Insights to Magmatic–Hydrothermal Processes in the Manus back–arc Basin as Recorded by Anhydrite

Paul R. Craddock^{a,1*} and Wolfgang Bach^b

^a Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic
 Institution, 360 Woods Hole Road, McLean 201, MS#8, Woods Hole, MA 02543, USA
 ^b University of Bremen, Geosciences Department, Klagenfurter Straße, 28359 Bremen,
 Germany.

¹ Present address: Origins Laboratory, Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA * Corresponding author. Email: craddock@uchicago.edu, Tel: (773) 834–3997

> Submitted to Geochimica et Cosmochimica Acta, July 12, 2009. Submitted in revised version June 16, 2010.

1

2

ABSTRACT

3 Microchemical analyses of rare earth element (REE) concentrations and Sr and S isotope 4 ratios of anhydrite are used to identify sub-seafloor processes governing the formation of 5 hydrothermal fluids in the convergent margin Manus Basin, Papua New Guinea. Samples 6 comprise drill-core vein anhydrite and seafloor massive anhydrite from the PACMANUS 7 (Roman Ruins, Snowcap and Fenway) and SuSu Knolls (North Su) active hydrothermal 8 fields. Chondrite-normalized REE patterns in anhydrite show remarkable heterogeneity on 9 the scale of individual grains, different from the near uniform REE_N patterns measured in 10 anhydrite from mid-ocean ridge deposits. The REE_N patterns in anhydrite are correlated 11 with REE distributions measured in hydrothermal fluids venting at the seafloor at these 12 vent fields and are interpreted to record episodes of hydrothermal fluid formation affected by magmatic volatile degassing. ⁸⁷Sr/⁸⁶Sr ratios vary dramatically within individual grains 13 14 between that of contemporary seawater and that of endmember hydrothermal fluid. 15 Anhydrite was precipitated from a highly variable mixture of the two. The intra-grain 16 heterogeneity implies that anhydrite preserves periods of contrasting hydrothermal-versus seawater–dominant near–seafloor fluid circulation. Most sulfate δ^{34} S values of anhydrite 17 18 cluster around that of contemporary seawater, consistent with anhydrite precipitating from 19 hydrothermal fluid mixed with locally entrained seawater. Sulfate δ^{34} S isotope ratios in 20 some anhydrites are, however, lighter than that of seawater interpreted as recording a 21 source of sulfate derived from magmatic SO₂ degassed from underlying felsic magmas in 22 the Manus. The range of elemental and isotopic signatures observed in anhydrite records a

23 range of sub-seafloor processes including high-temperature hydrothermal fluid 24 circulation, varying extents of magmatic volatile degassing, seawater entrainment and fluid 25 mixing. The chemical and isotopic heterogeneity recorded in anhydrite at the inter- and intra-grain scale captures the dynamics of hydrothermal fluid formation and sub-seafloor 26 27 circulation that is highly variable both spatially and temporally on timescales over which 28 hydrothermal deposits are formed. Microchemical analysis of hydrothermal minerals can 29 provide information about the temporal history of submarine hydrothermal systems that are 30 variable over time and cannot necessarily be inferred only from the study of vent fluids.

31

32

1. INTRODUCTION

2	2
- 4	-
_,	

34 The formation and composition of submarine hydrothermal fluids and related mineral 35 deposits at mid-ocean ridges and in island-arc/back-arc basins are variably affected by a 36 range of sub-seafloor geochemical processes including (1) fluid-rock interaction (Bischoff 37 and Dickson, 1975; Humphris and Thompson, 1978; Mottl and Holland, 1978; Seyfried, 38 1987), (2) fluid phase separation-segregation, which is function of local pressure and 39 temperature conditions and the evolutionary state of the hydrothermal system (Von Damm, 40 1995; Von Damm et al., 1997), (3) sub-surface mixing between rising high-temperature 41 hydrothermal fluid and locally entrained seawater (Edmond et al., 1995; Tivey et al., 1995), and (4) input of magmatic volatiles with a range of composition from CO₂ at mid-42 43 ocean ridges to SO₂–CO₂–HCl–HF at back–arc basins (Butterfield et al., 1990; Gamo et 44 al., 1997; Seewald et al., 2006). Owing to limited access beneath the sub-seafloor, our 45 understanding of these processes occurring at depth is inferred, in large part, from 46 geochemical studies of vent fluids and/or related mineral deposits recovered at, or close to, 47 the seafloor. Anhydrite (CaSO₄) is recognized as an important constituent of submarine 48 hydrothermal deposits, occurring within individual vent chimneys (Goldfarb, 1982; 49 Haymon, 1983) and as veins and massive concretions in seafloor sulfide deposits 50 (Humphris et al., 1995; Tivey et al., 1995). Anhydrite exhibits retrograde solubility and 51 precipitates from seawater at temperatures above ~ 150 °C (at seafloor pressures) from 52 either conductive heating of seawater or mixing between seawater and high-temperature 53 hydrothermal fluid (Bischoff and Seyfried, 1978). Widespread sub-seafloor precipitation

of anhydrite owing to fluid mixing can provide a record of hydrothermal fluid evolutionand circulation in the absence of contemporary fluid activity.

56

57 Abundant massive anhydrite was first observed and sampled along a mid-ocean ridge 58 spreading center at the Trans–Atlantic Geotraverse (TAG) active hydrothermal mound, 26 59 °N, Mid–Atlantic Ridge (Thompson et al., 1988). Drilling of the mound (Ocean Drilling 60 Program, Leg 158) recovered abundant anhydrite to depths of ~ 200 meters below the 61 seafloor (mbsf) (Humphris et al., 1995). Trace element (e.g., rare earth element, REE), 62 isotopic (e.g., Sr, S) and fluid inclusion studies of anhydrite provided evidence for 63 substantial entrainment of seawater in the mound, conductive heating of seawater and 64 mixing between rising hydrothermal fluid and entrained seawater (Chiba et al., 1998; 65 Humphris, 1998; Mills et al., 1998; Teagle et al., 1998; Tivey et al., 1998; Humphris and 66 Bach, 2005). Sub-seafloor mixing has influenced significantly sulfide mineralization and 67 composition of the TAG mound, owing to precipitation of Fe- and Cu-Fe-sulfides and 68 generation of secondary fluid acidity during fluid mixing, coupled with dissolution of 69 previously deposited Zn-sulfides in a process of zone-refinement (Tivey et al., 1995). 70 71 More recently, anhydrite has been recovered from the Papua New Guinea–Canada– 72 Australia–Manus (PACMANUS) hydrothermal system located within a convergent margin 73 (Manus back-arc basin, Papua New Guinea). Anhydrite samples were recovered sub-74 seafloor to depths ~ 300 meters via drilling (Ocean Drilling Program, Leg 193) of the

75 PACMANUS hydrothermal system and include anhydrite as matrix within hydrothermal

76	breccia, as well-developed veins often greater than 10 mm thick, and locally as more
77	massive anhydrite in pore space (Binns et al., 2007). Whole-rock element (REE) and
78	isotopic (87 Sr/ 86 Sr, δ^{34} S) studies of different anhydrite separates have enabled the sub–
79	seafloor processes associated with formation of hydrothermal fluids and mineral deposits
80	in back-arc basins and at mid-ocean ridge spreading centers to be compared and
81	contrasted (Bach et al., 2003; Roberts et al., 2003; Bach et al., 2005). The wide range of
82	whole-rock REE patterns and S isotopic compositions recorded in anhydrite at
83	PACMANUS differs markedly to near uniform REE patterns and S isotopic compositions
84	preserved in anhydrite from the TAG mound. These signatures have been interpreted to
85	reflect variable degassing of magmatic acid volatiles (H ₂ O–CO ₂ –SO ₂ –HCl–HF) from
86	water-rich and relatively oxidized magmas above subducted plate margins.

87

88 To date, most studies of anhydrite have used whole-rock chemical measurements of 89 homogenized samples obtained from mineral separates. This approach has two limitations; 90 (1) it is difficult to integrate multiple geochemical data obtained from bulk analysis of 91 mineral separates because these data may be obtained from genetically unrelated mineral 92 grains and (2) mineral separation and sample homogenization may destroy potential 93 chemical heterogeneity and information about the history of mineral formation. This study 94 presents directly coupled and texturally-constrained microchemical analytical data to 95 better characterize the processes governing hydrothermal fluid and vent deposit formation 96 in the Manus Basin. Geochemical data for seafloor hydrothermal fluids sampled at the 97 same time and same areas as anhydrite are used as a reference point for evaluating mineral

98	chemical signatures. The ability to use minerals as a recorder of sub-seafloor hydrothermal
99	processes has particular importance for studies of relict systems where fluids are no longer
100	present and information pertaining to the evolution of the deposit is preserved only in
101	minerals.
102	
103	2. GEOLOGIC SETTING
104	
105	2.1. Regional Setting
106	
107	The Manus Basin in the Bismarck Sea, Papua New Guinea (Fig. 1) is a rapidly–opening (\sim
108	100 mm/yr) back-arc basin associated with subduction of the Solomon Microplate beneath
109	the New Britain arc (Taylor, 1979; Davies et al., 1987; Martinez and Taylor, 1996). Crustal
110	rifting and spreading occurs along several distinct lineations, including the Extensional
111	Transform Zone, Manus Spreading Center and the Eastern Manus Basin (Martinez and
112	Taylor, 1996). The Eastern Manus Basin (EMB) is bounded by the Djaul and Weitin
113	Transform Faults. Rapid spreading in the EMB is accommodated primarily by rifting and
114	extension of pre-existing island arc crust. Lavas are erupted as a series of discrete en
115	echelon neovolcanic ridges and volcanic cones of felsic composition (andesite-to-rhyolite)
116	exhibiting distinct arc-affinity (Sinton et al., 2003). The EMB hosts several active
117	hydrothermal systems, including PACMANUS (Binns and Scott, 1993; Scott and Binns,
118	1995) and SuSu Knolls (Binns et al., 1997), the deposits of which are examined in this
119	study.

120

121 **2.2. PACMANUS Hydrothermal Field**

122

123 The PACMANUS hydrothermal system (Fig. 2a) is located on the crest of the 35-km long, 124 500-m high Pual Ridge at water depths between 1650 and 1740 m (Binns and Scott, 1993). 125 Hydrothermal activity occurs at several discrete fields, each of the order 50 to 200 m in 126 diameter, along a 3 km long section of Pual Ridge (Binns and Scott, 1993; Binns et al., 127 2007; Tivey et al., 2007). Abundant anhydrite has been recovered from three vent fields. 128 Samples of anhydrite were recovered sub-seafloor from Roman Ruins and Snowcap by 129 drilling during ODP Leg 193 (Binns et al., 2007). Samples of massive anhydrite currently 130 exposed on the seafloor at Fenway were recovered by surface grab sampling using ROV 131 Jason II during cruise MGLN06MV (Tivey et al., 2007). 132 133 The Roman Ruins vent field (~1680 m depth) is characterized by numerous discrete 134 columnar chimneys and clusters of multi-spired chimneys typically 5 to 7 m in height, 135 overlying mostly fresh volcanic outcrop. Fluids discharging from black- and gray-smoker 136 chimneys have measured temperatures between 270 and 341 °C and pH (25 °C) in the 137 range 2.3 to 2.6 (Seewald et al., 2006; Craddock et al., 2010; Reeves, 2010). Diffuse fluids, 138 with temperatures ranging from 54 to 106 °C, discharge from fissures within the volcanic 139 basement and through chimney and volcanic talus in areas surrounding sulfide deposits. 140 Mineralization of sampled sulfides is dominated by chalcopyrite in open conduit, black 141 smoker chimneys venting the highest temperature (\geq 300 °C) fluids and by Cu–Fe sulfides

142 (chalcopyrite + bornite ± covellite), Cu-sulfosalts (tennantite) and relatively minor Zn-143 sulfides (sphalerite) in diffuser-type chimneys venting lower temperature (~270 °C) fluids 144 (Craddock, 2009). Drilling of the Roman Ruins deposit and underlying basement (Holes 145 1189A and 1189B) recovered volcanic rocks and hydrothermal material to a depth of ~200 146 mbsf (Binns et al., 2007). Except for relatively fresh lava flows recovered near the seafloor 147 (< 30 mbsf), most volcanic rocks display moderate-to-extensive alteration that continues 148 to the base of drill core. Alteration is primarily argillaceous (smectite-chlorite \pm illite) 149 (Yeats et al., 2001; Lackschewitz et al., 2004). Hydrothermal stockwork is present to 150 depths ~120 mbsf and is dominated by disseminated and locally veined pyrite (Binns et al., 151 2007). Anhydrite is a minor mineral interspersed throughout drill core, occurring mostly as 152 fine-grained disseminated matrix and locally as more massive anhydrite veins in both 153 hydrothermal stockwork and alteration assemblages (Fig. 3a).

154

155 Present day hydrothermal activity at Snowcap (~1645 m depth) is characterized by low 156 temperature fluid discharge (152 and 180 °C) through bulbous, diffuser-type chimneys 157 across heavily-sedimented and altered terrain (Tivey et al., 2007). The pH (25 °C) of 158 sampled vent fluids ranges from 3.4 to 4.6 (Seewald et al., 2006; Craddock et al., 2010; 159 Reeves, 2010). The sulfide composition of chimneys venting low temperature fluids is 160 predominantly bornite (± chalcopyrite) and tennantite with minor sphalerite (Craddock, 161 2009). Surface outcrops of fresh massive lava flows are rare. Instead, hyaloclastite flows, 162 volcaniclastic sediments, rocks affected by advanced argillic alteration, native sulfur and 163 presumed microbial mats are common (Yeats et al., 2000; Tivey et al., 2007). Drilling

164 recovered core from two holes (Holes 1188A and 1188F) down to depths of 210 and 390 165 mbsf, respectively (Binns et al., 2007). Petrographic analyses indicate extensive and multi-166 stage alteration, including alternating argillaceous (smectite-chlorite-albite) and feldspar-167 destructive (illite-pyrophyllite-quartz/cristobalite) alteration (Yeats et al., 2001; 168 Lackschewitz et al., 2004). The occurrence of illite–pyrophyllite and native sulfur at the 169 seafloor at Snowcap (Yeats et al., 2000; Tivey et al., 2007) implies crustal rock alteration 170 by highly acidic (pH < 2 to 3) and sulfate-rich fluids (Meyer and Hemley, 1967; Hemley et 171 al., 1969; Brimhall and Ghiorso, 1983). Anhydrite occurs throughout drill core to depths of 172 at least 350 mbsf as both composite veins and as matrix within brecciated and 173 hydrothermally altered rocks and does not appear associated within any single stage of 174 alteration.

175

176 At Fenway, the seafloor is dominated by a central, two-tiered mound approximately 40 m 177 in diameter and 18 m in relief (Tivey et al., 2007). The summit of the mound at a water 178 depth ~1705 m is composed of an extensive black smoker complex with fluids venting 179 vigorously at temperatures up to 358 °C (boiling temperature at ambient pressures) and pH 180 (25 °C) ~2.3 to 2.7 (Seewald et al., 2006; Craddock et al., 2010; Reeves, 2010). Rock 181 sampling of the black smoker complex recovered chalcopyrite-rich open conduit chimneys 182 (Craddock, 2009). The slopes of mound are covered by extensive sulfide chimney debris 183 and talus, outcrops of massive anhydrite, and coarse anhydrite rubble within hydrothermal 184 sediment (Fig 3b). Lower temperature focused fluid venting from chimneys (~284 °C) and 185 diffuse fluid venting from fissures and brecciated sediment (~78 °C) are common from

186 lower tiers and slopes of the mound. Several samples of massive anhydrite were recovered 187 from the seafloor (Tivey et al., 2007). Samples from Fenway are large (~5 to 10 kg) and 188 coarse-grained with no obvious crystallographic zoning. The large size and coarse-grained 189 texture suggest that massive anhydrite was likely precipitated within a large cavity that was 190 open to hydrothermal flow from beneath and capped by less porous and permeable sulfide-191 sulfate. Collapse of the overlying cap (as supported by the extent of sulfide-sulfate debris 192 across the Fenway mound) exposed massive anhydrite as the seafloor. No anhydrite has 193 been sampled from beneath the seafloor at this vent field.

194

195 **2.3. SuSu Knolls Hydrothermal Field**

196

197 The SuSu Knolls vent area (Fig 2b) is located ~45 km east of PACMANUS and consists of 198 three primary areas of activity (North Su, South Su and Suzette) located on individual 199 volcanic structures at water depths between ~ 1140 and 1510 m (Binns et al., 1997). 200 Seafloor rocks are composed of vesicular dacite flows and hyaloclastite, overlain by 201 hydrothermal talus and sediment, native sulfur flows and locally extensive sulfide deposits 202 (Binns et al., 1997; Tivey et al., 2007). At North Su, hydrothermal activity on the flanks of 203 the volcano (~1260 m depth) is dominated by vigorous discharge of vellow-white fluids 204 (Seewald et al., 2006; Craddock et al., 2010; Reeves, 2010). In the vicinity of active 205 venting, native sulfur oozes through volcanic and hydrothermal sediments. The fluids have 206 exit temperatures between 48 and 215 °C, are highly acidic with measured pH (25 °C) 207 ranging from 0.9 to 1.8, and are rich in sulfate. This acid-sulfate fluid venting contrasts

208	markedly with fluid discharge at the summit of the North Su mound (~1160 m depth),
209	which is dominated by venting of high-temperature black smoker fluids ($T = 296$ to 325
210	°C; pH (25 °C) = 2.8 to 3.4) from multi–spired sulfide chimney complexes up to ~11 m tall
211	(Seewald et al., 2006; Craddock, 2009; Reeves, 2010). The composition of chimneys
212	sampled from the black smoker complex is predominantly monomineralic chalcopyrite
213	lining open conduits, whereas tennantite, bornite and lesser chalcopyrite are present in the
214	few diffuser-type chimneys recovered from the North Su vent field (Craddock, 2009).
215	Exposed massive anhydrite was sampled near the base of the black smoker summit
216	complex (water depth ~1190 m) from which 325 °C black smoker fluids were sampled.
217	This sample exhibits complex textures, including crustiform layering of anhydrite veins
218	(Fig. 3c).
219	
220	3. METHODS
221	
222	3.1. Sample Collection and Preparation
223	
224	Anhydrite analyzed during this study was recovered from beneath the seafloor at Roman Ruins and
225	Snowcap (Binns et al., 2007) and at the seafloor from Fenway and North Su (Tivey et al., 2007).
226	Twelve drill core samples were selected from Roman Ruins and Snowcap to provide a
227	representative down core profile of anhydrite from different lithologic units and textural settings,
228	including a variety of veins, composite and cross-cutting growth bands and more massive
229	anhydrite filling vugs and pore spaces. Eight seafloor massive anhydrite samples were also studied

231	of the black smoker complex at North Su.
232	
233	Samples were prepared by one of two methods. Massive anhydrite samples were initially sub-
234	sampled using a tile saw and/or a Buehler Micromet saw. Working sections were impregnated with
235	epoxy resin and cut into thin (~ 2 mm) wafers. These wafers were polished on both sides and
236	mounted onto standard 45 x 25 mm petrographic slides for analysis. Six drill-core anhydrite
237	samples were provided by D. Vanko at the University of Towson, Maryland and were prepared
238	using the method described above. A further six small samples of drill-core anhydrite were
239	mounted with epoxy in 25 mm aluminum rings, cut to obtain a flat surface and polished on the flat
240	side for analysis.
241	
242	3.2 Analytical methods
243	
244	3.2.1 Cathodoluminescence Imaging
245	
246	Cathodoluminescence (CL) reconnaissance imaging was performed to obtain semi-quantitative
247	trace element distributions within each sample. In particular, CL imaging was used to differentiate
248	chemical heterogeneities (e.g., crystal zoning) occurring within and between individual anhydrite
249	crystals, which would be a focus for subsequent quantitative microchemical analyses. Under
250	excitation by a cathode beam, trivalent REEs (Sm^{3+} and Dy^{3+}) fluoresce and emit intense spectra
251	within visible wavelengths with varying shades of tan (Marshall, 1988). CL was mapped using a
252	Nuclide Corporation ELM–2B cold cathode generator, operated at ~ 10 keV and 0.8 mA and with a
253	vacuum of 70 – 85 μ torr. Sample were photographed using a Nikon D1x digital camera, mounted

and include seven samples from the flanks of the Fenway mound and a single sample from the base

230

254	to a Nuclide Corporation ELM-2E microscope with 10x - 40x magnification. Photographs were
255	captured using white balance set to fluorescent light and exposure times of 30 seconds.
256	Photomosaics were generated using digital imaging software (Adobe Photoshop CS2).
257	
258	3.2.2. Rare Earth Element Analysis by in situ LA–ICPMS
259	
260	Analyses were coordinated so that elemental and isotopic data were collected from adjacent areas
261	within the same heterogeneous domains as identified by CL. Elemental and isotopic data are
262	directly related spatially and texturally, and the full chemical heterogeneity as identified by CL
263	imaging is captured. Microchemical rare earth element (REE) analyses of anhydrite were
264	performed using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) at
265	both the Woods Hole Oceanographic Institution (WHOI) and the University of Bremen. Identical
266	LA-ICPMS protocols were used at both institutions (Table 1). Samples were loaded onto a
267	NewWave UP213 laser microprobe coupled to a Thermo Scientific ELEMENT2 ICPMS. ICPMS
268	parameters were configured each session to obtain optimum signal stability and intensity. The laser
269	was operated in apertured mode with a beam diameter of 30 μ m. The area of sample ablated
270	measured 80 by 180 μ m with a line spacing of 15 μ m (total of 13 lines). Beam scan speeds of 60
271	μ m/sec and 20 μ m/sec were used in pre–ablation and ablation modes, respectively. Total analysis
272	time for a single measurement, including baseline analysis, pre-ablation/ablation data acquisition
273	and wash-out, was on the order of 4 minutes. The area of ablation and the spatial resolution
274	obtained by elemental analysis was constrained to be the same as the minimum area of ablation
275	required for precise Sr and S isotopic analysis; a smaller area of ablation for elemental analysis
276	(less than $80 \times 80 \ \mu m$) could be used in the absence of coupled in situ isotopic analysis.
277	

278	Rare earth elements were measured in low mass resolution mode on the following isotopes: ¹³⁹ La,
279	¹⁴⁰ Ce, ¹⁴⁶ Nd, ¹⁴⁷ Sm, ¹⁵¹ Eu, ¹⁵³ Eu, ¹⁵⁸ Gd, ¹⁶³ Dy, ¹⁶⁷ Er and ¹⁷³ Yb. Data were not collected for Pr, Tb,
280	Tm and Lu owing to their relatively low abundance, but typically similar geochemical behavior,
281	relative to neighboring REEs (i.e., their abundance can be estimated by interpolation between
282	neighboring REEs on a chondrite-normalized plot). Instrumental sensitivity varied among REEs
283	but was on the order ~9,000 to 10,000 cps per ppm REE. The following other elements were
284	measured simultaneously with the REEs in low mass resolution: ²⁵ Mg, ⁴³ Ca, ⁴⁸ Ca, ⁸⁶ Sr, ¹³⁵ Ba and
285	¹³⁷ Ba. Owing to the high concentration of Ca in both anhydrite and the normalizing standard
286	SRM612, Ca was measured on low abundance isotopes free of isobaric interference (e.g., ⁴⁰ Ar on
287	abundant ⁴⁰ Ca). The formation of interfering oxides of the REEs (e.g., $^{143}Nd^{16}O^+$ on $^{159}Tb^+$) and
288	other elements (e.g., ${}^{135}\text{Ba}{}^{16}\text{O}^+$ on ${}^{151}\text{Eu}^+$, ${}^{137}\text{Ba}{}^{16}\text{O}^+$ on ${}^{153}\text{Eu}^+$) can impede the accurate
289	measurement of REEs. The formation of REE-oxides was suppressed under dry plasma conditions
290	as confirmed by the measurement of mono-elemental Ce standard solution by ICPMS using a
291	Cetac Aridus® desolvating unit (CeO ⁺ /Ce ⁺ < 0.01 to 0.04) (see also Craddock et al., 2010).
292	Possible interferences on Eu from BaO ⁺ were assessed by monitoring simultaneously isotopes ¹⁵¹ Eu
293	and ¹⁵³ Eu. Significant interference from Ba would decrease the measured ¹⁵¹ Eu/ ¹⁵³ Eu ratio from the
294	natural ratio ~ 0.916 toward the natural 135 Ba/ 137 Ba ratio ~ 0.587. There was no correlation
295	observed between either Ba concentration versus Eu concentration or Ba concentration versus
296	¹⁵¹ Eu/ ¹⁵³ Eu ratio, indicating that Ba–oxide did not interfere on or affect Eu analysis. The measured
297	$^{151}\text{Eu}/^{153}\text{Eu}$ ratios of all (~ 500) analyses show a normal distribution with mean (µ) = 0.928 \pm 0.012
298	(2σ) . The certified reference material NIST SRM612 was used as the standard for trace element
299	calibration (Pearce et al., 1997; Kent et al., 2004). The absolute concentration of REEs in SRM612
300	are similar (~ 40 ppm), but typically higher than that measured in anhydrite. The concentrations of
301	REE in the standard are, however, within the overall range of REE concentrations measured.

302	Internal normalization was	carried out by	<i>measuring</i>	Ca in l	both t	he standard	and samp	les. The Ca

303 concentrations of the NIST SRM612 standard and of anhydrite samples are 11.93 ± 0.22 wt% CaO

304 (8.53 ± 0.16 wt% Ca) (Pearce et al., 1997) and 41.18 wt% CaO (29.44 wt% Ca), respectively.

305 Chondritic data used for external REE normalization are from Anders and Grevesse (1989).

- 306 Reproducibility of the method is typically $10 \% (1\sigma)$.
- 307
- 308 3.2.3. Strontium and sulfur isotope analysis by in situ LA–MC–ICPMS
- 309

310 In situ S and Sr isotope analyses were performed at WHOI using a Thermo Scientific NEPTUNE multi-collector ICPMS coupled to a NewWave UP213 laser microprobe. Sulfur isotopes (δ^{34} S) 311 312 were measured using the analytical procedure developed by Craddock et al. (2008), with typical 313 instrumental operating parameters as listed in Table 1. The area of sample ablated measured 80 by 314 180 μ m with a line spacing of 15 μ m (total of 13 lines). Beam scan speeds of 30 μ m/sec and 5 315 µm/sec were used in pre–ablation and ablation modes, respectively. Data acquisition was started 316 once a stable S ablation signal was obtained and consisted of 20 cycles with each cycle having 8.5 317 second integration corresponding to an acquisition time of ~ 170 seconds. Total analysis time for a 318 single measurement, including baseline analysis, pre-ablation/ablation and wash-out, was on the 319 order of 8 minutes. Sulfur isotopes were measured on masses ³²S, ³³S and ³⁴S. Isobaric interferences 320 (principally from molecular O_2^+ species) were resolved by operating the instrument with high mass 321 resolution. Background contributions were measured by aspirating 2% nitric acid blanks and 322 corrected by on-peak baseline subtraction. The standard-sample bracketing method (Belshaw et 323 al., 1998) was employed to calibrate unknown samples against isotopically characterized sulfur 324 standards. Instrumental mass bias was calculated for the S isotopic standard using the exponential 325 mass law and a correction applied to the unknown sample using linear interpolation of calculated

326 mass biases from bracketing standards. The signal intensities of samples and bracketing standards 327 were optimized within ± 10 % to minimize the corrections necessary from background

328 contributions. External reproducibility of the reported δ^{34} S value is ± 0.45 ‰ (2 σ) for laser ablation

analysis.

