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Abstract

This thesis consists of two loosely related problems, both of which analyze some
consequences of the failure of Sverdrup relation. In the first part, Chapters 2 and 3,
the Sverdrup relation is invalidated because substantial flow is obtained at the bottom
where topography exists. The eddies play an essential role in transfering momentum
vertically from the surface, where the forcing is applied, to the bottom, which is oth­
erwise unforced. If the topography has a structure in the longitudinal direction, then
the inviscid theory predicts the occurence of strong jets in the interior of the model
ocean. According to the structure of the topography these internal jets can occur in
both vertically homeogenous and baroclinic oceans. If the topographic slope changes
sign, then one kind of jets is observed both in stratified and in homogeneous oceans.
This phenomenon is robust to moderate amounts of dissipation and is not disturbed
by the occurrence of recirculating gyres within the basin.

If the topographic slope is constant, then another kind of internal jets is observed,
and it occurs in stratified models only. I was unable to observe this kind of jets in
the presence of weak dissipation. The reason for this failure is twofold: on one hand
friction, especially interfacial friction, tends to make the flow more barotropic (and
we believe that indeed this is one of the processes that the eddies accomplish in a
stratified fluid) and therefore the phenomena that rely strongly on baroclinicity are
discouraged. On the other hand, reduction of the dissipation leads to the onset of a
strong recirculating, inertial gyre which, although confined in space, affects the global
properties of the flow.

In the second part of the thesis (Chapters 4 and 5) I developed a simple model of
the recirculating, inertial gyre. Again the dynamics of this feature are far from being in
Sverdrup balance. In this case inertia is responsible for the failure of Sverdrup relation,
together with the eddy field which provides a mean for transfering momentum vertically
and laterally into regions away from where the forcing is applied. In this model there is
no direct forcing in the recirculation region, and the input of momentum is confined to
the boundary currents surrounding the gyre, for example the separated Gulf Stream.

One of the results of the recirculation model is the prediction of its transport. It
is shown that most of the transport is depth independent, i.e. it can be calculated
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without detailed knowledge of the density structure of the ocean. It is also shown that
the "barotropic" part of the transport increases as the cube of the meridional extent
of the gyre.

Thesis supervisor: Joseph Pedlosky
Professor of Physical Oceanography
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CHAPTER 1
Introduction



1.1 Homogeneous models with topography.

One of the most widely investigated problems in ocean dynamics is the wind driven

circulation. With important exceptions, which I will describe later, all models of the

steady wind driven circulation rely on the validity of the Sverdrup relation in the

interior of the ocean. This relation gives the vertically integrated meridional transport

once the stress, f = (Tz , Ty ), by the wind is known, i.e.

10 aT aTz
(:J dz pv = ( ----!!.. - -)

-H ax ay (1.1.1)

Here v is the meridional velocity, (:J is the planetary vorticity gradient and p is the

density. The relation (1.1.1) is remarkable because it's independent of the details of the

vertical stratification, but fails if there is a vertical velocity at the bottom z = - H. Such

bottom velocities need not to be very large to disrupt the Sverdrup relation. Indeed

they need only to be of the same order as the surface Ekman velocity (proportional to

the right hand side of (1.1.1)) which doesn't exceed 10-4 em/sec. Vertical velocities at

the bottom of the ocean can be generated if the abyssal currents impinge on topographic

reliefs. Although bottom slopes are pervasive in all oceanic basins, abyssal currents are

generally considered to be so small in the interior that they produce negligible vertical

velocities. Since typical bottom slopes are of the order of 1 m/km, horizontal bottom

velocities need only to be 1 mm/sec to produce vertical velocities as large as the highest,

wind generated, Ekman pumping. Therefore bottom topography can play an important

role in the determination of the vertically averaged meridional transport. Indeed this

seems to be the case in the portion of the North Atlantic subpolar gyre analyzed by

Luyten, Stommel and Wunsch (1985).

One of the early attempts of estimating the effects of bottom topography in the

wind driven circulation is the vertically homogeneous model of Holland (1967). In his

model the ocean is enclosed in a basin of simple geometry and the flow is driven by
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a simple Ekman pumping at the surface. Away from the solid boundaries, the flow is

governed by

(1.1.2)

where lIT is the mass transport strearnfunction, and is related to the velocity field by

lIT", = pvh, lIT" = -puh. f = fo + {3y is the Coriolis parameter and h is the variable

depth of the model ocean, of constant density p. Frictional and inertial effects are

confined mostly to regions close to the boundaries. In the presence of topography of

varying slope, internal boundary layers can arise, where friction and inertia become

important. Holland (1967) does not discuss the occurrence of internal boundary layers.

A detailed discussion will be found in section 2.5 of the present work.

An important consequence of the inclusion of topography can be readily seen by

inspection of (1.1.2): the free geostrophic contours, along which the flow would be

constant in the absence of forcing, are not latitude circles (parallel to J) as in (1.1.1).

Even when the topographic relief is small compared to the total ocean depth the effect

is very noticeable. If h = H - hb , where H is the average ocean depth and hb is the

bottom elevation, when h b < H we have flh ~ folH + {3ylH + f oh blH2 and (1.1.2)

becomes

( I) aT" aT",
J lIT,{3y+fohb H = ax - ay -CUrlT (1.1.3)

An example of circulation in the presence of simple topography is shown in Fig. 1.1a

and it should be compared with the circulation obtained with the same forcing in the

absence of bottom elevation, shown in Fig. 1.1b. With this simple constant slope topog­

raphy, the maximum transport value is reduced and is shifted northward. In the above

example a very idealized form of topography has been shown, Holland (1967) analyzed

various types of more complicated topography. In Fig. 1.2 contours of hi sin(latitude)

(parallel to flh) for the North Atlantic are shown. Indeed the topographic control of

the geostrophic contours is very strong and one would expect strong deviation from the
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Sverdrup prediction (1.1.1). But the ocean is far from being vertically homogeneous and

bottom flow may be much slower than the surface flow so that the topographic effect

may be reduced. A major part of this thesis concerns the interaction of stratification

with topography.

1.2 Wind driven circulation in baroclinic oceans

Welander (1968) analyzed a two layer model in the presence of topography and wind

forcing. He included dissipation in the form of stress at the interface between the two

layers (proportional to the interface velocities) and of bottom friction (proportional to

the bottom velocities). In his model the lower layer is supposed to be so much deeper

than the upper layer that no appreciable interface deformation occurs in the interior.

The lower layer is forced by the interfacial stresses which are of order one only near the

western wall, where the upper layer western boundary layer induces strong velocities

that drive the abyssal flow . Topography plays an essential role only if it is strong

enough to reverse the gradients of the geostrophic contours, that is, if it creates regions

where (J /h2 )y < 0 (h2 is the variable depth of the lower layer). If this is the case

the abyssal circulation generated near the western wall cannot be closed within the

western boundary since a linear frictional boundary layer is not allowed there. Instead

the circulation must flow through the interior to reach the eastern wall and thus close

the circulation.

In this case the flow is divided into three regions:

1) A region near the western wall where the forcing " provided by interfacial fric­

tion, is of order 1 and the flow is governed by ('I/J is the lower layer transport

streamfunction)

(1.2.1)
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2) An interior region where the forcing is small, say of order K" and dissipation is

small, say of order 0, and the flow occurs along the geostrophic contours

(1.2.2)

The free flow in this interior region is determined by matching with the "upstream"

flow of region 1) (in this case from west to east), and is going to be of the same

strength as in region 1).

3) An eastern boundary layer region where dissipation is essential and the circulation

is frictionally closed.

(1.2.3)

Another interesting case occurs in Welander's (1968) model when topography dis­

torts the geostrophic contours so that they close upon themselves in the interior (for

example the dashed contour in Fig. 1.2). When this is the case the flow within the

geostrophic contours can be as large as in the wind forced upper layer, even though

the direct forcing due to the interfacial stresses is weak. The reason for this anomalous

behaviour will be illustrated here. The region of closed contours belongs to the interior

where forcing and dissipation can be neglected to a first approximation. Therefore

(1.2.2) is valid and the flow will be along the geostrophic contours .p = 9(1/h2 ). Such

a free flow cannot be determined by the "upstream" flow since the geostrophir: contours

close upon themselves. On the other hand, integrating the full vorticity equation over

the area enclosed by any closed geostrophic contour we get

(1.2.4)

In the interior region the forcing is small, r = K,1" and so is the dissipation therefore
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Since 9 is constant along a geostrophic contour it can be taken outside the integral

and (1.2.4) becomes
dg _ Kf dA70

d{f/h2) - of IV{f/h2) I dl
(1.2.5)

This shows that the flow inside the closed geostrophic contours is order K/O, and thus

not necessarily small.

As stated earlier, Welander (1968) excluded the possibility of strong distortion of

the interface due to the upper layer motion. However Rhines and Young (1982a,b) have

shown that this is a primary mechanism for inducing motion in the subsurface waters.

They considered a problem very similar to Welander's (1968), but in the context of

quasigeostrophic dynamics and in the absence of bottom elevation. For a two layer

system forced by Ekman pumping w. and dissipated by lateral friction and bottom

drag the relevant equations are

J(1Pt,ql) =fow./H1 +KV 2
ql

J(tP2,q2) =KV2q2 - OV2tP2.

In the interior relative vorticity can be neglected and the vorticity is given by

(1.2.6)

where

ql = F1 (tP2 - tPd + fJy

q2 = F2(tPl - tP2) + fJy

F 1 = fg/(g'Hd and F2 = F1HI/H2

In the absence of relative vorticity and bottom elevation the Sverdrup relation (1.1.1)

holds in the interior, i. e.:

(1.2.7)

(bottom friction can be neglected) and the vertically integrated transport is readily

found

HtPb == H1tPl +H2tP2 = (fo/fJ) jZ dxw.
z.

14
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where x. is the eastern boundary of the basin, and the problem now is to determine

the vertical structure of the circulation.

In the interior the lower layer flow is given by

(1.2.9)

which has as a solution

and should be compared to (1.2.2). As in Welander's model the geostrophic contours

are known and, unless they close, the solution is determined by the "upstream" flow. If

the distortion due to the wind driven motion (1.2.8) is small, the geostrophic contours

will be essentially along latitude circles and the "upstream" flow is at the eastern

boundary where ,pi = ,p2 = O. At the eastern boundary we get 9((3y) = 0 and the

only solution to (1.2.9) is ,p2 = 0 everywhere. If the Sverdrup' circulation is strong

enough, some geostrophic contours will not reach the eastern boundary, but they will

"close" inside the western boundary layer. Then a region very similar to the region

of topographically closed geostrophic contour described by Welander (1968) will arise.

In this area the motion will be determined by an integral balance of the type given by

eqations 1.2.4 and 1.2.5. Integrating (1.2.6b) over the area enclosed by any such closed

contour we find

6f V,p2 ·fi,dt= K f Vq2 ·fi,dt (1.2.10)

It is convenient to write q2 = (3y+F2(,pb -,p2)H/Hi == {i.2 - F2,p2H/Hi so that (1.2.10)

becomes

(1.2.11)

(1.2.12)

q2 are the geostrophic contours and the integrals are performed along a line of constant

q2. From (1.2.9b) V,p2 = d9/dq2 Vq2 and (1.2.11) becomes

d9 K

dq2 6 + KF2H/ Hi

or q2 - F2H/Hi ,p2 =q2 = (6/K),p2 + constant
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In the absence of bottom friction this gives that potential vorticity is homogenized

within the closed geostrophic contours, and in this region the abyssal flow is of the

same order as the surface flow. Thus the lower layer is divided in two regions: in the

open contours region the flow is very weak, of order K, in the closed contours region

the flow is of order 1. In both regions the Sverdrup relation (1.1.1) or (1.2.7) holds.

The purpose of the first part of this thesis (Chapters 2 and 3) is to analyze some of the

effects of bottom topography, and the consequent failure of the Sverdrup relationship,

on the. wind driven circulation, in the framework of the ideas developed by Rhines and

Young (1982a,b). It will be shown that topography induces strong jets in the interior

of the basin, when the inviscid limit is considerd. Two kinds of internal jets arise in the

presence of longitude dependent topography. The first kind occurs only in baroclinic

models, even in the presence of constant slope topography. The second kind occurs·

both in baroclinic and barotropic models, but requires topography of varying slope.

The first kind of jets is destroyed by the presence of moderate dissipation, while the

second kind survives to moderate amount of dissipation.
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1.3 The effect of the transient eddies on the mean circulation

In the derivation of the result (1.2.12) it is crucial that the "forcing" for the subsurface

waters is provided by weak vertical diffusion of horizontal momentum (1''\72F2(V!l - V!2)

in the layer approximation). Such a form of diffusion, though, is not molecular diffusion,

nor the effect of small structure turbulence, but represents a parameterization of the

effect of transient eddies (motions on the scale of the Rossby deformation radius) on the

mean, time averaged, large scale circulation. A rigorous, deductive argument, justifying

the type of parameterization indicated in Rhines and Young (1982a), cannot be given.

Some tentative arguments, and an extensive list of references can be found in Young

(1987). The strength of the result (1.2.12) comes mostly from supporting evidences

supplied by Eddy Resolving General Circulation models (Holland et al. 1984) and

oceanic data analysis (McDowell et al. 1983). In particular, wind driven ERGCM's

show that, once the transient component is averaged out, the time mean circulation

in the unforced layer occurs in a region where potential vorticity is homogenized (see

Fig. 1.3). A noticeable feature of the circulation shown in Fig. 1.3 is the intense gyres

occurring in the deepest layer (Fig. 1.3e) directly south and north of the region where

the boundary current separates. In such a region, (see Schmitz, 1978, and Schmitz and

Holland, 1986) the eddy field is particularly vigorous and is conceivable that it acts as

a source of both "forcing" and "dissipation" for the mean circulation.

The intense recirculating gyre observed in ERGCMs is associated with an anal­

ogous feature observed particularly in the North Atlantic. The circulation diagram

proposed by Worthington (1962), shows, among other things, an intense gyre flowing

anticyclonically south of the separated Gulf Stream and recirculating about 120 Sv. In

Worthington's diagram about half of the transport occurs below the thermocline (po­

tential temperature smaller than 4° C), and extends all the way to the bottom. More

recent observations, based mostly on direct current measurements, have qualitatively

confirmed Worthington's picture, showing deep velocity of about 6 em/sec (Schmitz,
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1980 ,Richardson, 1985). The estimated transport for the water recirculated south of

the Gulf Stream is far from being in Sverdrup balance with the observed wind system,

and in the recirculation region (1.1.1) fails.

Before reviewing some of the earlier theories relevant to the circulation in this

region, I will state the point of view that will be developed in Chapters 4 and 5 of this

thesis: the recirculating gyre is not directly wind or thermally forced, but is driven by

the eddy field present in this region. More specifically the transient eddies provide (on

average) the vehicle for transmitting energy and momentum to the gyre. Similarly to

Rhines and Young (1982a) the eddy field will transfer momentum vertically from the

surface to the bottom, driving the circulation in regions that are not directly forced.

Moreover, the eddy field will transfer momentum laterally, from the energetic boundary

current system (e.g. the Gulf Stream) to the interior of the gyre which is otherwise

unforced.

In order for eddies to transfer momentum laterally, inertia must become important

for the mean flow. Where this is the case, the transient eddies and inertia will provide

a way, alternative to bottom topography, to disrupt the Sverdrup relation.
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1.4 Early theories of the inertial circulation

The first work assessing the effects of inertia in the ocean circulation is Fofonoff's (1954).

Actually, the focus of his model was not the recirculating gyre flanking the Gulf Stream,

since observations were not available at the time. His free, inertial circulation fills the

whole basin and the inertial effects are confined to boundary layers on the western,

northern, and eastern walls (in the subtropical gyre). A major concern in Fofonoff's

point of view is to fulfill the conditions under which inertial effects are confined to

the edge of the gyre as described above. This point is particularly stressed in the

subsequent work of Niiler (1966).

In Niiler's model, weak forcing (induced by the wind stress) and weak dissipation

(in the form of bottom friction) are taken into account to remove the indeterminacy

associated with free, inertial flows. More specifically, the free flow satisfies an equation

similar to (1.2.1) or (1.2.9), Le.

q = Q(,p) where q = "12,p + f3y (1.4.1)

The functional form,Q, is determined by requiring that an integral balance similar to

(1.2.10) is satisfied

fo/ H JdAwe = 6f Vt/J ·ndl (1.4.2)

where the integrals are performed on any closed streamline (all the streamlines must

be closed since the flow is contained in a closed basin). A point raised by Niiler is

particularly relevant to the analysis developed in Chapters 4 and 5. He claims that

parameterization of the eddy field as lateral diffusion (1C"12 q) is inconsistent with the

existence of weakly forced and dissipated inertial flows. It seems to me that this is

the case only if one insists on having inertia confined to boundary layers. For gyres

that are strongly nonlinear ("12,p comparable to f3y) in the interior this is not the case.

20



If lateral diffusion of potential vorticity replaces bottom friction the integral balance

(1.4.2) becomes

lo/H JdAWe=-K-!Vq.ftdl (1.4.3)

In the subtropical gyre, for example, We is always negative and the wind induced

Sverdrup circulation is also negative (anticyclonic). If the forcing and the dissipation

are weak then, to first order, (1.4.1) holds and Vq = (dQ/dI/J) VI/J, and (1.4.3) becomes

dQ

dI/J
lo/H f dAwe

K-fIVI/J\dl
(1.4.4)

If one seeks a solution which consists of one anticyclonic gyre, flowing in the same

sense as the weak Sverdrup flow, then the denominator in (1.4.4) is negative and thus

dQ/dI/J < O. A contrived example of such circulation is based on the circular modon

analyzed by Stern (1975). Suppose we consider, for geometrical simplicity, a circular

basin of radius R. Following Niiler (1966), one can impose a solution q = Q(I/J) first

and then construct an appropriate wind forcing which satisfies (1.4.4). The simplest

form for Q is Q = _),.2I/J + if and the flow satisfies

(1.4.5)

with boundary condition I/J = 0 on T = R.

The solution is

(1.4.6)

where Jn are Bessel functions of integer order. Because the boundary of the vortex is a

solid wall, the radius R can be prescribed, unlike the solution analyzed by Stern (1975).

If, for example, R),. = 2, then (1.4.6) consists of one anticyclonic gyre if if < -O.24{3R.

The simplest way to construct an Ekman pumping which satisfies (1.4.4) is to take

lowe / H = K-),.2V2I/J that is

(1.4.7)
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In the solution (1.4.6), inertial effects are not confined to narrow boundary layers

as in Fofonoff's gyre, but they invade the whole basin. While the predominance of

inertial effects may not be a realistic feature of the whole subtropical gyre, it is very

likely to be relevant for the dynamics of the recirculating gyre which occupies a subbasin

scale region. In Chapters 4 and 5 it will be shown that a gyre with characteristics very

similar to those observed in ERGCMs and in the North Atlantic, can be obtained with

a simple, analytically tractable model. Unlike Fofonoff's model, inertial effects will be

important everywhere in the gyre, both in the eastward and in the westward flow.

1.5 Overview of the thesis

In the first part of the thesis, Chapters 2 and 3, I analyze what happens when the

circulation driven by the wind reaches the ocean floor, where topographic relief is

present. If the abyssal waters are set in motion by weak vertical momentum transfer,

from the wind forced surface waters to the bottom waters, the abyssal flow will be

substantial only in regions where the geostrophic contours are closed. In the limit of

infinitesimal interfacial stress, the abyssal flow outside the closed geostrophic contours

is zero. In the presence of bottom relief which depends on longitude, this leads to a

mismatch of the flow along some portion of the abyssal flow boundary, and this is a

region which is typically in the basin interior. This problem is dealt with in Section

2.2, where it is shown that the flow mismatch arises regardless of the detailed process

which forces the abyssal layer, as long as such forcing is weak. It appears, though,

that the occurrence of these internal flow mismatches is discouraged by the presence

of a finite amount of dissipation and interfacial friction. The role of finite diffusion is

discussed in Section 3.3.

Internal mismatches of a different kind arise in the presence of topography of

varying slope, such as a ridge-like relief. The production of these internal boundary

layers can occur both in vertically homogeneous and in stratified models, and the flow
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over ridge-like topography is analyzed in Section 2.5. Unlike the mismatch discussed

in Section 2.2, this kind of jets is robust to the inclusion of dissipation, as shown by

the results presented in Section 3.2.

In the second part of the thesis, Chapters 4 and 5, a simple model of the recir­

culationg gyre, responsible for the enhanced transport of the separated Gulf Stream,

is presented. The model gyre is highly inertial and is forced by a potential vortic­

ity anomaly applied at the edge of the gyre. This boundary forcing mimics the effect

of the boundary currents carrying anomalous values of potential vorticity generated in

latitudes away from the recirculating gyre. This choice is justified in Section 4.1. The

localized forcing is tranmitted to the interior of the gyre through the weak action of

the eddies which act, on average, like lateral diffusion. Chapter 4 analyzes a vertically

homogeneous model and in Section 4.4 a formula is derived which relates the maximum

transport of the gyre to its meridional size: the transport is proportional to the cube of

the gyre width. Unlike earlier theories of the inertial circulation, in this model inertia

is not confined to a thin, boundary layer region of eastward flow, but it's important

everywhere, including the westward flowing region. Moreover the North-South width

of the eastward flowing region is not thin, but is half the width of the westward flowing

region.

The choice of a homogeneous model for the recirculation is justified by oceanic

observations which show that this flow is "weakly depth dependent". Nevertheless it

is desirable to obtain this characteristic as a result of a model rather than to state it

as an a priori assumption. This is why the calculations of Section 4.4 are extended to

include stratification in Chapter 5. Indeed the results of Section 5.4 confirm that the

baroclinic structure of the recirculating gyre is confined to thin boundary layers at the

edge of the gyre. The center of the recirculation is dominated by a "barotropic core"

which carries most of the transport. The relation of the "barotropic core" transport to

the gyre width is the same as that found in the homogeneous model of Section 4.4. A
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rationalization for the weak depth dependence of the gyre is given at the end of Section

5.2.

The two parts of the thesis are connected by the common theme of flow within

closed streamlines induced by the weak forcing provided by the eddy field. Although the

forcing is weak, the response is strong in some regions, and can give rise to unexpected

flow structures which break the usual Sverdrup balance. The thesis, though is written

in two separated parts, and Chapters 4 and 5 can be read independently of Chapters

2 and 3.
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CHAPTER 2
On the role of topography

in the wind-driven circulation:

the inviscid limit

Summary

The ideas developed by Rhines and Young (1982a, b) are used to analyze the effect
of topography in simple baroclinic models. The presence of longitude dependent to­
pography induces strong internal jets with transports of the same magnitude as the
interior flow. It is shown that the existence of these features is independent of the
forcing structure at the top of the model ocean, of the topography form and of the
forcing in subsurface layers as long as the latter is small. Some examples are given
both for forcings which, in the absence of topography, would give circulations closed in
the interior and for forcings that require a western boundary current.

Topography also shifts the line of zero transport allowing for significant flow across
the line of zero wind stress curl. Moreover the lines dividing the subtropical gyre from
the subpolar gyre are different in every layer, a feature absent in the flat bottom case.



