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CHAPTER I

INTRODUCTION
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The rise and fall of sea level with fixed periodicity, known as the

tide, is probably one of the earliest physical oceanographic phenomena

observed by man. The tidal currents associated with this process have

also received man's attention for centuries, particularly in coastal

areas. Newton (1687) provided an explanation for the astronomical

tide-generating force (ATGF), but systematic study of the dynamics of

tidal currents awaited the work of Laplace (1776) who formulated the

fundamental equations governing long waves in a barotropic ocean.

Since that time, an enormous body of literature dealing with both

barotropic and baroclinic tides has accumulated. Nearly every

physical oceanography textbook includes a discussion of tides, and

there have been numerous review articles written on the subject.

While some of these references are cited in the succeeding chapters,

the lists given there are by no means comprehensive. More references

were consulted as background reading during the preparation of this

dissertation than are cited in the text. Two of these which I have

found to be particularly useful, and which deserve specific mention,

are LeBlond and Mysak (1978) and Hendershott (1981).

In spite of all the effort spent on the study of tides and tidal

currents, not everything about them is clearly understood. Although

the equilibrium tide that would result if the earth were covered with

a homogeneous fluid of uniform depth that could respond instantaneously

to the ATGF is well known for every point on the earth, local

geometric, bathymetric, hydrographic, and meteorological conditions

cause the observed tide to deviate substantially from this. Global

numerical models can predict fairly well sea level variations on a

coarse grid. Finer resolution local models have been applied to some
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coastal areas, again with good results for sea level. Tidal current

predictions are usually not as accurate.

The focus of this dissertation is on the description and dynamical

interpretation of the tidal band current fluctuations over the

continental shelf off northern California. The term "tidal band" is
'<

used here to denote fluctuations with periods from about one-half to

one day, including all the major diurnal and semidiurnal tidal

constituents. The semidiurnal frequency is super-inertial, and the

diurnal frequency sub-inertial, at this mid-latitude location.

Kinetic and potential energy are strongly peaked at the diurnal and

semidiurnal frequencies. Although inertial currents are occasionally

observed, particularly during the winter when internal wave energy in

general is elevated in this locale, they do not contribute

significantly to the current variance. Consequently, the treatment

here is divided into discussion of the diurnal and semidiurnal

variability. Each chapter emphasizes a process which can cause the

tidal currents to deviate from what would be anticipated based solely

on observations of sea level. In Chapter II, the diurnal current

variability is discussed, and the role played by atmospheric forcing

is examined in detail. In Chapter III, the barotropic semidiurnal

tidal currents over the shelf are described, and the effect of

small-scale bumps in the coastline is evaluated. The baroclinic

semi diurnal tidal currents, which are dependent upon the local

time-varying hydrographic conditions, are examined in Chapter IV.

The term barotropic means that pressure is constant on constant

density surfaces, while baroclinic means that pressure is not constant

on constant density surfaces. In a homogeneous fluid, all flow is
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barotropic. In a stratified fluid, the flow may be considered to be

made up of two components, one of which is independent of

stratification and, in an inviscid fluid, is constant throughout the

water column, and another which varies with depth due to the

influence of the stratified density field on the pressure gradient.

The first component, which is due to the deflection of the sea

surface, is commonly referred to as the barotropic component of flow,

and the second component is referred to as the baroclinic.

There is no practical way to completely separate the barotropic

and baroclinic components of flow in the data. In regard to the tidal

currents analyzed here, two approaches were used together to estimate

the barotropic component. First, the currents were vertically

integrated over the depth of the water column, to take advantage of

the fact that the baroclinic horizontal currents can be expressed as a

sum of modes, each of Which, in an inviscid fluid, integrates to zero

under the assumptions of a flat bottom and a rigid lid. The effect on

the baroclinic modes of a free surface is minimal. In the case of

two-dimensional flow over a uniformly sloping bottom, the cross-slope

velocity also integrates to zero over the depth of the fluid (Wunsch,

1969), and in the case of three-dimensional flow over slowly varying

topography, it is a good approximation. Since the ocean is not

inviscid, the bottom is not flat, and the vertical resolution used in

the integration is limited by the number of points where measurements

are available, integration over depth gives only an approximation to

the barotropic component.

The second approach uses the fact that, at a given location, the

sea level variations associated with the ATGF repeat in a predictable
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fashion. The barotropic currents, which are due to the gradients in

sea level, also should be deterministic and periodic. The uaroclinic

currents, on the other hand, are not strictly repeatable in time, due

to non-periodic variations in the density field. The use of long time

series to calculate the amplitudes and phases of the currents at tidal

frequencies helps to isolate the deterministic part of the signal.

This method can not completely remove the baroclinic part however,

because the barotropic and baroclinic components may be at least

partially phase-locked in time.

All of the data used in this thesis were collected as part of the

Coastal Ocean Dynamics Experiment (CODE), which was conceived and

designed to study the synoptic band (2 - 10 day) wind-driven flow over

the continental shelf. The spatial and temporal resolution of the

measurements, however, make it an excellent data set for studying the

energetic tidal band motions as well. A brief overview of the

experiment is given by the CODE Group (1983). Although the emphasis

here is on the current data, use is made of the available wind, bottom

pressure, sea level, and temperature measurements, as necessary, to

aid in explaining the response of the coastal ocean at tidal

frequencies. The moored data collected during the summers of 1981 and

1982 are described in Rosenfeld (1983a) and Limeburner (1985),

respectively. In addition, each chapter of this work includes a data

section outlining what measurements were used in that particular

chapter. Although the primary interest here is on the variability at

tidal frequencies, the relationship to, and influence of, the mean and

low frequency motions is pointed out where appropriate. The CODE

region is in an area characterized by strong upwelling-favorable winds
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during the spring and summer, with equatorward mean flow near the

surface, and weaker equatorward or poleward flow beneath. During the

winter, the wind stress is equally strong as in summer, but the

direction is variable. Mean currents are poleward at all depths,
(Rosenfeld, 1983b). The non-tidal flow in the CODE region, as well as

a variety of other topics relating to CODE, have been studied by a

number of investigators. Beardsley and Lentz (1987) list the work

pUblished to date.

The major results of this thesis clearly illustrate that many

factors influence the tidal frequency current variability over the

northern California continental shelf. The nearshore barotropic

semidiurnal currents may vary by as much as several hundred percent

over alongshore distances of only tens of kilometers, partially due to

small bumps in the coastline. The time variability of the semidiurnal

currents is a strong function of density structure, with the

baroclinic component of flow at times overwhelming the barotropic

component. The diurnal currents are seasonally dependent, with strong

surface-intensification during the summer due primarily to the diurnal

signal in the wind stress, which is intensified during periods of

upwelling-favorable winds.

These results demonstrate that, despite our basic understanding of

tidal phenomena, accurate prediction of the temporal and spatial

variability of tidal band currents can be very difficult without a

detailed knowledge of the local geometry, stratification, and

atmospheric forcing.
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-16-

ABSTRACT

Diurnal period wind stress and current fluctuations measured over

the continental shelf off northern California during the Coastal Ocean

Dynamics Experiment in the summers of 1981 and 1982 are examined. The

diurnal currents are strongly surface-intensified, with amplitudes of
-1up to 20 cm s • At depths less than 35 m, the diurnal currents are

non-stationary and their amplitude is well correlated with the

amplitude modulation of the local diurnal wind stress. Beneath the

surface layer, the diurnal current ellipses rotate clockwise with

semi-major axes of 1 to 3 cm s-1. A mixed layer model driven with

diurnal wind stress and surface heat flux produces currents similar to

those observed in the upper water column. The deeper currents are

consistent with a combination of freely propagating Kelvin and first

mode coastal-trapped waves and an interior flow forced by the diurnal

wind stress in the presence of a coast.
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1. INTRODUCTION

Measurements made over the continental shelf off northern

California during the Coastal Ocean Dynamics Experiment (CODE), in the

summers of 1981 and 1982, show intermittent surface-intensified

clockwise-rotating diurnal period currents with amplitudes of up to

20 cm s-l. A strong diurnal signal in the along-shelf component of

wind stress is observed during time periods when the low frequency

wind stress is equatorward. Direct forcing by the local diurnal wind

stress, in combination with the diurnal heating cycle, can account for

much of the diurnal period energy observed in the upper ocean currents

over the inner and mid-shelf. Below the surface mixed layer,

diurnal currents are clockwise-rotating and of order 1 to 3 cm

the
-1s .

These deep currents can be accounted for by the combination of a

Kelvin wave, first mode coastal-trapped wave, and interior flow forced

by the diurnal wind stress in the presence of a coast.

The purpose of this paper is to describe the diurnal period

current fluctuations observed in CODE, and evaluate the contributions

made by both tidal and atmospheric forcing in driving these. Previous

studies of diurnal period variability in other regions of coastal

upwelling are reviewed in Section 2. Although a seabreeze circulation

is common to many of these areas and the meteorology of this

phenomenon has been well described, this work represents the first

integrated analysis of diurnal period wind stress and currents. The

CODE data used in this study are outlined in Section 3. The diurnal

period wind stress and heating cycles are described in Section 4 and

the diurnal period current variability in Section 5. In Section 6,

evidence for the correlation between the diurnal period wind stress
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and currents is presented. The diurnal tidal currents are estimated

in Section 7. In Section 8, models for both the inviscid (Part A) and

frictional (Part B) components of the flow forced by a diurnally

varying wind stress are discussed. Conclusions are given in Section 9.

2. HISTORICAL REVIEW

As part of the Coastal Upwelling Ecosystems Analysis (CUEA)

program, oceanographic experiments were conducted off the coasts of

Oregon, northwest Africa, and Peru in the 1970s. Meteorological

measurements were made in conjunction with these, and in all cases the

presence of a significant diurnal signal in the wind field was noted.

In an effort to place the CODE measurements in historical and

geographic perspective, observations of the diurnal winds, currents,

and temperature fluctuations from these three upwelling regions are

reviewed here.

The seabreeze circulation off the coast of Oregon has been

discussed by Burt et al. (1974) using 13 days of wind observations

made 50 km offshore during August, 1970, and by a number of authors

using data from CUE-I and CUE-II which were conducted in the summers

of 1972 and 1973. The following picture emerges. The diurnal period

winds rotate clockwise (CW) and have amplitude in the along-shelf

direction two to three times that in the cross-shelf direction.

Halpern (1974) attributes this to the presence of coastal mountains.

Burt et al. (1974) found that the along-shelf component of wind

exhibited a diurnal signal of amplitude 2 m s-1, peaking in the

equatorward direction at 1930 PDT. O'Brien and Pillsbury (1974)

reported seeing no seabreeze signal 30 km offshore in 1972. In 1973
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however, the diurnal winds 13 km from shore, as described in Halpern

(1974), bore marked resemblance to the winds 50 km from shore reported

by Burt et al. (1974). Averaged over a period of 02 days, the

along-shelf wind showed a 2 m s-1 daily variation on top of a
-13 m s equatorward mean. Maximum equatorward speeds occurred at

about 2000 PDT. Burt et al. (1974) noted that the amplitude of the

diurnal variations 50 km from shore changed over the 13 day period

they examined, and saw that it was linearly related to the daily mean

along-shelf wind velocity with the diurnal amplitude decreasing as

mean equatorward winds increased. O'Brien and Pillsbury (1974),

however, noted the opposite tendency in winds nearer to shore. They

found that the seabreeze was best developed during times of upwelling

favorable winds, which is in agreement with the observations from the

CODE area.

Halpern (1974) states that there is no evidence for forcing of the

low-frequency upwelling circulation by the diurnal winds, and does not

comment on the forcing of diurnal currents by diurnal winds. Hayes

and Halpern (1976) state that the diurnal band near-surface horizontal

kinetic energy may be related to the diurnal variations in the wind.

O'Brien and Pillsbury (1974) surmise that the persistent seabreeze

forcing should induce a CW-rotating response in the ocean currents at

the diurnal period, but they made no attempt to look for it. Denbo

and Allen (1984) examined the CUE-II current data using rotary

empirical orthogonal function analysis in three frequency bands, one

of which was the diurnal. They noted surface-intensified CW-rotating

flow, coherent with the wind stress, in the upper 15 m, below which

the diurnal currents were nearly depth-independent.
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Halpern (1977) analyzed measurements of winds and near-surface

temperature and currents made during March and April, 1974 off the

coast of northwest Africa, as part of the JOINT-I experiment of CUEA.

He found that the diurnal wind vector rotated CW, and that the

cross-shelf diurnal kinetic energy was five times that of the

along-shelf. The amplitude of the diurnal cross-shelf wind was

3.5 m s-l, 32 km from shore. Diurnal period fluctuations in the

temperature and current were observed in the upper 15 mof the water

column. Because the diurnal currents rotated CW, were limited to the

upper part of the water column, and had a ratio of 0.01 to the wind

fluctuations, Halpern concluded that they might be generated by the

diurnal period wind, but went no further.

Burt et al. (1973) examined 11.5 days of wind measurements made in

April, 1969, 20 km offshore Peru, near 15·S latitude. After removal

of the mean, they found the cross-shelf component of wind to have an
-1amplitude of 0.5 m s with maximum onshore velocity at 1400 hours

local time. The along-shelf component was found to have an amplitude

of 0.7 m s-l with maximum equatorward velocity at 2100 hours. Brink

(1979) examined CUEA JOINT-II wind and near-surface temperature data

from the same area collected for 69 days during March - May, 1977, and

also noted that the along-shelf diurnal wind exceeded the cross-shelf

wind, and that the wind stress peaked near sunset. Brink noted the

strong diurnal cycle in mixed layer depth and commented that it is

governed by the interplay of mechanical and thermal forcing. Johnson

(1981) examined the diurnal period currents for a 10 day period in

March of 1977, and noted that they were largest in the surface layer

(less than 15 m) over the inner shelf, consistent with forcing by the
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seabreeze. He did a complex demodulation of the currents at the

diurnal, semidiurnal, and inertial frequencies, and found a

relationship between the amplitude of inertial motions and wind

forcing, but not so for the diurnal motions.

3. DATA

The CODE data offer a unique opportunity to explore the effects of

a diurnally oscillating wind on the coastal oceanographic environment.

Atmospheric and oceanographic parameters were measured concurrently

over the northern California shelf for roughly three month periods in

two consecutive summers, 1981 and 1982. Winds were measured at

offshore buoys as well as at coastal stations. Numerous current

measurements allow examination of the three-dimensional spatial

structure of the flow. Figures 1 and 2 show the location of all

instruments providing data analyzed here. Table 1 gives the

positions, depths and dates for these time series. For a more

complete description of the moored data acquired during CODE, the

reader is referred to the CODE moored array data reports (Rosenfeld,

1983 and Limeburner, 1985).

Within the small-scale CODE array, coastal winds were measured at

Bodega Bay, Sea Ranch, and Pt. Arena during CODE-1 and -2. Data were

also available for part of the winter in between from Bodega Bay and

Sea Ranch. Winds over the ocean were measured on buoys deployed at

R3, C3, and C5 during the summer of 1981 (CODE-1) and at N3, C2 1,

1 The wind stress record from C2 in CODE-2 has not been used here
because it shows irregularities in both amplitude and phase which
cause low coherence at the diurnal frequency between this record and
all the other CODE-2 stress records. .
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Figure 1. Location of CODE-1 wind stress measurements and C-line
current meter moorings are shown.
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Figure 2. Location of CODE-2 wind stress measurements and C-line
current meter moorings are shown.
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COOE-1

Water Depth Lat itude Longitude Depth
Station (m) North West Start Stop Instrument ..J.r!!.L

WIND STRESS

Pt. Arena Coastal 38'57.0' 123'44.4' 4/01/81 8/01/81 WR -6.1
C5 402 38'31.2' 123'40.5' 4/12/81 8/01/81 VAWR -3.5
C3 94 38'36.5' 123'28.1' 4/12/81 7/31/81 VAWR. I -3.5
Sea Ranch Coastal 38'41.0' 123'25.5' 3/11/81 8/03/81 WR -10.0
R3 90 38'21.6' 123'13.0' 4/13/81 8/03/81 VAWR -3.5
80dega 8ay Coas ta 1 38'19.0' 123'04.0' 3/11/81 8/03/81 WR -10.0

CURRENTS

C1 3D 38'39.8' 123'25.1' 3/25/81 7/23/81 VMCM 4.0
30 38'39.8' 123'25.1' 3/25/81 7/23/81 VMCM 7.0
30 38'39.8' 123'25.1 3/25/81 7/23/81 VMCM 11.0
33 38'39.6' 123'24.8' 4/01/81 7123/81 VMCM 23.0
33 38'39.6' 123'24.8' 4/01/81 7/23/81 VMCM 27.0

C2 63 38' 39.3' 123'25.6' 4/14/81 8/01/81 VMCM 4.0
63 38'39.3' 123'25.6' 4/13/81 7/13/81 VMCM 14.0

C3 90 38'37.2' 123'28.3' 4/08/81 7/14/81 VMCM 9.0
90 38'37.2' 123'28.3' 4/07/81 7/23/81 VMCM 14.0
90 38'37.2' 123'28.3' 4/08/81 7114/81 VMCM 29.0
90 38'36.7' 123'28.0' 4/08/81 7/14/81 VMCM 35.0
90 38'36.7' 123'28.0' 4/08/81 7/13/81 VMCM 83.0

C4 133 38'34.5' 123'32.6' 4/09/81 7/13/81 VMCM 19.0
133 38'34.5' 123'32.6' 4/09/81 7/14/81 VMCM 29.0
133 38'34.3' 123'32.7' 4/09/81 7/14/81 VMCM 45.0
133 38'34.3' 123'32.7' 4/09/81 7/13/81 VMCM 65.0
133 38'34.3' 123'32.7' 4/09/81 7/23/81 VMCM 75.0
133 38'34.3' 123'32.7' 4/09/81 7/23/81 VMCM 95.0
133 38'34.3' 123'32.7' 4/09/81 7/14/81 VMCM 123.0

C5 402 38'31.2' 123'40.5' 4/12/81 8/01/81 VACM 9.0

Abbreviations: WR - wind recorder, VAWR - vector averaging wind
recorder, VMCM - vector measuring current meter, VACM - vector
averaging current meter, I - insolation

Table lao Location, instrument type, and depth are listed for all
data used in this paper. Start and stop dates (GMT) are for the full
record length available, although the entire time series was not
necessarily used in the analysis here.
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COOE-2

Water Depth Lat i tude Longitude Oepth
Station (m) North West Start Stop Instrument ~

WIND STRESS

Pt. Arena Coasta1 38'57.0' 123'44.4' 3/01/82 8/31/82 WR -6.1
N3 93 38'48.1' 123'41.8' 4/08/82 8/17182 VAWR -3.5
C5 400 38'30.8' 123'40.3' 3/30/82 8/19/82 VAWR -3.5
C4 130 38'33.4' 123'31.7' 4/01/82 8/17182 VAWR -3.5
C3 93 38'36.4' 123'27.7' 3/24/82 7128/82 VAWR, I -3.5
Sea Ranch Coasta 1 38'41.0' 123'25.5' 3/01/82 8/16182 WR -10.0
R3 90 38'25.4' 123'16.4' 3/23/82 8/17182 VAWR -3.5
Bodega Bay Coasta 1 38'19.0' 123'04.0' 3/01/82 8/31/82 WR -10.0

CURRENTS

C2 60 38'38.2' 123'25.3' 3/12/82 8/05/82 VMCM 10.0
60 38'38.2' 123'25.3' 3/12/82 8/13/82 VMCM 20.0
60 38'38.2' 123'25.3' 3/12/82 8/05/82 VMCM 35.0
60 38'38.2' 123'25.3' 3/12/82 8/05/82 VMCM 53.0

C3 93 38'36.4' 123'27.7' 3/24/82 7128/82 VMCM 5.0
93 38'36.4' 123'27.7' 3/24/82 7128/82 VACM 10.0
93 38'36.4' 123'27.7' 3/24/82 7128/82 VMCM 15.0
90 38'36.4' 123'27.7' 3/12/82 8/09/82 VMCM 20.0
90 38'36.4' 123'27.7' 3/12/82 8/05/82 VMCM 35.0
90 38'36.4' 123'27.7' 3/12/82 8/09/82 VMCM 53.0
90 38'36.4' 123'27.7' 3/12/82 8/05/82 VMCM 70.0
90 38'36.4' 123'27.7' 3/12/82 8/09/82 VMCM 83.0

C4 130 38'33.3' 123'31.6' 4/01/82 8/17182 VACM 10.0
130 38'33.3' 123'31.6' 4/01/82 8/17182 VMCM 20.0
130 38'33.3' 123'31.6' 4/01/82 8/17/82 VMCM 35.0
130 38'33.3' 123'31.6' 4/01/82 8/17182 VMCM 55.0
130 38'33.3' 123'31.6' 4/01/82 8/17182 VMCM 70.0
130 38'33.3' 123'31.6 ' 4/01/82 8/17182 VMCM 90.0
130 38'33.3' 123'31.6' 4/01/82 8/17182 VACM 121. 0

C5 400 38'30.8' 123'40.3' 3/30/82 8/19182 VMCM 20.0
400 38'30.8' 123'40.3' 3/30/82 8/19/82 VMCM 35.0
400 38'30.8' 123'40.3' 3/30/82 8/19/82 VMCM 55.0
400 38'30.8' 123'40.3' 3/30/82 8/19/82 VACM 70.0
400 38'30.8' 123'40.3' 3/30/82 8/1g/82 VMCM 90.0
400 38'30.8' 123'40.3' 3/30/82 8/19/82 VACM 110.0
400 38'30.8' 123'40.3' 3/30/82 8/19/82 VACM 150.0

Abbreviations: WR - wind recorder, VAWR - vector averaging wind
recorder, VMCM - vector measuring current meter, VACM - vector
averaging current meter, I - insolation

Table lb. Location, instrument type, and depth are listed for all
data used in this paper. Start and stop dates (GMT) are for the full
record length available, although the entire time series was not
necessarily used in the analysis here.
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C3, C4, C5, and R3 during the summer of 1982 (CODE-2). Complete

accountings of the meteorological measurements made in the CODE-1 and

CODE-2 small-scale experiments are given in Mills and Beardsley (1983)

and Beardsley, Alessi, and Limeburner (1985), respectively, and are

discussed in more detail in Beardsley et al. (1987l. Wind records

were converted into wind stress using the method developed by Large

and Pond (1981) for neutral stability and discussed in Mills and

Beardsley (1983). This method was developed for use with steady

winds measured over open water, but is applied here to these coastal

measurements for lack of a more appropriate formulation.

Ai r temperature, water temperature at one meter depth, and

insolation measured on the meteorological buoy at C3 during CODE-1

and -2 are used in calculating surface heat flux. The instrumentation

used in acqui ri ng these data is descri bed in Mi 11 sand Beardsl ey (1983)

and Beardsley et al. (1985).

Cu rrent meter moori ngs were arranged ina T-s haped array duri ng

CODE-1 and along four cross-shelf transects during CODE-2. In

general, current meters at depths less than 30 mwere deployed on

slack moorings with surface flotation, those at depths greater than

that were on taut subsurface moorings. The exceptions to this are

that the instruments below 20 mat C1 during CODE-1 were on a

subsurface mooring, and the 35 and 55 m instruments at C5 during

CODE-2 were on a surface mooring. The surface moorings had scopes

ranging from 2.0 (for the C1 mooring in 30 mdepth) to 1.1 for the C5

moorings in 400 mdepth. Twenty meters of the 1.5-inch chain and 30

to 50 mof O.75-inch chain were used at the bottom of the slack

moorings to decrease mooring motion. Computer simulations of the
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behavior of the surface moorings using realistic current profiles

based on the mean, low frequency, diurnal, and semidiurnal current

components, individually and in combination with each other, show that

the inclination of the current meters from the vertical is generally

less than 5°. The horizontal excursion is less than 10 m, which

corresponds to a velocity of 0.05 cm s-l at the diurnal frequency.

For the subsurface moorings, the inclinations are less than 0.5° and

the horizontal excursions less than 0.5 m. For these reasons,

contamination of the current and temperature measurements due to

mooring motion is considered minimal.

Current data from the central, or C, line will be presented here.

Hourly-averaged time series of currents and winds were decomposed into

along- and cross-shelf components, directed along 317°T and 47°T

respectively. A common time period of 90 d~ys for CODE-1

(4/14/81 1300 - 7/13/81 1200 GMT) and 105 days for CODE-2

(4/14/82 1300 - 7/28/82 1200 GMT) was used as a starting point for

many of the analyses presented here.

4. DESCRIPTION OF THE DIURNAL WIND STRESS AND HEATING CYCLES

A. iiI ND STRESS

8eardsley et al. (1987) explain why the diurnal variability in the

wind field at the CODE site is more prominent in the along-shelf

component of wind as opposed to the cross-shelf component as in a

classic seabreeze circulation. The major effect of the daytime coastal

heating is to drive a circulation cell in the cross-shelf, vertical

plane which advects a jet of high along-shelf momentum air from .

offshore to over the coast. The jet is strengthened by nearshore



-28-

subsidence of the marine inversion layer wnich has its· minimum

elevation in the late afternoon, close to the time of the greatest

equatorward wind stress. As discussed in Beardsley et al. (198ll,

strengthening of the synoptic scale pressure gradient results in

increased daily averaged equatorward winds, as well as larger diurnal

variations.

Figures 3 and 4 show the hourly time series of along-shelf wind

stress for CODE-1 and -2, respectively. The cross-shelf wind stress

is much weaker, as shown in Mills and Beardsley (1983) and Beardsley

et al. (1985). The outstanding features to be noted here are: {ll

the mean along-shelf wind stress is equatorward and large enough such

that the diurnal variations do not cross zero; (2) the diurnal

variations are intermittent in time; {3l the diurnal variations are

largest at C3, and decrease in the along-shelf as well as cross-shelf

directions from that site. In an effort to quantify the above

statements, two approaches have been taken. First, a statistical

description in the frequency domain of the diurnal period variability

and its relationship to the total wind stress field is presented.This,

of course, has the disadvantage of lumping together times when the

diurnal variability is large with times when it is weak, so a second

approach emphasizing the time variability of the diurnal signal is

used. This employs results of a complex demodulation technique

described in Appendix A.

i. FREQUENCY DOMAIN

Figure 5 shows total variance spectra for wind stress at Sea

Ranch, C3 and C5 for CODE-1 and -2. Diurnal and semidiurnal peaks are
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significant for all series, except at C5 during CODE-I. Statistics

for the mean and diurnal band wind stress for all the records are

reported in Table 2. The information in this table and tnese figures

can be summarized as follows: (1) during the summer, the diurnal band

ellipse is oriented within 20° of the along-shelf direction (317°T)

everywhere except at Pt. Arena; (2) the direction of rotation of the

diurnal stress vector is CW everywhere; (3) the largest diurnal stress

variations are found at C3, while the largest mean stress is found at

C5 during CODE-2 and is nearly equal at C3 and C5 during CODE-I; and

(4) during the summer, diurnal band variability accounts for over 20%

of the total variance at Sea Ranch, 10 to 20% at C3, R3 and Bodega Bay

and less than 5% everywhere else. During the winter, only 5 to 10% of

the total variance is in the diurnal band at Sea Ranch and Bodega Bay.

