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Abstract  Inspired by previous studies that have indicated consistent or even 1 

well-constrained relationships among carbon (C), nitrogen (N) and phosphorus (P) in 2 

soils, we have endeavored to explore general soil C:N:P ratios in China on a national 3 

scale, as well as the changing patterns of these ratios with soil depth, developmental 4 

stages and climate; we also attempted to determine if well-constrained C:N:P 5 

stoichiometrical ratios exist in China’s soil. Based on an inventory data set of 2,384 6 

soil profiles, our analysis indicated that the mean C:N, C:P and N:P ratios for the entire 7 

soil depth (as deep as 250 cm for some soil profiles) in China were 11.9, 61 and 5.2, 8 

respectively, showing a C:N:P ratio of ~60:5:1. C:N ratios showed relatively small 9 

variation among different climatic zones, soil orders, soil depth and weathering stages, 10 

while C:P and N:P ratios showed a high spatial heterogeneity and large variations in 11 

different climatic zones, soil orders, soil depth and weathering stages. No 12 

well-constrained C:N:P ratios were found for the entire soil depth in China. However, 13 

for the 0-10 cm organic-rich soil, where has the most active organism-environment 14 

interaction, we found a well-constrained C:N ratio (14.4, molar ratio) and relatively 15 

consistent C:P (136) and N:P (9.3) ratios, with a general C:N:P ratio of 134:9:1. 16 

Finally, we suggested that soil C:N, C:P and N:P ratios in organic-rich topsoil could be 17 

a good indicator of soil nutrient status during soil development.  18 

 19 

Keywords    Carbon · Nitrogen · Phosphorus · Stoichiometry · China 20 

21 
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Introduction      22 

 23 

All substances on earth are composed of chemical elements, and elemental 24 

composition is the most fundamental in biology and ecology (Michaels 2003; Schimel 25 

2003). Thus a cell, an organism, an ecosystem, and even the biosphere can be reduced 26 

to its elemental composition in some simple elemental ratios.   Although soil is 27 

influenced by complex factors such as climate, soil parent materials, topography and 28 

development stages, and is often characterized by high biological diversity, structural 29 

complexity and spatial heterogeneity (Chadwick et al. 1999; Cleveland and Liptzin 30 

2007), many previous studies (e.g. Melillo et al. 2003; Vitousek et al. 2002, 2004; 31 

Brady and Weil 2002; Post et al. 1982; Walker and Adams 1958) have indicated that 32 

soil carbon (C), nitrogen (N) and phosphorus (P) are often closely related. Walker 33 

(1956) suggested that C, N, and P are associated in fairly definite proportions in soil 34 

organic matter (SOM). Based on the analysis of 22 grassland soil profiles, Walker and 35 

Adams (1958) found a constrained correlation among organic C (SOC) and organic P 36 

(SOP) in the soil. Through a literature review of 48 published resources, Cleveland and 37 

Liptzin (2007) found a well constrained C:N:P ratio in global soil microbial biomass 38 

and 0-10cm organic-rich soil. All these findings reported relatively constrained 39 

elemental ratios, or homeostasis, in plants and soil organisms. It is suggested that the 40 

feedbacks from living organisms can modify soil nutrient content and result in 41 

“Redfield-like” correlations between the elemental ratio of the biota and soil in 42 

terrestrial ecosystems (Neff et al. 2000; Stener and Elser 2002; Cleveland and Liptzin 43 
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2007).  44 

      Redfield (1958) found that planktonic biomass contains C, N and P in an 45 

atomic ratio of 106:16:1, similar to the ratio of C, N and P in marine water. This C:N:P 46 

ratio, known as “Redfield Ratio”, has stimulated a large number of subsequent studies 47 

on the C:N:P stoichiometry of multiple biota in aquatic and terrestrial ecosystems (e.g., 48 

Sterner 1995; Elser et al. 1996; Stener and Elser 2002; Cleveland and Liptzin 2007; 49 

McGroddy et al. 2004). Compared to marine ecosystems, terrestrial ecosystems vary 50 

greatly due to varied and complex habitats, biota and environmental factors.  51 

Furthermore, soil is far more complex than other terrestrial systems.  The relative 52 

immobility of the soil tends to promote and maintain spatial heterogeneity in nutrient 53 

cycles.  This heterogeneity is caused by both local-scale disturbances, such as land 54 

use change and human interferences, and regional-scale differences in glacial history, 55 

climate, geologic parent material, topography, and biotic diversity (Jenny 1941).  56 

Nutrients are continuously redistributed in terrestrial ecosystems by a number of ways 57 

including plant litterfall, soil water flow and plant-atmosphere exchange, none of 58 

which appears within marine environments (McGroddy et al. 2004).  Unlike the 59 

homogeneous aquatic environment, soil is highly heterogeneous both horizontally and 60 

vertically. The soil P supply depends on the total P content and the weathering stage of 61 

the parent material, both of which are characterized by spatial heterogeneities. 62 