330

Strontium isotopic ratios (⁸⁷Sr/⁸⁶Sr) in anhydrite were measured following a modified procedure 331 332 from Hart et al. (2005). Sample ablation and data acquisition parameters for analysis of Sr isotopes 333 were identical as that for the analysis of S isotopes described above (Table 1). Strontium isotopes 334 (⁸⁴Sr, ⁸⁶Sr, ⁸⁷Sr and ⁸⁸Sr) were measured in low mass resolution mode. Possible isobaric interferences on masses ⁸⁴Sr, ⁸⁶Sr and ⁸⁷Sr from ⁸⁴Kr, ⁸⁶Kr and ⁸⁷Rb, respectively, were monitored 335 336 and corrected by measuring Kr on mass 82 and 83 and Rb on mass 85 (Hart et al., 2005). In all cases. 82 Kr. 83 Kr and 85 Rb signals were < 1 mV and corrections were negligible. The reference 337 338 material NIST SRM987 was used as the external Sr isotopic standard (consensus ⁸⁷Sr/⁸⁶Sr ratio = 339 0.710248 ± 0.000003). Instrumental mass bias was calculated from deviation of the measured 86 Sr/ 88 Sr ratio from the canonical isotopic ratio in the standard (86 Sr/ 88 Sr = 0.119400) and a mass 340 bias correction applied to measured ⁸⁷Sr/⁸⁶Sr ratios using the exponential mass law. The calculated 341 mass bias correction was then applied to the unknown anhydrite sample assuming linear 342 343 interpolation of mass bias between replicate standards. Background contributions were measured 344 periodically as on-peak baselines and were sufficiently low that blank corrections were significantly less than analytical uncertainties. Long-term reproducibility of ⁸⁷Sr/⁸⁶Sr isotope ratios, 345 346 as determined by repeat analysis of an aragonite coral (Sclerosponge 'in-house' standard), was better than 20 ppm (87 Sr/ 86 Sr_{consensus} = 0.70918 ± 0.00002 vs. 87 Sr/ 86 Sr_{measured} = 0.70919 ± 0.00002; n 347 348 = 15, 2σ uncertainty). 349

350	4. RESULTS
351	
352	Elemental (rare earth element, Mg, Sr, Ba) and isotopic (87 Sr/ 86 Sr, δ^{34} S) data are reported
353	for twelve drill core anhydrites (8 from Snowcap, 4 from Roman Ruins) and eight seafloor
354	massive anhydrites (7 from Fenway, 1 from North Su). In total, approximately 500 multi-
355	element analyses and 300 isotopic analyses were carried out. A complete data report is
356	provided in the Supporting Online Material (Table S1).
357	
358	4.1. Rare Earth Element Contents in Anhydrite
359	
360	Microchemical laser-ablation ICPMS and cathodoluminescence mapping of anhydrite
361	document significant heterogeneity in both REE concentrations and chondrite-normalized
362	REE_N distribution patterns (Figs. 4–7). This heterogeneity contrasts markedly with near
363	uniform REE_N distribution patterns of anhydrite sampled from mid-ocean ridge
364	hydrothermal systems, which show a general light-REE enrichment and positive Eu-
365	anomaly (e.g., Humphris, 1998; Mills et al., 1998; Humphris and Bach, 2005). Notably,
366	the variability in REE concentration and pattern occurs on multiple spatial scales, from
367	large-scale differences between anhydrite recovered from different hydrothermal areas to
368	sub-millimeter intra-grain heterogeneity (Figs. 8-10). This fine-scale variability cannot be
369	resolved from whole-rock chemical analysis.
370	

371	Chondrite–normalized REE_N patterns of anhydrite samples from Roman Ruins (ODP Hole
372	1189A, B) are variably light-REE enriched. Most grains exhibit a positive Eu-anomaly,
373	but some REE–rich grain domains have a pronounced negative Eu–anomaly ($La_N/Yb_N =$
374	$7.8 - 108$, $Sm_N/Yb_N = 2.8 - 23$, $Eu_N/Eu_N^* = 0.4 - 6.5$; Figs. 4, 8). REE _N patterns are similar
375	among samples recovered from a range of depths from 20 to 158 meters below seafloor
376	(mbsf), except for the pronounced negative Eu-anomaly that is restricted to anhydrite
377	recovered from 158 m depth.
378	
379	Anhydrite samples from Snowcap (ODP Hole 1188A, F) exhibit a range of REE_N patterns
380	including light-REE enrichment, light-REE depletion/heavy-REE enrichment and flat
381	REE _N patterns with both positive and negative Eu–anomalies (La _N /Yb _N = $0.3 - 74$,
382	$Sm_N/Yb_N = 0.9 - 12.5$, $Eu_N/Eu_N^* = 0.5 - 14.3$; Fig. 5). REE _N patterns are generally similar
383	on the sub-millimeter scale within individual grains, but differ markedly between grains
384	and samples recovered from different depths. There is no clear correlation, however,
385	between the REE composition of anhydrite and the depth or lithologic unit from which
386	anhydrite was recovered.
387	
388	Seven massive anhydrites recovered from Fenway all exhibit a similar REE_N pattern
389	characterized by light–REE enrichment and a positive Eu–anomaly ($La_N/Yb_N = 3.2 - 76$,
390	$Sm_N/Yb_N = 3.0 - 32$, $Eu_N/Eu_N^* = 2.6 - 23$; three of seven examples are shown in Fig. 6).
391	This relative homogeneity is preserved at both the inter- and intra-grain scale (Fig. 10).

392 The range of individual REE concentrations measured in massive anhydrite spans nearly

393	two orders of magnitude, but is considerably less than the range observed in drill core
394	samples. In contrast, the \mbox{REE}_N pattern of the composite layered massive anhydrite
395	recovered from North Su (SuSu Knolls) is variable, ranging from slightly light-REE
396	enriched to notable heavy-REE enriched both with a range of positive Eu-anomalies
397	$(La_N/Yb_N = 0.1 - 1.8, Sm_N/Yb_N = 0.6 - 4.6, Eu_N/Eu_N^* = 1.4 - 8.0; Fig. 7)$. This
398	heterogeneity is recorded primarily between different grains, but some heterogeneity is
399	also apparent at the intra-grain scale (Fig. 10).
400	

4.2. Strontium Isotope Ratios 401

402

Overall, Sr isotope ratios in anhydrite (⁸⁷Sr/⁸⁶Sr) range from 0.70429 to 0.70881 (Fig. 11) 403 and show significant variability on the inter- and intra-grain scale in both PACMANUS 404 405 and SuSu Knolls samples. The wide range of Sr isotopic ratios imply anhydrite precipitated from a wide range of seawater (${}^{87}Sr/{}^{86}Sr = 0.70918$) and end-member 406 407 hydrothermal fluid mixtures. The Sr isotope ratio of end-member black-smoker vent fluids is significantly less radiogenic than seawater $({}^{87}\text{Sr}/{}^{86}\text{Sr} \sim 0.7042 \text{ at Roman Ruins and}$ 408 Fenway, 87 Sr/ 86 Sr ~ 0.7044 at North Su; Table 2) consistent with extensive reaction and Sr 409 isotopic exchange with underlying crustal rocks (87 Sr/ 86 Sr ~ 0.7035; Sinton et al., 2003). 410 411 Where data exist, microchemical data are compared against Sr isotope ratios for the same 412 anhydrite samples determined using whole-rock isotopic analysis (Roberts et al., 2003; 413 Bach et al., 2005). In general, the data show excellent agreement (Fig. 11). However, 414 microchemical analyses reveal significant intra-grain variability that could not be

415	identified by whole–rock isotope analysis, and extend the overall range of Sr isotope ratios
416	measured. The relative proportions of hydrothermal fluid and seawater in fluids from
417	which anhydrite was precipitated at PACMANUS and SuSu Knolls can be calculated
418	following standard isotope mixing calculations using measured Sr isotopic ratios (e.g.,
419	Mills et al., 1998). These calculations assume that uptake of Sr into anhydrite follows
420	batch mixing and does not fractionate Sr isotopes, and that Sr compositions of modern
421	seawater and hydrothermal fluid used in mixing calculations (Table 2) are representative of
422	fluids from which anhydrite precipitated.
423	
424	Strontium isotope ratios of drill-core anhydrites from Roman Ruins cluster mostly
425	between 0.7055 and 0.7080, but range from 0.70429 to 0.70822 (Fig. 11). Significant Sr
426	isotopic heterogeneity is observed at the intra-grain scale (Fig 8). Isotope mixing
427	calculations indicate that anhydrite precipitated mostly from fluid mixtures containing
428	between 17 and 68 vol. % hydrothermal fluid. However, the heterogeneous distribution of
429	Sr isotope ratios at the intra-grain scale implies that hydrothermal fluids in some instances
430	contributed up to 95 vol. % of fluid from which anhydrite was precipitated, particularly in
431	samples recovered near the base of drill core (~ 158 mbsf). Strontium isotopic
432	compositions are typically well correlated with REE concentrations of the same grains
433	(Fig. 8); REEs in anhydrite are contributed by hydrothermal fluid.
434	
435	At Snowcap, Sr isotope ratios of drill-core anhydrite recovered from < 50 mbsf are near
436	that of seawater (sample 193–1188A–7R–1; 87 Sr/ 86 Sr ~ 0.7088), but in samples recovered

437	from greater depths cluster around lower ratios (87 Sr/ 86 Sr ~0.7050 to 0.7075; Fig. 11).
438	Although the total range of ⁸⁷ Sr/ ⁸⁶ Sr ratios is less than that documented at Roman Ruins,
439	significant variability is observed on sub-centimeter scales within many samples. The Sr
440	isotopic compositions of most Snowcap anhydrite samples correspond to between 35 and
441	77 vol. % of hydrothermal fluid in the aqueous mixture. The exception is the shallow
442	sample (193–1188A–7R–1), whose radiogenic Sr isotopic composition indicates
443	precipitation of anhydrite from a fluid contributed by < 10 vol. % hydrothermal fluid.
444	
445	Massive anhydrites from Fenway have Sr isotopic compositions between 0.7060 and
446	0.7082 (Fig. 11). In most instances, the data indicate anhydrite precipitation from fluid
447	mixtures dominated by seawater (~ 55 to 84 vol. %). Locally, greater contribution of
448	hydrothermal fluid to the fluid mix precipitating anhydrite (up to vol. 60 % hydrothermal
449	fluid) is observed. At North Su (SuSu Knolls), Sr isotope ratios recorded in a single
450	anhydrite sample are remarkably variable, ranging from 0.7046 to 0.7085 (Fig. 11) and
451	indicating precipitation of anhydrite from a fluid containing 23 to 96 vol. % seawater (4 to
452	76 vol. % hydrothermal fluid).
453	

- 454 **4.3. Sulfur Isotope Ratios**
- 455

456 Measured sulfur isotope compositions of drill core anhydrite from Roman Ruins range 457 from $\delta^{34}S-SO_4 = +19.6$ to +23.1 ‰, with most isotope ratios equal to or slightly heavier 458 than seawater sulfate ($\delta^{34}S-SO_4 = +21.0$ ‰, Rees et al., 1978) (Fig. 11). There is no clear

459	downhole trend beneath Roman Ruins of sulfur isotope compositions. Drill core anhydrite
460	samples from Snowcap display a wide range of sulfur isotope compositions, from $\delta^{34}S$ –
461	$SO_4 = +16.6$ ‰ to $+21.9$ ‰ (Fig. 11). Microchemical sulfur isotope data are consistent
462	with that measured by whole-rock analysis on the same Roman Ruins and Snowcap
463	samples (Roberts et al., 2003), although microchemical data reveal some intra-grain
464	heterogeneity and extend the range of sulfur isotope compositions by more than one per
465	mil. Anhydrites from Snowcap are the only samples to record $\delta^{34}S$ –SO ₄ significantly
466	lighter than that of seawater. In general, sulfur isotope ratios trend toward lighter isotope
467	composition with increasing depth (Fig. 11).
468	
469	Sulfur isotope compositions of seafloor massive anhydrites sampled from Fenway ($\delta^{34}S$ –
470	$SO_4 = +20.1$ ‰ to +22.0 ‰) cluster around that of seawater and are absent of light sulfur
471	isotopic ratios as seen at Snowcap. At North Su, sulfur isotope compositions of seafloor
472	massive anhydrite fall within a relatively narrow range, heavier than that of seawater
473	sulfate, with δ^{34} S–SO ₄ between +22.4 and +23.6 ‰ (Fig. 11).
474	
475	5. DISCUSSION
476	
477	5.1. Microchemical Heterogeneity Recorded by Anhydrite
478	
479	The microchemical data for anhydrite samples presented here provide significant
480	information used to identify the sub-seafloor processes affecting formation of

481	hydrothermal fluids in the Manus back-arc basin, which can be compared and contrasted
482	with previous whole-rock data obtained for the same samples (e.g., Bach et al., 2003;
483	Roberts et al., 2003; Bach et al., 2005). The data reveal significant chemical (REE) and
484	isotopic (Sr, S) heterogeneity on the scale of individual anhydrite grains that are
485	unresolved by whole-rock analysis. Moreover, microchemical analyses also allow
486	interpretation of chemical data based on textural evidence. The textural characteristics of
487	all samples documented by petrographic and cathodoluminescence imaging, including
488	regular grain/crystal structures and sharply bounded chemical domains, support primary
489	growth of anhydrite without 'diagenetic' overprint. We interpret the fine-scale
490	heterogeneity as recording primary chemical signatures of the fluids from which anhydrite
491	was precipitated. Trace element and isotopic exchange or reequilibration, which might be a
492	post-depositional artifact as a result of anhydrite dissolution or replacement owing to
493	changes in fluid temperature and composition, do not affect the chemical signatures
494	preserved our samples.
495	
496	The REE and Sr and S isotope data suggest that anhydrite records evidence for
497	hydrothermal fluid formation affected by varying input of magmatic acid volatiles (H ₂ O-
498	CO ₂ -SO ₂ -HCl-HF) and for marked changes in near-seafloor hydrothermal fluid
499	circulation and mixing with locally entrained seawater, all of which impact the
500	composition of vent fluids and associated vent deposits. The microchemical analyses also
501	demonstrate that the relative influence of these processes varied dramatically on timescales
502	over which anhydrite was deposited. Detailed microchemical analyses can provide novel

insights to complex hydrothermal processes that might not be obtained only from whole–rock studies.

505

506 5.1.1. Anhydrite REE Patterns: Indicators of Hydrothermal Fluid Formation, Aqueous
507 REE Distributions and Conditions of Anhydrite Precipitation

508

509 Anhydrite sampled from active hydrothermal fields in the Manus Basin (PACMANUS, 510 SuSu Knolls) exhibits a wide range of chondrite-normalized REE_N patterns (Figs. 4-7) 511 that are significantly more varied than relatively uniform REE_N patterns observed in 512 anhydrite sampled at mid-ocean ridge spreading centers (e.g., Mills and Elderfield, 1995; 513 Humphris, 1998: Humphris and Bach, 2005). Microchemical analysis reveals that this 514 heterogeneity is recorded at the intra-grain scale in many samples (Figs. 8-10), which was 515 not revealed by previous whole–rock analysis. The range of REE_N patterns measured likely 516 reflects control from one or several processes, including differences in absolute and 517 relative REE abundances in parent hydrothermal fluid, crystal lattice constraints on ion 518 substitution and solution controls (composition, temperature, oxygen fugacity) on REE 519 concentration and complexation. These controls have been discussed previously in context 520 of anhydrite precipitation at the TAG active mound (e.g., Mills and Elderfield, 1995; 521 Humphris, 1998; Humphris and Bach, 2005). At TAG, high-temperature black smoker 522 fluids and anhydrites have a very similar REE_N pattern, which has been interpreted as 523 reflecting partitioning of REEs, with the possible exception of Eu, into anhydrite without 524 significant fractionation (e.g., Mills and Elderfield, 1995). Discrimination against Eu, as

525 evidenced from negative Eu anomalies in fluid-normalized REE patterns, likely results 526 from the unique redox behavior of Eu in high temperature aqueous environments. At high temperatures and reducing conditions, Eu is stable as Eu^{2+} instead of typical Eu^{3+} 527 (Sverjensky, 1984). The larger ionic radius of Eu^{2+} versus Eu^{3+} and resulting ionic radii 528 mismatch with Ca^{2+} can inhibit substitution of Eu^{2+} into anhydrite relative to neighboring 529 530 REE^{3+} . Variable Eu anomalies may indicate changes in temperature and redox conditions 531 under which anhydrite is precipitated as a result of mixing of hydrothermal fluid and 532 entrained seawater in different proportions. In more detail, subtle differences between 533 REE_N patterns measured in TAG hydrothermal fluids and anhydrite have been interpreted 534 to reflect minor fractionation between the REEs owing to formation of different aqueous 535 REE complexes resulting from differences in fluid composition (e.g., T, fO_2) during 536 hydrothermal fluid mixing with seawater (e.g., Humphris and Bach, 2005). In particular, 537 formation of REE-chloride complexes is predicted to enhance the stability to light-REEs 538 relative to mid- and heavy-REEs and so result in anhydrite with REE patterns that are 539 moderately light-REE depleted when normalized to REE composition of parent black-540 smoker fluids (e.g., Humphris and Bach, 2005). 541

Seafloor massive anhydrites sampled at Fenway have the most uniform REE_N pattern of all anhydrites examined in this study. REE_N patterns are sub–parallel and characterized by a light–REE enrichment and positive Eu anomaly (Fig. 6). This pattern is very similar to that recorded in anhydrite from mid–ocean ridge spreading centers and is also similar to that of modern high–temperature black–smoker fluids sampled at Fenway (Fig. 12). If the

547	composition of contemporary hydrothermal fluids is representative of that from which
548	anhydrite at Fenway was precipitated, then the similar REE_N patterns imply that ion
549	substitution of REE into anhydrite occurred largely without intra-group fractionation (i.e.,
550	crystal lattice and solution chemistry did not fractionate significantly among the REEs).
551	This is demonstrated on a plot of La/Yb and Eu/Eu* ratios in anhydrite normalized to that
552	of endmember hydrothermal fluid when $(La/Yb)_{Anh-BSF} \sim 1$ and $(Eu/Eu*)_{Anh-BSF} \sim 1$ (Fig.
553	13a). REE _N patterns of drill–core anhydrites sampled beneath Roman Ruins are broadly
554	uniform and also similar to that of anhydrite sampled at Fenway, except for a pronounced
555	negative Eu anomaly in some anhydrite grains formed at depths > 150 mbsf (Fig. 4).
556	Relative to REE abundances in modern high-temperature hydrothermal fluids sampled at
557	Roman Ruins (Fig. 12), REE patterns are broadly flat, $(La/Yb)_{Anh-BSF} \sim 1$, but show a
558	collective negative Eu anomaly, $(Eu/Eu^*)_{Anh-BSF} < 0.03$ to 0.5 (Fig. 13b). The broadly
559	uniform REE_N patterns (e.g., La/Yb ratios) preserved in anhydrites from Fenway and
560	Roman Ruins are interpreted as reflecting precipitation from parental hydrothermal fluids
561	with a REE composition that was uniform over periods of anhydrite formation.
562	Contemporary hydrothermal fluids sampled at Fenway and Roman Ruins are notable for
563	their low pH and relatively high volatile (e.g., CO ₂ , fluoride) concentrations relative to
564	high-temperature black smoker fluids sampled from mid-ocean ridge spreading centers,
565	and are considered a result of magmatic acid volatile degassing from felsic magmas
566	overlying the subduction margin coupled to high-temperature fluid-rock interaction
567	(Seewald et al., 2006; Reeves, 2010). On the basis of the REE data, we suggest that these
568	processes governing the sub-seafloor formation of high-temperature hydrothermal fluids

at Fenway and Roman Ruins have been maintained over the timescales on which anhydritewas deposited.

571

572 The variable behavior of Eu during precipitation of anhydrite sampled from Fenway and 573 Roman Ruins argues that, although hydrothermal fluid compositions were likely similar, 574 the conditions of anhydrite precipitation from parent fluids differed. The lack of a large Eu 575 anomaly in REE_N patterns of Fenway anhydrites normalized to that of endmember 576 hydrothermal fluid suggests that Eu behaved similarly to neighboring Sm and Gd during 577 fluid-mineral partitioning. Likely, this reflects Eu present in trivalent form owing to lower 578 temperatures and more oxidizing conditions as a result of extensive mixing between 579 endmember hydrothermal fluid and seawater at the seafloor where massive anhydrite was precipitated. Strontium isotopic (⁸⁷Sr/⁸⁶Sr) ratios measured in these anhydrites range 580 581 mostly from ~0.7065 to 0.7080 suggesting precipitation from a fluid mix contributed by 582 more than 55 to 60 vol. % seawater. Isoenthalpic mixing between ~40 vol. % hydrothermal 583 fluids at Fenway with temperatures ~ 340 to 360 °C (Seewald et al., 2006; Reeves, 2010) 584 and 60 vol. % seawater yields a mixed fluid with a temperature of ~150 °C. At this or 585 lower temperatures and corresponding oxygen fugacities. Eu can exist in trivalent form, 586 which is consistent with our interpretation that Eu behaved similarly to neighboring REEs. 587 In contrast, the pronounced negative Eu anomaly apparent in REE_N patterns of Roman 588 Ruins drill–core anhydrites suggests higher temperatures (≥ 250 °C) and more reducing 589 conditions during precipitation of most anhydrite beneath the seafloor at this vent field. 590 Strontium isotopic (⁸⁷Sr/⁸⁶Sr) ratios measured within individual samples range from

591 ~ 0.7050 to ~ 0.7080 ($\sim 20-75$ vol. % hydrothermal fluid) and in anhydrite sampled from > 592 150 mbsf can extend to ~ 0.7042 , similar to that of endmember hydrothermal fluids (> 95 593 vol. % hydrothermal fluid; Fig. 11). Isoenthalpic mixing between < 40 vol. % seawater and 594 > 60 vol. % endmember hydrothermal fluid with a temperature ~ 340 °C (Seewald et al., 2006; Reeves, 2010) as implied by most measured ⁸⁷Sr/⁸⁶Sr ratios, yields temperatures of 595 596 precipitation in excess of 250 °C. Anhydrite deposition beneath Roman Ruins under 597 hydrothermal-dominant conditions is directly supported by fluid inclusion analysis of the 598 same samples (Vanko et al., 2004), which indicate temperatures of precipitation between 599 250 and 370 °C.

600

601 Microscale chemical heterogeneity and textural characteristics of drill-core anhydrites 602 from Roman Ruins and massive anhydrites from Fenway are also used to compare and 603 contrast conditions under which anhydrite precipitated at and beneath the seafloor. 604 Cathodoluminescence mapping and microchemical analyses demonstrate that significant 605 heterogeneity in terms of absolute REE concentrations is recorded at the intra-grain scale 606 in many Roman Ruins anhydrites, particularly in those deposited at depth (Figs. 4, 8). 607 Mapping indicates that boundaries between chemically distinct domains are sharp, which 608 likely preserve primary growth. The chemical heterogeneity is interpreted as recording 609 dramatic shifts between hydrothermal-dominant and seawater-dominant conditions under 610 which anhydrite was precipitated and might reflect intermittent pulsing of hydrothermal 611 fluid from depth and changes in pathways for fluid flow through permeable shallow crustal 612 rocks. The range of ⁸⁷Sr/⁸⁶Sr ratios recorded on the scale of individual anhydrite grains

613 (Fig. 8) further supports dramatic changes between hydrothermal-dominant and seawater-614 dominant fluid regimes in the sub-seafloor hydrothermal environment. Although there is 615 no direct information as to crystal growth rates, the sub-millimeter scale at which chemical 616 heterogeneity in anhydrite grains is recorded at Roman Ruins suggests that changes in fluid 617 flow were rapid. By comparison, massive anhydrites sampled at Fenway exhibit uniform 618 REE distributions and small Sr isotopic variability on the scale of individual grains (Fig. 619 10). This chemical and isotopic homogeneity implies that mixing between hydrothermal 620 fluid and entrained seawater was both extensive and sustained at the seafloor within the 621 Fenway mound relative to that inferred within the crust.

622

623 A very different history of hydrothermal fluid formation and sub-seafloor mixing beneath 624 Snowcap is recognized from REE compositions of anhydrite. Drill-core anhydrite sampled 625 beneath Snowcap exhibit a wide range of chondrite–normalized REE_N distribution patterns 626 (Fig. 5), different from that documented in anhydrite from both Roman Ruins and Fenway. 627 The REE_N patterns of Snowcap anhydrites are markedly different from those of modern 628 hydrothermal fluids sampled at this vent field (Fig. 12), which are characterized by 629 uniform light-REE enrichment and a positive Eu anomaly (Craddock et al., 2010). 630 Accordingly, when normalized to REE concentrations in modern hydrothermal fluid, the 631 REE patterns of Snowcap anhydrites show distinct and fractionated patterns ((La/Yb)_{Anh}-632 $_{BSF} = 0.02-15.4$ and $(Eu/Eu^*)_{Anh-BSF} = 0.06-1.8$; Fig. 13). If the REEs are partitioned into 633 Snowcap anhydrites without fractionation from parent hydrothermal fluid composition, 634 then the range of REE_N patterns recorded in anhydrite imply that anhydrite was

635 precipitated in the past from generations of hydrothermal fluids having very different 636 chemistry compared to that of modern fluids. Alternatively, solution effects and REE 637 complexation controlled REE partitioning between fluid (with a composition the same as 638 contemporary fluids) and anhydrite, resulting in significant intra-group fractionation 639 during anhydrite deposition. Ion complexation, however, appears inconsistent with the 640 range of both light-REE and heavy-REE enrichments and of positive and negative Eu 641 anomalies measured in Snowcap anhydrites. If ion complexation were the dominant 642 control on measured REE_N patterns in anhydrite, then partitioning of REE between fluid 643 and anhydrite should behave in a predictable manner as a function of fluid composition 644 (e.g., ligand concentration, pH). Endmember compositions of the highest temperature vent 645 fluids sampled from Fenway, Roman Ruins and Snowcap are similar, particularly with respect to chondrite–normalized REE_N distributions and Cl⁻, F⁻ and SO₄^{2–} ligand 646 647 concentrations (Table 2). The resulting speciation of REEs in these sampled fluids is 648 therefore very similar (Craddock et al., 2010), and the partitioning behavior of REEs 649 between fluid and anhydrite, if governed primarily by solution complexation, should be the 650 same. REE complexation in modern hydrothermal fluids sampled from Fenway, Roman 651 Ruins and Snowcap is controlled primarily by chloride (Craddock et al., 2010) and is 652 similar to that predicted at mid-ocean ridge hydrothermal systems (e.g., Humphris and 653 Bach, 2005). Chloride-dominated REE complexation has been interpreted to cause minor discrimination against the light–REEs and Eu^{2+} during precipitation of some anhydrites at 654 655 TAG (Humphris and Bach, 2005). The same solution chemistry effects cannot also explain

656 the wide range of REE_N patterns observed in Snowcap anhydrites, ranging from light-REE 657 to heavy-REE enriched to flat, with both positive and negative Eu anomalies.

658

659 We infer that anhydrite deposited beneath Snowcap likely records the past presence of 660 distinct hydrothermal fluids at this field with very different REE concentrations and 661 relative distributions. In particular, the relatively flat and heavy–REE enriched REE_N 662 patterns documented in Snowcap anhydrites (Fig. 5) are inferred to reflect the existence of 663 low pH "acid–sulfate" fluids at this field in the recent past, because these flat REE_N 664 patterns are most similar to those of modern acid–sulfate fluids sampled at the nearby 665 DESMOS and SuSu Knolls hydrothermal systems (Fig. 12) (Craddock et al., 2010). The composition of acid–sulfate fluids (e.g., low pH, high SO_4^{2-} concentration) sampled at 666 667 DESMOS and SuSu Knolls (Table 2) is best explained by substantial injection of magmatic acid volatiles (H₂O-CO₂-SO₂-HCl-HF) from underlying felsic magmas and 668 669 mixing with seawater in the shallow crust, in the absence of typical high-temperature 670 convective hydrothermal fluid circulation and reaction with fresh crustal rocks (e.g., 671 Seewald et al., 2006). This represents a fundamentally different style of hydrothermal fluid 672 formation compared to that proposed for high-temperature, black smoker-type fluids 673 sampled at mid-ocean ridge spreading centers. REE_N patterns preserved in Snowcap 674 anhydrite record evidence of acid-sulfate type magmatic-hydrothermal activity, even 675 though modern hydrothermal fluids sampled from PACMANUS vent fields do not. The 676 existence of acid-sulfate fluids at Snowcap in the past is supported by feldspar destructive 677 alteration characteristic of fluid-rock interaction at very low $pH \le 2$ (e.g., illite678 pyrophyllite-cristobalite + native sulfur) in the same drill-cores from which anhydrite was 679 recovered (Lackschewitz et al., 2004; Binns et al., 2007). The absence of similar anhydrite 680 REE_N patterns and feldspar destructive alteration in drill core samples from Roman Ruins 681 or in seafloor samples from Fenway do not support acid-sulfate type magmatic-682 hydrothermal activity at these areas only several km away from Snowcap. The intra-grain 683 scale at which variations in REE_N patterns are observed within Snowcap anhydrites implies 684 that magmatic acid volatile input and pathways for hydrothermal fluid circulation and 685 near-seafloor mixing with entrained seawater beneath seafloor hydrothermal systems in 686 subduction margin environments varies substantially on rapid timescales. 687 688 Massive anhydrite at North Su (SuSu Knolls) records a range of REE_N patterns that are 689 similar to those measured in drill-core anhydrites from Snowcap. These REE_N patterns 690 range from light-REE, to mid-REE, to heavy-REE enriched and are not generally similar 691 to that of contemporary smoker-type fluids venting nearby $((La/Yb)_{Anh-BSF} \neq 1)$, 692 $(Eu/Eu^*)_{Anh-BSF} \neq 1$; Figs. 13). REE_N patterns in some grains are similar, although not 693 identical, to that of acid-sulfate fluids exiting the seafloor on the flanks of the North Su 694 volcano and that of fluoride-rich hydrothermal fluids venting at the neighboring Suzette 695 and South Su vent fields (Fig. 12) (Craddock et al., 2010). The data are interpreted as 696 reflecting precipitation of massive anhydrite at North Su from hydrothermal fluid 697 influenced by acid–sulfate–type activity, similar to that inferred in the past at Snowcap. 698 The fine-scale REE heterogeneity in North Su massive anhydrite documented by 699 microchemical analysis contrasts markedly with relatively homogeneous REE distributions

700	in seafloor massive anhydrites from Fenway, suggesting a complex history of
701	hydrothermal fluid formation at the seafloor at North Su. Petrographic and
702	cathodoluminescence imaging highlights the complex textures related to formation of
703	anhydrite at North Su, including composite banding, possible veining and a range of grain
704	sizes (Figs. 3, 10). These textures likely reflect discrete episodes of anhydrite deposition.
705	The different REE signatures recorded among these domains (Fig. 10) imply that episodes
706	of anhydrite precipitation were influenced by fluids of differing composition, which were
707	possibly related to fundamentally different styles of hydrothermal fluid formation
708	including dramatic shifts between black-smoker and acid-sulfate fluid formation.
709	Differences in the physical and chemical characteristics of hydrothermal fluid formation
710	within individual vent fields in the Manus Basin is well illustrated by active venting of
711	both black smoker and acid–sulfate fluids less than 25 m apart at the seafloor at North Su.
712	
713	5.1.2. Microchemical Analysis of Sulfur and Strontium Isotope Ratios: Constraints on
714	Magmatic Contributions in Submarine Hydrothermal Systems
715	
716	Sulfur isotopic compositions (δ^{34} S–SO ₄) of anhydrite samples measured by microchemical
717	analysis cluster mostly around that of contemporary seawater sulfate (+21 ‰ Rees et al.,
718	1978), or extend to heavier values, up to +24 ‰ (Fig. 11). Where whole–rock sulfur
719	isotope analyses were carried out on the same drill-core samples (Roberts et al., 2003),
720	microchemical and whole-rock data are similar. Sulfate in anhydrite from all vent fields

721 was contributed predominantly by seawater. Sulfur isotopic ratios in anhydrite heavier than

722 that of seawater can be explained by partial reduction of seawater sulfate to H₂S by action 723 of ferrous iron in hydrothermal fluid (e.g., Shanks et al., 1981; Janecky and Shanks, 1988). Strontium isotope (⁸⁷Sr/⁸⁶Sr) ratios measured on the same grains fall between that of 724 endmember hydrothermal fluid (87 Sr/ 86 Sr ~ 0.7042) and seawater (87 Sr/ 86 Sr ~ 0.70918; Fig. 725 726 11) supporting that anhydrite was precipitated from a mix of hydrothermal fluid with a 727 significant fraction of locally entrained and admixed sulfate-rich seawater. As previously 728 emphasized, the intra-grain scale on which strontium isotopic heterogeneity is recorded in 729 most samples implies that there were dramatic, and likely rapid, shifts between distinctly 730 hydrothermal- and seawater-dominant fluid regimes, possibly reflecting pulsing of 731 hydrothermal fluid from depth and changes in pathways for fluid flow through permeable 732 shallow crustal rocks.

