving behind continuously stratified waters. Unlike the

smooth case, there is no transitory density jump within

the bottom boundary layer, only the enduring jump at

the top of the layer. Invariably, in the capped cases, the

bottom mixed layer reaches a steady thickness before

internal stabilization begins. The final, adjusted state

below the density cap is typified by highly stable, nearly

linear, stratification: gradient Richardson numbers here

are well into the stable range.

FIG. 6. Time–height contours of total density (contour interval 5

0.000 05 gm cm23) for (a) run 182 (s 5 1.38), a smooth upwelling

(vI , 0) case, and (b) run 187 (s 5 0.33), a capped upwelling (vI , 0)

case. Note the difference in time scale between (a) and (b).
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b. The smooth upwelling bottom boundary layer

Following the example of the downwelling bottom

boundary layer (section 4) and based on the numerical

model results, we conjecture that the fully arrested smooth

upwelling bottom boundary layer (averaged over an os-

cillation period) has a constant gradient Richardson

number, it is geostrophically balanced, and that density

and along-isobath velocity vary linearly with height in the

adjusted layer. Thus,

v
Ez

5
v

I

h
and (30)

r
z

5 r
Iz

1 r
Ez

, (31)

where

r
Ez

5
[0� fv

I
r

0
/(ga)]

h
. (32)

The bottom density in (32) follows from geostrophy in

the bottom boundary layer [(1a) with no time de-

pendence or dissipation] and by the requirement that

vE 5 2vI at the bottom. Forms (30)–(32) can be used

to express a gradient Richardson number

Ri 5 �
gr

z

(r
0
v2

z)
(33)

to obtain

hUS 5 �
v

I

(sN)

� �
L(s), (34)

where

L 5
�1 1 (1 1 4RiUs2)1/2
h i

2
. (35)

Numerical experiment shows that RiU 5 0.4 yields sat-

isfactory results (again, the U superscript is a reminder

that the specific numerical value applies to the upwelling

case, averaged over an oscillation period). Spot checks

using Mellor–Yamada 2.0 closure or with k–« closure

yield the same Richardson number. Note the striking

resemblance of this form (except for the replacement of

G by the complementary L) to that describing the de-

stabilized downwelling case (22). TL91, in their Eq. (19),

anticipate a similar sort of symmetry, although based on

the differing assumption of a bottom well-mixed layer.

Finally, it is straightforward to calculate

B
E‘

5 0.5hUS gr
E

(0, ‘)

r
0

5 0.5hUS f v
I

a
(36)

so that, assuming that u 5 u(t/T) and using (11),

jFUSTUSj5 0.5(1 1 s2)L

(b2s3df )
(37)

for the smooth upwelling case. Calculations show that

FUS 5 20.42. This time scale differs radically from that

of MR96 (29), which is not surprising, given that their

results seem to hold only for the capped case.

c. The capped upwelling bottom boundary layer

In the capped upwelling case, the boundary layer

thickness, as defined by hr, the height of the maximum

density gradient, is usually established early on and al-

ways before the interior of the boundary layer begins to

stabilize. Model runs with s , 0.1 show continual mixed

layer deepening over many days until thickness (cap

height) reaches a height approaching that which would

be obtained over a flat bottom after a long time (see

appendix). Otherwise, for s . 0.1, the stable mixed layer

thickness is usually reached quickly, in no more than a

few inertial periods. Thus, the boundary layer thickness

is the result of a mixed layer process, where the thickness

is expected to be set by a critical bulk Richardson num-

ber. We thus need to determine the density and velocity

jumps across the top of the boundary layer for the time at

which the thickness is established.