2.1 Introduction

In recent years a number of theories of the ocean general circulation have been de­

veloped using conservative (quasi) geostrophic dynamics in the interior region of the

domain under consideration. Young and Rhines (1982) (YR) and Rhines and Young

(1982a) (RYa), using a quasi-geostrophic, large scale layer model, have shown how the

circulation forced by a prescribed Ekman pumping can extend downward through small

vertical transfer of horizontal momentum by eddies. Luyten, Pedlosky and Stommel

(1983) (LPS) proposed a rather different mechanism, in which the subsurface waters are

set in motion by ventilation, through outcrop of density surfaces. All of these models

are constrained by the Sverdrup relation between the vertically integrated meridional

transport and the wind stress curl. This relation, though, is valid only over a flat

bottom, or where the bottom velocity is negligible, and Luyten, Stommel and Wunsch

(1985) have shown that in the North Atlantic subpolar gyre, topography has a strong

influence on the meridional transport. The purpose of this study is to analyze the

effect of large scale topography on the wind-driven circulation. We will borrow directly

the ideas and terminology introduced in YR and RYa. We find that large scale to­

pography, when containing a longitudinal variation, can have a dramatic effect on the

deduced circulation patterns in models of wind-driven, stratified ocean flows. First,

we show that even the presence of a uniform slope in the x (longitudinal) direction

alters the qualitative structure of the Sverdrup problem. Closed geostrophic contours

in the lower layer now contain flows which can be matched to the Sverdrup external

field only with the intervention of internal boundary currents. We show that this arises

whether or not the flow within the girdling geostrophic contour has uniform potential

vorticity and thus our results do not depend sensitively on the homogenization argu­

ments of RYa. We then demonstrate that ridge-like topography, which we think of as a

model of mid-ocean ridge topography, will also produce boundary currents embedded

in the Sverdrup interior. This phenomenon is fundamentally different from the first
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case as it depends on strong variations in east-west bottom slope and, in distinction

with the previous case, is present in homogeneous models as well. During the prepa­

ration of this manuscript, the work of de Szoeke (1985) came to our attention. de

Szoeke has considered the role of uniform east-west slope (our first topic). Although

there are many elements in common in the two treatments, the directions taken are

quite distinct. We have chosen to emphasize the need to embed the circulation in the

dynamics appropriate to an oceanic basin. Therefore, in distinction to de Szoeke we do

not accept any deep flow on isolines of potential vorticity which intersect the eastern

boundary. Nor do we artificially adjust the wind field to produce closure. This has

important consequences for the predicted patterns. Our proposed deep flows vanish

completely outside the outermost closed geostrophic contour. We also show that the

general character of the flow is independent of homogenization of potential vorticity

and thus we do not restrict attention to harmonic topography as de Szoeke does. We

wish to emphasize that internal jets form with transport of order 1 both in the inte­

rior and at the boundary of the region where the subsurface waters move and such a

region is well inside the interior of the basin. Part of the motivation for considering

topography was to examine whether the effects of topography allow geostrophic flow

across the line of zero Ekman pumping. We show that this indeed occurs, especially

in the case of forcing of realistic amplitude. Moreover, the lines of zero transport are

different in each layer, unlike the flat bottom models. In section 2.2 we present the

formulation and solution of the quasi-geostrophic two-layer model for the case of con­

stant bottom slope. That is, analogously to YR and RYa we will force the upper layer

with an Ekman pumping, while subsurface forcing, provided by smaller scale activity

will be considered small. Thus subsurface flow will be significantly different from zero

only in regions where flow streamlines do not encounter boundaries unable to support

boundary layers or, obviously, where they close in the interior. The results illustrated

by RYa strictly apply to circulations that close in the interior of the ocean although
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eddy resolving general circulation models (see Holland et al., 1984) suggest that they

may apply also to flows passing through boundary currents. Therefore we will develop

examples with wind stress curl distributions that give circulations which close either

in the interior or in the western boundary. In section 2.3 we present the results of

calculations of the three-layer model and the continuous stratification case is solved in

section 2.4. In section 2.5 the homogeneous and two-layer models are considered for

the ridge-like topography. Finally, in section 2.6 we make some speculations on the

characteristic transport expected in the internal jets we have predicted. The effects of

relative vorticity and of finite viscosity are addressed in the next chapter.

2.2 Two-layer model

Our analysis is based on the quasi-geostrophic, two-layer model on a {3 -plane, with

a wind stress forcing at the top of the model ocean. In this section we consider a simple

constant slope topography at the bottom of the lower layer. We will assume that the

dominant internal nonconservative mechanism is lateral diffusion of potential vorticity

(for a discussion of this choice see Rhines and Young (1982b)). If relative vorticity is

neglected lateral diffusion of potential vorticity is equal and opposite in the two layers

and therefore gives no contribution to the vertically integrated flow. Therefore bottom

friction (for example) is also needed in order to balance the overall input of vorticity

but we will assume its effect to be negligibly small except in narrow regions.

The steady two-layer quasi-geostrophic equations are:

(
,I. ) fow. V2J 'f'bql = H

1
+ It ql

J(1{J2,q2) = ItV 2
q2 - 6V2

1{J2,
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with 6 < ICISI(g'H2 ) < pL, and

qi = py + V 2,p1 + FI(,p2 - ,pI)

2 ( ) lohq2 = py + V ,p2 + F2 ,pI -,p2 + H
2

, P2 - PI
g = g

P2

where Hl, H2 are the average depths of the upper and lower layers respectively and

h is the topography. FI = IJ/(g'HI) is the inverse of the Rossby deformation radius

squared and F2 = F I H I IH2 •

In the interior of a wind driven gyre the relative vorticity is negligible with re-

spect to the planetary vorticity and the vortex stretching term, and so are all the

nonconservative terms. If the barotropic transport equation is formed one obtains:

(2.2.3)

where

Unlike the cases analyzed by RYa and YR, when topography is present the barotropic.

transport cannot be calculated without solving for the lower layer flow. On the other

hand, flow in the lower layer will be (to the order where relative vorticity and noncon­

servative terms can be neglected) along the contours of

i. e. ,p2 = .1(112) and in particular .1(py + lohlH2) at the boundaries. In general the

argument of the right hand side will not be constant on the boundaries and the only

solution is the trivial one .1(112) = O. This reasoning cannot be applied when the flow

lines close either in the interior or in some boundary layer region, which we choose

according to the dynamics of the specific problem. For example if topography is taken

to be a constant, say positive, east-west slope (h = h.,(x - xe)) we know that linear
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frictional boundary layers will be allowed on the northern side of the basin, in addition

to the western one. In this case .p2 need not be zero if contours of lh hit only the

western or the northern boundaries, or obviously if they close upon themselves.

Throughout this section topography has in fact been chosen as a constant positive

east-west slope, a ridge-like topography is dealt with in section 2.5. If such a slope is

chosen to be of the same order as the {3 term, q2 contours would go across the basin

in diagonal straight lines were it not for the interface displacement due to motion in

the upper forced layer. If this forcing is weak, though, such modifications will be small

and we can foresee that the lower layer flow will be zero. On the other hand if such an

interface displacement becomes comparable to the {3-effect (or the topographic term)

there may be some regions where q2 contours are bent enough to allow flow in the lower

layer.

To keep the mathematics as simple as possible we will select the forcing function

in the form of (see Fig. 2.1)

We =Wf(y) (W :S 0)

{

y/Yo if Y :S Yo
f(y)= 2-y/yo ifYo:Sy:S3yo

y/Yo - 4 if 3yo :S y :S 4yo
(2.2.4)

which in the absence of topography would give two gyres antisymmetric about the

latitude of zero Ekman pumping located at y = 2yo.

Wherever the lower layer is motionless the vertically integrated transport can be

calculated as

The resulting q2 contours are
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Fig. 2.1. The Ekman pumping (2.2.4) as a function of latitude. The ordinate is y/4YQ.
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Some examples are shown in Fig. 2.2 for different values of the forcing and of the

topographic slope. Notice that there is a region where the isolines do not meet either the

eastern or the southern boundaries (it is there that the lower layer will be moving) and

that this region increases as the forcing gets stronger. Compared with the corresponding

case for flat bottom it is evident that the line dividing the subtropical and subpolar gyre

is greatly displaced from the line of zero Ekman pumping, being altogether absent for

large bottom slope/forcing ratios. Analogously to YR, RYa and Pedlosky and Young

(1983), we will assume that where the lower layer moves it will do so as to keep its

potential vorticity constant. The arguments leading to the homogenization of potential

vorticity may not hold when the flow lines pass through a viscous boundary layer (see

Ierley and Young (1983)); they apply though when the flow lines close in the interior.

Our point, however, is not to discuss here the validity of the homogenization arguments,

and we hope to be able to convince the reader that our results are independent of the

choice of constant potential vorticity, although some details may change if a different

choice is made.

In order to get closed rh contours we must have:

(2.2.5)

Typical oceanic values are: x. = 6000 km, fo = 10-4 sec-1, H 1 = 1000m, H 2 =

3000m, f3 = 1O-13cm- 1sec- 1 , Yo = 1000km, g' = 1 em/sec, W = 10-4 em/sec. For

these values the ratio of the left hand side to the right hand side of Eq. 2.2.5 is 2.

Furthermore, in order to obtain an anticyclonic circulation (beside the cyclonic

one) as shown in Fig. 2.2c we must have:
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Fig. 2.2. Isolines of q2 for the two layer model in the nondimensional x-y plane. Both z
and y are scaled by x•. a) HI = H2 , loh.)({JH2) = O. Yo/x. = 1/4. loWF2/({J2 HI) =1
-0.5. b) Same as for a) except for lohz /({JH2) = 0.8. c) Same as for b) except for
loWF2/({J2HI) = -1.2.The heavy line is the outermost closed q2 contour and the
straight dashed lines are the characteristics (2.2.6).
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The constant value Q2 of potential vorticity is chosen in such a way as to match the

streamfunction tP2 on the outermost closed q2 contour.

Using this relation to eliminate tPb the barotropic transport equation becomes

and is independent of the (constant) value of Q2 , which appears only in the boundary

conditions. If the streamfunction is nondimensionalized with

and (x, y) = x.(x', y')

dropping the primes one gets (see also de Szoeke (1985)):

with tP2 = 0 on Q2(X, y) = Q2 which is a partial differential equation whose character-

istics are:

(2.2.6)

In Fig. 2.2c it is shown that the characteristics intersect twice the outermost closed Q2

contour in a significant portion of its perimeter. If the choice is made of satisfying the

boundary condition of no normal flow at the intersection lying at lower latitudes tP will

have, in general, a value different from zero at the intersection at higher latitudes.

The physical mechanism may be more easily understood if a simpler geometry is

analysed. Consider the following forcing function (compare with RYa)

{
-ax

w. = 0
if x 2 +y2 < r~

ifx2+y2<r~
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with the domain of the basin being -00 < x < +00. The governing equations are

(2.2.1) and (2.2.2). Where the lower layer is motionless (take H 1 = H2 = H) the upper

layer streamfunction is given by

- !oa
(Nl = 2H (x2 + y

2
- r&)

j3tPt = °
if (x2 + y2) < r&

if (x2 + y2) > r&

which is the equation of concentric circles centered at (0,0) of maximum radius roo (12

contours then become

if (x2 + y2) < r&

if (x2 + y2) > r&

The first is an equation for arcs of circle. If the forcing is strong enough, I.e.

r5 > x5 + Y5 with Xo = j3h",/(aFt} and Yo = j32 H/(a!oF1), these arcs may close to

full circles centered at (xo, Yo) with maximum radius rl = ro - vixs + Y5 (see Fig.

2.3). Notice that in the absence of topography, Xo = °and the circles are centered

about x = °so that IIA We da = 0, where A is the area enclosed by any circle centered

at x = °, y = Yo. When topography is added this center is shifted toward one side

of the basin so that, as it will be shown in the following, the total input of vorticity

is non zero and cannot be balanced without appending boundary layers. If the lower

layer potential vorticity is assumed constant inside these circles the total transport is

governed by:

where the characteristics are the same as in Eq. 2.2.6. Again on the northwest half of

the rl circle the value of ..p2 as resulting from the interior dynamics will be different

from zero. In the following we show that the mismatch does not depend on the choice of

constant potential vorticity and would arise in any case as long as topography depends

on x. (This result was proved in conjunction with J. Pedlosky.)
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Fig. 2.3. Contours of Q2. The dashed circle (r = ro) is the bounding contour for the
barotropic streamfunction. The dashed-dot lines are the characteristics (2.6). On the
northwest half of the outermost closed Q2 contour (r = rl) the value of tP2 will be
different from zero.
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Now returning to the more general case, suppose the forcing is such that there

is a contour of q2 which closes in the interior with q2 = [3y + loh/H2 + F'It ('It is

the upper layer streamfunction calculated with no lower layer flow and F = 16(H1 +

H2)/(g'H1H2 )): inside this contour 'l/J2 = G(q) where q = [3y+ loh/H2 +F'l/J1 . There-

fore the equation for the vertically integrated transport in the presence of topography

becomes (compare with Eq. 2.2.3):

We can change to a new coordinate system ~ and T , where ~ are the characteristics of

the flow, such that

a'I/J1 = [3'It",
aT

We now integrate the equation along a line where ~ is constant (~ = ~o) from the

point TO to the point T1, where TO and T1 represent the intersections of ~ = ~o with

the outermost closed q2 contour, as schematically shown in Fig. 2.4. Assuming that at

Using the definition of q2 we can write
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iT. a
+1/F dT -a (fJy + lok/H2)

TO T

and finally using the definition of T, i. e. using the chain rule for a/aT, one finds

The right hand side vanishes for every value of eo only if T = const. lines coincide with

z = const. lines and this can only be if topography is independent of z. Similarly the

jump in the lower layer is given by (recalling that t/12(TO, eo) = 0)

Therefore, no matter what G(q) will be, a mismatch in the streamfunction field will

occur at the boundary of the region where the lower layer is moving. Because the

existence of the mismatch is independent of the particular form of G(q) we will continue

our calculations making the convenient assumption that potential vorticity is constant

in the lower layer. Notice that the jump in the lower layer potential vorticity q2 is

and for the choice q2 = constant, we require dG/dq = 1/F so that there is no jump in

potential vorticity.

Because of the choice of constant potential vorticity the streamfunction mismatch at

the boundary of the outermost closed q2 contour is equal in the two layers. This is

plausible since this choice implies strong interfacial friction which tightly locks the two

layers. If for example bottom friction is considered of the same order as interfacial

friction, the circulation integral inside closed q2 contours (see RYa) gives

q = (F + 6/1C)t/12 + constant
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Fig. 2.4. Sketch of the geometry for the integral constraints. See text for explanations.
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where 8 is the coefficient of bottom friction. Now the boundary layer transport in the

upper layer will be larger than that in the lower layer, in particular .

In Fig. 2.5 the resulting streamlines for the two layers are shown for the more

realistic wind stress pattern (2.2.4). The position of the mismatch where a boundary

layer has to be appended is consistent with the notion that in the presence of this

topographic slope a barotropic flow would be able to form a linear viscous boundary

layer on the northern side of the basin (see Appendix A2). The length of the mismatch

region increases with the topographic slope and the strength of the forcing (see Table

2.1a). From Eq. A2.3 it can be checked that as the point of maximum upwelling

shifts northward the length of the mismatch region becomes larger. On the other hand

if one considers a fixed distance on the outermost closed q2 contour from the point

Zo where the discontinuity begins, the strength of the jump is almost independent

of the parameters. Because the jump increases with increasing distance from z (see

Table 2.1b), the final transport entering the western boundary will increase with the

topographic slope and the forcing strength.

It is appropriate to mention here that the line of zero transport does not coincide

in the two layers unlike the case for flat bottom. Moreover there is some vertically

integrated flow across the line of zero Ekman pumping. When a subtropical gyre

appears in the lower layer (see Fig. 2.5b) the flow tends to be rather zonal in the

southwest corner of the subpolar gyre, in close analogy to the case of a barotropic

flow in the presence of the same topography (see Appendix B2 and Fig. B2). As

could have been expected, when the forcing gets stronger the circulation in the lower

layer resembles more closely the forcing pattern itself and, therefore, the flat bottom

circulation. Comparing the lower layer streamfunctions of Figs. 2.5a and 2.5b it can
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Topographic slope

Forcing 0.4 0.8 1.2 1.6 2.0

~0.50 0.000 0.154 0.193 0.213 0.225
-0.75 0.203 0.390 0.390 0.390 0.390
-1.00 0.315 0.500 0.528 0.510 0.500
-1.25 0.388 0.560 0.628 0.604 0.584
-1.50 0.440 0.601 0.667 0.684 0.653
-1.75 0.480 0.663 0.695 0.729 0.714
-2.00 0.513 0.657 0.717 0.750 0.780

Table 2.1a: Easternmost point of discontinuity, for the constant slope topography, in
units of x. as a function of the nondimensional forcing loWFl/(f32 H 1 ) (rows) and
topographic slope loh",/(f3H2) (columns).

Distance from Xo

Forcing 0.05 0.10 .0.15 0.20 0.25 0.30 0.35 0.40
-1.25 -0.03 -0.07 -0.11 -0.16 -0.21 -0.26 -0.32 -0.38
-1.75 -0,02 -0.06 -0.11 -0.16 -0.21 "0.27 -0.35 -0.43

Table 2.1b: Nondimensional transport of the lower layer flow at the northern boundary
of closed q2 contours, as a function of the distance from the point xo/x. where the
discontinuity begins (columns), for two values of the forcing loWF1 /(f32HiJ (rows), for
a fixed value of the topographic slope loh",/(f3H2) = 0.8.

be seen that the water crossing the zero Ekman pumping line (at y = 1/2) is of a more

southern origin when the forcing is weaker.

We now want to increase the vertical resolution of our model in order to test the

robustness of our results and to see whether topography produces other new features

when more layers are added.
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2.3 Three-layer model

In order to make useful comparison between the two and three layer model, we have

to choose our parameters in such a way that these models represent different approxi­

mations of the same physical process. Therefore some minimal requirements arise: the

total mass of our system has to be the same and the mass of cold and warm waters have

to be separately conserved. The first statement implies that, to the order considered by

the Boussinesq approximation the total volume has to be the same in the two models.

Therefore, indicating the two-layer model variables with primes

for equal layers.

The second statement is not as easy to quantify, but a simple formulation which clearly

satisfies it is:

P' •I = Pi,

which gives

(2.3.1)

where g' = (P2 - pI)g/p2' g" = (pa - P2)9!P2, g~ = (p~ - p~)g/pi·

The equations for a quasi-geostrophic, very large scale, ,a-plane, steady three layer

model in the presence of wind stress forcing, bottom topography, small lateral diffusion

of potential vorticity and very small bottom friction, are:

( )
fow. V 2

J '/Ji,ql = HI + Il: qi

J(tP2, q2) =Il:V2q2

J(tPa,qa) =Il:V2qa - IiV2 tPa

where
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ql =(3y +F1(t/12 -1/Ji)

q2 =(3y + F2(t/11 - t/12) + Fa('ifJa - t/12)

fok
qa =(3y + F4 ('ifJ2 - t/1a) + H

a

where F1 = fs/(g'H1),F2 = fS/(g'H2),Fa = fS/(g" H2),F4 = fs/(g" Ha).

Again we will assume that the potential vorticity is constant in the two unforced

layers, in those regions where the streamlines do not hit either the eastern or the

southern boundaries. The limiting contours of such regions are again found assuming

no flow in each layer outside them and are shown in Figs. 2.6a and 2.6b. Now the

condition on the forcing strength in order to have a deep moving layer is:

with
HaH2 g" Ha (g' +g") g' H2

"I = H2 g~ + H g~ + g~ H

and the analogous condition for the middle layer is:

Notice that, because of our choice (2.3.1), in order for the deepest layer to move the

forcing has to be stronger than in the equivalent situation for two layers. In particular

which is to be compared with Eq. (2.2.5). In the following we will present the results

without showing the detailed derivation, emphasizing the similarities with the two

layer model and the new findings for increased vertical resolution. One result of the

introduction of bottom topography can be readily seen by inspection of Fig. 2.6b:

there is a small region at the northwest corner of the basin where the deepest layer
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moves although the middle layer doesn't. This is quite contrary to the results in the

absence of topography where the region of "closed qa contours is properly contained

in the region of closed q2 contours" (see RYa). This lack of "nesting" of the closed

q contours also occurs when ventilation is present (see LPS) although for different

reasons. In the calculations we have done, though, we haven't corrected the lowest

layer flow for the absence of motion in the middle layer, since this region is very small.

In the region where all layers are moving, the characteristics of the equation for the

vertically integrated transport are the same as in the two-layer model (Eq. 2.2.6).

Therefore the characteristic lines are independent of the stratification. In Fig. 2.7 an

example of flow is shown for one value of the forcing strength. Notice that, as in the

two layer case, the line of zero transport is different in each layer, except, of course,

in the region where topography is not felt. Again in all layers there will be noticeable

exchange of water across the zero Ekman pumping line, a feature which is absent in the

flat bottom model. Although the small region where 1/J2 = 0 and I/Ja l' 0 is not shown

we have checked that the mismatch at the southern side of its limiting contour, where

1/J2 and I/Ja become non zero, still exists together with a non zero flow at the northern

rigid boundary.
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2.4. Continuous stratification model

With continuous stratification the Boussinesq potential vorticity equation is given by

with boundary conditions

and

J(!/J, q) = r;,V2q

J(!/J, fo!/Jz/N2) = -We at z = 0

J(!/J, fO!/Jz/N2 + h) = 0 at z = -H.

Here q = V2!/J + (fJ!/Jz/N2)z + (3y and N is the Brunt-Vaisala frequency. All the cal­

culations will be performed under the assumption of constant Brunt-Viiisiilii frequency.

Also in the following we will define the quantity F = fJl(NH)2 which is equivalent

to the inverse of the Rossby deformation radius squared in the layer models. With

this definition and with the assumption that relative vorticity can be neglected, the

expression for potential vorticity becomes:

Following YR we will assume that the wind driven circulation is contained within a

"bowl" between z = -D(x,y) and the surface and that potential vorticity is constant

inside the "bowl". In Appendix C2 it is shown that the value of q inside the bowl is

independent of the vertical coordinate as well as of the horizontal coordinates. For

bottom topography to be felt by the flow, the circulation must extend to the bottom

and the bowl must intersect the floor at z = -H. The model geometry in the y - z

plane is depicted in Fig. 2.8. The equations governing the flow are then

FH2!/Jzz + (3y =(3Yl

with boundary conditions J(!/J, FH!/Jz) = - fowe/ H at z = 0

and !/J = !/J", = 0 at z = - D where D < H

or J(!/J,FH!/J",+foh/H) =0 at z=-H where D>H
(2.4.1)

49



where h is the bottom topography and Viis the constant value of potential vorticity.

In the region D < H the bottom topography has no influence and the circulation

is the same as in YR

where

t/J =/3(VI - V)(z + D)2 /(2FH2)

D3 =FH2 fo6w e (V)(x - X e)//32(VI - V).
(2.4.2)

Given the form of D it is clear that VI must coincide with a latitude where the Ekman

pumping is zero, otherwise D would become infinite a.t the latitude V = VI' For the

Ekman pumping pattern shown in Fig. 2.1 there are three possibilities: VI = 0, VI =

2Vo, VI = 4Vo. Contours of (D/H)3 are shown in Fig. 2.9 for each of these choices.

For the choice VI = 0 and VI = 4vo, the depth of the bowl is not symmetric around the

line of zero Ekman pumping V = 2Vo as one would expect for symmetric forcing, and

becomes negative in half of the basin. For the choice VI = 2Vo, the lines of constant

D are symmetric around the latitude of zero wind stress curl and they resemble the

outermost closed q2 contour for the two layer model shown in Fig. 2.2a. Therefore,

from the analogy with the layered model the choice V = 2Vo is the correct one. A more

rigourous derivation of this result can be found in Appendix C2. With this choice D

achieves its maximum on the western boundary at the latitude V = 2vo. The maximum

depth of the bowl is given by D = (6WxefoFH2/(/32vo ))l/3. If the values quoted in

section 2.2 are used and if N = 10-3 sec-I, the circulation goes as deep as 6000m.

Before this depth is reached, the bowl containing the circulation will intersect the

bottom.

In the region where D > H the bottom boundary condition is J(t/J,FHt/Jz/ +
foh/H) = 0 and is satisfied whenever t/J = 7(FHt/Jz + foh/H) at z = -H. On the

boundary of this region (given by D = H) pressure and density ought to be continuous

so t/J = t/Jz = O. This implies 0 = 7(h) which in general is a contradiction. Therefore,

for all the contours of q= FHt/Jz Iz=-H + foh/H that encounter the boundary D = H,

the only possible solution is t/J = o. Thus there is going to be a region (shaded in Fig.
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intersects the floor at z = - H. In the shaded region the bottom water is at rest and
topography is not felt. In the innermost region the bottom water moves and topography
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with vertical boundary conditions

2.8) where, even though the circulation goes all the way to the bottom, the very abyssal

water is at rest and topography is not felt. In this region the flow satisfies

F H2t/Jzz = fJ(Yl - y)

FHJ(t/J,t/Jz)=:'-w. at z=O

and t/J =0 at z = -H

and horizontal boundary conditions

The solution is given by

t/Jzlz=-H =0 at D=H

t/J = fJ(Yl - y)[(z/H + 1)2/2 + (z/H + 1)(D3/ H3 -1)/3]/F (2.4.3)

and both t/J and t/Jz are continuous at D = H with the solution given by (2.4.2).

The solution (2.4.3) is valid as long as the qcontours intersect the curve D = H. If

qcontours are closed then the bottom may not be at rest and topography will affect the

flow. In Fig. 2.10 contours of FHt/Jz + foh/H (solid lines) are shown for the constant

slope topography h = hzx (hz > 0) used previously, the dashed line is the contour

D = H and represents the intersection of the bowl containing the circulation with the

bottom. As usual we assume that contours will close in appropriate boundary layers

on solid walls (in this example the western and northern walls). In order to get closed

contours of q the forcing has to be strong enough so that

which is analogous to the condition obtained for the layer model, Eq. 2.2.5. Similarly

to the three layer model, due to the presence of a northern boundary current, there

is a region close to the northwest corner where the bottom may move although the

water right above it doesn't. This means that, near the northwest corner of the basin

the bowl z = -D(x,y) will be folded. In Fig. 2.111. a schematic section of the region

of motion in the Y - z plane, at a longitude where the folding occurs, is shown. In
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keeping Ii = Qo = 0.2{3yo. The dashed line is the contour D = H and represents the
intersection of the circulation bowl with the floor.
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Fig. 2.11b the section in the x - y plane, at z = -H, is shown. In Fig. 2.11 three

regions are distinguished: in region C the water moves everywhere but is at rest at the

bottom and topography has no effect; in region B the motion occurs top to bottom

and topography is felt; in region A the water is quiescent at mid depth although it is

sandwiched between a moving top and bottom.