733

Sulfur isotopic compositions extend to light values (δ^{34} S–SO₄ < 17 ‰) in some grains of 734 735 drill–core anhydrites recovered from depths ~ 300 mbsf beneath Snowcap. Potential 736 sources of sulfate with S isotopic ratios lower than seawater include (1) oxidation of 737 aqueous H₂S in hydrothermal fluid (Shanks et al., 1995; Shanks, 2001), (2) equilibrium 738 isotope exchange between aqueous sulfate and H_2S at high temperatures > 380 °C 739 (Ohmoto and Lasaga, 1982), and (3) disproportionation of magmatic SO₂ to vield sulfate 740 (Drummond, 1981; Kusakabe et al., 2000). Compositions of contemporary seafloor 741 hydrothermal fluids sampled from both PACMANUS and SuSu Knolls are inconsistent 742 with oxidation of H₂S during mixing of hydrothermal fluid and locally entrained seawater 743 at sites of anhydrite precipitation. Most vent fluids at PACMANUS and SuSu Knolls

744	contain measurable amounts of both H ₂ S and sulfate (Table 2), indicating that these
745	species have not come to chemical equilibrium and that H ₂ S oxidation has not occurred
746	(see Craddock et al., 2010). Kinetic considerations argue against sulfur isotopic
747	equilibrium exchange between sulfate and H ₂ S to explain isotopically–light $\delta^{34}S$ –SO ₄
748	compositions. At PACMANUS and SuSu Knolls, measured temperatures of seafloor vent
749	fluids (Craddock et al., 2010; Reeves, 2010) and/or fluid inclusion studies of anhydrite
750	(Vanko et al., 2004) suggest maximum fluid temperatures at depths < 300 mbsf in the crust
751	between 360 and 400 °C, and precipitation of anhydrite from fluids with temperatures
752	mostly less than 350 °C. The $\Delta^{34}S_{SO4-H2S}$ ~19 ‰ difference between isotopically light
753	sulfate in anhydrite ($\delta^{34}S \sim +17$ ‰) and H ₂ S in sampled Manus hydrothermal fluids ($\delta^{34}S \sim$
754	-1 to -3 ‰; Reeves, 2010) implies sulfur isotopic exchange at temperatures ~ 350 °C
755	(Ohmoto and Lasaga, 1982). At this range of temperatures, however, timescales of sulfur
756	isotopic equilibration between sulfate and H_2S are slow (> 50 to 70 hours) relative to that
757	expected for precipitation of anhydrite (e.g., Ohmoto and Lasaga, 1982).
758	
759	We suggest that disproportionation of magmatic SO_2 is the likely source for isotopically
760	light δ^{34} S–SO ₄ recorded in drill core anhydrite recovered from Snowcap, consistent with
761	the conclusions of Roberts et al. (2003) based on whole-rock sulfur isotopic analyses of
762	Snowcap anhydrite samples. Sulfur dioxide, which can be present and degassed from
763	shallow, water-rich felsic magmas at subduction-related oceanic and continental margins
764	(see review by Rye, 2005), can undergo disproportionation to yield both oxidized and
reduced forms of sulfur according to the following reactions (e.g., Holland, 1965;

766 Drummond, 1981);

767
$$4SO_2 + 4H_2O \rightarrow 3H^+ + 3HSO_4^- + H_2S$$
, and (1)

768 $3SO_2 + 2H_2O \rightarrow 2H^+ + 2HSO_4^- + S^\circ.$ (2)

769 Experimental data document large isotopic fractionations between sulfate and reduced 770 sulfur owing to SO₂ disproportionation, with sulfate enriched by +16 to +21 ‰ relative to reduced sulfur (Kusakabe et al., 2000). For an initial bulk δ^{34} S of SO₂ in the magma ~2 ± 2 771 772 ‰ (e.g., Deen, 1990), isotopic mass balance constrains the sulfur isotopic composition of the resulting hydrothermal fluid to δ^{34} S–SO₄ ~ +6 to +10 ‰ and δ^{34} S–H₂S ~ -6 to -10 ‰. 773 The measured δ^{34} S of H₂S of most PACMANUS and SuSu Knolls fluids is in the range -1774 775 to -3 % (Reeves, 2010), which is consistent with that expected from hydrothermal contributions of H₂S from magmatic SO₂ disproportionation. Similarly, δ^{34} S–SO₄ ratios 776 777 recorded in anhydrite lighter than that of seawater is consistent with contribution of sulfate 778 derived from magmatic SO₂ disproportionation. Mixing between sulfate-bearing magmatic-hydrothermal fluid (δ^{34} S-SO₄ ~ +6 to +10 ‰) and contemporary seawater 779 780 $(\delta^{34}S-SO_4 \sim +21 \%)$ can yield a mixed fluid with a sulfate-sulfur isotopic ratio ~ +14 to 781 +18 ‰, similar to that recorded in some Snowcap drill–core anhydrites. The presence of 782 sulfate-rich fluids of magmatic origin (i.e., acid-sulfate fluids) at Snowcap is consistent 783 with our interpretations of REE signatures in the same anhydrites. 784 The absence of light δ^{34} S–SO₄ ratios in anhydrite from Roman Ruins and Fenway at 785

786 PACMANUS and North Su at SuSu Knolls does not support acid-sulfate-type activity at

787 these vent areas. However, it does not exclude such activity. The isotopic fingerprint for 788 sulfate of magmatic origin can be diluted by large amounts of seawater-sulfate contributed 789 by local seawater entrainment or overprinted by sulfate reduction. The sulfur isotopic 790 evolution of sulfate during conservative mixing of magmatic-hydrothermal fluid and 791 seawater can be examined in Sr and S isotope space (Fig. 14). Dashed lines in Figure 14 792 are conservative mixing trends between contemporary seawater (87 Sr/ 86 Sr = 0.70918, δ^{34} S- $SO_4 = +21$ ‰) and modeled magmatic-hydrothermal fluids (${}^{87}Sr/{}^{86}Sr = 0.7042$, $\delta^{34}S-SO_4$ 793 794 = +8 ‰) with a range of sulfate concentrations (0, 15 and 100 mmol/kg). The sulfur 795 isotopic composition of "magmatic" sulfate in these calculations (+8 %) is that measured 796 during experimental SO₂ disproportionation at temperatures ~ 300 °C (Kusakabe et al., 797 2000) and calculated from isotopic mass balance above. A sulfate concentration of zero in 798 the endmember hydrothermal fluid implies complete absence of magmatic sulfate. Coupled 799 measurements of strontium and sulfur isotope ratios indicate that ~ 12 to 15 mmol/kg 800 magmatic sulfate is required in the endmember magmatic-hydrothermal fluid to preserve light δ^{34} S–SO₄ compositions measured in drill–core anhydrite from Snowcap (~+16 to 801 802 +17 ‰) for the appropriate mixing proportions between seawater (50 to 70 vol. %) and hydrothermal fluid (30 to 50 vol. %). The seawater–like δ^{34} S ratios of anhydrites from 803 804 neighboring Fenway and Roman Ruins may reflect much lower concentrations of 805 magmatic sulfate (< 1 to 3 mmol/kg) in the endmember hydrothermal fluid from which 806 anhydrite at these fields was precipitated and overprint of the small magmatic signature 807 owing to mixing with seawater as indicated by the range of strontium isotopic ratios 808 recorded in the same grains. Directly coupled REE data for the same anhydrites from

809	Roman Ruins and Fenway, as provided by novel microchemical analysis, bear information
810	on this discussion. The relatively uniform chondrite–normalized \mbox{REE}_N pattern of
811	anhydrites from Roman Ruins and Fenway, which is similar to that of mid-ocean ridge
812	hydrothermal fluids but markedly different to that of acid-sulfate fluids, argues against
813	acid-sulfate style hydrothermal fluids at Roman Ruins or Fenway in the past. Owing to the
814	several orders of magnitude higher concentrations of REEs in hydrothermal fluids versus
815	seawater (in contrast to abundant sulfate in seawater versus hydrothermal fluid), REE
816	signatures in anhydrite may be particularly diagnostic of magmatic-hydrothermal
817	processes occurring at depth, despite extensive influx and overprint by seawater near the
818	seafloor at sites of fluid and mineral sampling.
819	
820	6. SUMMARY AND CONCLUSIONS
821	
822	Coupled microchemical analysis of rare earth elements (REEs) and Sr and S isotopes in
823	seafloor and sub-seafloor anhydrites provides insights to processes governing the
824	formation and evolution of hydrothermal fluids in the subduction-related Manus Basin,
825	Papua New Guinea. Chondrite-normalized REE patterns recorded in anhydrites sampled at
826	the PACMANUS (Roman Ruins, Snowcap and Fenway) and SuSu Knolls (North Su) vent
827	fields show remarkable heterogeneity (light-REE enriched, heavy-REE enriched and flat
828	patterns with both positive and negative Eu anomalies) different to relatively uniform
829	REE_N patterns in anhydrites from mid-ocean ridge deposits. The range of REE_N patterns
830	documented in anhydrite is very similar to that observed in seafloor hydrothermal fluids

831 sampled from the same vent fields (Douville et al., 1999; Craddock et al., 2010). Magmatic 832 acid volatile input (H₂O–SO₂–CO₂–HCl–HF) significantly impacts the composition of 833 sampled black smoker-type and acid-sulfate-type fluids in the Manus Basin, which affects 834 the solubility of REEs during fluid-rock interaction (Craddock et al., 2010). The different 835 REE_N patterns recorded in anhydrite are interpreted as recording extended periods of 836 significant, but spatially and temporally variable, magmatic volatile degassing from felsic 837 magmas overlying the actively subducting slab. In particular, variable REE_N patterns 838 preserved in anhydrites sampled from beneath the Snowcap vent field record evidence for 839 acid–sulfate fluid activity at PACMANUS (very low pH and high sulfate concentrations 840 reflecting substantial input of magmatic SO₂) in the recent geologic past, which is not 841 manifest today. Past episodes of acid-sulfate activity at Snowcap was likely similar to that 842 on-going at the nearby SuSu Knolls hydrothermal system.

843

844 The REE data are complemented by sulfur and strontium isotopic data for the same samples. Sulfate δ^{34} S ratios of most anhydrite grains cluster around that of contemporary 845 846 seawater (+21 ‰), indicating that sulfate was contributed primarily from seawater sulfate 847 owing to anhydrite precipitation at both PACMANUS and SuSu Knolls from a variable mix of hydrothermal fluid and locally entrained seawater. Strontium isotopic (⁸⁷Sr/⁸⁶Sr) 848 849 ratios of the same anhydrites fall between that of contemporary seawater (= 0.70918) and 850 endmember hydrothermal fluids (~ 0.7042) supporting that anhydrite was deposited from a mix of the two. Sulfate δ^{34} S isotope ratios extend to values lighter than that of seawater in 851 852 a few anhydrites recovered at depths ~300 mbsf beneath Snowcap. These light ratios

853	$(\delta^{34}S-SO_4 \sim +16 \text{ to } +18 \%)$ are best explained by contribution of sulfur from magmatic
854	SO ₂ and past existence of acid-sulfate fluids at Snowcap, consistent with that predicted
855	from REE data for the same anhydrites. The absence of anhydrite with light $\delta^{34}SSO_4$
856	ratios sampled from either Roman Ruins or Fenway implies an absence of similar acid-
857	sulfate activity at these neighboring vent fields, although extensive entrainment and mixing
858	of sulfate-rich seawater with hydrothermal fluids within the Roman Ruins and Fenway
859	vent deposits may have overprinted evidence for such activity.

860

861 Microchemical REE, Sr isotope and S isotope data presented in this study can be compared 862 and contrasted with that obtained previously by whole-rock analyses of anhydrites 863 sampled at PACMANUS (Bach et al., 2003; Roberts et al., 2003; Bach et al., 2005). 864 Microchemical and whole-rock analyses yield broadly similar data and complementary 865 information. However, microchemical analyses reveal significant chemical and isotopic 866 heterogeneity at the sub-millimeter scale within individual grains that cannot be captured 867 by whole-rock studies. The fine spatial scale at which chemical and isotopic variability is 868 recorded in anhydrite highlights the dynamic nature of submarine hydrothermal activity in 869 the Manus Basin. Both high-temperature black smoker activity (characterized by 870 convective circulation of seawater-derived hydrothermal fluids) and acid-sulfate fluid 871 activity (reflecting significant contribution of degassing magmatic acid volatiles, H₂O-872 SO₂–CO₂–HCl–HF, in the absence of typical convective hydrothermal fluid circulation) 873 can exist at a single vent field as demonstrated by grain-scale heterogeneity among 874 coupled REEs distributions and sulfur isotopic ratios. Further, the chemical and isotopic

heterogeneity preserved within individual grains records evidence of dramatic shifts
between alternating hydrothermal-dominant and seawater-dominant near-seafloor fluid
circulation, possibly reflecting pulsing of magmatic-hydrothermal fluid from depth and
changes in pathways for fluid flow within shallow crustal rocks. Micro-scale chemical and
isotopic analyses of hydrothermal minerals can provide critical insights to submarine
hydrothermal processes that evolve chemically over time and cannot otherwise be
constrained from the study of contemporary vent fluids.

882

883 ACKNOWLEDGMENTS

884

885 The authors thank the Captain and crew of the *R/V Melville* and *ROV Jason II* technical 886 group (cruise MGLN06MV) for a successful cruise and sample collection. This research 887 also used samples supplied by the Ocean Drilling Program (ODP). ODP is sponsored by 888 the US National Science Foundation (NSF) and participating countries under management 889 of Joint Oceanographic Institutions, Inc. (JOI). D. Vanko (University of Towson) is 890 acknowledged for generously preparing and providing a selection of drill core anhydrites 891 used in this study. M. Sulanowska and B. Schroeder (WHOI) assisted in the preparation of 892 massive anhydrite samples. L. Ball and D. Schneider (WHOI) provided technical support 893 for isotopic and elemental analysis. Constructive and thoughtful comments from four 894 anonymous reviewers significantly improved the clarity and presentation of our results and 895 ideas. Editorial assistance provided by AE J. Alt is gratefully acknowledged. This study 896 received financial support from an Ocean Drilling Program Schlanger Fellowship (P.R.C.),

- NSF grant OCE–0327448 (W.B.), and DFG–Research Center/Excellence Cluster 'The
 Ocean in the Earth System' (W.B.)
- 899

900 **REFERENCES**

- 901
- Anders E. and Grevesse N. (1989) Abundances of the elements: Meteoritic and solar.
 Geochimica et Cosmochimica Acta 53, 197-214.
- Bach W., Roberts S., and Binns R. A. (2005) Data Report: Chemical and isotopic (S, Sr)
- 905 composition of anhydrite from ODP Leg 193, PACMANUS hydrothermal system,
- 906 Manus Basin, Papua New Guinea. In *Proceedings of the Ocean Drilling Program*,
- 907 Scientific Results, Vol. 193 (ed. F. J. A. S. Barriga, R. A. Binns, D. J. Miller, and P.
- 908 M. Herzig), pp. 1-23. Ocean Drilling Program, College Station, TX.
- Bach W., Roberts S., Vanko D. A., Binns R. A., Yeats C. J., Craddock P. R., and
- 910 Humphris S. E. (2003) Controls of fluid chemistry and complexation on rare-earth
- 911 element contents of anhydrite from the Pacmanus subseafloor hydrothermal
- 912 system, Manus Basin, Papua New Guinea. *Mineralium Deposita* 38(8), 916-935.
- 913 Belshaw N. S., Freedman P. A., O'Nions R. K., Frank M., and Guo Y. (1998) A new
- 914 variable dispersion double-focusing plasma mass spectrometer with performance
- 915 illustrated for Pb isotopes. *International Journal of Mass Spectrometry* 181, 51–58.
- 916 Binns R. A., Barriga F. J. A. S., and Miller D. J. (2007) Leg 193 synthesis: Anatomy of an
- 917 active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New
- 918 Guinea. In Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 193

919	(ed. F. J. A. S. Barriga, R. A. Binns, D. J. Miller, and P. M. Herzig), pp. 1-71.
920	Ocean Drilling Program, College Station, TX.
921	Binns R. A. and Scott S. D. (1993) Actively forming polymetallic sulfide deposits
922	associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua
923	New Guinea. Economic Geology 88, 2226-2236.
924	Binns R. A., Scott S. D., Gemmell J. B., Crook K. A. W., and Shipboard Scientific Party.
925	(1997) The SuSu Knolls hydrothermal field, eastern Manus Basin, Papua New
926	Guinea. EOS Trans. AGU. Fall Meet. Suppl., 78(52), Abstract #V22E-02.
927	Bischoff J. L. and Dickson F. W. (1975) Seawater-basalt interaction at 200 °C and 500
928	bars: Implications for origin of seafloor heavy-metal deposits and regulations of
929	seawater chemistry. Earth and Planetary Science Letters 25, 385-397.
930	Bischoff J. L. and Seyfried W. E., Jr. (1978) Hydrothermal chemistry of seawater from 25°
931	to 350°C. American Journal of Science 278, 838-860.
932	Brimhall G. H., Jr. and Ghiorso M. S. (1983) Origin and ore-forming consequences of the
933	advanced argillic alteration process in hypogene environments by magmatic gas
934	contamination of meteoric fluids. Economic Geology 78, 73-90.
935	Butterfield D. A., Massoth G. J., McDuff R. E., Lupton J. E., and Lilley M. D. (1990)
936	Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal
937	Emissions Study vent field, Juan de Fuca Ridge: subseafloor boiling and
938	subsequent fluid-rock interaction. Journal of Geophysical Research 95(B8), 12895-
939	12921.

940	Chiba H., Uchiyama N., and Teagle D. A. H. (1998) Stable isotope study of anhydrite and
941	sulfide minerals at the TAG hydrothermal mound, Mid-Atlantic Ridge, 26 $^{\circ}$ N. In
942	Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 158 (ed. P. M.
943	Herzig, S. E. Humphris, D. J. Miller, and R. A. Zierenberg), pp. 85-90. Ocean
944	Drilling Program.
945	Craddock P. R. (2009) Geochemical Tracers of Processes Affecting the Formation of
946	Seafloor Hydrothermal Fluids and Deposits in the Manus Back-arc Basin. Ph. D.
947	Thesis, Massachusetts Institute of Technology-Woods Hole Oceanographic
948	Institution, Woods Hole, MA, 370 pp.
949	Craddock P. R., Bach W., Seewald J. S., Rouxel O. J., Reeves E., and Tivey M. K. (2010)
950	Rare earth element abundances in hydrothermal fluids from the Manus Basin,
951	Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc
952	basins. Geochimica et Cosmochimica Acta this issue.
953	Craddock P. R., Rouxel O. J., Ball L. A., and Bach W. (2008) Sulfur isotope measurement
954	of sulfate and sulfide by high-resolution MC-ICP-MS. Chemical Geology 253, 102-
955	113.
956	Davies H. L., Honza E., Tiffin D. L., Lock J., Okuda Y., Keene J. B., Murakami F., and
957	Kisimoto K. (1987) Regional setting and structure of the western Solomon Sea.
958	Geo-Marine Letters 7, 153-160.
959	Deen J. A. (1990) Hydrothermal ore deposition related to high-level igneous activity: a
960	stable-isotopic study of the Julcani mining district, Peru. Ph. D. Thesis, University
961	of Colorado, Boulder.

962	Douville E., Bienvenu P., Charlou J. L., Donval J. P., Fouquet Y., Appriou P., and Gamo
963	T. (1999) Yttrium and rare earth elements in fluids from various deep-sea
964	hydrothermal systems. Geochimica et Cosmochimica Acta 63(5), 627-643.
965	Drummond S. E., Jr. (1981) Boiling and Mixing of Hydrothermal Fluids: Chemical Effects
966	on Mineral Precipitation, The Pennsylvania State University.
967	Edmond J. M., Campbell A. C., Palmer M. R., German C. R., Klinkhammer G. P.,
968	Edmonds H. N., Elderfield H., Thompson G., and Rona P. (1995) Time series
969	studies of vent fluids from the TAG and MARK sites (1986, 1990) Mid-Atlantic
970	Ridge and a mechanism for Cu/Zn zonation in massive sulphide orebodies. In
971	Hydrothermal Vents and Processes, Vol. 87 (ed. L. M. Parson, C. L. Walker, and
972	D. R. Dixon), pp. 77-86. Geological Society Special Publication.
973	Gamo T., Okamura K., Charlou J. L., Urabe T., Auzende J. M., Ishibashi JI., Shitashima
974	K., Chiba H., Binns R. A., and Gena K. (1997) Acidic and sulfate-rich
975	hydrothermal fluids from the Manus back-arc basin, Papua New Guinea. Geology
976	25(2), 139-142.
977	Goldfarb M. S. (1982) Submarine Sulfide Deposits on the East Pacific Rise, 21 °N. Ph. D.
978	Thesis, Massachusetts Institute of Technology.
979	Hart S. R., Ball L., and Jackson M. J. (2005) Sr isotope by laser ablation PIMMS:
980	Application to Cpx from Samoan peridotite xenoliths. WHOI Plasma Facility Open
981	File Technical Report 11, pp. 15. Woods Hole Oceanographic Institution, Woods
982	Hole, MA.

- Haymon R. M. (1983) Growth history of hydrothermal black smoker chimneys. *Nature*301(5902), 695-698.
- Hemley J. J., Hostetler P. B., Gude A. J., and Mountjoy W. T. (1969) Some stability
 relations of alunite. *Economic Geology* 64, 599-612.
- 987 Holland H. D. (1965) Some applications of thermochemical data to problems of ore
- deposits; [II] Mineral assemblages and the composition of ore forming fluids. *Economic Geology* 60(6), 1101-1166.
- 990 Humphris S. E. (1998) Rare earth element composition of anhydrite: Implications for
- deposition and mobility within the TAG hydrothermal mound. In *Proceedings of*
- 992 the Ocean Drilling Program, Scientific Results, Vol. 158 (ed. P. M. Herzig, S. E.
- Humphris, D. J. Miller, and R. A. Zierenberg), pp. 143-159. Ocean Drilling
 Program.
- Humphris S. E. and Bach W. (2005) On the Sr isotope and REE compositions of
- anhydrites from the TAG seafloor hydrothermal system. *Geochimica et Cosmochimica Acta* 69, 1511-1525.
- 998 Humphris S. E., Herzig P. M., Miller D. J., Alt J. C., Becker K., Brown D., Brügmann G.,
- 999 Chiba H., Fouquet Y., and Gemmell J. B. (1995) The internal structure of an active 1000 sea-floor massive sulphide deposit. *Nature* 377(6551), 713-716.
- Humphris S. E. and Thompson G. (1978) Hydrothermal alteration of oceanic basalts by
 seawater. *Geochimica et Cosmochimica Acta* 42(1), 107-125.
- Janecky D. R. and Shanks W. C., III. (1988) Computational modeling of chemical and
 sulfur isotopic reaction processes in seafloor hydrothermal systems: chimneys,

- 1005 massive sulfides, and subjacent alteration zones. *Canadian Mineralogist* 26, 8051006 825.
- 1007 Kent A. J. R., Jacobsen B., Peate D. W., Waight T. E., and Baker J. A. (2004) Isotope
- 1008 dilution MC-ICP-MS rare earth element analysis of geochemical reference
- 1009 materials NIST SRM 610, NIST SRM 612, NIST SRM 614, BHVO-2G, BHVO-2,
- BCR-2G, JB-2, WS-E, W-2, AGV-1 and AGV-2. *Geostandards and Geoanalytical Research* 28(3), 417-429.
- 1012 Kusakabe M., Komoda Y., Takano B., and Abiko T. (2000) Sulfur isotopic effects in the
- 1013 disproportionation reaction of sulfur dioxide in hydrothermal fluids: Implications
- 1014 for the δ^{34} S variations of dissolved bisulfate and elemental sulfur from active crater 1015 lakes. *Journal of Volcanology and Geothermal Research* 97(1-4), 287.
- 1016 Lackschewitz K. S., Devey C. W., Stoffers P., Botz R., Eisenhauer A., Kummetz M.,
- 1017 Schmidt M., and Singer A. (2004) Mineralogical, geochemical and isotopic
- 1018 characteristics of hydrothermal alteration processes in the active, submarine, felsic-
- 1019 hosted PACMANUS field, Manus Basin, Papua New Guinea. Geochimica et
- 1020 *Cosmochimica Acta* 68(21), 4405-4427.
- 1021 Marshall D. J. (1988) Cathodoluminescence of Geological Materials. Unwin Hyman Ltd.
- 1022 Martinez F. and Taylor B. (1996) Backarc spreading, rifting, and microplate rotation,
- between transform faults in the Manus Basin. *Marine Geophysical Researches* 18,
- 1024 203-224.

1025	Meyer C. A. and Hemley J. J. (1967) Wall-rock alteration. In Geochemistry of
1026	Hydrothermal Ore Deposits, 1st Edition (ed. H. L. Barnes), pp. 166-235. Holt,
1027	Rinehart and Winston.
1028	Mills R. A. and Elderfield H. (1995) Rare earth element geochemistry of hydrothermal
1029	deposits from the active TAG Mound, 26 °N Mid-Atlantic Ridge. Geochimica et
1030	Cosmochimica Acta 59, 3511-3524.
1031	Mills R. A., Teagle D. A. H., and Tivey M. K. (1998) Fluid mixing and anhydrite
1032	precipitation within the TAG mound. In Proceedings of the Ocean Drilling
1033	Program, Scientific Results, Vol. 158 (ed. P. M. Herzig, S. E. Humphris, D. J.
1034	Miller, and R. A. Zierenberg), pp. 119-127. Ocean Drilling Program.
1035	Mottl M. J. and Holland H. D. (1978) Chemical exchange during hydrothermal alteration
1036	of basalt by seawaterI. Experimental results for major and minor components of
1037	seawater. Geochimica et Cosmochimica Acta 42(8), 1103-1115.
1038	Ohmoto H. and Lasaga A. C. (1982) Kinetics of reactions between aqueous sulfates and
1039	sulfides in hydrothermal systems. Geochimica et Cosmochimica Acta 46(10), 1727-
1040	1745.
1041	Pearce N. J. G., Perkins W. T., Westgate J. A., Gorton M. P., Jackson S. E., Neal C. R.,
1042	and Chenery S. P. (1997) A compilation of new and published major and trace
1043	element data for NIST SRM 610 and NIST SRM 612 glass reference materials.
1044	Geostandards Newsletter 21(1), 115-144.
1045	Rees C. E., Jenkins W. J., and Monster J. (1978) The sulphur isotopic composition of
1046	ocean water sulphate. Geochimica et Cosmochimica Acta 42(4), 377-381.

1047 Reeves E. (2010) Laboratory and field-based investigations of subsurface geochemical 1048 processes in seafloor hydrothermal systems. Ph.D. Thesis, Massachusetts Institute 1049 of Technology-Woods Hole Oceanographic Institution, Woods Hole, MA. 1050 Roberts S., Bach W., Binns R. A., Vanko D. A., Yeats C. J., Teagle D. A. H., Blacklock 1051 K., Blusztajn J. S., Boyce A. J., and Cooper M. J. (2003) Contrasting evolution of 1052 hydrothermal fluids in the PACMANUS system, Manus Basin: The Sr and S 1053 isotope evidence. Geology 31(9), 805-808. 1054 Rye R. O. (2005) A review of the stable-isotope geochemistry of sulfate minerals in 1055 selected igneous environments and related hydrothermal systems. Chemical 1056 Geology 215, 5-36. 1057 Scott S. D. and Binns R. A. (1995) Hydrothermal processes and contrasting styles of 1058 mineralization in the western Woodlark and eastern Manus basins of the western 1059 Pacific. In Hydrothermal Vent and Processes, Geological Society of London 1060 Special Publication, Vol. 87 (ed. L. M. Parson, C. L. Walker, and D. R. Dixon), pp. 1061 191-205. 1062 Seewald J. S., Reeves E., Saccocia P., Rouxel O. J., Walsh E., Price R. E., Tivey M., Bach 1063 W., and Tivey M. (2006) Water-rock reaction, substrate composition, magmatic 1064 degassing, and mixing as major factors controlling vent fluid compositions in 1065 Manus Basin hydrothermal systems. EOS Trans. AGU. Fall Meet. Suppl., 87(52), 1066 Abstract # B34A-02.

1067	Seyfried W. E., Jr. (1987) Experimental and theoretical constraints on hydrothermal
1068	alteration processes at mid-ocean ridges. Annual Review of Earth and Planetary
1069	Sciences 15, 317-335.
1070	Shanks W. C., III. (2001) Stable Isotopes in Seafloor Hydrothermal Systems: Vent fluids,
1071	hydrothermal deposits, hydrothermal alteration and microbial processs. Reviews in
1072	Mineralogy and Geochemistry 43, 469-525.
1073	Shanks W. C., III, Bischoff J. L., and Rosenbauer R. J. (1981) Seawater sulfate reduction
1074	and sulfur isotope fractionation in basaltic systems: Interaction of seawater with
1075	fayalite and magnetite at 200-350 °C. Geochimica et Cosmochimica Acta 45, 1977-
1076	1995.
1077	Shanks W. C., III, Bohlke J. K., and Seal R. R. (1995) Stable isotopes in mid-ocean ridge
1078	hydrothermal systems: Interaction between fluids, minerals and organisms. In
1079	Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological
1080	Interactions. Geophysical Monograph., Vol. 91 (ed. S. E. Humphris, R. A.
1081	Zierenberg, L. S. Mullineaux, and R. E. Thomson), pp. 194-221. American
1082	Geophysical Union.
1083	Sinton J. M., Ford L. L., Chappell B., and McCulloch M. T. (2003) Magma genesis and
1084	mantle heterogeneity in the Manus Back-Arc Basin, Papua New Guinea. Journal of
1085	Petrology 44, 159-195.
1086	Sverjensky D. A. (1984) Europium redox equilibria in aqueous solution. Earth and
1087	Planetary Science Letters 67, 70-78.
1088	Taylor B. (1979) Bismarck Sea; Evolution of a back-arc basin. Geology 7, 171-174.

