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ABSTRACT

There is considerable interest in detecting a long-term trend in hurricane intensity possibly related to large-

scale ocean warming. This effort is complicated by the paucity of wind speed measurements for hurricanes

occurring in the early part of the observational record. Here, results are presented regarding the maximum

observed wind speed in a sparsely randomly sampled hurricane based on a model of the evolution of wind

speed over the lifetime of a hurricane.

1. Introduction

There is considerable interest in detecting and un-

derstanding historical variations in the intensity of hur-

ricanes as measured, for example, by maximum wind

speed. This interest stems in part from a possible con-

nection between hurricane intensity and large-scale

climate change (Emanuel 2005). A potentially serious

problem in identifying such variation is that only a few

chance wind speed measurements may be available for

hurricanes in the earliest part of the observational re-

cord (Landsea et al. 2004a). The purpose of this note is

to describe some general statistical results concerning

the maximum observed wind speed in a hurricane that is

sparsely observed at random times during its lifetime.

These general results are then specialized to a model of

the evolution of wind speed within a hurricane based on

Emanuel (2000).

2. The basic result

In this section, the basic statistical result is outlined.

This result is specialized to a particular case in section 3.

Consider a hurricane with lifetime (0, T). Let y(t) be

the maximum wind speed of this hurricane at time t.

Suppose that this hurricane is observed at random times

t1, t2, . . . , tn during its lifetime and let the random variables

W1, W2, . . . , Wn be the maximum wind speeds observed

at these times. To begin with, assume that the error in

these observations is negligible, so that Wj 5 y(tj). This

assumption is relaxed later.

The distribution function of a randomly observed

wind speed W is given by

F(w) 5 1� T(w)

T
, (1)

where T(w) is the total time during which wind speed

exceeds w. The corresponding probability density func-

tion (pdf) is given by

f (w) 5 �T9(w)

T
. (2)

The support of this pdf—that is, the values of y over

which f(w) is positive—has an upper bound at the maxi-

mum value ymax of y(t) over the interval (0, T).

Let W(1) , W(2) , � � � , W(n) be the observed wind

speeds ordered from smallest to largest, so that W(n) is

the maximum observed wind speed. It is a standard re-

sult that the pdf of W(n) is

g(w) 5 nf (w)Fn�1(w) (3)

(David and Nagaraja 2003). Clearly, the support of g(w)

also has an upper bound at ymax. Beyond that, the be-

havior of g(w) depends on F(w), which depends in turn

on y(t). For large n, the distribution of W(n) will converge
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to the Weibull extreme value distribution, which is the

only extreme value distribution with finite support.

However, the situation of interest here is when n is

small.

This basic model can be extended to allow for error in

observed wind speed. For example, suppose now that

observed wind speed Wj is given by the sum

W
j
5 y(t

j
) 1 «

j
(4)

of true wind speed at time tj and a normal observation

error with mean 0 and variance s2. Under this model,

the distribution function of a randomly observed wind

speed is given by the convolution

F
e
(w) 5

ð‘

0

F
(w� y)

s

� �
f (y) dy, (5)

where F is the standard normal distribution function

and f(y) is given in (2). Here and below, the subscript e is

used to indicate results for the error model in (4). The

corresponding pdf is

f
e
(w) 5

1

s

ð‘

0

u
(w� y)

s

� �
f (y) dy, (6)

where u is the standard normal pdf. Assuming that the

errors in the observations are independent, the pdf ge(w)

of W(n) has the same form as (3) with f and F replaced by

fe and Fe, respectively. In this case, the support of W(n)

is unbounded; therefore, its limiting distribution is no

longer Weibull.

