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Abstract

Epizootic shell disease is a poorly understood condition that has significantly affected the American
lobster fishery in New England (northeastern US) since the 1990s. Here we present the results of a study
to identify changes in gene expression in lobsters exhibiting symptoms of epizootic shell disease.
Suppressive subtractive hybridization (SSH) was used to compare gene expression between cDNA pools
from diseased (symptomatic) and apparently healthy (asymptomatic) lobsters. Subsequently,
guantitative real-time polymerase chain reaction (QPCR) was used to measure expression of nine genes
that were differentially-expressed in the SSH analysis, in seven tissues (muscle, gill, heart,
hepatopancreas, brain, branchiostegite, gonad) dissected from individual symptomatic and
asymptomatic lobsters. Expression of arginine kinase (involved in cellular energetics) was significantly
decreased in muscle of symptomatic lobsters. Expression of hemocyanin (a respiratory hemolymph
protein involved in oxygen transport) was highest in hepatopancreas and showed highly variable
expression with a trend toward higher expression in asymptomatic individuals. a2-Macroglobulin
(involved in the innate immune system) was most highly expressed in the ovary, particularly of
symptomatic lobsters. The ESTs produced through this study add to the fledgling field of crustacean
genomics and revealed three genes that could be further evaluated in lobsters of varying shell disease
severity, molt stage, and reproductive condition, for possible implication in epizootic shell disease.

Keywords

arginine kinase, biomarkers, crustacean, decapods, hemocyanin, suppressive subtractive hybridization

Abbreviations

SSH, suppressive subtractive hybridization; gPCR, quantitative real-time polymerase chain reaction; AK,
arginine kinase; GPCR, G-protein coupled receptor; HACD, hydroxyacyl dehydrogenases; HC,
hemocyanin; KCP2, keratinocyte associated protein 2; MBP, mannose-binding protein; A2M, alpha-2
macroglobulin; MVK, mevalonate kinase.



1. Introduction

The American lobster (Homarus americanus) is an iconic representative of the Atlantic coast of the
United States and Canada and supports a highly valued fishery. Natural lobster populations have
undergone dramatic swings in local and regional abundance over the last century, likely due to the
combined effects of changes in the physical environment and biological interactions [1]. In southern
New England, widespread occurrence of a virulent form of ‘shell disease’ has been associated with
reduced harvests of coastal lobsters beginning in the late 1990s [1, 2].

Historically, several forms of crustacean ‘shell disease’ have been identified that collectively are
characterized by progressive erosion of the exoskeleton from the activity of chitinolytic microorganisms
resulting in necrotic lesions, pits, and/or discolorations [3, 4]. Shell disease was first described 80 years
ago in lobsters held in impoundments at high densities [5], and was later classified as “impoundment
shell disease” by Smolowitz et al. [3]. In wild lobster populations, shell disease was documented as early
as 1981 [6], and was probably endemic before that time. Endemic shell disease in lobsters received
increased attention in response to a 1983 survey that reported a mean prevalence of 12% along the
Massachusetts coast [7]. In the 1990s, a much more aggressive form of shell disease emerged, which
was characterized by rapid infection and extensive, melanized, and deep lesions [8]. By 2000, Smolowitz
and colleagues concluded that the geographic extent and prevalence of the disease qualified it as
epizootic [8, 9]. The recent prevalence and severity of epizootic shell disease are unprecedented in the
historical record [2, 10].

The factors that have enabled the development and spread of epizootic shell disease have not been
characterized. While gram-negative bacteria dominate the microbial community associated with lesions
from epizootic shell disease [11], bacterial isolates associated with disease lesions appear to be widely
distributed environmental strains that can also be found in association with asymptomatic lobsters. In
addition, the disease is not highly contagious, has proven difficult to induce in the laboratory, and has
historically occurred at low levels (<2%). Several researchers have suggested that the etiology of
epizootic shell disease may involve a combination of environmental stressors leading to increased
susceptibility of lobsters to microbial infection [10, 12, 13]. For example, anomalously warm water
temperatures have been correlated with spatiotemporal variation in the incidence of epizootic shell
disease [6]. Others have examined the role of diet [12, 14, 15], environmental chemicals [16-18] and
hypoxia [19].

Our overall working hypothesis is that environmental stressors disrupt lobster physiology, and
increase their susceptibility to epizootic shell disease, and that this would be evident in altered gene
expression. While comparison of gene expression between symptomatic and asymptomatic lobsters
cannot identify direct causality, we hypothesize that it will provide insight into physiological pathways
that are associated with epizootic shell disease. To evaluate changes in gene expression, we used
suppressive subtractive hybridization (SSH) to identify genes that are differentially regulated in healthy
(asymptomatic) versus shell-diseased (symptomatic) lobsters. In addition, we used quantitative real-time
polymerase chain reaction (qPCR) to quantify the expression of genes identified through SSH. Through
this approach, we provide the first description of gene expression patterns associated with epizootic
shell disease in lobsters.