The boundary layer density is governed by boundary

layer entrainment and by upslope advection of dense

water by the bottom Ekman transport (6b). Thus, at any

given time, the density jump across the top of the bottom

boundary layer is

dr 5 0.5hr
Iz

1
r

0

g

� �
B

E

h

5 0.5hr
Iz
� ar

Iz

ð
U

E
dt/h. (38)

Likewise, the shear across the top of the mixed layer is

dominated by that associated with the Ekman transport,

so

dv ’
U

E

h
. (39)

The time at which these relations are to be applied has

not yet been determined, but we conjecture that the

appropriate time is half of a natural oscillation period

t0 5 p/f*, the approximate time of maximum UB, hence

shear across the mixed layer cap. Further, at t0 5 p/f*,

we assume that the Ekman transport has not yet un-

dergone substantial buoyancy arrest. With these as-

sumptions, the governing density (38) and velocity (39)

jumps across the top of the mixed layer become
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dr ’ 0.5hr
Iz
� far

Iz
u

0
*2=[f h(1 1 s2)]g(0.5 p/ f *) and

(40)

dv ’
u

0
*2

[ f h(1 1 s2)]
. (41)

The boundary layer thickness is then determined by the

bulk Richardson number criterion

R
b

5
ghdr

(r
0
dv2)

(42)

applied at time t0. The result [using (40) and (41) in (42)]

is a single equation for boundary layer thickness

0 5 h4 1 h2ap u
0
*2/[ f 2(1 1 s2)1.5]� hF4

0 (1 1 s2)�2, (43a)

where, from (28b),

hF
0 5

(2R
b
)1/4u

0
*ffiffiffiffiffiffiffiffiffiffi

( fN)
p (43b)

is the boundary layer thickness that would occur if the

bottom were flat.

It is straightforward to solve (43a) to obtain the cap-

ped boundary layer thickness,

hUC 5
hF

0

(1 1 s2)1/2

" #
[(1 1 b2)1/2 � b]1/2, (44a)

where

b 5
sp

[2(2R
b
)1/2(1 1 s2)1/2]

. (44b)

The buoyancy adjustment time is now estimated using

(36) to approximate BB‘ and (11),

jFUCTUCj5 (1 1 s2)1/2( f s2d1/2)�1[(1 1 b2)1/2 � b]1/2

3 [0.5(2R
b
)1/4/b]. (45)

The approach used in section 4 yields FUC 5 21.52.

Expression (44a) is not valid for those runs where

mixed layer thickness grows past h0
F or hUC. In the case of

a perfectly flat bottom (see appendix), cross-isobath ad-

vection does not stabilize the bottom boundary layer at

all and shear across the top of the mixed layer is not the

only source of turbulence. The result is a bottom

boundary layer that thickens over a much longer time

scale than p/f*. These continually thickening cases occur

when the stabilizing influence of density advection in the

bottom boundary layer is negligible at the ‘‘control time’’

t0 5 p/f*, so a minimal (and probably insufficient) crite-

rion for boundary layer depth exceeding hUC (from 38) is

�0.5hr
Iz
�

r
0

g

� �
B

E

h
at t

0
5

p

f *
, (46a)

which reduces to

hUC

hF
0

 !2

� sb/2, (46b)

or, for small s2,

1� s2 0.25p

(2R
b
)1/2

" #
. (46c)

Note that expressions (46b) and (46c) depend only on s

and not on the nondimensional bottom drag d. In

practical terms, we find that mixed layer thickness con-

tinues to grow beyond hUC when, roughly, s , 0.1.

It is necessary to define when hUS or hUC is the correct

choice of upwelling boundary layer thickness. Our nu-

merical results show that the correct expression for the

final upwelling boundary layer thickness is

h . hUC for s , 0.1,

h 5 hUS if hUS . hUC,

h 5 hUC if hUC . hUS .

(47)

We used 23 upwelling numerical model runs (both

smooth and capped) with s . 0.1 to estimate the

Richardson numbers (Table 2). The pair Rb 5 2, RiU 5

0.4 yields an overall rms error for h of 1.61 m with

a correlation of 0.99 (Fig. 7).