Furthermore, the infiltration and diffusion rate of nutrients in soil is much slower than 63 

in the aquatic ecosystem. As the result, the feedbacks from terrestrial organisms are 64 

limited to the top-soil, while the supply of P comes from the parent materials that are 65 
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located at the bottom of the soil. This mechanism results in a complex and highly 66 

variable vertical pattern of total P (TP) content through the soil profile (Brady and Weil 67 

2002). Based on vertical soil analysis to a depth of 53 cm, Walker and Adams (1958) 68 

concluded that the total soil P content was related to the P content of parent material, 69 

and decreased down through the soil profile at a rate much slower than the rate of C 70 

and N. This finding indicates that soil has inconsistent vertical patterns of N:P ratio. 71 

Although Cleveland and Liptzin (2007) stated that a remarkably constrained soil C:N:P 72 

ratio of 186:13:1 exists on the global scale, their analysis was mainly based on samples 73 

from surface soils (0~10 cm mineral soil). The constrained C:N:P ratio in the topsoil 74 

found by Cleveland and Liptzin (2007) may not be applicable to the entire depth of soil 75 

profiles. 76 

Considering the high spatial heterogeneity of soil nutrients and the dependence of 77 

P supply on weathering conditions of parent material, large-scale soil datasets of soil C, 78 

N, and P that cover a range of ecosystem types and soil weathering stages are 79 

necessary to examine the patterns of elemental ratio in the soil. However, even the 80 

most frequently cited global soil database today, the World Inventory of Soil Emission 81 

(WISE) database (Batjes 2002), contains less than 900 soil profiles that record soil P 82 

content. While several previous studies tried to compile soil observations through 83 

published reports, inconsistent soil sampling and measuring approaches, as well as 84 

incomplete site descriptions from various literature resources has usually limited the 85 

quantity and quality of available data sources. 86 

Since China has various soil types that developed under different bioclimatic 87 
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conditions and are derived from various parent materials in diversified topographical 88 

environments, the study of the relationships among C, N, and P in China’s soil is likely 89 

to make great contributions to the establishment of a global C, N, and P relationship. 90 

Based on soil chemical data from the Second Chinese Soil Survey, which provided 91 

C:N:P for over 2,473 typical soil profiles across China that were sampled and 92 

measured in standard approaches (Wang, et al. 2003; Tian, et al. 2006; Zhang, et al. 93 

2005; Wu et al. 2003; Yang et al. 2007), our objectives in this study are to: 1) explore 94 

the general C:N, C:P and N:P ratios in China’s soil at a national scale; and 2) find how 95 

these ratios change with climate, soil orders, soil depth and weathering status. Based 96 

on these two objectives, we have also tried to verify whether or not well-constrained 97 

C:N:P ratios exist in the top and deeper soils. 98 

 99 

Materials and methods 100 

 101 

Data sources   102 

 103 

We examined geo-referenced soil profiles collected in the second Chinese soil survey 104 

and developed mean values for various soil groups (National Soil Survey Office 1993, 105 

1994a, b, 1995a, b, 1996).  This database includes 2,473 soil profiles, each of which 106 

represents a soil type in the Chinese Soil Taxonomy system (Li and Zhao 2001; Wang 107 

et al 2003).  Each soil profile is divided into A, B, C and other horizons, according to 108 

actual soil conditions.  The properties investigated include the thickness of horizons, 109 
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total soil organic matter (SOM) (determined by the K2Cr2O7-H2SO4 digestion method), 110 

total P content (measured by Perchloric acid digestion followed by the molybdate 111 

colorimetric test), total soil N (analyzed with the Kjeldahl procedure), soil bulk density 112 

(measured according to the core sampling method), soil available P (The Olsen method 113 

(Olsen et al., 1954) was used for available P analysis) and geographic location 114 

information. SOC content was calculated as a portion of SOM which has been 115 

described by Wang et al. (2003). Of all the 2,473 soil profiles, 2,405 have total P 116 

content records, 2,462 have SOM data and 2,445 have total N records, 1,760 have 117 

available P records, and 1,535 profiles have geographic location information. We 118 

excluded soil profiles that did not have any of the total C, N or P data. The final dataset 119 

used in this analysis includes 2,384 soil profiles. We integrated the soil data for the 120 

1,535 profiles for which we had geographical information into a Geographical 121 

Information System (GIS) database to show their geographic distribution (Fig. 1).  122 

 The Chinese Soil Taxonomy system (National Soil Survey Office 1998) was 123 

used in this soil survey.  This system has a hierarchical structure, with 12 orders, 61 124 

great groups, 235 sub-great groups, 909 families and more than 2,473 soil types (soil 125 

profiles, each with its distribution area in China).  Using the transformation procedure 126 

of Zhang et al. (2005), we were able to compare these results with the United Nation 127 

Food and Agriculture Organization/UNESCO (1988) soil classification system, and 128 

also the equivalent USDA soil taxonomy system (Soil Survey Staff 1975).  129 

     Calculation of soil C, N and P ratios: The soil total C, N and P concentrations 130 