Where the water on the bottom moves (regions A and B), we will assume that

FH!/JIII + lohl HIIII=-H is constant, say equal to Qo, since the quantity qcan be thought

of as bottom layer potential vorticity for a layer model, in the limit of vanishing layer

thickness. The constant Qo is determined by matching density (!/Jill) at the outermost

closed qcontour.

Let's now compute the circulation in region A, where the bowl is folded. Suppose

the surface is folded at the level z = -D'(x,y). For z > -D' (region A' in Fig. 2.11a)

the governing equations are the same as in (2.4.1) and

In the region -H < z < -D' (region A" in Fig. 2.11a) we have

FH2 !/J1/1111 +{3y ={3Yl

with boundary conditions FH!/JIII + lohlH =Qo at z =-H

The solution is given by

and !/J = !/Jill =0 at z = -D'

with D ' given by

D'=H+HQo-lohIH
(3(Yl - y)

The expression for the folding curve in the x-y-z space is then given by the intersection

of the two surfaces.

{
z=
z=

- D(x, y)
- D'(x, y)
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Fig. 2.11. Schematic of the different regions in the 1/- % and % - 1/ planes. a) Vertical
section at a longitude where the folding occurs, say %/%. = 0.1 in Fig. 2.10. Regions A:
the water moves only in regions A' and A", so that the water at middepth is queiscent.
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top to bottom and topography is felt. In region C the fluid is at rest on % = - D and
%= -H.

b) Horizontal section at % = -H. The boundary between regions B and A" is
the projection of the folding curve resulting from the intersection of regions A' and A"
shown in Fig. 11a.
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The projection of this curve on the x - y plane is shown in Fig. 2.llb as the boundary

between regions A" and B.

Inside region B the fluid moves top to bottom and the circulation is given by

with boundary conditions J(t/J,FH.pz) = - 10w.IH at z =0

and FH.pz + fohl H =Qo at z =-H

In this region, the vertically integrated transport, defined as

ifj = H-1fO dz t/J
-H

satisfies the equation

J(ifj,{3y + 10h1H) = 10w.IH + loh{3I(6FH)

and its characteristics are the same as in the layer model, Eq. 2.2.6. The characteristics

(2.2.6) intersect the boundary of region B twice in the interior, leading to a mismatch

of the flow occuring at all depths. Explicit solutions were not obtained given the

complexity due to the presence of so many different regions.

In summary it appears that the occurrence of a mismatch in an interior region of

the basin is a recurring property of baroclinic gyres, in the presence of x-dependent

topography, regardless of the vertical resolution.
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2.5. Ridge-like topography

In this section we analyze the effects of a bottom topography of varying slope on both

a barotropic and a two layer model on a ,B-plane. Topography will be ridge-like, i.e.

h _ { -h"lx - xol + h"a for Ix - xol < a
- 0 for Ix - xol > a

where Xo is the point of maximum height h"a , and a is the halfwidth of the ridge. Let's

first look at the case of one layer forced by a wind stress curl which is always negative,

for example that of Eq. 2.2.4 with y between 0 and 2yo (the one layer problem was

solved by J. Pedlosky). The equation governing the flow will be

J(t!Jl,,By + foh/H) = fow.(y)/H. (2.5.1)

The characteristics of the flow will be the geostrophic contours e= ,By + foh/ H, which

are piecewise continuous broken lines dividing the domain in 8 different regions (see

Fig. 2.12). If we require the flow to be zero at the eastern boundary and at the zeroes

of the Ekman pumping we obtain the following results for the streamfunction for the

different regions shown in Fig. 2.12.

(lB) tPl =fow.(y)(x - x.)/(,BH)

(2B) tPl =h
1 (Y dT/w.(T/) + fow.W,B)(xo + a - x.)/(,BH)
" Je;r~ .

(2A) tPl = :" f dT/ w.(T/)

(3C) tPl = - :" faY dT/ w.(T/)

1 l Y
1 18

(e)(3A) tPl = - h dT/ w.(T/) + h dT/ w.(T/)
" 8(e) " 2yo

1 l Y
1 18

(e)(3B) tPl = - h dT/ w.(T/) + h dT/ w.(T/)
" 8«) " 2yo

+ fow.(e/,B)(xo - a - x.)/(,BH)

(4C) tPl = - :" faY dT/w.(T/) + fow.(y)(x +a - x.)/(,BH)

(4B) tPl = - : l Y
dT/ w.(T/) + fow.(y)(x +2a - x.)/(,BH)

" 8(,By)
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where s(€} = €/fJ - foh"a/(fJH}.

Notice that the flow in regions 2A and 3C is perfectly zonal and a discontinuity

arises at the boundary between regions C and B, in addition to discontinuities at the

western and parts of the northern and southern boundaries. The difference in transport

between regions Band C is given by

TB-c =H[1/Il (3B) -1/11 (3C}]e=/oh.a/(pH)

=f5Wh"a(xo + a/2 - x.)/(fJ2Yo H)

and is constant.

The physical mechanism of this discontinuity can be understood by means of the

following analogy. Equation 2.5.1 is equivalent to the equation for the concentration of

a passive tracer advected by a known velocity field ( here the concentration is analogous

to 1/11 and the known velocity field has flow lines identical to the geostrophic contours

€).

In the absence of forcing and dissipation the concentration will be constant along

the flow lines and will be completely determined by the knowledge of the concentration

at the boundaries of the domain under consideration. On the other hand, there might

be some regions in the interior of the domain (such as the line dividing regions C and

B in Fig. 2.12) where neighboring flow lines trace back to regions of the boundaries

that are very far apart and thus might have rather different concentration values.

Therefore although the concentration is continuous along the boundary it may become

discontinuous in the interior.

This explains also why in our oceanic, wind-forced problem the jump in transport

across the discontinuity is constant. In the presence of forcing, the flow is the sum

of two components: one across and the other along the geostrophic contours. The

former is determined by the forcing and is continuous on the characteristic dividing

regions C and B as long as the forcing is continuous there. The discontinuity arises in
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the location of the discontinuity.
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the component along the characteristics (the only one in the passive tracer analogue)

which is obviously constant on a characteristic.

To emphasize the dependence upon the parameters we notice that the transport

across the discontinuity can be written as

T _ T I:;.hlH (xo + al2 - x.)
B-C - • I:;.fI fo x.

where T. = foW x.1(J is the maximum Sverdrup transport in the absence of topography,

I:;.hlH = h"alH is the relative change in height due to the topography and I:;.fI fo =

(JYol fo is the characteristic change in Coriolis parameter. For x. =6000 km, fo =

10-4sec-1, W = 1O-4cmsec-l, Yo = 1000km, H = 4000m, (J = 1O-13cm-lsec-1, I:;.h =

1000m,xo = 3000km,a = 1200km,T. = 60Sv we get TB-C = 60Sv. This value is

clearly an upper limit for the transport at the jump since the barotropic model velocities

are very large at the bottom. Also the ridge height and the basin width are very large

in this example, at the limit of applicability of the quasi-geostrophic approximation.

Nevertheless this value is indicative of the fact that these jets have transport of the

same order as the interior flow.

We now want to see what are the effects of this ridge-like topography on the two

layer model, considered in section 2.2. Again the forcing will be that of Fig. 2.1. We

will take the strearnfunction in the lower layer such as to keep q2 constant inside the

outermost closed fh contour and tP2 zero outside where now

An example is given in Fig. 2.13. The characteristics of the flow will be

and they divide the region of lower layer flow into several parts shown in Fig. 2.13.

Similarly to the barotropic case, in the lower layer there are two regions of weak quasi­

zonal flow (2B and 3D in Fig. 2.13) and a discontinuity in flow between regions C and
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D. The jump in the streamfunction is the same in the two layers because of the choice

of constant potential vorticity. The vertically integrated difference in transport at the

jump is given by

(2.5.3)

and is always larger than the corresponding value for the one layer model. A mismatch

analogous to that of section 2.2 occurs at the northern boundary of region 3B inducing

a discontinuity which continues with constant value at the boundary between regions

4A and 4B. In Table 2.2 some values for this jump in the lower layer streamfunction

are given for different values of the topographic slope, the width of the ridge and the

strength of the forcing. The nondimensional slope loh",f(f3H) = 2 and the nondimen­

sional halfwidth a/x. = 0.2 in Table 2.2a correspond to the dimensional values given

in the previous example for the homogeneous model. This gives a dimensional total

transport of 60 Sv, which fortuitously happens to be the same value as the internal jet

transport for the barotropic model, and again this value is comparable to the interior

transport. Notice that this discontinuity grows more slowly with the topographic slope

than TC-D, while doubling the width of the ridge more than doubles the amplitude of

the discontinuity. This is what one would actually expect since the "internal" jump

(C - D) owes its existence to the change in slope of the bottom topography. In fact

taking a very thin ridge, but with constant height (h"a = constant, a -+ 0) the inter­

nal jump would continue to exist with almost unchanged strength while the mismatch

at the northern boundary of region 3B tends to vanish. For reasonable values of the

parameters both these discontinuities are of the same magnitude as the interior flow

and they arise in regions away from (although connected to) the solid boundaries of

the domain.
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Topographic slope

Ridge halfwidth 0.4 0.8 1.2 1.6 2.0

0.1 -0.04 -0.07 -0.09 -0.10 -0.11
0.2 -0.09 -0.14 -0.18 -0.22 -0.25
0.3 -0.14 -0.22 -0.28 -0.34 -0.37

. Topographic slope

Ridge halfwidth 0.4 0.8 1.2 1.6 2.0

0.1 -0.06 -0.08 -0.10 -0.11 -0.12
0.2 -0.12 -0.18 -0.22 -0.27 -0.30
0.3 -0.18 -0.29 -0.39 -0.45 -0.47
0.4 -0.26 -0.43 -0.56 -0.58 -0.56

Table 2.2: Difference in transport, for the ridge-like topography, in the lower layer at the
northern jump (region 4A-4B) for different values of the topographic slope !ohz /(f3H2)
(columns), and the ridge halfwidth a/x. (rows). Top) The nondimensional forcing is
!OWFl/(f32HI) = -1.0. Bottom) The nondimensional forcing is !oWFl/(f32HI) =
-2.0.

2.6. Discussion

We have shown how in the presence of topography internal jets arise when simple

Sverdrup dynamics are used. More specifically we find that for baroclinic gyres, jets

are formed at the boundary of the region containing the subsurface flow. Their existence

is independent of the forcing mechanism for the lower layer as long as such forcing is

small. On the other hand their very presence raises questions about the applicability

of conservative dynamics since at the jets' locations, frictional effects have to be much

stronger than we considered initially. To avoid such difficulties De Szoeke (1985), in an

independent work on the same subject, has chosen to prescribe the flow as completely

continuous in both layers. This choice implies that either the forcing has to be of a

special form or that the eastern boundary condition can't be applied in the upper layer.
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We think, however, that it is inescapable to embed the circulation in a closed basin

and the occurrence of flows with internal jets must not be ruled out 11 priori.

Since our results are not sensitive to the choice of constant potential vorticity in the

lower layer we need not to restrict ourselves to constant slope topography. Therefore

we have also analyzed the effects of bottom topography of varying slope, in particular

in the form of a ridge. Again jets are found although of a different nature. In fact in

this case, internal jets occur in both stratified and even in homogeneous models; their

existence now is due to the change in sign of the bottom slope and the presence of

the southern gyre boundary along which .p vanishes. For values of the parameters in

the oceanic range, the jets produced both in the ridge-like and in the constant slope

topography have very large transports, i.e., on the order of the maximum transport of

the interior flow.

In the next chapter we will examine numerical models that include relative vorticity

and small nonconservative mechanisms to see whether the features found in the previous

sections actually occur, and how they are modified by higher order effects.
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Appendix A2. Viscous boundary layers analysis

Assuming that lower layer potential vorticity is constant in the boundary layer, the

equation for the barotropic How in the presence of small bottom friction is:

The boundary of validity of qmstant potential vorticity dynamics is

Therefore, we define as boundary layer variable

where

and

€ =y + (x - x.)(r +wo!(y)) - Q2/(3

r =!oh,./((3H2), Wo = !gw/((32 g' H1H2)

A=x - x. as the other independent variable.

The dominant balance is, for € = 6H2/((3LHd:

where g(A) is always positive:

and

(A) = [r+ 4Wo(Q2/(3-1)]2 +(1+4w A)2
9 1 + 4WOA 0

2[r + 4WO(Q2/(3 -1)]- r(l + 4wo)2
C(A) 1 +4WOA

In order to get solutions which are decaying for e ---> -00 (inside the region of

constant potential vorticity) we must have C(A) < 0, which gives:

1- >/2 +8WO(Q2/(3 -l)/r
A < 41 wol
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This is exactly the relation which determines the point at which the boundary is tangent

to the characteristics. For x - x e greater than this value the boundary layer stream­

function grows exponentially but the amplitude of the boundary layer correction goes

to zero.

where

with

and

'P2(€, A) =A(A)[l- exp(-g(A)€/C(A))]

A(A) = - 2wo(Y - y.)(y +Y. - 2 + r/(2wo))/r

Y =(Q2/fJ - rA + 4wo)/(1 + 4WOA)

Y. =rA/2 +1- r/(8wo).

At the point given by (A2.1) Y = Y. and A(A) = o.

If the Ekman pumping is of a more general form (see Fig. A2) (here the variables

are nondimensional):

if Y < Yl

(A2.2)

WM(Y - 1)/(Y2 -1) if Y2 ~ Y ~ Yl

The point at which the outermost closed q2 contour is tangent to the characteristics is:

where

A = (Y2 - 1)(2b - l)/WM

b = (1 + wM/r)[wM(l- Yl) - wm (l- Y2)]
2(1 - Y2)(WM - wm)
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Fig. A2. The Ekman pumping (A2.2) as a function of 1/.
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Appendix B2. Homogeneous model in the presence of topography

The equation governing the transport of one layer of homogeneous fluid in the presence

of topography h = ax, forced by a longitude independent Ekman pumping is:

R.I. _ loa .1. = low.(y)
fJ'f'bz H 'l'bll H

Setting e= y + loa(x - x.)/((3H) = y + r(x - x.) and choosing r > 0, its solution is:

Given the form of the modified (3-effect we choose to satisfy the following boundary

conditions:

tPb = 0 on x = x. and tPb=O on y=O.

Therefore the flow is divided into two regimes:

tPb = -1 11
dT] w./a

lI+r (z-Z.)

and

tPb = -ill dT] w./a
o .

for e> 0

for e< 0

Because of the choice of an x-independent forcing, in the south-west part of the

basin the flow is perfectly zonal. Notice also how the cyclonic gyre is reduced in favour

of the subtropical gyre (see Fig. B2).
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Fig. B2: Streamlines for the barotropic streamfunction resulting from the Ekman
pumping w. =W sin(2'11"Y). With loWJ(fJ2gH2) = -1.2 and loa.J(fJH) = 0.8.
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Appendix C2. The constant value of potential vorticity within the "bowl".

For a continuosly stratified model, the homogenization argument of Rhines and Young

(1982a) leads to the result that, within the "bowl" containing the motion, potential

vorticity is independent of x and y: q = q(z). Since q(z) is independent of the hori-

zontal coordinates, its value is more easily found in the region D < H where the bowl

containing the circulation does not hit the bottom and topography is not felt.

The calculation will be performed under the assumption that the Brunt-Vaisala

frequency N2 is constant, but the result holds for an arbitrary stratification. In the

region D < H the equation governing the flow is

FH2,pzz + (3y = q(z) (C2.1)

with boundary conditions J(,p,FH,pz) = -fow.jH at z = 0 and,p =,pz = 0 at z =

-D. It is clear that in the region D < H there will be no flow across the zero wind

stress curl line, y = 2yo, therefore ,p = ,pz = ,pzz = 0 at that latitude, and thus the

value of q(z) can be calculated at y = 2yo from (C2.1), so q(z) = 2{3yo, which is a

constant independent of z. The choice ,p = ,pz = ,pzz = 0 at the eastern wall, and

thus at the zero Ekman pumping latitude, can always be made by defining the mean

stratification N 2 appropriately.

The result that the latitude of zero Ekman pumping is a streamline in the region

D < H can be proved without knowledge of the value of q(z). Integrating (C2.1)

vertically from z = -Dto an arbitrary depth z ~ 0 and using the boundary conditions

at z = - D we find

FH2,pz = - (z + D){3y + LZD dz' q(z')

FH2,p = - (z + D)2{3yj2 + LZD dz' LZ~ dz" q(z")

Application of the boundary condition at z = 0 gives
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On the other hand the meridional velocity is given, from (C2.2), by

FH2 1j;", = -(z + D)D",[(3y - q(-D)].

Using (C2.3) to eliminate D",[(3y - q(-D)] from (C2.4) one finds

(C2.4)

(C2.5)

If y = 2yo is the zero Ekman pumping latitude then 1j;(x,2yo) = 0 for every x and z,

and as expected, there is no meridional flow across the latitude of zero Ekman pumping.
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CHAPTER 3
On the role of topography

in the wind-driven circulation:

viscous and inertial effects



3.1. Numerical experiments

In the previous chapter we have shown that, in the presence of x-dependent topogra­

phy, internal jets arise when Sverdrup dynamics are used. It is not obvious a priori

that all the assumptions made about the higher order effects will hold when, for ex­

ample, viscosity is explicitly introduced in the calculations. It is also conceivable that,

when relative vorticity is restored, the internal jets will become unstable, violating the

assumption that the solutions found in the previous chapter represent possible steady

states. Thus both relative vorticity and dissipative tenns will be explicitly included in

the calculations presented in this chapter.

A special comment should be made about the role of relative vorticity. Ierley and

Young (1983) have shown that, in the absence of relative vorticity, the western bound­

ary layer dynamics affect the interior How when interfacial friction and bottom drag

are taken into account in quasigeostrophic, wind-driven layer models. In their calcula­

tion, because all the How lines go through a frictional western boundary current, the

homogenization arguments of Rhines and Young (1982) do not apply and the relation

between the strearnfunction and the potential vorticity in the interior of the unforced

layers is not simple.

In the analysis presented in Ierley and Young (1983), the western boundary viscous

dynamics play an essential role in the "exit" region, located at the northwest corner in

the subtropical gyre. In models which include relative vorticity, such as that of Holland

et al. (1984), a recirculating gyre is established at the "exit" region, and many of the

interior streamlines pass through the northern boundary layer sandwiched between

the recirculating gyre and the zero wind stress curl line, invalidating the arguments

presented in Ierley and Young (1983). For reasons that are yet unclear, the occurrence

of the recirculating gyre favors homogenization of potential vorticity in the unforced

layers.
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Because all the calculations in the previous chapter have been done under the

assumption that potential vorticity is constant in the subsurface layers it would be

desirable to be able to compare the inviscid results with those obtained using finite

viscosity. Thus both relative vorticity and diffusion will be taken into explicit account

in the following calculations.

The inclusion of relative vorticity and of weak, but finite diffusion makes the

problem analyzed in the previous sections analytically untractable. Solutions were

found by means of a numerical model developed by Dr. lerley. A brief description of

the model is given in Appendix A3. The numerical model solves the quasigeostrophic

equations

(3.1.1)

where

aql ( ) / 2at + J l/Ji,ql =/ow. HI + If-V ql

a:t + J(1/J2,q2) = - OV21/J2 + If-V2q2

ql =V21/Jl + F;(1/J2 -1/Jd + py

q2 =V21/J2 + F;(1/Jl -1/J2) + py + lohbb(x,y}/H2

with boundary conditions 1/Jl = 1/J2 = V21/Jl - V21/J2 = 0 on x = ±Lz , y = ±Ly •

w. = wg(x,y) is the Ekman pumping applied at the top of the upper layer, If- is

the coefficient of lateral diffusion of potential vorticity, 0 is the coefficient of bottom

friction, Fi = 15/(g'H d is the inverse of the squared Rossby radius of deformation,

F; = Fi H 1 / H 2 , and hb is a typical height of the bottom elevation while b(x, y) is

the form of the topography. There are thus six dimensional external parameters which

determine the solution. Numerical solutions are more conveniently found when (3.1.1)
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(3.1.2)

is put in nondimensional form with the choice

(x,y) =Ly(x'/e,y')

Lyfow.,,1
Wn e{3H

I
'l'n

t {3LyH I t'
fow

qn ={3Lyq~

fowLy ,
K, K,

(3H I

o=e{3Lyo'

Dropping the primes (3.1.1) becomes

aqi () 2at + J(Wr,ql) =g x,y + K,V qi

a:
t
2 + J(W2' q2) = - OV2W2 + K,V

2q2

where qi =ryV2WI + F I (W2 -t/>r) + y

q2 =ryV2W2 + F2(WI - W2) + y + hb(x, y)

'1'72 a2
2 a2

and v = ay2 + e ax2

with boundary conditions WI = W2 = V2WI = V2W2 = 0 on x = ±1, Y = ±1. All the

quantities are now nondimensional. If a velocity scale is defined as U = fow/(e{3Hr}

then ry = U/({3L~) is the square of the ratio of the inertial boundary layer thickness to

the North-South basin scale, Fn = F;eU/ (3 is the square of the ratio of the inertial scale

to the Rossby deformation radius. h = fOhb/({3LyH2) is the ratio of the topographic

effect to the planetary vorticity gradient, K, is now the inverse of the Reynolds number

and 0 is the ratio of the Stommel boundary layer width to the basin scale.

The purpose of this work is to study some processes rather than to simulate realistic

oceanic features, therefore the values used for the parameters should reflect their order

of magnitude only. With this in mind typical choices are L y = Lz = 1000 km, g' = .01

m sec-2 , {3 = 10-11m- I sec- l , fo = 10-4sec-l, HI = H2 = 1000m, K,dim = 100m2 /sec,
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Ddim = 10-7sec-t, w = 10-4cm/sec, hb = 100m. This gives, for the nondimensional

parameters, the following order of magnitudes

"/ =10-3

Fn =1

If. =10-2

D=10- 2

h=1

For the values just quoted the nondimensional inertial boundary layer thickness

"/1/2 ~ 0.03 while the Munk layer thickness is (If.,,/P/3 ~ 0.02. Thus the boundary

layer thicknesses are of the same order and the western boundary dynamics are fully

nonlinear. Three series of experiments were performed with different shapes of Ekman

pumping g(x, y) and bottom topography b(x, y).

1) The Ekman pumping is of one sign (always negative as in the subtropical gyre) and is

independent of longitude. The topography is in the form of a simple ridge independent

of latitude.

2) The Ekman pumping is of one sign (the same as in the previous series), and the

topography is in the form of a constant slope in the longitudinal direction.

3) The Ekman pumping is positive in the western half of the basin and negative in the

eastern half, and depends on latitude as well. The topography is a constant slope in

the longitudinal direction.

The purpose of these experiments is to observe the occurrence of the internal jets

described in the previou3 chapter, in the presence of small diffusive processes and of

relative vorticity. In the following I will describe the results obtained.
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3.2. Ridge-like topography

In the presence of a topography of varying slope, the main result of the previous chapter

was the occurrence of an internal boundary layer connecting the western boundary layer

to the topographically induced southern boundary layer (see Fig. 2.12). In the inviscid

limit the internal boundary layer appeared as a flow discontinuity due to the change

in sign of the bottom topography and it was found in both baroclinic and barotropic

models.

In the two-layer model it was found that, in the absence of relative vorticity and

of bottom friction, and with the assumption that q =constant, the transport across the

discontinuity was the same in both layers and therefore there was no jump in potential

vorticity.

Three experiments will be discussed, all of them have an Ekman pumping of

the form g(x,V) = -cos(1I"V/2) and the bottom topography has the form hb(x,V) =

Ae-[(z-zo)/a!'. The values of the parameters used are summarized in Table 3.1.

Experiment A a XQ "f It 8 Fl=F2

R1 1.5 0.2 -0.6 0.0005 0.Q18 0.009 4
R2 1.5 0.2 0.0 0.0005 0.025 0.0125 6
R3 1.5 0.2 0.0 0.0005 0.050 0.025 6

,

Table 3.1: Summary of the parameters used for the experiments in the presence of a
ridge-like topography of the form hb = Ae-[(z-zo)/al' and of an Ekman pumping of
the form g(x,V) = -cos(1I"V/2). All the quantities are nondimensional.

In the first experiment, R1, the ridge is centered in the western half of the basin

(xQ = -0.6), it has a halfwidth a = 0.2 and its maximum height is A = 1.5. The ex­

periment was integrated in time until the steady state state was reached (see Appendix

A2 for the definition of "steady state"). The prediction of the analytical calculations

is that the lower layer should move only in the region of "closed contours" (the re­

gion where no contours are drawn in Fig. 3.1a) and should be at rest in the region of
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"blocked contours" (the region where the lower layer potential vorticity contours trace

back to the southern, northern or eastern boundary). A strong jet should be observed

along the characteristic marked by a thick line in Fig. 3.1b. In Figs. 3.2a,b the stream­

function fields are shown and indeed a crowding of the streamlines can be observed

near the region of the dividing characteristic, although the flow intensification appears

along a characteristic edifferent than that indicated in Fig. 3.1b. The reason for this

discrepancy is that there is some viscously driven lower layer flow outside the region

of "closed contours". The formula obtained in the previous chapter for the vertically

integrated difference in transport across the dividing characteristic is, in the present

nondimensional units,

T = A(Fi1
- Xo - a'/2 + 1)/2 (3.2.3)

and is valid for the simple piecewise continuous topography and Ekman pumping used

in Section 2.4. A is the maximum height of the ridge and a' is the halfwidth of the

piecewise continuous ridge. Although the form of the topography and of the Ekman

pumping used in the numerical experiments are slightly different from those used in the

analytical calculations, there is a qualitative similarity and I will nevertheless compare

(3.2.3) to the numerical results.

