
vol. 176, no. 1 the american naturalist july 2010
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abstract: There is growing interest in predicting the abundance
of a species in a region from the occupancy of cells in a uniform
grid overlaid on the region. When the number of individuals in each
cell follows a negative binomial distribution, prediction is in general
not possible from the number of unoccupied cells alone. A prediction
method based on the number of unoccupied cells and the number
containing a single individual is described and shown to work well
on simulated and real data.
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Introduction

A problem of interest in statistical ecology is predicting
the number of a sessile organism in a region from the
number of uniform cells overlaid on the region containing
no individuals—or, equivalently, at least one individual
(Hui et al. 2009). Here, we apply the term “prediction”
to random variables and the term “estimation” to fixed
but unknown parameters. The practical issue here is that
it is often much less costly to determine that a cell is empty
than to count the number of individuals in it. In a widely
cited contribution, He and Gaston (2000) proposed a pre-
dictor under the assumption that the cell counts are in-
dependent, identically distributed negative binomial ran-
dom variables. The negative binomial distribution is
commonly used as a model for clustered counts. Conlisk
et al. (2007) pointed out that the method of He and Gaston
(2000) is based on an incorrect assumption about the
aggregation of negative binomial counts and that predic-
tion is not strictly possible without additional information.
In response, He and Gaston (2007) argued that, for a
number of data sets, this assumption is nearly correct and
the method works well. The purpose of this note is to
show that the problem can be avoided altogether if pre-
diction is based on the number of cells containing no
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individuals and the number containing exactly one
individual.

Model and Method

Let the random variable be the number of individualsNj

in cell j ( , 2, …, J). Following He and Gaston (2000),j p 1
we assume that the counts in different cells are indepen-
dent and that has a negative binomial distribution withNj

probability mass function

[m/(g�1)] nj

G{[m/(g � 1)] � n } 1 1jPr (N p n ) p 1 �j j ( ) ( )n!G[m/(g � 1)] g g

p p(n ), (1)j

where is the mean of and is the ratio ofm 1 0 N g 1 1j

the variance of to m. He and Gaston (2000) used aNj

different parameterization, but we believe this one is more
useful.

Let the random variable be the total num-
J

N p � Njjp1

ber of individuals in the region. Interest centers on pre-
dicting N from the observed number mo of unoccupied
cells. The optimal predictor is the conditional expected
value of N, given mo:

(J � m )moE(NFm ) p , (2)o 1 � p(0)

where from equation (1) . The expression[m/(1�g)]p(0) p g

in equation (2) is the product of the number of occupied
cells and the expected number of individuals in a cell,
given that it is occupied. To estimate , it is nec-E(NFm )o

essary to estimate m and g. This is not possible from mo

alone.
The idea proposed here is to base the prediction of N

on both mo and the number m1 of cells containing exactly
one individual. The optimal predictor in this case is

m � p(1)
E(NFm , m ) p m � m , (3)1o 1 1 1 1 � [p(0) � p(1)]
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Table 1: Relative bias and root mean squared
error (RMSE) of prediction for selected com-
binations of J, m, and g based on 200 simu-
lated data sets

J, m, and g Relative bias Relative RMSE

200:
1:

2 �.016 .103
5 �.080 .314
10 �.172 .610

2:
2 �.024 .137
5 �.068 .275
10 �.127 .500

500:
1:

2 �.002 .062
5 �.035 .154
10 �.055 .382

2:
2 �.012 .082
5 �.023 .151
10 �.044 .222

1,000:
1:

2 .032 .041
5 �.018 .113
10 �.048 .261

2:
2 �.013 .036
5 .000 .096
10 �.042 .164

where and, from equation (1),m p J � (m � m )11 o 1

. As before, to estimate , it[m/(1�g)]�1p(1) p mg E(NFm , m )o 1

is necessary to estimate m and g. Unlike before, this is
now possible.

Let the random variables Mo, M1, and M11 be the num-
ber of cells containing no individuals, exactly one indi-
vidual, and greater than one individual, respectively. The
joint distribution of Mo, M1, and M11 is multinomial with
J trials and probabilities p(0), p(1), and .1 � [p(0) � p(1)]
The log likelihood for m and g on the basis of the observed
values mo, m1, and m11 is

log L(m, g) p

m log p(0) � m log p(1) � m log {1 � [p(0) � p(1)]}.1o 1 1

(4)

The maximum likelihood (ML) estimates and of mˆm̂ g

and g are found by maximizing equation (4) numerically.
This is an example of ML estimation based on a censored
sample. These estimates can be substituted into equation
(3) to estimate the optimal predictor of N. For later use,
we will write this predictor as

ˆ ˆˆN p m � m f(m, g), (5)11 1

where is the ML estimate ofˆˆf(m, g) [m � p(1)]/{1 �
.[p(0) � p(1)]}

Some Results

We conducted a small simulation experiment to assess the
performance of . For selected combinations of J, m, andN̂
g, we simulated independent negative binomial counts N1,
N2, …, NJ and found the corresponding value . TheN̂
process was repeated 200 times for each combination. In
table 1, the bias and root mean squared error (RMSE) of

, expressed as a proportion of the expected value Jm ofN̂
N, is reported. It is clear from table 1 that underpredictsN̂
N. However, the relative underprediction bias is small pro-
vided that J is not too small and g is not too large. Sim-
ilarly, the relative RMSE is generally small provided that
J is not too small and g is not too large. In overall terms,
given its simplicity, appears to perform reasonably wellN̂
in most of the cases considered here.