(mg/kg) were transformed to a unit of mmol/kg, and C: N, C: P and N: P ratios for each 131 
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type soil were calculated as molar ratios (atomic ratio), rather than mass ratios.  To 132 

reflect China’s soil C, N and P ratios more accurately, we used both area-weighted and 133 

number-weighted average methods to calculate the mean ratios.  The formula for 134 

area-weighted mean soil C, N and P ratios is:  135 
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where CNPR  is the area-averaged C: N, C: P or N: P ratio, i refers to the ith soil 137 

type; n is the total number of soil, iAREA  is the area of the ith soil type, and iCNPR  is 138 

the corresponding C: N, C: P or N: P ratio of the ith soil type. The number-weighted 139 

average also has its own advantages as the impacts of soil area on soil C, N and P ratio 140 

patterns can be discerned and results from different research studies can be compared.  141 

Therefore, we calculated mean C, N and P ratios for different soil orders, soil depth 142 

and climate zones using number-weighted average.  The formula for a 143 

number-weighted average is: 144 
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Because the classification systems of soil horizons are different for different soil 146 

samples, we divided each soil profile into four layers with a range of soil depths (0-10 147 

cm, 20-50 cm, 50-100 cm, and >100 cm, respectively), rather than into the horizontal 148 

or subhorizontal types (such as O, A, E, B and C horizons).  The patterns of soil C, N 149 

and P concentrations and their ratios for these four layers were compared in all soil 150 

types and orders.  We calculated the C: N, C: P and N: P ratios of each soil layer using 151 
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the soil C, N and P concentration data of the corresponding soil type and layer.  The 152 

mean C, N and P concentrations and C: N, C: P and N: P ratios of each soil layer were 153 

based on number-weighted averages (Formula 2).  The mean C: N, C: P and N: P 154 

ratios for all Chinese soil types (entire depth) were based on the number-averaged 155 

values of all the soil types (Formula 2) rather than on soil sub-great groups or soil 156 

orders.  157 

We changed the Chinese soil taxonomic classification system to produce 12 soil 158 

orders (Entisols, Gelisols, Histosols, Inceptisols, Andisols, Aridisols, Vertisols, Alfisols, 159 

Mollisols, Ultisols, Spodosol, and Oxisols) which correspond to the USDA soil 160 

taxonomic system (Zhang et al. 2005).  We then compared the C, N and P 161 

concentrations and ratios of different soil orders.  The C, N and P concentrations and 162 

ratios of each soil sub-great group were averaged based on Formula 2.  We 163 

reclassified these 12 soil orders into three soil weathering status groups: slightly 164 

weathered soils (Entisols, Gelisols, Inceptisols,), moderately weathered soils (Aridisols, 165 

Vertisols, Alfisols, Mollisols), and strongly weathered soils (Ultisols, Spodosol, 166 

Oxisols) according to the soil developmental time series described by Brady and Weil 167 

(2002) and Zhang et al. (2005).  We compared the C, N and P ratios of these three 168 

weathering status groups based on data that considered entire soil depth. 169 

 170 

Division of climate zones 171 

 172 
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Precipitation and temperature are known to influence vegetative cover, plant litter 173 

quality and soil biota, which in turn influence the physical and chemical properties of 174 

soil, and soil development.  Thus, climate can leave a distinct imprint on soil C, N, 175 

and P concentrations and ratios.  China is characterized by great spatial variability in 176 

climate, ranging from tropical to cool temperate zones (Tian et al., 2003; Wu et al., 177 

2003).  The tropical & subtropical zone is extremely humid due to the influence of 178 

Asian monsoon circulations (Tian et al., 2003), while in frigid highland areas annual 179 

precipitation and temperature are very low due to the northern location and higher 180 

elevation (See Table 1).  Considering the obvious differences in climate and parent 181 

soil types, and applying the Holdridge life-zone classification system, we divided 182 

China into five zones: frigid highland, cool temperate, warm temperate, temperate 183 

desert, and tropical & subtropical, based on the 1: 1,000,000 Land-use Map of China 184 

(Wu 1988).  These five zones reflect only climate differences among these zones, 185 

rather than any specific land covers.  For example, Temperate Desert includes 186 

woodlands, grasslands, desert, wetlands, and other types of land cover.  We obtained 187 

the mean soil C, N and P concentrations and ratios in each climate zone by averaging 188 

the corresponding values of all soil types within the climate zone (Formula 2).   189 

Statistical Analysis 190 

     We performed all the statistic analyses using SPSS v11.5 software (SPSS Inc., 191 

Chicago, Illinois). We used variance of analysis (ANOVA) with LSD (Least Square 192 

Difference) post hoc test of significance to compare C, N and P concentrations, 193 

densities, and ratios within and across groups. The mean values were reported with 194 
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95% confidence intervals. 195 

 196 

Results and analysis 197 

 198 

General patterns of soil C, N and P ratios in China 199 

 200 

Although soil C, N and P content varied significantly due to the differences in climate, 201 

parent material, biota, topography and disturbance history, we found a general pattern 202 

of soil C, N and P ratios in China (Table 2).  The number-weighted mean soil C: N, C: 203 