Because the thickness of the internal boundary layer in the numerical experiment is

finite, the choice of the streamfunction values on each side of the dividing characteristic

is to some extent arbitrary. My choice from inspection of Fig. 3.2 is llt/Jl = 0.80 and

llt/J2 = 0.75, so that the vertically integrated jump is T = 1.55. For the values of the

parameters used in this experiment (3.2.3) gives T = 1.31, which is in good agreement

with the numerical results. In Fig. 3.2c,d the potential vorticity fields are shown for the

experiment R1. The lower layer potential vorticity gradients a,re greatly reduced in the

region of closed contours, where the bulk of the abyssal flow occurs, with respect to the

region of "blocked" contours. Notice that, in agreement with the theoretical prediction,

there is no enhancement of the potential vorticity gradients in the region where the
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Fig. 3.1. a) Lower layer potential vorticity contours, as predicted by the inviscid
calculation, for the parameters used in R1. The abyssal flow should be confined in
the region where no contours are drawn ("closed contour"), and q2 - 6/lttP2 should be
constant there. b) Contours of e= Y+ hb/2 for the parameters used in R1. According
to the inviscid calculation, in the "closed contours" region, the geostrophic contours
for the upper layer flow are parallel to e. The internal jet should be observed along
the thick line. c) Same as Fig. 3.la, but for the parameters used in R2. d) Same as
Fig. 3.lb, but for the parameters used in R2.
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Fig. 3.2. Streamfunction and potential vorticity fields for the experiment Rl. a) Upper
layer streamfunction. b) Lower layer streamfunction. c) Upper layer potential vorticity.
d) Lower layer potential vorticity. Notice the strong flow intensification occuring along
the contour e= -0.4 of Fig. 3.1b. At the same location neither potential vorticity field
exhibits a gradient enhancement.
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jump in the streamfunction fields occur. As remarked in the previous chapter, this is

because the jump in transport is depth independent and thus does not contribute to

the vortex stretching term in the potential vorticity field. Relative vorticity gives a

small contribution to the total vorticity field.

Another prediction of the analytical calculation is that in the region west of the

ridge the jet continues to flow zonally until it impinges upon the solid western boundary.

In the experiment just discussed the ridge is so close to the western boundary of the

basin that this effect cannot be revealed.

In the second experiment, R2, I moved the center of the ridge eastward, to the

center of the basin, so that Xo = O. The height was kept the same, A = 1.5, and so was

the halfwidth, a = 0.2. The other parameters are listed in Table 3.1. The experiment

was integrated in time from rest until steady state was reached. The abyssal flow

should be confined within the "closed contour" region (the blank region in Fig. 3.1c)

and a strong jet should be observed along the characteristic emarked by a thick line

in Fig. 3.1d. The streamfunction and potential vorticity fields are shown in Fig. 3.3.

Again a strong intensification of the gradients occurs in the streamfunction fields (Fig.

3.3a,c), but not in the potential vorticity fields (Fig. 3.3c,d) at the location of a more

southern characteristic than that predicted by the inviscid calculation (the thick line

in Fig. 3.1d). The inviscid calculation predicts that the vertically integrated difference

in transport across the jet is, from (3.2.3), T = 0.77, in rough agreement with the

numerical results, which give a value between 0.8 and 0.9. In the region west of the

ridge (x ~ -0.3), the jet flows almost zonally westward until the western boundary is

encountered.

In the last experiment, R3, I tried to assess the effects of viscosity, by keeping all

the parameters the same as in R2 except for the diffusive terms, Ie and {j, which were

both increased by a factor of 2. The results are shown in Fig. 3.4 and they should be

compared to those shown in Fig. 3.3. As expected, potential vorticity in the lower layer
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Fig. 3.3. Streamfunction and potential vorticity fields for the experiment R2. a)
Upper layer streamfunction. b) Lower layer streamfunction. c) Upper layer potential
vorticity. d) Lower layer potential vorticity. Notice the strong flow intensification
occuring along the contour e= -0.4 of Fig. 3.lb. At the same locatiQn neither
potential vorticity field exhibits a gradient enhancement. The jump in transport
across the dividing characteristic is smaller than that occuring in Rl because the ridge
center has been moved westward.
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is less homogeneous, and the flow in the lower layer is weaker. A remarkable feature is

that the recirculating gyre, which occured in the northwest corner of the basin in Fig.

3.3 has disappeared and only a mild overshooting of the western boundary current is

observed.

Although an increase by a factor of two in the diffusive terms produces some

qualitative changes in the overall flow, the analysis of the viscous boundary layer for

the vertically integrated flow shows that the jet expands very slowly as diffusion is

increased. Calling.p = .pI + .p2, the potential vorticity equation for the barotropic

flow is

The property that q2 = 0.p2/K, + constant has been used and terms of order 0/(K,F2)

have been neglected. The dominant balance in the region of the jump is given by

(3.2.4)

since, for the values of the parameters used, (0/2)1/2 ~ (K,,,()l/4. It turns out that

for the experiment R2 lateral diffusion of potential vorticity is bigger than bottom

friction, as illustrated in Fig. 3.5, so that the boundary layer width is O((K,"()l/4), and

the second term of the right hand side of (3.2.4) is subdominant.

In all the experiments presented so far viscosity is quite large and we are quite

far from the asymptotic regime discussed in the previous chapter. Indeed the flow in

the "blocked" region is substantial and potential vorticity is not very well homogenized

in the lower layer. Nevertheless the establishment of an internal jet induced by the

ridge-like topography is undeniable even in the experiment R3 where the maximum

Reynolds number .p2maz/K, is as low as 17. The numerical experiments thus confirm

that, in the presence of bottom topography of varying slope, strong boundary layers are

formed in the interior of the ocean. The occurrence of these strong jets is robust to the
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Fig. 3.4. Streamfunction and potential vorticity fields for the experiment R3. a) Upper
layer streamfunction. b) Lower layer streamfunction. c) Upper layer potential vorticity.
d) Lower layer potential vorticity. An increase by a factor of two in the diffusive terms
brings some qualitative changes in the flow pattern: the recirculating gyre appearing
in the northwest corner of the b8llin in Fig. 3.3 h811 practically disappeared. On the
other hand, the internal boundary layer carries the same transport and its width grows
very slowly with diffusion.
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Fig. 3.5. Diffusive terms in the jet region. Notice the change in the z - y scale. a)
K/yV4(VJl +VJ2) for the experiment R2. b) 6V2VJ2 for the experiment R2. c) /(,"YV4(!/Jl +
VJ2) for the experiment R3. d) 6V2VJ2 for the experiment R3. For the parameters used
in R2 lateral diffusion is larger than bottom friction, while for the parameters used in
R3 they are of the same size.
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inclusion of viscosity and inertial effects, which simply smooth the jump in transport

over a finite width, which grows very slowly as diffusion is increased ..

3.3. Constant slope topography

In the J?revious chapter I showed that, in the presence of bottom topography which

depends on longitude, strong jets were generated at the boundary of the region of

abyssal flow, and this region is well inside the interior of the basin.

In the present series of experiments I force the top layer with the same Ekman

pumping used in the previous section, i.e. g(x,y) = -cos(1Tyj2), but the bottom

topography is of the form hb = -ax, with a > O. The values of the parameters used are

summarized in Table 3.2. The inviscid calculation predicts that the lower layer should

be in motion only in the region of "closed contours" (the empty region in Fig. 3.6), and

that an internal boundary layer should be observed at the location marked by a thick

solid segment in Fig. 3.6. The streamfunction and potential vorticity fields resulting

after time integration from rest of the first experiment, S1, are shown in Fig. 3.7.

Although the maximum Reynolds number is .,p2ma" j It = 50 and thus quite large, there

is a weak abyssal flow in the region where the inviscid calculation suggests that there

should be no motion. Even though the abyssal, diffusively driven flow is weak, because

the topographic slope is so large, it changes the barotropic transport substantially

and the topographically induced velocity enhancement occurs on the southern solid

boundary rather than in the interior. The barotropic transport.,p =.,pi +.,p2 is governed,

to first order, by

.,p" + a.,pll = - cos(1Tyj2).

In the "blocked" region, south of where the jet should be observed (y ",. -0.8), the wind

forcing is weak, and the second term on the left hand side, which was neglected in the

inviscid calculation, becomes as big as the Ekman pumping. A change in the barotropic

flow in the southwest corner of the basin enlarges the "closed contour" region enough
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so as to include the southern boundary (compare Fig. 3.7d with Fig. 3.6a) and the

boundary layer occurs on the solid wall.

Experiment a "f w, (j F1 =F2

Sl 4.0 0.0005 0.012 0.006 4
S2 0.8 0.0005 0.018 0.009 2

Table 3.2: Summary of the parameters used for the experiments in the presence of a
constant slope topography of the form hb = -ax and of an Ekman pumping of the
form g(x, y) = - cos(1fy/2). All the quantities are nondimensional.

For the second experiment, S2, the region of abyssal flow, as predicted by the

inviscid calculation, is shown in Fig. 3.6b. Now the topographic slope has been reduced

by a factor of five. The streamfunction and potential vorticity fields resulting from

the numerical integration are shown in Fig. 3.8. No sign of velocity intensification is

evident in the streamfunction field except in the western boundary layer and in the

recirculation region (northwest corner). The potential vorticity contours in the lower

layer are quite different than those predicted by the inviscid calculation (Fig. 3.6b) , the

difference being larger near the outermost closed q2 contour. To assess the effects of

viscosity I calculated the viscously driven abyssal flow in the "blocked contour" region.

In this region the lower layer flow is weak and to first order the upper layer flow is in

Sverdrup balance, while the lower layer is forced by the weak stresses induced by the

upper layer motion

J(1P1, y) = - cos(1fY/2)

J('l/J2, Y + h + F2'I/Jd =W,V2q2 ~ W,V2
'I/Jl

(3.3.1)

with boundary conditions 'l/J2 = 0 on x = 1, y = 1. The solution of this linear problem

is shown in Fig. 3.9a. The viscously driven flow is indeed maximum in the region where

the topographically induced jet should be observed. The amplitude, though, is about

a factor of five smaller than that observed in the numerical experiment. The reason for
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Fig. 3.8. 8treamfunction and potential vorticity fields for the experiment 82. a) Upper
layer streamfunction. b) Lower layer streamfunction. c) Upper layer potential vorticity.
d) Lower layer potential vorticity. The lower layer moves also in the "blocked" region
avoiding the onset of an internal boundary layer. The q2 field is quite different from that
shown inFig. 3.6b. For example the contour q2 = 2.4 has moved from the "blocked"
region to the "closed" region.
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this discrepancy is that, in the linear calculation (3.3.1) the strong recirculating gyre

occurring in the northwest corner of the basin has not been modelled. Specifically the

contribution of the recirculating gyre to the source term (ttV2q2) in (3.3.1) is substantial

as shown in Fig. 3.9b. Because the q2 contours close to the region where the jet should

be observed trace back to the northwest corner of the basin, crossing the "wake" of the

recirculation, this localized source affects the whole region near the outermost closed

q2 contour.

The presence of the viscously driven flow in turn deforms the lower layer potential

vorticity contours in the interior so that they become parallel to the characteristics

given in (2.2.6), thus avoiding the jump in transport described in the previous chapter,

Section 2.2. The reason why a moderate amount of friction and inertia has such a

devastating effect on the prediction of the inviscid calculation is the following. In the

inviscid theory it is crucial that the characteristics (2.2.6) intersect the boundary of the

abyssal flow twice in the interior. If the distance between the two points of intersection

is small the jump in transport will be small. Inspection of Fig. 3.6b shows that it

is enough to deform the outermost closed q2 contour by a small amount to avoid the

abovementioned intersection. On the other hand in Section 2.2 it was shown that, if

the Ekman pumping is such that the flow can be closed in the interior (see Fig. 2.3)

then the jump in transport will occur on half of the boundary of the region of abyssal

flow (the northwest half of the circle of radius rl in Fig. 2.3).

With this in mind a series of experiments was performed with an Ekman pumping

of the form g(x,y) = -(11"/2) sin(1I"X/2) cos ('II"y/2). In the absence of lower layer flow

the upper layer is in Sverdrup balance, 'Pi = cos ('II"x/2) cos('II"y/2), and the circulation

can be closed without appending boundary layers. In the absence of western boundary

currents, even in the limit of very weak dissipation, there is no need for a recirculating

gyre in order to achieve the steady state (see Chapters 4 and 5). In the experiments
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Experiment a 7 K Ii F 1 = F2

C1 0.0 0.0005 0.0125 0.006 4
C2 0.5 0.0005 0.0125 0.006 4
C3 2.0 0.0005 0.0125 0.006 4

Table 3.3: Summary of the parameters used for the experiments in the presence of a
constant slope topography of the form hb = -ax and of an Ekman pumping of the
form g(x, y) = -1r/2 sin('JrX/2) cos(1ry/2). All the quantities are nondimensional.

presented the topography was chosen as hb = -ax, a > 0, the values of the parameters

used are summarized in Table 3.3.

In the first experiment, C1, the bottom is flat, i. e. a = O. In the limit of

infinitesimal viscosity the lower layer should move only inside the region bounded by

the thick line in Fig. 3.10a, keeping the quantity q2 - Ii / K'ljJ2 constant and equal to 1.

The streamfunction and potential vorticity fields obtained by time integration from

rest are shown in Fig. 3.11, together with the q2 - Ii / K'ljJ2 field. Although the region of

"blocked" q2 contours in the numerical experiment is wider than that predicted by the

inviscid calculation, the abyssal flow occupies the whole basin, so that the circulation

is much more vertically coherent than expected. Moreover the homogenized value of

q2 - Ii / K'ljJ2 is not 1, but 1'::l 0.45 (the range of values being between -1. and 1.). The

maximum Reynolds number for this experiment is 'ljJ2/K = 34, but the Reynolds number

in the region of "blocked" contours is 1'::l 8. The effect of viscosity, in the absence of

topography, is to shrink the region of homogenized q2 - Ii / K'ljJ2, and yet to expand the

region of abyssal flow. However, in the absence of bottom topography, the vertically

integrated flow is, to first order, independent of the motion of the lower layer, so that

the inviscid prediction for the barotropic flow is not invalidated by the inclusion of

dissipative and inertial effects. In other words diffusion acts mostly on the baroclinic

mode, leaving the vertically integrated flow almost unchanged.
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In the presence of topography the barotropic How cannot be calculated without

knowledge of the abyssal How, even if the viscous and inertial effects are neglected.

In the next experiment of the series, C2, I kept all the parameters the same as in

C1 except for the bottom slope which was set to a = 0.5. The lower layer potential

vorticity contours in the absence of abyssal How are shown in Fig. 3.10b. The inviscid

theory of Section 2.2 predicts a discontinuity in transport on the southwest half of the

abyssal How boundary marked by a thick line in Fig. 3.lOb. The streamfunction and

potential vorticity fields, resulting from time integration of C2 using the steady state

reached in C1 as initial condition, are shown in Fig. 3.12. Again there is a weak abyssal

How in the region of blocked q2 contours so that the lower layer moves everywhere in

the basin. The homogenized value of q2 - 6/ItVJ2 is F::$ 0.7 instead of the value 2.0

as given in Fig. 3.10b. Unlike the Hat bottom experiment, C1, the weak, viscously

driven How induces qualitative changes in the How. The inviscid calculation predicts

an anticyclonic circulation in both layers, while in C2 a weak cyclonic gyre appears in

both layers, confined to the northwest corner of the basin. This cyclonic gyre is not

equivalent to the recirculating gyre appearing at the same location in the experiment

S2, but is a feature solely due to topography. The circulation pattern observed in C2

is very similar to the one that would be obtained neglecting viscous and inertial effects

in a barotropic model with the same bottom topography. For one layer the How is

described by

J(VJ,y - ax) = -1r/2sin(1rx/2)cos(1ry/2) (3.3.2)

with boundary conditions VJ = 0 on x = 1, y = 1. The solution of (3.3.2) is shown in

Fig. 3.13a, and is qualitatively very similar to the vertically integrated flow resulting

from C2 (Fig. 3.13b). The question is: what drives the cyclonic circulation in the lower

layer?

In Fig. 3.14 I have plotted the balance of terms in the lower layer as a function of x,

for the two latitudes y = 0.8 and y = 0.6. At the northern latitude, where the cyclonic
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gyre is observed, the interfacial friction term (curve A in Fig. 3.14b) dominates and is

bigger than each single term in the Jacobian term (Fig. 3.14a), so that the dominant

balance in the lower layer is

(3.3.3)

At the southern latitude viscosity is much less important and, in the interior, the

dominant balance is J(!/J2' Y + h + F2!/Jtl = 0 as assumed in the inviscid calculations.

The dominance of the interfacial friction in the northwest corner of the basin locks

the two layer together and this is why the flow resembles the linear barotropic solution

shown in Fig. 3.13a. In most of the basin friction is still negligible and the maximum

Reynolds number is !/J2ma",/K. = 40. Unlike the flat bottom experiment, a change in

the flow in the lower layer from the inviscid prediction can induce a substantial change

in the barotropic transport. For this experiment I have checked that the dominant

balance for the depth integrated flow is, except in the western and southern boundary

layers,

(3.3.4)

Because of the second term on the left hand side, the behavior of the barotropic flow

can be changed by the motion in the lower layer.

In the last experiment presented, C3, I kept all the parameters the same as in C2

except for the topographic slope, which was increased by a factor of 4. The boundary

of the region of abyssal flow predicted by the inviscid calculation is shown in Fig.

3.10c and the discontinuity in transport should occupy the south-west half of the "egg"

shaped boundary. The streamfunction and potential vorticity fields resulting after

time integration from rest are shown in Fig. 3.15. Again a cyclonic gyre, stronger

than that obtained in C2, appears in the western portion of the basin. Where the bulk

of the abyssal flow occurs, the lower layer potential vorticity is homogenized, but the

actual region is very different from that predicted by the inviscid theory. The abyssal
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How invades the southwestern portion of the basin and the vertically integrated How

resembles closely the one layer inviscid solution of Eq. (3.3.2), shown in Fig. 3.13c.

In the following I will try to explain why in the presence of small interfacial friction

and topography the potential vorticity and How field are qualitatively different from

those predicted by the inviscid theory. If the lower layer were, to first order at rest in

the northwest corner of the basin, then, to O(IC), the lower layer would move according

to

where Ih = y -ax +F2cos(1rxj2) cos(1ryj2). The q2 contours are shown in Fig. 3.10c.

Therefore the viscously induced lower layer flow will be northeastward to the east of the

outermost q2 contour and south-westward to the west. The effect of this weak abyssal

flow on the depth integrated transport is, taking the x derivative of Eq. (3.3.4), to

induce a positive relative vorticity, which means a cyclonic circulation. The reasoning

depicted here is only heuristic, since near the northern boundary the Ekman pumping

is small and its contribution may not exceed the viscous term. Indeed this is the reason

why even if the viscously induced How is weak, the q2 contours in Fig. 3.15d in the

northwest corner of the basin are so different than those in Fig. 3.10c.

In Fig. 3.16 I have plotted the balance of terms in the lower layer for the experiment

C3, as a function of x at two fixed latitudes, y = 0.85 and y = 0.50. At the northern

latitude the interfacialfriction term is dominant and the balance is as in Eq. (3.3.3),

while at the southern latitude the viscous terms are subdominant. Because the flow

at the northwest corner is weak (being near the zero of the Ekman pumping) the local

Reynolds number is small. Therefore the weak viscously induced How is as big as the

wind driven flow and it is able to deform the lower layer potential vorticity contours

substantially: in Fig. 3.1Oc their slope is opposite to that in Fig. 3.15c. The geometry

of the potential vorticity contours in the northwest corner is essential to the separation
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of "closed" contours from "blocked" contours and a change in this region affects the

whole abyssal flow.

I should point out that the experiment just discussed is the most inviscid I could

obtain with the given resolution. At lowest viscosities strong instabilities, generated by

the recirculating gyre appearing in the southwest corner of Fig. 3.15a,b rendered the

problem numerically intractable.

3.4. Summary and discussion

In the previous chapter it has been shown that, in the presence of x-dependent topog­

raphy, strong internal boundary layers are found when viscous and inertial effects are

neglected. Two types of jets were discussed. One occurs in the presence of topography

of varying slope and arises both in vertically homogeneous and stratified models. The

other occurs even in the presence of constant slope topography as long as the bottom

elevation depends on longitude. The latter internal boundary layer is found only in

baroclinic gyres, although it has a component which is depth independent.

In order to test the robustness of the results I included the effects of lateral and

interfacial friction as well as of inertia. The problem was solved numerically by time

integration until the steady state was reached. The internal jets, connecting the south­

ern to the western boundary layers in the presence of a ridge-like topography, found in

the numerical model agreed with the results of the inviscid theory. Consistent with the

inviscid prediction, the potential vorticity field doesn't exhibit the increase in gradient

observed in the streamfunction field at the jet location. The vertically integrated trans­

port carried by the jets was found to be in quantitative agreement with the analytical

calculation. The occurrence of the internal boundary layer was shown to survive mod­

erate increases in the diffusion coefficient and the jet width grows very slowly when K­

is increased. This indicates that the inviscid result is robust to the inclusion of weak

nonconservative effects.
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The numerical experiments, aimed at reproducing the results described in Section

2.2 (constant slope topography), were unsuccessful. In neither the case of wind gyres

closing on western boundary layers, nor in the case of wind gyres closing in the interior,

did the numerical results agree with the inviscid prediction. Instead, with the latter

wind stress pattern, the numerical model gave qualitatively different results from those

of the analytic calculation. I have shown that the discrepancy occurs because interfacial

friction locks the two layers together making the flow vertically coherent. Therefore the

effects that depend crucially on the baroclinicity of the flow are discouraged. This is also

why, in the presence of ridge-like topography, the numerical results are in agreement

with the inviscid calculation: the jets are present also in a vertically homogeneous

model.

The numerical results presented do not rule out the possibility of observing topo­

graphically induced baroclinic jets if viscosity is reduced beyond the values I have used.

Nevertheless they indicate that the baroclinic jets arising in the presence of constant

slope topography are difficult to observe (if they can exist at all) when higher order

effects are included.
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Appendix AS - Description of the numerical model.

Glenn Ierley's model solves the following quasigeostrophic, two-layer equations (in non

dimensional form):

where

aql
at + EJ('lP1,qd = g(x,y) + ItV2ql

aq2
at + EJ(!/J2,q2) = - OV 2!/J2 + ItV 2q2

ql = fh + y - "IV2!/Jl + F1(!/J2 -!/Jl) + Y

q2 = 82 + Y + h = "IV2!/J2 + F2(!/Jl -!/J2) + Y + h

E = L y / Lz is the aspect ratio of the basin

a2 a2
~d V 2 2 +

= E ax2 ay2

with boundary conditions !/Jl = !/J2 = 81 = 82 = 0 on x = ±1, Y = ±l.

Solutions are represented in the form:

(
!/J(x, y, t)) = f f (w.;(t)) T.(x) T;(y)
8(x, y, t) .=0;=0 e.;(t)

where Tn(s) are the Chebyshev polynomials of the first kind. The e.; are time stepped

with a Crank Nicholson scheme, ~d the w.; are obtained by solving the Poisson and

Helmoltz equations resulting from the barotropic ~d baroclinic streamfunction fields

respectively. The diagonalization scheme, introduced by Haidvogel and Zang (1979), is

used in the y direction for the Poisson/Helmoltz equations. The remaining problem of

49 coupled linear equations in x is solved reducing the equations to a quasi-tridiagonal

form.

The Jacobian terms are calculated in real space, using a NCAR Cray matrix

multiplication routine, ~d use is made of a Cray optimized fast Fourier transform.
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The code contains a diagnostic routine which computes the integral of the diffusive

vorticity flux over the whole basin. In the steady state one should find

r;, f Vq1 . fide = -! dAg(x,y)

r;, f Vq2· fide = {i f Vt/J2· fide

with the integrals performed over the whole basin. In all the experiments presented

solutions were considered to have reached the steady state when

r;,-1:t!dAQ1=fVQ1.fide+ !dA9(x,y)jr;, ~ 10-2

r;,-1 :t! dAQ2 = f VQ2· fide - {ijr;, f Vt/J2· fide ~ 10-2.
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CHAPTER 4
A model of the inertial recirculation

driven by boundary currents:
the homogeneous model

Summary

Some essential features of the recirculating inertial gyre ("the recirculation") can be
analyzed with a simple, analytically tractable model. In wind driven ERGCM the
recirculation appears as a strong, sub-basin scale inertial flow with homogeneous po­
tential vorticity. The constant value of potential vorticity decreases with increasing
forcing/dissipation ratio while the size and strength of the gyre increase. In the sub­
tropical gyre the recirculation might be driven by anomalous value of low potential
vorticity carried northward by the western boundary current. This process is modeled
using a barotropic model and prescribing the values of potential vorticity at the edge
of the gyre. The gyre is contained in a box in an attempt to simplify the geometry and
to isolate the processes occurring in the recirculation region.