3. A special case

Emanuel (2000) showed that the evolution of intensity

in Atlantic Ocean and western North Pacific Ocean

hurricanes whose maximum intensity was not limited by

declining potential energy exhibited remarkable regu-

larity, with wind speed increasing linearly by around

12 m s21 day21 to maximum wind speed, followed by

a linear decay of around 8 m s21 day21. Based on

Emanuel’s result, suppose that

y(t) 5 y
0

1 bt 0 # t # t
max

y
max
� g(t � t

max
) t

max
, t # T

(7)

with b and g . 0, where ymax 5 y0 1 btmax and T 5

tmax 1 (ymax 2 y0)/g. Under this model, the lifetime of

a hurricane begins when wind speed reaches y0. Wind

speed then increases linearly at rate b until reaching

a peak of ymax before declining linearly at rate g until it

again reaches y0 at time T.

It is straightforward to show that, in the absence of

observation error, a randomly observed wind speed W

under this model has a uniform distribution over the

interval (y0, ymax) with distribution function

F(w) 5
w� y

0

y
max
� y

0

y
0

# w # y
max

(8)

and pdf

f (w) 5
1

y
max
� y

0

y
0

# w # y
max

. (9)

It follows from (3) that the pdf of W(n) is

g(w) 5 n
(w� y

0
)n�1

(y
max
� y

0
)n . (10)

For n . 1, g(w) increases monotonically with w, be-

coming increasingly concave as n increases. The expected

value of W(n) is given by

E[W
(n)

] 5 y
0

1
n

n 1 1
(y

max
� y

0
) , y

max
. (11)

The relative underestimation bias in using W(n) as an

estimate of ymax is

fy
max
� E[W

(n)
]g

y
max

5
(1� y

0
/y

max
)

(n 1 1)
. (12)

So, for example, if y0 /ymax 5 0.25, then the relative un-

derestimation bias is around 38% for n 5 1 and 13% for

n 5 5.

Turning to the case in which wind speed is observed

with normal error, it is straightforward to show that, for

the wind speed model in (7), the pdf of a randomly ob-

served wind speed W is given by

f
e
(w) 5

F[(w� y
0
)/s]�F[(w� y

max
)/s]

y
max
� y

0

. (13)

No closed form expressions for Fe(w), ge(w), or Ee[W(n)]

are available, but it is straightforward to evaluate these

numerically. For example, Fig. 1 shows ge(w) for the case

ymax 5 1, y0 5 0.25, n 5 4, and s 5 0.1. For comparison,

Fig. 1 also shows g(w) for the same values of ymax, y0, and

n. In Fig. 2, Ee[W(n)] is plotted against n for these values

of ymax, y0, and s. Again, for comparison, Fig. 2 also

shows E[V(n)] for the same values of ymax and y0. It is

notable that, by opening the possibility of overestimation,

the presence of measurement error actually reduces esti-

mation bias.
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4. A practical application

The theoretical results presented in the previous sec-

tion provide the basis for a rough practical method to

correct for underestimation bias. The expression in (11)

can be rearranged as

y
max

5
n 1 1

n
E[W

(n)
]� 1

n
y

0
ffi n 1 1

n
E[W

(n)
]. (14)

Thus, a rough correction for underestimation bias can

be made by inflating the observed value of W(n) by the

factor of (n 1 1)/n, leading to the estimator ŷ
max

5

W(n)(n 1 1)/n. This requires knowledge of only n

and W(n).

A simulation experiment based on the reanalyzed

National Hurricane Center North Atlantic basin best-

track hurricane database (known as ‘‘HURDAT’’) wind

speed measurements for Hurricane Andrew reported in

Table 1 of Landsea et al. (2004b) was conducted to as-

sess the performance of ŷ
max

. For this analysis, y0 was

taken to be 35 kt (1 kt ’ 0.5 m s21). The data consist of

39 6-hourly wind speed measurements covering a 228-h

period with a maximum of 150 kt. These data were

taken to represent the true evolution of maximum wind

speed for Hurricane Andrew, with values between ob-

servation times reconstructed by linear interpolation.