Turning to an application to real data, figure 1 of He
and Gaston (2000) shows the locations of in-N p 591
dividuals of the midcanopy tree species Dacryodes rubi-
ginosa in a 50-ha plot in the Pasoh Forest in Malaysia. We
applied the prediction method described above to these
data, which were kindly provided by F. He, using the grid
of cells also shown in figure 1 of He and Gaston25 # 25-m
(2000). Of the cells in this grid, containJ p 800 m p 525o

no individuals and contain exactly one indi-m p 1411

vidual. For these counts, , which underpredictsN̂ p 573
N by only around 3%.

It is possible to go beyond point prediction to construct
a prediction interval for N by the following bootstrap pro-
cedure. Form a bootstrap sample of J cells by sampling
with replacement from the original set of cells. Let and∗mo

be the number of cells in this bootstrap sample that∗m1

contain zero individuals and one individual, respectively.
Let and be the ML estimates of m and g based on∗ ∗ˆm̂ g

and , and let be the pre-∗ ∗ ∗ ∗ ∗ˆ ˆˆm m N p m � m f(m , g )1o 1 1 1

dictor of N based on and . The lower and upper∗ ∗ˆm̂ g

bounds of a bootstrap prediction interval for N are1 � a

given by and , where and∗ ∗ ∗ˆ ˆ ˆ ˆ ˆ2N � N 2N � N N1�a/2 a/2 1�a/2

are the upper and lower (a/2) quantiles, respectively,∗N̂a/2

of the distribution of found by repeated bootstrap sam-∗N̂
pling. For the Pasoh Forest data, the 0.95 prediction in-
terval based on 200 bootstrap samples was (520, 612),
which comfortably covers the true value.
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Discussion

The purpose of this note has been to describe a simple
occupancy-based predictor of abundance that is in the
spirit of, but avoids the problem with, the predictor of He
and Gaston (2000). The earlier predictor requires that each
cell is searched until it is determined to be empty or until
the first individual is found. The predictor proposed here
requires that each cell is searched until it is determined
to be empty or to contain exactly one individual or until
the second individual is found. The feasibility of both of
these sampling schemes will depend on circumstances.
Censored sampling (and a related method called binomial
sampling) has been used for different purposes in the man-
agement of insect and plant pests (e.g., Binns and Nyrop
1992; Gold et al. 1996).

The basic idea of this note can be extended by basing
prediction on the numbers of cells containing exactly k
individuals for , 1, …, K for a specified choice ofk p 0
K. Binns and Bostanian (1988) showed that, in estimating
the parameters of the negative binomial distribution, little
is gained by increasing the censoring point K beyond m.
This suggests that the method based on mo and m1 alone
is appropriate in situations where the combination of cell
size and abundance results in an average cell count of
around 1.

The analysis here has focused on the case where total
abundance N is a random variable. Conlisk et al. (2007)
also discussed the case in which N is treated as fixed but
unknown. In that case, the cell counts follow the Polya-
Eggenberger distribution with N and g (but not m) as
parameters. The joint probability mass function of Mo and
M1 can be found using the results of Charalambides
(2005). This allows ML estimation of N based on mo and
m1 (but not on mo alone), although the required com-
putation is somewhat delicate. In most practical cases, we
would expect the two methods to give similar results.

Like other occupancy-based abundance predictors, the
one proposed here assumes that the underlying distribu-

tion of cell counts is negative binomial. This or another
distributional assumption cannot be checked from the
censored counts alone. The negative binomial distribution
is a flexible model commonly used for cell counts, so the
assumption seems reasonable. Nevertheless, it would be
interesting to assess the robustness of this predictor to
departures from the negative binomial assumption.

Acknowledgments

Helpful comments from E. Conlisk, F. He, and two anon-
ymous reviewers are acknowledged with gratitude.

Literature Cited

Binns, M. R., and N. J. Bostanian. 1988. Binomial and censored
sampling in estimation and decision making for the negative bi-
nomial distribution. Biometrics 44:473–483.

Binns, M. R., and J. P. Nyrop. 1992. Sampling insect populations for
the purpose of IPM decision making. Annual Review of Ento-
mology 37:427–453.

Charalambides, C. A. 2005. Derivation of a joint occupancy distri-
bution via a bivariate inclusion and exclusion formula. Metrika
62:149–160.

Conlisk, E., J. Conlisk, and J. Harte. 2007. The impossibility of es-
timating a negative binomial clustering parameter from presence-
absence data: a comment on He and Gaston. American Naturalist
170:651–654.

Gold, H. J., J. Bay, and G. G. Wilkerson. 1996. Scouting for weeds,
based on the negative binomial distribution. Weed Science 44:504–
510.

He, F., and K. J. Gaston. 2000. Estimating species abundance from
occurrence. American Naturalist 156:553–559.

———. 2007. Estimating abundance from occurrence: an under-
determined problem. American Naturalist 170:655–659.

Hui, C., M. A. McGeoch, B. Reyers, P. C. Le Roux, M. Greve, and
S. L. Chown. 2009. Extrapolating population size from the
occupancy-abundance relationship and the scaling pattern of oc-
cupancy. Ecological Applications 19:2038–2048.

Associate Editor: Priyanga Amarasekare
Editor: Mark A. McPeek