P and N: P ratios were 11.9, 61 and 5.2, respectively, which was not vastly different 204 

from area-weighted means (12.1, 61, and 5.0, respectively, Table 2). The C: N, C: P 205 

and N: P ratios of the surface organic-rich layer (0-10 cm of A horizon) were 14.4, 136, 206 

and 9.3, respectively. From the frequency distribution of soil C, N and P ratios (Fig. 2), 207 

we found that all the soil elemental ratios followed a normal distribution pattern, with 208 

most C:N, C:P and N:P ratios in the range of 6-12, 24-48, and 3-6, respectively.  209 

 The C:N, C:P and N:P ratios of the organic-rich soil layer were significantly 210 

higher than corresponding values for total soil depth (Table 2). The C:N:P ratio 211 

(134:9:1) of this layer was also different from that of the total soil depth (60:5:1). 212 

However, the C: available P (15,810) and N: available P (1114) ratios of the 213 

organic-rich layer were significantly lower than that of the total soil depth (64,233 and 214 

5,725, respectively).  215 

 The C:N ratio showed no significant difference among different soil depths 216 
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where the deeper soil was greater than 50cm (Table 3). The C: P ratio of the 217 

organic-rich soil layer was over four times higher than that of the >100 cm soil layer 218 

and showed significant decrease as soil depth increased; this can be attributed to soil C 219 

concentration decreasing faster than soil P concentration as soil depth increases. The 220 

vertical pattern of the N:P ratio was similar to that of the C:P ratio, showing a peak 221 

value in 0-10 cm organic-rich soil (Table 3).     222 

The highest C:N ratios were found in Northeast China, the eastern Tibet Plateau 223 

and sandy areas of Northwest China(Fig. 3a).  The C:P and N:P ratios showed almost 224 

the same distribution patterns across China.  The highest C: P and N:P ratios were 225 

found in Northeast China and the eastern Tibet Plateau (Fig. 3b, 2c), which might be 226 

due to C and N having a higher rate of accumulation than P’s weathering rate.   227 

 228 

Soil C, N and P ratios among different climate zones and soil orders 229 

 230 

The highest C:N ratio (13.6) was in the frigid highland zone where there is soil with 231 

higher C content and lower N, while the lowest one (10.7) was in the warm temperate 232 

zone which has the lowest C and N contents compared to other climate zones. Soil C: P 233 

and N: P ratios varied considerably among different climate zones (Table 4). The 234 

highest C: P (78) and N:P (6.4) ratios occurred in the tropical & subtropical zone which 235 

had the lowest P content, while the lowest C:P (32) and N:P (2.6) ratios were in the 236 

temperate desert zone where N content was lower and P content was the greatest.  237 

 Soil orders are assigned largely on the basis of soil properties that reflect the 238 
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course of major soil developments; thus, C, N and P ratios of a specific soil order can 239 

reflect the accumulated impact of climate, organisms, relief, parent material, and time 240 

on soil chemical properties (Jenny, 1941).  In China, only nine soil orders were found, 241 

with Histosols and Andisols being the least frequent (Table 5).  We found that 242 

Histosols had the highest C: N ratio, while Vertisols and Entisols had the lowest.  243 

With the exception of Histosols, the differences between C: N ratios and the eight 244 

remaining soil orders in China were small (variance range from 10.73 to 13.38).  245 

Histosols had the highest C: P (340) and N:P ratios (17.77), while Aridisols had the 246 

lowest C:P (29.0) and N:P (2.60) ratios.      247 

 248 

Discussions 249 

 250 

Do well-constrained soil C:N:P stoichiometric ratios exist? 251 

 252 

Well-constrained C:N:P ratios in planktonic biomass were found to have important 253 

impacts on nutrient cycles and biological processes in marine ecosystems. The 254 

“Redfield-like” ratios were found in plants (e.g. Reich and Oleksyn 2004; McGroddy 255 

et al. 2004) and soil microbial communities (e.g. Cleveland and Liptzin 2007). Could 256 

the relatively fixed elemental ratios in terrestrial organisms (such as plant leaves, litters, 257 

and microbes) result in consistent nutrient ratios in the soil just like that found by 258 

Redfield (1958) in the marine ecosystem? Could the analysis of soil element ratios 259 

provide insight into the nature of nutrient limitation in terrestrial ecosystems? 260 
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Cleveland and Liptzin (2007) studied the C:N:P stoichiometry in soil and stated that 261 

similar to marine ecosystems, the atomic C:N:P ratios in the top soil were 262 

well-constrained due to the interactions between the environment and soil organisms. 263 

Their study, however, only focused on surface soils (typically 0-10 cm), which 264 

represent organic-rich horizons, and their data were obtained from discrete publications. 265 

The limited sample size (< 150) of their study also indicates that it is necessary for 266 

further studies to verify the well-constrained relationships at the top soil.  267 

 Based on more than 2,437 soil profiles and over 8,000 soil layers across China, 268 

we carried out the correlation analyses among soil total C, N and P and among total C, 269 

total N and available P (Table 9), the results revealed that the C:N ratio of the 270 

organic-rich soil layer was well-constrained considering the relatively high correlation 271 

coefficient (0.93) among C and N concentrations.  There were also relatively 272 

constrained C:P and N:P ratios in the organic-rich soil layer (Correlation coefficients 273 

were 0.62 and 0.51, respectively). This might imply that there has a relatively 274 

constrained C:N:P ratio in the organic-rich soil layer as reported by Clevaland and 275 