2. Materials and methods



2.1 Animals and RNA extractions: Since epizootic shell disease can only be identified through the
appearance of characteristic lesions [8], we hereafter refer to diseased lobsters as “symptomatic” and
apparently healthy animals as “asymptomatic.” One asymptomatic female lobster and one symptomatic
female lobster were collected from Cape Cod Bay, Massachusetts in August 2006. Four symptomatic and
four asymptomatic male lobsters and four symptomatic and four asymptomatic female lobsters were
collected from Rhode Island Sound in May and June 2007. All lobsters were collected using bottom
traps. Additional details regarding lobsters used in these two experiments are provided in Table 1.
Lobsters were sedated by chilling on ice and sacrificed; tissues were dissected, immediately flash-frozen
and stored at -80°C until analysis.

Total RNA was extracted individually from hepatopancreas, brain, heart, gonad, gill, muscle (both tail
and claw muscle), and branchiostegite using the Aurum Total RNA Fatty and Fibrous Kit (Bio-Rad) with
on-column DNase digestion. RNA yield and purity were quantified using a Nanodrop ND-1000
spectrophotometer and denaturing agarose gel electrophoresis. Aliquots of the RNA were used to
create subtractive libraries, and the remainder was retained for gPCR analysis, as described below.

2.2 Suppressive subtractive hybridization (SSH) : Two pairs of hybridizations were conducted; in each pair
the asymptomatic and symptomatic lobsters each served as tester and driver. The first hybridization
study was conducted using the two lobsters collected from Cape Cod Bay. Equal amounts of RNA were
pooled from each tissue, creating a single pool of RNA from the asymptomatic lobster and a second pool
of RNA from the symptomatic lobster. Double-stranded complementary DNA (cDNA) was synthesized
from 1 pg of each of these two RNA samples using the Super SMART PCR cDNA Synthesis Kit (Clontech),
according to the manufacturer’s instructions. Suppressive subtractive hybridization was conducted in
both directions using the PCR-select cDNA subtraction kit (Clontech) as described previously [20]. Clones
were ligated into pGEM-T easy (Promega) and sequenced.

A second subtractive hybridization study was conducted using sixteen lobsters collected from Rhode
Island Sound. Two RNA pools were constructed from eight asymptomatic and eight symptomatic
lobsters, each containing equal amounts of total RNA from hepatopancreas, heart, gonad, gill, muscle
and branchiostegite. Two subtractive libraries were constructed and screened as previously.

2.3 Sequence Analysis: Sequences were compiled, trimmed and clustered using Sequencher Version 4.5
(Gene Codes Corporation) and compared with the NCBI database using the tblastx algorithm. Because
the SSH library contained two distinct hemocyanin sequences, we examined the phylogenetic
relationships between these and other crustacean hemocyanin sequences. Crustacean hemocyanin
sequences were obtained from GenBank and aligned with the ESTs using ClustalW, as implemented in
BioEdit [21]. An unrooted phylogenetic tree was constructed using parsimony criteria in PAUP* 4.0 [22].

2.4 Quantitative Real-Time Polymerase Chain Reaction (gPCR): Nine genes of interest were selected
from the SSH libraries based on their abundance and known or suspected involvement in lobster
immune, energetic, or endocrine function (Table 3). Primers were designed to amplify 75-150 bp
fragments of these genes, and 16S rRNA as a housekeeping gene (Table 4). To determine the tissue
expression patterns of each gene, cDNA was synthesized from pooled RNA from asymptomatic lobsters
and from pooled RNA from symptomatic lobsters for each tissue. cDNA was synthesized from these
tissue RNA pools (0.2-2 ug of total RNA per 20 ul reaction, RNA starting quantity varied by tissue) using
Omniscript reverse transcriptase (Qiagen) with random hexamers, according to the manufacturer’s
protocol. Based on this initial tissue profiling, a subset of the nine genes was measured in individual
samples of the tissue showing highest expression. RNA from individual ovary, muscle or hepatopancreas
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(1 pg per 20 pl reaction) samples was used to make cDNA with the Iscript kit (Bio-Rad). Expression was
compared between individual tissues from symptomatic and asymptomatic animals using a student’s t-
test, with Welch’s correction for unequal variance when necessary (Graphpad Prism Software).

All gPCR reactions were performed using the iQ SYBR Green Supermix and a MyCycler iQ Real-Time
PCR detection system (Bio-Rad). All samples were run in duplicate wells, and expression was quantified
in comparison with a serially diluted plasmid standard, normalized to the expression of 16S rRNA, as
described previously [23].