This profile is shown in Landsea et al. (2004b, their Fig. 4)

and also in Emanuel (1999, his Fig. 2).

The simulation experiment proceeded in the follow-

ing way. For each value of n between 2 and 10, wind

speeds were sampled at n random times from this pro-

file, and both the maximum W(n) of these n wind speeds

and the estimate ŷ
max

based on it were recorded. The

procedure was repeated a total of 10 000 times. In Fig. 3,

the averages of the 10 000 values of W(n) and ŷ
max

sim-

ulated in this way are plotted against n. In this case, ŷ
max

performed very well, on average, underestimating ymax

by only around 3 kt for n between 2 and 10. In contrast,

on average, W(n) underestimated ymax by more than 50 kt

when n 5 2 and almost 20 kt when n 5 10.

The experiment was repeated for a small number of

other hurricanes listed in Table 1. Wind speed data for

these hurricanes were available online at the HURDAT

Internet site, and the corresponding wind speed profiles

are shown in Emanuel (1999). Table 1 reports the value

of ymax and the average values over 10 000 simulated

FIG. 1. The pdf of maximum observed wind speed for ymax 5 1,

y0 5 0.25, n 5 4, and s 5 0 (solid) and s 5 0.1 (dashed).

FIG. 2. Expected value of maximum observed wind speed vs n for

ymax 5 1, y0 5 0.25, and s 5 0 (solid) and s 5 0.1 (dashed).

FIG. 3. Expected value of maximum observed wind speed (solid)

and expected value of reconstructed maximum wind speed (dashed)

vs n for Hurricane Andrew.

TABLE 1. Values of ymax and averages of more than 10 000

simulations of W(n) and ŷmax for n 5 3 for selected North Atlantic

hurricanes. All wind speeds are reported in knots.

Name Year ymax Avg W(n) Avg ŷmax

Gloria 1985 125 87.5 116.7

Gilbert 1988 160 123.9 165.2

Dean 1989 90 79.4 105.9

Hugo 1989 160 129.6 172.9

Andrew 1992 150 110.1 147.1

Opal 1995 130 87.5 116.7
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random wind speed samples of W(n) and ŷ
max

for n 5 3.

With the exception of Hurricane Dean, the absolute

relative bias of ŷ
max

is less than 10%, with ymax under-

estimated in half the cases and overestimated in the

other half. In contrast, by necessity, W(n) always un-

derestimates ymax with a relative underestimation bias of

up to 32%. It is only for Hurricane Dean that the ab-

solute bias of W(n) is smaller than that of ŷmax. The

reason is that the wind speed profile for this hurricane is

far from the model in (7) and, in particular, exhibits

a plateau just below its peak. In overall terms, given its

extreme simplicity, ŷmax appears to perform well at

correcting the underestimation bias of W(n).

5. Discussion

The purpose of this note has been to outline and il-

lustrate a statistical formalism for exploring the effect of

sparse random sampling on the maximum observed

wind speed in a hurricane. The model considered here is

clearly stylized and can be extended in a number of

ways. In particular, realism could be gained through an

explicitly spatial model of hurricane wind fields and

their sampling. In some situations, it may be reasonable

to assume that observers seek to avoid the highest winds.

This would have the effect of exacerbating underesti-

mation bias. On the wind speed side, the model for y(t)

in (7) can be extended to include a random component,

so that ymax is itself a random variable.

The focus here has been on maximum wind speed. In

some situations, interest centers on a function of it. For

example, the power dissipation index of Emanuel (2005)

depends on the cube of maximum wind speed. The un-

derestimation bias in estimating y3
max by W3

(n) is worse

than that in estimating ymax by W(n). For example, in the

absence of measurement error, when y0 /ymax 5 0.25, the

relative bias in estimating y3
max is 0.51 when n 5 2 and

0.30 when n 5 5. As reported earlier, the corresponding

values in estimating ymax are 0.38 and 0.13.
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