With weak diffusion the prescribed boundary forcing induces a flow with constant
potential vorticity. The homogenized value of potential vorticity in the interior can be
calculated without explicitely solving for the flow. Explicit solutions are also obtained
by numerically solving the model. Two distinct cases arise: 1) For strong boundary
forcing the gyre fills the box. Therefore the strength of the gyre is determined, but the
extent of the recirculation is prescribed. 2) For weak boundary forcing the recirculation
fills only part of the box and the size of the gyre can be determined as well as its strength
(proportional to the homogenized value of potential vorticity within it). The latter
case is the most relevant to the wind-driven, numerical experiments, because in these
calculations the recirculating flow is confined to a subbasin-scale region. Also in this
case the homogenized value of potential vorticity decreases with increasing forcing,
while the size and the strength of the gyre increase.



4.1. Introduction

Since the pioneering work of Fofonoff (1954) on the free inertial circulation in a closed

basin, no simple theories have been proposed to understand strongly nonlinear flow.

In Fofonoff's (1954) model, the inertial recirculation fills the whole basin, while ob­

servations and results from wind-driven eddy resolving general circulation models show

that the nonlinear gyre is confined to a region pressed against the separated bound­

ary current, while in most of the basin, the linear Sverdrup dynamics still dominates

(Fig. 4.1).

In the North Atlantic, Schmitz (1980) observed a tight (- 300 km) recirculating

gyre, south of the separated Gulf Stream, extending all the way to the bottom with

strong eastward and westward velocities (- 5 cm/sec) with transport of about 90 Sv

at 55° W. This transport is far too large to be directly driven by the observed wind

system through Sverdrup relation, and Worthington (1979) has proposed that buoyancy

forcing may be responsible for it.

On the other hand, a gyre with similar features, appears also in a purely wind­

driven ERGCM pressed against the line of zero wind stress curl (the northern boundary

in Fig. 4.1). With the present set of observations it is very hard to tell whether the

oceanic recirculation is mainly driven by buoyancy effects or by the wind, therefore,

in the following I will take the inertial gyre resulting in wind-driven ERGCM's as a

paradigm for comparison with my hypothesis and results. The purpose of this work

is to isolate the main dynamical balance and driving mechanism of the recirculation

using simple layer models. Before presenting these models, I will summarize the results

of some numerical models (eddy resolving and not) which motivate my formulation.

A striking feature appearing in many ERGCM's is that the size and strength of the

recirculating gyre depends very weakly on depth. Therefore, to a first approximation,

the main features of the recirculation may be captured by a barotropic model. Boning

(1986) has reached the same conclusions after a very detailed comparison of ERGCM's
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5 level, primitive equation, wind-driven ERGCM (Robinson et aI., 1977). (C) fields at
40 m, (D) fields at 490 m, (E) fields at 2690 m.
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results with a simple barotropic numerical model. In the same paper he shows that

parameterizing the eddies (not resolved in his barotropic model) with lateral diffusion

of mean potential vorticity leads to results in very good agreement with the mean

transport fields found in ERGCM's. This is consistent with Rhines and Young's (1982)

suggestion that the divergent flux of eddy vorticity can be parameterized as the (neg­

ative) gradient of mean potential vorticity.

This evidence justifies the use of a simple model similar to Boning's to analyze in

some detail the characteristics of the inertial recirculation.

The Driving Mechanism

Fig. 4.2 shows the instantaneous streamfunction and potential vorticity field of

the final state of a wind-driven barotropic model developed by Dr. Glenn Ierley. The

model solves the quasigeostrophic, barotropic equation in a closed basin forced by a

simple wind stress curl and damped by lateral diffusion of potential vorticity:

where

oq ( loWe 2
at + J I/J,q) = H + ltV q

(-l/Jy,I/J",) = (u,v)

(4.1.1)

We = - W o

We =0

and q

(2y + L - yt)
cos 11" (L )

2 +Yl
if - L ~ Y ~ Yl

if Yl ~ Y ~ L

(4.1.2)

with boundary conditions I/J = V21/J = 0 (free slip) on x = ±L, Y = ±L.

The Ekman pumping above was first suggested by Veronis (1966) as a means of

illustrating one of the essential features of the recirculation, i.e., it is not locally forced

by the wind.

In the experiment shown, the recirculation occurs entirely in a region where the Ek­

man pumping is zero (north of yt). The western boundary current continues northward

of Yl, turns eastward at the northern boundary L, transporting low values of potential
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vorticity northward, where low means smaller than the local planetary vorticity. The

anomalous values of potential vorticity, in turn, drive the strong recirculating gyre. A

complementary view is that recirculation occurs to allow particles to move along paths

longer than these prescribed by local Sverdrup dynamics, in order to achieve the global

balance between forcing and dissipation necessary in the steady state (see Niiler, 1966).

A schematic picture of this mechanism is shown in Fig. 4.2c. In the steady state one

must have

-Itf Vq. dl = f dAfowe/H (4.1.3)

where the integrals are performed along any closed streamline.

If the integrals are performed along the streamline R in Fig. 4.2c inside the recircu­

lation, the right hand side is zero and no dissipation occurs inside the recirculation. If

the integral is performed along the streamline I, which goes in the interior and around

the recirculation, the right hand side is almost equal to the integral over the basin of

the Ekman pumping (always negative). Comparison with Fig. 4.2b shows that a sub­

stantial amount of potential vorticity dissipation occurs near the northwest corner of

the basin around the edge of the recirculation gyre, as well as in the western boundary

south of the zero wind stress curl line.

The mechanism described above is fairly independent of the choice of the wind

stress pattern as suggested in Fig. 4.3, which shows the 1/J and q time averaged fields

for the same model as Fig. 4.2, but with a wind stress curl which fills the basin, i.e.,

YI = L in (4.1.2).

In Fig. 4.4, the potential vorticity field along two streamlines of the recirculation

shown in Fig. 4.3 are plotted as a function of arclength 8. In Fig. 4.4a a streamline at

the edge of the recirculation was chosen. Along the western (2 ::; 8 ::; 2.5) and northern

(0 ::; 8 ::; 1) boundary of the gyre, the potential vorticity (solid line) is much lower

than the local planetary vorticity (dashed line) while it is much closer to {3y elsewhere.
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Along the inner streamline (Fig. 4.4b) the variation in potential vorticity is much

reduced and indeed potential vorticity is almost constant.

For smaller values of dissipation/forcing ratio, the recirculating gyre expands and

its strength increases. Fig. 4.5 shows the solution when the dissipation is reduced by a

factor of two below that in Fig. 4.3. For smaller diffusion, the western boundary current

carries even lower values potential vorticity northward. In Fig. 4.6, potential vorticity

is plotted as a function of arclength along two streamlines of the recirculation occurring

in Fig. 4.5. In Fig. 4.6a a streamline at the edge of the recirculation was chosen. Along

the western and northern boundary (0 ~ 8 ~ 2.3), the difference between potential

vorticity (solid line) and planetary vorticity (dashed line) is increased compared to the

more viscous case (Fig. 4.4a). This increased forcing is the cause of the more vigorous

recirculation. Again along an inner streamline (Fig. 4.6b), potential vorticity is almost

constant.

The Dynamical Balance

The other feature of interest in the recirculation is that potential vorticity is essen­

tially homogeneous (see Figs. 4.3 and 4.5). Because the numerical model is barotropic,

the only term that can balance the planetary gradient, f3y, is relative vorticity.

A very detailed diagnostic analysis of general circulation models of the type de­

signed by Dr. Ierley can be found in Boning (1986). An important conclusion of his

analysis is that the dominant balance in the recirculation region is between advection

of planetary vorticity and advection of relative vorticity. As suggested also by the

analysis of the previous section, the wind forcing is negligible inside the recirculation

and so is dissipation. Dissipation is very strong around the edge of the recirculation,

and indeed is essential in determining the distribution of potential vorticity inside the

recirculation.
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a. c

Fig. 4.4. Total potential vorticity q (solid lines) and planetary vorticity f3y (dashed
lines) as a function of arclength (moving clockwise) along streamlines in the recircula­
tion region of Fig. 4.3. a) q and f3y along a streamline at the edge of the gyre, t/J =2.0.
b) q and f3y along a streamline in the interior of the gyre, T/J =3.5. Notice the change
in the ordinate scale relative to Fig. 4.4a.
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a)

Fig. 4.5. Same as Fig. 4.3 except for It{JH/ wofoL = 2.5 x 10-2 • The recirculation
has expanded relative to that in Fig. 4.3 because diffusivity has been halved.
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Fig. 4.6. Total potential vorticity q (solid lines) and planetary vorticity py (dashed
lines) as a function of arclength (moving clockwise) along streamlines in the recircula­
tion region of Fig. 4.5. a) q and py along a streamline at the edge of the gyre, t/J = 2.5.
The difference between q and py is increased relative to the more viscous case shown
Fig. 4.4a.

b) q and py along a streamline in the interior of the gyre, t/J = 3.5. Note the
change in the ordinate scale relative to Fig. 4.6a.

120



Relative vorticity is important also in the westward flow of the recirculation, and

this is very different from the picture envisaged by Fofonoff (1954) where relative vortic­

ity is confined to narrow boundary layers at the northern, western and eastern edges of

the gyre. Therefore, a correct model of the recirculation must include relative vorticity

in the interior region of the inertial gyre.

One final observation from numerical experiments is that the tangential velocity

at the boundary of the recirculation is essentially determined by the dynamics of the

interior region. In Fig. 4.7, the zonal velocity, u, and the potential vorticity, q, are shown

for a section that cuts the recirculation region longitudinally (x = 0 in Fig. 4.5). No

jump in u occurs when the northern boundary is approached. Clearly there is a jump

in q, in order to satisfy the free-slip boundary condition, causing qy to be large near the

boundary. But q, although discontinuous, is finite, and the velocity on the boundary

can be predicted approximately by extrapolating the interior value from just outside

the boundary layer.

Summary

Recirculation is the development of a quasi-barotropic, sub-basin scale gyre, con­

fined to the northwest corner of the subtropical recirculation, forced by anomalous

values of potential vorticity at the edge of the gyre.

The transport of this gyre is much larger than the Sverdrup transport. Every­

where in the gyre, relative vorticity is as important as planetary vorticity. Although

the dissipative terms and the wind forcing are subdominant, their strength sets the

amplitude and the size of the recirculating gyre.

There are several questions suggested by these observations. What determines the

latitudinal extent of the gyre? What determines the value of potential vorticity in the

center of the gyre? Why is the recirculation almost barotropic?

In this chapter, the first two questions are addressed using a barotropic model. In

the next chapter, the third question is answered using a two-layer model.
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4.2 Formulation of the Barotropic Model

In order to highlight the essential features of the recirculation, I wil\ analyze a model

which is as simple as possible. Therefore, the following assumptions wil\ be made:

1. The inertial recirculation is barotropic. This constraint wil\ be removed later and

results for the baroclinic model wil\ justify this choice a posteriori.

2. Relative vorticity is of the same order as planetary vorticity.

3. Diffusion is weak and can be represented as lateral diffusion of potential vorticity.

4. There is no local wind or buoyancy forcing. Instead, the forcing is provided by

prescribing the potential vorticity at the boundary of the recirculation (this idea

is due to W. Young and myself). This mimics the effect of the western boundary

current carrying low values of potential vorticity northward as observed in Figs. 4.4

and 4.6, or can be thought of as some thermally induced potential vorticity anomaly

concentrated at the boundary current.

5. The recirculation is considered isolated from the Sverdrup interior, which, together

with the wind forcing, is neglected.

With the above in mind, we consider the quasigeostrophic equation in a ,B-plane

box (-LIE :s: x:S: LIE and -L:S: Y :s: L)

lJq 2at + J(1{J,q) = ltV q (4.2.1)

where q = V21{J +,By and E is the aspect ratio of the box. The boundary conditions are

1{J = 0 and q = qb(S) , where s is the arclength around the box. Thus the flow is forced

by the distribution of relative vorticity prescribed at the boundary (qb of ,By).

The eastern and western boundaries represent the actual eastern and western

boundaries of the basin, while the northern and southern boundaries are the meridional

boundaries of the recirculation. Implicitly, a situation such as that depicted in Fig. 4.5

is considered, where the forcingldissipation is strong enough so that the recirculation

goes all the way to the eastern boundary.
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Before discussing specific functional forms for qb (8), some general results relevant

to this problem can be proved.

Integrating (4.2.1) over the area enclosed by any streamline, and assuming a steady

solution, we get

(4.2.2)

where fi = V,p/ 1V,p I. That is, the total diffusive flux across a closed streamline is

zero.

Multiplying (4.2.1) by ,p and integrating over the area enclosed by the box, we

obtain the energy equation

(4.2.3)

In the steady state the amount of vorticity available in the interior is proportional

to the relative vorticity circulated at the boundaries. If, as a trivial example, qb =

fly then the relative vorticity must be identically zero everywhere in the interior and

therefore there is no flow. This emphasizes the role of qb as forcing.

Equation (4.2.1) is analogous to an advection diffusion equation for the concen­

tration of a passive tracer with prescribed values at the boundaries. It is intuitively

clear that the concentration in the interior must have (in the steady state) values lying

between the boundary values. This result can be proved rigorously even for poten-

tial vorticity, which is not a passive scalar, since the proof does not make use of the

definition of q. This result was proved by Dr. Young and will be repeated here.

Suppose there is a point in the interior where q is larger (smaller) than any of the

values applied at the boundaries. In this case, such a point is a maximum (minimum).

(4.2.4)

where

Therefore, around this point there will be a nested set of closed q contours. Integrating

(4.2.1) over the area enclosed by any such contour and assuming a steady state, we find

",!Vq.fidf. ="'!lvqldf.=O

fi -Vq/ 1Vq 1
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which is a contradiction. Therefore in the steady state there cannot be closed q con­

tours. A very important corollary of this result is that there cannot b!l any point where

a discontinuity in velocity is smoothed over a distance which decreases as diffusion

is reduced. If a shear layer occurred, then relative vorticity V 2 'I/J would become very

large and q would exceed the boundary values. This result is not in contradiction with

the statements made in chapters 2 and 3 about the geometry of the potential vortic­

ity contours. For example in Fig. 2.3 the quantity that is contoured is q2 assuming

that the lower layer is at rest. Indeed it is to avoid closed potential vorticity contours

that the lower layer must move inside the circle T = Tl shown in Fig. 2.3, keeping

q2 constant. In the presence of weak, but nonzero, viscosity (4.2.4) requires that the

potential vorticity contours spiral around the region of homogenized q as depicted in

Fig. 3.11, so that a closed potential vorticity contour never occurs.

In proving these general results, no assumption about the size of diffusion has been

made. In order to make further progress, the weakly diffusive limit will be considered,

limit which is probably the most relevant for the oceanic recirculation.
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4.3. Homogenized Gyre Filling the Box

With the simplest possible choice of qb, Dr. Glenn Ierley has solved (4.2.1) numerically.

Specifically, the form for qb chosen is:

(y -L)
qb = (Q.. - Q.) 2L + Q.. (4.3.1)

where Q.. and Q. are the constant values of q on the northern and southern boundaries,

respectively. Typical steady state solutions are shown in Figs. 4.8, 4.9, and 4.10. For

some 'values of Q.. and Q., the recirculating gyre fills the whole box, while for other

choices it is confined to a subregion of the basin. In this section, I will examine cases

where the circulation fills the whole domain as in Fig. 4.8. The more complicated and

interesting case typified by Fig. 4.10 will be analyzed in the next section.

In the limit of weak diffusion, outside the thin boundary layers close to the solid

walls, potential vorticity is homogeneous. This is a consequence of (4.2.2) in the limit

of small dissipation (see also Rhines and Young, 1982). But what is the constant value

of potential vorticity inside the recirculation region?

The question is answered in Appendix A4 and the result is that the constant value

of potential vorticity in the interior is given by

ii - (4.3.2)

where the integral is performed along the boundary of the domain. The detailed deriva­

tion is given in Appendix A4, but the physical explanation is very simple (Roberts,

1977). As the fluid is advected along the streamlines, potential vorticity is diffused from

streamline to streamline, since streamwise diffusion is always negligible with respect to

advection. Cross-stream diffusion is more effective when streamlines are closer, that is

where the velocities are larger. This is why, in the determination of ii, the boundary

values of q contribute more where velocities are larger. Therefore, this velocity weighted

average is opposite to a time average which would be weighted with the inverse of the
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Fig. 4.8. a) Streamfunction and b) potential vorticity for the steady state result­
ing from the numerical solution of (4.2.1) with potential vorticity boundary condition
(4.3.1). Qn = -2(3L/3, Q. = -(3L. f = 0.3, K./ (3Ls = 5 X 10-4• Streamfunction is
in units of (3Ls and potential vorticity is in units of (3L. x-axis in units of L/f, y-axis
in units of L. Potential vorticity contour interval is 0.03. Notice the presence of small
closed q contours, due to a residual time dependence.
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Fig. 4.9. a) Streamfunction and b) potential vorticity for the steady state result­
ing from the numerical solution of (4.2.1) with potential vorticity boundary condition
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units of L. Potential vorticity contour interval is 0.05.
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".' '1/;'
, ,

ij'qmin qmaz

0.050 2.0 0.395 0.733 0.603
0.050 3.5 0.517 0.706 0.567
0.050 5.0 0.523 0.547 0.535
0.Q25 1.75 0.200 0.724 0.527
0.025 2.50 0.402 0.664 0.531
0.Q25 3.50 0.514 0.639 0.553

Table 4.1: Potential vorticity along streamlines in the recirculating gyres shown in
Figs. 4.3 and 4.5. The last column is the "velocity weighted" average obtained from
Eq. 4.3.2. The upper three rows are from the experiment shown in Fig. 4.3. The lower
three rows are from the experiment shown in Fig. 4.5 where viscosity has been halved.
Notice that although the range of potential vorticity values is larger the "average"
value varies less from streamline to streamline. The prime indicates that the quantities
are nondimensional.

velocity. Equation 4.3.2 is valid also if the integrals are performed along any closed

streamline. I have computed the "velocity weighted" average for the wind-driven ex­

periments shown in Figs. 4.3 and 4.5 for three sets of streamlines. The first set (lowest

value of '1/;) is just at the boundary of the recirculation and the second two sets (higher

value of '1/;) are well inside the recirculation where q is almost homogeneous. In each

experiment, the average value of q should be the same for any streamline. The results

are shown in Table 4.1 together with the maximum and minimum value of potential

vorticity encountered on the streamline. Notice that the difference in the average value

of q from streamline to streamline is smaller in the less viscous experiment although

the range of potential vorticity value on the streamline is wider.

As was noted in the Introduction and illustrated in Fig. 4.7 for the wind-driven

experiment, the velocity at the boundary is essentially determined by the interior dy­

namics where potential vorticity is constant. In this model, this is assured by the

extremum principle which excludes shear layers. In the interior region potential vor­

ticity is uniform and the flow satisfies

(4.3.3)
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with boundary conditions.p = 0 on x = ±L/E, Y= ±L. Using (4.3.3) and the fact that

qb is a linear function of y, the expression for q can be put in the form (see Appendix

B4 for a more detailed derivation)

_ JdAqb(q - py)
q-- JdA (q - py) (4.3.4)

where qb is now defined everywhere in the interior and is given by (4.3.1). This result

can be generalized to any form of qb(S) and the derivation is given in Appendix B4.

Evaluating the trivial integrals in (4.3.4), a simple quadratic equation for q is obtained

with solutions

(4.3.5)

Notice that the aspect ratio E does not enter in this formula. In deriving (4.3.5),

we have made the following assumptions about the solution of (4.3.3):

(a) The gyre fills the whole domain.

(b) There is only one gyre.

Both these assumptions must be checked a posteriori by solving (4.3.3) with the value

of q obtained from (4.3.5). Also, unphysical roots, such as complex values and values

that are outside the range of the boundary values, must be eliminated. The solutions in

(4.3.5) actually depend only on the two non-dimensional parameters n = Qn/(PL) and

s = Q./(PL), and the parabola bounding the domain ofreal solutions in the n-s plane

shown in Fig. 4.11. Notice the symmetry around the axis n = -so Changing n+s into

-(n+s) with n-s constant just reverses the sign of q. Therefore, I will only analyze

the half-plane n + s ~ o.

As mentioned earlier, the homogenized value of q given by (4.3.5) must be con­

sistent with the hypothesis made to derive this result. In other words, the solution of

(4.3.2) must consist of only one gyre filling the whole box. The geometry of the box

(which does not enter (4.3.5) as noted earlier) restricts the allowable values of nand s.
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7

-8 -6

-1

s

Fig. 4.11. Parabola bounding the domain of real solutions of (4.3.5) as a function of
n = Qn/ (JL and " = Q./ (JL. Inside the parabola (4.3.5) has complex roots. The
dashed line is at " =-1.
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To illustrate this point I have considered a different geometry where analytical solutions

of (4.3.3) can be found, i.e., an elliptical domain. The discussion of this problem is

deferred to Appendix C4. In the following, using physical arguments, I will restrict my

attention to a certain portion of the parameter space (Q. = -f3L, Qn < f3L, (2 < 1)

which is most relevant to the recirculation.

In the wind-driven models, the main source of vorticity for the recirculation is the

western boundary current. As the flow circulates along the streamlines surrounding

the recirculation, it carries low values of potential vorticity northward (i.e., Qn < f3L)

while dissipation acts to bring potential vorticity back to its local planetary value.

Because the circulation is clockwise, when the flow has reached the southern edge of

the recirculation, dissipation has eroded the relative vorticity injected at the boundary

(see Fig. 4.6). No source of relative vorticity is present at the southern edge where the

recirculation is bounded by the Sverdrup interior where potential vorticity is essentially

given by its planetary value. Therefore, I have concentrated my attention on the case

where Q. = -f3L (8 = -1 in Fig. 4.11). For the numerical experiment shown in

Fig. 4.8, Q. = -f3L and Qn = -2/3 f3L. For this choice, (4.3.5) gives two roots:

if = -0.76 f3L and if = -0.073 f3L. The latter is clearly unphysical because it gives

a value for the homogenized if which is outside the boundary value. The solution

obtained by Dr. Ierley integrating (4.2.1) numerically gives a value for if ~ -0.77 f3L

in excellent agreement with the theoretical prediction.
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4.4 Homogenized Gyres with Free Boundaries

The case which is most relevant to the wind-driven circulation is when the forcing

provided by the potential vorticity boundary condition is weak. That is, when the

values of Qn and Q. are chosen such that (4.3.5) does not have real roots. The reason

why this region of the parameter space is called "weak forcing" is because it contains

the point n = 1,8 = -1 (see Fig. 4.11). This corresponds to the choice % = (3y for

the boundary forcing. As shown by (4.2.3) no flow will develop in this case since no

relative vorticity is applied at the boundaries.

Dr. Glenn Ierley has run his numerical model for the choice Qn = (3L/3 and

Q. = -(3L which corresponds to the point n = 1/3 and 8 = -1 in Fig. 4.11. Fig. 4.10

shows the steady state .p and q fields obtained. There is a narrow gyre pressed against

the northern wall and a very weak diffusive flow filling the rest of the box. The gyre

fills only part of the domain and selects its own boundary. A schematic picture of the

flow regimes in the inviscid limit is depicted in Fig. 4.12: the recirculation fills only a

portion of the basin from Y. to L, and south of y., the fluid is at rest.

Because the southern edge of the gyre is not a solid boundary but a free streamline,

some constraints need to be imposed on the flow. Specifically, the tangential velocity

has to be continuous across the free streamline Y. and therefore zero. If this condition

was not met, there would be, in the inviscid limit, an infinite amount of relative vorticity

which would violate the result that no shear layers are admitted (see the discussion

following Eq. 4.2.4).

It is important to notice that although velocities are continuous, potential vorticity

will experience a discontinuity across y., smoothed by the diffusion over a distance

decreasing with diffusion.

Because tangential velocity is zero on Y., the boundary value of q at that location

does not affect the "velocity weighted" average (4.3.2). Therefore, if the aspect ratio f

is small, the homogenized value of q will be very close to the northern boundary value
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-L
-L/a

q =On ----------....,

q=q

y = Ys

q =I3Y

q =Os ------------'
L/a

Fig. 4.12. Schematic picture of Fig. 4.10, showing the flow regimes in different regions.
South of the free streamline Y = Y. the fluid is at rest. North of Y = Y. the fluid
circulates with uniform potential vorticity. At the free streamline, Y., both t/J and Vt/J
are zero.
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Qn, and indeed, in Fig. 4.10 where Qn = f3L/3 and Qs

inside the gyre homogenizes to q "" 0.28 f3L.

-f3L potential vorticity

Furthermore, the condition that the southern edge of the gyre is a free streamline

sets a relation between if and the meridional scale of the gyre. This relation, together

with (4.3.2) determines completely the problem of finding Ys and if once potential

vorticity is specified on the western, northern, and eastern walls.