The phase of the diurnal wind stress is strongly keyed to the

daily heating cycle (Beardsley et a1., 1987). This is reflected in

the high coherence in the diurnal band among most of the measurement

sites. Of the six stations in CODE-I, the along-shelf component at

four (Sea Ranch, C3, R3, and Bodega Bay) are highly coherent (> 0.9)

with each other. The coherence between C5 and these four stations is

lower (O.6 - 0.8), but still significant at the 95% confidence level.

During CODE-2, all stations were coherent with each other at the 95%

confidence level. In both years, Pt. Arena, which has very little

energy in the diurnal band, is least coherent with the rest of the

array.



1
2

3
4

5
6

7
8

9
10

11
2

T
ot

al
Oi

ur
na

1
B

an
d

V
ar

ia
nc

e
O

en
si

ty
[(

dy
n~
s)

/c
ph

]
D

iu
rn

al
Ba

nd
M

ea
n

(d
y

n
r l

V
ar

ia
nc

e
%

E
ll

ip
se

2
V

ar
ia

nc
e

em
O

ri
en

ta
ti

on
em

(d
y

n
r)

in
D

iu
rn

al
S

ta
ti

on
T

ot
al

U
V

CW
CC

W
(d

eg
)

U
V

em
B

an
d

C
od

e-
1

4/
14

/8
1

-
7/

13
/8

1

P
t.

A
re

na
4.

0
2.

1
1.

9
2.

6
1.

4
47

-0
.3

8
-0

.4
5

0.
38

3
.4

C5
4.

2
1.

0
3.

3
3.

2
1.

0
17

4
-0

.4
0

-1
.8

3
1.

45
0.

9
C3

13
1.

6
12

.2
11

9.
4

81
.4

SO
.l

16
4

0.
14

-1
.9

2
2.

45
17

.4
Se

a
R

an
ch

15
.7

0.
2

15
.5

8.
3

7.
3

17
7

-0
.0

3
-0

.2
6

0.
18

28
.6

R3
46

.1
3.

8
42

.2
26

.4
19

.6
16

4
0.

31
-1

.4
0

1.
31

11
.4

B
od

eg
a

Ba
y

15
.2

1.
0

14
.2

8.
9

6.
2

10
-0

.0
9

-0
.4

9
0.

48
10

.3

C
od

e-
2

4/
14

/8
2

-
7/

28
/8

2

P
t.

A
re

na
7.

1
3.

8
3.

3
5.

1
2.

0
48

-0
.2

6
-0

.3
8

0.
50

4.
0

N3
13

.8
1.

1
12

.7
9.

1
4.

7
13

-0
.3

6
-1

.0
9

1.
24

3.
2

I w
C5

16
.9

2.
6

14
.3

11
.9

5.
0

17
-0

.5
6

-1
.5

2
2.

28
2.

1
w

C4
12

.7
1.

2
11

.5
9.

2
3.

5
17

2
-0

.0
5

-1
.1

3
1.

08
3.

3
I

C3
70

.4
8.

0
62

.4
45

.8
24

.7
16

3
0.

12
-1

.2
4

1.
92

10
.6

Se
a

R
an

ch
21

.7
0.

9
20

.8
12

.7
9.

0
17

3
-0

.0
1

-0
.2

6
0.

28
24

.1
R3

64
.7

2.
6

62
.1

38
.4

26
.3

17
0

0.
13

-1
.1

6
1.

74
10

.5
B

od
eg

a
Ba

y
17

.0
2.

6
14

.4
11

.2
5.

8
16

0
0.

16
-0

.4
0

0.
41

12
.1

C
od

e
-

W
in

te
r

12
/2

3/
81

-
3/

22
/8

2

Se
a

R
an

ch
4.

1
0.

7
3.

4
2.

6
1.

5
15

9
-0

.0
1

-0
.0

1
0.

16
8.

5
B

od
eg

a
Ba

y
6.

5
2.

6
3.

9
4.

2
2.

2
14

2
0.

07
-0

.0
7

0.
37

5.
6

T
ab

le
2.

T
ot

al
v

ar
ia

n
ce

d
en

si
ty

an
d

v
ar

ia
n

ce
d

en
si

ty
d

iv
id

ed
in

to
cr

o
ss

-s
h

el
f

(U
),

al
o

n
g

-s
h

el
f

(V
),

cl
oc

kw
is

e
(C

W
),

an
d

co
u

n
te

r-
cl

o
ck

w
is

e
(C

CW
)

ro
ta

ti
n

g
co

m
po

ne
nt

s
o

f
th

e
d

iu
rn

al
ba

nd
(1

.0
0

±
.0

7
cp

d)
w

in
d

st
re

ss
ar

e
li

st
e
d

in
co

lu
m

ns
2-

6.
C

ol
um

n
7

g
iv

es
th

e
av

er
ag

e
e
ll

ip
se

o
ri

en
ta

ti
o

n
o

f
th

e
d

iu
rn

al
ba

nd
fl

u
ct

u
at

io
n

s,
m

ea
su

re
d

cl
oc

kw
is

e
fr

om
th

e
al

o
n

g
-s

h
el

f
d

ir
ec

ti
o

n
(3

17
"T

).
Th

e
m

ea
n

cr
o

ss
-

an
d

al
o

n
g

-s
h

el
f

w
in

d
st

re
ss

ar
e

gi
ve

n
in

co
lu

m
ns

8
an

d
9,

th
e

to
ta

l
v

ar
ia

n
ce

in
ea

ch
w

in
d

st
re

ss
re

co
rd

in
co

lu
m

n
10

,
an

d
th

e
p

er
ce

n
t

v
ar

ia
n

ce
ac

co
un

te
d

fo
r

by
th

e
d

iu
rn

al
ba

nd
is

in
co

lu
m

n
11

.



-34-

ii. TIME DOMAIN

The variation in time of the amplitude of the diurnal wind stress

is evident in the complex demodulation time series (see Appendix A)

shown in Figures 6 and 7 for Sea Ranch, C3 and C5. Although both 24

and 12 hour periods were included in the analysi s carried out for both

along-shelf and cross-shelf wind stress components, only the amplitude

and phase of the diurnal period along-shelf stress is shown. A con

stant value for phase indicates that a true 24-hour signal has been

isolated and is phase-locked to the day-night cycle. A phase of _90·

corresponds to maximum equatorward wind stress at 1600 PST. The

equatorward stress peaks at about 1400 to 1500 PST at Sea Ranch, and

an hour or two later at C3.

The diurnal stress is usually largest at C3 during both CODE-l and

-2. Amplitude modulations in the along-shelf diurnal wind stress are

significantly correlated at the 95% confidence level at Sea Ranch, C3,

R3 and Bodega Bay during CODE-l (Table 3). C5 is uncorrelated in time

with the other locations and its phase (not shown) is erratic. Point

Arena was not included in the calculation, since the diurnal wind

stress there was not highly coherent with the rest of the array.

During CODE-2, all the amplitude modulations are correlated with each

other except for Sea Ranch with C4, C5, and N3. As with the coherence

in the diurnal band, the correlations seem to show groupings among Sea

Ranch, C3, R3, and Bodega Bay and N3, C4, and C5 (Table 3). This is

suggestive that most of the time the first group of sites falls within

the nearshore zone defined in Beardsley et al. (1987) (see Figures 16

and 17i n that paper), whi 1e the second group of stati ons 1ies in the

intermediate zone. These boundaries are of course not fixed, which



C
l

18
0

-
i8

0
Cl

w
w

0
9

0
-

9
0

e
w

w
en

en
«

0
o

«
J:

I
Il

-
Il

-

a:
-9

0
--

90
~

J: ...
...

N
N

-1
8

0
-1

8
0

2
.0

.,
C

3
,-

2
0

I

0
0

0
0

~
1

5

~
N~

1
5

~
0

H
~

0
~

~

en
en

I
w

~
\

;'\
t\

95
w

w
Z

Z
lJ

1
>

>
I

e
1

0

~I,
It

1
0

e
Il

-
Il

-
:;

:2
«

,~
I~\

.
\

~.
A
~I

~
«

a:
a:

J:
J:

...
0

5
0

5
...

N
N

1
6

2
6

6
16

A
P

R
M

AY
1

9
8

i

2
6

5
1

5
JU

N
2

5
5

1
5

JU
L

2
5

F
ig

ur
e

6.
A

m
pl

itu
de

an
d

ph
as

e
of

th
e

di
ur

na
l

al
on

g-
sh

el
f

w
in

d
st

re
ss

du
ri

ng
CO

DE
-1

at
Se

a
R

an
ch

an
d

C3
ar

e
sh

ow
n.

A
m

pl
itu

de
on

ly
is

sh
ow

n
fo

r
C5

be
ca

us
e

th
e

ph
as

e
is

er
ra

ti
c.

T
he

re
ar

e
am

pl
it

ud
e

an
d

ph
as

e
es

ti
m

at
es

ev
er

y
si

x
ho

ur
s,

ea
ch

re
pr

es
en

ti
ng

a
le

as
t

sq
ua

re
s

fi
t

do
ne

ov
er

a
48

ho
ur

pe
ri

od
.

A
ph

as
e

of
_9

0·
co

rr
es

po
nd

s
to

pe
ak

eq
ua

to
rw

ar
d

w
in

d
st

re
ss

a
t

16
00

PS
T.



18
0

18
0

C!
l

C!
l

w
w

0
9

0
9

0
e

w
w

en
en

~
0

o
~

J:
J:

lL
lL

II
:

-9
0

-9
0

II
:

J:
J:

...
...

'"
-1

8
0

-1
8

0
'"

2.
0

,
,2

0

0
0

0.
0

1
5

S
A

",,
-

1
5

"
N

~
~

0
0

/C
3

---
---

en
I

en
w

w
W

Z
(
J
)

Z
>

I
>

1
0

1
0

e
e

C
5

lL
lL

I
~

~

~~
~

~
~

~
II

:
II

:

~
0

5
J:

J:
0

5
~

A
...

""
.

rc
,

'"

12
22

2
12

A
P

R
M

AY
19

82

22
1

11
JU

N
21

1
1

1
JU

L
21

F
ig

ur
e

7.
A

m
pl

itu
de

an
d

ph
as

e
of

th
e

di
ur

na
l

al
on

g-
sh

el
f

w
in

d
st

re
ss

du
ri

ng
CO

DE
-2

at
Se

a
R

an
ch

an
d

C3
ar

e
sh

ow
n.

A
m

pl
itu

de
on

ly
is

sh
ow

n
fo

r
C5

be
ca

us
e

th
e

ph
as

e
is

er
ra

ti
c.

T
he

re
ar

e
am

pl
it

ud
e

an
d

ph
as

e
es

ti
m

at
es

ev
er

y
si

x
ho

ur
s,

ea
ch

re
pr

es
en

ti
ng

a
le

as
t

sq
ua

re
s

fi
t

do
ne

ov
er

a
48

ho
ur

pe
ri

od
.

A
ph

as
e

of
_9

0·
co

rr
es

po
nd

s
to

pe
ak

eq
ua

to
rw

ar
d

w
in

d
st

re
ss

a
t

16
00

PS
T.



-37-

CODE-1

Based on 408 6-hourly poi nts (4/17/81 0000 - 7/27/81 1800 GMT)

SR C3 C5 R3

SR 1.00
C3 0.39 1.00
C5 -0.26 0.02 1.00
R3 0.61 0.62 0.13 1.00
BB 0.87 0.30 -0.11 0.70

-----------------------------------------------------------------------

CODE-2

Based on 416 6-hourly points (4/12/82 0000 - 7/25/82 0000 GMT)

N3 SR C3 C4 C5 R3

N3 1.00
SR 0.23 1.00
C3 0.43 0.68 1.UO
C4 0.80 0.20 0.61 1.00
C5 0.75 0.10 0.38 0.80 1.00
R3 0.47 0.68 0.82 0.53 0.35 1.00
BB 0.44 0.83 0.78 0.36 0.28 0.84

Table 3. Correlation coefficients for zero time lag between amplitude
modulation of diurnal along-shelf wind stress at various measurement
sites. Correlation is not significantly higher at any other time lag.
Based on both the autocorrelation time scales of the amplitude modu
lations, and the fact that each amplitude estimate is calculated for a
48-hour period, every eighth point is taken to represent an independent
estimate. The number of degrees of freedom, found by dividing the
number of 6-hourly points by 8, equals 51 for CODE-1 and 52 for CODE-2.
Correlation coefficients greater than 0.28 are significant at the 95%
confidence level.
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may account for why C3 and C4 appear to sometimes correspond more

closely to Sea Ranch and sometimes to C5.

The diurnal variations in wind stress are largest during periods

of strong equatorward wind stress. This is clearly seen in scatter

plots of diurnal versus mean wind stress at C3 for CODE-1 and -2 shown

in Figure 8. A similar relationship between average and diurnal

components in the wind records (see Figure 7 of Beardsley et al.,

1987) demonstrates that the increase in diurnal wind stress with

increasing mean stress is only partially a result of the fact that

stress is not a linear function of wind, so that changes in the mean

wind affect the diurnal period wind stress. A positive correlation

between low frequency and diurnal winds was also seen by O'Brien and

Pillsbury (1974) for the nearshore winds off Oregon, but farther

offshore, Burt et al. (1974) observed a negative correlation.

B. HEAT FLUX

All of the meteorological buoys deployed in CODE-1 and CODE-2

measured air and water (at 1 mdepth) temperature, and most measured

insolation as well. Based on shipboard measurements, the relative

humidity was seen to vary very little, and a constant value of 85% at

3.5 m above sea level was assumed. Using these data in the bulk aero

dynamic formulas, hourly values of sensible and latent heat flux were

obtained. A daily estimate for cloud cover, obtained as a function of

the ratio between the measured insolation and the predicted cloud-free

insolation, was used to obtain daily values of back-scattered long-wave

radiation. A complete discussion of these derived variables is given

in Beardsley et al. (in prep.). Since insolation is the major con-



C3
CO

D
E-

l
C3

CO
D

E-
2

o

: "
o

'. i
"

I W <
0 I

5
.0

i.
O

2
.0

3
.0

DI
UR

NA
L

1
.0

.', .... . .'

-O
ft

...
h
~
.

, .
..-

o
"
"
.,

.-
"

.:
.

r-
.,

..
.~

,;
. ....

~
.

'...
...

,
:,,

'ti
-

...
~

..
~
...,

•
-.

C:
••

;.
'.-v

.:'.
."

M.
C..

..
.

.
.

.
""',

.,
:

....
,.
~

"
.

.\
.

,
.

. .
o ~ , o ~
,o ,; .,

w U
) a
:o

"'
,.

;
w

,
> a:

t"
o ~
,o , o '?ci-

re
•

I
:.

.
1

.0
2

'0
I

~
.

3
I

•
,.

.
.0

i
0

I
...

..
'

DI
UR

NA
L

.
5

.0

-.
It

,.
.

1
'
(
~
'

.1
.
,

'

:.:
,:
~

...,
,,.

,
.:

;t
:"

•
:

~
.

<.
i

.
~
~

-j
,,

\:
._

.
•

,"
,"

h
,

~ ....
.....

•~
..r

:
.....

-}
.

.Jr
"

..,
.

::
.'

,.
.t

•
••

•
••

e.
..

w U
) a
:o "'
.

w
';

'
> a:

o ~
,

o If

F
ig

ur
e

8.
S

ca
tt

er
p

lo
ts

of
m

ea
n

ve
rs

us
di

ur
na

l
w

in
d

st
re

ss
a
t

C3
ar

e
sh

ow
n

fo
r

CO
D

E-
l

an
d

-2
.

V
al

ue
s

ar
e

ca
lc

u
la

te
d

ov
er

48
ho

ur
pe

ri
od

s
st

ar
ti

n
g

ev
er

y
si

x
ho

ur
s.

U
ni

ts
ar

e
dy

ne
s

cm
-2



-40-

tributor to the net heat flux and most of the time it varies little

over the array, the surface heat flux at C3, the center of the array,

was taken as representative of the area. Figure 9 shows the average

daily surface heat flux for CODE-1 and -2. For CODE-1 (-2), net

incoming solar radiation reaches a maximum of 73 (77) mw cm- 2 at

about 1200 PST. Sensible and latent heat flux are approximately

constant over the day, and together with long-wave radiation (assumed

to be constant over the day for lack of information on its diurnal

variability) cause a heat loss of about 6 (4) mw cm-2• The slight

irregularity in the CODE-1 insolation data shown in Figure 9 was

caused by a shadow from a support on the C3 buoy tower.

5. DESCRIPTION OF THE DIURNAL PERIOD CURRENTS

Time series plots of high-passed (the filter is described in

Appendix B; its half-power point is at 0.D28 cph) hourly-averaged

currents reveal discernible bursts of diurnal period variability

ranging in duration from one to several days. The 10 mcurrent

records from C3 are shown in Figure 10 as an example. The largest

event, with currents over 40 cm s-l, occurs during May 12-14, 1982.

Comparison of kinetic energy spectra (Figure 11) from different depths

shows that diurnal energy is surface-intensified during the summer.

At C3 and R3, comparison of spectra calculated from the winter with

those from the summer shows that the diurnal is the only frequency at

which kinetic energy is larger during the summer. Figure 11 shows the

tidal band total kinetic energy spectra at C3 for the 10 and 70 m

currents for CODE-2 and the 10 mcurrents during the winter. There is

no evidence of significant inertial energy during the summer in any



-41-

iij-,----------------------

CODE-1

----- _._.-,,+==--=.==-=.~=~'=~-==-=--=.=-=-==c:c==c=_====::=:::_::=::_::_--- -~ --- --------- --- ---'·.7~==.=-.
11
I

iij-,---------------------,

CODE-2
.-

//

LEGEND
NIT.lNC SRAD

....H.tl\T:l3lJQC;f.[__ .. __
L-W,8RAD.CCL

_StNSI8L£.H-F_
LAT;NT.H-[_

"'"

,,+-----~i-----_.~===="'.=-=.=-=-.=-=7_' ===--j
- -- -~ --- --- - -- ------ -~ ----

U .. UH ," . ' ••• - __

"'0

11
I

~_l___.,-,.-r_r__1__,___r_,___,__,_-,---r__._.--,-.,.-.,-r_,_,__,___r:_::l
o , 2 J 4 5 6 7 8 9 TO 17 12 13 14 IS 16 17 f8 19 20 2' 22 23

Average Daily Su~face Heal Flux

Figure 9. The average daily surface heat flux cycle is shown for the
Co E-! (4/14/81 - 7/13/81) and -2 (4/14/82 - 7/27/82) experiments.
Positive values mean the heat flux is directed into the ocean.
HEAT. BUDGET = net heat flux, NET.INC.SRAD = net incoming solar
radiation, L-W.BRAD.CCL = long-wave radiation backscattered by cloud
cover, SENSIBLE.H-F =sensible heat flux, LATENT.H-F = latent heat
flux. Time in hours PST is given on the x-axis.
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and -2. Time periods with especially large amplitude diurnal period
currents are stippled. The high-pass filter used is described in
Appendix B.
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shelf current spectra, whereas the winter current spectra show

generally elevated energy between the diurnal and semi-diurnal

frequencies, and some exhibit a distinct inertial peak.

Empirical orthogonal function (EOF) analysis in the frequency

domain has been employed here to describe the spatial structure of the

diurnal band variability. Amplitude and phase, relative to an

arbitrary reference, of the coherent part of each input time series is

obtained for each mode. This method of analysis is discussed further

in Wallace and Dickinson (1972). The specifics of the calculations

used here are as follows. For each EOF analysis, a cross-spectral

matrix including along- and cross-shelf components of wind stress and

currents was formed. Horizontal wind stress and current ellipses were

constructed from the amplitudes and phases of these two orthogonal

horizontal components. The objective was to determine the spatial

structure of the diurnal band current field and its relationship to

the wind stress fluctuations coherent with it. The currents in

cm s-l were weighted by 1.0, and the wind stress in dynes cm- 2 by
n

0.1, so that the modal structures were largely determined by the

currents. A frequency band width of 0.92 to 1.08 cpd (periods between

26.1 and 22.2 hours) was used. This includes all of the diurnal tidal

constituents, and excludes the inertial frequency.

Figures 12 and 13 show the first mode at each mooring along the

C-line in CODE-1 and -2, respectively. The EOF calculation was done

separately for each mooring, and phases are referred to a value of

zero for the along-shelf component of velocity at the uppermost

instrument. The coherent diurnal wind stress from the closest wind

measurement site is shown above each mooring site, as well as a vector
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indicating the mean stress at that location. The percent of the total

vari ance accounted for by the lowest mode is gi ven next to each

mooring. The coherence between the lowest mode and velocity

components at each depth, or the wind stress, are listed in Table 4.

The modes are dominated by the upper currents, as evidenced by the

fact that the percent variance accounted for by the mode decreases

with depth. A large percentage of the wind stress variance is

coherent with these vertical modes. Much of the variance in the lower

currents is in the second mode (not listed) at each site. The

ellipses in these modes are oriented along-shelf, rotate CW, and have

semi-major axes of one to two cm s-l. No calculations were done for

C2 and C5 during CODE-1 because the vertical resolution at those sites

was poor. The size of the currents and wind stresses may be compared

directly between moorings and deployments because all have been

multiplied by the appropriate factors involving the eigenvalues.

Phases may only be compared along a given mooring. To focus attention

on the upper water column, results from the first mode calculated

using all the current measurements above 40 mand the wind stress

measurements along the C-line are presented in Figures 14 and 15 on an

expanded vertical scale for the two experiments. Now, both magnitudes

and phases may be directly compared within a given figure.

The following observations from Figures 12 through 15 are notable:

(1) average diurnal band currents of over 6 cm s-l are observed near

the surface; (2) over the shelf, the first vertical mode at each site

accounts for over 68% of the variance; (3) the percent of variance

accounted for by a single vertical mode decreases in the offshore

direction - at C5, over the slope, slightly less than half the
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CODE-1 CODE-2
Cross- Along- Cross- Along-

Stat; on Depth shelf shelf Station Depth shel f shelf

C1 4 0.84 0.98 C2 10 0.71 0.94
7 0.B7 0.99 20 0.62 0.91

11 0.76 0.93 35 0.20 0.58
23 0.63 0.92 53 0.21 0.49
27 0.45 0.85 SR '"[ 0.30 0.56

SR '"[ 0.05 0.83

C3 9 0.75 0.96 C3 5 0.82 0.96
14 0.80 0.95 10 0.81 0.97
29 0.44 0.76 15 0.82 0.96
35 0.38 0.66 20 0.77 0.94
83 0.67 0.53 35 0.12 0.53

C3 '"[ 0.79 0.80 53 0.23 0.38
70 0.54 0.37
83 0.62 0.44

C3 '"[ 0.68 0.65

C4 19 0.70 0.85 C4 10 ' 0.89 0.93
29 0.75 0.82 20 0.83 0.83
45 0.61 0.67 35 0.42 0.45
65 0.41 0.62 55 0.04 0.25
75 0.35 0.58 70 0.03 0.13
95 0.41 0.49 90 0.16 0.14

123 0.65 0.59 121 0.38 0.38
C3 '"[ 0.55 0.51 C4 '"[ 0.64 0.60

C5 20 0.78 0.80
35 0.34 0.63
55 0.17 0.03
70 0.42 0.16
90 0.32 0.25

110 0.38 0.43
150 0.51 0.29
250 0.47 0.43
350 0.28 0.50

C5 '"[ 0.35 0.39

Table 4. The fraction of the indicated wind stress and current records
accounted for by the first mode at each mooring. This is the same as
the coherence between the time series and the mode.
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variance is in the first mode; (4) all current vectors rotate CW,

except near the bottom at C1 during CODE-1 and C2 during CODE-2; (5)

the size of the diurnal band currents decreases with depth down to

about 30 to 40 m, and below that is relatively constant; 6) the

near-surface ellipses are oriented to the right of the wind stress

fluctuations; (7) the near-surface ellipses become less elongated in

the seaward direction; (8) near-surface currents are nearly in phase

with the wind stress; (9) the phase of the currents decreases with

depth (i.e. the lower ones lead the upper ones); and (10) the current

ellipses all across the shelf are nearly identical in size during the

two summers, as are the wind stresses. Note that all of these results

represent an average over the whole 90 day (CODE-1) or 105 day

(CODE-2) time period.

6. CORRELATION BETWEEN WIND STRESS AND CURRENTS

The pronounced surface intensification of the diurnal currents,

together with the presence of strong atmospheric forcing at the

diurnal frequency, leads us to investigate the connection between

these two phenomena. Three avenues have been explored in an effort

to determine if the enhanced diurnal currents are consistent with

direct forcing by the wind stress. The first makes use of the

non-stationarity of the amplitude of the wind stress as discussed

in Section 4, the second considers the horizontal structure of the

diurnal wind stress and current fields, and the third approach

examines the vertical structure of the currents.

These points are addressed by looking at the correlations between

the diurnal amplitude modulation (determined by the complex demodu-
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lation technique described in Appendix A) of the along-shelf component

of wind stress and along-shelf component of currents at depths less

than 35 m. These are given in Table 5. The amplitude modulation of

the diurnal currents at depths to at least 20 m, but not as deep as

35 m, is strongly correlated with the amplitude modulation of the

along-shelf wind stress. Tue correlations are greatest between the

currents at a given mooring and the wind stress directly above it.

Table 5 indicates that: (1) the diurnal currents at Cl in CODE-l are

highly correlated with the diurnal wind stress at Sea Ranch, and

slightly less so with C3; (2) the near-surface diurnal currents at C2

are correlated with Sea Ranch and C3 wind stress, more so with Sea

Ranch during CODE-l and C3 during CODE-2; (3) C3 diurnal currents are

significantly correlated with wind stress at C3, but only marginally

(CODE-2) or not at all (CODE-I) with Sea Ranch and C4; and (4) C4

diurnal currents are correlated with wind stress at C4 and marginally

with that at C3. There is a general pattern of highest correlations

near the coast, decreasing in the offshore direction, and near the

surface, decreasing with depth. The diurnal current amplitude

modulations are highly coherent in the vertical at a given mooring

site. The correlation drops off with cross-shelf distance more

rapidly for the currents than the wind stress.

In this and previous sections, it has been established that the

diurnal currents over the shelf are surface-intensified, CW-rotating,

relatively depth-independent in the lower part of the water column,

and correlated with the local diurnal wind stress in the upper part of

the water column. Diurnal currents over the northern California shelf

may be generated by two sources, tidal and atmospheric forcing. The
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CODE-1 CODE-2
Based on 334 6-hourly points Based on 445 6-hourly points

(4/18 - 7/10 1981) (4/05 - 7/25 1982)
Wind Stress: Sea Ranch C3 Wind Stress: Sea Ranch C3 C4 C5

Current Current

C1 4 m 0.79 0.47 C2 10m 0.52 0.60 0.31 0.11
7 m 0.68 0.42 20 m 0.40 0.52 0.31 0.28

11m 0.63 0.30 35 m -0.05 -0.05 0.07 0.16
23 m 0.54 0.23
27 m 0.52 0.11 C3 5 m 0.20 0.38 0.28 0.10

10m 0.26 0.37 0.19 0.01
C2 4 m 0.62 0.27 15 m 0.27 0.44 0.18 o.oi

14 m 0.27 0.16 20 m 0.09 0.28 0.06 -0.05
35 m 0.01 0.11 0.11 0.16

C3 9 m -0.21 0.36
14 m -0.14 0.48 C4 10m 0.00 0.26 0.40 0.32
29 m -0.08 0.49 20 m 0.08 0.30 0.38 0.33 '.35 m -0.13 0.32 35 m -0.03 0.10 0.21 0.15

C4 29 m -0.25 -0.09 C5 20 m -0.06 0.06 0.26 0.25

Degrees of freedom = 42 Degrees of freedom = 56
R > 0.30 is significant R > 0.26 is significant at 95% level
at 95% level

Tabl e 5. Correlation coefficients between amplitude modulations of
along-shelf wind stress and currents within 35 m of the sea surface for
zero time lag. Correlations at time lags up to 48 hours are never
significantly greater than those reported here.