Liptzin (2007). In this sense, we agree with Cleveland and Liptzin (2007) on their 276 

statement that “Redfield-like” interactions between C, N and P may exist in soil. We 277 

found a similar C:N ratio (14.4) to that found by Clevaland and Liptzin (2007) in the 278 

organic-rich soil layer, but we found lower C:P (136) and N:P (9.3) ratios; that the 279 

C:N:P ratio (134:9:1) from this study is different from theirs (186:13:1) implies that 280 

C:N:P ratios might change with environmental factors although C, N and P are 281 

relatively well-constrained at the organic-rich topsoil. When came to the total soil 282 
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depth, there was no relatively constrained C:N:P stoichiometric ratios for deeper soil 283 

(correlation coefficients are very low except that between total C and N, Table 9). 284 

However, a well-constrained C:N ratio was found for the deeper soil considering its 285 

higher correlation coefficient (0.88). Many previous studies (e.g. Vitousek 2004; 286 

Melillo et al. 2003; Post et al. 1985) also found strong correlations between total C and 287 

total N in the soil. As in the marine ecosystem where most of the soil N is fixed by 288 

microorganisms, the relatively constrained C:N:P ratios in the topsoil reflect the ability 289 

of terrestrial organisms to modify their abiotic environment to meet their nutrient 290 

requirements.  291 

 292 

 Unlike the soil C and N, the weathering of the parent material, which is located 293 

at the bottom of the soil profile, provides the major sources of available soil P (Walker 294 

and Adams 1958). Soil P is further translocated by plants and accumulated in the 295 

surface soil in the form of SOP resulting in a complex vertical distribution pattern in 296 

the soil profile (Smeck 1985; Mellilo et al. 2003; Vitousek 2004). We found that the 297 

C:P ratio decreased dramatically with the soil depth (Table 3). Walker and Adams 298 

(1958) also found that as the soil depth increased, the C:P ratio declined much faster 299 

than the C:N ratio. This is mainly because of the relatively stable soil P content 300 

throughout the soil profile when compared to the rapid decline in SOC with soil depth 301 

(Table 3). Through analyses of C: P and N: P ratios, we found that despite large 302 

variations of C and N content, low soil P content always led to high C: P and N: P 303 

ratios. This pattern indicates, as suggested by Walker and Adams (1958), that the 304 
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C:N:P ratio in the soil is mainly controlled by the P supply.  305 

 Although there is no constrained C:N:P ratio in the deeper soil, the vertical 306 

distribution of P in the soil still provided strong evidence of biotic regulation of soil 307 

nutrients. Despite the location of the parent material and the downward movement of P 308 

leaching, the terrestrial organisms seem to be able to reduce P gradient along the soil 309 

profile by uptake and trans-locating P from the P-rich deep soil to the surface layer to 310 

meet their nutrient requirements (Zhang et al. 2005).  311 

 312 

Controlling factors in the C:N:P ratio in China’s soil 313 

 314 

Climate imposes important controls both on soil development and on the biota and its 315 

interaction with the soil nutrients (Chadwick et al. 1999; Vitousek 2004; Oleksyn 316 

2004). Spatial distribution of soil C, N and P density across China has seen substantial 317 

variation (Wang et al. 2003; Zhang et al. 2005; Tian et al. 2005). Despite the spatial 318 

variations of C and N contents, the C:N ratio was relatively stable among climate 319 

zones (Table 4), indicating the feedbacks of a similar biota on the chemical 320 

composition of the soil. The C:P and N:P ratios, however, varied significantly among 321 

different climate zones in China (Table 4). The element ratio highlights the impacts of 322 

extreme climate regimes on soil nutrient balance. The high temperature and 323 

precipitation in tropical-subtropical regions can result in high P leaching rate and P 324 

occlusion in highly weathered soils (Vitousek and Walker 1987; Neufeldt et al. 2000; 325 

Zhang et al. 2005). At the same time, the high productivity of tropical-subtropical 326 
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ecosystems maintains relatively high soil C and N content, which gave these regions 327 

the highest C:P and N:P ratios. In contrast, the dry and cool climate regime in the 328 

temperate desert resulted in low productivity, lower soil C and N contents and low P 329 

loss through leaching, and higher soil P content, which gave it the lowest soil C:P and 330 

N:P ratios among all the climate zones. 331 

Site-level chronosequence studies have suggested that soil C:N:P ratios may 332 

change during soil development, indicating a shift in soil limitation nutrients (Crews et 333 

al. 1995; Chadwick et al. 1999; Frizano et al. 2002; Vitousek 2004).  To capture the 334 

pattern of elemental ratios of different soil developmental stages, we further grouped 335 

the nine soil orders into three soil weathering classes: slight, moderate and strong 336 

weathering soil (Brady and Weil 2002; Zhang et al. 2005). The soil C: N ratios 337 

increased significantly (P<0.05) with increasing soil weathering time (11.37, 12.32, 338 

and 13.32, respectively) (Table 6).  We also found that the strongly weathered soil 339 

had the highest C: P ratio (99.0), while the C: P ratio of the moderately weathered soil 340 