The solution of Poisson equation (4.3.3) in the case where part of the boundary

is an unknown streamline on which 'l/J and V'l/J vanish is a very hard problem in an

arbitrary geometry. In the following, only approximate solutions will be given under

the simplifying assumptions that the meridional scale of the gyre is much smaller than

the longitudinal scale (f «1). In this approximation, the problem becomes one­

dimensional away from the eastern and western walls, and (4.3.3) reduces to

'l/Jyy + f3y = if

with boundary conditions 'l/J = 0 on y = L, Ys and additionally,

'l/Jy = 0 on y =Ys'

(4.4.1)

(4.4.2)

There are thus three boundary conditions applied on a second order differential equa-

tion. The problem has a solution because one of the boundaries, Ys> is unknown. The

relationship between Ys and if can be found immediately by multiplying (4.4.1) by

(y - L) and integrating in y from Ys to L.

jL dy(y-L)'l/Jyy = jL dy(y-L)(if-f3y)
Ye Ye

The left-hand side vanishes when all the boundary conditions are applied and perform­

ing the trivial integrals on the right-hand side, we find

3 if
(L - Ys) ="2 (L - fj)
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(4.4.4)

Dr. W. Young gave an independent derivation of this result by solving (4.4.1) and

applying all the boundary conditions. He found

t/J = -{3 (y - L)(y - y.)2/6

ij = {3(L + 2y.)/3

In the same approximation of an infinitesimal aspect ratio E of the box, the "average"

value of potential vorticity is given simply by

ij = Q..

and (4.4.3) can be written as

3
(L - Y.) = 2{3 ({3L - Q..) (4.4.5)

This shows that the meridional extent of the gyre is proportional to the relative vorticity

Q.. - {3L applied at the northern wall, and is independent of the meridional extent

of the box.

For this one-dimensional solution, the maximum transport obtained with (4.4.4)

can be related to the meridional extent of the gyre, and is given by

(4.4.6)

Notice that this relation depends only implicitely on the value of ij and the transport

predicted by (4.4.6) can be computed using th observed gyre width, a quantity much

easier to observe than the potential vorticity boundary condition. This result com­

pletes the analogy with the wind-driven experiments analyzed in the introduction. As

the forcing gets stronger (Q.. is decreased from (3L) the recirculating gyre expands,

the homogenized value of potential vorticity decreases and the transport of the gyre

increases. In Fig. 4.13 the zonal velocity profile calculated from (4.4.4) is shown. The

region of westward flow is twice as wide as the region of eastward flow, and the maxi­

mum eastward velocity is three times larger than the maximum westward velocity.
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IY=ys ---LI_,,----=~L_ ~....... U

U =-{3( L-ys)2/ 18

y=L
y

Fig. 4.13. Zonal velocity profile resulting from (4.4.4a). The minimum velocity occurs
at U- u. = (L - U.)/3 and the velocity changes siKJl at U- u. = 2(L - U.)/3.
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Comparison of the analytical solution obtained in the limit of infinitesimal aspect

ratio € with the numerical solution obtained by Dr. Ierley for finite € shows very good

agreement. For the case shown in Fig. 4.9, Q" = -f3L/3 and Q. = -f3L, the values for

the southern edge of the gyre predicted from (4.4.5) is Y. = - L, that is the recirculating

gyre just fills the whole box and the southern wall is actually a free streamline. The

corresponding prediction for q is then q = -f3L/3. The numerical run indicates a

value for q"" -0.4 f3L. For the case shown in Fig. 4.10 Q" = f3L/3, Q. = -f3L and

the approximated formulas give q = f3L/3 and Y. = 0, i.e., the gyre fills half the box.

The numerical experiments indicates a value of Ii = 0.28 f3L and the meridional extent

of the gyre is in good agreement as well.

4.5 A Comment on the Zonal Scale of the Recirculation

In the previous discussion, the recirculating gyre fills the whole box in the zonal di­

rection. To ensure that this is the case, the forcing, qb (8), has been chosen constant

on the northern wall. But, indeed, both in oceanic observation and in wind-driven

ERGCM's this is not the case (see for example Fig. 4.3). The gyre is confined to the

northwest corner of the subtropical gyre. It is conceivable that if the boundary forcing

decays eastward as well as southward, the inertial gyre will be confined to the northwest

corner of the basin. Unfortunately, with the present formulation of the model, where

dissipation is infinitesimal and the Sverdrup interior surrounding the gyre is neglected,

a gyre which does not fill the basin in the zonal direction cannot be supported. The

proof will be outlined in the following.

Consider a gyre pressed against the northern (y = 0) and western wall (x =

0) with a southeastern boundary given by y.(x) (see Fig. 4.14). In the inviscid limit,

potential vorticity will be homogeneous inside the gyre and (4.3.3) holds. Integrating

(4.3.3) over the area enclosed by the gyre, we find

f it·dl = f dA(q- f3y)
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We are looking for a solution consisting of one anticyclonic gyre where the circulation

(f u. de) is negative. In this geometry, py is always negative, therefore, ij must be

negative. Multiplying (4.3.3), by xy and integrating over the area enclosed by the gyre,

we find

f xyu.d{ = JdAxy(ij~Py) (4.5.2)

The left-hand side is zero because the integral is performed along the contour x = 0,

y = 0 and y = y.(x) where the tangential velocity is zero. If y.(xo) is the southernmost

point of the recirculating gyre, it can easily be shown from (4.5.2) that

3
Py.(xo) :s; 2 ij < ij

Therefore, ij - py changes sign inside the gyre. Let's now consider a system of

coordinates s, n such that s is along the streamlines and n is normal to the

streamlines. Then by definition 8k t/J/(8sk ) = O. At any point s, n located just inside

the gyre, and close to a point So, no, located on the outer streamline t/J = 0, we have,

expanding in a Taylor series

8t/J1t/J(s, n) "" 8n (n - no)
no,so

1 8
2

t/J I+ - -2 (n-no)2.
2 8n " •o. 0

On the free streamline, 8t/J/(8n) is zero, and, if diffusive effects can be neglected,

V2t/J = ij - py and thus·

(n - no)2 _
t/J(s, n) "" ~ (q - py).

21 Vn 1
2

Thus t/J(s, n), in the vicinity of the outer streamline, changes sign at the latitude

y = ij/ p, and the possibility of having a single gyre circulation is ruled out.

This proof does not rigorously rule out the possibility of multiple gyres with dif­

ferent values of homogeneous potential vorticity. But a multiple gyre solution would

not be physically relevant to the recirculation problem.
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2 1/1<0
'fl1/1 + f1Y =q .. - - y=q/f1
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Fig. 4.14. Schematic picture of the gyre geometry when the recirculation is confined
to the northwest corner of the box (as in Fig. 4.3). The curve y = y.(x) is a free
streamline where t/J = Vt/J = O. In the vicinity of the point y. (x) = ij the circulation
changes sign.
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Clearly, the results used in the previous argument do not hold if the gyre hits the

eastern wall as well as the western wall, and a single anticyclonic gyre may exist in

that case, as long as the free streamline is located south of y = if. In the case where

the gyre fills the basin in the zonal direction, the correction due to diffusion and to

the matching of velocities with the Sverdrup interior can be neglected. If one seeks

a solution for a gyre which is confined to the northwest corner of the basin, diffusive

effects or the matching with the Sverdrup interior are of primary importance. Ierley and

Young (1987) analyzed the problem of a gyre forced by a potential vorticity boundary

anomaly confined to the northwest corner of a rectangular box, in the absence of any

Sverdrup interior. For moderate values of diffusivity, K:, a gyre is obtained pressed

against the northwest corner where the forcing is applied. As diffusivity is reduced, the

gyre shrinks in the meridional direction and expands in the zonal direction until the

eastern boundary is eventually reached and the shrinking of the gyre is arrested.
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4.6 Summary and Discussion

One of the prominent features of the recirculating gyre responsible for the increlUled

transport of the separated Gulf Stream is that it hlUl a strong barotropic structure.

This property is confirmed by results from purely wind-driven ERGCM's. Therefore

to a first approximation, some of its characteristics can be analyzed with a barotropic

model.

The analysis of some wind-driven barotropic numerical models suggests that the

recirculation can be modeled lUl an inertial gyre with constant potential vorticity. In

a barotropic model this implies that relative vorticity is lUl large lUl planetary vorticity

everywhere in the gyre, both in the elUltward and in the westward flow. The local input

of vorticity by the wind can be neglected to a first approximation. Instead, the forcing

is provided by prescribing anomalous values of potential vorticity at the rim of the

recirculating gyre. With this prescription, the constant value of potential vorticity can

be calculated without first explicitly solving for the flow inside the gyre. In particular,

the constant value of q is given by the average of the boundary values weighted by the

velocity on such boundaries.

In all the cases presented, the recirculating gyre fills the blUlin in the zonal direction.

Therefore, it is consistent to isolate the gyre from the Sverdrup interior and to neglect

diffusive effects.

For strong boundary forcing, the gyre fills the box in the meridional direction lUl

well and the width of the gyre does not emerge lUl a prediction of the model. For weak

forcing, the gyre is confined to a subregion and the meridional width of the gyre can be

calculated as well as its homogenized value of potential vorticity. The latter case is the

most relevant to the oceanic recirculation. Explicit solution were derived numerically

by Dr. Ierley; and, in the limit of a long and narrow gyre, analytically by Dr. Young

and myself. The analytic solution shows that the width of the gyre is proportional

to the forcing applied at the northern boundary, and that the maximum transport is
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proportional to the cube of the width. This result is consistent with the finding of

wind-driven numerical models that, as the wind forcing/dissipation ratio increases, the

gyre expands and its strength increases. For a gyre 450 km wide and 2700 m deep, the

analytic solutions gives a maximum transport of 121.5 Sverdrup which is in very good

agreement with the results of the baroclinic ERGCM of Robinson et al. (1977).

A number of questions remain open. The first is to explain why both in baroclinic

ERGCM's and in the ocean, the recirculation has a weakly depth-dependent structure.

This problem is addressed in the next chapter where the calculations of section 4.4 are

extended to a two-layer model. The second problem is to formulate a model where

the longitudinal extent of the gyre is predicted as well as its latitudinal width. This

question can be addressed by choosing a boundary forcing which depends on x as well
\

as y. As remarked in section 4.5, in order to address this issue, the matching with the

Sverdrup interior or the effects of diffusion (or both) must be included. Drs. Ierley and

Young are presently analyzing the case where diffusive effects are taken into account

in the absence of a Sverdrup interior.

The last and hardest question is how to relate the boundary values of potential

vorticity to the global wind forcing and dissipation or to the diabatic processes which

are supposed to be responsible for the anomalous potential vorticity at the edge of the

recirculation. This is an important problem which deserves attention in the future but

will not be addressed in this thesis.
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Appendix A4 - Derivation of the "Velocity Weighted" Average, (4.3.2)

The result (4.3.2) holds if instead of potential vorticity we consider the more general

problem of a generic passive tracer which satisfies the advection diffusion equation

(A4.1)
'IjJ = 0, 6 = Ih on the boundary

Multiplying by 'IjJ and integrating over the area of the box we eventually obtain

(A4.2)

In the limit of small diffusion, 6 will be given by its homogenized value ij everywhere

except in narrow boundary layers close to the edge of the gyre. Therefore, in this

strongly advective limit, the left-hand side of (A4.2) can be approximated with

(A4.3)

(A4.4)ij -
f 6bih· dl
fUb· dl

The result is implicit in Roberts' (1977) work. His derivation made use of the local co-

and (A4.2) becomes

ordinates to express the dominant balance in (A4.1), while the integral balance (A4.4)

(proved in conjunction with Dr. W.R. Young) provides an explicit formula for the

interior homogenized value of the tracer concentration. The velocity weighted average

(A4.4) is confirmed by the numerical experiment of Musgrave (1985). In his work he

showed that a passive tracer satisfying (A4.1), in the presence of a western intensified

flow, would homogenize in the interior to the value on the western boundary. Inter­

estingly enough, the derivation that leads to (A4.4) can be used for potential vorticity

which is not a passive tracer. Because of the extremum principle (see the discussion

following Eq. 4.2.4) the relative vorticity is bounded by its boundary values and so is
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finite everywhere in the domain, including the boundary layeI'5. Therefore, the approxi­

mation (A4.3) holds for potential vorticity as well as for a passive tracer. Moreover, the

velocity at the boundary, Ub, can be approximated with the interior velocity just out­

side the boundary layer and this allows the complete determination of the homogenized

value of potential vorticity without a detailed boundary layer solution.

Appendix B4 - How to Find ij Without Solving for the Flow

The velocity weighted average (4.3.2) can be written as

f qb(VI/I) . ncU
ij = fVI/I.ndl

Since qb is only defined on the boundary, we have the freedom to define a function g

everywhere in the domain such that

v2g = 0 in the interior and
(B4.1)

g = qb on the boundary

With this choice and using Gauss' theorem, f qb(VI/I). n dl becomes f dA gV 2 1/1 and

the expression for the averaged potential vorticity is

fdA g(ij - f3y)
ij - JdA(q-f3y)

where g is a known function, independent of 1/1, which satisfies (B4.1).
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Appendix C4 - Homogenized gyre filling an elliptical domain

In this section the rectangular box will be replaced by an elliptical domain, where

solutions to Eq. 4.3.3. can be found analytically. The solution to (4.3.3) with boundary

conditions .p = 0 on E2 X2 + y2 = L 2 is given by

Clearly, this solution gives a solution consisting of one gyre only if

ij 3 + E
2

I (3L I E2 + 1 > 1 . (C4.1)

To determine the value of ij in the interior of the ellipse, we use (4.3.4) for the boundary

forcing given by (4.3.1). The solutions for an elliptical domain corresponding to (4.3.5)

are given by

(C4.2)

Here Qn and Q. are the values of qat y = L and y = -L respectively.

Again, the value of ij is independent of the aspect ratio E which enters in the

constraint (C4.1). For each value of n = Qn/((3L) and 8 = Q./((3L), a consistency

check must be made on the value of ij given by (C4.2). The value of ij has to be

within the boundary values, and it must satisfy (C4.1). In Fig. C4 the values of ij

resulting from (C4.2) are plotted as a function of Qn for a fixed value of Q. = -(3L.

Only one root is plotted since the other root gives values that are outside the boundary

values. The constraint (C4.1) is shown on the right side of the plot for discrete values

of the aspect ratio E.
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Fig. C4. iii {3L resulting from the solution of (C4.2) as a function of n = Qnl {3L, for
a fixed value of Q. = -{3L. The constraint (C4.1) is shown on the right hand side of
the graph for discrete values of the aspect ratio f. iii {3L should be below the dashed
line in order to satisfy (C4.1).
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CHAPTER 5

A model of the inertial recirculation

driven by boundary currents:

the stratified model

Summary

An inertial gyre with characteristics very similar to the recirculation observed
in eddy resolving general circulation models is obtained with a simple, analytically
tractable, two-layer model. The recirculating gyre is contained in a box of simple
geometry which isolates it from the Sverdrup interior. The gyre is forced by prescribing
anomalous values of potential vorticity at the edge of the box. This mimics the effect
of the western boundary current carrying low values of potential vorticity northward
in the subtropical gyre or can be thought of as a rough parameterization of diabatic
forcing. In both cases the forcing is confined to the thermocline waters, which are
represented by the upper layer. Therefore the boundary forcing is confined to the
upper layer and is transmitted to the abyssal ocean through interfacial stresses.

The condition for the abyssal water to be set in motion is derived and for oceanic
values the recirculation goes all the way to the bottom. When this occurs the center
of the gyre is dominated by a barotropic flow, while the baroclinic flow is confined to
the edges of the gyre. Analogously to the barotropic model considered in the previous
chapter, the width and strength of the gyre can be easily calculated in the limit of long,
narrow gyres. The meridional scale of the gyre is directly proportional to the vorticity
anomaly injected at the northern boundary, and the barotropic part of the transport
is proportional to the cube of the abyssal gyre width, in close analogy with the results
found in a one-layer model.



5.1. Introduction

In the previous chapter, the observed vertical coherence of the inertial gyre, responsi­

ble for the enhanced Gulf Stream transport, has been exploited to formulate a simple

barotropic model of the recirculation. In that work the recirculation appears as an

inertial gyre with constant potential vorticity, driven by anomalous low values of po­

tential vorticity applied at the edge of the flow. This boundary forcing mimics the

effect of the boundary currents, or perhaps diabatic forcing, producing low values of

potential vorticity at the northern edge of the subtropical gyre. With this prescription

it is possible to calculate the homogenized value of potential vorticity as well as the

meridional extent of the gyre. Although the results obtained are consistent with find­

ings from baroclinic ERGCM, the barotropic model is unable to answer the question

of why the recirculation has a weak depth dependent structure.

The vertical coherence of the North Atlantic circulation is well documented in the

literature. Schmitz (1980) analyzed an array of current meters deployed in the western

North Atlantic along 55° W. He found "weakly depth dependent" time averaged cur­

rents (mostly zonal) flowing eastward just south of the jet axis and returning westward

further south with amplitudes that ranged from 6 to 10 cm/sec throughout the water

column. Both eastward and westward currents had a horizontal scale of roughly 200

km, and the westward flow was surface and bottom intensified. Richardson (1985) used

current meters and surface drifter measurements to produce a vertical section of the

mean zonal currents flanking the Gulf Stream. He found that the total eastward trans­

port was about 93 Sv at 55° W, that is, about three times larger than that observed

in the Gulf Stream at the Florida Straits. The excess 63 Sv are recirculated north

and south of the jet axis. In particular about 29 Sv are transported westward in a

southern countercurrent about 200 km wide. The vertical coherence of this westward

flow is remarkable (see especially his Fig. 6b): the zonal velocities (with the wind drift

removed) vary from 4 em/sec at the surface to 6 em/sec at the bottom.
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The same vertical coherence is found in the recirculating gyre in wind driven

ERGCM's such as that of Schmitz and Holland (1986). In their experiments, per­

formed with a quasi-geostrophic, eddy resolving, eight level model, the mean zonal

velocity along a section cutting the recirculation shows a quasi-barotropic westward

flow extending all the way to the floor at 5000 m. No bottom intensification is ob­

served in their calculations, presumably because of the absence of topography. The

mean westward velocity is about 10 em/sec and the width of the westward recircula­

tion is about 200 km.

In this chapter the question of why the recirculation is "weakly depth dependent"

is addressed. Another question that needs to be addressed is whether relative vorticity

or vortex stretching is the dominant vorticity term in the region of westward flow.

Marshall and Nurser (1986) (herafter referred as MN) neglect the former, while in the

homogeneous model the latter is excluded. If potential vorticity is homogenous within

the recirculating gyre (as it is in both the present work and in MN) then, in the absence

of vortex stretching, relative vorticity has to be of the same order as planetary vorticity

everywhere in the gyre, including the westward flow. Indeed this is the case in Schmitz

and Holland's (1986) ERGCM results. Although they don't present explicit diagnostics

for the balance of terms in the mean vorticity field, a simple estimate can be inferred

from their mean zonal velocities. With u ~ 10 em/sec and a width of the westward

flow of ~ 200 km, relative vorticity can be estimated with uy ~ (10 cm/sec)/(lOO km)

= 1O-6sec- 1 • This has to be compared with py ~ 2x10-6sec- 1 , and the ratio of

relative to planetary vorticity is 0.5.

A dynamical balance of this type has to emerge as a consequence of a baroclinic

model rather than being set forth as an a priori assumption. With this in view the

ideas developed in Chapter 4 will be extended to the simplest possible baroclinic model.
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5.2. Formulation of the baroclinic model and general results

All the assumptions made in the previous chapter will be retained in the present for­

mulation except the vertical resolution is increased. They will be briefly repeated here.

I} The recirculating gyre extends to the bottom, which is taken as level. Baroclinic

effects are taken into account in the simplest possible way, i.e., a two-layer model. The

interface represents the thermocline.

2} The recirculation is steady and the eddy field is parameterized as weak lateral

diffusion of potential vorticity.

3} There are no body forces applied to the fluid. Local wind or buoyancy forces are

neglected in both layers. This approximation may not be as accurate for the surface

layer as it was for the barotropic model. Nevertheless, if the upper layer is not very

shallow, it may still be acceptable. In order to neglect the wind we must have:

or

In both the observations and the ERGCM results, the meridional velocity v at the

center of the recirculation is much smaller than the zonal velocity u. Therefore v can

be estimated as v $::j Lyu/L., where Ly is the meridional scale of the recirculation and

L., is its zonal scale. With this estimate the wind can be neglected if

(5.2.1)

In Schmitz and Holland (1986)'s ERGCM the recirculation occurs near the zero of the

wind stress curl, and its zonal scale is of the order of the meridional scale of the Sverdrup

gyre. Therefore fow.(y = Ly}/H1 = fo/HIWsin(1rLy/L.,) "" 1rLyfoW/(L.,H1}. With

fJ = 2 x 1O-U m-1sec- l , HI = 1000m, W = 10-4 em/sec and u = 10 em/sec, we

find the ratio of the left hand side to to the right hand side in (5.2.1) is 20/1r which

is a reasonably large number and the wind forcing can be neglected. Local buoyancy

forcing is more difficult to estimate since its amplitude is not known from oceanic
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measurements. I will assume that it is not bigger than the wind. AIl in the previuous

chapter the forcing for the inertial gyre will be provided by prescribing.anomalous values

of potential vorticity at the edge of the recirculation. This is a crude paramerization

of the effect of the Gulf Stream carrying vorticity of southern origin northward and

eastward in the subtropical gyre.

4) Since my attention is focused on the dynamics of the recirculation only, the inertial

gyre is considered isolated from the Sverdrup interior, which, consistent with the neglect

of the wind, is set to zero.

The equations defining the model are then the quasigeostrophic equation on a

fJ-plane:

where

aql ( ) 2
at + J tPl' ql = K,'iJ ql

aq2 ( ) 2
at + J tP2' q2 = K,'iJ q2

2 .
ql = 'iJ tPl + Fl (tP2 - tPd + fJy

q2 ='iJ2tP2 + F2(tPl - tP2) + fJy

(5.2.2)

, P2 - Pl
9 = 9

Pl
f,2F1 =_0_

g'H1

f,2F2 =_0-
g'H2

The boundary conditions are applied at the solid walls of a box which contains the

recirculation and are: tPl = tP2 = 0, ql = qlb(S), q2 = q2b(S) on Y = ±L,x = ±L/£,

where £ is the aspect ratio of the box and S is the arclength along the boundary.

Some general results were obtained in the barotropic model and they apply equally

well for each layer separately.
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a) Integrating each equation (5.2.2) over the area enclosed by any closed streamline we

obtain, in the steady state

i = 1,2where

K, 1 Vq1' n1 dl =0
J"'l

K,1 Vq2' n2 dl =0
J",.

, v,p,n, = IV,p, I

(5.2.3)

with the integrals performed on any closed streamline in that layer. This shows that

the total diffusive flux is zero across a streamline. In the limit of weak diffusion this

implies that potential vorticity is homogenized (Rhines and Young (1982)).

b) The potential vorticity field is bounded by its boundary values. If this were not the

case there would be an extremum in the interior, surrounded by a nested set of closed

potential vorticity contours. Integrating (5.2.2) over the area enclosed by any closed

potential vorticity contour we get, in the steady state:

(5.2.4)

which is a contradiction.

This shows that, in the steady state, there are no closed potential vorticity con-

tours, and therefore no maxima or minima of potential vorticity in the interior. Thus

potential vorticity in each layer is bounded by its boundary values and there cannot

be any shear layers. Then, even in the limit of weak diffusion, velocity has to be

continuous everywhere in the fluid. Otherwise relative vorticity would become very

large and potential vorticity would exceed the boundary values, contradicting the ex­

tremum principle. Although velocity has to be continuous, potential vorticity may not

be and indeed in the limit of weak diffusion, potential vorticity becomes discontinuous

at internal boundary layers.
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where

c) Multiplying (5.2.2a) by H11/J1, (5.2.2b) by H21/J2' integrating over the area of the

basin and observing that

and similarly for the lower layer, the energy equation is obtained by summing the

integrals obtained for each layer.

:t JE dA = H 18 1+ H282 - ItJdA [H1('\721/J1)2 + H2('\721/J2)2 + H 1F1(U1 - U2)2]

(5.2.5)

8 1 = Itf (q1b -(3Y)U1 . de

82 = Itf (q2b - (3Y)U2 . de

E = ~(H1ui + H2U~ + H 1F1(1/J1 -1/J2)2)

Equation 5.2.5 shows that in the steady state the amount of relative vorticity, and

of vertical shear, in the fluid is proportional to the vorticity anomaly injected at the

boundaries. This result emphasizes the role of q1b and q2b as forcing. If both q1b =

q2b = (3y then the fluid is at rest in both layers. Notice that if diffusion is completely

absent there is neither dissipation nor forcing, and the fluid will preserve its initial

state. If dissipation is present, in the steady state, one also finds

f (q1b - (3Y)U1' de+ JdAF1U1' U2 = JdA [('\721/J1)2 + F1uil

f (q2b - (3Y)U2' de+JdAF2U1' U2 = JdA [('\721/J2)2 + F2U~]

Therefore if only one layer is forced at the boundaries, there may still be motion in the

unforced layer due to the "drag" exerted at the interface. It is worth observing that,

in this case, U1 = U2 = 0 is not a solution of (5.2.2) unless q1b = q2b = (3y.