-54-

foregoing analysis indicates that the diurnal currents in the nearshore

upper layer of the ocean may be identified with the atmospherically

forced part. In Section 7, it will be shown that the weaker currents

below the surface layer are consistent with model predictions for the

tidally-driven flow. In Section 8, models for the generation of

diurnal currents by the diurnal wind stress will be discussed and

compared with the observations.

7. DIURNAL TIDAL CURRENTS

Least squares tidal analysis (Boon and Kiley, 1978) of coastal sea

level and bottom pressure measurements obtained in CODE, as well as

historical data, show that the largest diurnal constituent along the

northern California shelf is the luni-solar (K 1) with a period of

23.93 hours. The K1 amplitude in the CODE region is about 37 cm.

In general the Sl constituent, with a period of 24.00 hours, is of

order 1 cm on the California coast (Zetler, 1971) and Sauvel (1985)

reports values of 2 cm from response analysis of pressure records from

CODE-1. The Sl tide is primarily due to radiational rather than

gravitational effects and includes the action of the atmospheric tide

on the sea surface, diurnal wind effects, and to a lesser extent

steric changes due to thermal heating (Zetler, 1971). Based on the

observed daily variations in temperature, the steric contribution to

sea level change due to diurnal heating is estimated to be only about

0.1 cm in the CODE area. The next largest diurnal tidal constituent

after K1 is the principal lunar (01) with a period of 25.82

hours. The 01 amplitude is approximately 23 cm in the CODE area.

By contrast, the largest semi-diurnal constituent (M2) has an
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amplitude of about 55 cm in this region. Harmonic constants for the

principal semidiurnal and diurnal constituents calculated from bottom

pressure records in CODE-1 and CODE-2 are reported in Brown, Irisn,

and Erdman (1983) and Brown (1985), respectively. As reported by

Munk, Snodgrass, and Wimbush (1970), both the phase and ampl itude of

the K1 tide increase towards the north along the coast of

California. Through fitting to pressure observations off southern

California, they interpreted the K1 tidal response as the sum of

Kelvin, Poincare and forced waves with amplitudes of 21, 24, and 9 cm,

respecti vely,

of order 1 cm

at the coast. This combination produces tidal currents
-1s over the shelf.

The diurnal frequency is below the inertial frequency for the CODE

latitude, so Poincare and freely propagating internal waves are not

permitted. One might anticipate, however, the presence of class two

(vorticity) coastal-trapped waves (CTW), as have been ooserved off

Vancouver Island to the north by Crawford and Thomson (1982), in

addition to the barotropic Kelvin wave2. In fact, Noble et al.

(1987) have found the diurnal currents over the outer continental

margin adjacent to the CODE area to be consistent with the combination

of a Kelvin and first mode CTW. The tidal currents associated with

these waves can be estimated from pressure measurements.

Figure 16 shows the K1 amplitude and phase for eight coastal sea

level records adjusted for atmospheric pressure (provided by J. Allen

and G. Halliwell of Oregon State University) and seven bottom pressure

2 The term "barotropic Kelvin wave" as used here, refers to the
zeroth mode CTW. It is associated primarily with deflection of the
sea surface, and has little signature in the density field. Due to
the presence of topography, cross-shelf velocities may be non-zero.
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Figure 16. Amplitude and phase for the K1 tidal constituent
detenni ned from sea 1evel and bottom pressure measurements along th e
coast of California. Alongshore distances are referred to the CODE
C-line. The solid line indicates the best quadratic fit. The dashed
line on the amplitude plot indicates deviation from the large-scale
pressure field that would be caused by a phase-locked first mode
coastal-trapped wave with 1 cm amplitude and 250 km wavelength.



-57-

records from the 130 m isobath (provided by ~. Brown and J. Irish of

University of New Hampshire) with the solid line showing the best

quadratic fit. These data, extending over 900 km of the California

coastline, are representative of the large-scale pressure field.

Barotropic tidal currents calculated from these data according to the

method of Battisti and Clarke (1982a) are oriented along-shelf, rotate

counter-clockwise (CC~) and have semi-major axes of 1 to 2 cm s-l.

The details of how this calculation is performed are discussed for the

semidiurnal tidal currents in Rosenfeld and Beardsley (1987). Also

described in that paper is a numerical scheme for calculating the

wavelength and cross-shelf pressure and velocity structure for a

barotropic Kelvin wave. A Kelvin wave at the K1 period is found to

have a wavelength of 16,200 km. ~ith a coastal amplitude of 37 cm,

the resultant velocities over the shelf are of amplitude 1 to 2 cm s-l

with CC~ rotation, consistent with the predictions from the Battisti

and Clarke (1982a) method. Tidal analysis of C-line currents below

the surface layer show a range in amplitudes from 1 to 3 cm s-l with

C~ rotation, so a simple Kelvin wave model can not account for them

and an explanation must be sought elsewhere.

The topography in the CODE region does not permit a purely

barotropic continental shelf wave at the diurnal frequency, but as

pointed out by Chapman (1983), the introduction of even a slight

amount of stratification can allow the dispersion curves for CT~s to

go to the inertial frequency. Over the continental shelf, a mode one

diurnal CT~ will have CW-rotating velocity ellipses that are oriented

along-shelf. A numerical model described in Brink and Chapman (1985)

was used to calculate the free diurnal CT~s with realistic topography
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and Brunt-Vaisala (N) frequency profile. The coastal boundary

condition was applied at the 47 m isobath (a distance of one km from

shore) in accordance with the theory of Mitchum and Clarke (1986).

Although their theory is strictly applicable only for low frequency

waves, the exact placement of the coastal wall does not change

appreciably the results discussed here. Using horizontal resolution

of 6.25 km, 17 grid points evenly distributed in the vertical, and

bottom stress based on 0.5 mwave height3, the along-shelf wavelength

for the first mode CTW ranged from 185 to 256 km, depending on the

N2 profile. Several N2 profiles based on CODE hydrographic

measurements (supplied by A. Huyer of Oregon State University) were

used. The N2 profile is imposed on the seaward edge of the domain,

and the program interpolates or averages from this to 17 evenly spaced

points in the vertical at each horizontal grid point. Since the

distance from the coast to the 130 m isobath (about 15 km) is a large

fraction of the offshore decay scale for the pressure field for this

wave (about 20 km), the alongshore array of coastal sea level

measurements alone was used to estimate its amplitude. The K1
amplitudes for the coastal sealevel records are marked by crosses and

connected by a dashed line in Figure 16. It is seen that for the

appropriate length scales, deviations from the larger scale pressure

field (represented by the solid line) are of order 1 cm. A first mode

CTW with this amplitude at the coast would result in velocities of 3

3 Bottom stress equal to a resistance coefficient times the bottom
velocity vector is used. The resistance coefficient is a function of
depth and wave height, and is calculated using a simplification of the
Grant and Madsen (1979) model. The bottom stress parameterization is
described in more detail in Clarke and Brink (1985).
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to 4 cm s-l over the shelf. Figure 17 shows the velocity ellipses

(calculated from Brink's model) along the C-line for a first mode CTW

with coastal amplitude 1 cm for the N2 profile shown at the left of

the figure. The velocity ellipses resulting from the sum of any two

waves will depend on the phase difference between them. Although a

rigorous fitting of the observed velocity ellipses to the sum of

Kelvin and coastal-trapped waves is not attempted here, it is noted

that the combination of a 1 cm first mode CTW and a 37 cm Kelvin wave,

differing in phase by 180·, results in a CW-rotating, along-shelf

oriented velocity ellipse with semi-major axis of 1.8 cm s-l (at a

distance of 7 km from shore). This is in reasonable agreement with

the observed velocity ellipses below the surface layer as seen in the

diurnal EOFs shown in Figures 12 and 13. It is important to note that

over the shelf the velocity field due to the CTW is relatively

depth-independent and has CW-rotating ellipses. It is also

i nteresti ng that the di urna1 shelf wave here is about a factor of fi ve

small er than that observed in the current (Crawford and Thomson, 1982)

and pressure fields (Battisti and Clarke, 1982b) off Vancouver Island.

8. FORCED RESPONSE

Few efforts have been made in the past to model the effects of a

diurnally varying wind stress over the coastal ocean. To the author's

knowledge, the only analytic model published in the open literature of

the response to a seabreeze in the presence of a coast is that of

Shaffer (1972), who investigated the effects on upwelling of an

along-shelf trade wind and a cross-shelf seabreeze starting up from

slack conditions. He used an infinitely deep homogeneous ocean
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oounded oy a vertical wall at which no slip and no normal flow

conditions were imposed. Both components of the wind decayed

exponentially away from the coast. No along-shelf variations were

allowed, a rigid lid was imposed, and the equations were linearized.

Horizontal and vertical eddy diffusivities of 108 and 102 cm2 s-l,

respectively, were used. This initial value proolem was intended to

simulate conditions on the northwest coast of Africa, out the variation

of the solution with latitude was investigated, including a discussion

of the resonance condition at 30·. For latitudes greater than 30·,

Shaffer found that outside the coastal ooundary layer, the horizontal

current ellipse exhioited CW rotation, with the major axis inclined

4S· to the right of the oscillating part of the wind. The vertical

structure of the horizontal velocity is the same as that of the

Fredholm solution presented in Ekman (l!X)S).

Motivated by the observations off Oregon discussed in Section 2,

Clancy et al. (1979) developed a time-dependent two-dimensional

coupled ocean (2-layer) - atmosphere (4-layer) model and used it to

explore the interactions between the seabreeze and the coastal

upwelling. They found that the seabreeze caused increased upwelling

and the increased upwelling altered the seabreeze, but changes in the

mean along-shelf wind compensated in such a way that the air-sea

feedback loop was very weak. Consistent with the findings of Burt et

al. (1974), the seabreeze amplitude over the whole model ocean

decreased as the mean equatorward winds increased. As has been shown

here, the opposite is true in CODE, so it is unclear how applicable

these model results are to northern California. The exclusion of heat

flux from the atmosphere to the ocean (although heat flux in the
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opposite direction is retained) makes this model unsuitable for

investigating the vertical structure of the surface layer currents

generated by a diurnally varying wind stress. The main results of the

Clancy et al. (1979) model, as far as the ocean current response is

concerned, are summarized in O'Brien et al. (1977). The seabreeze is

seen to force a CW-rotating diurnal oscillation in the upper layer of

the ocean near the coast.

Rather than attempt the development of a numerical model which

includes all the elements at once (no low frequency assumption, the

presence of a coast, diurnal heating and wind stress) necessary to

examine the problem of a diurnally varying wind stress acting on the

coastal ocean, the approach adopted here is to examine separately the

currents generated by the stress in the upper part of the ocean, and

those felt throughout the water column nearshore, due to the pressure

gradient built up against the coast.

The linearized equations of motion in a stratified fluid are

ut - fv =
1 +..L FX (1)- - PPo X Po z

vt - fu 1 +..L FY (2)= - - P
Po Y Po Z

Pz =-gp (3 )

(4 )

( 5)
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where u, v, and ware the cross-shelf, along-shelf and. vertical com-

ponents of velocity, respectively, p is density, p is pressure, and f

is the i nerti a1 frequency. The sUbsc ri pts x, y, and z denote dif-

ferentiation in the cross-shelf, along-shelf, and vertical direc

tions. (Fx, FYj is the vertical turbulent flux of horizontal

momentum. Horizontal diffusivity has been neglected. For the

coastal ocean with wind forcing at the surface, the appropriate

boundary conditions are

w = -uH - vHx Y

f0 u dz = 0
-H

at z = 0

at z = -H

at x = 0

(6)

(8)

where (,x, ,y) is the wind stress vector, (B x, BY) is the bottom stress

vector and n denotes the sea surface elevation.

The velocity field can be separated into a pressure-induced invis

cid part (up' vp) and a frictional part (ue ' ve). The momentum equa

tions governing the frictional part are

u - fvet e
(9)
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( 10 )

The near-surface frictional part of the flow field is discussed in

part B of this section.

The momentum equations governing the pressure-induced flow are

u - fv -1
= P PxPt p 0

v - fu -1
= P PyPt p

0

(11 )

(12)

This component of the velocity field may be calculated independently

of the details of the boundary layer flows. It is only necessary to

know the surface and bottom stress vectors and their curl and diverg

ence in order to specify the vertical velocity at the edge of the

boundary layers, and the cross-shelf transport in these layers. The

boundary conditions given in (6) through (B) are then modified by

these terms, to give the appropriate boundary conditions for the

pressure-induced flow (equations 5.4 in Brink and Chapman, 1985).

A numerical solution for the pressure-induced flow, assuming all

variables to have time dependence eiwt , will be presented next.

A. INTERIOR FORCED RESPONSE

Due to cross-shelf transport in the surface boundary layer,

diurnal wind forcing leads to a diurnal period oscillation in the

pressure field that is largest at the coast. The spatial gradient of

this pressure field is responsible for a pressure-driven diurnally

oscillating flow that will be felt throughout the water column,
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although modified with depth to some extent in a stratified fluid.

Consider here a situation in which the topography and the bottom stress

vary in the cross-shelf direction only. Using an N2 profile typical

of the nearshore conditions in CODE, the inviscid response was calcu-

lated using a computer program described in Brink and Chapman (1985).

As in the case for free diurnal CTWs, the free surface option was used

and the coastal boundary was put at the 47 m isobath. The details of

the model are the same as in the unforced case (Section 7l, except that

the horizontal resolution is now 4 km. The interior flow is assumed

to be inviscid, with all the friction confined to infinitesimally thin

boundary layers at the top and bottom of the water column. The ampli

tude of the diurnal along-shelf wind stress at the coastal boundary

(0.40 dynes cm- 2l and at distances of 6 (0.60 dynes cm- 2l, 14

(0.25 dynes cm- 2) , and 27 km (0.25 dynes cm- 2l offshore was

specified based on the CODE-2 spectral estimates given in Table 2.

The results are summarized in Table 6. The predicted current ellipses

rotate CW, are oriented in the along-shelf direction, and are nearly

independent of depth. Near the coast, their amplitude is similar to

that of the tidal currents, but it decays rapidly offshore. The

results are the same whether the wind field is specified as being

independent of y, or the sum of northward and southward propagating

waves with alongshore wavelength of 220 km, chosen to represent a

maximum in the diurnal stress at the C-line and minima at Pt. Arena

and Pt. Reyes.
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Gros s-shelf Along-shelf
Velocity Velocity Pressure

Di stance from
47 m i sobath* Depth A e A e A e

(km) (m) (cm/s) (deg) (cm/s) (deg) (mb) (deg)

0 0 1.9 -137 2.4 -47 '123 105
23 1.9 -137 2.4 -47 118 105
47 1.9 -137 2.4 -47 113 104

4 0 2.0 -159 2.4 -69 92 101
42 1.6 -157 2.0 -67 88 100
85 1.3 -162 1.7 -72 83 96

8 0 1.6 -166 2.0 -76 60 99
52 1.2 -165 1.5 -75 64 97

104 1.0 -172 1.2 -82 61 92

12 0 0.7 -163 0.9 -73 41 97
63 0.8 -168 1.0 -78 49 94

125 0.7 -178 0.8 -88 47 89

16 0 0.2 -151 0.3 -62 36 94
75 0.5 -171 0.6 -81 39 92

150 0.4 +177 0.5 -93 36 88

*Add 1 km to get distance from shore.

Table 6. Interior velocities and pressures resulting from diurnal wind
forcing. Phases are relative to a value of zero for the wind stress.
Negative phase means current (or pressure) lags wind. Results are
shown for surface, mid-depth, and bottom for the five horizontal grid
points closest to shore.
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,
stress, and to see whether a one-dimensional mixed layer model includ-

ing stratification and forced by diurnal heating and wind stress can

reasonably duplicate the observations, a number of experiments were

run with a modified version of the PWP model. A brief description of

the model, as used for this study, is given next. The model ocean is

considered to be infinitely deep. The absence of a bottom boundary

layer is not considered to be a problem here, since the current data

indicate that the surface boundary layer flow gives way to a

depth-independent interior flow before the bottom is reached.

Equations (9) and (10) for the velocity (with the addition of a

damping term on the right-hand sides), together with the following

equation governing temperature, are solved on an evenly spaced

vertical grid (~Z = 1 m) and stepped forward in time (~t = 30 min).

(13)

where T is temperature, Q is heat flux, c = 3993 joules kg- 1 ·C- 1 is

the heat capacity, and Po = 1026.1 kg m-3• Density is calculated at

each time step as a linear function of temperature using P = PR +

( . -3.a T - TR), wlth PR = 1026.1 kg m ,TR = 10.3 ,C and a =
O 17 -3 ·C- 1 .-. kg m . • These values were chosen 1 n correspondence

with the initial density profile shown in Figure 18. Salinity was

taken to be constant in time.

The surface heat flux Q(O) is modelled as the sum of a solar

radiation term represented by the positive part of a sine curve, and a

constant heat loss term representing the sum of the latent, sensible

and long-wave radiation terms. All the heat loss is presumed to leave
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B. FRICTIONAL FORCED RESPONSE

In this sub-section, the frictional part of the velocity field is

considered. An eddy viscosity approach to prediction of the

quasi-steady state solution for periodic wind forcing with no

stratification or heating is presented in Appendix C. Such a model,

however, can not be used to address questions concerning the effects

of diurnal heating on the diurnal current field, which Price, Weller,

and Pinkel (1986) (hereafter referred to as PWP) have shown to be

important. The CODE current measurements presented in Sections 5 and

6 reveal a non-stationary surface-intensified diurnal flow that is

strongly correlated with variations in the local diurnal wind stress.

It has also been demonstrated (Figure 8) that the amplitude of the

diurnal wind stress is linearly related to the lower frequency wind

stress. PWP point out that a steady wind stress in the presence of

the diurnal heating cycle will result in a current structure varying

with diurnal period, which they refer to as a diurnal jet in analogy

with the nocturnal jet in the atmosphere.

Although numerous one-dimensional models for the mixed layer of

the ocean have been used to examine the effects of wind and buoyancy

forcing on the upper ocean, only one by Dickey and Simpson (1983) has

included explicitly diurnal cycles of both heating and wind stress.

Several others have looked at the effects of diurnal heating in the

presence of a constant wind stress (Kondo, Sasano, and Ishii, 1979;

Price, Weller and Pinkel, 1986; Woods and Strass, 1986). In an effort

to see whether the variations in time of the diurnal current amplitude

might be due more to the changing mean wind stress combined with a

diurnal cycle of surface heat flux than to the changing diurnal wind
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Figure 18. The initial density profile used in the one-dimensional
mixed layer model calculations is shown.
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from the sea surface. The net incoming solar radiation is distributed

over depth according to

Hz)

z
,1.2

e ] (z positive downward), (14)

where the SUbscripts 1 and 2 refer to the long- and short-wave com

ponents of insolation. Dickey and Simpson (1983) used a level 2-1/2

turbulent closure model to investigate the influence of optical water

type on the diurnal thermal response of the upper ocean for a constant

wind stress. They concluded that for wind speeds greater than 6 m s-1

(corresponding to a stress value of about 0.6 dynes cm-2) , the diurnal

amplitude of sea surface temperature is only weakly dependent on water

type. The rate of increase of mean temperature and the thermal grad

ient at the base of the mixed layer are more affected by water type,

with larger values for less clear water, agai n for wind speeds greater
-1than 6 m s . No measurements were made in CODE to allow determination

of the optical water type, so it was assumed to be of the coastal Type

III defined by Jerlov (1976). Paulson and Simpson's (1977) values of
-1 -1II = 0.78, 12 = 0.22, ,1.1 = 1.4 m ,,1.2 = 7.9 m for Type III water

were used. Model runs made with II = 0.6,1 2 = 0.4, ,1.1 = 0.5 m-1, and

,1.2 = 15 m-1 give diurnal current results very similar to those shown

here. In accordance with the measured surface heat flux (Figures 9 and

19a), insolation lasting over a period of 13 hours and peaking at 1230 PST

is used. The amplitude is a variable input to the model. The wind stress

in the along-shelf direction is modelled as the sum of a constant plus a

diurnal period sinusoidal oscillation. The mean stress, and the amplitude



-71-

and phase of the diurnal stress, can be varied for each model run. The

cross-shelf stress is set to zero.

At each time step, the appropriate heat flux and surface stress are

applied and vertical mixing takes place between adjacent grid points until

the following stability criteria are satisfied:

Pz > 0 (l5a)

(15b)

(lSe )

-..
where g is gravity, V is the velocity vector, h is the mixed layer

depth, and A refers to the difference between the value in the mixed

layer and the level just below it. Equation'(l5a) simulates mixing by

convective overturning. Equation (15b) represents entrainment at the

base of the mixed layer. Equation (ISe) represents mixing by shear

flow instability, and acts to smooth out the sharp jump at the base of

the mixed layer. The critical values of the bulk (0.65) and gradient

(0.25) Richardson numbers are based on the results of PI/P.

If the forcing is turned on suddenly, and no damping is applied,

strong inertial oscillations dominate the current response in the

model. Both the CODE observations and theoretical considerations

discussed by Kundu, Chao and McCreary (1983) and Pettigrew (1981)

suggest that due to the nearby presence of the coast, there is very

little inertial period energy. Because the model is one-dimensi'onal,

and there is no way to incorporate directly the effects of the coast,
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two steps are taken to artificially reduce the inertial period oscil

lations. A ramp, linearly increasing from zero to the prescribed value

of wind stress, is applied to the forcing over the first two days. In

addition, a damping term of the form -rV is added to the right-hand

side of the momentum equations. The Rayleigh friction parameter r is

set equal to (5 days)-1, based on the results of Kundu et a1.

(1983). A damping term of this form and approximate magnitude was

also used by Kundu (1976) in his application of the Pollard and

Millard (1970) model to observations off the Oregon coast. The

damping coefficient is taken to be constant with depth over the whole

water column, so energy left behind in the lower water column as the

mixed layer shoals is also damped. The model was run for 12.5 days.

Figure 19 shows the high-passed currents observed at C3 during the

five day period July 3-7, 1982, and the high-passed current results

from days 5-10 of six model runs. These results were examined in

order to characterize the effects that changes in the amplitude of the

diurnal heating and mean and diurnal wind stress have on the diurnal

currents. In addition, the results were compared with the

observations to see if the model was in agreement, in an average

sense, with the observed diurnal currents during this period. This is

not an attempt to duplicate the hour-by-hour or day-to-day variations

in the observed forcing and currents during these 5 days, but rather

to try to understand the mechanisms at work in producing the

variability observed over the whole CODE-2 experiment.

Figure 19a shows the measured surface heat flux, along-shelf wind

stress, and high-passed current vectors for this period. The average

diurnal current ellipses at 5 and 35 mdepths as determined from the
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complex demodulation for this time period are shown to the right of the

current vectors. It is seen that there is little variation in the amp

litude or phase of the high-passed currents (which are dominated by the

diurnal component during this period) between 5 and ZO m. The currents

at 35 mare greatly reduced, relative to those in the upper water col

umn. The 5 m diurnal current ellipse has a semi-major axis of 14.5 cm

s-l, a semi-minor axis of 5.3 cm s-l, is oriented towards 339°T,

and rotates in a CW manner.

Figure 19b shows the results of the model run with inputs most

closely approximating the average observed forcing over this time peri

od. The amplitude of the net solar radiation (incoming minus reflected)

is set to 9Z5 watts m-Z, the steady heat loss is -60 watts m- Z, the

mean along-shelf wind stress is -Z dynes cm- Z, and the amplitude of the

diurnal wind stress is 1 dyne cm- Z, with maximum equatorward stress at

1800 PST. As expected, the model currents are more circularly polarized

because of the absence of coastal effects and the fact that tidal cur-

rents are not included. As seen from the 5 m ellipses, the phase of

the modelled diurnal currents in the mixed layer agrees well with the

observations, with the current vectors pointing almost directly upcoast

(towards 317°T) at 0000 PST. The model mixed layer is slightly too

deep, resulting in currents weaker than observed.

To see what effect the addition of the pressure-induced current

response (Section 8A) has, the wind-forced model of Brink and Chapman

(1985) was run again with wind stress values appropriate to the July

3-8 period. The sum of the resulting current ellipse at 5 m depth,

7 km from shore (corresponding to the position of the C3 mooring), and

the 5 mellipse shown in Figure 19b are shown in Figure ZO. The addi-
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tion of the pressure-induced flow causes the ellipse to become slightly

more elongated which is more in accord with the observed 5 m current

ellipse, also shown in Figure 20. The sum of the mixed-layer and

pressure-induced ellipses still differs in amplitude, orientation, and

eccentricity from the observed one. Addition of the tidal currents

would cause more elongation and possibly turn the orientation toward

the along-shel f direction, depending on the phase difference between

wind-driven and tidal currents which is variable.

In successive panels of Figure 19, the effects of varying the

strength of the heating, and mean and diurnal wind stress, are

explored. The relative phase between the diurnal heating and wind

stress is the same for all model runs. Comparison of panels c and d of

Figure 19 with panel b shows that the diurnal currents in the mixed

layer decrease with decreasing diurnal stress, but increase with

decreasing mean stress. In the case of a 2 dynes cm- 2 steady wind

stress (Figure 19c1, the mixed layer depth oscillates between 12 and

35m (Fi gure 2lc) • The di urna1 component of the current is very weak,

but there is, of course, a sizeable mean current which has been removed

by the high-pass filtering. The 35 m instrument is in the transition

zone below the mixed layer. This is the only case explored here which

resulted in an average diurnal ellipse which rotates in the CCW

direction. The inertial oscillations at 45 m are the result of the

deeper mixed layer that is seen to occur at the start of July 3 (see

Appendi x OJ.

The amplitude of the currents in the mixed layer is inversely pro

portional to the mixed layer depth, which in turn is a function of the

wind stress and heating. -2In the model a mean stress of -2 dynes cm



M
ix

e
d

P
re

ss
u

re
-

S
u

m
O

b
se

rv
ed

L
ay

er
In

d
u

ce
d

,(
)

~
G

)t
C

))
I

)
+

-
I

-
-.. 0

0 I

V

10
cm

/s
L

u

F
ig

u
re

20
.

T
he

5
m

h
o

ri
zo

n
ta

l
cu

rr
en

t
e
ll

ip
se

s
re

su
lt

in
g

fr
om

th
e

m
ix

ed
la

y
er

m
od

el
w

it
h

fo
rc

in
g

as
sh

ow
n

in
F

ig
u

re
19

b
an

d
fr

om
th

e
fo

rc
ed

in
te

ri
o

r
m

od
el

(a
t

7
km

fr
om

sh
o

re
),

an
d

th
e
ir

su
m

,
ar

e
sh

ow
n

al
on

g
w

it
h

th
e

ob
se

rv
ed

cu
rr

en
t

e
ll

ip
se

(s
am

e
as

sh
ow

n
in

F
ig

u
re

1
9

a)
.