1089	Teagle D. A. H., Alt J. C., Chiba H., and Halliday A. N. (1998) Dissecting an active
1090	hydrothermal deposit: The strontium and oxygen isotopic anatomy of the TAG
1091	hydrothermal mound - Anhydrite. In Proceedings of the Ocean Drilling Program,
1092	Scientific Results, Vol. 158 (ed. P. M. Herzig, S. E. Humphris, D. J. Miller, and R.
1093	A. Zierenberg), pp. 129-141. Ocean Drilling Program.
1094	Thompson G., Humphris S. E., Schroeder B., Sulanowska M., and Rona P. A. (1988)
1095	Active vents and massive sulfides at 26 °N (TAG) and 23 °N (Snakepit) on the
1096	mid-Atlantic Ridge. Canadian Mineralogist 26, 697-711.
1097	Tivey M. A., Bach W., Seewald J. S., Tivey M. K., Vanko D. A., and Shipboard Science
1098	and Technical Teams. (2007) Cruise Report R/V Melville, MAGELLAN-06.
1099	Hydrothermal systems in the Eastern Manus Basin: Fluid chemistry and magnetic
1100	structures as guides to subseafloor processes, pp. 67. Woods Hole Oceanographic
1101	Institution.
1102	Tivey M. K., Humphris S. E., Thompson G., Hannington M. D., and Rona P. A. (1995)
1103	Deducing patterns of fluid flow and mixing within the TAG active hydrothermal
1104	mound using mineralogical and geochemical data. Journal of Geophysical
1105	Research 100(B7), 12527-12555.
1106	Tivey M. K., Mills R. A., and Teagle D. A. H. (1998) Temperature and salinity of fluid
1107	inclusions in anhydrite as indicators of seawater entrainment and heating within the
1108	TAG active mound. In Proceedings of the Ocean Drilling Program, Scientific
1109	Results, Vol. 158 (ed. P. M. Herzig, S. E. Humphris, D. J. Miller, and R. A.
1110	Zierenberg), pp. 179-190. Ocean Drilling Program.

1111	Vanko D. A., Bach W., Roberts S., Yeats C. J., and Scott S. D. (2004) Fluid inclusion
1112	evidence for subsurface phase separation and variable fluid mixing regimes beneath
1113	the deep-sea PACMANUS hydrothermal field, Manus Basin back arc rift, Papua
1114	New Guinea. Journal of Geophysical Research 109, B03201,
1115	doi:10.1029/2003JB002579.
1116	Von Damm K. L. (1995) Controls on the chemistry and temporal variability of seafloor
1117	hydrothermal fluids. In Seafloor Hydrothermal Systems: Physical, Chemical,
1118	Biological and Geological Interactions. Geophysical Monograph., Vol. 91 (ed. S.
1119	E. Humphris, R. A. Zierenberg, L. S. Mullineaux, and R. E. Thomson), pp. 222-
1120	247. American Geophysical Union.
1121	Von Damm K. L., Buttermore L. G., Oosting S. E., Bray A. M., Fornari D. J., Lilley M.
1122	D., and Shanks W. C., III. (1997) Direct observation of the evolution of a seafloor
1123	"black smoker" from vapor to brine. Earth and Planetary Science Letters 149, 101-
1124	112.
1125	Yeats C. J., Bach W., Vanko D. A., Roberts S., Lackschewitz K. S., and Paulick H. (2001)
1126	Fluid-dacite interaction in the PACMANUS subseafloor hydrothermal system -
1127	preliminary results from secondary mineral chemistry and geochemical modeling.
1128	EOS Trans. AGU. Fall Meet. Suppl., 82(47), Abstract # OS11A-0346.
1129	Yeats C. J., Binns R. A., and Parr J. M. (2000) Advanced argillic alteration associated with
1130	actively forming submarine polymetallic sulfide mineralization in the eastern
1131	Manus Basin, Papua New Guinea. Geological Society of Australia Abstracts 59,
1132	555.

Fig. 1. Regional tectonic setting of the Manus Basin, Papua New Guinea. Major plates and active plate motions are indicated (solid gray arrows). Seafloor spreading between the Willaumez and Djaul transform faults (Manus Spreading Center) is accommodated by eruption of oceanic crust of predominantly basaltic composition. Extension in the Eastern Manus Basin between the Djaul and Weitin transform faults is accommodated primarily by rifting of existing arc crust of predominantly felsic (andesite, dacite and rhyolite) composition Locations of major active hydrothermal systems are shown by the yellow stars: Vienna Woods (Manus Spreading Center), and PACMANUS, DESMOS and SuSu Knolls (Eastern Manus Basin). Drilling of an active hydrothermal system in the Manus Basin was carried out by ODP Leg 193 at PACMANUS (Binns et al., 2007).

Fig. 2. Distribution of known vent deposits at PACMANUS (a) and SuSu Knolls (b). Yellow stars indicate vent areas from which anhydrite was sampled and analyzed for this study. Anhydrite samples were recovered from the sub-seafloor by drilling beneath Snowcap and Roman Ruins (ODP Leg 193). Seafloor surface massive anhydrite samples were recovered from Fenway and North Su by ROV operations. Seafloor bathymetry based on EM300 SeaBeam sonar (modified from Tivey et al., 2007).

Fig. 3. Photographs of (a) drill core sample showing 2 to 3 mm thick white anhydrite-pyrite vein cutting through altered volcanic rock. In many specimens, anhydrite veins are surrounded by alteration halos (dashed lines) consisting of cyclic layers of silica-clay (alternating layers with varying shades of gray reflecting different proportions of fine-grained silica and clay). Sample 193-1188F-2Z-1, 80-91 cm, 222.3 mbsf, Snowcap vent field,

PACMANUS. Modified after Binns et al (2007). (b) Typical massive anhydrite exposed on the seafloor at the Fenway active mound, PACMANUS. (c) Cross-section through crustiform massive anhydrite recovered from the North Su vent field, SuSu Knolls. Sample J2-227-7-R1. anh is anhydrite, py is pyrite, cpy is chalcopyrite.

Fig. 4. Chondrite-normalized REE_N patterns of anhydrite samples recovered beneath the Roman Ruins vent field, PACMANUS. (a) Sample 193-1189A-3R-1, 89-93 cm, 20 mbsf; (b) Sample 193-1189A-7R-1, 19-23 cm, 58 mbsf; (c) Sample 193-1189A-10R-1, 42-44 cm, 118 mbsf; (d) Sample 193-1189A-14R-2, 0-3 cm, 158 mbsf. Each data series (line connected symbols) represents a separate microchemical analysis. Data series with the same symbols are analyses from within the same grain. Different symbols denote microchemical analyses from different grains. REE_N patterns of most anhydrite grains are light-REE enriched with a positive Eu-anomaly. Note the pronounced negative Eu-anomaly of REE-rich anhydrite grains in sample 193-1189A-14R-2, 0-3 cm recovered from a depth ~ 158 mbsf (d). Chondritic values are from Anders and Grevesse (1989). For comparison REE_N patterns of contemporary hydrothermal fluids from Roman Ruins are illustrated in Fig. 12.

Fig. 5. Chondrite-normalized REE_N patterns of anhydrite samples recovered beneath the
Snowcap vent field, PACMANUS. (a) Sample 193-1188A-7R-1, 66-68 cm, 50 mbsf; (b)
Sample 193-1188A-15R-1, 14-20 cm, 126 mbsf; (c) Sample 193-1188A-16R-2, 109-111 cm,
137 mbsf; (d) Sample 193-1188A-17R-2, 6-9 cm, 146 mbsf; (e) Sample 193-1188F-1Z-2, 3234 cm, 219 mbsf; (f) Sample 193-1188F-1Z-4, 100-104 cm, 223 mbsf; (g) Sample 1931188F-23Z-2, 22-26 cm, 289 mbsf; (h) Sample 193-1188F-26Z-1, 62-69 cm, 300 mbsf. Each

data series (line connected symbols) represents a separate microchemical analysis. Data series with the same symbols are analyses from within the same grain. REE_N patterns range from light-REE enriched with a positive Eu-anomaly, to heavy-REE enriched with a positive Eu-anomaly, to relatively flat and uniformly REE-enriched with no clear Eu-anomaly. REE concentrations and REE_N patterns differ markedly among and within anhydrite samples from different depths and lithologies. Although there is no clear relationship between REE_N pattern type and either depth or alteration lithology, the wide range of REE_N patterns observed in Snowcap anhydrite samples is an indicator of highly variable hydrothermal conditions that is responsible for the range of alteration sequences observed in Snowcap drill core (see text for discussion). Chondritic values are from Anders and Grevesse (1989). For comparison REE_N patterns of contemporary hydrothermal fluids from Snowcap are illustrated in Fig. 12.

Fig. 6. Chondrite-normalized REE_N patterns of representative massive anhydrite samples exposed on the seafloor at the Fenway active mound, PACMANUS. (a) J2-210-8-R1; (b) J2-210-8-R2; (c) J2-216-1-R1. Each data series (line connected symbols) represents a separate microchemical analysis. Data series with the same symbols are analyses from within the same grain. All massive anhydrite samples recovered from Fenway have very similar REE_N patterns. Chondritic values are from Anders and Grevesse (1989). For comparison REE_N patterns of contemporary hydrothermal fluids from Fenwat are illustrated in Fig. 12.

Fig. 7. Chondrite-normalized REE_N patterns measured in massive anhydrite (J2-227-7-R2) sampled at the North Su vent field, SuSu Knolls. Each data series (line connected symbols) represents a separate microchemical analysis. Data series with the same symbols are analyses

from within the same grain. Different symbols identify microchemical analyses from different grains in this sample. REE_N patterns are notable for their inter- and intra-grain variability. The range of REE_N patterns documented suggests that this sample records mineralization from hydrothermal fluids with varying compositions. See text for discussion. Chondritic values are from Anders and Grevesse (1989). For comparison REE_N patterns of contemporary hydrothermal fluids from North Su are illustrated in Fig. 12.

Fig. 8. Microchemical mapping of Roman Ruins drill-core anhydrite sample 1189B-14R-2, 0-3cm, 158 mbsf. (a) Cathodoluminescence (CL) imaging. Pink-tan and green colors designate grain domains with high ($\Sigma REE \ge 50$ ppm) and low concentrations ($\Sigma REE < 10$ ppm) of REEs, respectively. A grain identified for chemical and isotopic analysis is indicated by the thick dashed white line. Yellow stars record areas (spots 1–6) where microchemical analyses by laser ablation ICPMS and MC-ICPMS were performed. CL imaging reveals the sharp boundary between REE-rich (core) and REE-poor domains (rim). (b) Reflected light photomicrograph of the grain of interest after laser ablation analyses. The thick dashed white line designates the grain identified by CL in (a). Dashed white boxes show raster pits from laser ablation analyses. The gold coating is that used in preparation of this sample for an unrelated ion microprobe study. (c) Chondrite-normalized REE_N patterns obtained by microchemical analysis (spots 1-6) compared with the bulk (Bach et al. 2003). High REE concentrations in this sample (spots 3-5) are directly correlated with pick-tan colors in (a). Conversely, low REE concentrations (spots 1, 2 and 6) are correlated with green colors in (a). Note the significant intra-grain variability exhibited in this sample. (d) Strontium isotopic ratio of anhydrite grain as a function of distance from grain core. Bulk strontium isotopic

composition is shown for comparison (Bach et al. 2003). Strontium isotopic ratios of the grain core (spots 3 and 5) are similar to that of endmember hydrothermal fluid (⁸⁷Sr/⁸⁶Sr ~ 0.7042), whereas those of the grain rim (spots 1, 2 and 6) are closer to that of seawater (⁸⁷Sr/⁸⁶Sr ~ 0.70918). The transition from hydrothermal-dominant to seawater-dominant strontium isotopic ratios is sharp across the same boundary identified by CL in (a). (e) Relationship between measured REE concentration and strontium isotopic ratios in grain of interest. Hydrothermal-dominant domains (core) have high REE concentrations which is consistent with high REE concentrations in endmember hydrothermal fluid relative to that of seawater. Textural characteristics documented by CL and petrographic imaging, including regular grain structures and sharply bounded chemical domains, support primary growth of anhydrite without secondary alteration. There has not likely occurred any chemical and/or isotopic exchange of lattice bound trace elements (e.g., network-modifier REEs and Sr) that would compromise the primary composition of anhydrite.

Fig. 9. Microchemical mapping of Snowcap drill-core anhydrite sample 1188F-1Z-4, 100-104cm, 223 mbsf. (a) Cathodoluminescence (CL) imaging. Pink-tan and green colors designate anhydrite domains with high and low concentrations of REEs, respectively, as shown also in Fig. 8. Yellow stars record areas (spots 1–6, 20-25) where microchemical analyses by laser ablation ICPMS and MC-ICPMS were performed. CL imaging reveals the significant intra-grain variability in REE compositions and the sharp boundary between REErich and REE-poor domains. The chemical heterogeneity appears intrinsic to primary growth of anhydrite. (b) Reflected light photomicrograph of the grain of interest after laser ablation analyses. Dashed white boxes show raster pits from laser ablation analyses. The gold coating is that used in preparation of this sample for an unrelated ion microprobe study. (c) Chondritenormalized REE_N patterns obtained by microchemical analysis (spots 1-6, 20-25). Note the heterogeneous distribution of the REEs between adjacent anhydrite grains.

Fig. 10. Microchemical mapping of massive anhydrites from Fenway (a,b) and North Su (c,d). Cathodoluminescence (CL) imaging and microchemical analysis reveal significant differences between the growth histories of these samples. Massive anhydrites at Fenway are commonly coarse-grained with no distinct intra-grain chemical heterogeneity (a) and have very uniform chondrite-normalized REE_N patterns (b) similar to that of modern seafloor vent fluids sampled at this vent field. The data are interpreted as reflecting precipitation of anhydrite at Fenway from hydrothermal fluid having a stable composition over timescales of mineral deposition. In contrast, precipitation of anhydrite at North Su is more complex. Massive anhydrite sampled at North Su is characterized by composite banding with each band having distinct range of grain sizes and CL signatures (c). Grains within distinct composite bands have different chondrite-normalized REE_N patterns that show heterogeneity on the grain-scale (d). The REE_N patterns recorded in massive anhydrite are different to that of contemporary black smoker fluids sampled at North Su and are interpreted as reflecting deposition of anhydrite from hydrothermal fluids with very different compositions relative to modern. See text for detailed discussion.

Fig. 11. Strontium (87 Sr/ 86 Sr) and sulfur (${\delta}^{34}$ S) isotopic ratios measured in anhydrites from Roman Ruins, Fenway and Snowcap (PACMANUS) and North Su (SuSu Knolls). Data from this study are shown by gray (solid) diamonds and are compared to previous isotopic measurements of the same samples (open diamonds) determined using bulk sample techniques (Roberts et al., 2003; Bach et al., 2005). Microchemical and whole-rock analysis of strontium (a) and sulfur isotopes (b) yield consistent and similar data, although microchemical analyses document a larger range of absolute isotopic heterogeneity and significant intra-grain isotopic variability that cannot be resolved by whole-rock analyses. Gray bars indicate the strontium and sulfur isotopic compositions of contemporary seawater (SW) and endmember hydrothermal fluids (HF) sampled at PACMANUS and SuSu Knolls.

Fig. 12. Chondrite-normalized REE_N patterns of modern seafloor hydrothermal fluids sampled from the PACMANUS and SuSu Knolls vent fields (data from Craddock et al., 2010). (a) Sampled vent fluids at PACMANUS (Roman Ruins, Fenway and Snowcap) are black- and gray-smoker fluids with REE_N patterns characterized by a light-REE enrichment and positive Eu anomaly. (b) Sampled vent fluids at SuSu Knolls (North Su) include both high-temperature black-smoker fluids and acid-sulfate fluids. Smoker fluids have a REE_N pattern characterized by a light-REE enrichment and positive Eu anomaly, similar to that measured in smoker fluids sampled at PACMANUS. Acid-sulfate fluids have different REE_N patterns that, in the most acidic fluids, are relatively flat without any REE anomalies. Also shown for comparison is the REE_N pattern of an atypical fluoride-rich low-temperature fluid sampled from the Suzette vent field adjacent to North Su. All REE concentrations, except for in acid-sulfate fluids, are endmembers extrapolated to zero Mg. Acid-sulfate REE concentrations are reported at the lowest measured Mg. See Table 2 for full fluid compositions. See text for discussion of the implications for the similar REE_N patterns documented in anhydrites and vent fluids sampled at PACMANUS and SuSu Knolls.

Fig. 13. La/Yb and Eu/Eu* ratios in anhydrite from Fenway (a), Roman Ruins (b), Snowcap (c) and North Su (d) normalized to REE compositions of contemporary hydrothermal fluid (black-/gray-smokers) sampled at the same vent fields. See Table 2 for fluid compositions. In each plot, symbols refer to data obtained for different samples. Bold black lines define $(La/Yb)_{Anh/BSF} = 1$ and $(Eu/Eu^*)_{Anh/BSF} = 1$ and identify where anhydrite samples would cluster if fluid and anhydrite REE compositions are the same. The REE compositions of Fenway massive anhydrites are most similar to that of contemporary smoker vent fluids and so cluster around $(La/Yb)_{Anh/BSF} = 1$ and $(Eu/Eu^*)_{Anh/BSF} = 1$. Drill-core anhydrites from Roman Ruins cluster about $(La/Yb)_{Anh/BSF} = 1$, but show a pronounced negative Eu-anomaly. Samples from both Snowcap and North Su have a range of REE compositions markedly different from that of contemporary smoker vent fluids and suggest a genetic disconnect between anhydrite and contemporary fluids.

Fig. 14. Sr versus S isotopic ratios measured in anhydrite samples from Roman Ruins (gray triangles), Fenway (hatched diamonds), Snowcap (gray circles) and North Su (crossed squares). The isotopic composition of seawater is shown by the black star (87 Sr/ 86 Sr = 0.70918, δ^{34} S = +21 ‰). Sr and S isotopic data obtained by whole-rock analysis of the same samples are shown by the open symbols (Roberts et al. 2003). Dashed lines are conservative mixing trends between seawater and modeled magmatic-hydrothermal fluids with a range of "magmatic" sulfate concentrations. Checkmarks define the percent fraction of seawater in the mixed fluid (10% increments). Concentrations of Sr and sulfate in seawater are 91 µmol/kg and 28.2 mmol/kg, respectively. Shown are two mixing lines between seawater and modeled

black smoker fluids containing 0 and 15 mmol/kg of magmatic sulfate with an isotopic composition of δ^{34} S = +8 ‰. The concentration and isotopic ratio of Sr in modeled black smoker fluids is 240 µmol/kg and ⁸⁷Sr/⁸⁶Sr = 0.7042. Also shown is projected mixing line for seawater and modeled acid-sulfate fluid containing 150 mmol/kg of sulfate with an isotopic composition of δ^{34} S = +8 ‰ (in the absence of typical high-temperature smoker fluid activity). The concentration and isotopic ratio of Sr in modeled acid-sulfate fluids is < 50 µmol/kg and ⁸⁷Sr/⁸⁶Sr = 0.7042. For comparison, see Table 2 for the compositions of sampled fluids. The Sr and S isotopic composition of most anhydrites can be explained by precipitation from a variable mix of seawater and hydrothermal fluid that contains trace or no sulfate. The light S isotopic ratios of some anhydrites from Snowcap are, however, best modeled by mixing between seawater and a hydrothermal fluid containing measurable (~ 15 mmol/kg) sulfate of magmatic origin. The presence of significant sulfate of magmatic origin in Snowcap fluids implies the existence of acid-sulfate type fluids at this vent field in the recent geologic past. See text for discussion.

	Rare Earth Elements	Sr Isotopes	S Isotopes					
Mass spectrometer setup								
Instrument	Thermo Scientific ELEMENT2	Thermo Scientific NEPTUNE	Thermo Scientific NEPTUNE					
RF Power	1200 W	1200 W	1200 W					
Cooling gas	16 L/min, Ar	15 L/min, Ar	15 L/min, Ar					
Auxiliary gas	1.0 L/min, Ar	0.8 L/min, Ar	0.8 L/min, Ar					
Sample gas	0.8-0.9 L/min, Ar	0.8-0.9 L/min, Ar	0.8-0.9 L/min, Ar					
Carrier (add.) gas	0.35-0.4 L/min, He	0.35-0.4 L/min, He	0.35-0.4 L/min, He					
Interface cones	H-cones, Ni	X-cones, Ni	X-cones, Ni					
Resolution mode	Low (400)	Low (400)	High (10,000)					
Nebulizer	-	Elemental Scientific, Inc., PFA-50	Elemental Scientific, Inc., PFA-50					
Introduction System	-	Elemental Scientific, Inc., Cyclonic spray dual chamber	Elemental Scientific, Inc., Cyclonic spray dual chamber					
Sensitivity, laser	$\sim 10^4$ cps per ppm (¹³⁹ La)	~ 0.25 V per 100 ppm (⁸⁸ Sr)	$\sim 8 \text{ mV per 100 ppm} (^{32}\text{S})$					
Data acquisition parame	ters							
Counting mode	SEM	Analog, static amplifiers	Analog, static amplifiers					
Method	30 cycles, 2 sec per cycle	20 cycles, 8.5 sec per cycle	20 cycles, 8.5 sec per cycle					
Acquisition time	70 sec	170 sec	170 sec					
Wash-out time	180 sec	240 sec	240 sec					
Laser setup								
Laser	New Wave UP213 (quad Nd:YAG)	New Wave UP213 (quad Nd:YAG)	New Wave UP213 (quad Nd:YAG)					
Carrier gas	Не	Не	Не					
Beam optics	Apertured	Apertured	Apertured					
Beam diameter	30 µm	60 μm	60 μm					
Pulse rate	10 Hz	10 Hz	10 Hz					
Laser intensity	65 % (~ 0.4 mJ)	60 % (~ 0.3 mJ)	50-70 % (~ 0.3-0.4 mJ)					
Scan mode	Raster	Raster	Raster					
Raster parameters	area 180 x 80 µm, line spacing 15 µm	area 180 x 80 µm, line spacing 15 µm	area 180 x 80 µm, line spacing 15 µm					
Scan speed	20 µm/sec	5 µm/sec	5 µm/sec					
Pre-ablation	scan speed 60 $\mu m/sec,$ intensity 40 %	scan speed 30 $\mu m/sec,$ intensity 40 %	scan speed 30 $\mu m/sec,$ intensity 40 %					
Ablation time	20 sec (pre-ablation); 61 sec (ablation)	40 sec (pre-ablation); 244 sec (ablation)	40 sec (pre-ablation); 244 sec (ablation)					

Sampla	Vont Aroo	T _{max}	pH	Mg_{min}	Cl	F	SO ₄ (mM)	H ₂ S (mM)	Sr	87 cr/86 cr	REE (pM)												
Sample	vent Area	(°C)	(25°C)	(mM)	(mM)	(µM)			(µM)	51/ 51	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Yb	Lu
Black/gr	ay Smoker fluids																						
RMR1	Roman Ruins	314	2.3	7.3	619	120	0.9	6.5	80	nd	8493	10417	837	2225	520	6848	187	27	132	21	57	65	nd
Endme	ember			0.0	632	135	-	7.5	74	-	9918	12164	977	2599	607	7996	219	31	154	24	67	76	-
RMR4	Roman Ruins	341	2.6	3.6	650	125	0.4	6.3	87	0.70460	12500	22500	2830	10213	2075	11182	1324	154	685	97	228	191	nd
Endme	ember			0.0	658	126	-	6.8	87	0.7042	13262	23871	3002	10835	2201	11863	1405	164	727	103	242	202	-
F2	Fenway	343	2.6	4.7	686	173	1.5	9.2	116	nd	19716	33980	3982	14465	2851	8514	1979	250	1210	165	405	314	nd
Endme	ember			0.0	699	181	-	10.1	122	-	21528	37103	4348	15794	3113	9296	2161	273	1321	180	442	343	-
F3	Fenway	358	2.7	4.5	585	160	2.2	17.2	95	0.70428	15000	27172	3400	14000	3400	7750	2750	320	1500	205	470	290	nd
Endme	ember			0.0	562	172	-	18.8	96	0.7042	16318	29560	3699	15230	3699	8431	2992	348	1632	223	511	315	-
SC1	Snowcap	152	4.6	30.8	500	128	11.4	2.9	43	nd	221	411	46	176	83	105	58	16	112	26	83	70	nd
Endmember				0.0	441	220	-	7.0	-	-	499	928	103	396	186	237	130	35	251	58	188	158	-
SC2	Snowcap	180	3.4	24.2	531	170	5.5	0.5	56	0.70635	352	827	70	284	56	140	50	12	70	16	40	40	nd
Endme	ember			0.0	526	259	-	1.9	25	-	619	1454	123	500	99	246	88	21	123	28	70	70	-
NS3	North Su	300	3.4	1.6	644	144	1.3	3.4	237	0.70444	10689	18408	2075	6913	840	3089	424	41	179	29	66	60	nd
Endme	ember			0.0	647	144	-	3.4	238	0.7044	10689	18408	2075	6913	840	3089	424	41	179	29	66	60	-
SZ5	Suzette	249	2.3	6.4	610	480	3.0	4.8	234	0.70520	2400	4094	668	3979	2561	1304	4005	739	4637	864	2486	2076	nd
Endme	ember			0.0	619	533	-	5.3	243	0.7049	2711	4625	755	4495	2893	1473	4525	834	5239	976	2808	2345	-
Acid-sulj	Acid-sulfate fluids																						
NS1	North Su	48	1.8	59.0	520	50	41	0.6	85	0.7089	10923	35507	4755	19616	4699	1782	4452	718	4452	876	2793	2846	nd
NS2	North Su	215	0.9	38.8	442	103	149	0.0	58	0.7087	25597	98058	16244	83537	25511	8865	26764	4323	26644	5155	15724	15225	nd
Seawate	r																						
Bottom s	seawater	2	8.1	52.7	543	66	28.2	0.0	91	0.70918	32.3	4.9		22.9	4.5	1.2	6.4		6.9		6.0	6.0	0.98

Table 2. Summary of hydrothermal fluid and seawater compositions sampled from Manus Basin, Papua New Guinea*

^{*} Data for Mg, Sr, Cl, F, SO₄ and H₂S reported by Craddock (2009) and Reeves (2010). Data for rare earth elements in hydrothermal fluids reported by Craddock et al. (2010) and in seawater are averages of data reported by Mitra et al. (1994). Mg_{min} is the lowest measured Mg of fluids sampled in replicate from each vent orifice. pH (25 °C) is the lowest pH of fluid measured at room temperature. Endmember compositions for black/gray smoker fluids are sampled fluid compositions extrapolated to zero Mg. mM = mmol/kg, μ M = μ mol/kg, nd = no data.

Fig. 1

Fig. 2

Fig. 3

Fig. 5.