Although these general results are very instructive, and many properties of the

flow can be deduced just from the analysis of integral properties, explicit solutions of

the problem expressed by (5.2.2) for arbitrary values of diffusion can only be obtained
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numerically. I will restrict my analysis to the limit of weak diffusion, which is probably

the most relevant for the oceanic recirculation.

The anomalous value of potential vorticity at the rim of the gyre is supposed

to mimic the effect of the western boundary current carrying low values of planetary

vorticity northward in the wind driven ERCGM's, or can be thought of as a crude

parameterization of the mode water formation occurring within the thermocline. In

both cases the direct forcing is exerted in the upper layer and transmitted to the

abyssal ocean through mesoscale processes which, in my model, are parameterized as

diffusion of potential vorticity. Therefore in all cases presented, I have forced the upper

layer but not the lower layer (q2b = py). This choice is consistent with results from

wind-driven ERCGM's, such as that of Holland et al.'s (1984), and with analysis of

North Atlantic data, such as that of Bower et al.'s (1985). In Holland et al.'s (1984)

model, strong potential vorticity gradients across the separated Gulf Stream (y = L

in the present model) are observed in the layer directly forced by the wind. Similarly,

Bower et al. (1985) show that, in the surface water (uo < 27.0), potential vorticity,

together with other tracers, exhibits huge gradients across the separated Gulf Stream.

According to the present model's interpretation, this jump in properties is due to the

confluence of low values of potential vorticity generated in the south and advected

northward and eastward by the Gulf Stream in the subtropical gyre, with high values

of potential vorticity generated in the north and advected southward and eastward

by the Gulf Stream in the subpolar gyre. On the other hand, in layers shielded from

the wind forcing potential vorticity is constant across the separated Gulf Stream in

Holland et al.'s (1984) ERGCM. This result is supported by the observations of Bower

et al. (1985), where potential vorticitybelow the 27.0 Uo surface is rather homogeneous

across the separated Gulf Stream. According to my interpretation, the lower layer of

my model lies below the thermocline, where no direct forcing is applied and therefore

there is no anomalous potential vorticity generation.
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As in Chapter 4 only gyres that fill the whole basin in the zonal direction will

be analyzed. This is so because for simplicity my attention is restricted to boundary

forcing which is independent of longitude. The simplest choice for the potential vorticity

forcing is
_ (Qn - Q.)(y - L) + Q

qlb - 2L n

q2b = (Jy

(5.2.6)

where Qn and Q. are the constant values of ql on the northern and southern boundaries

respectively. Because the recirculating gyre is supposed to rejoin the Sverdrup interior

at its southern boundary, Q. has been chosen as -(JL in all cases presented. Numerical

solutions of (5.2.2) obtained with the numerical model developed by Dr. Iedey are

shown in Figs. 5.1, 5.2 and 5.3 for different values of the forcing Qn and of the

depth ratio. In all cases presented the gyre in the lower layer is contained within

the region of motion of the upper layer and potential vorticity is homogeneous in both

gyres. Homogenization should be expected from the result (5.2.3) in the limit of weak

diffusion. As proved in Appendis A4 the homogenized value of potential vorticity in

each gyre is given by

(5.2.7)

where the integrals are performed along the boundaries of the gyres.

This remarkable result has a simple physical explanation already given in Chapter

4, which will be repeated here. As the fluid is advected along the streamlines, poten-

tial vorticity is diffused across the streamlines. Diffusion is more efficient where the

streamlines are closer, that is where velocities are larger (Roberts, 1977). This is why,

in (5.2.7), the boundary values of potential vorticity are weighted by the velocity. A

detailed derivation of this result can be found in Appendix A4.
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Fig. 5.1. Nondimensional streamfunction and potential vorticity fields for the steady
state numerical solution. The boundary forcing is given by (5.2.6) with Qn - f3L =
-f3..;grI1latf fa. In all the experiments the baroclinic deformation radius is..;grITij fa =111
45 km and the aspect ratio of the box is f = 0.3. For this experiment 0.1 = 13.33 and
H2 = Hi. The dissipation is Ko = 286.2 m2 jsec. a) Upper layer streamfunction. Labels
are multiplied by 10". b) Upper layer potential vorticity. c) Lower layer streamfunc­
tion. Labels are multiplied by 10". d) Lower layer potential vorticity. See Section 3
for nondimensionalization.
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Fig. 5.2 Same as Fig. 5.1 except for H2 = 3H1 and K. = 71.6 m2 /sec. The forcing has
not been changed but the lower layer is deeper. a) Upper layer streamfunction. Labels
are multiplied by 106

• b) Upper layer potential vorticity. c) Lower layer streamfunction.
Labels are multiplied by lOs. d) Lower layer potential vorticity. Notice that the lower
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layer streamfunction. Labels are multiplied by 10&. ·b) Upper layer potential vorticity.
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has increased at the expense of the upper layer flow.
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From the extremum principle (see the discussion following (5.2.4)) velocity has

to be continuous everywhere, even in the presence of infinitesimal diffusion, and the

tangential velocities appearing in (5.2.7) can be calculated from the interior dynamics

where potential vorticity is constant. A difficulty arises because the boundaries of the

gyres are unknown. For the simple choice (5.2.6), where the forcing in the upper layer

is maximum at the northern boundary, unless the driving is very strong, the gyre will

be pressed against the northern wall and will not fill the whole basin in the meridional

direction. Therefore the southern boundaries of the gyres will be free streamlines. The

situation is depicted schematically in Fig. 5.4. South of the free boundary for the

upper layer gyre (y = L - L 1(x) in Fig. 5.4a) both layers will be at rest, except for

a weak diffusively driven flow which I will neglect. Therefore on that streamline the

upper layer velocity has to be zero. South of the free boundary for the lower layer

(y = L - L 2 (x) in Fig. 5.4b) no deep flow occurs, the velocities have to be continuous

in both layers across the free streamline with U2 being zero on y = L - L 2 •

This continuity is why in (5.2.7) the values of ql and q2 at the rims of the gyres are

the same as the potential vorticity boundary conditions (5.2.6). In fact, the northern,

eastern and western boundaries of the gyres are the solid walls of the basin where

potential vorticity is prescribed. The southern free boundary, where potential vorticity

has an unknown value, doesn't contribute to the velocity weighted average (5.2.7).·

The velocity appearing in (5.2.7) can be obtained by solving the interior problem

V2tPl + F1(tP2 - tPtl + fly = lit

V2tP2 + F2(tPl - tP2) + fly = i12
(5.2.8)

with boundary conditions tPl = tP2 = 0 on y = L, x = ±L/e, tPl = VtPl = 0 for

y ::; L - L 1(x) and tP2 = VtP2 = 0 for y ::; L - L2(x). Notice that there is an extra pair

of boundary conditions, but the widths of the gyres Ll and L 2 are unknown and they

are determined as part of the solution. It is this additional freedom which allows (5.2.8)
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Fig. 5.4. Schematic picture of the How regimes in the inviscid limit. a)Upper layer:
south ofthe free streamliney = L-L1(z) both layers are at rest. North ofy = L-L1(z)
the surface How circulates with uniform potential vorticity. At y = L - L 1(z) both
tPl and VtPl = o. b) Lower layer: south of the free streamline y = L - L2(z) the
lower layer is at rest. North of y = L - L2(Z) the abyssal How circulates with uniform
potential vorticity. At y = L - L2(z) tPl and VtPl are continuous and tP2 = VtP2 = o.
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to satisfy the extra boundary conditions. Although the additional boundary conditions

ensure that the velocity is continuous, there will be a jump in potential vorticity across

the free streamlines.

The problem becomes analytically tractable in the limit of small aspect ratio, E,

because, away from the eastern and western walls (5.2.8) is then "one-dimensional".

This approximation seems relevant to both the wind driven ERCGM's, where the

recirculation appears as a long narrow gyre with aspect ratio E ~ 0.1, and the oceanic

observations, which show meridional velocities much smaller than zonal ones. Before

presenting the results of the one-dimensional approximation some general comments

on (5.2.8) can be made. Forming the barotropic mode we obtain

In the barotropic equation the vortex stretching term has disappeared and the only term

left to balance the planetary gradient is relative vorticity. This problem is essentially the

one solved in Chapter 4. As noted in the introduction, the barotropic component of the

flow represents a substantial contribution to the recirculation. Therefore, whenever the

recirculation hits the bottom, a barotropic flow is established in which relative vorticity

is not negligible. In this simple two-layer model the barotropic flow occurs in all the

region of motion of the lower layer, so we expect relative vorticity to be important

both for the eastward and the westward deep flow. This is very different from the

situation depicted by MN who analyzed a "N and a half" layer model. In their work

the recirculation appears as a set of baroclinic Fofonoff's (1954) gyres stacked on top

of each other. The relative vorticity is confined to narrow boundary layers close to

the northern, eastern and western walls and is negligible in the westward flow. This

is because MN avoid the onset of a barotropic flow by always placing a resting layer

below the recirculation, and consequently relative vorticity may be neglected in the

interior of their gyre.
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In the presence of a deep resting layer most of the energy of the recirculating gyre

is in the form of available potential energy, since the lower interface is free to deform.

But the amount of possible deformation is limited. If, when the forcing is increased, the

interface displacement closes potential vorticity contours in the deepest layer, then the

flow will go all the way to the bottom. Once the deep layer starts moving, the growth

of the interface displacement is reduced, together with the available potential energy.

This is a strongly driven limit of the homogenization process envisaged by Rhines and

Young (1982). Since the forcing has increased, but the increase in potential energy is

limited, kinetic energy must grow, together with relative vorticity.

In the presence of substantial relative vorticity in the westward flow, the unknown

gyre widths, L 1 and L 2 , are determined by imposing continuity of velocity at the free

streamlines, as explained in the discussion following (5.2.8). By constrast, in MN the

meridional extent of the gyres is determined by requiring continuity of t/J only which,

when relative vorticity is neglected, implies continuity of the potential vorticity fields,

while the velocities are discontinuous. The appropriate matching condition is clearly

determined by what type of dissipative process is considered to act at higher order.

Here it has been shown that, in the limit of infinitesimal potential vorticity diffusion,

the velocities, but not potential vorticities, are continuous. The results presented in

Section 4 will also indicate that, in oceanic applications where the recirculation scale is

much bigger than the baroclinic deformation radius, and the recirculation strikes the

bottom, the two choices give quantitatively different results. However in the absence of

a barotropic flow, i.e., when the recirculation does not strike the bottom, both matching

. conditions give rise to approximately the same result.

The dynamical regimes are thus very different depending on whether or not the

recirculation strikes the bottom of the ocean. Oceanographic observations seem to

show that it does. Before proceeding with the two layer calculations I will analyze the

conditions under which the recirculation hits the bottom.
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5.3. One and a half layer model

When the lower layer is very deep, bec;l.use it is not directly forced a.t the boundaries,

it will be at rest. As the depth H 2 is reduced, the interface displacement due to the

upper layer motion is eventually large enough to produce closed q2 contours, and the

abyssal waters are then set in motion. In this section I will analyze the conditions

for this to occur. The critical value of H2 at which closed q2 contours occur will be

calculated, assuming that initially the lower layer is at rest.

From here after, all the analytical calculations will be done for gyres with in­

finitesimal aspect ratio (e < 1). In this approximation the potential vorticity equation

is one-dimensional away from the meridional walls:

tP1!l!l - F1tP1 + (3y = iit

with boundary conditions tP1 = 0 on y = Land tP1 = tP1!l = 0 on y = L - L 1 • From

the velocity weighted average (5.2.7) the homogenized value of potential vorticity ii1

is simply given by the value of potential vorticity on the northern boundary, Qn,

specified by (5.2.6), since the southern boundary condition doesn't contribute because

the tangential velocity is zero there. The contributions from the side walls are order e

and can be neglected.

The solution can be found more easily if the variables are put in nondimensional

form, with the choice
y =(L - p-1Qn)yl + L

x =(L - {3-1Qn)x'Ie

tPn ={3(L - p-1Qn)34>n

qn =({3L - Qn)q~ + {3L

The scaling is chosen according to the results of the barotropic model, which showed

that the meridional length scale is proportional to ({3L - Qn), the potential vorticity
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anomaly prescribed at the northern boundary. Dropping the primes we get

<Plyy - O:~<Pl + Y = -1 (5.3.1)

with boundary conditions <Pl = 0 on y = 0, -(.1 and the additional constraint <Ply = 0

on y = -(.1. (.1 = L1/(L - (3-1Qn) is the unknown nondimensional width of the upper

gyre. 0:1 = v'F!(L - (3-1Qn) is the ratio of the forcing to the Rossby deformation

radius, and is the only external parameter in this one and a half layer model.

The solution of (5.3.1) which satisfies the no normal flow conditions is

In order to satisfy the extra condition on the continuity of tangential velocity at

the free streamine y = -(.1> one has

£1 = Acosh A- A
Acosh A- sinh A

(5.3.2)

where A = yF\L1 = 0:1(.1 is the ratio of the recirculation scale to the Rossby deforma-

tion radius. This is the equation which must be solved to determine (.1 as a function

of 0:1.

This solution has been derived under the assumption that the lower layer is at

rest. It will be valid as long as there are no closed q2 contours. In the absence of

abyssal flow q2 is simply given by o:~<p1/r+ y, where r = H 2/ Hl is the depth ratio.

If the upper layer solution just calculated gives a maximum of q2 in the interior the

extremum principle would be contradicted and this wouldn't be a possible steady state.

The condition which excludes closed q2 contours is q2y ~ 0 at the northern wall y = o.

In fact an interior maximum in q2 would require q2y < 0 at the northern wall, since

q2 = 0 at y = o. Hence the lower layer will be motionless as long as

(5.3.3)
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al = .jF1(L - P-lQ,,) A = alii II = Ll/(L - p-lQ,,) Yo = (H2/HI) 0

al < 1 A = 3al/2 II = 3/2 Yo = 3aU8
0.0666 0.1 1.4997 .0017
0.1668 0.25 1.4984 .0104
0.3347 0.50 1.4938 .0415
0.6674 1.0 1.4762 .1639
1.4011 2.0 1.4274 .6261
2.2260 3.0 1.3477 1.314
3.1148 4.0 1.2842 2.149
4.0548 5.0 1.2331 3.068
5.0251 6.0 1.1940 4.030
6.0112 7.0 1.1645 5.013
7.0046 8.0 1.1421 6.005
8.0021 9.0 1.1247 7.002
9.0009 10.0 1.1110 8.001
al ~ 1 A = al + 1 II = l+all

Yo = al-1

Table 5.1: Nondimensional gyre width and critical depth ratio as a function of the
nondimensional forcing al = .jF1(L - P-lQ,,).

Notice that this relation depends implicitly on the forcing Q", only through A = alii,

i.e. the ratio of the recirculation scale L l to the deformation radius. The dimensional

scale L l is proportional to the potential vorticity anomaly PL - Q" injected at the

northern wall. Numerical values for II and the critical depth ratio Yo are presented in

Table 5.1 as a function of the forcing al. Note the first row gives the same result as

the homogeneous model.

Unfortunately I am unable to directly estimate the value of the forcing Q" from

observations. On the other hand there are good estimates for L l and from these one

can obtain A = .jF1Ll = alii and so infer Q". Typical oceanic values are HI = 700m,

g' = 0.02m sec-2 , L l = 400 km, which give A ~ 11. In this range of large values

for A the solution to (5.3.1) is simply given by Ll ~ (L - P-lQ,,)(l + 1/A). As in

the barotropic model the width of the gyre is directly proportional to the forcing.

When A~ 1 (5.3.3) gives Yo ~ A- 2, and the critical depth ratio is very large. For

this simple two layer model, the recirculation will not hit the bottom as long as the
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ratio of the lower layer to the upper layer depth is of the order of the ratio of the

recirculation scale to the baroclinic radius of deformation. For the values quoted above

the lower layer will be at rest only if H2 exceeds 6300m, for a shallower abyssal layer

the recirculation will strike the bottom. The value derived by MN in the one and a

half layer model, neglecting relative vorticity in the westward flow, is 11 = 1. For

>. ~ 1, this is approximately the same as the value found here. However for >. ~ 1,

the assumption made that no q2 contours are closed and thus the lower layer is at rest,

is not going to be met. This can be intuitively understood, by rembembering that >.

is the ratio of the recirculation scale to the baroclinic deformation radius. Since the

recirculation scale is proportional to the forcing applied at the northern boundary, >. is

a measure of how stratification "resists" to the interface deformation. For large>. such

resistence is small, the interface deformation is large and the motion penetrates to the

lower layer.

Typical choices for the depth of the thermocline are H1 = 700 m, and the abyssal

layer is then H 2 ~ 3500 m, the inequality (5.3.3) is not satisfied, and the assumption

of a resting deep layer, made in th!, previous calculation and in MN, is invalid.
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(5.4.2)

5.4. Analytical solutions of the two layer model

The numerical solutions of (5.2.2) shown in Figs. 5.1, 5.2 and 5.3, for small values

of viscosity, are very time consuming (each run took about two hours of CRAY-1 cpu

time). For this reason, and also to get more physical insight, analytical solutions were

sought in the limit of long, narrow gyres. As remarked in the previous section, in this

limit the homogenized value of potential vorticity, as given by the velocity weighted

average (5.2.7), is independent of the velocity structure of the gyre, since the eastern

and western walls give a small contribution of the order of the aspect ratio f, and the

southern rims of the gyres have zero tangential velocity. The homogenized values of q

are given by the boundary value prescribed on the northern wall (see (5.2.6))

(5.4.1)

Equations (5.2.8) are more easily solved when put in nondimensional form, with the

choice made in Section 3. Dropping the primes and neglecting the longitudinal varia-

tions we get

tP11111 + aHtP2 - tP1) + Y = - 1

tP21111 + a~(tPl- tP2)/r + Y =0

with boundary conditions tP1 = tP2 = 0 on Y = 0 and tP1 = tP111 = 0 on Y = -ll and

the unknown nondimensional widths of the upper and lower layer gyres respectively.

a1 = ..;F1(L - p-1Qn) is the ratio of the forcing to the Rossby deformation radius,

r = H2/H 1 is the depth ratio, and the solutions depend on these two parameters only.

The solution which satisfies (5.4.2) and the boundary conditions on Y = 0, -ll is

sinh a 1(Y+ld 2
tP1 =[1 + y - + (ll -1) cosha1(Y + ldJ/a1a1

tP2 =0
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in the region -£1 ~ y ~ -£2, and

(5.4.4)

in the region -£2 ~ y ~ 0, where a = alYI + r-1.

is the value of the upper layer streamfunction at the southern boundary of the lower

layer gyre y = -£2'

As remarked in the previous section, for oceanographic applications, al ~ 1,

therefore the barotropic mode (5.4.4a) is of order 1, while the baroclinic mode (5.4.4b)

is 0(aI2 ) and thus much smaller.

The conditions that ensure that all the boundary conditions are satisfied on y =

-£2 are:

(5.4.5)

where

is the zonal upper layer velocity at y = -£2'

The transcendental equations (5.4.5a,b) determine the width of the gyres £1 and

£2. They can easily be solved numerically, and the results are shown in Fig. 5.5 for a

wide range of values of al and depth ratios r.

For oceanographic applications typical values for al are rather large and some

simplification is possible in this limit. Although the potential vorticity anomaly (fJL -

Qn) is not known, the recirculation scale is going to be proportional to it, so we

can assume that L - fJ-IQn is of the order of L2 and check a posteriori that this

is the case. For HI = 900m, g' = 1 cmsec-2 and L 2 = 300km a typical value for
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(5.4.6)

al = YFl(L-p-1Qn) is 10. In this range, as long as H2 ~ Hl and (H2 +Hl)/Hl ~ at,

an approximate solution to (5.4.5) is very simple and it is given by

£1 =1 + all + O(e-OIl
)

£2 =3(2 + 2r)-1 - a l l (l + r + y'r(l + r) )-1 + 0(a12)

When the lower layer gets very deep the above approximation is not valid. The first

order uniform approximation is given in Appendix A5, where it is also shown that,

in order for the lower layer gyre to have a non zero width, the critical depth ratio is

the same as that obtained in the one and a half layer model, eq. (5.3.3). To a first

approximation the widths of the gyres are independent of g' and depend only on the

ratio of the depth of the forced layer to that of the unforced one.

In the inviscid limit, the potential vorticity fields are going to be discontinuous at

the southern edges of the gyres. Potential vorticity will be given by

for II < -i l

for -£2 ::; II ::; 0

for II < -£2

(5.4.7)

When al ~ 1, from (5.4.6), the upper layer potential vorticity field will have a weak,

o(all), discontinuity at the southern rim of the surface gyre, while the lower layer

potential vorticity will have a discontinuity of order 1 at the southern edge of the abyssal

gyre, since relative vorticity V2f/J2 is discontinuous and of the order of £2. Notice that

also in the barotropic model potential vorticity is discontinuous at the southern edge

of the gyre.

For layers of equal depth, the width of the lower layer gyre is given by L2 ~ L 13/4,

which is to be compared to the result obtained by MN in the two and a half layer model,

L2 = Ll/2. Notice that the relation between iil and the width of the upper layer gyre

is, to first order, the same as the one found by MN. For the oceanic range of alo the
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where

barotropic transport (5.4.4a) is of order 1 while the baroclinic transport (5.4.4b) is

order a l 2 and thus much smaller. This could have been expected also from the general

results presented in Section 2. The steady state form of the energy equation (5.2.5) in

nondimensional form is

f (q~b - y)Ui .di= f dA [(V2.pl)2 + r(V2.p2) 2+ aHUi - ~)21

I qb(S) - {3L
qlb = {3L- Q...

From the "extremum principle" (5.2.4) nondimensional relative vorticity has to be of

order 1. Thus the square of the vertical shear aHUi - t1~)2 is at most of order 1 and

if al is big the vertical shear will be small, no larger than order all.

A remarkable property of the barotropic part of the flow (5.4.4a) is that in the

limit of large al it is independent of al. In this limit the maximum barotropic trans­

port occurs (to first order) at y = -212/3. In the barotropic model, the latitude of

maximum transport was y = -21/3 where l was the width of the gyre, and the total

nondimensional transport was given by .pmaz = U 3 /81. In the present model it's

(5.4.8)

To a first approximation the transport carried by the barotropic flow in the present

baroclinic model is the same as that obtained with a homogeneous model, if the width of

the deep gyre, 12' is considered as representative of the width of the whole recirculation,

and the transport is independent of the vertical distribution of the flow.

This is why the inertial gyre has a weakly depth dependent structure: the barotropiclll

"core" is responsible for the bulk of the transport. Outside the barotropic core there is

a weak "baroclinic fringe" with small velocities of O(al l ). Essentially, it is this part

of the flow that MN analyzed in their two and a half layer model. Observations, on the

other hand, suggest that, in the North Atlantic, most of the transport resides in the
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barotropic core, and this is certainly the case in ERCGM's (e.g. Schmitz and Holland

(1986)).

In Fig. 5.6 the streamfunction and zonal velocity lfields are plotted for al = 13.33

and Hi = H2. This corresponds to the numerical solution shown in Fig. 5.1. For these

values the non-dimensional widths of the gyres are il = 1.08 and i2 = 0.72. Notice

that the maximum of the streamfunction occurs at the same latitude in both layers

and the transport is almost equally distributed between the two layers. Similarly, the

maximum westward velocity is equal in both layers and is located at the same latitudes.

The maximum eastward velocity is located at the northern edge of the gyres, but, unlike

the westward flow, the surface value is about twice as large as the deep one.

The dynamical balance obtained when the recirculation goes all the way to the

bottom and establishes a barotropic "core" is opposite to that envisaged by MN. In

their model, baroclinicity was dominant in the center of the recirculation and relative

vorticity was confined to the northern wall. Here baroclinic velocities are confined to

the edge of the gyres, in boundary layers of the order of the Rossby deformation radius,

while the center is dominated by a depth independent flow in which relative vorticity

is important. The reason why depth dependence is confined to the outer edges of the

gyre is clear. The forcing, which varies with depth, is applied at the boundaries of

the gyres. The baroclinic signature impressed at the boundaries can only penetrate

inwards a distance of the order of the baroclinic radius of deformation. On the other

hand, once a barotropic flow is established, the only length scale which enters in the

dynamics of the vertically integrated flow is (L - p-1Qn), which is much larger than

the baroclinic deformation radius.

For the case shown in Fig. 5.6 the dimensional scales of the gyres, as given by the

analytical solution, are L 1 = 644km andL2 = 429km. To obtain these values I chose

the following parameters: g' = 1 cmsec-2 , Hi = H 2 = 2000 m. The total transport

is 183.6 Sv, of which 156 Sv can be calculated from (5.4.8), which is a depth independent
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Fig. 5.6. Nondimensional streamfunction and zonal velocity as a function of latitude
calculated from (5.4.2), for Ql = 13.33 and r = 1. For this choice of the parameters the
nondimensional gyre widths are tl = 1.08, t 2 = 0.72. a) Streamfunctions. b) Zonal
velocity; solid line corresponds to the upper layer, the dashed line to the lower layer.
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approximation. The dimensional maximum westward velocity is 28.4 cm/sec , both at

the surface and at depth, while the maximum eastward velocity is 113.8 cm/sec at the

surface and 66.4 cm/sec at depth. These values are big because the forcing is very

strong (remember that the upper forced layer is 2000 m deep).