(63.1) was similar to that of the slight weathering soil (64.9).  The N: P ratio showed 341 

the same trend, with the highest N: P ratio in strong weathering soil (7.37), indicating P 342 

deficiency in highly weathered soils. The N:P ratio was found to be the lowest in the 343 

moderate weathering soil (5.41), which was not significantly lower than that of the 344 

slight weathering soil (5.78).  This result was similar to that reported by Crews et al. 345 

(1995) and Vitousek (2004).  Walker and Syers (1976) proposed that soil total P 346 

decreases with increasing soil developmental time. We found the same pattern in this 347 

study. 348 
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 349 

Chinese vs. global soil C:N:P ratios 350 

 351 

     While several studies have been conducted to explore the patterns among soil C: 352 

N ratios, soil C: N ratios were not the primary focus of these studies. For example, 353 

based on the global World Inventory of Soil Emission Potential (WISE) dataset 354 

(http://www.daac.ornl.gov), Batjes (1996) studied the changing patterns of C: N ratios 355 

in relation to soil depth (Table 7). The average C: N ratios of all the soil orders 356 

reported by Batjes for 0-30, 30-50, and 50-100 cm depths (15.84, 14.93, and 13.36, 357 

respectively) were higher than our corresponding values (12.65, 11.69, and 11.19, 358 

respectively). Additionally, based on the WISE dataset, Batjes (1996, 2002) explored 359 

the concentrations of soil C and N as well as C: N ratios of eleven soil orders around 360 

the world (Table 7). The average C: N ratio reported by Batjes for all soil orders at 361 

0-100 cm depth (14.42) was higher than our corresponding values. Both studies found 362 

Histosols had the highest C: N ratio. Based on global soil C and N data of 2,700 soil 363 

profiles from Oak Ridge National Laboratory (http://www.dacc.ornl.gov, Zinke et al. 364 

1984), Post et al. (1982; 1985) reported global patterns of soil C and N storage and C: 365 

N ratios in terms of the Holdridge life zones. We summarized the mass-based C:N 366 

ratios and transformed them into mole-based ratios for climate zones: tundra/ Frigid 367 

highland (20.3), cool temperate zone (20.2), warm temperate zone (20.6), and tropical 368 

and subtropical zone (15.4), respectively. We found that all the C: N ratios reported by 369 

Post et al. were higher than our results for each corresponding climate zone. These 370 
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differences might be due to some of the soil samples used in Post et al. (1985) having a 371 

humified litter layer (i.e., 0 cm soil depth in the Zinke et al. 1984 dataset) which has a 372 

higher C:N ratio than soil. For regional climate patterns, Post et al. (1985) indicated 373 

that relatively large amounts of soil N in tropical and subtropical regions was 374 

associated with both recalcitrant humic materials in an advanced state of decay and the 375 

lowest C: N ratios, while slow decomposition in boreal regions resulted in higher C:N 376 

ratios than in other regions. Since Post et al.’s research included no soil samples from 377 

China, our dataset and analysis can provide valuable supplementary information for the 378 

study of global soil C:N ratios. The reports for large-scale soil C:P and N:P ratio 379 

patterns are limited. Recently, Cleveland and Liptzin (2007) estimated the global soil 380 

C:P and N:P ratios of the surface soil (0-10 cm) to be 186 and 13.1, respectively. Our 381 

analysis reveals relatively lower C:P (136) and N:P 9.3 ratios at the 0-10 cm soil in 382 

China. 383 

 384 

Conclusions 385 

     We found that the number-weighted average soil C: N, C: P, and N: P ratios in 386 

China were 12, 61, and 5, respectively, with a C: N: P ratio of 60:5:1 for all soil layers. 387 

The C:N ratio variation range among samples from different climate zones and 388 

different soil depth was relatively small, while large spatial heterogeneity (both 389 

horizontal and vertical) was found in C:P and N:P ratios. C:P and N:P ratios decreased 390 

dramatically with increased soil depth. However, a highly constrained C:N:P ratio of 391 

134:9:1 was found at the 0-10 cm organic-rich soil, which indicated reciprocal 392 
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interactions between terrestrial organisms and the abiotic soil environment in the 393 

biologically active soil layer. The C:P and N:P ratios in the soil were primarily 394 

determined by soil P content, which was controlled by the soil (parent material) type, 395 

soil weathering stage, and climate factors that affect soil weathering rate. Certainly, the 396 

C:N:P ratios derived from this analysis based on China’s soil database are very 397 

different than those derived from other studies based on global soil datasets. 398 

Consequently, our dataset and analysis provides valuable supplementary information 399 

for the study of global soil elemental ratios, especially C:P and N:P ratios. 400 
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TABLE 1. Climate zones in China and their corresponding annual average 503 

climate data 504 

Climate zones 
Minimum 

temperature 
(0C) 