Fig. 7

0.706

⁸⁷Sr/⁸⁶Sr

0.708

0.710

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 14

Supporting Online Material to accompany Craddock P.R. and Bach W. Insights to Magmatic-Hydrothermal Processes in the Manus back-arc Basin as Recorded by Anhydrite

	Sr	Mg	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	ΣREE	La_N/Yb_N	$\mathrm{Sm}_{\mathrm{N}}/\mathrm{Yb}_{\mathrm{N}}$	Eu _N /Eu* _N	⁸⁷ Sr/ ⁸⁶ Sr	$\delta^{34}S~(\%)$
Snowcap, 19	3 1188A 7R	1. 66-68c	m. 50mbsf	,																		
Spot #1	2664	3	18	0.77	2.41	nd	1.96	0.57	0.33	0.84	nd	0.68	0.16	0.50	0.68	nd	9.0	0.8	0.9	1.6	0.70865	21.9
Spot #2	2689	9	23	0.65	1.98	nd	1.68	0.52	0.30	0.76	nd	0.65	0.16	0.48	0.62	nd	7.9	0.7	0.9	1.5	0.70856	21.2
Spot #4	3913	10	64	1.29	3.91	nd	3.53	1.11	0.47	1.64	nd	1.49	0.34	1.00	1.13	nd	16.0	0.8	1.1	1.1	0.70869	21.2
Spot #5	4930	28	115	2.27	6.91	nd	6.53	2.06	0.74	3.01	nd	2.74	0.59	1.69	1.76	nd	28.4	0.9	1.3	0.9	0.70866	21.1
Spot #6	4731	28	111	2.78	8.67	nd	8.10	2.59	0.89	3.79	nd	3.40	0.73	2.11	2.07	nd	35.3	0.9	1.3	0.9	0.70881	21.1
Spot #7	4919	32	103	1.75	5.15	nd	4.63	1.44	0.54	2.25	nd	2.13	0.48	1.43	1.57	nd	21.4	0.8	1.0	1.0	0.70879	
Spot #8	5003	35	94	2.34	6.79	nd	6.16	1.93	0.68	2.91	nd	2.67	0.59	1.70	1.73	nd	27.6	0.9	1.2	0.9		
Spot #19	nd	nd	nd	0.29	1.00	nd	0.80	0.31	0.07	0.46	nd	0.35	0.08	0.26	0.34	nd	4.0	0.6	1.0	0.6		
Spot #20	nd	nd	nd	0.83	2.19	nd	2.15	0.73	0.23	1.08	nd	1.25	0.26	0.73	0.83	nd	10.3	0.7	0.9	0.8		
Spot #21	nd	nd	nd	2.48	6.51	nd	6.06	2.08	0.77	3.06	nd	2.70	0.57	1.59	1.50	nd	27.3	1.1	1.5	1.0		
Spot #22	nd	nd	nd	2.57	7.46	nd	6.54	2.62	0.97	3.86	nd	3.25	0.68	1.85	1.75	nd	31.5	1.0	1.6	1.0		
Spot #23	nd	nd	nd	3.60	11.94	nd	11.83	4.85	1.51	7.14	nd	5.62	1.13	2.92	2.37	nd	52.9	1.0	2.2	0.8		
Spot #24	nd	nd	nd	3.98	12.96	nd	12.39	4.76	1.57	7.01	nd	5.62	1.15	3.06	2.43	nd	54.9	1.1	2.1	0.9		
Spot #25	nd	nd	nd	2.69	8.27	nd	7.51	2.93	0.92	4.32	nd	3.59	0.78	2.23	1.95	nd	35.2	0.9	1.6	0.8		
Spot #26	nd	nd	nd	0.51	1.04	nd	0.75	0.40	0.11	0.59	nd	0.49	0.12	0.39	0.46	nd	4.9	0.8	0.9	0.7		
Spot #27	nd	nd	nd	1.34	4.15	nd	2.86	0.84	0.16	1.23	nd	0.98	0.21	0.60	0.64	nd	13.0	1.4	1.4	0.5		
Snowcap, 19	3_1188A_15I	R_1, 14-20	cm, 126ml	bsf																		
Spot #2	2891	4	6	0.68	1.67	nd	1.01	0.22	0.22	0.34	nd	0.13	0.02	0.05	0.03	nd	4.6	14.3	7.4	2.5	0.70570	
Spot #3	2601	14	186	1.51	2.81	nd	1.40	0.30	1.29	0.47	nd	0.13	0.02	0.05	0.03	nd	9.2	29.2	9.2	10.5	0.70532	
Spot #4	2525	12	1073	2.11	3.86	nd	1.71	0.35	1.43	0.57	nd	0.16	0.02	0.06	0.04	nd	11.5	33.3	8.7	9.8	0.70546	
Spot #5	2563	5	314	0.79	1.66	nd	1.06	0.26	0.68	0.35	nd	0.14	0.02	0.05	0.03	nd	5.6	15.6	8.3	6.8	0.70533	
Spot #15	2843	156	170	0.72	1.67	nd	1.10	0.26	0.50	0.34	nd	0.12	0.02	0.04	0.03	nd	5.3	16.0	9.2	5.1	0.70545	
Spot #16	1256	29	6	1.10	2.27	nd	1.22	0.29	0.85	0.43	nd	0.14	0.02	0.05	0.04	nd	7.3	18.2	7.7	7.3	0.70518	
Spot #17	1428	10	8	1.81	3.82	nd	1.85	0.39	1.27	0.63	nd	0.20	0.03	0.08	0.06	nd	11.4	20.7	7.1	7.7	0.70526	
Spot #18	3468	72	69	0.38	1.04	nd	0.68	0.15	0.19	0.22	nd	0.09	0.01	0.03	0.02	nd	3.0	11.9	7.6	3.1	0.70575	
Spot #19	3291	6	1288	1.58	2.76	nd	1.16	0.24	1.45	0.40	nd	0.11	0.02	0.04	0.03	nd	8.9	34.6	8.3	14.2	0.70520	
Snowcap, 19	3_1188A_17I	R_2, 6-9cn	ı, 146mbsf	2																		
Spot #1	12013	5	57	2.93	3.93	nd	1.38	0.22	0.16	0.91	nd	0.11	0.02	0.04	0.03	nd	9.9	72.5	8.5	2.0	0.70599	
Spot #2	13380	5	105	4.65	6.16	nd	2.35	0.37	0.28	1.58	nd	0.17	0.03	0.06	0.04	nd	15.9	73.5	9.3	2.0	0.70604	
Spot #3	7415	7	223	3.40	5.75	nd	2.66	0.49	0.42	1.59	nd	0.22	0.03	0.07	0.04	nd	15.0	51.2	11.6	2.3	0.70578	
Spot #4	7537	7	180	2.68	4.63	nd	2.06	0.39	0.34	1.24	nd	0.16	0.02	0.05	0.04	nd	11.9	50.1	11.5	2.3	0.70577	
Spot #5	8966	5	196	1.86	2.86	nd	1.25	0.21	0.27	0.74	nd	0.09	0.01	0.03	0.03	nd	7.6	36.6	6.7	3.4	0.70583	
Spot #6	3555	1468	21	5.04	9.59	nd	6.93	1.60	0.99	3.61	nd	1.08	0.19	0.46	0.43	nd	30.7	7.9	4.0	1.6	0.70596	
Spot #9	5205	25	98	1.53	2.15	nd	0.92	0.15	0.17	0.46	nd	0.06	0.01	0.03	0.03	nd	5.7	35.9	5.6	3.1	0.70563	
Spot #10	5126	9	143	1.55	2.20	nd	0.90	0.15	0.20	0.49	nd	0.06	0.01	0.02	0.03	nd	5.8	36.7	5.6	3.6	0.70562	
Spot #11	4582	11	80	1.25	1.67	nd	0.67	0.12	0.14	0.30	nd	0.04	0.01	0.02	0.03	nd	4.4	29.2	4.4	3.1	0.70560	
Spot #12	3902	8	57	1.11	1.58	nd	0.68	0.12	0.12	0.32	nd	0.04	0.01	0.02	0.02	nd	4.1	33.5	5.7	2.6	0.70566	
Spot #13	3527	28	38	1.38	2.12	nd	0.92	0.15	0.13	0.43	nd	0.07	0.01	0.03	0.03	nd	5.4	29.1	5.1	2.3	0.70561	
Snowcap, 19	3_1188F_16F	R_2, 109-1	11cm, 137ı	mbsf																		
Spot #1	4494	597	169	0.47	1.09	nd	0.85	0.20	0.23	0.58	nd	0.12	0.03	0.08	0.09	nd	4.0	3.7	2.5	3.0	0.70589	
Spot #2	4297	40	92	0.44	0.78	nd	0.49	0.15	0.21	0.55	nd	0.29	0.07	0.19	0.15	nd	3.5	1.9	1.0	3.8	0.70571	
Spot #3	5054	34	122	1.20	2.57	nd	1.44	0.30	0.30	0.89	nd	0.24	0.06	0.18	0.09	nd	7.6	8.8	3.5	2.6	0.70566	
Spot #4	3569	12	54	1.17	2.80	nd	1.74	0.37	0.28	0.88	nd	0.15	0.02	0.05	0.03	nd	7.8	23.4	11.7	2.0	0.70601	
Spot #5	5203	28	125	0.85	1.63	nd	1.08	0.26	0.25	0.63	nd	0.13	0.02	0.04	0.03	nd	5.2	18.7	9.1	2.5	0.70633	
Spot #6	5573	23	122	0.30	0.58	nd	0.40	0.10	0.16	0.29	nd	0.06	0.01	0.02	0.02	nd	2.1	10.2	5.2	4.3	0.70623	
Spot #7	5962	13	108	1.77	3.13	nd	1.92	0.37	0.29	0.96	nd	0.16	0.02	0.05	0.03	nd	9.0	34.5	11.6	2.0	0.70607	
Spot #8	6175	11	242	1.51	3.06	nd	1.75	0.35	0.33	0.83	nd	0.16	0.02	0.05	0.04	nd	8.5	24.5	9.0	2.5	0.70587	

Table S1. Trace element (Sr, Mg, Ba, REE) and isotopic (Sr, S) compositions of anhydrites sampled in the Manus Basin, Papua New Guinea. Concentrations given in parts per million (ppm).

	Sr	Mg	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	ΣREE	La_N/Yb_N	$\mathrm{Sm}_{\mathrm{N}}/\mathrm{Yb}_{\mathrm{N}}$	$\mathrm{Eu}_{N}\!/\mathrm{Eu}_{N}^{*}$	⁸⁷ Sr/ ⁸⁶ Sr	$\delta^{34}S~(\%)$
Snowcap, 19	3_1188F_16I	R_2, 109-1	11cm, 13'	7mbsf (coi	ntinued)																	
Spot #9	6192	17	156	0.44	0.69	nd	0.38	0.08	0.16	0.26	nd	0.05	0.01	0.02	0.02	nd	2.3	16.2	4.7	5.2	0.70616	
Spot #10	7204	16	497	0.36	0.56	nd	0.29	0.06	0.17	0.21	nd	0.04	0.01	0.02	0.01	nd	2.0	19.3	4.8	8.1	0.70618	
Spot #11	5551	12	153	1.50	2.85	nd	1.76	0.34	0.29	0.84	nd	0.16	0.02	0.05	0.03	nd	8.2	33.9	12.2	2.2	0.70585	
Spot #12	7298	13	62	3.17	5.70	nd	3.11	0.54	0.34	1.46	nd	0.22	0.03	0.07	0.05	nd	15.0	46.6	12.5	1.7	0.70564	
Spot #13	2842	13	4	0.62	1.34	nd	1.00	0.23	0.17	0.50	nd	0.11	0.02	0.04	0.03	nd	4.2	14.6	8.7	2.0	0.70628	
Spot #14	6559	57	248	0.53	0.83	nd	0.49	0.10	0.20	0.26	nd	0.05	0.01	0.02	0.02	nd	2.8	16.2	4.7	5.6	0.70581	
Spot #15	5364	14	40	1.02	2.02	nd	1.13	0.22	0.16	0.56	nd	0.10	0.02	0.03	0.03	nd	5.5	27.6	9.4	1.9	0.70567	
Spot #16	3375	0	4	0.57	1.31	nd	0.81	0.18	0.12	0.45	nd	0.09	0.02	0.04	0.02	nd	3.7	20.4	9.9	1.8	0.70589	
Spot #17	5340	4	192	0.91	1.89	nd	1.18	0.24	0.21	0.62	nd	0.12	0.02	0.03	0.02	nd	5.5	27.3	11.2	2.3	0.70574	
Snowcap, 19	3_1188F_1Z	_2, 32-34c	m, 219mb	osf																		
Spot #1	3133	20	103	0.05	0.17	nd	0.16	0.06	0.10	0.16	nd	0.08	0.01	0.03	0.02	nd	1.0	1.6	2.9	4.6	0.70718	20.7
Spot #2	3303	62	103	0.03	0.10	nd	0.13	0.05	0.11	0.10	nd	0.06	0.01	0.03	0.02	nd	0.8	1.2	2.9	6.1	0.70707	21.1
Spot #3	7267	21	453	0.07	0.20	nd	0.28	0.16	0.35	0.29	nd	0.29	0.05	0.11	0.07	nd	2.3	0.7	2.5	6.0	0.70663	20.9
Spot #4	3058	8	27	0.13	0.67	nd	1.13	0.63	0.48	0.95	nd	0.90	0.13	0.29	0.16	nd	5.8	0.6	4.3	2.0	0.70683	20.7
Spot #5	2329	16	25	0.05	0.37	nd	0.99	0.82	0.77	1.31	nd	1.34	0.20	0.46	0.28	nd	7.2	0.1	3.2	2.5	0.70625	20.5
Spot #6	2649	351	48	0.14	0.35	nd	0.47	0.29	0.22	0.43	nd	0.47	0.08	0.19	0.10	nd	2.9	1.0	3.1	2.0	0.70704	20.9
Spot #7	3128	92	82	0.05	0.27	nd	0.50	0.30	0.25	0.48	nd	0.50	0.08	0.18	0.09	nd	2.9	0.4	3.4	2.2	0.70700	
Spot #8	3795	38	20	0.11	0.58	nd	1.08	0.62	0.48	0.99	nd	0.90	0.14	0.32	0.18	nd	5.7	0.4	3.8	2.1		
Spot #9	4858	30	80	0.14	0.53	nd	0.71	0.31	0.23	0.46	nd	0.39	0.07	0.16	0.10	nd	3.3	0.9	3.3	2.0		
Spot #10	2696	118	27	0.04	0.27	nd	0.52	0.36	0.33	0.59	nd	0.64	0.10	0.22	0.13	nd	3.4	0.2	2.8	2.4		
Spot #11	3444	571	35	0.04	0.19	nd	0.30	0.18	0.15	0.24	nd	0.26	0.05	0.12	0.12	nd	1.8	0.2	1.5	2.3		
Spot #12	3473	13	43	0.07	0.30	nd	0.51	0.27	0.21	0.39	nd	0.50	0.08	0.18	0.10	nd	2.7	0.5	3.0	2.0		
Spot #13	4926	17	55	0.09	0.34	nd	0.54	0.39	0.35	0.64	nd	0.62	0.09	0.21	0.13	nd	3.7	0.5	3.2	2.4		
Spot #14	4424	209	43	0.04	0.15	nd	0.12	0.04	0.05	0.03	nd	0.05	0.01	0.02	0.01	nd	0.6	2.3	3.5	3.4	0.70643	
Spot #15	2903	20	68	0.20	1.41	nd	2.83	1.58	0.85	2.24	nd	2.32	0.37	0.86	0.45	nd	13.6	0.3	3.8	1.4	0.70662	
Spot #16	2459	44	50	0.07	0.56	nd	1.15	0.71	0.54	1.05	nd	1.04	0.16	0.35	0.18	nd	6.2	0.3	4.3	2.0	0.70710	
Spot #17	3000	784	86	0.04	0.25	nd	0.38	0.23	0.19	0.25	nd	0.30	0.06	0.17	0.23	nd	2.2	0.1	1.1	2.2	0.70703	
Spot #20	3659	314	57	0.04	0.17	nd	0.22	0.10	0.11	0.10	nd	0.16	0.02	0.06	0.04	nd	1.1	0.7	3.0	3.0	0.70694	
Spot #21	2744	6034	36	0.01	0.15	nd	0.20	0.11	0.11	0.10	nd	0.17	0.03	0.07	0.04	nd	1.1	0.1	3.2	2.6	0.70700	
Spot #22	3709	8	136	0.11	0.57	nd	0.83	0.46	0.48	0.75	nd	0.87	0.14	0.34	0.21	nd	5.2	0.3	2.4	2.8	0.70699	
Spot #23	2838	21	50	0.03	0.24	nd	0.33	0.19	0.18	0.24	nd	0.40	0.07	0.18	0.11	nd	2.1	0.2	1.9	2.5	0.70707	
Spot #24	4986	70	184	0.10	0.48	nd	0.68	0.34	0.34	0.55	nd	0.69	0.12	0.30	0.16	nd	4.0	0.5	2.4	2.6	0.70717	
Spot #25	2971	5	4	0.08	0.81	nd	2.00	1.60	1.37	2.25	nd	2.08	0.30	0.64	0.38	nd	12.6	0.1	4.5	2.3	0.70706	
Spot #26	2130	42	19	0.07	0.66	nd	1.57	0.87	0.50	1.10	nd	1.23	0.19	0.45	0.26	nd	7.2	0.2	3.6	1.5	0.70718	
Spot #27	3281	513	46	0.04	0.24	nd	0.46	0.36	0.42	0.31	nd	0.40	0.07	0.20	0.16	nd	3.1	0.2	2.5	3.1		
Spot #28	1916	807	31		0.11	nd	0.31	0.22	0.31	0.11	nd	0.17	0.03	0.09	0.09	nd	1.7		2.6	3.6		
Snowcap, 19	3_1188F_1Z	_4, 100-10	4cm, 2231	mbsf																		
Spot #1	3635	26	77	7.36	16.29	nd	8.92	1.95	1.22	3.54	nd	1.89	0.36	0.96	0.70	nd	44.1	7.1	3.0	1.7	0.70525	
Spot #2	3816	42	64	5.19	11.73	nd	6.27	1.31	0.80	2.25	nd	1.20	0.23	0.64	0.47	nd	30.6	7.5	3.0	1.6	0.70567	
Spot #4	3557	3146	2655	11.40	26.87	nd	12.28	3.03	3.17	5.72	nd	4.28	0.99	2.96	3.17	nd	75.5	2.4	1.0	2.8	0.70538	
Spot #5	3127	563	482	6.60	18.74	nd	12.17	3.14	2.19	4.99	nd	3.67	0.71	1.91	1.50	nd	57.1	3.0	2.2	1.9	0.70521	
Spot #6	2465	726	705	2.84	9.46	nd	7.83	2.35	2.03	3.36	nd	3.15	0.60	1.61	1.09	nd	35.5	1.8	2.3	2.3		
Spot #7	2381	123	64	1.90	6.85	nd	6.26	1.83	1.10	2.55	nd	2.21	0.42	1.12	0.72	nd	25.6	1.8	2.7	1.6	0.70612	20.0
Spot #8	4699	30	13	102.73	264.36	nd	92.09	14.90	11.76	29.45	nd	10.92	2.03	5.33	3.65	nd	547.1	19.0	4.4	2.1		20.0
Spot #10	5126	17	66	29.88	75.01	nd	32.45	5.76	4.54	10.36	nd	3.67	0.64	1.59	1.08	nd	168.8	18.6	5.7	2.1	0.70559	20.5
Spot #11	4489	17	82	6.66	19.08	nd	15.21	4.08	2.46	5.72	nd	4.49	0.83	2.18	1.41	nd	63.6	3.2	3.1	1.6	0.70515	20.3
Spot #12	3637	14	60	38.52	103.90	nd	45.91	8.21	6.42	13.57	nd	5.06	0.92	2.40	2.09	nd	232.6	12.5	4.2	2.1	0.70545	19.9
Spot #14	2855	351	328	3.73	13.53	nd	11.76	3.72	2.43	5.14	nd	3.89	0.67	1.67	1.06	nd	49.3	2.4	3.8	1.7	0.70563	20.3
Spot #20	3261	50	67	4.95	13.66	nd	9.03	2.38	1.54	3.64	nd	2.79	0.53	1.40	0.96	nd	41.9	3.5	2.7	1.7		
Spot #21	2468	14	14	6.76	20.71	nd	16.91	4.18	2.23	5.86	nd	3.86	0.65	1.59	0.82	nd	65.1	5.6	5.5	1.4		

Table S1. Trace element (Sr, Mg, Ba, REE) and isotopic (Sr, S) compositions of anhydrites sampled in the Manus Basin, Papua New Guinea. Concentrations given in parts per million (ppm).

	Sr	Mg	Ва	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	ΣREE	La_N/Yb_N	$\mathrm{Sm}_{\mathrm{N}}/\mathrm{Yb}_{\mathrm{N}}$	Eu _N /Eu* _N	⁸⁷ Sr/ ⁸⁶ Sr	$\delta^{34}S~(\text{\rm})$
Snowcap, 193	3_1188F_1Z	_4, 100-104	4cm, 223n	nbsf (cont	tinued)																	
Spot #22	4476	19	5	74.87	191.54	nd	78.15	13.60	10.08	26.41	nd	10.51	1.92	5.02	3.28	nd	423.6	15.4	4.4	2.0		
Spot #23	4766	18	222	7.16	12.85	nd	5.36	0.86	1.73	1.64	nd	0.42	0.08	0.19	0.18	nd	32.0	27.5	5.2	5.3		
Spot #25	3624	809	755	3.85	11.43	nd	7.30	2.63	2.37	5.16	nd	4.32	0.71	1.71	1.05	nd	41.8	2.5	2.7	2.4		
Snowcap, 193	3_1188F_237	2_2, 22-26	cm, 289m	bsf																		
Spot #1	2989	33	103	1.49	4.43	nd	4.15	1.24	0.52	2.18	nd	1.48	0.31	0.87	0.69	nd	17.5	1.5	1.9	1.1	0.70698	
Spot #2	2443	17	33	2.29	6.42	nd	6.18	1.76	0.70	3.16	nd	2.18	0.46	1.32	1.11	nd	25.8	1.4	1.7	1.1	0.70697	
Spot #3	2761	42	64	3.16	9.12	nd	7.57	2.28	0.89	3.77	nd	2.46	0.48	1.32	1.03	nd	32.5	2.1	2.4	1.0	0.70659	
Spot #4	2688	121	140	1.98	5.80	nd	5.20	1.55	0.63	2.78	nd	1.98	0.40	1.12	0.99	nd	22.6	1.4	1.7	1.1	0.70673	
Spot #5	3347	275	185	3.94	10.50	nd	8.15	2.05	0.86	3.66	nd	2.04	0.41	1.15	0.93	nd	34.0	2.9	2.4	1.1	0.70686	
Spot #6	2494	9222	3340	20.34	42.30	nd	28.61	6.30	4.25	12.93	nd	5.06	0.97	2.59	2.34	nd	128.3	5.9	2.9	1.8	0.70630	
Snowcap, 193	3_1188F_267	Z_1, 62-69	cm, 300m	bsf																		
Spot #1	2577	65	63	0.14	0.66	nd	1.05	0.64	0.91	0.72	nd	0.98	0.18	0.49	0.30	nd	6.8	0.3	2.2	3.8	0.70642	
Spot #2	2103	45	50	5.41	13.16	nd	6.70	1.49	1.13	4.00	nd	1.95	0.40	1.11	0.80	nd	36.9	4.5	2.0	2.0	0.70614	
Spot #3	2347	7	23	3.86	8.04	nd	5.28	1.49	1.28	3.47	nd	2.60	0.56	1.59	0.99	nd	29.9	2.6	1.6	2.3	0.70508	16.6
Spot #4	2209	194	134	6.18	12.00	nd	7.76	1.55	0.97	4.31	nd	2.09	0.48	1.43	1.38	nd	38.5	3.0	1.2	1.7	0.70546	
Spot #5	2832	99	89	3.36	7.78	nd	5.91	1.59	0.46	3.24	nd	1.58	0.32	0.89	0.70	nd	26.0	3.2	2.4	0.8	0.70694	
Spot #6	2821	185	155	1.33	3.26	nd	2.60	0.71	0.67	1.23	nd	1.08	0.21	0.56	0.31	nd	12.4	2.9	2.5	2.5	0.70635	
Spot #7	2566	1098	41	5.33	12.53	nd	11.05	3.38	1.63	6.06	nd	3.65	0.69	1.85	1.35	nd	48.4	2.7	2.7	1.3	0.70592	17.4
Spot #8	2991	29	41	1.41	3.44	nd	3.44	1.16	1.01	1.69	nd	1.12	0.21	0.54	0.35	nd	15.1	2.7	3.5	2.2	0.70596	
Spot #9	2103	19	53	3.02	5.52	nd	4.37	1.08	0.86	1.84	nd	0.42	0.07	0.16	0.15	nd	18.3	13.4	7.6	2.1	0.70583	
Spot #10	1393	20	12	2.04	5.11	nd	3.62	0.94	0.73	1.85	nd	1.72	0.34	0.93	0.56	nd	18.2	2.5	1.8	2.1	0.70623	
Spot #11	2468	20	73	6.15	15.75	nd	14.07	3.71	1.03	7.15	nd	3.63	0.64	1.62	1.13	nd	55.2	3.7	3.5	0.7	0.70626	
Spot #12	2442	356	205	0.37	0.82	nd	0.95	0.35	0.42	0.29	nd	0.23	0.04	0.11	0.11	nd	4.0	2.4	3.5	3.9	0.70712	18.6
Spot #13	3316	10	106	0.13	0.43	nd	0.56	0.28	0.60	0.15	nd	0.23	0.04	0.10	0.09	nd	3.2	0.9	3.2	5.7	0.70581	
Spot #14	2516	338	157	2.19	5.67	nd	4.97	1.40	1.20	2.25	nd	1.37	0.27	0.75	0.68	nd	21.6	2.2	2.2	2.3	0.70625	
Spot #15	1928	24	52	24.56	51.94	nd	46.97	11.86	3.92	22.93	nd	9.38	1.65	4.18	3.14	nd	182.9	5.3	4.0	0.9	0.70542	18.0
Spot #16	2304	25	64	4.85	15.05	nd	16.92	5.22	1.70	8.29	nd	5.65	1.10	2.97	2.39	nd	64.7	1.4	2.3	0.9	0.70606	19.0
Spot #17	2768	29	21	0.41	1.06	nd	1.30	0.35	0.29	0.40	nd	0.18	0.03	0.07	0.07	nd	4.4	4.0	5.5	2.2	0.70686	18.7
Spot #18	3380	11	46	0.12	0.38	nd	0.64	0.39	0.32	0.15	nd	0.17	0.03	0.06	0.04	nd	2.6	1.8	9.2	2.2	0.70699	
Spot #19	2080	39	115	4.07	7.65	nd	4.39	1.13	1.19	2.94	nd	2.62	0.55	1.58	1.02	nd	27.7	2.7	1.2	2.8	0.70542	
Spot #20	2561	193	126	2.08	5.58	nd	5.08	1.38	0.63	2.30	nd	1.54	0.31	0.87	0.76	nd	20.8	1.8	1.9	1.2	0.70663	
Spot #21	2060	14	23	1.48	4.39	nd	4.72	1.44	0.64	2.16	nd	1.75	0.38	1.11	1.35	nd	19.7	0.7	1.1	1.2	0.70648	
Spot #22	1691	9	18	2.06	5.21	nd	3.99	1.19	1.08	2.40	nd	2.79	0.59	1.67	1.02	nd	22.5	1.4	1.3	2.4	0.70635	
Spot #23	1789	224	142	3.41	7.17	nd	4.96	1.37	1.09	2.95	nd	2.32	0.47	1.33	0.84	nd	26.4	2.7	1.7	2.1	0.70633	
Spot #24	2547	59	42	0.29	0.85	nd	0.83	0.29	0.29	0.14	nd	0.19	0.03	0.07	0.06	nd	3.3	3.4	5.4	2.6	0.70613	
Roman Ruins	s, 193 1189A	A 3R 1,89	9-93cm, 20	Ombsf																		
Spot #1	2989	4	197	3.27	9.93	nd	7.66	1.52	0.75	1.36	nd	0.48	0.07	0.14	0.08	nd	26.0	27.0	19.9	1.3	0.70576	20.2
Spot #2	4127	1	170	8.35	15.59	nd	6.19	1.00	0.48	1.25	nd	0.33	0.05	0.11	0.08	nd	33.9	74.2	14.0	1.3	0.70586	19.8
Spot #3	3391	1	108	3.74	7.78	nd	3.35	0.49	0.34	0.63	nd	0.17	0.03	0.07	0.04	nd	17.0	57.8	12.1	1.8	0.70623	20.0
Spot #4	3267	3	75	1.44	3.09	nd	1.39	0.23	0.23	0.26	nd	0.09	0.01	0.03	0.03	nd	7.0	35.6	9.0	2.7	0.70594	
Spot #5	1378	5	28	6.85	22.45	nd	12.42	2.18	1.24	2.24	nd	0.65	0.09	0.19	0.11	nd	49.5	41.9	21.2	1.5	0.70527	
Spot #6	1820	4	30	0.54	1.94	nd	1.27	0.22	0.51	0.24	nd	0.11	0.02	0.06	0.05	nd	5.5	7.8	5.1	6.1	0.70565	
Spot #7	1819	4	147	0.66	2.44	nd	2.26	0.51	0.47	0.46	nd	0.24	0.04	0.08	0.05	nd	7.7	8.3	10.2	2.4	0.70607	19.6
Spot #8	615	4	1	1.42	4.55	nd	2.57	0.47	0.24	0.48	nd	0.22	0.03	0.07	0.04	nd	10.3	23.4	12.2	1.3	0.70666	19.8
Spot #9	872	3	24	0.86	2.41	nd	1.24	0.23	0.13	0.23	nd	0.09	0.01	0.02	0.02	nd	5.4	38.8	16.2	1.5		19.8
Spot #10	807	1	4	1.05	3.84	nd	2.36	0.54	0.29	0.53	nd	0.24	0.03	0.06	0.04	nd	9.2	17.5	14.5	1.4		19.9
Spot #11	2077	14	37	16.17	33.10	nd	11.67	2.17	1.80	2.74	nd	0.67	0.09	0.19	0.10	nd	70.5	107.7	23.0	2.2	0.70628	
Spot #12	620	1	4	1.56	5.58	nd	4.06	1.11	0.37	1.06	nd	0.44	0.06	0.10	0.06	nd	14.7	19.1	21.6	0.9	0.70544	
Spot #13	908	2	8	2.48	6.90	nd	3.59	0.67	0.30	0.71	nd	0.23	0.03	0.07	0.04	nd	15.3	41.9	17.9	1.2	0.70583	
Spot #14	3335	5	56	6.87	13.54	nd	6.41	0.86	0.47	1.18	nd	0.31	0.05	0.10	0.07	nd	30.2	69.2	13.7	1.5	0.70667	

Table S1. Trace element (Sr, Mg, Ba, REE) and isotopic (Sr, S) compositions of anhydrites sampled in the Manus Basin, Papua New Guinea. Concentrations given in parts per million (ppm).