-79-

produces a mixed layer deeper than that observed, with· currents that are

too small. With no mean stress (Figure 19d), the mixed layer is too

shallow and the currents too big. An intermediate case with a mean

along-shelf wind stress of 1.3 dynes cm-2 (Figure 1ge) more nearly

resembles the observations in terms of the amplitude of the mixed layer

currents and the depth of penetration. Again, the 35 m level is in the

transition zone between the mixed layer and the quiescent water below.

The surface heating as well as the wind stress is important in

determining the structure of the diurnal current fluctuations. If the

heating is turned off, but the stress is maintained as in Figure 19b,

the mixed layer is observed to. extend to at least 45 m (Figure 19f and

21f). The depth of the mixed layer is also a function of the initial

density profile (Figure 18) to some extent, although convective

overturning during the first night of the model run and sUbsequent

restratification the next day, quickly brings the density profile into

accord with the applied heating and wind stress. NO CTD measurements

were made in the CODE area during July 3-7, so the initial density

profile was determined from one made on July 16 when, based on the

current meter temperature records, the stratification was similar. The

temperature from the CTD data was increased by 1.2°C throughout the

water column, to bring it into approximate agreement with the

temperature measured by the current meters on July 3.

As is true for the thermal response of the upper ocean (Dickey and

Simpson, 1983), the phase relationship between the diurnal heating and

wind forcing significantly affects the current response. For the data

shown here, the wind stress peaks about 6 hours after the maximum

heating, just as the evening cooling sets in. Comparison of Figure 19d
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with 199 shows clearly that the presence of diurnal heating, even with a

wind stress symmetric about zero, produces near-surface currents which

are asymmetric, with larger equatorward than poleward velocities, as in

the observations. This is due to the fact that the equatorward stress

occurs during the day when heating is positive and the mixed layer is

shallowest. At night, when the model stress is poleward, the mixed

layer is deeper due to convective overturning caused by heat loss from

the surface. The momentum flux is thus distributed over a larger column

of water and the surface currents are smaller. It can be seen that

there is more shear in the currents during the day than at night.

Figure 21a shows the temperatures measured by the current meters at

C3 for depths from 5 to 83 m. A clear diurnal signal with a range of

about 1°C is seen in the upper 20 m, whereas below 53 m, the temperature

varies very little over the 5 days. The 35 m record is intermediate

between these. This is consistent with the current measurements shown

in Figure 20a, which also indicate a mixed layer depth of between 20 and

35 m. Due to calibration problems, absolute temperature measured by the

different instruments can not be directly compared, so calculation of

the mixed layer depth from the temperature data is not possible.

Variations measured by an individual instrument are reliable, however.

The succeeding panels of Figure 21 show the mixed layer depth and the

temperature at 5 m intervals from 0 down to 45 m for the same model runs

shown in Figure 19. The mixed layer depth is defined in the model as

being the depth down to which the density is uniform to within 10-4 kg
-3m • Due to the excess of surface heating over cooling, there is an

overall warming trend in all the model results, so that although the

model was initiated with a temperature profile that approximated the
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one measured at 0000 July 3, by the fifth day of the model run (when

the resul ts shown here start), the upper water col umn has warmed by

about IOe. The absence of a warming trend in the data is due to the

active upwelling at this site. The amplitude of the daily variations

in temperature is seriously underestimated in all but case d, which is

the one with a I dyne cm-2 diurnal wind stress, but no mean stress.

This confirms what was learned by examination of the model currents,

namely that the diurnal current and temperature fluctuations are

better simulated when a mean wind stress much smaller than that

observed, is used to force the model. The fact that a IOe change in

temperature over the upper 20 mduring the course of the day

represents more heat input than the integrated daily surface heat

flux, points out that part of the reason for this discrepancy is the

absence of advection in the model.

From the above discussion, it is seen that the main features

observed in the diurnal currents - their magnitude, vertical

structure, and asymmetry in time - can best be simulated by forcing

the model with the observed diurnal heating and wind stress and a

reduced mean stress. The fact that the observed mean stress produces

a deeper mixed layer and smaller currents than the measured ones is

most likely due to the effects of upwelling which are not included in

this one-dimensional model. The question as to whether changes in the

diurnal current amplitude are due to changes in the mean or diurnal

wind stress (which are positively correlated) is clearly answered.

The correlations presented in Section 6 show that the diurnal current

increases when the wind stress increases, and the model shows that the

current increases when the diurnal stress increases, but decreases
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when the mean stress increases. The fact that very small diurnal

current amplitudes result when the model is forced by diurnal heating

and only mean wind stress, also indicates that the observed diurnal

currents are not primarily due to the diurnal jet mechanism. Diurnal

heating is responsible for the observed asymmetry of the diurnal

currents. In addition, the strength of the heating contributes to the

amplitude modulation of the diurnal currents by affecting the depth of

the mixed layer.

9. CONCLUSIONS

The near-surface diurnal currents over the

northern California have an amplitude of about

inner and mi d- sheIf
-16 cm s averaged

off

over the whole summer. During periods of strong upwelling-favorable

wind, which almost always coincide with times of large diurnal wind

stress, diurnal currents are typically two to three times their

average value. The amplitude modulation of the diurnal period

oscillations observed in the upper water column is highly correlated

with the diurnal wind stress modulation in the immediate vicinity. The

diurnal period fluctuations in the near-surface currents are directly

forced by the local diurnal wind stress and surface heat flux. No

other mechanism can account for their magnitude, temporal variability,

or vertical structure.
'~,A one-dimensional mixed layer model forced by wind stress and

surface heat flux can reasonably simulate the magnitude, phase with

respect to atmospheric forcing, and vertical structure of the upper

ocean diurnal currents observed over the shelf in CODE, if a mean wind

stress less than that observed is used. The gradual decrease in size
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with increasing depth of the ellipses in the lowest EOF modes is con

sistent with the model, when it is considered that the mixed layer

depth varies with time over the summer. The orientation and eccen-

tricity of the observed diurnal current ellipse is not duplicated,

even when the pressure-induced flow forced by the diurnal wind stress

is added to the mixed layer flow. The relatively depth-independent

currents below the surface layer rotate CW and have speeds of 1 to

3 cm s-l. Their magnitude and sense of rotation are consistent with

diurnal currents predicted from local sea level and bottom pressure

measurements interpreted as the sum of a Kelvin and first mode coastal

trapped wave, and with predictions for the wind-forced interior flow,

which, over the mid-shelf, has the same sense of rotation and similar

magnitude as the tidal currents. Theoretically these ellipses should

be oriented exactly along-shelf, but the observations show them to be

oriented at a small angle to that.

The upper ocean diurnal period currents over the outer shelf and

slope at C4 and C5, respectively, are larger than can be accounted for

by the wind stress at those locations. In addition, the phase of the

diurnal currents is erratic, particularly over the slope, and the

correlation of the diurnal current amplitude modulation with that of

the local diurnal stress decreases in the offshore direction. Over

the slope, then, it appears that the diurnal currents are not directly

forced by the local wind stress. Whether the currents there are due

to leakage from other frequency bands, advection by the mean flow of

diurnal currents generated nearshore farther to the north, or some

other mechanism, is uncertain.
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APPENDIX A: Complex Demodulation

The method of complex demodulation used in this study is described

below. First, the hourly-averaged time series were high-passed with

the filter described in Appendix B. It has a half-power point of

36 hours. Then, each scalar time series SIt) (corresponding to the

along- or cross-shelf component of wind stress or current) was

separately fit by a least-squares analysis to the sum of a mean

contribution S plus two sine curves, one with frequency

WI =1/24 cph and one with frequency w2 = 1/12 cph,

(AI)

Toe fit was done over 48 hour periods with 42 hour overlap, to yield

values of amplitude Ai and phase 9 i for each harmonic every six

hours. The calculated values of amplitude and phase are assigned to

the time midway through the 48 hour period. The start time t s is

the beginning of the record. This was always taken to be at 0000 hours

on a given day. For test purposes, some calculations were performed

including higher order harmonics, but the amplitudes were so low as to

be in the noise level.

Equation AI, without the noise term, may be written as

S I (t) = S(t) +
2
1: a.

. 1 11=

(A2)

where + b~
1

and
bi

9. = arctan -
1 a i
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Th t d d f a a d b re . r-- Tile var1'ance cr2 l'Se s an ar errors 0 i n i a cr'l Ei i •

2 1
cr =n

48
E

t=1
[S ( t l _ S' ( t) ] 2

where N = 48, the number of points in the fit, and M= 5, the number

of coefficients being fit, and

-1
Ei i

48
= E

t=1
or

48
E

t=1

2(cos wi t)

Because the 48 hour time period is an exact multiple of the diurnal

period and its harmonics, Eii is the same for all ai's and bi's.

Based on a student-t distribution, the actual coefficients ai (b i )

should fall within ai (b i ) % 2 cr{':;;, 95% of the time. Let

0a = 0b = 2 cr~, then using theory fOr propagation of errors,

0A= 0a and Os (in radians) = (oal/A. Figure Al shows the

amplitude and phase errors for the complex demodulation of Sea Ranch

wind stress during CODE-I.
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APPENDIX B: High-Pass Filter

The high-pass filter employed here is symmetric, with 59 weights

on each side of the central value. The weights were found by taking

the negative of a complementary set of normalized low-pass filter

weights, except for the central value which was set to one minus the

low-pass central value. The low-pass weights were calculated

accordi ng to

fI(t) = 2 sin (.05"t) - [sin (.03"t) + sin (.07vt)] , t j, 0 • (B1)

.0004 ,,3 t 3

fI(O) is found by use of 1'Hopital's rule. This high-pass filter has a

very flat response over the tidal frequency range. It passes all

energy at frequencies greater than 0.035 cph, has a half-amplitude

point at 0.025 cph, and at frequencies less than 0.015 cph, amplitudes,

are reduced to less than 3% of their original values. The half-power

point is at 0.028 cph. Power at frequencies less than 0.015 cph is

reduced to less than 10-3 of its unfiltered value.
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APPENDIX C: Time-Dependent Ekman Layer

The simplest model for the time-dependent surface boundary layer

is one which assumes that the time dependence of all the variables

matches that of the forcing, i.e. a/at may be replaced by iw, and

l/po times the stress vector (FX, FY) equals (Aue ' AVe) where A
z z

is the eddy diffusivity. If A is constant with time and depth, then

this corresponds to the classic Ekman solution, with f modified by w,

and is discussed in Gonella (1972) and Faller and Kaylor (1969). The

appropriate equation and boundary conditions are then

(Cll

Au = 0 andez

G + 0

TO
= - cos wt, w> 0

P
at z = 0 ,

as z -+ - co ,

The velocity vector may be divided into CCW (e+iwt) and CW (e- iwt)

rotating parts,

Applying the boundary condition of G + 0 as z + _00 leads to

(1 +i lfr
+

y+ = Be and
(1 +i)n-

y_ = Ce ,
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and
_0;

D ~I/~ are

equivalent Ekman depths for the eew- and eW-rotating parts,

respecti vely. Because w< f, D_ > D+ so the ew part wi 11 extend

deeper into the water column. Application of the surface boundary

condition leads to the determination of the constants Band e.

TIle solution is then

z i( ~+ wt - t ) z i( z wt - t )
T 0+ D+ 0 0-

G = o [D e e + D e e J,
2fZP)l: +

z Z

TO ir+ rr
cos(~ + wt + tl - (z - wt + t) J,ue = [D+ e + D e cos (e2l

2 npA + 0

z Z
To D+ rr

si n( ~ + wt + i) D - si n (z - wt + iJJ.ve = [D+e + e
212pA + D

At the surface, the current ell ipse is oriented 45· to the right of

the wind stress (as noted in Faller and Kaylor, 1969), and the orien-

tation turns ew with depth. The semi-major axis equals IY+I + Iy-I,
the semi-minor axis is ly+1 - Iy-l. Thus at z = 0, the semi-major axis

equals 12 TO (D+ + DJ/4pA and the semi-minor /2 TO (D+ - DJ/4pA.

Various values for A near the surface of the ocean have been cal-

culated from data and numerical models. Generally they fall in the

range of 100 to 400 cm2 s-l. The simplest method for estimating

the vertical eddy coefficient from data is to assume that the vertical

shear measured by the shallowest instruments extends to the surface.

The surface boundary condition p AVz = T~ (where the overbars
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indicate mean quantities) is then used to determine A. Using this

method, Halpern (1976) found a value off Oregon of 55 cm 2 s-l for A.

Measurements at 3 and 12 m depth were used to calculate the current

shear. Halpern (1977) estimated A to be equal to 125 cm2 s-l in the

upper 10 moff northwest Africa. Brink et al. (1980) found a value of

A between 60 and 70 cm2 s-l (depending on the time period over

which the mean was calculated) off of Peru, using current records at

2.5 and 12 m to calculate the vertical shear. Using 105 day mean

values of wind stress and 5 and 10 mcurrents measured at C3 during

CODE-2, A is calculated to be 190 cm2 s-l, using this method.

Brink (1979) estimated the diurnal cycle of vertical eddy diffusivity

off Peru from hourly values of the shear between 2.5 and 4.6 m

averaged over a 69-day period. He found that the coefficient ranged

from about 25 to 125 cm2 s-l, with the largest value at the time

of maximum wind stress. Based on results of a one-dimensional model

with second order turbulence closure scheme, Kundu (1980) determined
2 1values of A from 100 to 300 cm s- in the upper 20 mof the water

column for an applied wind stress of 1.5 dynes cm- 2• Kondo et al.

(1979) found a stability-dependent eddy diffusivity to vary between 20

and 300 cm2 s-l as a result of diurnal heating and a
-2 .0.8 dynes cm wlnd stress.

Theoretically, (C2) may be solved to find A if values for the

amplitude of the surface wind stress TO and the currents at any

given depth z are known. Comparison of current ellipses calculated

from (C2), using various values of A, with observed diurnal currents

as estimated from the first mode frequency domain EOFs shows that, the

CODE-l observations are best represented when A equals 225 cm 2 s-l



-94-

and the CODE-2 observations when A equals 90 cm2 s-l (Figure C1).

If smaller values of A correspond to weaker wind stress and stronger

stratification, as previous studies suggest, then this could help to

account for the difference in the values of A between CODE-1 and -2.

The average diurnal wind stress during CODE-2 is less than that during

CODE-1 (Table 2) and the average stratification is greater due to the

larger number of wind relaxations which lead to cessation of the

upwelling (Send et al., 1987). Comparison of Figure C1 with Fig-

ures 14 and 15 shows that the diurnal current amplitude and decay

scale are represented fairly well by this model. The phase of the

current with respect to the wind stress is also correct. However, the

CW rotation of the ellipse axes with depth in this simple model is not

consistent with the observations. Of course, the assumption that A is

constant with time and depth is not very realistic. Many ideas about

the dependence of A on depth and with time have been proposed. From

numerical model results, Kondo et al. (1979) and Kundu (1980) find

that the vertical eddy diffusivity is a maximum at about 10 m depth.

Madsen (1977) proposes use of an eddy coefficient that increases

linearly with depth from the surface. Jordan and Baker (1980) compare

the results of analytic solutions to (C1) using a number of different

vertical structures for A. Although the angle between the wind stress

and the surface current, and the rate of turning of the current vector

with depth, will depend upon the choice of vertical structure for A,

all will have current to the right of the wind with ellipse

orientation turning CW with depth.

Right at the coast, the inviscid and surface and bottom Ekman

ellipses must combine in such a way that the sum is oriented exactly
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along-shelf. Although no attempt is made here to duplicate this

balance exactly, it is noted that the inviscid forced velocity

ellipses are oriented along-shelf with their cross-shelf velocity

lagging the wind by about 135°, so when added to the surface Ekman

ellipses, which have u leading L by 45°, the cross-shelf components

tend to cancel each other.
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APPENDIX D: Mixed Layer Model Parameters

In the one-dimensional mixed layer model used here, there are,

besides the variables used to describe the forcing function (i.e.

amplitude and phase of the heating and wind stress), a number of other

"tunabl e" parameters. The cri tical gradient and bul k Richardson

numbers (Rg and Rb respectively) were chosen in accordance with

the work of PWP. The numbers used seem to give reasonable thicknesses

of the mixed and transition layers. The equation used to describe the

depth-dependence of the absorption of solar radiation, and its effect

on the model results, is discussed in the text.

There are four other parameters used in the model and two initial

conditions which affect the model results, in particular the mixed

layer depth. The two initial conditions are the time of day (and thus

the phase of the heating cycle) at which the computation begins, and

the initial density profile. If the initial density profile has a

very shallow mixed layer (as the one used here did) and the model run

starts at 0000 PST, there is cooling and overturning at the beginning

which quickly restructures the density profile. Within a day or two,

the model reaches a quasi-equilibrium state. If the model run starts

at 0600, as heating begins, the succeeding night's cooling wipes out

that day's stratification, plus a little bit of the deeper

stratification from the initial profile. The model eventually reaches

a state similar to that for the run starting at 0000, but it takes a

few days longer. While this dependence on the initial conditions

could be significant if trying to simulate the data exactly, it is not

a problem here because the first five days of the model run are not

considered when discussing the general characteristics of the results.



-98-

The last four parameters which are important in determining the

mixed layer depth are the criteria by which the mixed layer depth is

defined, and the way in which Rb and Rg are calculated at each

time step. The mixed layer depth is defined as the depth down to

which the density is uniform to within 10-4 kg m- 3• This is an

arbitrary choice. In order to avoid a denominator of zero when

calculating Rb (eqn. 15b), if 11l~liS less than 10-6 m s-l, it is

set to 10-6. In calculating Rg (eqn. 15c), the same criteria is

used for aVo If ap is less than 10-4 kg m- 3, it is set to

10 -4 kg m- 3. V . h 1 h harylng t ese ast three parameters can c ange t e

details of the temporal variability of the mixed layer depth shown in

Figure 21, in particular the sudden sharp increases in mixed layer

depth are governed by these parameter choices. Although these sudden

changes in the mixed layer depth clearly have a pronounced effect on

the mean temperature at the lower depths, they have only a very small

effect on the diurnal cycle in temperature at all depths, because the

stratification recovers within a day. The effect on the velocity

field is also small, both for the reason just given and because when

the mixed layer is deep the momentum input by the wind stress is

spread out over a larger column of water and at any given depth there

is only a small contribution.
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CHAPTER III

BAROTROPIC SEMIDIURNAL TIDAL CURRENTS OFF NORTHERN CALIFORNIA DURING

THE COASTAL OCEAN DYNAMICS EXPERIMENT (CODE)

This chapter will appear as a paper authored by L. K. Rosenfeld
and R. C. Beardsley, under the title shown above,

in the February, 1987 issue of the
Journal of Geophysical Research
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ABSTRACT

Barotropic semidiurnal tidal currents measured off the coast of

northern Cal Horni a duri ng the Coastal Ocean Dynamics Experiment

(CODE) are examined. While the pressure field is consistent with the

idea that the semidiurnal surface tide is dominated by a Kelvin wave,

a high degree of variability over alongshore distances of order 25 km

is observed in the velocity field. Comparison with existing models

used to predict tidal velocities from sea level measurements can not

account for this spatial structure. Perturbation analysis of a Kelvin

wave propagating along a coastal boundary with bumps characterized by

an alongshore length scale much less than the Rossby radius of

deformation shows effects on the velocity and pressure field which

decay offshore with the alongshore scale of the bumps. The effect on

the velocity field exceeds that on the pressure field by a factor

equal to the ratio of the Rossby radius to the alongshore scale of the

bumps. We conclude that the alongshore structure observed in the

measured barotropic semidiurnal tidal currents may be due in part to

the local variations in the coastline geometry in the CODE region.
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1. INTRODUCTION

The tides off the West Coast of North America are of the mixed,

dominant semidiurnal type. The largest tidal constituent is the

principal lunar, or M2. Numerous global numerical solutions of

Laplace's tidal equations have been carried out and, although the

location varies from model to model, most show an amphidrome in the

northeast Pacific, with phase progressing from south to north along

the West Coast of North America. Hendershott (1973) and Munk,

Snodgrass, and Wimbush (1970) (hereafter referred to as MSW) both

contain figures comparing the M2 cophase and corange lines for

several of these solutions. The M2 tidal elevation amplitude along

northern California is predicted to be on the order of 50 cm. These

general results have been confirmed observationally, with sea level

and bottom pressure data indicating an apparent northward phase speed

of 140 m/s.

MSW sought to interpret the tides locally off California as the

sum of Kel vi n, Poi ncare and forced waves over a step-shelf topography.

By fitting the unknown amplitudes and phases of the two free waves to

a coastal sea level record at La Jolla and an offshore bottom pressure

record, they calculated the amplitudes of the Kelvin, Poincare and

forced waves at the coast to be 54, 16 and 4 cm, respectively (for a

Poincare wave of length 9780 km propagating towards the south). Using

this model, MSW found the barotropic current ellipses off southern and

central California to be aligned primarily alongshore with semi-major

axes on the order of 3 cm/s. Battisti and Clarke (1982a, hereafter

referred to as BC), using a quadratic fit to coastal sea level

measurements to calculate a complex alongshore wavenumber, predicted
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alongshore tidal currents of the same amplitude for northern

California. Both of these models are consistent with the idea that

the semidiurnal tide along the West Coast is dominated by a Kelvin

wave, although a Kelvin wave alone can not account for the observed

phase speed or the gradual increase in the M2 surface tide amplitude

to the north. In a normal mode calculation for a barotropic model of

the world ocean, Platzman (1979) also found that a Kelvin wave

accounts for much of the semidiurnal tide off California.

The alongshore scale of variability for the Kelvin wave, or for

that matter, any of the possible free barotropic hydrostatic linear

waves at the M2 frequency in this area, is thousands of kilometers.

Past estimates of barotropic semidiurnal tidal currents from shelf and

slope data off the U.S. West Coast are 2-3 cm/s (see Bratkovich, 1985;

NOble et al., 1986; Torgrimson and Hickey, 1979; and Uenbo and Allen.

1984). These estimates are widely separated in the alongshore

direction however, and do not allow determination of the scale of

variability in that direction.

In this paper, current measurements separated by only 25 to 30 km

in the alongshore direction on the northern California shelf are

examined. Significant variability in the semidiurnal barotropic tidal

currents on these short spatial scales is seen for the first time. A

comparison made between the BC model and a more sophisticated version

of the MSW model using more realistic cross-shelf topography indicates

that both models, while agreeing closely with each other, fail to

predict the observed spatial variation in current over the shelf. A

simple model is then proposed to explain this small-scale variability

as the direct effect of short-scale bumps in the coastal boundary.
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Since the perturbations in the current field caused by this boundary

bumpiness decay offshore with the same alongshore scale characterizing

the boundary bumpiness, the new model predicts that the real current

field should approach the BC and MSW model current field far offshore.

Thi s result is consistent with the Nobl e et al. (1987) description of

tidal currents over the continental slope and deep sea fan off

northern California.

The data discussed here were obtai ned on the conti nental shelf

north of San Francisco during the Coastal Ocean Dynamics Experiment

(CODE), a multi-institutional effort which included two small-scale

densely-instrumented moored array experiments conducted during the

summers of 1981 and 1982 (called CODE-1 and CODE-2, respectively), and

a more sparsely instrumented moored array experiment conducted during

the winter between. In sections 2 and 3 of this paper, the data and

method of analysis, respectively, are described. Section 4 presents

the observations. In section 5, the results are presented and

discussed in light of the MSW and BC models mentioned above. Section

6 presents a new very simple model to explain the short alongshore

length scales observed. Conclusions are presented in section 7.

2. DATA

The data utilized in this paper consist of hourly-averaged sea

level (adjusted for atmospheric pressure), bottom pressure, and

current records. Instrument positions are shown in Figure 1 and

presented together with start and stop dates for the time periods

analyzed in Table 1. Time series of sea level spanning the entire

period from the start of CODE-1 to the end of CODE-2 were provided for
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Figure 1. Bottom pressure, sea level and current measurement
locations for the CODE small-scale array. The inset map shows the
locations where the fifteen bottom pressure and sea level records used
here were obtained.
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Station Latitude Lon~itude Start Stop No. of
oN W Date Date Days

SEA LEVEL

Crescent City (CCY) 41.75 124.18 4/17/81 7/25/82 465
Trinidad Head (TRH) 41. 05 124.15 4/17/81 7/25/82 465
North Spi t (NSP) 40.75 124.23 4/17/81 7/2b/82 465
Arena Cove (ARC) 38.92 123.72 4/17/81 7/25/82 465
Point Reyes (PRY) 38.00 122.97 4/17/81 7/25/82 465
Ha If Moon Bay (Ht4B) 37.50 122.48 4/17/81 7/25/82 465
Monterey (MRY) 36.60 121.88 4/17/81 7/2'S/82 465
Port San Luis (PSL) 35.17 120.75 4/17/81 7/25/82 465

BOTTOM PRESSURE
Depth

(Nearest 10 m)

E4 130 41. 89 124.49 4/19/81 7/18/81 89
14 130 39.05 123.92 3/27/82 8/03/82 129
N4 130 38.77 123.76 4/18/81 6/03/81 46
N2 60 38.83 123.67 4/18/81 7/18/81 91

3/18/82 8/10/82 145
Nl 40 38.83 123.66 4/18/81 7/18/81 91
C4 130 38.57 123.54 4/21/81 7/19/81 88

7/20/81 1/01/82 165
3/23/82 8/03/82 133
3/25/82 8/03/82 131

C3 90 38.61 123.46 3/30/81 5/18/81 49
3/12/82 8/09/82 150
6/01/82 7/29/82 58

C2 60 38.65 123.42 4/01/81 7/24/81 114
3/23/82 8/04/82 133

Cl 30 38.66 123.41 4/01/81 7/10/81 100
7/20/81 1/30/82 194

R2 60 38.45 123.23 3/12/82 8/09/82 150
S4 130 38.24 123.33 4/23/81 7/16/81 84

7/20/81 3/03/82 226
3/26/82 8/05/82 132

S2 60 38.29 123.10 4/06/81 7/31/81 116
SO 4 38.31 123.05 4/01/81 7/26/81 117
B4 130 37.29 122.79 4/08/81 7/16/81 99

7/29/81 3/03/82 217
4/02/82 6/12/82 70

A4 130 34.72 120.84 4/07/81 7/28/81 112

Tabl e 1. Instrument locations and measurement dates
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Stn Depth Lati- Long i- Start Stop No. Instrument
(near- tude tude Date Date of oeFths
est oN Ow Days m)
10 m)

DEPTH-AVERAGED CURRENTS

N2 60 38.83 123.67 3/13/82 8/05/82 145 10,20,35

N3 90 38.80 123.69 3/12/82 8/05/82 146 10 ,35,53,
70,83

N4 130 38.76 123.76 3/25/82 8/20/82 148 10 ,20,35,55,
70,90,110,121

C2 60 38.64 123.42 3/12/82 8/05/82 146 10,20,35,53

C3 90 38.61 123.46 3/24/82 7/28/82 126 5,10,15,20,35,
53,70,83

C4 130 38.56 123.53 4/01/82 8/17/82 138 10,20,35,55,70,
90,121

R2 60 38.45 123.23 3/13/82 8/05/82 145 20,35,53

R3 90 38.42 123.27 3/13/82 8/05/82 145 20,35,53,70

R4 130 38.35 123.38 4/02/82 8/14/82 134 10 ,20,:>5,55,70,
90,110

Table 1. (Continued)
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eight positions along the coast of Cal iforni a from Port San Lui sin

the south to Crescent City in the north by G. Halliwell and J. Allen

of Oregon State University. Bottom pressure records from twelve sites

within the small-scale CODE array and three more locations to the north

and south of it for various time periods were provided by J. Irish and

W. Brown of University of New Hampshire. Records from current meters

maintained by C. Winant and R. Davis of Scripps Institution of Ocean

ography and R. Beardsley of Woods Hole Oceanographic Institution from

nine sites arranged in three cross-shelf lines with moorings at the

60, 9U, and 130 meter isobaths were used (Figure 1). Only the CODE-2

current records are i ncl uded in the present analysi s because the vert

ical resolution was best during this time period. The four month time

series availabl e from thi s part of the experiment are long enough to

resolve the major tidal constituents. The reader is referred to the

CODE-1 (Rosenfeld, 1983) and CODE-2 (Limeburner, 1985) moored array

data reports for more details concerning the CODE field experiments

and all the above data.