Maximum 
temperature 

(0C) 

Mean annual 
temperature 

(0C)* 

Mean annual 
precipitation 

(mm) 
Frigid highland -7.3 0.7 -3.4 348.5 

Temperate desert -1.1 11.0 4.5 252.1 
Cool temperate zone -3.7 7.9 1.7 418.2 
Warm temperate zone 3.9 14.2 8.4 511.9 
Tropical & subtropical 

zone 
11.8 19.5 15.0 1226.3 

*Data were calculated from the 30-year (1961-1990) average climate data in China. 505 
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TABLE 2. Soil C, N and P ratios in China 

 

 

 

 

 

 

 

 

 

 

® Av_P: available P; 
ξ Values were geometric means ± 1 SE; Different letters between two items in a column meant significantly different between them (P<0.05), 
while the same letters indicated no significant difference; 
§ The sample number for available P is only 85;  
*The sample number for available P is 1,760;  
# No area information for 394 soil samples. 

 
Sample 
number 

C: N C: P N: P C: Av_P® N: Av_P C: N: P 

Organic-rich layer 
(0-10cm) 

133§ 14.4±0.4a ξ 136±11a 9.3±0.7a 15810±1832a 1114±115a 134: 9: 1 

All soil layers 
(Number-weighte

d) 
8125* 11.9±0.1b 61±0.9b 5.2±0.1b 64233±20414b 5725±1564b 60: 5: 1 

All soil layers 
(Area-weighted) 

7731# 12.1 61 5.0 ___ ___ 60: 5: 1 
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TABLE 3. Total soil C, N and P concentrations and ratios along a gradient of soil 
depth 

Depth 

(cm) 
C: N C: P N: P 

Total C 

(mmol/kg) 

Total N  

(mmol/kg) 

Total P 

(mmol/kg) 

0-10 14.4±0.4a ξ 136±11a 9.3±0.7a 2047±154a 134±8.5a 25±2.8ab 

10-50 12.3±0.1b 74±1.3b 6.1±0.2b 1174±22b 96±2.5b 23±1.0a 

50-100 11.2±0.1c 46±1.4c 4.2±0.1c 617±26c 53±1.5c 19±0.5b 

>100 11.5±1.0c 29±2.3d 2.7±0.1d 439±45d 38±1.8d 19±1.1ab 

*Values were means ± 1 SE; different letters between two items in a column meant 

significantly different between them (P<0.05), while the same letters indicated no significant 

difference. 
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TABLE 4. Soil C, N and P concentrations and ratios in different climate zones in China 

Climate zone Number C: N C: P N: P 
C content 

(mmol/kg) 

N content 

(mmol/kg) 

P content 

(mmol/kg)

Frigid highland 749 13.6±1.1a* 62±3.0a 5.9±0.7ac 1120±69a 97±12a 20.6±1.3ab

Temperate desert 319 12.2±0.2abc 32±2.1b 2.6±0.1b 775±63b 60±4b 26.0±2.6b 

Cool temperate zone 378 12.4±0.2ab 74±6.0c 5.4±0.3a 1826±158c 128±8c 26.3±1.1b 

Warm temperate 

zone 
1676 10.7±0.1c 38±1.1bd 3.6±0.1b 581±21b 53±2b 21.1±1.0ab

Tropical & 

subtropical zone 
2071 12.1±0.1b 78±2.1c 6.4±0.2c 997±25d 79±2d 19.0±1.3a 

Average 5193 11.9±0.2 60±1.1 5.1±0.1 927±20 76±2 20.9±0.7 

*Values were means ± 1 SE; different letters between two items in a column meant significantly 

different between them (P<0.05), while the same letters indicated no significant difference. 

 



30 
 

 
 

 

TABLE 5. The C, N and P ratios for different soil orders 

Soil order 
No. of 

samples C:N ratio C:P ratio N:P ratio 
Entisols 2150 11.35±0.13a* 56.4±1.6ab 5.11±0.26ab 
Histosols 16 17.41±1.03c 340±82e 17.77±3.46c 

Inceptisols 727 11.41±0.19a 57.6±3.2ab 4.88±0.23ab 
Andisols 22 13.38±0.67ac 42.2±7.9acb 2.96±0.51abde 
Aridisols 300 11.24±0.22a 29.0±1.8c 2.60±0.15d 
Vertisols 77 10.73±0.36ab 41.7±4.4ac 4.63±0.68abde 
Alfisols 614 12.1±0.24abc 63.5±2.6b 5.46±0.29abe 

Mollisols 785 13.05±1.07bc 59.8±2.9ab 4.97±0.19ab 
Ultisols 502 13.32±0.26bc 86.4±4.4d 6.43±0.28e 

*Values were means ± 1 SE; different letters between two items in a column meant 
significantly different between them (P<0.05), while the same letters indicated no 
significant difference. 
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TABLE 6. The C, N and P contents and C, N and P ratios for different soil weathering stages 

Weathering stage No. of samples C:N ratio C:P ratio N:P ratio 
C content 
(mmol/kg) 

N content 
(mmol/kg) 

P content 
(mmol/kg) 

Slight 2915 11.37±0.11a* 64.9±1.7a 5.78±0.23a 803±19a 71.0±3.2a 18.7±1.0a 
Moderate 1776 12.32±0.48b 63.1±1.9a 5.41±0.16a 1004±36b 79.4±2.2a 18.4±0.5a 

Strong 502 13.32±0.26c 99.0±5.0b 7.37±0.32c 994±46ab 70.7±2.6a 13.5±0.6b 

*Values were means ± 1 SE; different letters between two items in a column meant significantly different between them (P<0.05), while the 

same letters indicated no significant difference. 