	Sr	Mg	Ва	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	ΣREE	La_N/Yb_N	$\mathrm{Sm}_{\mathrm{N}}/\mathrm{Yb}_{\mathrm{N}}$	Eu _N /Eu* _N	⁸⁷ Sr/ ⁸⁶ Sr	$\delta^{34}S~(\%)$
Roman Ruir	ns, 193_1189A	_3R_1, 89)-93cm, 20)mbsf (con	tinued)																	
Spot #15	4124	1	282	5.88	12.52	nd	5.20	0.78	0.49	1.02	nd	0.30	0.05	0.11	0.07	nd	26.9	56.7	12.0	1.7	0.70591	
Spot #16	2046	1	40	2.34	7.36	nd	4.15	0.78	0.29	0.79	nd	0.32	0.04	0.09	0.06	nd	16.5	26.0	13.8	1.0	0.70637	
Spot #17	1579	1	26	0.34	1.34	nd	0.98	0.19	0.46	0.17	nd	0.11	0.02	0.04	0.04	nd	4.1	5.9	5.2	6.5	0.70565	
Roman Ruir	ns, 193_1189A	_7R_1, 19	9-23cm, 58	Bmbsf																		
Spot #1	1629	11	124	0.93	2.55	nd	2.28	0.61	0.50	0.84	nd	0.30	0.05	0.10	0.08	nd	8.7	8.2	8.5	2.1	0.70610	
Spot #2	1477	3	137	1.03	2.94	nd	2.62	0.71	0.51	0.98	nd	0.35	0.05	0.11	0.08	nd	9.8	8.7	9.5	1.9	0.70612	
Spot #3	1582	3	151	1.03	3.04	nd	2.80	0.77	0.50	0.98	nd	0.36	0.05	0.11	0.08	nd	10.2	8.5	10.1	1.8	0.70604	
Spot #4	1613	4	147	0.61	2.14	nd	2.60	0.72	0.63	0.91	nd	0.37	0.05	0.12	0.09	nd	8.8	4.6	8.6	2.4	0.70604	
Spot #5	3203	2	211	1.21	3.13	nd	2.72	0.62	0.71	0.91	nd	0.30	0.05	0.11	0.08	nd	10.5	10.2	8.3	2.9	0.70611	
Spot #6	1855	2	48	2.78	6.89	nd	5.15	1.33	0.71	1.88	nd	0.62	0.09	0.18	0.13	nd	20.4	14.3	10.8	1.4	0.70611	
Spot #7	1026	2	11	0.65	1.87	nd	1.46	0.39	0.21	0.54	nd	0.19	0.03	0.06	0.04	nd	5.6	10.8	10.3	1.4	0.70617	
Spot #8	1300	1	70	0.88	2.51	nd	1.82	0.50	0.28	0.70	nd	0.23	0.03	0.07	0.05	nd	7.3	11.7	10.4	1.4	0.70626	
Spot #9	1269	1	30	0.96	2.78	nd	2.04	0.56	0.28	0.73	nd	0.25	0.03	0.07	0.05	nd	8.0	12.0	11.2	1.3	0.70611	
Spot #10	1356	2	51	1.08	2.90	nd	2.12	0.57	0.29	0.80	nd	0.24	0.03	0.07	0.05	nd	8.4	14.9	12.5	1.3	0.70606	
Spot #11	1515	3	199	0.95	2.44	nd	1.67	0.43	0.38	0.61	nd	0.19	0.03	0.06	0.04	nd	7.1	16.3	11.7	2.3	0.70608	
Spot #12	1751	4	264	0.58	1.39	nd	0.99	0.27	0.41	0.39	nd	0.12	0.02	0.04	0.02	nd	4.5	16.2	11.7	3.8	0.70617	
Spot #13	18/9	3	233	0.58	1.41	nd	0.94	0.27	0.42	0.36	nd	0.11	0.02	0.03	0.03	nd	4.5	14.4	10.6	4.1		
Spot #14	1996	4	131	0.66	1.62	nd	1.08	0.27	0.24	0.39	nd	0.12	0.02	0.03	0.02	nd	4.6	18.4	11.9	2.3	0.70637	
Spot #15	2950	1	127	2.99	7.30	nd	5.43	1.20	0.78	1.97	nd	0.48	0.07	0.15	0.11	nd	21.1	17.7	11.3	1.5	0.70601	
Spot #16	2063	2	165	7.26	14.36	nd	8.41	1.96	0.83	3.56	nd	0.81	0.11	0.22	0.16	nd	38.3	30.4	13.0	1.1	0.70552	
Spot #17	4624	2	6/8	2.11	4.85	nd	3.12	0.65	0.98	1.26	nd	0.28	0.04	0.09	0.07	nd	14.2	20.3	9.8	5.5	0.70624	
Spot #18	1429	4	98	1.28	5.97	na	5.19	0.77	0.49	1.25	na	0.30	0.05	0.11	0.09	na	12.0	10.1	9.8	1.5	0.70626	
Spot #19	3942	24	33	0.23	0.45	nd	0.28	0.07	0.04	0.14	nd	0.03	0.00	0.01	0.01	nd	1.5	20.0	9.2	1.8	0.70809	
Spot #20	2088	7	40	0.05	0.11	nd	0.07	0.02	0.04	0.05	nd	0.01	0.00	0.00	0.00	nd	0.4	24.6	19.4	0.0	0.70787	
Spot #21	2429	1	14	0.10	0.20	nd	0.15	0.03	0.05	0.03	nd	0.01	0.00	0.00	0.00	nd	0.0	25.6	14.7	1.2	0.70790	
Spot #22	2709	11	27	1.46	3.24	nd	2 36	0.10	0.03	0.17	nd	0.04	0.01	0.01	0.01	nd	0.4	25.0	14.7	0.8	0.70824	
Spot #25	1445	37	27	2 00	8.44	nd	7.11	2.04	0.13	2.03	nd	0.28	0.12	0.07	0.05	nd	25.0	123	13.8	0.3	0.70617	
Spot #25	1449	84	35	3 33	9.28	nd	7 44	1.04	0.57	3.06	nd	0.82	0.12	0.25	0.17	nd	23.7	13.1	12.2	0.8	0.70689	
Spot #26	1521	15	3/	2.18	7.12	nd	6.36	1.94	0.51	2.60	nd	0.73	0.10	0.18	0.17	nd	27.4	10.4	13.8	0.7	0.70728	
Spot #20	1256	32	12	2.10	7.33	nd	6.47	1.69	0.51	2.00	nd	0.75	0.10	0.10	0.14	nd	22.1	10.4	12.6	0.7	0.70728	
Roman Ruir	1250 18, 193, 1189B	10R 1.4	2-44cm, 1	18mbsf	1.55	na	0.47	1.07	0.55	2.07	na	0.72	0.10	0.20	0.14	na	22.0	10.5	12.0	0.0		
Spot #1	3063	46	144	0.99	2.27	nd	1.75	0.42	0.18	0.60	nd	0.17	0.03	0.06	0.04	nd	6.6	17.8	11.9	1.1	0.70786	
Spot #2	2810	30	126	0.69	1.76	nd	1.30	0.34	0.16	0.46	nd	0.16	0.02	0.06	0.04	nd	5.1	11.5	9.0	1.2	0.70781	
Spot #3	2884	27	145	0.50	1.02	nd	0.70	0.16	0.13	0.22	nd	0.07	0.01	0.03	0.02	nd	3.0	17.5	9.1	2.0	0.70778	
Spot #4	2439	34	54	0.28	0.52	nd	0.34	0.09	0.07	0.13	nd	0.04	0.01	0.02	0.01	nd	1.6	18.6	9.6	2.0	0.70786	
Spot #5	1996	12	125	0.34	0.72	nd	0.48	0.13	0.12	0.17	nd	0.04	0.01	0.01	0.01	nd	2.1	22.3	13.5	2.4	0.70762	
Spot #6	2493	7	184	1.12	2.01	nd	1.23	0.27	0.21	0.45	nd	0.08	0.01	0.02	0.02	nd	5.6	39.0	14.9	2.0	0.70736	
Spot #7	2955	12	160	1.19	2.23	nd	1.28	0.28	0.18	0.54	nd	0.08	0.01	0.03	0.02	nd	6.0	40.9	15.3	1.7	0.70744	
Spot #8	2781	34	203	0.47	1.01	nd	0.71	0.17	0.20	0.31	nd	0.06	0.01	0.02	0.02	nd	3.1	17.1	10.0	3.1	0.70791	
Spot #9	3170	24	185	0.52	1.20	nd	1.08	0.28	0.17	0.35	nd	0.11	0.02	0.04	0.03	nd	3.9	12.6	10.8	1.6		
Spot #10	2629	14	19	0.29	0.62	nd	0.55	0.12	0.06	0.21	nd	0.05	0.01	0.02	0.02	nd	2.0	11.4	7.7	1.2	0.70808	
Spot #11	2928	17	112	0.62	1.57	nd	1.30	0.32	0.16	0.49	nd	0.13	0.02	0.03	0.03	nd	4.8	13.8	11.4	1.3		
Spot #12	3122	26	181	1.11	2.56	nd	2.07	0.51	0.24	0.80	nd	0.23	0.03	0.08	0.06	nd	7.9	12.4	9.0	1.3	0.70773	
Spot #13	2898	17	174	0.83	2.13	nd	1.74	0.43	0.22	0.65	nd	0.18	0.03	0.06	0.05	nd	6.5	11.5	9.4	1.4	0.70774	
Spot #20	2411	24	8	1.23	2.62	nd	1.56	0.34	0.15	0.70	nd	0.20	0.03	0.07	0.04	nd	7.0	20.3	8.9	1.1	0.70734	
Spot #21	2206	52	10	1.23	2.66	nd	1.66	0.36	0.16	0.71	nd	0.19	0.03	0.07	0.05	nd	7.2	16.9	7.9	1.2	0.70742	
Spot #22	2381	14	7	1.42	3.07	nd	2.07	0.43	0.19	0.87	nd	0.23	0.04	0.09	0.05	nd	8.6	19.3	9.2	1.2	0.70742	
Spot #23	2940	46	14	1.82	3.49	nd	2.00	0.41	0.18	1.01	nd	0.23	0.04	0.09	0.06	nd	9.5	19.7	7.0	1.2	0.70752	
Spot #24	2635	11	69	0.27	0.38	nd	0.22	0.05	0.06	0.10	nd	0.02	0.00	0.01	0.01	nd	1.2	30.4	8.2	3.5	0.70800	

Table S1. Trace element (Sr, Mg, Ba, REE) and isotopic (Sr, S) compositions of anhydrites sampled in the Manus Basin, Papua New Guinea. Concentrations given in parts per million (ppm).

	Sr	Mg	Ва	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	ΣREE	La_N/Yb_N	$\mathrm{Sm}_{\mathrm{N}}/\mathrm{Yb}_{\mathrm{N}}$	$Eu_N\!/\!Eu_N^*$	⁸⁷ Sr/ ⁸⁶ Sr	$\delta^{34}S~(\%)$
Roman Ruin	ns, 193–11891	B 10R 1.4	42-44cm, 1	18mbsf (c	continued)																	
Spot #25	2746	19	62	0.48	0.77	nd	0.49	0.09	0.08	0.21	nd	0.03	0.00	0.01	0.01	nd	2.2	37.0	11.2	2.2		21.6
Spot #26	2984	36	59	0.44	0.64	nd	0.42	0.07	0.06	0.18	nd	0.03	0.00	0.01	0.01	nd	1.9	46.1	12.1	2.2	0.70811	
Spot #27	2999	29	58	0.27	0.35	nd	0.22	0.04	0.05	0.10	nd	0.01	0.00	0.00	0.00	nd	1.1	47.8	10.7	3.7	0.70802	
Spot #28	3285	38	202	1.00	2.54	nd	2.08	0.53	0.26	0.82	nd	0.22	0.03	0.07	0.05	nd	7.8	13.7	11.5	1.3	0.70774	21.5
Spot #29	3162	22	194	0.22	0.41	nd	0.31	0.08	0.14	0.13	nd	0.03	0.00	0.01	0.01	nd	1.4	12.8	7.2	4.9	0.70659	21.3
Roman Ruin	ns, 193_1189E	B_14R_2, (0-3cm, 158	Bmbsf																		
Spot #1	2856	10	187	0.44	1.03	nd	0.71	0.14	0.29	0.24	nd	0.06	0.01	0.02	0.01	nd	3.2	21.2	10.5	5.6	0.70628	20.9
Spot #2	2479	9	261	3.71	7.07	nd	3.57	0.65	1.06	1.33	nd	0.25	0.04	0.09	0.06	nd	18.7	41.2	11.5	4.3	0.70427	
Spot #3	785	3	26	9.56	30.63	nd	25.82	5.65	1.25	8.28	nd	2.03	0.28	0.56	0.38	nd	85.4	17.0	15.9	0.6	0.70432	21.0
Spot #5	447	4	1	10.39	37.67	nd	32.62	7.15	1.39	10.46	nd	2.63	0.36	0.71	0.46	nd	104.9	15.2	16.6	0.5	0.70727	20.2
Spot #6	2291	32	68	0.93	2.51	nd	1.97	0.44	0.33	0.66	nd	0.16	0.02	0.04	0.03	nd	7.4	24.8	18.7	2.0	0.70822	19.9
Spot #7	1445	6	43	2.06	7.44	nd	6.82	1.62	0.54	2.31	nd	0.68	0.10	0.21	0.14	nd	22.4	10.2	12.7	0.9	0.70429	21.2
Spot #9	686	1	15	10.11	33.58	nd	27.82	6.11	1.31	8.90	nd	2.31	0.32	0.63	0.42	nd	92.5	16.3	15.7	0.6	0.70804	22.8
Spot #10	443	1	1	6.38	23.15	nd	20.01	4.54	0.91	6.46	nd	1.75	0.25	0.51	0.33	nd	65.0	12.9	14.6	0.5	0.70748	23.2
Spot #11	545	10	8	7.00	24.63	nd	21.30	5.09	0.84	7.18	nd	2.05	0.28	0.57	0.38	nd	69.9	12.3	14.2	0.4		21.5
Spot #12	263	723	41	11.39	26.65	nd	13.87	2.26	0.59	4.73	nd	1.22	0.26	0.72	0.87	nd	62.9	8.9	2.8	0.7		21.4
Spot #13	1818	270	68	5.87	17.04	nd	13.52	2.75	0.72	4.08	nd	1.04	0.16	0.34	0.30	nd	46.4	13.2	9.8	0.7		22.1
Spot #14	1900	12	47	1.75	6.01	nd	5.31	1.22	0.63	1.68	nd	0.50	0.07	0.14	0.09	nd	18.0	13.7	15.2	1.4		21.2
Fenway, J2_	_210_8_R1																					
Spot #1	842	2	93	2.59	5.57	nd	1.93	0.35	1.37	0.23	nd	0.17	0.03	0.07	0.05	nd	13.7	33.2	7.2	13.9		
Spot #2	2258	5	33	1.61	4.31	nd	2.56	0.73	0.67	0.51	nd	0.29	0.04	0.08	0.05	nd	11.5	21.9	15.7	3.2		
Spot #3	1417	112	217	2.34	6.79	nd	5.18	1.43	1.11	1.17	nd	0.70	0.09	0.18	0.06	nd	20.1	27.1	26.4	2.5		
Spot #4	2762	39	161	2.35	4.72	nd	2.33	0.59	0.70	0.47	nd	0.35	0.06	0.13	0.05	nd	12.4	29.0	11.6	4.0		
Spot #5	2447	9	73	0.80	1.68	nd	0.98	0.21	0.33	0.17	nd	0.09	0.01	0.03	0.01	nd	4.6	36.5	15.5	5.1		
Spot #7	1911	10	118	1.19	2.64	nd	1.10	0.20	0.54	0.13	nd	0.15	0.02	0.04	0.03	nd	6.5	27.8	7.3	9.7		
Spot #8	1703	4	531	2.66	5.73	nd	2.67	0.61	0.65	0.41	nd	0.29	0.04	0.09	0.07	nd	13.8	26.5	9.6	3.8		
Spot #9	1372	12	455	3.20	0.59	nd	2.47	0.49	1.06	0.31	nd	0.20	0.04	0.12	0.04	nd	15.6	48.9	11.8	/.8		
Spot #10	1423	18	200	0.00	12.89	nd	5.15	1.08	1.43	0.70	nd	0.42	0.06	0.14	0.08	nd	29.3	48.5	13.9	4.7		
Spot #11	1210	43	390	10.08	23.91	nd	13.45	3.01	2.29	2.07	nd	1.15	0.10	0.31	0.17	nd	54.0	40.2	19.0	2.7		
Spot #12	1098	/ 01	514	8.4/	22.04	nd	2.62	2.50	2.89	1.08	nd	0.93	0.15	0.29	0.15	nd	17.2	57.1	17.4	4.1		
Spot #15	1654	100	676	2.74	6.42	nd	2.05	0.54	1.55	0.37	nd	0.18	0.04	0.10	0.04	nd	17.2	50.0	13.2	10.0		
Spot #14	2820	199	1020	0.02	1.70	nd	0.80	0.52	0.39	0.50	nd	0.21	0.03	0.00	0.05	nd	10.5	40.5	12.0	6.4		
Spot #15	2629	22	102	3.41	6.50	nd	2.48	0.20	0.58	0.14	nd	0.08	0.01	0.00	0.01	nd	4.0	49.5 57.4	17.4	8.5		
Spot #17	1509	42	28	0.97	2 33	nd	1 20	0.35	0.57	0.27	nd	0.13	0.05	0.07	0.04	nd	6.4	48.0	21.6	67		
Spot #18	1437	52	31	1 71	4 40	nd	2.54	0.28	0.81	0.24	nd	0.15	0.03	0.04	0.01	nd	11.4	36.5	19.6	5.2		
Spot #19	2867	91	59	0.76	1 49	nd	0.83	0.18	0.31	0.14	nd	0.10	0.01	0.03	0.02	nd	4.2	27.7	10.4	5.9		
Fenway, J2	210 8 R2	,,,	57	0.70	1.47	na	0.05	0.10	0.51	0.14	na	0.10	0.01	0.05	0.02	na	7.2	21.1	10.4	5.7		
Spot #1	2449	8	45	0.66	1.81	nd	1.09	0.25	0.66	0.15	nd	0.10	0.02	0.04	0.03	nd	5.5	16.3	9.8	9.6	0.70694	21.0
Spot #2	2245	73	75	0.73	2.18	nd	1.26	0.33	0.59	0.19	nd	0.13	0.02	0.04	0.02	nd	6.1	29.6	21.0	6.7		
Spot #3	2517	89	88	0.92	2.08	nd	0.99	0.22	0.57	0.15	nd	0.09	0.01	0.03	0.02	nd	5.6	29.1	11.3	9.0	0.70757	
Spot #4	2819	66	73	1 47	3 22	nd	1 44	0.31	0.70	0.23	nd	0.15	0.02	0.05	0.04	nd	83	25.4	8.5	7.6	0 70768	
Spot #5	3669	14	67	0.44	1.05	nd	0.69	0.18	0.19	0.13	nd	0.08	0.01	0.04	0.02	nd	3.0	13.8	8.7	3.7		
Spot #6	2162	66	64	0.99	2.74	nd	1.53	0.35	0.70	0.23	nd	0.13	0.02	0.04	0.04	nd	7.4	18.8	10.5	7.2	0.70763	
Spot #7	1762	5	50	2.07	4.81	nd	2.26	0.48	0.65	0.31	nd	0.18	0.03	0.06	0.03	nd	11.6	40.7	15.0	4.8	0.70673	21.7
Spot #8	2178	6	212	1.27	3.04	nd	1.60	0.37	0.44	0.22	nd	0.13	0.02	0.04	0.02	nd	7.6	38.6	18.0	4.3		
Spot #9	2447	75	134	0.58	1.46	nd	0.84	0.21	0.26	0.17	nd	0.08	0.01	0.03	0.02	nd	3.9	25.9	15.1	4.1	0.70806	
Spot #10	3059	11	352	0.51	1.08	nd	0.56	0.13	0.22	0.09	nd	0.06	0.01	0.02	0.02	nd	2.9	19.1	7.4	6.1		
Spot #11	2420	11	83	0.26	0.59	nd	0.37	0.08	0.19	0.06	nd	0.04	0.01	0.02	0.02	nd	1.8	8.7	4.2	7.9	0.70803	
Spot #12	2403	7	37	0.87	2.47	nd	1.46	0.37	0.37	0.23	nd	0.15	0.02	0.04	0.02	nd	6.4	30.1	20.5	3.6	0.70790	

Table S1. Trace element (Sr, Mg, Ba, REE) and isotopic (Sr, S) compositions of anhydrites sampled in the Manus Basin, Papua New Guinea. Concentrations given in parts per million (ppm).

	Sr	Mg	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	ΣREE	La_N/Yb_N	$\mathrm{Sm}_{\mathrm{N}}/\mathrm{Yb}_{\mathrm{N}}$	Eu_N/Eu_N^*	⁸⁷ Sr/ ⁸⁶ Sr	$\delta^{34}S~(\%)$
Forway 12	210 8 D2 (or	ntinued)																				
Spot #13	210_8_K2 (CC 2370	7	110	0.47	0.08	nd	0.48	0.12	0.24	0.10	nd	0.06	0.01	0.02	0.02	nd	27	18.2	7.5	6.5		
Spot #15	22375	2	200	0.47	1.08	nd	0.53	0.12	0.24	0.10	nd	0.00	0.01	0.02	0.02	nd	3.0	13.8	7.5	77	0 70752	
Spot #15	2251	32	50	1.50	3.18	nd	1.54	0.15	0.91	0.07	nd	0.03	0.01	0.05	0.02	nd	8.8	37.4	13.5	9.7	0.70752	
Spot #15	2082	120	150	1.30	2.10	nd	1.54	0.34	0.90	0.24	nd	0.15	0.02	0.03	0.03	nd	0.0	22.7	13.5	5.2		
Spot #17	2192	01	136	0.74	2.05	nd	1.47	0.33	0.41	0.25	nd	0.15	0.02	0.04	0.03	nd	6.1	11.4	10.1	3.2		
Spot #19	2617	44	150	0.74	1.19	nd	0.67	0.42	0.15	0.55	nd	0.20	0.05	0.00	0.04	nd	2.0	24.2	11.4	3.5		
Spot #18	2017	50	429	2.09	6.00	nd	2.12	0.14	0.15	0.11	nd	0.00	0.01	0.03	0.01	nd	15.0	24.5	11.4	2.7		
Spot #19	2501	27	122	2.90	1.21	nd	0.66	0.17	0.80	0.12	nd	0.50	0.04	0.08	0.00	nd	2.5	10.2	12.5	3.7		21.9
Fenway 12	212 7 R1	37	122	0.42	1.21	nu	0.00	0.17	0.37	0.12	nu	0.08	0.01	0.02	0.01	nu	5.5	17.2	11.9	7.0		21.0
Spot #1	212_7_K1 3185	7	73	0.81	1.98	nd	1.12	0.24	0.33	0.22	nd	0.13	0.02	0.04	0.04	nd	5.2	12.2	5.9	44		
Spot #1 Spot #2	2900	30	44	1.03	2 72	nd	1.12	0.42	0.49	0.32	nd	0.19	0.02	0.07	0.04	nd	7.5	19.2	12.3	3.9		
Spot #2 Spot #3	2968	9	63	0.55	1 39	nd	1.12	0.30	0.31	0.22	nd	0.12	0.02	0.03	0.05	nd	4.4	7.5	6.6	3.5		
Spot #3	3174	101	147	1.70	3 30	nd	1.11	0.30	0.82	0.22	nd	0.12	0.02	0.05	0.03	nd	0.1	33.5	8.8	9.1		
Spot #5	3286	12	31	1.70	2 54	nd	1.01	0.19	0.94	0.15	nd	0.08	0.05	0.05	0.03	nd	73	28.4	6.6	16.4		
Spot #7	3096	29	76	1.51	3 52	nd	2.15	0.64	0.71	0.41	nd	0.00	0.03	0.07	0.03	nd	10.1	32.7	20.6	4.0	0 70762	
Spot #10	3359	34	68	0.41	0.98	nd	0.67	0.25	0.25	0.15	nd	0.11	0.05	0.07	0.05	nd	3.1	73	20.0	3.7	0.70789	
Spot #11	2524	475	30	0.71	1 79	nd	1.02	0.25	0.59	0.15	nd	0.13	0.02	0.02	0.03	nd	53	17.6	10.2	7.6	0.70785	
Spot #12	1904	128	26	0.36	1.03	nd	0.74	0.20	0.63	0.20	nd	0.15	0.02	0.03	0.05	nd	4.5	5.0	7.2	6.4	0.70746	
Spot #12 Spot #16	2232	24	30	1.47	1.05	nd	3 13	0.00	0.05	0.20	nd	0.25	0.02	0.25 nd	0.05	nd	12.4	83	8.2	3.3	0.70740	
Spot #17	2252	85	37	0.67	1.07	nd	1 / 0	0.72	0.59	0.30	nd	0.50	0.03	0.08	0.02	nd	63	21.6	24.1	4.5	0.70077	
Spot #18	3484	7	110	0.68	1.57	nd	1.42	0.28	0.40	0.20	nd	0.15	0.03	0.06	0.02	nd	4.9	11.8	7.8	4.9	0 70732	
Fenway, J2	216 1 R1	,	110	0.00	1.00	na	1.04	0.20	0.40	0.20	na	0.15	0.05	0.00	0.04	na	<i>.</i> /	11.0	7.0	-1.7	0.10152	
Spot #1	2181	4	30	0.31	0.84	nd	0.56	0.21	0.31	0.14	nd	0.09	0.02	0.04	0.04	nd	2.8	4.7	5.0	5.3	0.70788	
Spot #2	2499	2	26	1.37	3.53	nd	1.84	0.61	1.34	0.52	nd	0.50	0.08	0.18	0.11	nd	11.3	8.3	5.9	7.1		
Spot #3	3315	1	97	3.72	6.97	nd	2.64	0.68	0.96	0.36	nd	0.22	0.03	0.08	0.04	nd	16.4	64.2	18.6	5.4	0.70736	
Spot #4	3232	50	87	2.06	4.86	nd	2.55	0.59	0.96	0.40	nd	0.25	0.04	0.08	0.06	nd	12.7	24.0	10.9	5.8	0.70664	
Spot #5	2144	3	19	1.18	3.41	nd	2.32	0.65	0.66	0.43	nd	0.25	0.03	0.07	0.04	nd	9.7	18.2	16.1	3.6		
Spot #6	1995	5	13	1.20	3.13	nd	1.46	0.28	0.77	0.20	nd	0.12	0.02	0.05	0.05	nd	8.1	16.0	5.9	9.6	0.70689	
Spot #8	2503	57	24	0.82	2.65	nd	1.76	0.37	0.41	0.27	nd	0.16	0.02	0.05	0.02	nd	6.9	23.4	16.6	3.9		
Spot #9	2615	15	236	1.94	4.06	nd	2.06	0.50	0.45	0.31	nd	0.18	0.03	0.05	0.03	nd	10.0	51.4	20.8	3.3		
Spot #10	2420	6	32	0.78	2.11	nd	1.35	0.37	0.47	0.26	nd	0.15	0.02	0.05	0.03	nd	6.0	16.2	12.2	4.5		
Spot #11	2708	8	34	0.50	1.15	nd	0.75	0.26	0.39	0.15	nd	0.12	0.02	0.04	0.02	nd	3.7	17.0	14.1	5.5		
Spot #12	2640	2	55	1.03	2.83	nd	1.67	0.42	0.91	0.37	nd	0.14	0.03	0.10	0.07	nd	8.5	9.6	6.2	6.9		
Spot #13	2822	11	82	0.78	2.24	nd	1.78	0.63	1.21	0.67	nd	0.67	0.10	0.24	0.16	nd	9.6	3.2	4.1	5.7		
Spot #14	3351	7	45	0.70	1.81	nd	0.88	0.22	0.53	0.21	nd	0.15	0.02	0.05	0.04	nd	5.1	11.0	5.6	7.4		
Spot #15	2673	8	39	1.26	3.30	nd	2.20	0.56	0.56	0.37	nd	0.23	0.03	0.06	0.07	nd	9.2	11.9	8.4	3.6		
Spot #16	2669	5	76	0.82	2.29	nd	1.69	0.44	0.48	0.27	nd	0.18	0.03	0.06	0.05	nd	6.7	11.7	9.9	3.9		
Spot #17	2247	5	126	1.19	3.20	nd	2.27	0.66	0.60	0.43	nd	0.28	0.04	0.08	0.04	nd	9.3	19.7	17.2	3.3		
Spot #18	2715	18	51	0.45	1.08	nd	0.67	0.19	0.35	0.13	nd	0.09	0.01	0.03	0.02	nd	3.4	13.6	9.1	6.6		
Spot #19	2486	10	34	0.74	1.81	nd	0.99	0.24	0.50	0.18	nd	0.13	0.02	0.03	0.04	nd	5.1	11.3	5.9	7.0		
Spot #20	2224	6	5469	2.73	5.53	nd	2.29	0.43	1.67	0.33	nd	0.23	0.04	0.12	0.09	nd	15.0	21.0	5.3	13.0	0.70686	
Spot #21	1980	7	18	1.93	4.62	nd	2.45	0.58	1.03	0.33	nd	0.24	0.04	0.10	0.07	nd	12.4	19.3	9.2	6.6		
Spot #22	1755	5	42	1.62	4.59	nd	3.02	0.80	1.00	0.59	nd	0.34	0.05	0.11	0.12	nd	13.1	9.2	7.2	4.3	0.70740	
Spot #23	2367	5	86	1.16	3.58	nd	2.68	0.82	0.59	0.60	nd	0.33	0.05	0.09	0.05	nd	10.5	17.3	19.4	2.5	0.70766	
Spot #24	2929	43	2017	1.48	2.95	nd	1.84	0.46	0.61	0.32	nd	0.20	0.03	0.05	0.03	nd	8.6	31.8	15.8	4.6		
Spot #25	2760	51	165	0.63	1.48	nd	0.83	0.23	0.69	0.15	nd	0.10	0.02	0.05	0.04	nd	4.9	11.2	6.3	10.8	0.70602	
Fenway, J2_	216_5_R1																					
Spot #1	2038	19	227	1.65	3.85	nd	2.17	0.50	0.50	0.35	nd	0.23	0.03	0.07	0.04	nd	9.9	29.4	14.1	3.5	0.70672	
Spot #2	2537	8	77	0.87	2.34	nd	1.41	0.34	0.40	0.28	nd	0.16	0.02	0.05	0.04	nd	6.2	14.9	9.2	4.0		
Spot #3	1922	7	49	1.19	3.59	nd	2.67	0.85	0.58	0.59	nd	0.36	0.05	0.09	0.06	nd	10.6	12.8	14.5	2.4		

Table S1. Trace element (Sr, Mg, Ba, REE) and isotopic (Sr, S) compositions of anhydrites sampled in the Manus Basin, Papua New Guinea. Concentrations given in parts per million (ppm).