3. METHOD OF ANALYSIS

Time series of hourly adjusted sea level, bottom pressure and

depth-averaged alongshore (positive towards 317°T) and cross-shore

(positive towards 47°T) current were analyzed for the amplitude and

phase estimates of the major tidal constituents. Under the assumption

of a rigid lid (which is approximately true for baroclinic modes) and

a uniformly sloping bottom with a sUbcritical bottom slope which

allows internal waves to propagate onshore (Wunsch, 1969), the

vertical integral of the horizontal velocity components for the
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baroclinic tides (i.e., internal waves at tidal frequencies) is zero.

Given adequate vertical resolution, depth-averaging of the observed

currents should eliminate most of the baroclinic components and result

in a time series representative of the barotropic flow field. For

each of the nine current meter mooring sites shown in Figure I, the

depth-averaged time series of cross- and alongshore velocity

components were obtained by trapezoidal integration over depth.

Table 1 shows which instruments were included in the depth-average at

each station for the given time periods.

The success of this method at eliminating baroclinic tidal energy

from the barotropic current time series can be assessed in the

following three ways. (1) Comparison of the spectra of the current

at a given depth with that of the depth-averaged current shows a

narrowing of the semidiurnal peak resulting from a reduction in the

internal wave energy. Spectra from the mid-shelf C3 site shown in

Figure 2 offer an example of this. The semidiurnal peak in the 9 m

current spectrum is much broader (Q - 5) than in the depth-averaged

current spectrum (Q > 14) or in the bottom pressure spectrum (Q > 14),

where Q = wM /~w with ~w the band width between the half-power points
2

of the semidiurnal peak. (2) The bottom pressure signal is influenced

very little by baroclinic effects so that a high coherence between the

depth-averaged current and local bottom pressure at tidal frequencies

indicates that the depth-averaging has effectively filtered out

baroclinic components in the depth-averaged current record. Table 2

gives these coherences which are generally well above the 95%

confidence level for zero coherence. The computed coherence was 'not

usually high across a wide range of frequencies, but instead peaked at



10°1--- 95% level--

cph
Figure 2. Power spectra for the 9 mand depth-averaged currents and
bottom pressure measured at station C3 for the 99 day period starting
April 13, 1982. A 24-hour cosine taper was applied to each end of the
time series before Fourier transforming. 95% confidence limits are
shown. The horizontal arrows around each M2 peak indicate au at the
hal f-power points. Q is calculated as uM /au.

2
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BP - u BP - v

Stati on Coherence Phase Coherence Phase

N2 0.53 -137 0.99 48 " 8

C4 0.97 87 " 13 0.68 87

C3 0.97 88 " 12 0.85 69 " 31

C2 0.86 89 " 29 0.87 60 " 28

R2 0.71 120 0.95 -15 " 15

Table 2. Coherence between bottom pressure and depth-averaged currents.
BP = bottom pressure, u = depth averaged cross-shore velocity, v =
depth-averaged alongshore velocity. Time series from 4/2/82 - 7/21/82
(110 days) were used for this computation. Coherences for the frequency
band 0.0801 - 0.0816 cp h are reported. The M2 frequency is 0.0805
cph. Error bars for phase are given only for those cases where the
coherence 1s greater than 0.73, which is the 95% significance level.
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the tidal frequencies. Not presented are coherences between bottom

pressure and currents at a particular depth, which are lower than

those for the depth-averaged currents. For instance, coherences

between bottom pressure and the depth-averaged cross- and alongshore

velocity components at C3 are 0.97 and 0.S5, respectively, while

corresponding coherences with the 5 m currents are 0.44 and 0.42,

respectively, and the 70 mcurrents, 0.S5 and 0.74. (3) The ~12

tidal constants derived from long bottom pressure or sea level records

are time-invariant (once corrections for very low frequency variations

in the astronomical tides have been made). Presumably the true

barotropic semidiurnal tidal currents, which are due to the sloping

sea surface, are also invariant. Comparison of the tidal analysis of

the depth-averaged currents from the COUE-l and winter time periods

with that from the COOE-2 time period, shows that the scatter in the

harmonic constants is smaller than the differences that will be

emphasized here.

A least squares method of tidal analysis was used to calculate all

the tidal constants reported here. This method is easily adaptable to

time series of arbitrary length and does not require the use of a

reference series. Comparisons made with the Fourier harmonic and

response methods show that the results would be nearly identical had

either of these been employed instead. The least-squares tidal

analysis procedure followed here is described in Boon and Kiley

{197S}, with some minor modifications and corrections. For record

lengths less than 4383 hours (182 days), tidal constants are

calculated directly for ten primary constituents: M2, $2' N2, K1, 01,

M4, $4' M6, $6' and MS· Fifteen other constituents are inferred
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according to the equations in Schureman (1941), among them PI' T2, and

K2 which are then subtracted from the original time series, and the

ten primary constituents listed above are recalculated so as to

eliminate the effects of PIon K1 and T2 and K2 on 52. For series of

length 4384 to 8767 hours (365 days), PI and K2 are also calculated

directly and for series longer than 8767 hours, T2 is added to those

constituents directly calculated. These record lengths were chosen in

accordance with the criteria described by Foreman (1977).

Error brackets given for the amplitude and phase are the 95%

confidence limits, calculated as two times the quantity 8 which is

analogous to a standard deviation. 8 is calculated following formulas

presented in Godin (1972) and discussed in Tee (1982), with the

modification that white noise is assumed across the semidiurnal band

only, not the entire spectrum. 8amp litude equals the square root of

the average noise variance in the semidiurnal band, where the noise is

found by subtracting the tidal record predicted from the calculated

harmonic constants from the original record, and the semidiurnal band

is defined as 0.073-0.087 cycles/hr. 8 phase' in radians, equals

8amplitude divided by the amplitude.

4. OBSERVATIONS

The amplitude and Greenwich phase of the three largest semidiurnal

constituents (M2, 52' and N2) for the eight adjusted sea level

records considered here are listed in the upper part of Table 3.

Because the M2 (principal lunar) is always the largest semidiurnal

constituent in the sea level, bottom pressure, and depth-averaged

velocity records, the discussion here will be limited to a description
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M~ (12.42 h) Sz (l2.00 h) N2 (12.66 h) % Vari- %Vari-
ance in ance

A(db) G(deg) A(db) G(deg) A(db) G(deg) M2
ina11
Tides

ADJUSTED SEA LEVEL

CCY 0.715 211.3 0.185 230.8 0.lti5 183.8 63 %
TRH 0.688 209.6 0.175 228.3 0.149 183.0 63 97
NSP 0.680 218.3 0.172 240.0 0.147 193.5 62 97
ARC 0.571 196.3 0.143 205.3 0.126 169.9 57 96
PRY 0.549 1~ .2 0.141 195.2 0.124 163.5 54 96
HMB 0.545 184.6 0.144 186.9 0.126 158.6 57 97
MRY 0.496 181.7 0.136 180.7 0.115 155.7 51 97
PSL 0.493 168.8 0.157 164.2 0.116 144.4 52 97

The 95% confidence limits for the semidiurnal tidal constants are
=0.004 db for amplitude and =0.4° for phase.

BOTTOM PRESSURE

E4 0.72 213 0.18 233 0.17 181 64 97
14 0.58 201 0.14 211 0.14 178 56 97
N4* 0.56 195 0.14 205 0.14 165
N2 0.56 198 0.14 206 0.13 171 57 97
N1 0.56 199 0.14 208 0.14 166 58 95
C4 0.55 193 0.14 199 0.13 168 56 97
C3 0.55 199 0.14 207 O.lZ 174 56 99
C2 0.55 198 0.14 Z05 0.13 171 55 96
C1 0.55 196 0.14 202 0.13 169 55 96
R2 0.54 198 0.14 204 0.13 175 56 99
S4 0.55 195 0.14 200 0.13 167 55 98
S2* 0.55 195 0.14 202 0.13 165 54 95
SO* 0.53 193 0.13 200 0.15 170 53 95
B4 0.52 186 0.14 187 0.12 161 55 98
A4 0.47 165 0.16 160 0.12 138 52 97

Where more than one deployment was done at a particular site, the
results have been averaged together. The 95% confidence limits for
the semidiurnal tidal constants are less than or equal to =0.01 db for
amplitude and =1° for phase, except for those stations indicated by an
asterisk, for which the error brackets are ±G.02 db and =2°. Estimates
of the %variance are unreliable for station N4 due to the short record
1ength.

Tabl e 3. Semidiurnal tidal constants for adjusted sea level and
bottom pressure
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of the sea surface and barotropic velocity fluctuations at the M2

period of 12.42 hours. Bottom pressure records, while not free from

effects of internal density variability, do primarily reflect changes

in sea surface elevation at tidal periods, as evidenced by the

consistency between bottom pressure records and nearby tide gage

records. The semidiurnal tidal constants for all bottom pressure

records obtained in CODE are listed in the lower part of Table 3.

These are almost identical, as expected, to the tidal constants

reported by Brown et al., (1983) and Brown (1985) for bottom pressure

records from the CODE-1 and CODE-2 periods separately. The M2 tide

accounts for 50 to 65% of the total variance in the sea level and

bottom pressure records. The sum of N2 and 52 adds another 4 to

8%. The diurnal constituents make up most of the rest, so that the

tides in total account for over 95% of the variance in adjusted sea

level and bottom pressure. Figure 3 shows how the amplitude and phase

of the M2 surface tide (from both bottom pressure and sea level

data) varies with alongshore location. The pronounced increase in

both amplitude and phase toward the north has been noted previously by

M5W and others.

The tidal currents account for only 1 to 1D% of the total variance

in the barotropic currents, of which the M2 constituent makes up 20

to 70%. The barotropic tidal currents comprise a larger proportion of

the variance at greater distances from the coast. This trend is con

firmed by Noble et al. (1987) who report that tides may account for as

much as 50% of the current variance over the slope and deep sea fan

off northern California. The computed M2 amplitude and phase for the

observed depth-averaged along- and cross-shore velocity components are
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respectively.
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listed in Table 4. It is shown in Figure 4 that most of the M2

ellipses rotate in a counter-clockwise (CCW) manner, are oriented

nearly alongshore, and are very nearly in phase with each other. The

cause of the deviations from alongshore orientation is unknown, but is

not believed to be an effect of the baroclinic tidal currents which

are discussed in Chapter IV of this thesis. Perhaps surprisingly

however, the ellipse major axes range from about 1 cm/s at the

southern (R) and central (C) lines to over 5 cm/s at the northern (N)

line. Since the 95% confidence limits range from ±0.2 to ±0.4 cm/s,

these differences are statistically significant. The S2 and N2
constituents show this same trend of much larger alongshore components

at the N-line than at the other two mooring transects.

5. DISCUSSION

Two models for the barotropic semidiurnal tides off California

have been proposed by previous investigators. Both are based on the

linear hydrostatic equations for a homogeneous fluid on an f-plane.

MSW sought to interpret the observations as the sum of a Kelvin,

Poincare and forced wave propagating along a straight coast. To

facilitate an analytic solution to the problem, they modelled the

topography as a 600 m deep, 155 km wi de shelf, abutti ng a "deep-sea"

of 3600 mdepth. This resulted in a Kelvin wave of 7925 km length.

MSW tried several different Poincare waves, and chose an equatorward

propagating one of length 9780 km as giving what they thought were the

most physically reasonable amplitude estimates. With this choice,

they found the amplitudes at the coast for the Kelvin and Poincare

waves to be 54 and 16 em, respectively, based on a fit to bottom
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Figure 4. The depth-averaged velocity ellipses for the Mz frequency.
Arrows indicate direction of rotation of the velocity vector. The
dots in the ellipse centers indicate mooring location. The dots on
the ellipses mark the tip of the velocity vector at the time of .high
tide at the C-line.
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pressure records at La Jolla and a position 900 km offshore. Figure 3

in MSW shows the comparison between observed and model predictions of

tidal constants for coastal sea level. Their predictions agree

reasonably well with the observations for southern California (where

their stations used to determine the constants are locatedl, but

clearly disagree in amplitude and phase north of San Francisco. By

their own admission, the MSW model predictions of observed tidal

currents are less than satisfactory. They attribute this partially to

the poor signal-to-noise ratio in the observations making it difficult

to determine accurately the barotropic tidal velocity signal, and

partially to the inclusion of only one Poincare wave in the model

(Irish, Munk, and Snodgrass, 1971l.

Given the more accurate estimates of the barotropic tidal currents

made possible by the CODE data, we decided to redo the MSW model with

some modifications to see if the fit could be improved. The model is

based on the following momentum and continuity equations:

ut - fv + gnx = gnEx

vt + fu + gny = gnEy

(uhl x + (Vhly + nt = a ,

(1)

(2 )

(3 )

where u and v are the cross- and alongshore components of depth

averaged velocity (with positive x directed onshore and positive y

directed towards 317°T for the coast of northern California), n is the

sea surface elevation, f the inertial frequency, g the gravitational

acceleration, and subscripts denote partial differentiation. The

astronomical forcing, nE' equals .69 V/g, where V is the tidal
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. ( + +G tJpotential. DE may be written as HEel aX Ay -w ,where a = aE cos ~,

A= -aE sin ~, aE = -2/(r cos e), r is the radius of the earth, e the

latitude, and ~ the angle the coastline makes with true north.

If the depth his a function of Xonly. and the difference between the

sea surface elevation and the forcing is assumed to have the form

D - DE = Re[F(x)ei(yy-wt+G)], a single equation for F(x) can be

obtained from (1) - (3):

(hF) +
X X

f2 _ hi _ f.r. h ] F =
w x (4)

This equation together with a boundary condition of no normal flow at

the coast was solved numerically (using a centered finite difference

scheme) on a uniform grid in x with .5 km spacing. For each cross

shelf transect where computations were made, the topography was

digitized from bathymetry charts and interpolated to the grid

spacing. A flat bottom at 3750 mdepth was assumed for offshore

distances greater than 100 km. For the forced solution, y was

determi ned by the wavelength of the forci ng (y = -aE si n (Il). For

the free solutions, DE was set to zero, and y is an eigenvalue of

the system (found here by a shooting technique) for waves decaying in

the offshore direction, or is arbitrary within the Poincare continuum,

for waves sinusoidal in the x direction. Each wave individually

satisfies the coastal boundary condition. The horizontal components

of velocity were then calculated using numerical approximations to the

polarization equations,

(5a)
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(5b)

with nE = 0 for the free waves. In this way the cross-shelf

structure for the forced wave and all possible free waves may be

calculated. For the cross-shelf topography at the C-line off Sea

Ranch (where y = 0), the free Kelvin wave (which is the mode zero edge

wave propagating to the north) was found to have a wavenumber of

-7 -1 (7.47 x 10 m wavel ength 840U km). No other edge waves were

distinguishable, and as the inertial frequency at this latitude is

less than the M2 frequency, no other trapped modes exist.

The sum of this Kelvin wave, the forced response, and a Poincare

wave was then fit in a least squares sense to the fifteen sea level

and bottom pressure stations listed in Table 5 to determine the

ampl itude and phase for the two free waves (Appendi x I). The Poincare

wave giving the best fit has a wavenumber of 5.59 x 10-7 m- 1

(wavelength 11240 km) and this is the shortest possible southward

propagating Poincare wave at the M2 frequency. These three waves

alone account for 99.6% of the variance in the M2 sea level and

bottom pressure observations. The amplitudes at the coast were found

to be 69.8, 26.9, and 4.6 cm for the Kelvin, Poincare, and forced

waves, respectively. The addition of another Poincare wave does little

to improve this fit. A Kelvin wave alone (amplitude 57.7 cm), or a

Kelvin wave (amplitude 53.3 cm) plus the forced wave accounts for

97.5% of the pressure variance. Figure 3 shows the observations and

model fit. M2 current ellipses were calculated at a given location

by summing the currents due to each wave using the calculated coastal

amplitudes and phases and appropriate cross-shelf structure for the
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Alongshore Greenwic h
Stati on Variable Po siti on (km) Amp (db) Phase (deg)

E4 BP 375 0.72 213
CCY SL 356 0.71 211
TRH SL 278 0.69 210
NSP SL 247 0.68 218
14 BP 63 0.58 201
ARC SL 41 0.57 196
1'14 BP 29 0.56 198
C4 BP 0 0.55 196
S4 BP -41 0.55 194
PRY SL -81 0.55 190
HMB SL -151 0.55 185
B4 BP -157 0.52 186
MRY SL -264 0.50 182
PSL SL -453 0.49 169
A4 BP -491 0.47 165

Table 5. M2 tidal constants for sea level (SL)and bottom pressure (BP)
data used in models. For bottom pressure, the amplitude and phase rep
resent an average over all deployments (in time and in xl on a given
c ross-s hel f transect.
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Ellipse Characteristics

Cross-shore Alongshore Semi- Semi- Ori en- Phase
Amp Phase Amp Phase Major Minor tation
(cm/sl ( .) (cm/s) ( •1 (cm/sl (cm/s) ( .) n

N3

Wave Model 0.4 103 4.J 165 4.3 0.4 3 165
BC Model 0.6 108 4.2 163 4.2 0.5 5 162
Observed 0.9 154 5.5 151 5.6 0.0 9 151

C3

Wave Model 0.5 98 4.2 164 4.2 0.5 3 164

BC Model 0.6 106 4.1 164 4.1 0.5 5 163
Observed 0.9 109 0.9 125 1.3 0.2 45 117

Table 6. Comparison of observed and modelled currents at C3 and N3.
Ellipse orientation is measured CW from 317·T (the positive alongshore
directionl. Phase is measured along the ellipse from the reference
point (t = 0) to the point of orientation.
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topography at that cross-section. Velocity components and ellipse

characteristics for currents at C3 and N3 are listed in Table 6. It

should be noted that in this discussion, the amplitudes of the Kelvin

and other free waves have been assumed to be constant and independent

of y. t4i1es (l972, 1973) has pointed out that the amplitude of a free

Kelvin wave propagating without energy loss along a simple continental

margi n shou1 d change as a functi on of 1ati tude (proporti ona1 to If)

and offshore depth (proportional to 1/111). While both effects act to

increase the M2 sea level amplitude to the north along the California

coast, the observed amplitude variation is in fact significantly larger

than predicted by If/h, and these considerations can not account for

the observed phase speed, so that we have chosen to use the three-wave

model as the best fit to the observations.

The observed barotropic semi diurnal tidal currents and those

predicted by the wave model just described, may be compared with

predictions from the Be model. Battisti and Clarke, in a series of

three papers (Clarke and Battisti, 1981; Battisti and Clarke, 1982a,

1982b), develop a method for estimating barotropic tidal currents from

coastal sea level measurements taking into account Changes in both the

amplitude and phase speed along the coast. This is done by letting y,

the alongshore wavenumber, be a complex number that is a function of

y. y i s defi ned by

i y( x ,y) 1= - nn Y
(6 )

. i(fy dy + wt) +iwtor equlValently, n = n(O)e (where we change to e for

time dependence in keeping with BC). The sea level at any location

can also be expressed in terms of its tidal constants (A, G) as
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Taking the y derivative of these two expressions for

n and setting them equal yields a second definition of y as

(7)

We used (7) to calculate y, following the method described in Appen

dix B of Clarke and Battisti (1981). Amplitude and phase for the same

sea level and bottom pressure data set used in the wave fit (Table 5

and Figure 3) were each fit to a quadratic in y, and then y was cal

culated from A, Ay ' and Gy for the alongshore positions of the R, C,

and I~ mooring lines from

A(db) = 0.565 + 3.19 x 1O- 4y + 2.98 x 10- 7 l ,

G(deg) = 196.1 + 5.58 x 1O-2y - 1.44 x 10-5 y2 ,

where y is the distance alongshore in km from the C-line. These

quadratic fits explain 97.7% and 96.5% of the variance in amplitude

and phase, respectively. The cross-shelf velocity, u, is found by

integrating the continuity equation (3) out from the coast and

assuming (hU)x » (hv)y' so that

(x x
I (hu) dx = -(
o x 10

Applying the coastal boundary condition, assuming n is constant with x

over the shelf, and sUbstituting iw for (a/at) results in

u = -iw ~ n(O) (8)
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This is equivalent to saying that the change in sea level during a

tidal cycle is due solely to the cross-shore velocity during that

time, and is a consequence of the assumed very long (0(104lkm) along

shore length scale of the tide in comparison to the cross-shelf scale

of the continental margin. Petrie (1975) and Bratkovich (1985) found

that (8) gave good predictions for the cross-shelf velocity on the

Scotian shelf and southern Cal iforni a shelf, respectively. The

along-shelf velocity, v, is then found by sUbstituting (6) and (8)

into the homogeneous form of (2) to get

v = (f K- g t) n(0) • (9 )

The upper part of Table 7 shows how the real and imaginary parts

of yare calculated from (8) and the lower part gives the amplitude

and phase for u and v for the nine current meter sites listed in

Table 1. The predicted velocity ellipses are shown in Figure 5. They

agree very closely with the results of the wave model (Table 6), but

are distinctly different from the observations (Figure 4). Although

the BC and wave models correctly predict the alongshore orientation

and CCW sense of rotation of the current ellipses, they are unable to

predict the correct alongshore variability of the alongshore component

of vel oci ty. The two model s may under- or over-estimate the true

velocities by as much as 30-200%.

We should note that all the relevant assumptions made in the deri

vation of the BC model are sati sfied in the CODE area. I y I x « 1,

where x is the offshore distance at which predictions are to be made.

I~ I x « 1, where ~ = (w2 - f 2 )/(ga) + (fy/w) and a is the average
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f A G Ay y =-G Yi= (-l/A) AyY r y
(10-5 (10 -4 (10- 4 (10- 4

(km) s-1) ( db) (deg)
db/km) km- 1) db/km- 1 j

N +30 9.11 0.575 197.8 3.4 -9.6 - 5.91
C 0 9.08 0.565 196.1 3.2 - 9.7 -5.66
R -26 9.03 0.557 194.6 3.0 - 9. 9 - 5.39

x H lu I Phase of vr Vi Iv I Phase of
Stn (km) (m) (cm/ s) u (deg) (s -1) (s -1) (cm/s) v (deg)

N2 -3.3 60 0.44 108 0.062 0.041 4.27 164
N3 - 6.6 90 0.59 108 0.060 0.041 4.18 163
N4 -15.5 130 0.96 108 0.056 0.041 3.99 162

C2 -2.2 60 0.29 106 0.067 0.039 4.38 166
C3 -7.0 90 0.62 106 0.061 0.039 4.09 164
C4 -15.1 130 0.92 106 0.057 0.039 3.90 162

Rl -5.4 60 0.72 105 0.061 0.038 3.99 163
R3 -10 .6 90 0.92 105 0.058 0.038 3.85 161
R4 -23.2 130 1.40 105 0.053 0.038 3.62 159

Table 7. Calculation of the barotropic M2 currents with the 8C model.

A, G, Ay ' Gy are calculated using,
A = 0.565 + 3.19 x 10-4 Y + 2.98 x 10- 7 /,

G = 196.1 + 5.58 x 10-2 Y - 1.44 x 10- 5 i.
The velocity components u and v are calculated using

u = -iwn(O)x/H,

v = (fx/H - gy/w)n(O).

vr = fx/H - gy/w

Vi = -gYi/w

Iv I ;y""v':"/C-+-v 1""":;.2:-"1 n(0 ) I
Phase of v = -[tan-1 (vi/v r ) - phase of n(O)]
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Figure 5. Barotropic velocity ellipses for the M2 frequency as
predicted by the Be method. Markings are as described for Figure 4.
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bottom slope, so n is approximately constant across the shelf as is

verified from the pressure data at the coast and 130 m isobath. The

addition of linear friction based on an rms velocity of 5 cm/s,

estimated from observed near-bottom currents, and a drag coefficient

of 3 x 10-3 causes less than a 1% change in the calculated

alongshore velocities at even the shallowest depths considered here.

Both the BC model and the wave model are consistent with the

earlier findings of MSW and Platzman (1979) that the semidiurnal

surface tide along the coast of California is dominated by a

Kelvin-wave-like response. The large alongshore length scales that

seem appropriate to the description of the pressure field are clearly

not adequate to predict the velocity field, which depends on the

spatial derivatives of pressure. When v at C3 and N3 is predicted

from (9) using values of ny based on just the two closest sea level

measurements (Arena Cove and Pt. Reyes for C3, North Spit and Arena

Cove for N3J, the amplitudes are found to be 3.5 and 7.8 cm/s,

respectively. While these results do show more alongshore variability

in the correct sense, they are still not satisfactory predictors of

the observed velocities. The principal drawback to the use of the BC

method is that in any given situation it is difficult to know a priori

the appropriate length scale to use in calculating ny' In Figure 3,

Ay and Gy' calculated by substituting the observed u and v into

ny = (-fu + iwv)/g and making use of (6) and (7), are shown for the

positions of the R-, C-, and N-l ines. While all of these correspond

to values of y and ~ for which Iyl x and I~ I x « 1 and therefore

satisfy the assumptions of the BC theory, it is easy to see the

problems one would have in extracting these values from the sea level
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and bottom pressure data. Holloway (1983) also points out the strong

dependency of v on y and discusses the difficulty in evaluating the

latter.

6. THEORY FOR A KELVIN WAVE ALONG A BUMPY BOUNDARY

A Kelvin-like wave propagating along a straight boundary accounts

for much of the semidiurnal variance in the sea level and bottom

pressure records measured along the coast of California. The wave

length of the Kelvin wave, which is the shortest of the suite of

possible barotropic waves at this frequency, is on the order of

BUDD km, and thus can not explain the short scales of variability

observed in the velocity field. Here we propose a mechanism that

could cause these short scale variations in the velocity field, while

altering the pressure field only slightly.