When the upper layer is shallower and the lower layer is deeper the picture appears

much more realistic. In Fig. 5.7 the streamfunction and velocity fields are plotted as

a function of latitude for al = 13.3 and H2 = 3HI. This corresponds to the numerical

solution shown in Fig. 5.2. The gyre in the lower layer has considerably shrunk and its

width is about a third of that in the upper layer gyre one. The streamfunetion maximum

is reduced in both layers with respect to the case shown in Fig. 5.6 where HI was equal

to H 2 • Notice, however, that the maximum westward velocity is still almost equal in

the two layers, while the maximum eastward velocity in the upper layer is about 7.5

times that in the lower layer. For HI = 1000m, g' = 0.02m/sec2 , the total transport is

28.6 Sv of which 9.5 Sv are carried by the lower layer and 16.5 are depth independent.

In the abyssal layer the maximum westward velocity is 3.6 cm/sec, and the maximum

eastward velocity is 7.2 cm/sec. The width of the deep recirculating gyre, L 2 , is 203 km

of which 125km are in the region of westward flow. Notice that because the barotropic

core has a width of ~ 0.3 the depth independent transport computed from (5.4.8) is

comparable to the transport carried by the "baroclinic fringe" which is O{(12 ).

If the forcing applied at the northern wall, {3L - Qn, is increased keeping the

depth and density ratio fixed, the flow becomes increasingly depth independent. In

Fig. 5.8 the streamfunction and velocity fields are presented as a function of latitude,

for al =18.9 and H 2 = 3HI . Although the ratio of the gyres widths is practically

unchanged relative to that in Fig. 5.7, the flow is more vertically coherent. Now the

total transport is 72 Sv half of which is. carried by the abyssal layer. Of this flow,

about 70% can be accounted for by (5.4.8). The maximum of the westward jet occurs

at the same latitude, is equal in both layers and has an amplitude of 9.2 cm/sec. The
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Fig. 5.7. Same as Fig. 5.6 except for r = 3. For this choice of the parameters the
nondimensional gyre widths are tl = 1.08, t 2 = 0.34. a) Streamfunctions. b) Zonal
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abyssal recirculating gyre is 295 km wide, while the surface gyre is three times as large.

Notice, however, that the surface layer velocities in the large region where the abyssal

layer is at rest, are weaker than the velocities in the barotropic core. Therefore, in

the baroclinic fringe, the neglected diffusive effects and the Sverdrup interior flow may

become comparable to the westward surface flow.

5.5. Numerical results

Steady solutions of (5.2.2), with potential vorticity boundary conditions (5.2.6), were

found by time integration from rest, with the use of a quasigeostrophic two layer nu-

merical model developed by Dr. Ierley. Solutions were considered to have reached the

state state when (see (5.2.3))

with the integral performed along the boundaries of the box.

The motivations for seeking numerical solutions after having found simple analyt-

ical approximations were several.

1) Verify that the analytical solutions described in Section 5.4 are indeed the inviscid

limit of the full viscous problem.

2) Explore the effects that make the problem expressed by (5.2.2) analytically in-

tractable, such as finite, although small viscosity K, and aspect ratio E.

In Fig. 5.9a,b the potential vorticity and zonal velocity fields at the longitude of

maximum transport ( x = 0 ) are plotted as a function of latitude. This corresponds to

the case shown in Fig. 5.1, with (Xl = ..jF1(L - f3- 1Qn) = 13.33, Hi = H2 • In all the

experiments the aspect ratio E of the box containing the flow is 0.3. In this experiment

the effective aspect ratio of the gyres is '" 0.15, since the bulk of the flow occupies only

the northern half of the basin. The Reynolds number, defined as tP2maa; / K, is '" 207.

In Fig. 5.9a the velocity fields of the numerical and analytical solutions are shown.
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The solid and long-dashed lines are the analytic solutions for the upper and lower layer

respectively. The dot-dashed and short-dashed lines are the numerical solutions for the

upper and lower layer respectively. Although the actual values are in good but not

excellent agreement, the structure of the numerical solution is identical to that of the

analytic solution. The pair resulting from the numerical experiment has a slight shift

in amplitude and position and scale relative to the analytical pair. The same structural

similarity persists if viscosity is increased. Fig. 5.9c shows the velocity fields for the

same case with viscosity increased by a factor of 6 from the case shown in Fig. 5.9a.

The vertical shear of the maximum eastward velocity (ui - u~llI=o) is exactly the same

as in the analytical calculations, regardless of the size of the dissipation, and the same

applies for the vertical shear at the maximum westward velocity.

Notice that friction enhances the vertical coherence of the flow. In the most viscous

experiment (Fig. 5.9c) the confinement of the baroclinic signature to the northern

portion of the flow is even more pronounced than in the analytical calculation and the

baroclinic "fringe" south of the barotropic core is completely erased.

In Fig. 5.9d the potential vorticity field for the latter numerical experiment is

shown. The analytical prediction is given in (5.4.7). Remember that in (5.4.7) the

upper layer potential vorticity has a weak 0(0<1 1) discontinuity at the southern edge

of the surface gyre, while in the lower layer the discontinuity is of 0(1). In: the viscous

experiment there is no sign of discontinuity at the southern edge of the abyssal gyre,

but if Fig. 5.9d is compared with Fig. 5.9b a tendency toward a discontinuity can be

seen. Although the homogenized value of q~ has gone up relative to the more viscous

run, thus approaching the theoretical prediction, the value of q~ south of the gyre has

decreased, approaching y + O<~~I/r (dashed curve).

In Fig. 5.10a,b the velocity and potential vorticity fields from the numerical ex­

periment shown in Fig. 5.2 at the longitude of maximum transport (x = -0.87) are

plotted as a function of latitude. For this run 0<1 = 13.33, H2 = 3Hl and the Reynolds
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number is 103. Again the structure of the flow is the same as that predicted by the

theory, and in the barotropic core the values are in excellent agreement with the theory,

especially in the upper layer where the flow is more vigorous. Fig. 5.lOc,d show the

same experiment for a value of viscosity 4 times larger than that in Fig. 5.lOa,b. In

this experiment viscosity is less efficient at erasing the vertical shear in the westward

portion of the baroclinic fringe than it was for layers of equal depths. The reason for

this is quite clear. Except for a small region close to the edge of the upper layer gyre,

from the analytical solution we can see that in most of the southern fringe the verti­

cal shear is practically independent of latitude. In the absence of horizontal gradients

interfacial friction is not very effective at locking the two layers together, although it

does increase the lower layer velocity near the edge of the abyssal gyre, extending the

region of vertical coherence.

The potential vorticity fields are shown in Figs. 10b,d. For the more inviscid run

q~ approaches the profile predicted by the theory, and a smooth boundary layer begins

to be visible at the southern edge of the abyssal gyre.

Finally in Fig 11 a meridional section along the longitude of maximum transport

(x = -0.87) of the zonal velocity and potential vorticity fields is plotted for the exper­

iments shown in Fig. 5.3. This corresponds to the case al = 18.9, H 2 = 3Hl • For this

experiment the Reynolds number is 200. Both the potential vorticity and the velocity

are in excellent agreement with the theory, even in the baroclinic fringe, supporting

the result that, in the inviscid limit, the velocities have to be continuous, but not the

potential vorticity. In Fig. 5.12a,b I have plotted the relative vorticity, V 2,P2, and the

vortex stretching term, aH¢l - ¢2)/r, of the lower layer for the run shown in Fig.

5.3. In the barotropic core region (y > -0.4) relative vorticity is as large as the vortex

stretching, and in fact its values in the center of the gyre are larger than the values at

the edges. Notice also that the vortex stretching term is constant at the center, and
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Fig. 5.10. Meridional section of the zonal velocity and potential forticity fields at
the longitude of maximum transports for the numerical run shown in Fig.5.2. 0<1 =
13.33, r = 3. a) Zonal velocity fields at :l: = -0.87 for It = 71.6m2 /sec, compared with
the analytic solution shown in Fig. 5.7b. Dashed-dotted line: numerical upper layer
velocity. Solid line:analytic upper layer velocity. Short dashed line: numerical lower
layer velocity. Long dotted line: analytic lower layer velocity. b) Potential vorticity
fields at :l: = -0.87 for It = 71.6m2/sec. The dashed line is q~ = y + o<~tPl/r. c)
Same as Fig. 5.10a except for It = 286.3m2/sec. d) Same as Fig. 5.lOb except for
It = 286.2m2/sec.
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Fig. 5.11. Meridional section of the zonal velocity and potential vorticity fields at
the longitude of maximum transports for the numerical run shown in Fig. 5.3. al =
18.9, r = 3. a) Zonal velocity fields at :x: = -0.81 for If. = 101.2m2/sec, compared with
the analytic solution shown in Fig. 5.8b. Dashed-dotted line: numerical upper layer
velocity. Solid line:analytic upper layer velocity. Short dashed line: numerical lower
layer velocity. Long dotted line: analytic lower layer velocity. b) Potential vorticity
fields at :x: = -0.81 for If. = 101.2m2/sec. The dashed line is q~ - 11 + a~t/Jl/r.
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Fig. 5.12. Lower layer relative vorticity and vortex stretching term for the numerical
experiment shown in Fig. 5.3. a) Relative vorticity V2~2. b) Vortex stretching ai(~l­
~2)/r. The meridional scale has been expanded by a factor of three. The southern
boundary of the abyssal gyre is at y - -0.4.
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there the planetary vorticity gradient is balanced by the relative vorticity. The nu­

merical results confirm the structure suggested by the analytic solution: baroclinicity

is confined to the edge of the recirculation while the center is dominated by inertial

effects.

5.6. Summary and conclusions

Some of the prominent features of the inertial gyre observed in the wind driven ER­

CGM's and of the North Atlantic recirculation, can be analyzed with a simple, ana­

lytically tractable two-layer model. As explained in more detail in the introduction to

Chapter 4, the inertial gyre appearing in the subtropical region, south of the separated

Gulf Stream, can be forced by prescribing a potential vorticity anomaly at the western,

northern and eastern boundaries of the oceanic basin. The boundary forcing mimics the

effect of the Gulf Stream carrying low potential vorticity values, originating in southern

latitudes, northward and eastward. Because the bulk of separated Gulf Stream is con­

fined to the thermocline waters, the boundary forcing decays with depth. Nevertheless

weak diffusion of momentum acting at the interface between the thermocline and the

abyssal waters is able to force the flow down to the ocean bottom.

The onset of motion in the abyssal layer is a strong, highly inertial, barotropic

core, about 300 km wide, with vertically coherent westward velocities of the order of

10 em/sec.

The meridional scale of the recirculation is directly proportional to the potential

vorticity anomaly and the depth independent part of the transport is proportional to

the cube of the abyssal inertial gyre width (see (5.4.8)), in strong analogy with the

results found using a homogeneous model. The barotropic core is surrounded by a

baroclinic fringe, with strong surface intensified, eastward flows in a region of the order

of a deformation radius pressed against the northern boundary of the subtropical gyre.

The southern portion of the baroclinic fringe is proportional to (2H2 -Hd/2(H1 +H2)
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and therefore of the order of the recirculation scale, but the flow (westward) is weak. In

the westward flowing portion of the baroclinic fringe, the neglected effects of dissipation

and of the directly wind driven Sverdrup interior (which is typical1y easward in this

region) may become important.

In a series of numerical experiments I have analyzed the effects of smal1 but finite

lateral diffusion of potential vorticity on these boundary driven inertial flows. The

global structure of the solution is in excellent agreement with the theoretical prediction,

although the actual amplitudes are slightly different. Clearly the agreement is better

in the barotropic core, where the velocities are larger, because there the local Reynolds

number is higher. The overall impression is that dissipation increases the flow in

the barotropic core and decreases it in the baroclinic fringe, with the net result of

making the flow even more vertical1y coherent. This result may depend strongly on

the particular type of parameterization for smal1 scale processes, although result from

ERCGM's tend to support the choice made here.

Although the vertical resolution of the model is extremely coarse, the results for

the barotropic core are independent of the stratification and agree with the barotropic

model. Equation (5.4.8) shows that the depth independent transport depends only on

the width of the abyssal gyre. In turn, the width of the abyssal recirculation depends,

to first order, only on the ratio of the forced layer depth to the total depth of the ocean.

It is easy to show that the same result holds for a continuously stratified ocean.

The robustness of the results for the barotropic core depends crucial1y on the

smal1ness of the baroclinic deformation radius compared to the scale of the recirculation,

which is proportional to the prescribed strength of the boundary forcing. In this respect

the present theory is incomplete since it's unable to relate the boundary forcing (or

the recirculation scale) to external forcing and dissipation, such as the wind, diabatic

effects, and boundary current dynamics.
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(A5.1)

Appendix AS. Approximate solutions for the gyres widths il and i2'

In this Appendix approximate solutions of (5.4.5) will be given for the limits: al ~ 1,

r arbitrary; a1 arbitrary, r ~ 1.

Let's first analyze what are the conditions for il - i2 - 0(1), in the limit of

al ~ 1. Callil -i2 = 6 and suppose that 6 ~ O(al l ).

From (5.4.4) and (5.4.5)

a~4> ~ [(1 -id(1- cosha16) - all sinh a16] = 0(1)

a~x ~ cosh a16 -1 - at{il - 1) sinha16 = O(ad.

From (5.4.5b) we have

(A5.2)

From (5.4.5a)

ax sinh ai2 ~ 1 - (1 - a24» cosh ai2

and as long as i2 is 0(1), this can be approximated with

Substituting from (A5.1) and (AS.2) we get·

[1- (1 + r)-1 3/ 2](1- COSha16 - a-1a1 sinha16) = aia-2 + 0(al1)

By definition a-2 a¥ = r/(1 + r) and after some manipulation one obtains

(A5.3)

Eq. (AS.3) doesn't have a solution as long as r ~ 1/2, therefore when this condition

is met the hypothesis made on the relative sizes of the gyres widths is invalid and

il - i2 = 0(1). In this case the order of magnitude in (AS.1) is wrong and

il = 1 + all

i2 = 3/(2 + 2r) + 0(a11)
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If the lower layer is much thinner than the upper layer, r <:: 1, the previous solution

would give 12 > 11 which is physically unacceptable. In this case the order of magnitude

in (A5.I) is correct, (A5.2) is valid and 8 = 11 -l2 is the solution of (A5.3). To first

order (A5.3) is given by

and

Let's now analyze the case r > 1 with a1 arbitrary. In this limit we should recover

the results of the one and a half layer model, and we expect 11 = 0(1), 12 <:: 0(1).

We can expand X and tP in powers of 12:

From the definitions of tP and X we get the following relations:

h =go

h =gl

fa =g2

gl = (10 - I)a~

g3 = (10 - I)a1

Substituting the expansion in (5.4.5b) we get:

(A5.4)

To first order fo must be zero and

(A5.5)

which determines 11 independently of 12. This is the same relationship found in the

one and a half layer model, Eq. (5.3.2).
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In view of this result, the next order of the expansion (A5.4) gives:

which determines 12. Notice that in order for solutions to be possible (l2 > 0) it must

be g2 > aHl + r) i.e.

(A5.6)

Substituting (A5.5) it can easily be shown that (A5.6) is the same relationship found

in Section 3, Eq. (5.3.3). Thus the results from the one and a half layer model are

recovered as r is increased past the critical value rc given by (A5.6).

190



References

Boning, C.W., 1982: On the influence of frictional parameterization on wind-driven
ocean circulation models. Dyn. Atmos. Oceans, 10, 63-92.

Bower, A.S.,H.T. Rossby and J.L. Lillibridge, 1985: The Gulf Stream - barrier or
blender? J. Phys. Oceanogr., 15,24-32.

Fofonoff, N. P., 1954: Steady flow in a frictionless homogeneous ocean. J. Mar. Res.,
13, 254-262.

Holland, W.R., T. Keffer and P.B. Rhines, 1984: Dynamics of the oceanic general
circulation, the potential vorticity field. Nature, 308, 698-705.

Ierley, G.R. and W.R. Young, 1987: Nonlinear corner flows on a fJ-plane. A model of
recirculation. Submitted to J. Phys. Oceanogr.

Marshall, J. C. and G. Nurser, 1986: Steady free circulation in a quasi-geostrophic
ocean. J. Phys. Oceanogr., 16, 1799-1813.

Musgrave, D.L., 1985: A numerical study of the roles of subgyre-scale mixing and the
western boundary current on homogenization of a passive scalar. J. Geophys. Res.,
90,7073-7043.

Niiler P.P., 1966: On the theory of wind-driven circulation. Deep Sea Res., 13,597-606.

Rhines, P. B. and W. R. Young, 1982: Homogenization of potential vorticity in plane­
tary gyres. J. Fluid Mech., 122, 347-367.

Richardson, P. L., 1985: Average velocity and transport of the Gulf Stream near 55° W.
J. Mar. Res, 43,83-111.

Roberts, G.O., 1977: Fast viscous convection. Geophys. Astrophys. Fluid Dynamics,
8, 197-233.

Robinson A.R., D.E. Harrison, Y. Mintz and A.J. Semtner, 1977: Eddies and the gen­
eral circulation of an idealized oceanic gyre: a wind and thermally driven primitive
equation numerical experiment. J. Phys. Oceanogr., 7,182-207.

Schmitz, W. J., 1980: Weakly depth-dependent segments of the North Atlantic circu­
lation. J. Mar. Res., 38, 111-133.

Schmitz, W. J. and W. R. Holland, 1986: Observed and modeled mesoscale variability
near the Gulf Stream and Kuroshio extension. J. Geophys. Res., 91, 9624-9638.

Veronis, G., 1966: Wind-driven ocean circulation. Part II: Numerical solutions of the
nonlinear problem. Deep Sea Res., 13, 31-55.

191
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Summary and conclusions

In this thesis I have analyzed some instances in which the Sverdrup relation may fail.

In all the cases presented the cause for non Sverdrupian flow can be ascribed to the

eddy field, which drives the mean circulation in regions where no external momentum

sources are imposed. Other mechanisms that can disrupt Sverdrup relation, such as

thermohaline forcing, have not been considered.

In Chapters 2 and 3 the main role of the eddies is to transfer momentum vertically,

from the surface waters, which are directly forced by the wind, to the abyssal, unforced

waters. Because the mean effect of the eddies is supposed to be weak, substantial

abyssal motion occurs only in regions where the geostrophic contours for the abyssal

flow are "closed" (see Rhines and Young, 1982). Inside the closed geostrophic contours

region the abyssal flow is of the same order as the surface flow and, because of bottom

relief, vertical velocities are induced which disrupt the Sverdup relation.

If bottom topography has a longitudnal structure, then internal jets arise with

transport of the same order as the maximum interior transport. Two different mecha­

nisms can produce internal jets. If the bottom relief has a constant slope, then the jets

are observed at the boundary of the closed geostrophic contours region, and this region

is usually well inside the interior of the basin. The reason why the circulation inside

the closed geostrophic contours cannot be closed without appending boundary layers

is very similar to the mechanism which produces western boundary layers in a closed

basin (see Section 2.2). In the presence of x-dependent topography, closed geostrophic

contours (the circle of radius rl in Fig. 2.3) occur in a region where the total input of

vorticity, injected at the surface by the wind and transmitted downward by the inter­

face stress, is non zero. Therefore the abyssal circulation, which has to be contained

within the closed geostrophic contours in the inviscid limit, cannot be closed without

appending boundary layers. Although the internal boundary layers can occur both

in the abyssal and in the surface waters, this is a phenomenon which occurs only in
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baroclinic models. When finite diffusive effects are taken into account the internal jets

disappear (see Section 3.3 and 3.4). The same diffusive interfacial stresses responsible

for the motion in the abyssal region, render the flow more verticaIly coherent than it

would be in the inviscid limit. Thus the effects that rely on the baroclinicity of the

flow are discouraged. On the other hand reduction of diffusion leads to the onset of

a strong inertial recirculating gyre (see Fig. 3.8a,b) which acts as a localized source

of momentum for the abyssal flow. Due to the presence of such a source the region of

abyssal motion is larger than that predicted by the inviscid theory, and the occurrence

of internal boundary layers is avoided.

Internal jets can be produced also by a different mechanism if the topographic

slope changes sign. Because this phenomenon does not rely on the baroclinicity of the

flow, its nature will be explained in the context of a verticaIly homogenous model. In

the presence of topography and planetary vorticity, the large scale geostrophic contours

for a homogenous flow are simlpy given by f3y + foh b/ H where hb is the bottom relief.

The free, unforced flow will be along the geostrophic contours. If the topographic slope

changes sign then there will be some geostrophic contours which are close by in the

interior, but that trace back to regions on the basin boundaries that are far apart (see

for example Fig. 3.1b). In general the wind forcing imparted in regions that are far

apart will be of different strength. The free component of the flow (the one along the

geostrophic contours) induced on the basin boundary by the wind forcing, will be thus

very different for geostrophic contours that are far apart on the boundary. Since such

free flow component is conserved along the geostrophic contours, in the region where

the geostrophic contours get closer, the flow will experience a discontinuity. Clearly in

the presence of diffusion such a discontinuity is smoothed, but if diffusion is moderate

an internal boundary layer will still be visible. Indeed internal jets can be observed in

numerical models which include a moderate amount of diffusion (see Section 3.2) and
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the transport observed in the numerical experiments is in good agreement with the

inviscid prediction (Eq. 2.5.3).

In the second part of the thesis, Chapters 4 and 5, a simple model of the recircu­

lation is developed. In the recirculation region Sverdrup relation fails because inertia

becomes important and the direct wind forcing is subdominant. Indeed, due to the

inertial character of the recirculation, a gyre can be produced neglecting the local wind

forcing. The source of momentum is provided at the boundaries of the gyre and is

meant to represent the effect of the boundary current (e.g. the Gulf Stream) carrying

low values (in the subtropical gyre) of potential vorticity generated at lower latitudes.

The eddy field, which is taken to be weak on average, provides a mean for transfering

momentum laterally and vertically, from the localized source to the interior of the gyre.

In Chapter 4 a vertically homogeneous model is considered and only lateral momentum

transfer is present (this process is absent in the models of Chapter 2). The choice of a

vertically homogeneous model of the recirculation is justified by oceanic observations

and results from ERGCMs. The homogenous model predicts that the meridional width

of the gyre is proportional to the potential vorticity anomaly prescribed at the northern

boundary of the gyre, Le. the separated Gulf Stream. Since this quantity is not known

from oceanic measurements, the relation is not of practical use. Nevertheless the model

also predicts that the maximum recirculation transport is proportional to the cube of

the meridional extent of the gyre (see Section 4.4) and this result is in good agreement

with the available observations. Moreover the structure of the zonal velocity, shown in

Fig. 4.13, is in qualitative agreement with the observations of Schmitz (1980). Further

comparison of the observations with the model results need to be made in order to

verify whether the agreements is also quantitative.

In Chapter 5 I tried to answer the question of why the recirculation has a weakly

depth dependent structure. To highlight the mechanism acting in a stratified model, I

chose to apply the boundary forcing only to the part of the fluid above the thermocline.
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The eddy field tranfers the momentum laterally to the interior of the upper waters gyre

as in the homogeneous model, and also vertically to the unforced, deep waters. If the

forcing is strong enough to generate a surface gyre with the meridional extent observed

in the North Atlantic, then the recirculation extends to the bottom. When this occurs a

"barotropic core" is established which carries a very large fraction of the total tranport.

The width and tranport of this barotropic flow are the same as those found in the

homogeneous model. The most prominent effect of vertical stratification appears in

the eastward flow: the eastward maximum velocity occurs at the gyre northern edge

and is surface intensified, while the westward flow is quite depth independent. Although

direct current meters measurements are absent in the upper waters of the Gulf Stream

axis, the analysis of Richardson (1985), who combined current meters and drifting

buoys measurements, confirms that, in the recirculation region, the eastward velocity

is surface intensified, while the westward return flow is not.

Speculations

One may wonder what flow would be produced by the combined effect of inertia and

topography. Some hints on the effect on the basinwide scale are given by the numerical

results presented in Chapter 3. It has been shown that the onset of inertial, recirculating

gyres, even if confined to a subbasin region, inhibits the occurrence of large scale internal

jets described in Section 2.2. Having failed to observe the baroclinic internal jets in

the presence of a localized inertial region, it is unlikely that the jets would appear in a

fully inertial regime.

Topography may have an important role in the recirculation region. The structure

of the bathymetry in the North Atlantic recirculation region suggests that the deep,

inertial gyre may be confined, in the east-west direction, by the bottom topography.

Topography cannot be the only parameter which controls the longitudinal extent of the

inertial gyre, because, in wind-driven ERGCM's with flat bottom, the recirculation is

confined to the western half of the basin. In the same numerical models, the velocity
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