The separation between the capped and smooth cases

expressed by (47) can be expressed quantitatively by us-

ing (34) and (44): that is, the boundary layer is capped if

hUC . hUS or

d .
L2(1 1 s2)

fs2c2b2[(1 1 b2)1/2 � b]g
,

(48)

where c 5 (2Rb)1/4. The resulting regime diagram for

upwelling boundary layer structure is shown in Fig. 8.

Physically, the smooth boundary layer structure occurs

when the capped boundary layer cannot bring the bot-

tom flow geostrophically to rest without incurring a

gradient Richardson number (for the time-averaged

density and velocity) below the critical value of 0.4. This

minimum value can be maintained (i.e., the shear rela-

tive to stratification limited) by holding RiU constant but

making the boundary layer thicker. Further, the need to
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adjust to a thicker layer accounts for the tendency for

smooth upwelling boundary layers to undergo a thick-

ness jump at some relatively early time (Fig. 6a).

Our present results can be readily compared with Eq.

(28a), which derives from MR96. As an example, we fix f,

rIz, and vI and vary the bottom slope a so as to isolate the

dependence on the Burger number s. The results (Fig. 9b)

show that the simple MR96 result replicates hUC to within

about a meter for this example. The expression for hMR [in

(28a)] fails for s . 0.9 when our formulation (47) switches

over to hUS as the boundary layer thickness. Thus, (28a)

is a useful approximation only for hMR . hUS. Because the

results for boundary layer thickness are comparable be-

tween our hUS and hMR, the buoyancy adjustment time

scales (45) and (29) are also quite comparable, even

though this is not obvious given the rather different al-

gebraic forms.

The overall collapse of scaled bottom stress versus

nondimensionalized time (with the natural oscillations

averaged out) using (34), (37), (44), and (45) is displayed

as the negative values in Fig. 5. The capped and smooth

cases have distinct u functions, so that the upwelling

case collapses to two curves rather than just one. Fur-

ther, there is scatter at smaller times in the capped case

because of the breakdown of the assumption that p/f* is

small relative to the buoyancy adjustment time. The

scatter about the mean u curves is 0.007 and 0.025 for the

smooth and capped cases, respectively.

6. Summary

The primary results of the present analysis are improved

formulations for the turbulent bottom boundary layer

thickness in response to steady along-isobath flow. In the

case of downslope Ekman transport (vI . 0; Fig. 10a), the

new Eq. (22) is a straightforward modification of the TL91

version, and it follows directly from the Lentz and Trow-

bridge (1991) comment that observations show that the

downwelling bottom boundary layer tends to remain stably

stratified. Our improved formulation differs increasingly

from TL91 as the Burger number s (scaled bottom slope)

increases (Fig. 9a).

The case with upslope Ekman transport (vI , 0) is

more involved (Fig. 9b). We find that, for a relatively

large s, the final arrested boundary layer density profile

is essentially linear (Fig. 10b) and that it joins smoothly

to the interior density profile. In this case, the boundary

layer has a fixed time-averaged gradient Richardson

TABLE 2. Upwelling Ekman transport model runs.

Numerical

Run No. N2 3 104 (s22) f 3 104 (s21) vI (cm s21) a s d h (m) hU* (m)