	Sr	Mg	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	ΣREE	La_N/Yb_N	$\mathrm{Sm}_{\mathrm{N}}/\mathrm{Yb}_{\mathrm{N}}$	$Eu_N\!/\!Eu_N^{*}$	⁸⁷ Sr/ ⁸⁶ Sr	$\delta^{34}S~(\%)$
Fenway, J2	216_5_R1 (co	ontinued)																				
Spot #4	2299	16	70	1.21	3.57	nd	2.84	0.75	0.77	0.60	nd	0.31	0.04	0.06	0.05	nd	10.9	17.2	17.0	3.4	0.70685	
Spot #6	1674	9	18	2.44	6.39	nd	3.99	1.12	1.08	0.77	nd	0.48	0.07	0.14	0.09	nd	17.6	19.3	14.1	3.4	0.70714	
Spot #7	1980	7	65	0.76	1.78	nd	1.03	0.31	0.30	0.21	nd	0.13	0.02	0.04	0.02	nd	4.9	25.0	16.3	3.4	0.70754	
Spot #8	2123	2	99	0.92	2.25	nd	1.35	0.28	0.41	0.23	nd	0.14	0.02	0.04	0.04	nd	6.1	15.5	7.6	4.7	0.70749	
Spot #9	2291	4	143	0.54	1.31	nd	0.81	0.21	0.37	0.12	nd	0.09	0.01	0.03	0.01	nd	3.8	25.7	15.9	6.6		
Spot #11	2657	4	148	1.00	2.03	nd	0.72	0.14	0.37	0.13	nd	0.07	0.01	0.01	0.01	nd	4.9	56.9	12.9	8.3		
Spot #13	3131	9	89	0.90	2.33	nd	1.36	0.46	0.60	0.20	nd	0.14	0.02	0.05	0.02	nd	6.7	35.3	28.6	5.2		
Spot #14	2581	21	125	0.79	1.84	nd	0.80	0.21	0.30	0.11	nd	0.06	0.01	0.03	0.02	nd	4.5	29.2	12.3	5.5		
Spot #15	2004	4	94	0.80	1.94	nd	1.03	0.25	0.32	0.17	nd	0.10	0.01	0.03	0.02	nd	5.0	34.2	17.1	4.6	0.70730	
Spot #16	2165	3	34	0.56	1.43	nd	0.86	0.18	0.31	0.14	nd	0.10	0.01	0.02	0.02	nd	3.9	24.1	12.5	5.8		
Spot #17	2128	6	38	0.81	2.01	nd	1.11	0.26	0.32	0.16	nd	0.12	0.02	0.05	0.02	nd	5.2	31.1	15.7	4.5	0.70742	
Spot #18	3015	7	60	1.02	2.20	nd	0.96	0.25	0.43	0.14	nd	0.07	0.01	0.04	0.03	nd	5.5	20.9	8.1	6.6		
Spot #19	2713	4	37	0.72	1.81	nd	1.06	0.32	0.50	0.20	nd	0.12	0.02	0.04	0.02	nd	5.3	27.7	19.5	5.6	0.70713	
Spot #20	2255	8	254	1.02	2.23	nd	1.07	0.26	0.41	0.14	nd	0.10	0.02	0.05	0.01	nd	5.7	46.3	19.0	5.9		
Spot #21	2017	11	150	1.41	3.63	nd	1.75	0.40	0.47	0.27	nd	0.16	0.02	0.05	0.03	nd	8.6	33.0	14.7	4.1		
Spot #22	2969	11	57	1.07	2.41	nd	1.37	0.35	0.34	0.18	nd	0.13	0.02	0.05	0.05	nd	6.3	14.6	7.6	3.7		
Spot #23	2310	3	31	1.98	5.94	nd	3.41	0.80	0.70	0.58	nd	0.31	0.04	0.08	0.08	nd	14.5	16.8	10.7	3.0	0.70725	
Spot #24	2146	4	55	0.81	2.26	nd	1.24	0.33	0.39	0.21	nd	0.12	0.02	0.05	0.02	nd	5.8	25.4	16.4	4.2		
Spot #25	2618	4	60	1.14	2.89	nd	1.51	0.40	0.42	0.30	nd	0.16	0.02	0.05	0.03	nd	7.3	22.9	12.9	3.5	0.70745	
Spot #26	2346	2	209	0.60	1.55	nd	0.96	0.34	0.27	0.18	nd	0.12	0.02	0.04	0.02	nd	4.4	25.7	22.8	3.0		
Spot #27	1983	5	59	0.66	2.15	nd	1.58	0.48	0.75	0.32	nd	0.21	0.03	0.05	0.03	nd	7.0	12.9	15.0	5.6	0.70802	
Spot #28	2156	5	35	0.86	2.12	nd	1.03	0.27	0.30	0.25	nd	0.13	0.02	0.04	0.02	nd	5.3	33.0	16.3	3.5		
Spot #29	2207	5	58	0.75	1.77	nd	0.94	0.23	0.24	0.17	nd	0.11	0.01	0.03	0.01	nd	4.5	35.0	16.8	3.7		
Spot #30	3194	7	56	1.89	4 45	nd	2.15	0.46	0.48	0.31	nd	0.16	0.03	0.06	0.04	nd	10.5	28.8	11.2	3.7		
Spot #31	2638	5	136	1.58	3 42	nd	1 78	0.42	0.50	0.28	nd	0.17	0.03	0.05	0.04	nd	8 7	28.8	12.2	41		
Spot #32	2919	3	91	2.83	5.46	nd	2.20	0.39	0.70	0.25	nd	0.18	0.03	0.07	0.05	nd	12.9	38.5	8.5	6.4		
Fenway, J2	216 12 R1																					
Spot #1	2746	197	35	0.73	2.14	nd	1.44	0.40	0.81	0.30	nd	0.18	0.03	0.07	0.05	nd	6.9	10.5	9.1	6.9	0.70816	
Spot #2	2544	14	27	0.64	1.74	nd	0.95	0.23	0.47	0.16	nd	0.10	0.02	0.03	0.02	nd	4.9	27.6	15.9	7.1		
Spot #3	2377	71	2361	1.01	2.02	nd	1.09	0.31	0.43	0.21	nd	0.11	0.02	0.04	0.02	nd	5.6	41.8	20.0	5.0	0.70797	
Spot #4	1774	70	239	1.06	2.29	nd	1.06	0.24	0.51	0.15	nd	0.10	0.01	0.02	0.02	nd	5.9	43.8	15.7	7.6	0.70716	
Spot #5	2726	140	62	1.61	3.93	nd	2.36	0.61	0.65	0.42	nd	0.22	0.03	0.06	0.03	nd	10.5	35.8	21.5	3.7		
Spot #6	1435	70	21	2.73	8.52	nd	4.97	1.21	1.26	0.80	nd	0.46	0.06	0.12	0.06	nd	21.5	31.4	22.2	3.7	0.70683	
Spot #7	2100	11	32	1.07	3.41	nd	2.40	0.66	0.90	0.44	nd	0.25	0.03	0.06	0.02	nd	10.1	30.1	29.3	4.8		
Spot #8	2547	4	39	0.16	0.29	nd	0.11	0.02	0.08	0.04	nd	0.04	0.02	0.01	0.02	nd	2.5				0.70819	
Spot #9	2493	44	45	0.68	1.82	nd	1.23	0.35	0.71	0.23	nd	0.15	0.02	0.04	0.03	nd	5.9	14.7	12.0	7.2		
Spot #10	2575	50	45	0.56	1.47	nd	0.84	0.27	0.62	0.23	nd	0.16	0.03	0.06	0.05	nd	4.9	7.0	5.3	7.5		
Spot #11	3074	23	66	0.98	2.46	nd	1.40	0.36	0.73	0.24	nd	0.14	0.02	0.05	0.04	nd	7.1	18.5	10.9	7.1		
Spot #12	2812	8	118	2.15	4.06	nd	1.78	0.43	0.84	0.25	nd	0.12	0.02	0.04	0.04	nd	10.5	35.0	11.1	7.2		
Spot #13	3705	20	99	1.51	3.37	nd	1.70	0.42	0.76	0.21	nd	0.16	0.02	0.04	0.03	nd	8.9	35.8	15.9	6.9		
Spot #14	1618	2	59	1.35	4.31	nd	3.23	0.88	1.13	0.57	nd	0.32	0.05	0.10	0.05	nd	13.0	19.8	20.5	4.6		
Spot #15	1747	6	25	0.66	2.46	nd	1.90	0.58	0.62	0.37	nd	0.20	0.03	0.08	0.04	nd	7.5	12.0	17.0	3.8		
Spot #16	3331	4	94	2.19	5.85	nd	3.64	0.93	0.86	0.64	nd	0.30	0.04	0.08	0.04	nd	15.4	36.1	24.2	3.2		
Spot #17	2563	8	143	1.29	2.95	nd	1.78	0.38	0.56	0.27	nd	0.16	0.03	0.07	0.04	nd	8.0	24.6	11.5	5.1		
Spot #18	2411	15	30	0.60	1.63	nd	0.98	0.28	0.59	0.18	nd	0.12	0.03	0.07	0.03	nd	5.1	14.4	10.4	7.6		
Spot #19	2177	72	78	0.37	1.19	nd	0.95	0.28	0.61	0.20	nd	0.12	0.02	0.06	0.03	nd	4.4	9.1	10 7	7.6		
Spot #20	2676	39	84	0.64	1.58	nd	0.81	0.23	0.35	0.15	nd	0.09	0.01	0.03	0.02	nd	4 2	26.8	15.0	5.4		
Spot #21	2771	226	54	1.32	4.09	nd	2.73	0.72	1.07	0.41	nd	0.26	0.03	0.06	0.03	nd	11.8	26.6	23.1	5.5		
Spot #22	2630	20	81	0.59	1.55	nd	0.91	0.21	0.32	0.14	nd	0.10	0.01	0.03	0.02	nd	4 2	22.1	12.5	5.4		
Spot #23	2782	7	134	1.53	4.02	nd	2.39	0.66	0.52	0.41	nd	0.21	0.03	0.07	0.04	nd	10.4	23.1	15.8	2.9		

Table S1. Trace element (Sr, Mg, Ba, REE) and isotopic (Sr, S) compositions of anhydrites sampled in the Manus Basin, Papua New Guinea. Concentrations given in parts per million (ppm).

	Sr	Mg	Ва	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	ΣREE	La_N/Yb_N	$\mathrm{Sm}_{\mathrm{N}}/\mathrm{Yb}_{\mathrm{N}}$	$\mathrm{Eu}_{\mathrm{N}}/\mathrm{Eu}_{\mathrm{N}}^{*}$	⁸⁷ Sr/ ⁸⁶ Sr	$\delta^{34}S~(\textrm{\rm})$
Fenway, J2_2	216_12_R1 (d	continued)																				
Spot #24	2469	4	72	1.69	4.46	nd	2.65	0.66	0.83	0.41	nd	0.25	0.03	0.07	0.04	nd	11.8	27.5	16.9	4.6		
Spot #25	3605	1	125	1.83	4.71	nd	2.76	0.72	0.90	0.41	nd	0.19	0.03	0.07	0.03	nd	12.5	35.5	22.2	4.6		
Spot #27	2178	5	37	0.57	1.68	nd	1.09	0.33	0.49	0.22	nd	0.13	0.02	0.03	0.04	nd	5.1	9.0	8.3	5.2		
Spot #29	2350	4	44	0.41	0.82	nd	0.47	0.11	0.25	0.09	nd	0.07	0.01	0.03	0.04	nd	2.5	6.9	3.0	7.3		
Spot #31	2780	13	505	0.52	1.56	nd	0.94	0.28	0.53	0.19	nd	0.10	0.02	0.04	0.02	nd	4.7	19.3	16.3	6.7		
Fenway, J2_2	216_14_R1																					
Spot #1	2065	55	379	0.37	1.38	nd	0.78	0.24	0.79	0.13	nd	0.09	0.02	0.05	0.02	nd	4.5	10.5	10.7	12.7		
Spot #2	1488	23	105	0.86	3.21	nd	1.66	0.41	1.51	0.28	nd	0.15	0.02	0.06	0.03	nd	9.6	21.8	16.7	12.9	0.70635	22.0
Spot #3	2305	81	192	0.56	1.79	nd	1.23	0.29	0.98	0.22	nd	0.13	0.02	0.05	0.05	nd	6.3	7.4	6.0	11.5		
Spot #4	2537	86	358	0.64	1.98	nd	1.35	0.39	1.26	0.26	nd	0.16	0.02	0.05	0.04	nd	7.4	10.9	10.6	11.4	0.70592	
Spot #5	2971	336	113	0.91	2.44	nd	1.29	0.28	0.67	0.22	nd	0.13	0.02	0.04	0.02	nd	6.6	26.4	12.8	8.0	0.70679	
Spot #6	2365	160	325	0.40	1.20	nd	0.88	0.20	0.73	0.17	nd	0.11	0.02	0.04	0.02	nd	4.4	17.7	14.2	11.8		
Spot #7	2401	239	171	0.60	1.80	nd	1.23	0.32	1.00	0.25	nd	0.19	0.02	0.04	0.12	nd	6.6	17.2	14.5	10.5	0.70600	
Spot #8	2693	5	234	1.12	3.65	nd	2.45	0.55	1.32	0.36	nd	0.26	0.04	0.09	0.04	nd	11.2	21.6	16.9	8.5		
Spot #9	2048	111	481	0.90	3.47	nd	2.80	0.81	1.57	0.47	nd	0.26	0.03	0.06	0.03	nd	11.9	19.3	27.6	7.2		
Spot #10	2068	7	242	0.93	3.85	nd	2.95	0.74	1.57	0.54	nd	0.27	0.04	0.08	0.05	nd	12.6	12.2	15.5	7.2		
Spot #11	1851	105	410	0.35	1.20	nd	0.75	0.21	0.75	0.11	nd	0.08	0.01	0.01	0.02	nd	4.2	11.9	11.3	13.7	0.70592	
Spot #12	2202	314	496	0.86	3.32	nd	2.25	0.66	1.16	0.36	nd	0.17	0.02	0.05	0.03	nd	10.2	20.2	24.6	6.7		
Spot #16	2398	3	110	1.09	2.31	nd	0.85	0.42	0.67	0.16	nd	0.08	0.01	0.04	0.05	nd	6.4	14.4	8.9	6.6	0.70642	20.1
Spot #17	1624	7	44	0.53	0.90	nd	0.23	0.09	0.55	0.05	nd	0.05	0.02	0.05	0.03	nd	3.1	11.1	3.1	22.6		
Spot #18	1352	28	72	0.59	1.57	nd	0.63	0.14	0.84	0.10	nd	0.07	0.01	0.03	0.02	nd	4.8	20.2	7.4	21.0		
Spot #20	3509	9	165	1.86	3.45	nd	0.89	0.16	0.56	0.12	nd	0.10	0.02	0.08	0.03	nd	7.8	39.2	5.3	12.0		
Spot #21	2157	115	73	3.43	6.64	nd	1.37	0.23	1.60	0.17	nd	0.07	0.01	0.04	0.03	nd	15.1	76.0	8.2	23.7	0.70641	
Spot #22	2315	2	31	0.31	0.97	nd	0.46	0.10	0.55	0.06	nd	0.03	0.01	0.02	0.01	nd	3.0	21.6	11.2	20.5		
Spot #23	2348	0	52	1.25	3.18	nd	0.68	0.09	1.58	0.05	nd	0.04	0.01	nd	0.03	nd	8.5	29.6	3.4	65.9	0.70571	
Spot #24	3546	2	181	0.32	0.41	nd	0.14	0.04	0.15	0.02	nd	0.01	0.00	0.00	0.01	nd	1.3	29.7	5.6	15.4	0.70589	
Spot #25	2343	0	68	0.74	1.16	nd	0.33	0.05	0.50	0.06	nd	0.03	0.01	0.02	0.02	nd	3.4	30.6	3.4	28.1		
Spot #26	1898	31	88	1.82	4.90	nd	1.69	0.38	1.08	0.22	nd	0.16	0.02	0.05	0.04	nd	11.3	31.9	10.6	10.4	0.70632	20.2
Spot #27	1263	54	126	0.86	2.35	nd	0.73	0.22	0.84	0.07	nd	0.05	0.01	0.02	0.05	nd	6.0	12.3	5.0	16.1		
Spot #28	2041	109	181	0.11	0.19	nd	0.09	0.19	0.25	0.02	nd	0.02	0.01	0.01	0.01	nd	1.2	5.1	13.8	6.6	0.70568	
Spot #29	1777	13	139	0.35	0.98	nd	0.39	0.06	0.37	0.04	nd	0.06	0.01	0.01	nd	nd	2.6	nd	nd	22.3		
Spot #30	4990	5	109	0.13	0.46	nd	0.38	0.12	0.13	0.13	nd	0.18	0.04	0.13	0.11	nd	1.9	0.8	1.2	3.0	0.70630	
Spot #31	2610	167	441	1.10	4.09	nd	2.78	0.66	1.23	0.43	nd	0.27	0.04	0.07	0.04	nd	11.8	17.5	16.8	6.6		
Spot #32	2801	137	349	1.14	3.91	nd	2.52	0.59	1.09	0.40	nd	0.26	0.04	0.08	0.04	nd	11.2	18.4	15.0	6.5		
Spot #33	2624	216	522	0.58	1.93	nd	1.35	0.32	0.76	0.23	nd	0.14	0.02	0.06	0.07	nd	6.2	5.7	5.0	8.3		
Spot #34	2428	99	394	0.42	1.49	nd	1.12	0.32	0.74	0.21	nd	0.15	0.02	0.06	0.05	nd	5.2	6.3	7.5	8.3		
Spot #35	1849	94	198	0.38	1.22	nd	0.89	0.24	0.78	0.17	nd	0.14	0.02	0.04	0.04	nd	4.7	6.1	6.1	11.1		
Spot #36	2440	123	70	0.23	0.76	nd	0.63	0.16	0.55	0.08	nd	0.08	0.01	0.03	0.02	nd	3.1	9.1	10.3	12.9		
Spot #38	2115	29	117	0.23	1.11	nd	1.70	0.46	1.91	0.28	nd	0.17	0.03	0.06	0.04	nd	7.9	4.2	13.0	15.2	0.70639	
Spot #39	3395	24	93	1.94	3.27	nd	1.34	0.32	0.51	0.17	nd	0.12	0.02	0.04	0.02	nd	8.3	61.9	16.0	6.0	0.70686	
Spot #40	2154	4	82	1.01	3.31	nd	2.24	0.60	0.99	0.37	nd	0.22	0.03	0.06	0.02	nd	9.8	30.6	28.8	6.0		
Spot #41	2000	15	94	0.83	2.73	nd	2.17	0.54	1.05	0.39	nd	0.31	0.03	0.04	0.02	nd	9.2	31.3	32.6	6.7	0.70633	
Spot #42	2124	44	207	0.25	0.74	nd	0.62	0.17	0.63	0.17	nd	0.08	0.01	0.02	0.02	nd	3.3	8.0	8.9	11.2		
Spot #43	2159	70	102	0.70	2.22	nd	1.37	0.37	0.63	0.23	nd	0.11	0.02	0.03	0.02	nd	6.3	22.7	19.1	6.2	0.70733	
Spot #44	2015	13	78	0.58	1.60	nd	0.99	0.24	0.39	0.17	nd	0.09	0.01	0.03	0.02	nd	4.5	15.7	10.3	5.7		
Spot #45	2090	14	378	0.37	1.32	nd	0.98	0.26	0.66	0.16	nd	0.10	0.01	0.03	0.01	nd	4.5	16.9	18.8	9.3	0.70736	
North Su, J2	_227_7_R2																					
Spot #1	5826	31	57	0.25	0.46	nd	0.20	0.02	0.03	0.08	nd	0.06	0.02	0.05	0.04	nd	1.2	4.2	0.6	2.0	0.70805	22.4
Spot #3	3626	111	107	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	0.70845	23.6
Spot #4	3539	17	50	0.33	1.11	nd	0.89	0.27	0.16	0.31	nd	0.37	0.07	0.19	0.16	nd	3.9	1.4	1.8	1.6	0.70763	23.2

Table S1. Trace element (Sr, Mg, Ba, REE) and isotopic (Sr, S) compositions of anhydrites sampled in the Manus Basin, Papua New Guinea. Concentrations given in parts per million (ppm).