The coastline of California is characterized by bumps (e.g., capes

and headlands) with alongshore scales much less than the external

Rossby radius of deformation (of order 2000 km). A Fourier decomposi

tion of the coast from pt. Conception to Cape Mendocino, a straight

line distance of roughly 760 km, reveals deviations of magnitude one

to four kilometers for wavelengths from 75 to 760 km. The amplitude

of the bumps is smaller for shorter wavelengths. During the decade

from 1968 to 1977, numerous papers appeared dealing with the scat

tering of Kelvin, Poincare, edge and continental shelf waves by sharp

bends in the coastline, discontinuities in depth, large-scale coast

line curvature, and random small amplitude coastal irregularities.

In general, these papers were concerned with the reflection and

scattering of these wa~es and how the energy flux, phase speed, and
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dispersion relation were changed by these varying geometries. Although

a great deal can be learned about the effects of an irregular coast-

line on wave propagation from these studies, none of the previous work

directly addresses the question of how the presence of small amplitUde

bumps with length scales much smaller than the Rossby radius of defor

mation affects the nearshore velocity field 1, To obtain an answer to

this question, we adopt a perturbation approach similar to that used

by Pinsent (1972) in his work on the propagation of Kelvin waves along

a coastline with large radius of curvature.

For simplicity, we consider a free Kelvin wave propagating along a

bumpy coastline over a flat bottom ocean as shown schematically in Fig

ure 6. The equation for the sea surface elevation n is then given by

n = 0 (10 )

-i wt . d d dwhere an e tlme epen ence has been assume • The boundary

condition is no normal flow at the coast:
A

n is the unit vector normal to the coast.

+ A

U • n =0 at x = b(y) where

This may be rewritten as

1 Mysak, in a series of three papers (Howe and Mysak, 1973; Mysak and
Tang, 1974; and Fuller and Mysak, 1977), looked at the scattering of
Poincare waves, Kelvin waves, and edge waves from an infinitely long
straight coast with small deviations regarded as a stationary random
function of position along the coast. These papers employed a sto
chastic approach to the problem. Mysak and Tang (1974) concluded that
for w/f > 1, the phase speed of a Kelvin wave will be reduced, but only
by 1% for the coast of California. They predicted that energy would be
scattered by large scale irregularities into Poincare and Kelvin modes,
and that this would cause a decrease in amplitude in the direction of
propagation. Obviously this effect is small, since the observations
show an increase in amplitude in the direction of propagation. Miles
(1972) derived the first order correction to sea level due to a
sustained displacement of the coast, and also the correction far
downstream of an isolated bump.
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o at x = b(y) .

Let x and y be scaled by the Rossby radius R = /911/f everywhere except

near the coastal boundary itself where the characteristic cross-shore

and alongshore length scales, ER and aR, respectively, are set by the

geometry of the boundary defined by b(y). Sea level is scaled by C,

the surface elevation amplitude at the coast. Thus

n = Cn', x = RX', Y = Ry', b = €Rb'(y'), by = €/B b'y"

where the primes indicate non-dimensional variables. We chose

€ « B « 1, so that the magnitude of the bumps is much less than

thei r alongshore seal e which is in turn much less than the Rossby

radius of deformation.

The governing equation for n written in the non-dimensional

variables (without the primes) is then

(11 )

with cr = w/f and the boundary condition at the coast reducing to

(12 )

Equations (11) and (12), together with the condition that the solution

becomes the classical straight boundary Kelvin wave far offshore,

constitute a closed problem. After an expansion of n in powers of the

small parameter €/B and a Taylor series expansion of n around x.= 0

for the boundary condition, the zeroth or lowest order problem for n
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becomes

+ n + (a
2

- 1) n = 0 , fo r x < 0
0yy 0

(13)

-i an + n = 0 at x = 0 .
Ox 0y

The solution to (13) is just the Kelvin wave on a straight coast,

no = eXei(ay - wt), which, in dimensional form, is

n =o

2f. i w(-.1..- - t)

C ergn e Ig1i

The perturbation problem to first order in <Is is

2
n1 + (a - 1)n1 = 0,

yy
for x < 0

(14)

Up to this point, the form of the boundary b has been arbitrary. We

will now choose a sinusoidal form for b to facilitate the rest of the

analysis. In dimensional form, b(y) = <R sin(y/sR) and by = (E/s)

cos(y/aR): in non-dimensional form, by = cos my where m= lis» 1.

The solution to (14) that decays away from the coast is then

(15 )
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where k1 =' / J + 2mo + 1 ;, m + 0 + O(l/m), and k2 =' Ii - 2mo + 1 ~

m - 0 + O(l/m). When the above expression is expanded in powers of

11m, we discover that n1 is actually of order E. There is no order

Els term in the expansion of n. Thus the first order perturbation

solution is

(16 )

The perturbations in the coastl ine have more effect on the veloc

ity field than on the pressure field. Also, larger values of m (cor

responding to smaller alongshore length scales) will result in larger

corrections to the velocity field, but cause no change in the ampli

tude of the pressure correction. This is because the lowest order

velocity corrections, u1 and vI' are order Em (= E/s) whereas the

lowest order sea level correction is only of order E and independent

of m. Both velocity and surface elevation correction fields decay

away from the coast with the dimensional length scale sR.

Multiplying by e-iwt , taking the real parts, and combining with

the zeroth order solution, yields the total non-dimensional velocities

Vtot = cos (oy - wt) [ex - Em emx sin my]
(17)

Utot = Em emx cos my cos (oy - wt)
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In dimensional terms, the amplitudes of u and v at the coast are

v = IgThC {l - E/a sin [fy/(a/gh)]} ,amp

(18)

uamp = Ig/h C E/a cos [fy/(a/gh)]

Figure 7 shows the coastline configuration to the right and the amp

litudes of u and v at the coast to the left for the following model
-4 -1 -4 -1parameters: h = 3750 m, w = 1.4 x 10 s , f = 0.9 x 10 s ,

R = Igh/f = 2130 km, coastal bump magnitude ER = 2.7 km, coastal bump

wavelength 21TaR = 110 km, E = 1.3 x 10- 3, a = 8.2 x 10-3, E/a = 0.16,

and sea level amplitude at the coast C = 0.55 m. Figure 8 shows the

velocity ellipses at the coast (which are rectilinear due to the con

strai nt of no flow through the boundary) for the same parameters. The

alongshore velocity amplitude is found to vary ~15% from the value for

a straight coast. The velocities are greatest near the promontories

(considered here to crudely represent Pt. Reyes and Pt. Arena) and

smaller in between. The reason for this is that the flow far offshore

is constrained to match the value for a Kelvin wave along a straight

boundary. This effectively causes the flow to speed up as it goes

through a constriction represented here by a bump in the coastline.

This simple perturbation analysis for a flat bottom ocean indicates

that small sinusoidal perturbations in the coastline of scaled ampli

tude E and alongshore wavelength a cause differences in alongshore

velocity amplitude of 2E/a (which is - 30% for the parameters used

here). A more realistic prediction of the tidal flow field will

depend on a full Fourier representation of the coast as well as the

addition of shelf topography.
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7. CONCLUSIONS

The semidiurnal surface tide off northern California is charac

terized by amplitude and phase which increase from south to north.

Sea level and bottom pressure measurements indicate an apparent north

ward phase speed of about 140 m/s. The barotropic tidal currents on

the shelf are aligned primarily in the alongshore direction, have CCW

rotation and show little variation in the cross-shore direction. They

show alongshore variability on scales less than 100 km, with ellipse

major axes ranging from 1 to 6 cm/s. No single free barotropic wave

can account for the observed pressure signal because no wave with the

proper wavelength and phase speed exists for this topography at this

frequency. The sum of a Kelvin, forced and one Poincare wave can

account for many of the characteristics of the observed pressure and

current fields, including the phase speed, direction of rotation, and

orientation of currents. These waves can not describe the observed

small-scale variability, however, because these waves have wavelengths

which are much greater than the observed length scales in the current

field. The BC model applied to the CODE region predicts barotropic

tidal currents over the shelf and slope from coastal sea level ob

servations, which compare favorably with the wave model, but it also

fails to predict the differences in velocity over short distances due

to the difficulty in choosing the appropriate alongshore wavenumber.

Perturbation analysis of a Kelvin wave propagating along a boundary

with small bumps with a characteristic alongshore length much less than

the Rossby radius of deformation shows effects on the nearshore veloc

ity field which are larger than the effects on the pressure field by

the ratio of the Rossby radius to the alongshore scale of the bumps.
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The perturbations in both velocity and pressure induced by the bumps

decay away from the coast with the same scale as the alongshore length

scale of the bumps. Evidence for this is presented in Noble et al.

(1987) who find that the magnitude of observed barotropic tidal cur

rents at sites 25, 50 and 300 km from the coast of northern California

agree well with predictions made according to the BC model. Although

variations in velocity of the magnitude observed in CODE can not be

attained through the very simple first order perturbation analysis

presented here, the predicted amplification of alongshore velocity

near points in the coastline is in accord with the CODE observations.

We suggest then that small coastal deviations with short alongshore

length scales induce short scale variations in the tidal current field

that are reflected in the CODE velocity measurements.
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APPENDIX

The amplitudes (Aa) and phases (ea) for the free waves are

found by minimizing the residual expressed as

J *Res = L R. R. (AI)
j=l J J

where J is the number of stations in the fit and the residual at the

jth station is given by

i B·
_ F. e J

J
( A2)

The first term in Rj is the observed tidal constant. The second

term is the calculated forced response. The last term is the sum of

the responses due to the free waves. The percent of vari ance

accounted for by the model is calculated as

%var = (l Res ) x 100 •
- L(H ,)2

j J

(A3)
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CHAPTER IV

BAROCLINIC SEMIDIURNAL TIDAL CURRENTS OVER THE CUNTINENTAL SHELF

OFF NORTHERN CALIFORNIA
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ABSTRACT

Time-varying depth-dependent currents of semidiurnal frequency are

identified in data collected over the northern California continental

shelf during the 1982 upwelling season as part of the Coastal Ocean

Dynamics Experiment (CODE). Semidiurnal band kinetic energy is seen

to increase with increasing stratification over the shelf and upper

slope. Comparison with internal wave theory shows the vertical and

horizontal structure of the semi-diurnal band horizontal currents to

be consistent with a first baroclinic mode internal wave with a

horizontal wavelength of about 20 km. The vertical structure of the

phase of the semi diurnal band temperature fluctuations shows evidence

of the influence of the sub-critical bottom slope over the continental

shelf. The bottom slope is super-critical over the upper continental

slope, suggesting that generation of the semidiurnal internal waves

observed over the shelf may take place near the shelf break.
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Li st of Symbol s

a = bottom slope

b = buoyancy -gp/po

c = slope of characteristic in fluid with no horizontal density
variation [(w2 _ f2)/(N 2 _ w2)]1/2

c' = slope of characteristic in fluid with horizontal density
variation s ~ [s2 + (w2 _ W~)/N2]1/2

cg = group velocity

cp = phase velocity

d = mixed layer depth for Baines' model

A = (c + a)/(C - a)

f = inertial frequency

g = gravitational acceleration

G = vertical structure function

hl = shelf depth for Bai nes I model

H = bottom depth

n = sea surface elevation

i = (_1)112

k = cross-shelf wavenumber
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Li st of Symbol s - 2

K

1

=

=

horizontal wavenumber

along-shelf wavenumber

A2 = eigenvaluen

m = vertical wavenumber

M
2

= principal lunar semidiurnal tidal constituent

1~2 = horizontal analog to buoyancy frequency squared
-gp 1P = fVx 0 z

n = mode numbe r

N2 = buoyancy frequency squared -gpz/Po

p = pressure

q = 2n"/l nlid

P = perturbation density

Po = reference density

s =

t =

T =

u =

v =

time

temperature

cross-shelf velocity

along-shelf velocity
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Li st of Symbol s - 3

= angle of bottom slope relative to horizontal

w = vertical velocity

W = horizontal structure function

-1tan (al

W = frequency

wf = effective inertial frequency [f(f + v)]1/2
x

wL = low frequency cutoff for freely propagating internal waves

'1J = high frequency cutoff for freely propagating internal waves

x = cross-shelf direction

y = along-shelf direction

z = vertical direction
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1. INTRODUCTION

Analysis of currents measured over the continental shelf off

northern California during the Coastal Ocean Dynamics Experiment

(CODE) shows large temporal and spatial variability at the semidiurnal

frequency. Previous work (Rosenfeld and Beardsley, 1987) has shown

that the depth-averaged semi diurnal tidal currents may vary sub

stantially over along-shelf distances as short as 25 km. The vertical

structure and intermittent nature of the semidiurnal currents are

examined here. Due to the beating effect between the principle tidal

constituents, some variation in the amplitude of tne currents is

expected. Complex demodulation, however, snows that on several

occasions during the period between January and August, 1982, the

amplitude of the semi diurnal currents rose well above the background

level. Internal waves of tidal frequency are believed to be respons-

ible for these events. During one event, in February of 1982, near

surface semidiurnal current amplitudes reached 30 cm s-l. Due to

the sparse instrumentation deployed during the winter, an event which

occurred in April of 1982, during the more intensive CODE-2 experi-

ment, was exami ned in detail. The vertical and c ross-s helf structure

of the current and temperature fields during this event are consistent

with the interpretation of a first baroclinic dynamical mode.

Evidence presented here suggests that during the 1982 upwelling

season, the amplitude of the semidiurnal internal tide is controlled

primarily by the strength of the stratification over the continental

shelf and adjacent slope, with the largest internal wave events occur

ring during periods of wind relaxation when upwelling ceases and strat

ification increases. The theory of Baines (1982), while inadequate
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for predicting the observed velocities, does provide a useful frame

work for understanding why the internal wave energy increases with

increasing stratification.

In Section 2, other observations of internal tides over continen

tal shelves are reviewed. Sections 3 and 4 present the data and ana

lysis methods, respectively. The temporal variability and spatial

structure of the internal tide is described in Section 5. In Sec

tion 6, certain properties of the observations are compared with

linear internal wave theory for vertically standing modes on a flat

bottom, and the effects of a sloping bottom are discussed. Ideas

concerning the generation of internal tides and the effects of mean

shear are discussed in Sections 7 and 8, respectively. Conclusions

are gi ven in Secti on 9.

2. OBSERVATIONS OF INTERNAL TIDES ON CONTINENTAL SHELVES

Internal waves of semidiurnal frequency have been observed on

continental shelves in many parts of the world, and are usually seen

to be intermittent in time. They are commonly thought to be generated

by the interaction of tne barotropic tide with topography, in partic

ular the shelf break. Wunsch (1~75) reviewed the state of knowledge

up to that time concerning internal tides in the ocean, including some

coastal observations. Winant (1979), in a brief review of coastal

current observations, also touched on coastal internal tides. Baines

(1986) offers an excellent summary in table form of internal tide

observations on continental shelves. In almost all shelf cases, the

baroclinic energy appears intermittently in time and is observed to be

in the lowest mode, as opposed to the situation over the slope where
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more beam-l ike structure s have been observed. In order to pl ace the

CODE observations in perspective, observations of internal tides on

continental shelves from five different areas of the world are sum-

marized in this section. These sets of observations are categorized

here by shelf width. First, internal tides on the wide shelves (order

100 km) off Nova Scotia and the northwest coast of Australia will be

reviewed. Next, results of an experiment on the intermediate width

shelf (50 km) off northwest Africa will be reviewed, and finally,

observations on narrow shelves will be discussed. The shelf off

Oregon is about 30 km wide, the closest to that in the CODE area.

Southern California has a very narrow shelf (about 4 km).

Petrie (1975) described the M2 tide on the Scotian shelf and

slope from current meter and temperature measurements made in 1967,

1968, and 1973. He observed that the semidiurnal tidal currents were

primarily barotropic over the shelf and baroclinic over the slope. He

noted that by looking at only a particular frequency (the M2 in his

case), there was a risk of missing the internal tide signal if it had

been Doppler-shifted. The shelf is about 175 km wide at the experi

mental site and the shelf moorings analyzed were about 35 km from the

shelf break (200 mdepth). The cross-shelf barotropic velocities are

1arge, 11 to 14 cm s-l, and consistent with u = wnxlH where w is the

M2 frequency, n is sea level amplitude, x is distance offshore and H

is depth. From the slope observations, he estimated an e-folding

scale for the internal wave energy to be 15 km (using a vertical eddy

viscosity of 30 cm2 s-l), thus internal waves generated at the

shelf break would be dissipated before reaching the shelf moorings.

He estimated the horizontal wavelength over the slope to be 42 km.
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The horizontal wavelength over the shelf was calculated to be 14 km,

using a depth of 100 m and an average NZ profile.

Holloway (1983a), in an investigation of the tidal currents on the

Australian northwest shelf, also determined that the semidiurnal tidal

currents were primarily barotropic, with MZ and 52 speeds averaging

about 25 and 20 cm s-l respectively over the 100 km wide shelf. Baro-

tropic tidal current ellipses were oriented in the cross-shelf direc

tion. Near the shelf break (75 m depth), shoreward-propagating semi

diurnal internal waves of length 20 km were observed (HOlloway 1983b

and 1984). These exhibited a first mode structure in the vertical.

The amplitude of the cross-shelf baroclinic currents was as large as
-120 cm s near the shelf break, but decreased in the shoreward direc-

tion with a five-fold reduction in amplitude over a distance of one

wavelength. Maximum baroclinic currents were about one-third the size

of the maximum barotropic currents. Near the shelf break, 30 m verti-

cal displacements of the isopycnals in 70 mwater depth were observed.

HOlloway concluded that these waves did not propagate very far onto the

shelf. No well-defined spring-neap cycle was observed in the baro-

clinic current or temperature records, despite the fact that the baro-

tropic currents showed a strong fortnightly signal. The time variabil

ity of the internal tidal signal showed a correlation with the degree

of stratification, with decreasing amplitude corresponding to smaller

values of N2. Although no specific generation region could be identi-

fied, characteristics, along which energy propagates, were determined

to be steeper than the bottom slope, and an attempt was made to apply

Baines' (1982) model for that situation. It was found that this model

predicted baroclinic tidal currents much smaller than those observed.
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Holloway (1985) compared the oaroclinic tidal currents at three

locations on the Australian northwest shelf; one of which has oottom

topography which is subcritical ("/c = 0.2), one is near-critical ("/c

= 1.2) and one supercritical ("/c = 1.9), where" is the bottom slope

and c = [(}_f2)/(I~2_"h]1/2 is the slope of the characteristics. He

found that the vertical structure most strongly resembled a first mode

where" < c, and that in these areas, the baroclinic currents were

smaller than the barotropic. Where" > c, the baroclinic currents

were bottom-intensified and exceeded the barotropic currents. Bottom

intensification was greatest for the site where "/c = 1.l, consistent

with the theory of Wunsch (1969).

The continental shelf off northwest Africa is 50 km wide, with the

shel f break at 100 mdepth. From analysi s of current meter and tem

perature data gathered on the shelf during the JOINT -1 experiment of

the Coastal Upwelling Ecosystems Analysis (CUEA) program, Gordon (1978)

noted that internal waves with periods between 0.5 and 8 hours exhib

ited vertical structure consistent with a first baroclinic mode. In

400 m depth, where the bottom slope is super-critical for the semi

diurnal frequency, Gordon (1979) observed first mode internal waves of

semidiurnal frequency propagating in the alongshore direction. Aver

aged over a 30-day period in March, 1974, the near-surface and near

bottom along-shelf tidal currents were about 6 and 8 cm s-l respect

ively. Huthnance and Baines (1982) examined 28 days of current meter

data collected from five moorings over the shelf and slope off the

northwest coast of Africa during February, 1975. Bottom depth at the

mooring locations ranged from 74 to 3000 m. The baroclinic semidiurnal
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currents were strongest at the two moorings in 500 m depth, in fact

much stronger than predicted by the model of Baines (1982) for steep

topography. Their vertical structure suggests the lowest baroclinic

mode. The semidiurnal tidal currents in 74, 2000 and 3000 m total

depth were nearly barotropic. No explanation~is offered for the lack

of internal tidal energy at the 74 m depth.

One would expect the properties of the internal tide on the shelf

off Oregon to be most similar to those in the CODE area, because of

their similarity in topography and prevailing oceanographic conditions.

Both shelves are 20 to 30 km wide with the shelf break at 150 to 200 m

depth, and are characterized by upwelling in the summertime. Hayes

and Halpern (1976), Torgrimson and Hickey (1979) and Denbo and Allen

(1984) have all discussed the tidal currents measured by current meters

deployed during CUE-2 in the summer of 1973 on the continental shelf

off Oregon. Hayes and Halpern (1976) examined the time variability of

the internal wave energy measured at two moorings on the shelf in

100 mwater depth. They found that horizontal kinetic energy in the

semi diurnal frequency band (0.073 - 0.094 cph) peaked during times of

wind relaxation, when stratification over the shelf increased. They

attempted to account for the change in energy as being due to changes

in N2. They concluded that stratification over the shelf break,

which was presumed to be the generation area, remained roughly con-

stant and was probably not the source of the time variability observed

at the moorings. By comparing the characteristics passing through the

mooring site during periods of upwelling and relaxation, they con

cluded that the energy loss observed during upwelling was due to dis

sipation near the sea surface, which did not occur during relaxation
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periods when the characteristics from the generation area passed

through the moorings without any surface reflections.

Torgrimson and Hickey (1979) also sought to interpret the hori

zontal and vertical structure in the semi diurnal (0.074 - 0.087 cph)

tidal currents in terms of characteristics. They identified the

source of the internal tidal energy as a beam with vertical thickness

of 80 mgenerated along the bottom between 474 and 1050 mwhere the

slope is critical for the M2 frequency. They identified the loca

tion of the beam in the current meter data by noting where signal-to

noise ratios in the tidal analysis were low (indicating the presence

of internal tides incoherent with the surface tide) and located points

of reflection by noting where the direction of vertical phase propaga

tion (and hence energy propagation) switched. Currents in the beam

had the largest amplitudes, with observed baroclinic currents as large

or larger than the barotropic tidal currents which were clockwise-
-1rotating and of order 5 cm s For any given mooring (there were

moorings at 50, 100, 200, and 500 mdepth), a relative maximum in

amplitude occurred at only one depth, not two or more as would be

evident if a simple modal structure dominated. Ellipse orientation

for the baroclinic currents was primarily in the cross-shelf direc

tion, indicating horizontal energy propagation in that direction.

Denbo and Allen (1984) used rotary empirical orthogonal function

(EOF) analysis to analyze the same data used by Torgrimson and Hickey

(1979). For the semidiurnal frequency band (0.077 - 0.083 cph), they

found that the largest clockwise-rotating EOF was consistent with the

general shape of a first dynamical baroclinic mode. Because of the

180~ phase difference between displacement and surface velocity, they
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equated the first EOF with an internal wave standing in the vertical

and propagating shoreward with horizontal wavelength of 40 km. The

node in the vertical was at a depth of 0.4 times the local water

depth. The first counter-clockwise-rotating EOF had a relatively

depth-independent structure and was interpreted as being represent

ative of the barotropic tidal currents. Given this interpretation,

there is no way to reconcile the results of Torgrimson and Hickey (as

summarized in their Figure 11a) with Denbo and Allen's results (as

summarized in their Figure 5). The problem arises from the fact that

the barotropic tidal current, as resolved by Torgrimson and Hickey,

was in fact rotating clockwise (CW), and because it was not inCO~lerent

with the baroclinic tide, Denbo and Allen's largest CW-rotating mode

is really a combination of baroclinic and barotropic energy. The

nodes in the mode are due to the destructive interference between the

barotropic and baroclinic currents there. They are not necessarily

nodes in the first baroclinic dynamical mode. Unfortunately (as was

poi nted out by Hsi eh (1986) for the low frequency band), Denbo and

Allen (1984) made the common error of equating EOFs with dynamical

modes when interpreting their results.

The region off southern California offers an example of a very

narrow, steep (a =0.017) shelf. It is only 4 km wide, with the shelf

break at 60 to 80 mdepth. Over a month-long period in the sununer of

1974, Winant and Olson (1976" using four electromagnetic current

meters mounted on a tower in 18 m water depth off La Jolla, observed

baroclinic semidiurnal tidal currents with a first mode vertical

structure. Cross-shelf current amplitudes were order 20 cm s-l.

The along-shelf velocity fluctuations at the semidiurnal frequency
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were barotropic in nature. The internal tide was not phase-locked to

the surface tide, even over as short a period as a week. Current and

temperature data from three moori ngs at 15, 30, and 60 mdepth in the

same area also revealed the semidiurnal cross-shelf currents to have a

first baroclinic mode structure in the vertical, while the along-shelf

component was barotropic (Winant and Bratkovich, 1981). The phase

relationship between temperature and cross-shelf currents in this data

set indicated that the semidiurnal internal waves were standing in the

cross-shelf as well as vertical direction. The energy associated with

the internal tide was seen to decay with decreasing total water depth,

and was also a strong function of season, with the least energy in

winter when stratification is weakest. A more detailed analysis of

the same data is given by Bratkovich (1985) who shows that the

cross-shelf baroclinic motions were bottom-intensified.

To summarize this section, several conclusions regarding the nat

ure of semidiurnal internal tides on continental shelves are drawn.

1) Energy is usually observed to be in the form of a first baroclinic

mode. 2) Bottom-intensification is present when the bottom slope is

near-critical for this frequency band. 3) Internal tides are inter

mittent in time, with increases in energy accompanying increasing

stratification. 4) Dissipation takes place over distances on the

order of one to two horizontal wavelengths, where the wavelength is

about 20 km. Because the continental slope and shelf break are the

primary generation sites, little baroclinic tidal energy is observed

far from the shelf break on wide continental shelves.
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3. DATA

The data used here were collected over the continental shelf and

slope off northern California in the area between Pt. Reyes and Point

Arena (Figure 1). The moored array component of CODE consisted of

two heavily instrumented arrays deployed during the summers of 1981

(CODE-I) and 1982 (CODE-2), and a sparser array during the intervening

winter. Only a subset of all the available data is used here. Hourly

averaged current and temperature data collected during CODE-2 along

the Central (C-) line from moorings in 50, 90, and 130 m depths are

the focus of this investigation. Comparisons are made witn moorings

at the same isobaths to the north (N-line) and south (R-line) of the

C-line. The mooring locations are shown in Figure 1 and the instru

ment types, locations, depths and duration are given in Table 1. A

brief description of the moorings and an evaluation of mooring motion

is gi ven in Chapter 11. In addi ti on, reference is made to measurements

made at C3 during the winter. Currents were decomposed into along

shelf (positive towards 317°T) and cross-shelf (positive towards 47°T)

components. Time is referred to Greenwich Mean Time (GMT). More

information concerning CODE-2 current and temperature data can be

found in Winant, Send, and Lentz (1985) and Irish (1985), respectively.