80 0.9515 1.00 220.0 0.0050 0.49 0.28 8.5 6.0 C

87 0.9515 1.00 220.0 0.0025 0.24 0.28 9.9 8.7 C

88 0.9515 1.00 220.0 0.0100 0.98 0.28 5.9 7.4 S

89 0.9515 1.00 220.0 0.0005 0.05 0.28 15.1 13.3 C

89a 1.9029 1.00 220.0 0.0050 0.69 0.40 6.7 4.2 C

180 2.8544 1.00 210.0 0.0050 0.84 0.49 3.3 2.0 C

181 2.8544 1.00 215.0 0.0100 1.69 0.49 4.3 4.2 S

182 1.9029 1.00 230.0 0.0100 1.38 0.40 8.9 9.4 S

183 0.9515 0.30 240.0 0.0005 0.16 0.95 31.5 36.6 C

184 0.9515 1.00 230.0 0.0005 0.05 0.28 23.3 19.9 C

185 0.9515 0.30 220.0 0.0005 0.16 0.95 16.1 18.3 C

186 0.9515 0.36 240.0 0.0006 0.16 0.80 29.7 33.7 C

187 0.9515 0.30 220.0 0.0010 0.33 0.95 13.7 13.1 C

188 0.9515 0.30 220.0 0.0030 0.98 0.95 11.1 7.9 C

189 0.9515 1.00 230.0 0.0060 0.59 0.28 11.7 8.0 C

197 0.9515 1.00 230.0 0.0055 0.54 0.28 11.9 8.5 C

198 0.9515 1.00 230.0 0.0065 0.63 0.28 11.5 8.3 C

199 0.9515 0.40 230.0 0.0033 0.80 0.70 15.1 9.8 C

220 0.9515 1.43 230.0 0.0116 0.79 0.20 10.3 9.7 S

221 0.4900 1.40 230.0 0.0200 0.70 0.10 14.5 17.8 S

222** 0.9515 1.40 230.0 0.0116 0.81 0.15 9.5 9.9 S

223 0.4757 1.00 220.0 0.0029 0.20 0.20 12.7 10.1 C

224 1.6746 0.50 240.0 0.0054 1.39 0.75 14.1 11.4 S

225 1.4547 0.50 230.0 0.0066 1.59 0.70 14.5 13.0 S

226 1.0466 0.30 230.0 0.0010 0.34 0.99 18.9 20.8 C

* The larger of hUC or hUS is used. If the boundary layer is capped, the letter C appears. If it is smooth, the letter S appears.

** This model run uses cD 5 2.2 3 1023; all others use 2.9 3 1023.
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number of 0.4, and a simple formula for the boundary

layer thickness (34) is obtained. It is rather striking that

this result, applying when Ekman transport leads to

strong gravitational stability, so nearly parallels that

found in the downwelling case where the mixing is pri-

marily due to gravitational instability. In either case, the

shear in the bottom boundary layer is distributed evenly

across the layer, and the thickness is ultimately governed

by a gradient Richardson number.

For smaller s, the final, buoyancy-arrested density state

for an upwelling boundary layer has a sharp cap at the top

of the layer (Fig. 10c), adjoining a continuously stratified

boundary layer interior. In his case, the dominant shear in

the bottom boundary layer is associated with the cross-

isobath boundary layer transport, and it occurs sharply

across the top of the layer. The physical content of the

formulation leading to (44) elucidates how the bottom

mixed layer is largely stabilized by cross-isobath buoy-

ancy transport. In fact, before the onset of mixed layer

stratification, the density contrast at the top of the layer

increases with time, whereas the Ekman transport starts

to decline because of arrest. It thus follows that there is

some critical time, relatively early in the adjustment pro-

cess, when the bulk Richardson number reaches its mini-

mum value and the boundary layer reaches its maximum

thickness.

One striking aspect of the present results is that the

downwelling and smooth upwelling cases give rise to

different gradient Richardson numbers. At first glance,

this result is troublesome, because one might expect

a critical gradient Richardson number of about 0.25 to

apply universally. The resolution, however, is that the

gradient Richardson numbers used in (22) and (34) are

not instantaneous values but rather apply to the density

and velocity fields averaged over a natural oscillation

period 2p/f*. Over the course of an oscillation, in these

cases, the Richardson number typically ranges from

near zero to much larger numbers; therefore, the eddy

viscosity periodically ranges from very substantial to

near background values.

Because the present model formulation is one di-

mensional, the question naturally arises as to whether

a more realistic two- or three-dimensional system would

allow similar results. Allen and Newberger (1996) found

that, in a two-dimensional numerical model with

downwelling bottom Ekman transport, the flow is un-

stable to slantwise convection through symmetric in-

stability. In contrast, upwelling bottom boundary layer

flow is evidently stable in their runs (Allen et al. 1995).