Septer Septer<		Sr	Mg	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	ΣREE	La_N/Yb_N	$\mathrm{Sm}_{\mathrm{N}}/\mathrm{Yb}_{\mathrm{N}}$	$Eu_N\!/\!Eu_N^*$	⁸⁷ Sr/ ⁸⁶ Sr	$\delta^{34}S~(\text{\%})$
Sport# 29 1.5 0.7 0.4 n.0 0.8 0.4 0.8 n.0 2.0 0.4 0.8 1.9 Sport# 205 1 12 1.3 0.4 0.5 0.6 0.2 0.8 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 <td>North Su, J2_</td> <td>_227_7_R2 (</td> <td>continued)</td> <td>)</td> <td></td>	North Su, J2_	_227_7_R2 (continued))																			
Sports Sports<	Spot #5	2342	9	13	0.07	0.34	nd	0.54	0.21	0.17	0.32	nd	0.26	0.05	0.14	0.08	nd	2.3	0.6	2.8	1.9		22.5
Sport P Sport P <t< td=""><td>Spot #8</td><td>2799</td><td>3</td><td>39</td><td>1.58</td><td>7.43</td><td>nd</td><td>10.85</td><td>4.79</td><td>2.77</td><td>4.99</td><td>nd</td><td>4.65</td><td>0.74</td><td>1.75</td><td>1.12</td><td>nd</td><td>42.7</td><td>1.0</td><td>4.6</td><td>1.7</td><td></td><td></td></t<>	Spot #8	2799	3	39	1.58	7.43	nd	10.85	4.79	2.77	4.99	nd	4.65	0.74	1.75	1.12	nd	42.7	1.0	4.6	1.7		
Sport 1 Sport 1 <t< td=""><td>Spot #9</td><td>2255</td><td>1</td><td>192</td><td>1.39</td><td>4.73</td><td>nd</td><td>5.01</td><td>1.90</td><td>1.20</td><td>1.98</td><td>nd</td><td>2.02</td><td>0.39</td><td>1.04</td><td>1.16</td><td>nd</td><td>21.7</td><td>0.8</td><td>1.8</td><td>1.9</td><td></td><td></td></t<>	Spot #9	2255	1	192	1.39	4.73	nd	5.01	1.90	1.20	1.98	nd	2.02	0.39	1.04	1.16	nd	21.7	0.8	1.8	1.9		
Sport 1 3089 1 885 1 885 1 1 1 1 </td <td>Spot #10</td> <td>3967</td> <td>1</td> <td>758</td> <td>2.36</td> <td>5.40</td> <td>nd</td> <td>3.61</td> <td>1.15</td> <td>0.72</td> <td>1.22</td> <td>nd</td> <td>1.27</td> <td>0.28</td> <td>0.79</td> <td>1.00</td> <td>nd</td> <td>18.2</td> <td>1.6</td> <td>1.2</td> <td>1.8</td> <td></td> <td></td>	Spot #10	3967	1	758	2.36	5.40	nd	3.61	1.15	0.72	1.22	nd	1.27	0.28	0.79	1.00	nd	18.2	1.6	1.2	1.8		
Spot #1 Spot #1 Spot #3 38 1 898 1 898 1 898 1 898 1 898 1 898 1 898 1 8 5 2 0 0.0064 Spot #1 3989 10 73 1.48 599 1.40 2.5 1.41 0.17 0.48 0.25 0.44 0.41 1.5 2.07 1.6 0.0064 Spot #1 363 0.14 81 5.5 7.6 1.6 0.007 3.5 nd 0.30 0.44 0.41 0.41 0.41 0.00 0.01 0.30 0.44 0.41 <th< td=""><td>Spot #11</td><td>3009</td><td>5</td><td>583</td><td>1.68</td><td>3.85</td><td>nd</td><td>2.55</td><td>0.68</td><td>0.48</td><td>0.78</td><td>nd</td><td>1.04</td><td>0.24</td><td>0.72</td><td>0.90</td><td>nd</td><td>13.1</td><td>1.3</td><td>0.8</td><td>2.0</td><td></td><td></td></th<>	Spot #11	3009	5	583	1.68	3.85	nd	2.55	0.68	0.48	0.78	nd	1.04	0.24	0.72	0.90	nd	13.1	1.3	0.8	2.0		
Sport 3 Sport 3 Sport 3 Sport 4 Sport 4 <t< td=""><td>Spot #12</td><td>3885</td><td>1</td><td>898</td><td>3.02</td><td>7.16</td><td>nd</td><td>5.08</td><td>1.59</td><td>1.09</td><td>1.81</td><td>nd</td><td>1.83</td><td>0.37</td><td>1.04</td><td>1.10</td><td>nd</td><td>24.8</td><td>1.8</td><td>1.5</td><td>2.0</td><td>0.70649</td><td></td></t<>	Spot #12	3885	1	898	3.02	7.16	nd	5.08	1.59	1.09	1.81	nd	1.83	0.37	1.04	1.10	nd	24.8	1.8	1.5	2.0	0.70649	
Sport#1Sport#3SportSportSport #3Sport #3<	Spot #13	3872	23	33	0.25	0.62	nd	0.58	0.21	0.25	0.31	nd	0.36	0.08	0.25	0.14	nd	3.2	1.2	1.6	3.0	0.70640	
Spot 3 Spot 3 14 9 9 9 9 2 8 1.48 0.51 1.67 0.52 0.64 0.64 nd 1.52 0.77 2.5 1.6 0.7075 Spot 41 3.54 1.51 1.18 0.61 0.64 0.79 nd 3.30 0.81 2.44 0.81 <	Spot #14	3989	10	73	1.48	5.99	nd	7.46	2.67	1.40	2.74	nd	2.47	0.46	1.21	0.83	nd	27.6	1.2	3.4	1.6		
Sport P Sport P <t< td=""><td>Spot #15</td><td>3621</td><td>20</td><td>90</td><td>0.70</td><td>2.86</td><td>nd</td><td>3.73</td><td>1.48</td><td>0.81</td><td>1.64</td><td>nd</td><td>1.67</td><td>0.32</td><td>0.84</td><td>0.64</td><td>nd</td><td>15.2</td><td>0.7</td><td>2.5</td><td>1.6</td><td>0.70675</td><td></td></t<>	Spot #15	3621	20	90	0.70	2.86	nd	3.73	1.48	0.81	1.64	nd	1.67	0.32	0.84	0.64	nd	15.2	0.7	2.5	1.6	0.70675	
Spot #1 Sect #1 <t< td=""><td>Spot #16</td><td>3543</td><td>14</td><td>81</td><td>1.56</td><td>7.07</td><td>nd</td><td>9.60</td><td>3.78</td><td>2.21</td><td>3.55</td><td>nd</td><td>3.30</td><td>0.54</td><td>1.27</td><td>0.80</td><td>nd</td><td>35.4</td><td>1.3</td><td>5.1</td><td>1.8</td><td></td><td></td></t<>	Spot #16	3543	14	81	1.56	7.07	nd	9.60	3.78	2.21	3.55	nd	3.30	0.54	1.27	0.80	nd	35.4	1.3	5.1	1.8		
Spot #19 2748 15 44 0.62 1.72 nd 0.83 2.55 nd 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.24 0.36 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.41 0.4 0.40 0.25 0.27 0.60 0.60 0.60 0.61 0.14 nd 0.44 0.20 0.21 0.70670 Spot #22 2663 2 95 0.17 0.82 0.27 0.75 nd 0.75 0.16 0.15 0.11 nd 5.0 0.70679 Spot #23 3465 1 446 0.40 0.40 0.10 0.11 nd 0.7079 0.70679 0.7064 1.3 0.30 0.604 0.10 0.11 nd 1.7 0.6 1.3 0.20 0.70768	Spot #17	3650	0	118	0.58	1.71	nd	1.45	0.61	0.64	0.79	nd	0.91	0.18	0.49	0.49	nd	8.3	0.8	1.3	2.8	0.70627	
Spot #20 3218 12 714 0.70 0.48 nd 0.45 0.22 0.44 nd 0.41 0.21 0.01 0.31 nd 3.41 0.4 0.90 2.2 Spot #20 3226 9 102 0.15 0.44 nd 0.44 0.20 0.18 0.31 0.44 0.4 0.40 0.45 0.20 0.15 0.44 0.17 nd 0.21 0.65 0.10 0.16 0.14 0.4 0.4 0.4 0.4 0.4 0.4 0.10 0.28 0.31 nd 0.31 nd 0.4 1.0 0.33 nd 0.31 nd 0.30 0.31 0.31 0.32 0.32 0.31 <td>Spot #18</td> <td>2748</td> <td>15</td> <td>44</td> <td>0.62</td> <td>1.72</td> <td>nd</td> <td>2.98</td> <td>1.31</td> <td>0.83</td> <td>2.55</td> <td>nd</td> <td>3.64</td> <td>0.83</td> <td>2.44</td> <td>2.36</td> <td>nd</td> <td>19.3</td> <td>0.2</td> <td>0.6</td> <td>1.4</td> <td>0.70675</td> <td></td>	Spot #18	2748	15	44	0.62	1.72	nd	2.98	1.31	0.83	2.55	nd	3.64	0.83	2.44	2.36	nd	19.3	0.2	0.6	1.4	0.70675	
Spot 20 3092 14 50 0.15 0.41 nd 0.24 0.03 0.06 0.16 0.14 nd 2.4 0.70578 Spot 22 2363 2 95 0.17 0.82 0.18 0.25 0.18 0.25 0.17 nd 0.25 0.77 nd 0.14 0.20 0.72 0.61 0.44 0.16 0.41 0.16 0.11 0.03 1.4 1.4 0.16 0.17 0.82 0.21 0.71 nd 0.71 0.82 0.31 nd 0.53 0.12 0.35 0.31 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.11	Spot #19	3218	12	714	0.17	0.48	nd	0.56	0.25	0.22	0.44	nd	0.49	0.11	0.31	0.31	nd	3.4	0.4	0.9	2.0		
Spir#2 Spir#2<	Spot #20	3092	14	505	0.15	0.41	nd	0.44	0.20	0.18	0.26	nd	0.32	0.06	0.16	0.14	nd	2.4	0.7	1.5	2.4	0.70578	
Spot #22 Spot #32 Spot #32 Spot #33 Spot #34 Spot #35 I Spot #34 Spot #35 I Spot #34 Spot #35 I Spot #35 Spot #35 I Spot #35 Spot #35 I Spot #35 Spot #31 Spot #31 Spot #31 Spot #31 Spot #31 Spot #35 Spot	Spot #21	3226	9	102	0.15	0.46	nd	0.45	0.23	0.19	0.30	nd	0.36	0.07	0.20	0.17	nd	2.7	0.6	1.4	2.2	0.70600	
Spot#32 3301 1 89 0.51 1.54 nd 1.08 0.22 0.37 0.40 0.10 0.28 0.31 nd 5.3 1.1 1.0 2.1 0.70679 Spot#25 1466 0 99 0.32 0.91 nd 0.83 0.41 0.33 0.4 1.0 3.3 0.4 1.0 3.3 0.70674 Spot#26 4371 29 159 0.10 0.31 nd 0.28 0.11 nd 0.12 nd 1.1 nd 1.2 0.70674 Spot#28 3333 76 117 0.60 0.26 nd 0.28 0.18 0.11 nd 1.7 0.4 1.3 2.7 Spot#30 3644 31 105 0.26 nd 0.29 0.83 nd 0.14 nd 1.3 1.4 1.4 2.3 0.7076 Spot#33 353 4 40 0.22 1.08	Spot #22	2963	2	95	0.17	0.82	nd	1.25	0.58	0.29	0.75	nd	0.91	0.18	0.51	0.44	nd	6.1	0.3	1.4	1.4		
Spot#24 349 1 34 0.18 0.54 nd 0.59 0.73 0.61 0.45 0.12 0.11 0.16 0.45 0.12 nd 0.55 0.15 0.15 0.12 nd 0.15 0.15 0.12 nd 0.15 0.15 0.12 nd 0.13 0.17 nd 0.01	Spot #23	3301	1	89	0.51	1.54	nd	1.09	0.29	0.22	0.37	nd	0.44	0.10	0.28	0.31	nd	5.3	1.1	1.0	2.1	0.70679	
Spot#25 4166 0 0.92 0.91 nd 0.92 0.32 0.52 nd 0.75 0.16 0.45 nd 5.8 0.5 0.8 3.6 0.70624 Spot#26 452 2 111 0.16 0.50 0.13 0.11 0.11 0.15 0.12 0.11 0.1 1.1 2.4 Spot#26 3393 76 117 0.66 0.29 0.13 0.16 0.18 0.4 0.05 0.10 0.14 nd 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.10 0.14 nd 1.6 0.45 0.77 0.14 nd 1.6 0.45 0.77 0.14 nd 1.6 0.45 0.77 0.14 0.10 0.14 nd 1.6 0.45 0.77 0.16 0.14 0.35 0.14 0.4 1.4 2.4 0.77 0.75 0.31 0.45 0.4 1.5	Spot #24	3495	1	34	0.18	0.54	nd	0.58	0.29	0.37	0.40	nd	0.53	0.12	0.35	0.31	nd	3.9	0.4	1.0	3.3		
Spot#26 462 2 111 0.16 0.40 0.12 0.17 nd 0.21 0.15 0.12 nd 0.21 0.9 1.1 2.4 Spot#28 339 76 117 0.06 0.26 nd 0.29 0.13 0.14 nd 0.20 0.04 0.10 0.11 nd 1.7 0.6 1.3 3.2 0.70818 Spot#29 393 76 117 0.06 0.26 nd 0.22 0.08 0.14 nd 0.10 0.14 nd 0.15 0.13 0.11 nd 0.13 0.14 0.14 nd 0.15 0.13 0.13 0.13 0.13 0.13 0.13 0.15 0.15	Spot #25	4166	0	69	0.32	0.91	nd	0.99	0.35	0.52	0.55	nd	0.75	0.16	0.45	0.45	nd	5.8	0.5	0.8	3.6	0.70624	
Spot#28 4371 29 159 0.10 0.31 nd 0.28 0.13 0.17 nd 0.20 0.04 0.10 0.11 nd 1.7 0.6 1.3 2.7 Spot#30 3444 31 105 0.66 nd 0.22 0.08 0.10 0.11 nd 1.7 0.4 1.3 3.2 0.70818 Spot#30 3444 31 105 0.60 0.22 0.08 0.19 nd 0.16 0.14 0.41 0.14 0.41 1.4 0.3 0.66 2.7 Spot#31 333 4 40 0.22 1.01 nd 1.36 0.39 0.35 nd 6.8 0.3 1.3 2.4 1.35 5.7 1.8 0.7734 Spot#33 333 74 4456 3.5 0.28 0.36 0.41 0.8 0.39 0.32 0.4 1.8 0.23 1.8 0.7774 Spot	Spot #26	4632	2	111	0.16	0.50	nd	0.40	0.12	0.11	0.17	nd	0.21	0.05	0.15	0.12	nd	2.1	0.9	1.1	2.4		
Spot#30 364 31 0.5 0.26 nd 0.22 0.05 0.13 0.11 nd 1.7 0.4 1.3 3.2 0.70818 Spot#31 312 16 59 0.07 0.24 nd 0.22 0.08 0.10 0.14 nd 0.14 nd 1.3 0.32 0.66 2.7 Spot#31 3124 16 59 0.07 0.24 nd 0.13 0.08 0.19 nd 0.16 0.04 0.14 nd 1.6 0.3 1.0 1.5 Spot#33 353 44 0.02 0.10 nd 1.36 0.53 0.88 nd 0.69 0.15 0.39 0.32 nd 6.8 0.3 1.17 0.44 1.8 2.3 0.70734 Spot#33 3213 10 53 0.17 0.79 nd 1.08 0.26 nd 0.59 0.14 0.14 0.4 2.9 0.4	Spot #28	4371	29	159	0.10	0.31	nd	0.28	0.13	0.13	0.17	nd	0.20	0.04	0.10	0.11	nd	1.7	0.6	1.3	2.7		
Spot #30 364 31 105 0.20 nd 0.22 0.08 0.14 nd 0.16 0.14 nd 1.3 0.3 0.6 2.7 Spot #31 3124 16 59 0.70 0.24 nd 0.30 0.81 0.91 0.40 0.20 0.44 0.46 0.44 0.46 0.33 0.46 1.0 0.20 0.44 0.39 0.35 nd 5.4 0.4 1.4 2.3 0.70736 Spot #33 353 4 40 0.22 1.01 nd 1.36 0.54 0.33 0.83 nd 0.44 0.18 0.53 0.46 nd 6.8 0.3 1.3 2.4 Spot #33 333 4 40 0.29 0.11 0.30 0.25 nd 4.8 0.4 1.8 2.3 2.4 Spot #33 313 38 77 0.09 0.29 nd 0.42 0.08 0.19 0.14 0.14 nd 2.9 0.4 1.6 8.0 0.70671	Spot #29	3393	76	117	0.06	0.26	nd	0.29	0.13	0.16	0.18	nd	0.22	0.05	0.13	0.11	nd	1.7	0.4	1.3	3.2	0.70818	
Spot #31 3124 16 59 0.07 0.24 nd 0.03 0.03 0.03 0.04 0.12 0.04 0.14 0.14 nd 1.6 0.3 1.0 1.5 Spot #33 3533 4 40 0.22 1.01 nd 1.36 0.45 0.33 0.83 nd 0.64 0.14 0.33 0.46 nd 6.8 0.33 1.3 2.4 Spot #33 3533 4 40 0.22 1.01 nd 1.36 0.44 0.33 0.83 0.15 0.16 0.30 0.25 nd 6.8 0.3 1.3 2.4 Spot #33 313 38 77 0.09 0.29 nd 0.36 0.21 0.70 nd 0.59 0.11 0.30 0.25 nd 0.14 nd 2.9 0.4 1.6 8.0 0.30 1.7 0.68 0.61 0.62 0.10 0.14 0.14 nd 2.9 0.4 1.6 8.0 0.3 0.7071 0.5 0.4 0.58 </td <td>Spot #30</td> <td>3644</td> <td>31</td> <td>105</td> <td>0.05</td> <td>0.20</td> <td>nd</td> <td>0.22</td> <td>0.08</td> <td>0.10</td> <td>0.14</td> <td>nd</td> <td>0.16</td> <td>0.04</td> <td>0.10</td> <td>0.14</td> <td>nd</td> <td>1.3</td> <td>0.3</td> <td>0.6</td> <td>2.7</td> <td></td> <td></td>	Spot #30	3644	31	105	0.05	0.20	nd	0.22	0.08	0.10	0.14	nd	0.16	0.04	0.10	0.14	nd	1.3	0.3	0.6	2.7		
Spot #32 Spot #33 4 0.18 0.81 nd 1.16 0.43 0.63 0.66 0.14 0.39 0.53 nd 5.44 0.4 1.4 2.3 0.70736 Spot #33 3533 4 40 0.22 1.01 nd 1.36 0.54 0.53 0.46 nd 6.8 0.3 1.3 2.4 Spot #35 3213 10 53 0.17 0.79 nd 1.08 0.44 0.55 0.11 0.30 0.25 nd 4.8 0.4 1.8 2.3 1.0 Spot #35 3213 10 53 0.17 0.79 nd 0.35 0.51 nd 0.59 0.14 0.14 nd 4.8 0.4 1.8 2.3 1.0 5.0 5.0 1.0 0.30 0.25 nd 4.8 0.4 1.8 2.3 1.8 5.0 0.70736 1.0 0.30 0.4 0.01 0.05 0.01 0.14 0.14 nd 0.53 0.46 0.14 1.4 0.4	Spot #31	3124	16	59	0.07	0.24	nd	0.30	0.13	0.08	0.19	nd	0.20	0.04	0.12	0.14	nd	1.6	0.3	1.0	1.5		
Spot #33 353 4 40 0.22 1.01 nd 1.36 0.53 0.83 nd 0.18 0.35 0.46 nd 6.8 0.3 1.3 2.4 Spot #34 4456 3 55 0.28 1.31 nd 1.93 0.69 0.44 0.79 nd 0.39 0.32 nd 7.4 0.6 2.3 1.8 0.7073 Spot #35 3213 10 53 0.70 nd 0.59 0.11 0.30 0.25 nd 1.4 nd 2.9 0.4 1.7 7.6 Spot #37 2413 5 56 0.12 0.40 nd 0.32 0.22 0.17 0.56 nd 0.53 0.09 0.24 0.22 nd 5.6 0.3 0.70671 Spot #39 2787 12 67 0.09 0.28 nd 0.17 0.20 0.59 0.31 nd 0.33 0.66 0.16 0.13 nd 2.9 0.4 1.7 7.2 Spot #30 278<	Spot #32	3425	8	74	0.18	0.81	nd	1.16	0.45	0.39	0.62	nd	0.69	0.14	0.39	0.35	nd	5.4	0.4	1.4	2.3	0.70736	
Spot #3 4456 3 55 0.28 1.31 nd 1.93 0.09 0.44 0.79 nd 0.79 0.15 0.39 0.52 nd 7.4 0.66 2.3 1.8 0.7074 Spot #35 313 10 53 0.17 0.79 nd 0.55 0.11 0.30 0.22 nd 7.4 0.66 2.3 1.8 0.7074 Spot #36 3153 38 77 0.09 0.29 nd 0.55 0.51 nd 0.59 0.14 0.14 nd 2.9 0.4 1.7 7.6 Spot #37 2413 5 35 0.09 0.24 0.22 nd 5.2 0.4 1.6 8.0 0.70671 Spot #37 240 1 55 0.26 0.97 nd 0.32 0.57 0.53 0.06 0.16 0.13 nd 6.1 0.3 0.6 0.46 0.51 nd 6.1 0.3 0.6 0.31 nd 6.1 0.3 0.6 0.51 nd	Spot #33	3533	4	40	0.22	1.01	nd	1.36	0.54	0.53	0.83	nd	0.84	0.18	0.53	0.46	nd	6.8	0.3	1.3	2.4		
Spot #5 3213 10 53 0.17 0.0 0.9 nd 1.03 0.01 0.03 0.25 nd 4.8 0.4 1.8 2.3 Spot #35 313 38 77 0.09 0.29 nd 0.30 0.25 0.14 0.14 nd 2.9 0.4 1.7 7.6 Spot #37 2413 5 35 0.08 0.30 0.25 nd 0.14 0.14 nd 2.9 0.4 1.7 7.6 7.6 Spot #39 2787 12 67 0.09 0.28 nd 0.17 0.26 nd 0.53 0.09 0.24 0.22 nd 5.2 0.4 1.6 8.4 0.70671 Spot #39 2787 12 67 0.09 0.28 nd 0.17 0.43 0.43 0.66 nd 0.73 0.16 0.46 0.51 nd 6.1 0.3 0.9 0.4 0.77 0.16 0.46 0.51 nd 6.1 0.3 0.60 0.51 nd	Spot #34	4456	3	55	0.28	1.31	nd	1.93	0.69	0.44	0.79	nd	0.79	0.15	0.39	0.32	nd	7.4	0.6	2.3	1.8	0.70734	
Spot #35 353 358 77 0.09 0.29 nd 0.28 0.21 0.58 0.26 nd 0.29 0.05 0.14 0.14 nd 2.9 0.4 1.7 7.6 Spot #37 2413 5 35 0.08 0.30 nd 0.32 0.76 0.38 nd 0.42 0.08 0.19 0.16 nd 3.6 0.3 1.5 8.0 0.70671 Spot #39 2787 12 67 0.09 0.28 nd 0.17 0.20 0.59 0.31 nd 0.33 0.06 0.16 0.13 nd 6.1 0.3 0.9 3.4 0.70729 Spot #40 2140 1 55 0.26 0.97 nd 0.40 0.46 0.56 nd 0.58 0.12 0.33 0.37 nd 6.1 0.3 0.9 3.4 0.70729 Spot #41 363 7 182 0.16 0.70 nd 1.04 0.58 0.12 0.33 0.31 nd 6.1 <t< td=""><td>Spot #35</td><td>3213</td><td>10</td><td>53</td><td>0.17</td><td>0.79</td><td>nd</td><td>1.08</td><td>0.44</td><td>0.35</td><td>0.51</td><td>nd</td><td>0.59</td><td>0.11</td><td>0.30</td><td>0.25</td><td>nd</td><td>4.8</td><td>0.4</td><td>1.8</td><td>2.3</td><td></td><td></td></t<>	Spot #35	3213	10	53	0.17	0.79	nd	1.08	0.44	0.35	0.51	nd	0.59	0.11	0.30	0.25	nd	4.8	0.4	1.8	2.3		
Spot #3/ 2413 5 53 0.08 0.03 nd 0.42 0.08 nd 0.19 0.16 nd 5.6 0.3 1.5 8.0 0.70671 Spot #38 2859 8 56 0.12 0.40 nd 0.46 0.32 1.17 0.56 nd 0.53 0.09 0.24 0.22 nd 5.2 0.4 1.6 8.4 0.70461 Spot #39 2787 12 67 0.09 0.28 nd 0.17 0.26 nd 0.33 0.06 0.16 0.13 nd 5.2 0.4 1.7 7.2 Spot #40 2140 1 55 0.26 0.97 nd 0.44 0.61 0.66 nd 0.59 0.12 0.33 0.37 nd 6.1 0.3 0.9 3.4 0.70729 Spot #44 3632 11 94 0.87 0.27 nd 0.58 0.12 0.33 0.37 nd 4.6 0.3 1.5 55 Spot #44 3632 <th< td=""><td>Spot #36</td><td>3153</td><td>38</td><td>//</td><td>0.09</td><td>0.29</td><td>nd</td><td>0.36</td><td>0.21</td><td>0.58</td><td>0.26</td><td>nd</td><td>0.29</td><td>0.05</td><td>0.14</td><td>0.14</td><td>nd</td><td>2.9</td><td>0.4</td><td>1./</td><td>/.6</td><td>0 70(71</td><td></td></th<>	Spot #36	3153	38	//	0.09	0.29	nd	0.36	0.21	0.58	0.26	nd	0.29	0.05	0.14	0.14	nd	2.9	0.4	1./	/.6	0 70(71	
Spot #38 2859 8 56 0.12 0.40 nd 0.46 0.32 1.17 0.56 nd 0.33 0.09 0.24 0.22 nd 5.2 0.4 1.6 84 0.70461 Spot #39 2787 12 67 0.09 0.28 nd 0.17 0.20 0.59 0.31 nd 0.33 0.06 0.16 0.13 nd 2.9 0.4 1.7 7.2 Spot #40 2140 1 55 0.26 0.97 nd 0.43 0.43 0.56 nd 0.73 0.16 0.46 0.51 nd 5.9 0.7 1.2 2.7 Spot #41 316 38 217 0.38 1.23 nd 1.17 0.43 0.56 nd 0.58 0.12 0.33 0.37 nd 5.9 0.7 1.2 2.7 7 1.2 2.7 1.2 0.33 0.37 nd 1.6 0.3 1.6 1.6 0.3 1.6 1.6 1.6 1.6 1.5 5 <td< td=""><td>Spot #37</td><td>2413</td><td>5</td><td>35</td><td>0.08</td><td>0.30</td><td>nd</td><td>0.32</td><td>0.22</td><td>0.76</td><td>0.38</td><td>nd</td><td>0.42</td><td>0.08</td><td>0.19</td><td>0.16</td><td>nd</td><td>5.0</td><td>0.3</td><td>1.5</td><td>8.0</td><td>0.70671</td><td></td></td<>	Spot #37	2413	5	35	0.08	0.30	nd	0.32	0.22	0.76	0.38	nd	0.42	0.08	0.19	0.16	nd	5.0	0.3	1.5	8.0	0.70671	
Spot #39 2787 12 67 0.09 0.28 nd 0.17 0.29 0.31 nd 0.35 0.06 0.16 0.13 nd 2.9 0.4 1.7 7.2 Spot #40 2140 1 55 0.26 0.97 nd 0.17 0.43 0.66 nd 0.73 0.16 0.46 0.51 nd 6.1 0.3 0.9 3.4 0.70729 Spot #41 4316 38 217 0.38 1.23 nd 1.17 0.43 0.43 0.56 nd 0.59 0.12 0.33 0.37 nd 5.1 nd 6.1 0.3 1.6 1.6 0.70 1.2 2.7 Spot #44 3632 11 94 0.87 3.27 nd 3.17 1.13 0.60 1.27 nd 1.33 0.27 0.76 0.64 nd 1.36 0.9 1.9 1.5 5 5 5 0.47 1.12 nd 1.19 0.23 0.60 0.52 nd 8.1 0.1	Spot #38	2859	8	56	0.12	0.40	nd	0.46	0.32	1.17	0.56	nd	0.53	0.09	0.24	0.22	nd	5.2	0.4	1.0	8.4	0./0461	
Spot #40 2140 1 35 0.26 0.97 nd 0.90 0.44 0.61 0.75 0.16 0.46 0.51 nd 0.1 0.5 0.9 5.4 0.70/29 Spot #41 4316 38 217 0.38 1.23 nd 1.17 0.43 0.43 0.56 nd 0.59 0.12 0.33 0.37 nd 5.9 0.7 1.2 2.7 Spot #42 3283 7 182 0.16 0.70 nd 1.44 0.46 0.26 0.51 nd 0.58 0.12 0.33 0.37 nd 4.6 0.3 1.6 1.6 1.5 Spot #44 3632 11 94 0.87 3.27 nd 3.17 1.13 0.60 1.27 nd 1.19 0.23 0.60 0.52 nd 8.1 0.1 2.0 1.4 4.4 0.43 0.55 nd 1.72 0.33 0.89 0.75 nd 1.57 0.9 2.0 1.4 4.94 1.44 1.49 0.	Spot #39	2/8/	12	67	0.09	0.28	na	0.17	0.20	0.59	0.31	na	0.55	0.06	0.16	0.15	na	2.9	0.4	1./	7.2	0 70720	
spot#41 4316 38 217 0.38 1.23 110 1.17 0.43 0.43 0.39 0.12 0.33 0.37 110 3.9 0.7 1.2 2.7 Spot #42 3283 7 182 0.16 0.70 nd 1.04 0.46 0.26 0.51 nd 0.53 0.31 nd 4.6 0.3 1.6 1.6 1.7 Spot #44 3632 11 9 0.77 nd 1.33 0.60 1.27 nd 1.33 0.27 0.76 0.64 nd 13.6 0.9 1.9 1.5 Spot #45 3876 3 124 0.11 0.67 nd 1.94 0.95 0.47 1.12 nd 1.19 0.23 0.60 0.52 nd 8.1 0.1 2.0 1.4 Spot #46 3586 22 80 0.94 3.60 nd 3.55 1.38 0.69 1.49 nd 1.49 0.26 0.66 0.48 nd 10.4 0.1 3.2 1.4<	Spot #40	2140	1 20	217	0.20	1.22	nd	0.90	0.44	0.01	0.00	nd	0.75	0.10	0.46	0.51	nd	0.1 5.0	0.5	0.9	5.4 2.7	0.70729	
spot #42 3263 7 162 0.10 1.04 0.46 0.26 0.26 0.31 1d 0.31 1d 1.3.6 0.31 1d 1.4.6 0.31	Spot #41	4510	30	182	0.58	0.70	nd	1.17	0.45	0.45	0.50	nd	0.59	0.12	0.33	0.37	nd	3.9	0.7	1.2	2.7		
Spot #44 302 11 54 0.67 5.27 11d 5.17 11.13 0.00 12.7 11d 1.13 0.27 0.70 0.64 11d 1.3 0.77 11.3 0.69 1.57 11.3 0.69 1.67 11.3 0.10 0.13 0.04 11d 0.13 0.77 11d 0.11 0.67 11.3 0.00 1.27 11d 1.13 0.00 1.13 0.13 0.23 0.60 0.52 nd 8.1 0.1 2.0 1.4 Spot #46 3586 22 80 0.94 3.60 nd 3.55 1.38 0.69 1.54 nd 1.19 0.23 0.60 0.52 nd 15.7 0.9 2.0 1.4 Spot #46 3586 23 0.67 nd 0.23 nd 1.49 0.26 0.66 0.48 nd 10.4 0.1 3.2 1.4 Spot #49 4583 10 190 0.17 0.67 nd 1.01 0.35 0.23 nd 0.70	Spot #42	3283	11	04	0.10	2.27	nd	2.17	1.12	0.20	1.27	nd	1.22	0.12	0.54	0.51	nd	4.0	0.5	1.0	1.0		
Spot #45 3870 3870 3870 3870 3870 3870 3870 3870 3870 12 110 1175 0.23 0.00 0.32 110 1.1 0.1 2.0 11 11 11 110 1175 0.32 0.00 0.32 110 0.1 2.0 11 11 11 1111 1111	Spot #45	2976	2	124	0.87	0.67	nd	1.04	0.05	0.00	1.27	nd	1.55	0.27	0.70	0.04	nd	9.1	0.9	2.0	1.5		
Spot#40 5500 22 300 6.74 5.00 1.07 6.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.18 0.14 0.14 0.14 0.16 0.17 0.18 0.10 0.25 0.05 0.12 0.13 nd 1.04 0.1 3.2 1.44 0.66 0.49 0.26 0.66 0.66 0.68 0.48 nd 1.04 0.1 3.2 1.44 0.69 1.49 nd 1.49 0.26 0.66 0.66 0.48 nd 1.04 0.1 3.2 1.44 0.69 1.34 nd 0.23 0.67 0.14 0.13 nd 1.04 0.10 0.35 0.23 0.53 0.43 nd 1.44 0.10 0.69 0.25 0.05 0.12 0.13 nd 1.04 <	Spot #46	3586	22	80	0.11	3.60	nd	3 55	1 38	0.47	1.12	nd	1.17	0.25	0.00	0.52	nd	15.7	0.1	2.0	1.4		
Spot #4/s 2431 5 101 0.05 1.44 0.05 1.47 0.05 1.47 0.05 0.14 0.17 0.16 0.22 1.47 Spot #48 2833 76 233 0.11 0.34 nd 0.33 0.17 0.18 0.23 nd 0.25 0.05 0.12 0.13 nd 2.0 0.6 1.3 2.9 0.70649 Spot #49 4583 10 190 0.17 0.67 nd 0.03 0.23 0.53 nd 0.70 0.14 0.37 0.42 nd 4.6 0.3 0.9 1.6 0.70643 Spot #51 3394 5 69 0.16 0.71 nd 0.96 0.39 0.26 0.44 nd 0.47 0.42 nd 4.6 0.3 0.9 1.6 0.70771 Spot #52 1691 2 6 0.08 0.36 nd 0.49 0.24 0.69 0.52 nd 0.54 0.12 0.35 0.23 nd 4.2 0.2 1.1	Spot #47	4401	5	161	0.07	0.67	nd	2.60	1.50	0.69	1.04	nd	1.72	0.55	0.65	0.75	nd	10.4	0.5	2.0	1.4		
Spot #49 4583 10 190 0.17 0.67 nd 1.01 0.35 0.23 0.53 nd 0.07 0.14 0.37 0.42 nd 4.6 0.3 0.9 1.6 0.70643 Spot #49 4583 10 190 0.17 0.67 nd 1.01 0.35 0.23 0.53 nd 0.37 0.42 nd 4.6 0.3 0.9 1.6 0.70643 Spot #51 3394 5 69 0.16 0.17 0.67 nd 0.26 0.44 nd 0.46 0.90 0.22 0.19 nd 4.0 0.6 2.2 1.9 0.70771 Spot #52 1691 2 6 0.08 0.36 nd 0.49 0.24 0.69 0.52 nd 0.54 0.12 0.35 0.23 nd 4.0 0.66 0.22 nd 4.0 0.66 0.22 nd 4.2 0.2 1.1 5.9 0.70456 Spot #54 1306 1 45 0.03 0.11	Spot #48	2833	76	233	0.11	0.34	nd	0.33	0.17	0.05	0.23	nd	0.25	0.20	0.00	0.43	nd	2.0	0.1	13	2.9	0 70649	
Spot #51 3394 5 69 0.16 0.71 nd 0.96 0.39 0.26 0.44 nd 0.16 0.12 0.12 0.14 0.17 0.14 0.16 0.107 0.17 Spot #51 3394 5 69 0.16 0.71 nd 0.96 0.39 0.26 0.44 nd 0.66 0.99 0.22 0.19 nd 4.0 0.6 2.2 1.9 0.70771 Spot #52 1691 2 6 0.36 0.49 0.24 0.69 0.52 nd 0.42 0.19 nd 4.0 0.6 2.2 0.19 nd 4.0 0.6 2.2 0.19 nd 4.0 0.6 2.2 0.19 nd 4.0 2.2 1.0 0.70771 Spot #53 1887 0 24 0.10 0.40 nd 0.56 0.44 1.40 0.71 nd 0.66 0.12 0.30 0.27 nd 6.3 0.3 1.8 7.6 0.70477 Spot #54 1306	Spot #49	4583	10	190	0.17	0.54	nd	1.01	0.35	0.23	0.53	nd	0.25	0.05	0.12	0.42	nd	4.6	0.0	0.9	1.6	0.70643	
Spot #52 1691 2 6 0.08 0.36 nd 0.49 0.24 0.69 0.52 nd 0.10 0.11 15 0.10 1.1 15 0.10 0.11 15 0.10 0.11 16 0.12 0.10 0.12 0.11 16 0.12 0.13 11 16 0.12 0.13 11 16 0.12 0.13 11 15 0.10 0.14 11 0.39 0.30 nd 0.40 0.07 0.19 0.13 nd 4.2 0.2 1.1 5.9 0.70456 Spot #54 1306 1 45 0.03 0.11 nd 0.14 0.11 0.39 0.30 nd 0.40 0.07 0.19 0.13 nd 2.2 0.2 0.9 6.2 0.70569	Spot #51	3394	5	69	0.16	0.71	nd	0.96	0.39	0.25	0.44	nd	0.46	0.09	0.22	0.12	nd	4.0	0.5	2.2	1.0	0.70771	
Spot #53 1887 0 24 0.04 0.04 0.14 0.11 0.39 0.30 nd 0.37 0.12 0.33 0.25 nd 4.2 0.2 1.1 1.5 0.70477 Spot #53 1887 0 24 0.10 0.40 0.41 1.40 0.71 nd 0.36 0.12 0.30 0.27 nd 6.3 0.3 1.8 7.6 0.70477 Spot #54 1306 1 45 0.03 0.11 nd 0.14 0.39 0.30 nd 0.40 0.07 0.19 0.13 nd 2.2 0.2 0.9 6.2 0.70569	Spot #57	1601	2	6	0.08	0.36	nd	0.70	0.24	0.20	0.52	nd	0.54	0.12	0.22	0.23	nd	4.0	0.0	1.1	5.0	0.70456	
Spot#54 1306 1 45 0.03 0.11 nd 0.14 0.11 0.39 0.30 nd 0.40 0.07 0.19 0.13 nd 2.2 0.2 0.9 6.2 0.70569	Spot #52 Spot #53	1887	0	24	0.00	0.50	nd	0.56	0.44	1 40	0.52	nd	0.54	0.12	0.30	0.25	nd	63	0.2	1.1	7.6	0 70477	
0.000 in 0.000 in	Spot #54	1306	1	45	0.03	0.11	nd	0.14	0.11	0.39	0.30	nd	0.40	0.07	0.19	0.13	nd	2.2	0.2	0.9	62	0 70569	
Spot#55 1503 2 10 012 057 nd 0.84 051 0.41 0.81 nd 0.92 0.19 0.52 0.55 nd 5.7 0.1 1.0 2.0 070783	Spot #55	1503	2	10	0.12	0.57	nd	0.84	0.51	0.41	0.81	nd	0.92	0.19	0.52	0.55	nd	57	0.1	1.0	2.0	0 70783	
Spot #56 3965 573 100 120 4.69 nd 5.02 195 163 2.43 nd 2.51 0.48 127 127 nd 2.35 0.6 1.6 2.3 0.70604	Spot #56	3965	573	100	1 20	4 69	nd	5.02	1 95	1.63	2 43	nd	2 51	0.48	1 27	1 27	nd	23.5	0.6	1.0	2.0	0 70604	
Spot #57 3712 85 50 0.83 351 nd 3.86 137 103 178 nd 164 0.31 0.84 0.66 nd 165 0.8 2.2 0	Spot #57	3712	85	50	0.83	3.51	nd	3.86	1 37	1.03	1 78	nd	1 64	0.31	0.84	0.66	nd	16.5	0.8	2.2	2.0	0.70004	
Spot#S 4807 11 59 145 527 nd 578 202 124 2.11 nd 221 040 104 080 nd 232 12 27 18 070631	Spot #58	4807	11	59	1.45	5.27	nd	5,78	2.02	1.24	2.11	nd	2.21	0.40	1.04	0.80	nd	23.2	1 2	2.2	1.8	0,70631	
Spot#59 4097 15 27 0.24 0.77 nd 0.76 0.27 0.24 0.37 nd 0.41 0.07 0.19 0.09 nd 3.6 1.7 3.1 2.3	Spot #59	4097	15	27	0.24	0.77	nd	0.76	0.27	0.24	0.37	nd	0.41	0.07	0.19	0.09	nd	3.6	17	3.1	2 3		

Table S1. Trace element (Sr, Mg, Ba, REE) and isotopic (Sr, S) compositions of anhydrites sampled in the Manus Basin, Papua New Guinea. Concentrations given in parts per million (ppm).