TABLE 7. Comparisons of soil C: N ratios of different depths and soil orders around the world (Batjes 1996) and in China (this study) 

Soil order 

Soil depth 
0-30 cm 30-50 cm 50-100 cm 0-100 cm 

Batjes This study Batjes This study Batjes This study Batjes This study 
Entisols 14.21  12.05±0.42*  13.04  11.20±0.42 12.03  10.87±0.43 12.89  11.50±0.19 
Histosols 30.10  16.33±4.17  34.77  16.53±5.80 26.02  18.81±2.84 28.99  17.61±2.44 

Inceptisols 13.42  12.36±0.48  11.32  11.41±0.61 10.50  10.66±0.85 11.54  11.36±0.49 
Andisols 15.52  13.10±2.00  16.10  13.00±2.08 16.68  12.79±2.74 16.22  13.11±1.62 
Aridisols 13.10  11.19±0.59  11.46  10.89±0.90 10.13  11.49±0.73 11.28  11.56±0.46 
Vertisols 15.52  10.54±1.54 14.58  10.52±1.07 14.58  11.54±1.23 14.86  11.19±1.14 
Alfisols 13.57  14.13±1.06  11.56  12.57±0.72 10.68  11.13±0.57 11.73  12.39±0.60 

Mollisols 13.01  12.10±0.37 11.73  12.69±1.45 10.47  11.69±0.48 11.48  11.85±0.33 
Ultisols 15.32  15.53±0.89  11.74  12.71±0.84 10.33  11.43±0.66 12.11  12.83±0.86 

Average§ 15.84  12.65  14.93  11.69  13.36  11.19  14.42  11.80  

*Mean value ± 1.96 SE (95% confidence interval) 

§This average is calculated from the number-weighted average (by soil profile numbers) of C: N ratios of all the soil orders. 
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TABLE 8. The C, N densities and C: N ratios summarized from Post et al. (1985)* 

Climate zones No. of samples 
C density 
(kg/m3) 

N density 
(kg/m3) 

C: N ratio 

Tundra/ Frigid 
highland 

53 22.73 1.37 20.3 

Cool temperate zone 1613 14.60 0.92 20.2 
Warm temperate zone 546 13.00 1.16 20.6 

Tropical and 
subtropical zone 

547 11.07 1.08 15.4 

*All the data were summarized from the published results rather than calculated from 
original dataset. Each climate zone included all the land cover types showing in this 
zone, and the values of C and N density and C: N ratios were averaged by these land 
cover types. 
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Table 9 Correlations among soil organic C (mmol/kg), total N (mmol/kg) and total P 
(mmol/kg) and among soil organic C, total N and available P (mmol/kg) for the 
organic-rich soil layer (0-10 cm) and the entire soil depth in China. Relatively 
well-constrained relationships (P < 0.01) were found among soil total C, N, P and 
available P at the organic-rich soil layer, while no significant correlations were found 
for C:N:P ratios in the deeper soil.  
 

Independent variables Dependent variables 
Sample 
number 

Correlation 
coefficient (R) 

Soil C at surface layer Soil N at surface layer 133 0.93 
Soil C at surface layer Soil P at surface layer 133 0.62 
Soil C at surface layer Soil available P at surface layer 85 0.69 
Soil N at surface layer Soil P at surface layer 133 0.51 
Soil N at surface layer Soil available P at surface layer 85 0.60 
Soil C for all layers Soil N for all layers 8125 0.88 
Soil C for all layers Soil P for all layers 8125 0.14 
Soil C for all layers Soil available P for all layers 1760 0.17 
Soil N for all layers Soil P for all layers 8125 0.14 
Soil N for all layers Soil available P for all layers 1760 0.17 

Note: The relationships between variables were significant (P < 0.001) 
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Fig. 1 Distribution of soil sampling points in China. Five zones were defined based on 

climate differences: (A) temperate desert; (B) cool temperate zone; (C) warm 

temperate zone; (D) frigid highland; (E) tropical & subtropical zone. 
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Fig. 2 Frequency distribution of soil C: N (a), C: P (b) and N: P (c) ratios in China. The 
x-axis of the histogram is presented using a log2 scale to highlight the lognormal 
distribution. 
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Fig. 3 Distribution of soil C: N, C: P and N: P ratios in China represented by C: N, C: 
P and N: P ratios of each soil sub-great group (a: C: N ratio; b: C: P ratio; c: N: P 
ratio). 
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