Allen and Newberger (1998) show that a necessary

condition for instability is that the potential vorticity

P 5 ( f 1 v
x
)r

z
� v

z
r

x
. 0 (49)

somewhere in the domain. If, in the downwelling case,

the bottom boundary layer is unstratified, this condition

holds true and the flow is unstable. Using the more re-

alistic assumption of a constant density gradient, the

adjusted state has rz 5 rIzRiDs2/G2 and

P 5�fs2r
Iz

[1�RiD(1 1 s2)/G2]. (50)

FIG. 7. Comparison of numerical model results for boundary

layer thickness (defined for each run as the larger of either the

height of maximum density gradient or of the height where tur-

bulence vanishes) vs the present theory [expressed in Eqs. (34) and

(44); crosses]. The circles indicate cases where s , 0.1. The present

theory compares with model results to an rms misfit of 1.6 m for 23

model runs having s . 0.1.

FIG. 8. Regime diagram for the boundary layer structure in the

upwelling case. The dashed line separating the regimes is from

inequality (48). The shaded area for small s indicates the parameter

range where the capped boundary layer thickness exceeds hUC and

approaches that found at large times over a flat bottom.
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The resulting P for the adjusted layer with RiD 5 0.7

remains in the unstable range for s , 30; however, P is

now closer to the stability boundary. In the smooth up-

welling case, it is also straightforward to compute the

boundary layer potential vorticity for the adjusted state,

and the flow is symmetrically stable for all s. Further,

regardless of whether the transport is upwelling or

downwelling, there is always at least a part of the bottom

boundary layer that is vertically homogeneous before

a final state is reached, so it appears that some transient

instability is always possible, if only briefly, as part of the

adjustment process. However, the downwelling case’s

clear instability suggests that, in nature, the exact one-

dimensional conditions leading to (22) should not be

expected.

On a larger, shelf-wide scale, it is not certain how useful

the present one-dimensional models will prove. For ex-

ample, a two-dimensional (onshore and vertical) steady

state requires that the surface and bottom stresses be

equal. Thus, in the Allen et al. (1995) study, upslope Ek-

man transport eventually erases cross-isobath density

gradients at the bottom, so that arrest cannot occur and

bottom stress remains finite. The three-dimensional results

of Middleton and Leth (2004) also appear to be evolving in

this same direction. At shelf breaks, extreme cross-shelf

gradients can occur, and the findings of Romanou and

Weatherly (2001) give useful guidance on how boundary

layer flow separates under these circumstances.

The results over a sloping bottom represent a sharp

contrast with expectations for boundary layers over a flat

bottom. When there is no bottom slope, the boundary

layer is simply a well-mixed layer with a sharply defined

density cap. In all cases over a sloping bottom, the

boundary layer starts out well mixed shortly after the

interior flow is initialized, but the boundary layer even-

tually becomes stably stratified, starting at the top of the

layer and working downward (Fig. 10). The time scale for

this adjustment, of course, varies strongly with s (hence

bottom slope) and friction d, and it is effectively this

adjustment time scale, compared to the time scale of

interest to the observer, that determines whether the

bottom is effectively flat. If s is small enough, in either

the upwelling or downwelling cases, the adjustment

time scales are long (on the order of a year) and the

boundary layer is capped and well-mixed for extended

times. In this sense, cases with small s approach flat-

bottom conditions at times shorter than the adjust-

ment time. Regardless of whether the flow is upwelling

or downwelling favorable, the final, buoyancy-arrested

state at long times is stably stratified. Only in the

upwelling-favorable case with smaller s does a lasting

density cap form at the top of the bottom boundary

layer. The time- and depth-scale asymmetries between

the upwelling and downwelling cases raise questions

about what might be expected to happen with oscil-

lating forcing, and these are dealt with in detail by

Part II.