During three time periods within CODE-2, CTD measurements were

made along the CODE or CODE-2 C-lines (separated by an along-shelf

distance of 2 km). Fleischbein, Gilbert and Huyer (1983a) describe

CTD data collected between April 20-24, Fleischbein, Gilbert and Huyer

(1983b) describe CTD data from May 26 - June 2, and Huyer, Fleischbein

and Schramm (1984)

buoyancy frequency

describe July 16-26 CTD data. Vertical profiles of
2squared (N ) were computed from one meter averages
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; ng s are shown.
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Water
Oepth Lati tude Longitude Oepth

Stn (m) North West Start Stop Instrument (m)

C2 60 38·'38.2' 123·25.3' 3/12/82 8/05/82 VMCM/T 10
3/12/82 8/13/82 VMCM/T 20
3/12/82 8/05/82 VMCM/T 35
3/12/82 8/05/82 Vt~CM/T 53

C3 93 38·36.4' 123·27.7' 3/24/82 7/28/82 VMCM/T 5
3/24/82 7/28/82 VACM/T 10
3/24/82 7/28/82 VMCM/T 15
3/12/82 8/09/82 VMCM/T 20
3/12/82 8/05/82 Vl~CM/T 35
3/12/82 8/09/82 VMCM/T 53
3/12/82 8/05/82 VMCM/T 70
3/12/82 8/09/82 VMCM/T 83

C4 130 38·33.3' 123·:H.6' 4/01/82 8/17/82 VACM/T 10
4/01/82 8/17/82 VMCM/T 20
4/01/82 8/17/82 VMCM/T 35
4/01/82 8/17/82 VMCI~/T 55
4/01/82 8/17/82 VMCI~/T 70
4/01/82 8/17/82 VMCM/T 90
4/01/82 8/17/82 VACM/T 21

N2 60 38·49.5' 123·40.1' 3/11/82 8/05/82 VMCM/T 10
3/11/82 8/11/82 VMCM/T 20
3/12/82 8/05/82 VMCM/T 35

N3 91 38·48.1' 123·41.8' 3/11/82 8/11/82 VMCM/T 10
3/12/82 8/05/82 VMCM/T 35
3/11/82 8/10/82 VMCM/T 53
3/12/82 8/05/82 VMCM/T 70
3/11/82 8/10/82 VMCM/T 83

Abbreviations: VMCM/T - vector measuring current meter with tempera-
ture sensor, VACM/T - vector averaging current meter with temperature
sensor.

Table 1a. Location, instrument type and depth are listed for the cur-
rent and temperature data used in thi s paper. Start and stop dates
(GMT) are for the full record length available, although the entire
time series was not necessarily used in the analysis here.
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Water
Depth Latitude Longi tude Depth

Stn (m) North West Start Stop Instrument (m)

N4 130 38·45.7' 123·45.6' 3/24/82 8/20/82 VACWT 10
3/24/82 8/20/82 VMCM/T 20
3/25/82 8/20/82 VMCM/T 35
3/25/82 8/20/82 VMCM/T 55
3/25/82 8/20/82 VMCi'l/T 70
3/25/82 8nO/82 VMCt4/T 9Ll
3/25/82 8/20/82 VMCM/T 110
3/25/82 8/20/82 VACM/T 121

R2 60 38·27.1' 123·14.0' 3/12/82 8/10/82 VMCt4/T 20
3/13/82 8/05/82 VMCM/T 35
3/13/82 8/05/82 VMCM/T 53

R3 90 38°25.4' 123·16.4' 3/13/82 8/14/82 VMCM/T 20
3/13/82 8/05/82 VMCM/T 35
3/13/82 8/14/82 VMCM/T 53
3/13/82 8/05/82 VMCM/T 70

R4 130 38°20.8' 123°23.0 ' 4/02/82 8/18/82 VACM/T 10
4/02/82 8/18/82 VMCM/T 20
3/26/82 8/14/82 VMCM/T 35
3/26/82 8/14/82 VMCM/T 55
3/26/82 8/14/82 VMCM/T 70
3/26/82 8/14/82 VMCM/T 90
3/26/82 8/14/82 VMCM/T 110

Abbreviations: VMCM/T - vector measuring current meter with tempera-
ture sensor, VA04/T - vector averaging current meter with temperature
senso r.

Table lb. Location, instrument type and depth are listed for the cur-
rent and temperature data used in this paper. Start and stop dates
(GMT) are for the full record length available, although the entire
time series was not necessarily used in the analysis here.
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of pressure, temperature, and salinity supplied by A. Huyer of Oregon

State University.

4. METHODS OF ANALYSIS

The goal of this work is to describe the time variability and

spatial structure of the baroclinic semidiurnal tidal currents

observed over the shelf off northern California. Practically

speaking, an exact separation of the barotropic and baroclinic

components of flow is virtually impossible. In Rosenfeld and

Beardsley (1987), the barotropic component of the tidal flow was

operationally defined as that part which was depth-averaged and

phase-invariant over the length of the record (4 months). Trying to

extract the baroclinic tidal signal from a moored array of current and

temperature sensors is a difficul t task at best. The major problems

involved stem from the non-stationarity of the phenomenon, the pres

ence of noise, and the fact that the internal tide may be partially

phase-locked to the surface tide. As discussed in Noble et al.

(1987), the length of time over which the phase-locked part is cal

culated will affect how much of the baroclinic component is included

in it. When the baroclinic and barotropic components are comparable

in size, the task of separating them is that much harder, so the choice

was made to concentrate here on a description of those time periods

when the baroclinic energy levels are well above the background.

To aid in identifying periods with large semidiurnal energy, a

complex demodulation technique similar to that described in Appendix A

of Chapter II was used to examine the time variability of the signal.

The hourly data (temperature and velocity components) were high-pass
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filtered (Appendix B of Chapter II), and then 48 hour periods (starting

every 6 hours) were fit to the sum of a mean and sine wave with the

M2 period (12.42 hours). Due to the presence of noise and the fact

that only one frequency was used in the fit, the calculated amplitude

and phase are representati ve of a band of frequenci es around the

principal lunar constituent, as evidenced by the fact that the time

series of 12 and 12.42 hour amplitudes are virtually indistinguishable.

Time series of the semidiurna1 amplitude extracted from a bottom

pressure record (Fi gure 2) (i n whi chover 95% of the energy is ti da 1)

clearly shows a fortnightly modulation, again indicating that the sum

of the semidiurna1 constituents (rather than any individual one) is

being resolved. Phases are referred to 0000 GMT on April 4, 1982.

Once the time intervals of interest were identified, two methods

were used to quantify the average semidiurna1 variance in them. The

first, EOF analysis in the frequency domain, extracts the coherent

part of the current and temperature variance in the whole semidiurna1

frequency band, defined here as 0.072 to 0.086 cph. The advantage of

looking at the energy in the whole band, rather than at a single

frequency, is that the internal tidal energy may be spread out in a

band around the tidal lines due to Doppler-shifting by the low fre

quency flow (Wunsch, 1975). The fortnightly beating that is evident

in bottom pressure records is not distinguishable in the current rec-

-1ords, which is evidence of this smearing. Currents in cm s were

weighted by 1 and temperature in ·C by 20 so that they contributed

approximately equally to the total variance. In choosing the record

length over which to analyze for properties of a signal intermittent

in time, two considerations must be balanced. A short time period is
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desirable because the properties are changing rapidly, but statistical

reliability is increased if the analysis period is lengthened. The

EOF analysis was carried out over 15 day periods, resulting in 12

degrees of freedom.

In the second metnod, amplitude and Greenwich phase were estimated

separately for each component of velocity for ten tidal constituents,

using least squares tidal analysis (Boon and Kiley, 1978) over 29 days.

The barotropic M2 ellipses determined from a similar analysis of the

depth-averaged currents over the whole eODE-2 time period (Rosenfeld

and Beardsley, 1987) were then subtracted from the M2 ellipses cal

culated over the shorter time period, resulting in what shall be

referred to as the residual currents.

Vertical profiles of N2 were derived from least squares esti

mates of the specific volume anomaly gradient calculated over 4 m

intervals. The specific volume anomalies were calculated from eTD

data according to the equations of state given in Fofonoff and Millard

(1983). The dynamical modes in a flat bottom ocean (at z = -H) with

free surface boundary condition (at z =0) were calculated using a

computer program developed by M. Blumenthal of the Massachusetts

Institute of Technology. The vertical structure equation for the

vertical velocity,

is solved using a finite difference scheme subject to the boundary

conditions,

-1 2-g G + A G = 0 at z = 0z n and G = 0 at z = -H
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where g is the gravitational acceleration. 2The eigenvalues An

and corresponding eigenvectors Gn, which are independent of

frequency under the hydrostatic approximation, are calculated from the

tri di agona 1 coeffi ci ent matri x. They are related to the hori zonta 1

wavenumbers Kn, frequency w, and inertial frequency f, by the

horizontal structure equation,

The vertical structure of the horizontal velocity components and pres

sure is calculated as the z-derivative of G. G is normalized such that

! 0 Gi Gj dz =
-H z z

where i, j are mode numbers.

5. OBSERVATIONS

Complex demodulation at the M2 frequency of the current and tem

perature time series from the C-line in CODE-2 show the amplitude and

phase to be quite variable in time. Some of this variation is due to

beating in the semi diurnal band, as seen for bottom pressure in Fig-

ure 2. However, two events occur between the spring transition (April

15) and the end of CODE-2 which are of sufficient amplitude and dura

tion to stand out above the background. The size and duration of these

two events varies somewhat with cross-shelf location and sUbstantially

with depth, but they always fall between April 16 - May 8 (with most

of the variance between April 19 and May 3) and June 22 - July 6. Two

examples for temperature and cross-shelf velocity are shown in Fig-

ure 3. The along-shelf component of velocity is highly correlated
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with, and similar in amplitude to, the cross-shelf component. A max

imum amplitude of over 25 cm s-l occurs in the along-shelf velocity

component at 5 m depth at C3 on April 26. Complex demodulation of the

depth-averaged currents shows amplitudes that are always less than

4 cm s-l (figure 4). The ampl itude modulation of one or both of the

depth-averaged current components is correlated with the amplitude

modulation of the bottom pressure at some locations, with the baro

clinic currents at other locations, and with neither at still other

locations. This correlation, or the lack of it, may be due to how

energy is transferred from the barotropic to the oaroclinic component.

Examination of plots of the hourly temperature data at C2, C3, and

C4 in Irish (1985) shows visibly increased semidiurnal variability

during the time periods cited above, which is also seen in the complex

demodulation time series in Figure 3. The low-passed temperature data

shown in Figure 5 reveal that these were times of strong stratification

which occurred when the winds relaxed and upwelling weakened (Send,

Beardsley, and Winant, 1987). The onset of the increase in semidiurnal

energy in June lags. the beginning of the warming (and increased strat

ification) trend by a few days. Note that no increase in semidiurnal

energy accompanies the relaxation at the end of May, during which the

stratification is nearly as large as in the April and June relaxations.

The correlation (calculated for a 353 day period from the end of CODE-1

to the end of CODE-2) between the stratification at C3 (represented by

the temperature difference between the 10 and 75 m temperatures) and

the amplitude of the along-shelf semidiurnal velocity at C3 10 m is

only marginally significant (r =0.15) at the 90% confidence level.

Over the Ill-day period from April 4 - July 25, 1982, the semidiurnal
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amplitudes of temperature and both components of velocity at C3 10 m

were significantly correlated at zero time lag at the 99.9% confidence

*level with the 10-75 m temperature difference ~T. The scatter plot

shown in Figure 6 indicates that the amplitude of the along-shelf

semidiurnal component of velocity at C3 at 10 m usually exceeds
-1 06 cm s only when ~T is greater than 1.5 C.

EOF analysis for the 0.072-0.086 cph frequency band was performed

for the two 15 day periods previously mentioned (April 19 - May 3 and

June 22 - July 6). a third 15 day "control" period (May 9-23), during

which the semi diurnal variance was not unusually large. and the whole

CODE-2 time period (April 2 - July 28). Along-shelf and cross-shelf

currents, as well as temperature. for each of the instruments at C2,

C3, and C4 (Table 1) was included. The resulting current ellipses for

the first and second modes are shown in Figure 7. It is seen that the

largest velocities occur during the April and June periods and the

first mode during these periods accounts for a large percentage (71%

in April) of the semidiurnal current and temperature variance. The

velocity ellipses rotate CW and show. at least in the April case. a

distinct minimum in mid-water. The currents in the upper and lower

parts of the water col umn are out of phase wi th each other. Duri ng

the May control period. the velocities are much smaller and the vari

ance is spread out over more modes. The first mode has predominantly

CCW-rotating ellipses and no distinct phase shift is apparent over the

water column. Note the cross-shelf orientation of the ellipses in the

lower water column at C4 which give rise to the cross-shelf orientation

*Every eighth 6-hourly point was considered to be independent, result
ing in 56 degrees of freedom for the HI-day period. and 176 for the
353-day period.
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Figures 7a and 7b

Horizontal current ellipses for first and second C-line
EOFs for four time periods during CODE-2. Current vectors
rotate CW unless otherwise indicated. Phases relative to
cross-shelf velocity at uppermost current meter nearest to
the coast are marked. The percentage of total variance
accounted for by each EOF is given.
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of the depth-average ellipse at that location shown in Figure 4 of

Rosenfeld and Beardsley (1987). The cause for this is not known, but

does not appear to be related to the baroclinic flow since it is

evident during the time of smallest internal tides.

The first mode temperature amplitudes and phases for the April and

June periods are shown in Figure 8. During May 9-23, the average

semidiurnal temperature amplitude, as calculated from the first mode,

was less than 0.03°C along the C-line, and so is not shown. It should

be emphasized that the currents and temperatures, although presented

in two separate figures here for ease of viewing, were used together

in the EOF calculation. Figure 8 shows that the maximum temperature

variability generally occurred near 20 mand the amplitude was close

to zero at the bottom, except at C2. The phase is fairly constant

with depth over the middle part of the water column, but shows an

increase with depth over the bottom part at C3 and C4 and a jump near

the surface at C3. An estimate for the barotropic tide's contribution

to the temperature fluctuations can be made by assuming Tt = wTz' with

w = uhx at the bottom and Dt at the surface. Using the barotropic

tidal results of Rosenfeld and Beardsley (1987), the amplitude of Dt
. -3 -1and uhx were both estlmated to be 5 x 10 cm s Based on the mean

temperatures during April 19 - May 3, when Tz is largest, Tz near the

surface is 6 x 1O-4
o
C cm- 1, and near the bottom, it is one third as

large. Therefore the amplitude of the near-surface temperature fluc

tuations due to the barotropic tide is about 0.03°C, and near-bottom

about O.Ol°C. Thus, the temperature fluctuations due to the barotropic

tide are about an order of magnitude less than the maximum fluctuations

observed in the April event, and are consistent with those observed
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during the May control period. The first mode at the C-line calculated

over the entire 4 month period, April 2 - July 28, during which all 19

instruments Were in the water and working, accounts for 46% of the

current and temperature variance, and is almost identical in structure

with that for the two week period in April, but with about half the

amplitude (Figure 7). This shows that the internal wave events,

although of brief duration, make a large contribution to the variance

over the whole CODE-2 time period.

The structure of the largest mode at the N-line during the two-week

periods in April and May and over the whole four months are similar to

each other (Figure 9). The current ellipses are very elongated, are

oriented along-shelf, and are nearly depth-independent both in ampli

tude and phase. They are also in phase across the shelf. At N2 and

N3, the currents at some depths rotate CW and some CCW, but at N4,

where the ellipses are more circular, all are CW-rotating. The second

modes (Figure 9) have CW-rotating ellipses almost everywhere and the

cross-shelf and vertical structures are very similar to the first mode

at the C-line.

The EOF analysis results reflect the coherent variance in the

whole semidiurnal band. In contrast, the velocity ellipses shown in

Figure 10 represent the residual M2 currents at the R-, C-, and

N-lines over the 29-day period from April 13 - May 11, 1982. As

described in Section 4, these were arrived at by subtracting the

depth-averaged M2 currents. The residual ellipses at the C-line

show essentially the same vertical and cross-shelf structure as the

first mode EOF's, thus indicating that the variance at the M2
frequency is representative of the whole semidiurnal band, and that
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the structure extracted by the tidal analysis done separately at each

location is the same as the coherent variance picked out by the EOF

analysis. The R-line structure is very similar to the C-line. The

residual currents at the N-line, which has larger depth-averaged tidal

currents, do not show the same type of structure as either the first

or second N-line EOF, thus indicating that the M2 variance identi

fied by the tidal analysis is not very coherent among the instruments

in this cross-section. There is no simple structure to the N-line

M2 residual currents, as there is at the R- and C-lines.

6. COMPARISON WITH INTERNAL WAVE THEORY

In considering the propagation of internal waves in the ocean, one

of two dynamical frameworks is often used; vertical modes and propa

gation along characteristics. Vertical modes represent the sum of

waves with upward and downward propagating components that cancel each

other to form waves which are standing in the vertical direction. A

vertical mode representation requires a separation of variables in the

horizontal and vertical directions. Characteristics represent the

direction of the group velocity vector along which energy propagates,

and their slopes vary continuously in a nonhomogeneous medium. At a

given position in the horizontal plane, any vertical structure can be

made up by the superposition of either a number of modes or a number

of beams centered on the characteristics. At different points in the

horizontal, the composition of modes or beams needed to describe the

vertical structure may vary. In any given situation, it may be more

useful to envision the internal waves in terms of one or the other of

these frameworks. The nature of the vertical structure to be described
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and the degree to which the medium and the boundary conditions vary in

the horizontal will help to determine this. In the case of the ob

served velocity structure at the C-line, where all across the shelf

there is a distinct mid-depth minimum in horizontal velocity with a

180· phase reversal in the vertical across this minimum, a description

in terms of modes seems more appropriate. The separation of variaoles

needed to define vertically standing modes is only valid, strictly

speaki ng, for a fl at bottom. It has been shown, however, that when

the bottom slope is gentle (i.e. much less than the slope of the char

acteristics), the horizontal wavelength is locally the same as what

would be predicted for a flat bottom (Wunsch, 1969). The observations

in the CODE area, as on most other continental shelves (Torgrimson and

Hickey (1979) is a notable exception), show the semidiurnal baroclinic

tidal energy to be predominantly in the lowest mode (Baines, 1986).

The reasons for this are discussed in the next section.

In the remainder of this section, a description of the internal

tide in terms of vertical modes on a flat bottom is developed and

compared with the observations. Then modifications due to the slop-

ing bottom are discussed. The linearized, hydrostatic, inviscid,

Boussinesq equations of motions on an f-plane are taken as a starting

point:

ut - fv = -Px ' (1)

\ + fu = -p (2 )
Y

Ux + v + W = 0 (3 )
Y z

Pz = b (4)
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2
b
t

= -N w ( !:> )

where u, v, ware the components of velocity in the cross-shelf (x),

along-shelf (y), and vertical (z) directions, respectively. p is the

perturbation pressure divided by the reference density Po' b is the

buoyancy equal to -gp/po' f is the inertial frequency, N2 is the

buoyancy frequency squared equal to -gpz/po' and subscripts denote

partial differentiation. These five equations may be combined into

one equation in any of the five variables. The choice of a governing

equation for the vertical velocity makes application of the boundary

conditions on a flat bottom particularly easy.

w = a (6 )

Assuming that all variables behave as ei(kX+ly+mz-wt) leads to the

familiar dispersion relation for hydrostatic internal waves,

(7)

from which the group and phase velocities, which are perpendicular to

each other, may be derived.

(1) and (2) may be combined to give expressions for u and v in

terms of p,

u = wk + i fl P

w2 f2
and v = w1 - i fk P

]- _ f2
( 8)
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from which it can be seen that for a wave propagating in the x-direc

tion only (1 =0), u/v = iw/f. This can be generalized to the state

ment that the ratio between the horizontal velocity components parallel

and perpendicular to the horizontal wavenumber vector is iw/f (Gill,

1982). This means that in practice the horizontal direction of

propagation should be determinable by looking at the orientation of

the horizontal current ellipse, since in any ellipse the component of

velocity along the major axis (which points in the direction of orien

tation) is 90· out of phase with that along the minor axis. Theoret

ically the absolute value of the ratio of major to minor axis should

be w/f (1.6 for the semidiurnal frequency at the CODE latitude). In

reality however, the two criteria, the velocity components being go.

out of phase and in the ratio w/f, are rarely met simultaneously, mak

ing a determination of the direction of propagation somewhat ambiguous.

Frictional and nonlinear effects, which are not included in the above

equations, may be responsible for the discrepancy between these two

criteria.

Examination of the residual ellipses shown in Figure 10 and the

coherent depth-dependent ellipses from the EOF analysis, shows that

the ellipse orientations vary in space, as do the ratios of major to

minor axes. These orientations and ratios for the residual ellipses

and the first EOFs for the April event are listed in Table 2 for the

C- and N-lines. It is seen that over much of the water column at the

C-line the ratio of major to minor axis is close to the theoretical

value of 1.6, but the orientation varies between %90·, where O· is the

cross-shelf direction. Previous observations of internal tides'on

continental shelves indicate that their direction of propagation is
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Fi rst EOF M2 Resi dua 1
Station Depth Major/Mi nor Orientation r~ajor/Minor Ori entati 0 n

(deg) (deg)
C2 10 -5.7 -33 -2.9 -48

20 1.9 -54 -40.5 lJ6
35 -1.4 77 -11. 5 -73
53 -1.4 -8 -1.8 28

C3 5 -1. 7 -86 -1.4 89
10 -1.2 -78 -1.3 -74
15 -1. 2 -71 -1.4 -82
20 -1.2 -43 -1.3 lJ7
35 -9.3 -4 -2.2 -9
53 -1.6 23 -1.8 0
70 -1. 7 24 -1.8 24
83 -2.4 -2 -3.3 -3

C4 10 -1.1 39 -1.4 -48
20 -1.1 -69 -1.6 -57
35 -1.1 87 -1. 6 -69
55 5.2 85 -2.4 -50
70 -5.0 -14 2.9 -81
90 -1.8 -13 -1.5 -13

121 -2.2 -31 -1.7 -23
N2 10 -16.9 -85 10.0 40

20 8.5 84 2.6 65
35 -75.2 -86 -2.2 68

N3 10 6.2 80 -1. 9 -38
35 -16.9 -76 -1.5 -79
53 -9.4 86 -2.3 77
70 -5.9 77 -1.8 lJ1
83 -6.4 76 -2.6 48

N4 10 -2.8 -85 -15.1 -84
20 -261.4 -80 -2.9 -69
35 -3.8 80 4.6 79
55 -3.4 78 -2.3 42
70 -2.6 78 -1.3 36
90 -4.4 84 -1.3 -33

110 -3.2 70 -1.5 -90
121 -3.9 59 -1.2 58

Table 2. The ratios of the major to minor axes (negative values mean
rotation is CW) and the orientations (measured positive CCW from the
cross-shelf direction of 47°Tl of the semidiurnal band current
ellipses from the largest EOF calculated over the period April 19 
May 3, 1982 are listed for the C- and N-lines. The C-line ellipses
are shown in Figure 6, the N-line ones in Figure 8. Also listed are
the ratios and orientations for the C- and N-line residual M2 .
ellipses shown in Figure 9.
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primarily onshore. That is not inconsistent with the observations at

the C-l ine, but unfortunately it is impossible to determine accurately

the direction of horizontal propagation from this velocity data. The

velocity ellipses do rotate in a CW manner as predicted by theory.

Some information on the horizontal propagation characteristics of

the internal tide can be gained by examining the phase relationship

between temperature and velocity fluctuations. The T-u phase

differences for the first EOF during April 19 - May 3 are listed in

Table 3. Given that the error bars for 95% confidence are roughly

±20-30·, it is difficult to draw any concrete conclusions from these

results. Excluding the bottom-most instruments, since the phase of

temperature there is strongly affected by bottom slope (Table 5),

there is some suggestion that at C3 and C4 the wave is progressing in

the shoreward direction (for which case the theoretical T-u phase

difference is O· in the uppe r 1ayer and t.180· in the lower 1aye r) • At

C2, where reflection from the coast might be expected to playa more

important role, the phase difference at 35 m is closer to the theoret

ical value for a wave standing in the cross-shelf direction. Unlike

the situation over the narrow shelf off the coast of southern Cali

fornia, where Winant and Bratkovich (1981) found that the coherent

semidiurnal-band cross-shelf velocity and temperature fluctuations

had a 90· phase difference in the upper water column and a _90· phase

difference in the lower water column (consistent with an internal wave

standing in both the vertical and cross-shelf directions), it is inap

propriate to characterize the wave here as either purely propagating

or purely standing in the cross-shelf direction. Most probably, the

reflection coefficient at the coast is intermediate between 0 and 1.
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C3 C4

Depth

( m)

Elr - au

(deg)

Depth

( m)

Elr - au

(deg)

Depth

( m)

Elr - au

(deg)

10 44 5 2 10 47

20 15 10 6 20 33

35 -103 15 -3 35 43

53 -91 20 -29 55 118

35 -135 70 178

53 -174 90 170

70 -155 121 -104

83 -90

Table 3. Phase differences between the temperature (T) and cross
shelf component of velocity (u) are shown for the largest C-line EOF
calculated over the period April 19 - May 3, 1982.
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The internal tide is clearly not propagating seaward however, since

this would require a T-u phase difference of ±180· in the upper layer

and O· in the lower layer, which are well outside even the most con-

servative error brackets for the estimates in Table 3.

The coherent structure represented by the largest EOF at the N-line

during all the time periods examined, shows currents that are oriented

nearly along-shelf everywhere in the cross-section. The narrowness of

these ellipses, and the fact that they are nearly in phase both verti

cally and horizontally is inconsistent with interpretation as internal

waves. The second EOFs at the N-line show more vertical structure,

but they contai n only a small percentage of the variance. The larger

amount of variance in the depth-i ndependent currents at the N-l i ne,

relative to the C-line, makes description of the baroclinic part

harder, so the remainder of this section will deal with interpreta

tion of the baroclinic tidal currents at the C-line. The similarities

between the residual ellipses at the R- and C-lines (Figure 10) sug

gest that any conclusions drawn for the C-line may also be applicable

for the R-line.

If N2 is assumed to be a function of z only, (6) can be

separated into horizontal and vertical structure equations,

2 2G + N (z) An G = 0zz

2 .where the substitution w =W(x,y,t) G(z) has been made and An 1S

a separation constant. Application of a free surface boundary

(9)

(10)
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condition (w = Pt/g) at z = 0 and a no normal flow condition (w = 0)

at the flat bottom (z = -H) results in a system of equations that can

be solved numerically to obtain the dynamical modes for arbitrary N(z)

as described in Section 4.

The hori zonta 1 wavenumber K = (k2+l 2)1/2 and the hori zonta 1

phase speed cp = w/K are then found from (9),

and (11 )

The horizontal group velocity cg = aw/aK is given by

where n is the mode numbe r.

(12)

The vertical structure for the horizontal and vertical velocities

was calculated in the manner just described, using N2 profiles

derived from the CTO stations taken along the COOE-2 C-line during

April 23-24, 1982. The first baroclinic dynamical mode (Figure 11),

characterized by one zero crossing in the horizontal velocity, is

relatively insensitive to the details of the N2 profile. Features

such as the surface intensification, vertical position of the minimum

in horizontal velocity, and 180
0

phase shift across that minimum, com

pare favorably with the observations. To facilitate this comparison,

Figure 7a is reproduced in Figure 12 with the same depth and distance

scales as Figure 11. The current data show the zero crossing in hori-

zontal velocity to be at 0.4 to 0.5 times the water depth at the 60,

90, and 130 m isobaths (Figures 10 and 12). The hydrographic data
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also predict a zero crossing at these depths over the outer and mid- .

shelf, but a shallower crossing at the two CTD stations closest to

shore (Figure 11). TIle steep bottom slope just shoreward of C2 makes

the flat-bottom approximation, used in predicting the modal struc

tures, less valid there than at C3 and C4. It should be remembered

when making these comparisons that the hydrographic data with which

the dynamical modes are calculated are a snapshot in time, whereas the

EOFs and residual current ellipses represent an average over 15 and 29

days, respectively.