FIG. 9. (a) Theoretical downwelling boundary layer thickness as

a function of s for d 5 0.28. Parameters used are f 5 1 3 1024 s21,

rIz 5 21 3 1027 gm cm23, and vI 5 20 cm s21. The bold curve hD

represents the current theory (22), the dashed curve hTL is the

TL91 result (12), and the dotted curve h0
F is the flat-bottom result

(28b). (b) Theoretical upwelling boundary layer thickness as

a function of s for d 5 0.28. Parameters used are f 5 1 3 1024 s21,

rIz 5 21 3 1027 gm cm23, and vI 5 220 cm s21. The solid line is

the capped thickness (hUC: 44a), the dashed line is the MR96

thickness [hMR; (28a)], the dashed–dotted line is the smooth

boundary layer thickness [hUS; (34)], and the dotted line is the flat-

bottom boundary layer thickness [h0
F; (28b)]. The heavy lines

represent the theoretical values for boundary layer thickness, given

the selection criterion of picking the larger of hUC or hUS. Note the

difference in vertical scale between (a) and (b).
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APPENDIX

Review of Results for a Flat Bottom

Over a flat bottom, the physics of boundary layer

deepening is analogous to conditions in a surface mixed

layer with no surface heat flux. Thompson (1973) thus

treats a slab-like bottom mixed layer and shows that the

maximum shear across the top of the layer occurs at t 5

p/f. He closes the problem by assuming a critical bulk

Richardson number, and (28b) results. His boundary

layer thickness reaches its maximum at t 5 p/f, and

turbulence is only generated in conjunction with shear

across the top of the mixed layer.

The flat-bottom numerical initial-value problem yields

a more complicated result (Fig. A1, solid lines). The layer

thickens rapidly for the first half inertial period but then

continues to thicken gradually. With Mellor–Yamada 2.0

turbulence closure (which does not diffuse turbulent ki-

netic energy), a steady boundary layer thickness of about

15 m is reached by about day 6. With Mellor–Yamada 2.5

closure (which diffuses turbulent kinetic energy), the

boundary layer continues thickening, and it does not

reach a steady thickness even by day 25. Using k–« closure

yields almost indistinguishable results compared to level

2.5 closure.

Physically, turbulence can be generated three ways in

this problem: shear at the top of the layer (through

FIG. 10. Schematics showing the evolution of the density field during (left) downwelling, vI . 0;

(middle) smooth upwelling; and (right) capped upwelling, vI , 0.

FIG. A1. Time series of bottom boundary layer thickness (de-

fined as the height of maximum density gradient) vs time for three

model runs with f 5 1 3 1024, rIz 5 21 3 1027, and vI 5 220

cm s21. The solid lines both have a flat bottom (a 5 0) but use

either Mellor–Yamada 2.5 turbulence closure (heavy line) or 2.0

closure (lighter line). The dotted line has a 5 0.0025 (s 5 0.24) and

uses level 2.5 turbulence closure. The short horizontal dashed line

is the flat-bottom boundary layer thickness (28b) for Rb 5 2, and

the vertical dashed line is at half an inertial period p/f. Only the first

20 days of the runs are shown.
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Kelvin–Helmholtz instability), shear within the bound-

ary layer (governed by a gradient Richardson number

criterion), and shear at the bottom boundary itself. Be-

cause of the difference between Mellor–Yamada 2.0 and

2.5 closures, we conclude that continued growth in

boundary layer thickness is due to bottom-generated

turbulence diffusing to the top of the boundary layer,

analogous to the Kraus–Turner deepening stage in

a surface mixed layer problem (see Niiler 1975). Over a

sloping bottom, buoyancy arrest ought to bring the

bottom velocity to rest and therefore preclude this

continued erosion. This conclusion is verified (Fig. A1)

by comparing the Mellor–Yamada 2.5 runs with a flat

bottom (heavy solid line, s 5 0) to a case where arrest

occurs (dotted line, s 5 0.24). The exception to this

turbulence shutdown is in our upwelling runs with s ,

0.1, where shutdown occurs so slowly that the bottom-

generated turbulence continues to be important until

relatively large times.
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