Comparison of the vertical structure of the amplitude of the vert

ical velocity with data is more difficult. If horizontal advection is

assumed to be small and w is calculated as Tt/Tz' where Tt is found

from the EOFs (Figure 8) and Tz is calculated from the mean temperature

over the 15 days, then the vertical position of the maximum in w at C3

and C4 is at 20 or 35 m. This is the same as, or one instrument lower

than, the maximum in temperature. The maximum predicted from the N2

profiles at CTO stations 87 and 89 (Figure 11) is at 44 and 52 m,

respectively. In an attempt to allow a more direct comparison between

the temperature results from the EOF and the dynamical modes, the first

dynamical mode for vertical velocity at each CTD station was multiplied

by Tz calculated from the CTD data over the same 4 m intervals used to

determine N2. Unfortunately, these temperature modes (Figure 13) are

highly sensitive to the details of the vertical structure of temperature.

Comparison of the first dynamical mode vertical velocity phase

with the EOF results is easier because the correspondence in phase

between temperature and vertical velocity is less ambiguous than the

amplitude relationship. T and ware 90· out of phase with each other
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in time, but both have phase constant with depth. The temperature

phases from the EOF (Figure 8) are relatively constant with depth over

most of the water column. Possible explanations for the deviations of

the phase near the bottom are discussed later in this section.

Table 4 lists the horizontal phase speed, group speed, wavenumber,

and wavelength predicted for the lowest baroclinic mode at each CTD

station shown in Figure 11. These were calculated according to (11)

and (12), using the eigenvalues found by assuming a flat bottom locally

at each cross-shelf location. The group velocity for the first baro

clinic mode is about 0.25 m s-l, which means that energy takes

approximately a day to cross the shelf.

The horizontal wavelength over the shelf predicted by this method

is about 20 km. This is compared to the wavelength calculated from

the phases of the temperature fluctuations in the largest EOF. Exam

ination of Figure 8 shows the difference in the phase of the tempera

ture signal between C2 and C4 (a distance of 13 km) to be 220·, result

ing in a maximum wavelength of 21 km, if it is assumed that the wave

is propagating in the cross-shelf direction. Of course if more than

one wave fits between C2 and C4, the wavelength would be much shorter.

Velocity was not used in this calculation because the ellipse phases

are relative to their orientations, which have already been shown to

be quite variable in depth.

Allowing for a sloping, instead of a flat, bottom introduces new

considerations into the problem. 8ottom-trapped waves as defined by

Rhines (1970) become a possibility, and the vertical structure and

horizontal wavelength and phase speed of vertically propagating and

standing internal waves are modified in the presence of a sloping
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bottom. Additionally, interaction between topography and the baro

tropic component of flow in a stratified fluid is a generating mechan-

ism for internal waves, but discussion of that issue is deferred to

the following section. Rhines (1970) showed that in a rotating strat

ified fluid bounded by a single rigid wall oriented at angle ~ to tne

horizontal, edge waves may occur at all frequencies up to N sin(~).

These waves are trapped at the wall, decaying in the direction perpen

dicular to it. The average bottom slope along the C-line between the

60 and 130 m isobaths is 0.005, which means that ~ is also 0.005.

N · d 10-2 -1 d·Depth-averaged values tYPlcally do not excee s, even unng

the periods of largest stratification, although near-surface values may

be somewhat larger. Using these values for N and ~, the maximum allow

able frequency for bottom-trapped waves is 5 x 10-5 s-l, which is below

the semidiurnal frequency of 1.4 x 10-4 s-l. Thus, the continental shelf

in the CODE region slopes too gently to allow bottom trapping of waves

of semidiurnal frequency.

wunsch (1969) considered the problem of internal waves propagating

in a constant Nocean with a uniformly sloping bottom. He snowed that

as the internal waves approach shallower water they are refracted such

that the crests become parallel to shore. He also showed that far

from the apex over a gentle slope, the solution reduces to that for

the flat bottom. The slope of the mid-shelf region in the CODE area

is subcritical with respect to internal waves of semidiurnal frequency

(i.e. the bottom slope is less than the slope of the characteristic c,

defined below). In an effort to assess the changes in vertical

structure due to the sloping bottom, wunsch's solution for internal

waves propagating upslope in a subcritical wedge are evaluated here
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using parameters appropriate to the mid-shelf in the CODE area.

Expressions for the cross-slope (u) and vertical (w) velocities

deri ved from equation (9) of Wunsch (1969) are:

w=Re {-iqcA [e-iq 1n(cx-z) _ e-iq 1n(cx+z)]
cx - z cx + Z

u = Re
{

-iqA [e-iq In(cx-z) +
cx - z

e-i q 1n( cx+z)]
cx + z

(l3a)

(13b)

where q = ,~r:), ~ = ~ : ~ ~ c ~w: -f~ , n is an integer equal to
N - w

the mode number, and A is an arbitrary amplitude. Equations (13a) and

(13b) were evaluated at x = 18 km for values of z from the surface

down to the bottom at ~ mwith a = 0.005, w = 1.4 x 10-4 s-l, f =

-4 -1 d 10.9 x 10 s ,an n = • Table 5 compares how the phase of u

and wand the amplitude of u vary with depth for solutions in a wedge

with two different values of N2, the solutions on a flat bottom with
2 2constant N and with real N (zl, and the observations. Phases and

amplitudes are referenced to 83 m, the depth of the bottom instrument

on the C3 mooring. Figure 14 is a visual representation of some of

the information that is listed in Table 5.

The effects of the sloping bottom are to cause a slight botto~

intensification and phase shift in the horizontal velocity and a

larger phase shift in the vertical velocity, relative to the flat

bottom solutions. All of these effects increase with increasing strat

ification. For N2 = 5 x 10-5 s-2, the vertical velocity at the bottom

lags that near the surface by 126°. TIlis is a possible explanation for

at least some of the increase in phase with depth of the temperature
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fluctuations seen in Figure 8. The addition of bottom friction based

on a linear drag law can also cause a considerable phase shift in the

vertical velocity (and temperature fluctuations) in the same sense as

the bottom slope does (Brink, personal communication), which may

account for the underprediction of the observed phase shift based on

bottom slope alone. The amount of the friction-induced phase shift

is independent of the strength of the stratification for uniform N2.

The phase shift in the horizontal velocity across the water column is

210~ with a = 0.005 and N2
= 5 x 10-5, as opposed to 180~ with a

flat bottom. Because of the change in orientation with depth of the

current ellipses. a valid comparison of this information with the data

is not possible. The ratio of surface to bottom cross-slope velocity

for the above values of a and N2 is 0.89. The 5 m to 83 m ratio is

0.93. The effect on the horizontal velocity amplitude vertical struc

ture of using realistic N2(z) far outweighs the effect of the slop

ing bottom. as seen by the fact that the observed 5 mcurrents are

twice as large as the 83 m ones. as compared to a ratio of 1.6

predicted from the dynamical modal structure on a flat bottom.

7. GENERATI ON

This section discusses how internal tides come to be present on

the continental shelf, why their energy generally appears in the low

est baroclinic mode. and why that energy increases with increasing

stratification. It is generally accepted that internal tides in the

ocean are the result of barotropic tidal currents in a stratified

fluid flowing over topography which causes displacement of the iso-

pycnals. Internal tides found on the shelf may be generated locally
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(most probably at the shelf break), or may propagate onto the shel f

from the deep sea. Chapman and Hendershott (1981) nave shown that for

all deep-sea modes up to number 1.5/y, where y is the ratio between

the shelf and offshore depths, the first baroclinic mode will dominate

on the shelf. Thi s means that even if the internal tide off the shelf

has a very complicated vertical structure, the lowest baroclinic mode

will be preferentially excited as it propagates onto the shelf.

Generation of internal tides at the shelf break, modelled by a

sharp corner, was first considered by Rattray (l960) for a two-layer

fluid. Total reflection at the coast was assumed, resulting in

standing waves over the shelf. In the inviscid case, this leads to

quarter wave resonances. Rattray, Dworski, and Kovala (1969) extended

the problem to continuous stratification. In order to satisfy

matching conditions at the step, a large number of modes, with

amplitude approximately inversely proportional to mode number, is

needed to describe the characteristic emanating from the shelf break.

SUbsequent continuously stratified models (Baines, 1974 and

Sandstrom, 1976) for generation of internal waves at steep topography

also predict a beam-like structure, made up of many modes, near the

generation site. However, the vast majority of observations of

internal tides in the ocean show the energy to be predominantly in

very low modes. Four factors which could contribute to broadening of

the beam have been identified. (1) Internal waves are dispersive,

with the lowest vertical mode having the greatest horizontal group

velocity. When generation is a discontinuous process, an observer at

a point removed from the generation site will see the different modes

arrive at different times. This mechanism operates even in a uniform
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medium with no dissipation. (2) Schott (1977) pointed out that the

modes makin9 up the beam, which are phase-locked at the generation

site, will uncouple as they propagate through a randomly varying

density field. In addition, non-uniformity in the low frequency flow

will cause variable Doppler-shifting, contributing to the phase

unlocking which causes the beam to broaden. Again, no dissipation is

required for thi s process. (3) The addition of a simple Rayleigh type

friction term, producing damping proportional to time, introduces a

mechanism favoring the low modes. Because high modes will take longer

to travel from the generation to the observation site, they will be

more severely damped upon arrival. (4) LeBlond (1966) and Prinsenberg,

Wilmot and Rattray (1974) showed that the low modes are also favored

by the preferenti ali nterna1 di ssi pati on of the hi gher modes, due to

their increased vertical shear. As a result of a combination of these

mechanisms, the lowest modes will be dominant even in areas only a

short distance away from the generation site.

Baines, in a series of papers, considered the problem of the

generation of internal tides by flow over realistic topography. In

his 1982 paper, he sUllll1arizes his previous work in this area and

presents simplified methods for application of his generation theory

to several oceanographic situations. Tne model, as it applies to a

coastal region with a flat shelf adjoining a continental slope with an

assumption of no reflection at the coast, is restated in his 1986

paper. The density structure is modelled as a surface mixed layer

above a linearly stratified deep layer. This corresponds to an N2

profile with a value of zero in the surface layer separated from·the

constant N2 deep layer by a delta function (Figure 15). Depth vari-
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Figure 15. Parameters used in Baines (1982) model for the generation
of internal tides are defined. The value of N2 at the base of the
mixed layer (depth d) is infinite.
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ations are treated more easily using ray theory, but ray theory cannot

handle the effects of the interface and surface mixed layer very well.

Consequently, Baines considers separately situations in which the

effects of the upper mixed layer and interface on the motions below

may be ignored, and situations where the mode due to the interface may

be isolated and then the interface held rigid in evaluating by ray

theory the contribution due to the constant N2 deeper layer. He

shows that the internal tides on the shelf are largely due to the con

tribution from the interfacial mode, regardless of whether the conti

nental slope is sub- or supercritical. The parameters R = dlh s and

S = gap/(dpoN~) (where the variables are defined in Figure 15) were

evaluated using CTD stations 92 and 93 (Figure 16) taken on April 23,

1982 near the shelf break. It is found that the conditions for which

independent solution of the interfacial mode is a good approximation

are met. The cross-shelf velocity over the shelf due to the inter

facial mode is evaluated in the Appendix and is shown to be very much

less than the observed velocities. Huthnance and Baines (1982), work-

ing off the northwest coast of Africa, and Holloway (1983b), off the

northwest coast of Australia, also found that the theory underpredicted

the observed velocities.

Baines' theory does offer some insight into the causes of the time

variability of the internal tidal energy over the continental shelf.

His analysis shows that the forcing function for the internal tide is

proportional to the bottom slope, barotropic cross-shelf velocity, and

stratification (N2). The stratification comes in through the density

perturbation caused by the topographically-induced vertical velocity

advecting the basic state density field. An implicit assumption is
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made that the barotropic cross-shelf and vertical velocities are inde

pendent of the stratification. However, since the strength of the

internal tide is dependent on the stratificaton, and it draws energy

from the barotropic tide, this is not exactly true. In Baines' theory,

time variability in internal tides over the shelf is mostly due to the

changes in stratification at the shelf break. To show that the strat

ification over the slope and shelf break does indeed vary in time, the

C-line density cross-sections measured on April 23-24 during a relax

ation event and on July 16 during typical upwelling conditions are

compared (Figure 17). The increased stratification over both the

shelf and slope in the April transect is evident. This is also seen

in the low-passed temperature records over the shelf and to a lesser

extent over the slope at mooring C5 (Figure 5).

In Figure 18, the slope, c = [(w2 - f2)/(N 2 - w2)]1/2, of the char

acteristics near the bottom over the upper continental slope and outer
2shelf are shown in relation to the bottom slope. The values of N

that were used in calculating c are shown in the figure. They were

determined from the April CTD data, and are representative of the few

meters above the bottom mixed layer (if one existed). It is seen that

the bottom slope switches from being sub- (a < c) to supercritical

(a > c) between stations 90 and 91 which bracket the shelf break, thus

identifying that area as the probable generation region. The deep

stratification over the continental slope is nearly the same during

the relaxation and upwelling periods, as is seen more clearly in Fig

ure 19, which shows the N2 profiles calculated from the slope CTD

stations 92 and 18 taken during April and June, respectively. Although

the exact part of the continental slope that is critical changes some-
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STATION NO.
17 15 II19

-24.8

200 200

--- /_______26.6

! ]26.6
x x

~ - 26.7- - ....... ""- f- , f-
a. .- a....
~ " .......... ...

0

26.7

- 26.8__

~400 400
26.8

STATION NO.
96 95 94 93 92

-270~ Sigma- e
CODE- 2 Cenlral
(050"-230"Tl

23-24 April 1982

27.0-
Siqma-e

CODE Cenlral
(050"-230"n

16 July 82

75 50 25
KM FROM SHORE

600

o 25
KM FROM SHORE

600

o

Figure 17. Sigma-e cross-sections from CODE-2 C-line CTD stations taken
on Apr,1 23-24, 1982 (Fleischbein et al., 1983a) and July 16, 1982
(Huyer et al., 1984).
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crD Station No.

909/92 !f9 !f8
-+-------1-----+-__-+-_-+- ....o

10 7
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JOO

CODE-2 Central Line
Apr. 23-24, 1982

400
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800
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Figure 18. Slope of characteristics for semidiurnal frequency internal
waves are shown in relation to bottom slope over outer shelf and upper
continental slope. Values ~f N2 (in 10-5 S-2) used in calculating
c = [{w2 - f2)/{N2 - w2)J1/ are shown next to lines indicating
characteristic slope.
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what in time, the bottom goes from being subcritica1 over the shelf to

supercritica1 over some part of the upper slope during both time peri

ods. The upper level stratification is clearly different during the

two periods, however (Figure 19), which supports the contention of

Baines (1982, 1986) that it is the stratification changes in the

. upper 150 mover the generation region that are responsible for the

time variability of the semidiurna1 energy over the shelf. Whether

increased stratification over the shelf itself also plays a role in

amplification of the internal tidal energy there is uncertain. More

work is needed to identify the mechanisms by which this could occur.

It has been shown that the horizontal length scale over which internal

tides are damped, due to both internal turbulence (Le810nd, 1966) and

bottom drag (Brink, personal communication), increases with increasing

stratification.

8. EFFECTS OF SHEAR IN THE LOW FREQUENCY FLOW

In this section, the effects of mean horizontal and vertical shear

on the propagation of internal tides are considered. The objective is

to determine whether the low frequency flow contributes significantly

to the time variability of the internal tidal energy observed over the

shelf. The questions of how these shears affect the upper and lower

bounds of the passband for freely-propagating internal waves, and what

effec t they have on the slope of the characteri stics are addressed.

Since the low frequency flow is predominantly in the along-shelf

direction (Winant, Beardsley, and Davis, 1987), and the internal tide

is presumed to be generated at the shelf break, the problem can be

conceptualized as an internal wave propagating perpendicularly to a
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baroclinic current, thus eliminating the possibility of Doppler

shifting. As discussed in Mooers (1975), the upper and lower bounds

for the internal wave passband are

and (14)

The slopes of the characteristics are given by

(15)

2 2 2 2 2where it has been assumed that (wf/N I « 1 and s = (-M IN) «1.

The effective inertial frequency wf equals [f{f + Vxl]1/2 M2 is

defined as -gpx/po' in analogy with N2• Overbars are used to denote
2low frequency flow. Note that if wf = f and M = 0, c' reduces to

c as defined in the previous sections, with the assumption that W « N.

Effects of the mean vorticity, approximated here by vx' are con

sidered first. Examination of the low-passed current and wind vec

tors, shown in Beardsley and Alessi (1985), reveal that the largest

horizontal shears occur near the start of the relaxation periods (Send

et al., 1987). The maximum horizontal shear resolved by the array

occurs on April 21, 1982. The near-surface low-passed currents at C4

are equatorward at about 55 cm s-l, and 8 km nearer to shore at C3,

the currents are poleward at 20 cm s-l. Thi s results in Vx = 9.4 x 10-5

s-l. The effective inertial frequency wf is then 1.3 x 10- 4 s-l, which

is just slightly below the semidiurnal frequency. Therefore, the semi

diurnal frequency always exceeds the lower bound for freely propagating
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internal waves. To determine whether the shelf is transmissive to

semidiurnal internal tides, the ratio C'/a must be evaluated. If s is

taken to be constant, then (15) shows that as Vx increases, wf moves

toward wand c' gets smaller. For wf = 1.3 x 10-4 s-1 and N£ = 10-4

s-2, c' = 0.005, the same as the bottom slope over the shelf. Based on

consi derati on of the hori zonta1 shear alone, it appears that for stlOrt

periods (order 1 day) at the start of a wind relaxation, the-current

shears over the shelf are large enough such that the slope of the char

acteristics for the semi diurnal internal tide approach criticality with

respect to the bottom slope over the shelf. Under these conditions,

generation might take place over the shelf itself. The effects of the

horizontal variations in density, which are considered next, are seen

to moderate somewhat the effect of the horizontal shear.

Winant et al. (19B7) have shown that the horizontal variations in

density in the CODE area are related to the low frequency vertical

shear by the thermal wind equation, so that M2 may be expressed as

fVz• As is seen from (14) and the definition of s2, a non-zero value

of M2, regardless of its sign, acts to decrease wL and increase WU.

However, the sign of M2 introduces an asymmetry between the seaward

(c' _J and shoreward-propagating lc' +) characteristics (eqn. 15).

Mooers (1975) points out that the slope of the isopycnals significantly

affects the slope of the characteristics, when the two are of the same
_ 2 2 2 1/2

order. Thus, when wf - f, s« [(w - wf)/N ] and contributes very

little to c', but when wf approaches w, s plays a more important role.

It acts to steepen the shoreward-propagating ray, while flattening the

seaward-going one. Based on an average value of the along-shelf ~eloc

i ty vertical shear in the upper 40 mat C3 (Winant et al., 1987), and
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on p calculated from the Apri 1 23-24 C-line density cross-sectionx

(Figure 171, M2 is found to be in the range -4 to -7 x 10-7 s-2. For

2 -7 1 -4 -1 2t4 = -5 x 10 , W = 1.4 x 0 sand Nand wf as in the previous

paragraph, c' + =0.012, which is steeper than the bottom slope. Since

the effects of the vertical and horizontal shear in the mean flow act

to compensate each other, they probably do not have a large impact on

the internal tides over the continental shelf in the CODE area.

9. CONCLUSIONS

As on other narrow continental shelves, internal tidal currents of

amplitude equal to, or greater than, the barotropic tidal currents are

observed over the continental shelf off northern California. During

CODE-2, the shelf is always subcritical with respect to internal waves

of semidiurnal frequency, and there is always sufficient stratification

over the shelf to allow these waves to propagate, even if only along

the interface between nearly mixed surface and bottom layers. In spite

of these facts, whic h show that duri ng CODE-2 the condi ti ons necessa ry

to support semidiurnal internal tides on the shelf are always present,

large internal wave events are seen only intermittently in time. As

on the continental shelves off Oregon, southern California. and north

west Australia (Hayes and Halpern. 1976. Winant and Bratkovich. 19B1.

and Holloway. 19B4). the currents associated with the internal tide

tend to increase with increasing stratification. The deep stratifi

cation over the slope is relatively constant throughout the CODE-2

experiment. but changes in the upper layer stratification near tne

shelf break may be responsible for the time variability in the

internal tides over the shelf. as suggested by Baines (l982. 19h6).
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The strength of the internal tidal currents over the shelf is under

predicted by Baines' theory. How the time variability of the strati

fication over the shelf itself contributes to the variability of the

internal tidal energy over the shelf is unresolved.

The cross-shel f and vertical structure of the semidiurnal current

and temperature fluctuations along the C-line is examined in detail

for a 15-day period from April 19 - May 3, 1982, when the internal tide

is especially large. Comparisons were made with the first baroclinic

mode calculated using the actual N2 profile, but assuming a flat bot

tom, and with a first baroclinic mode in a wedge with constant N2.

Both the coherent horizontal velocity fluctuations in the semi diurnal

band, and the residual horizontal M2 currents calculated separately

for each instrument, have vertical structure consistent with the low

est baroclinic mode calculated for a flat bottom. This mode has a

horizontal wavelength of approximately 20 km, in good agreement with

that estimated from the temperature data. Evidence for the phase shift

in the vertical velocity predicted by the wedge model is seen in the

temperature data.
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APPENDIX: Application of Baines' Tneory of Internal Tide Generation

To use the theory of Baines (1982), the continental shelf and

adjacent slope are modelled as shown in Figure 15 with the shelf depth

hL equal to 125 m and the slope a = D.061. Based on CTD stations

91-93, the mixed layer depth d is taken to be 70 mwith a density jump

L'.p at the base from 1.02496 to 1.02650 g cm- 3 The latter is chosen

as being the density below which N2 has an approximately constant

value N; of 10- 5 s-2 (Figure 19). Po is a reference density equal
-3to 1.025 g cm and g is the gravitational acceleration. Thus,

s = g

(Al)

(A2)

1
= 0.12 < R = a.56 . (A3)

The preceding inequality satisfies Baines' condition for approximating

the modes by a two-layer form. Over the shelf, the upper and lower

layer cross-shelf velocities due to the interfacial mode are found by,

Uu = Re
[~ e-i(e+wtl]

(M)
- Q D e-if e+wt)]uL = Re [ h _°a

L

where Q is the cross-shelf volume flux, equal to the barotropic cross

shelf tidal velocity (uB) times the depth at the shelf break. Based
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on the estimates in Rosenfeld and Beardsley (198?), uB for the M2
constituent is about 2 cm s-l, so that

Do = - R y(R,T} __ 0.19 eiO . h
1 + 1 -

11 - R

where the amplitude and phase of y(R,T} found from graphs in Figure 5

of Baines (1986) or Figure 3 of Baines (1982) are

Iy(R,T}! = 0.B5 , arg ~R,T} = 0.1.

Plugging the above values for Q, Do' hL and d into (A4) results in

luu [ = 0.68 cm s-l

[uL I = 0.B6 cm s-l

Even if Q were doubled, due to the constructive interference between

semidiurnal constituents, the predicted velocities would still be much

smaller than the observed ones which have amplitudes of 6-12 cm s-l

averaged over April 19 - May 3. Note that an increase in Ap causes

an increase in Uu and uL because y is inversely proportional to T.
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CHAPTER V

CONCLUSIONS
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Current measurements made during the summer upwelling seasons of

1981 and 1982 over the continental shelf off northern California dur

ing the Coastal Ocean Dynamics Experiment reveal that, second only to

the synoptic band, the most energetic part of the frequency spectrum

is the tidal band (diurnal to semidiurnal frequencies). Although tides

and tidal currents have been studied for many years, the prediction of

the tidal frequency currents in any given location at any given time

is still quite difficult. Many processes besides the astronomical

tide-generating force are at work in producing currents in the tidal

band. In this thesis, the temporal variability and spatial structure

of the diurnal and semidiurnal band currents observed during CODE are

described in considerable detail, and it has been shown that the cur

rents associated with the surface tide account for only a fraction of

the kinetic energy at tidal frequencies. Each chapter focuses on a

non-astronomical mechanism responsible for generating or altering

tidal period current fluctuations. The processes discussed here are

only some of those that can cause the observed tidal band currents to

deviate from what would be predicted based solely on sea level mea

surements.

Chapter II discusses the diurnal period current fluctuations. They

are strongly surface-intensified and intermittent in time. The case

is made that these currents are the direct result of forcing by the

local diurnal wind stress, the strength of which is correlated with

the low frequency equatorward wind stress. Currents generated by a

one-dimensional mixed layer model forced with diurnal and mean wind

stress and diurnal surface heat flux confirm that the observed diurnal

currents in the upper water column may in fact be due in large part to
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local atmospheric forcing. The failure of the model to duplicate more

exactly the observed currents is probably a result of the absence of

three-dimensional effects. Evidence that a one-dimensional model is

not totally adequate for describing the diurnal variability in this

area is given by the fact that the observed diurnal temperature vari

ations in the upper water column are greater than can be accounted for

by local surface heat flux, and the near-surface diurnal currents over

the outer shelf and upper slope are disproportionately large in com

parison with the diurnal wind stress there. A fully three-dimensional

model including realistic coast and shelf geometry, nonlinear terms,

and bottom friction may be necessary to more accurately predict the

diurnal current variability.

In Chapter III, the horizontal structure of the depth-averaged

semidiurnal currents is described. Comparisons are made with two

existing models for the prediction of the barotropic tidal currents

from sea level measurements. More alongshore variability is observed

than is predicted by these models. A simple flat-bottom model for one

possible source of this spatial variability - small-scale structure in

the geometry of the coastline - is presented. While this mechanism

does not account for all of the observed structure, it does explain

the following important features of the observations: the maximum

velocities occur near capes in the coastline, the effect of coastline

geometry on the velocity field is much greater than on the pressure

fi el d, and the effect of the coastl i ne decays offshore over a short

distance set by the alongshore scale of the coastline geometry. The

addition of shelf topography to this may improve the model-data com

parison, and should be investigated in the future.
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Chapter IV deals with the baroclinic semidiurnal tidal currents.

During periods when the wind relaxed and the stratification over the

shelf increased, the baroclinic semidiurnal tidal currents increased

in amplitude. The vertical and horizontal structure of the semi

diurnal current and temperature fluctuations during these approxi

mately two week time periods is consistent with first mode internal

waves propagating with shoreward components of phase and group veloc

ity. There is evidence for the modification of the vertical structure

by the sloping bottom and/or bottom friction. Application of existing

theory is inadequate to explain the generation of internal tidal cur

rents as large as those observed here. This is an important problem

which needs to be addressed in the future.

The stated goal of CODE was to examine the dynamics governing the

synoptic band (2 - 10 day periods) wind-driven flow over the continen

tal shelf in an area of relatively simple topography and strong wind

forcing. This thesis points out that even small variations in the

alongshore geometry can affect the tidal band flow measurably. In

addition, it has been shown here that atmospheric forcing can have

significant direct effects on the diurnal currents through forcing

by the diurnal wind stress and heating, and indirect effects on the

semidiurnal currents through restructuring of the density field.
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