3. Results

Forward and reverse-subtracted libraries were constructed from two independent sets of lobster
tissues; thus a total of four libraries were screened. We selected 576 clones for single-pass sequencing,
which resulted in 497 sequences longer than 140 bp, after trimming of adapter and vector sequences
(Table 2). Of the 497 sequences, 98 were ribosomal, and the remaining 399 sequences have been
deposited in the NCBI trace archive (GenBank ID: GO271212-G0271610; dbest ID: 64522502-64522900).

The 399 putative mRNA sequences were compared with sequences in the NCBI database using the
blastx algorithm, and the most significant match was recorded with a threshold e-value of 1e-5. The
majority (260) of the sequences could not be identified. That is, the sequences were highly similar only
to other ESTs or to predicted proteins with unknown function. When the ESTs were clustered, several
groups of highly similar or identical sequences became apparent. Most notably, a short (~189 bp)
sequence was highly represented in both our symptomatic and asymptomatic libraries (40 and 14
clones, respectively; Unidentified Contig 1 in Table 2). This sequence has previously been identified in
lobster tissues (i.e., GO271212 in the present study was identical to DV774281 identified by Stepanyan
et al. [24]). Because this sequence does not include a long open reading frame, it may represent 3’-UTR
of a highly-expressed gene, a retained intron, or genomic contamination [24].

In some cases, our ESTs were highly similar to sequences identified in other diseased crustaceans. For
example, an EST from our asymptomatic-enriched library (G0O271347) was highly similar (210/270
identical nucleotides, blastn e =1e-48) to a sequence identified in a SSH library constructed from shrimp
injected with the white spot syndrome virus (CX535856, [25]). The function and phylogenetic history of
these genes are not known.

Among the genes we have provisionally identified, some of the more abundant transcripts
(cytochrome b and c, skeletal muscle actin, myosin) correspond to genes that are typically highly
expressed. Like the ribosomal genes, these may represent genes not fully suppressed during the
creation of our subtractive libraries (i.e., false positives), and they were not studied further. From the
remaining genes, nine were selected for additional screening by qPCR (Table 3); priority was given to
genes with a known or suspected involvement in immune function, hormonal signaling or energetic
metabolism. The genes were named based on their similarity to annotated genes in the NCBI database:
(1) AK (arginine kinase) helps to regulate cellular ATP levels, and changes in expression have been
associated with viral infection in other crustaceans [26, 27]. (2) CRUSTINs are antimicrobial peptides
with affinity for gram positive bacteria [28]. (3) GPCR (G-protein coupled receptor) is most similar to
uncharacterized predicted GPCRs from other arthropods but is moderately similar (blastx e-values 1e-5
— le-7) to receptors for cardioaccelaratory peptides, gonadotropin releasing hormone and vasopressin
from insects and other taxa. These receptors modulate diverse endocrine functions, including a role for
cardioaccelatory peptides in ecdysis [29]. (4) HACDs (hydroxyacyl dehydrogenases) are important for
energetic homeostasis, catalyzing a step in the beta oxidation of fatty acids [30]. (5) HC (hemocyanin) is
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a respiratory pigment that forms a major component of arthropod hemolymph; some studies have
reported changes in expression in response to viral infection [e.g., 31]. (6) KCP2 (keratinocyte associated
protein 2) is a protein of unknown function that is upregulated following infection of shrimp with white
spot syndrome virus [32]. (7) MBPs (mannose-binding proteins) and (8) A2Ms (alpha-2 macroglobulins)
are components of the innate immune response. MBPs bind to mannose molecules on the surface of
pathogens [33], while A2Ms bind to and facilitate the clearance of active proteases from bodily fluids
[34]. (9) MVK (mevalonate kinase) catalyzes the phosphorylation of mevalonic acid during isoprenoid
synthesis, enabling synthesis of the juvenile hormone methyl farnesoate [35].

Arginine kinase was primarily detected in muscle tissue (Figure 1A), and expression was significantly
reduced in muscle from symptomatic individuals (p = 0.0278, Figure 1B). The hemocyanin transcript was
most highly expressed in hepatopancreas (Figure 1C). The mean expression was lower in symptomatic
hepatopancreas, but this difference was not statistically significant (p = 0.126, Figure 1D). The SSH
libraries contained two different hemocyanin sequences (G0271543 and GO271600). Because many
forms of hemocyanin have been described and vary in their expression following microbial challenge, we
compared our sequences with previously described sequences through a parsimony-based phylogenetic
analysis. The hemocyanin transcript measured by qPCR (GO271600) was most similar to previously
reported shrimp and lobster hemocyanin sequences (Figure 2). The second sequence was shorter (76 vs.
137 predicted amino acid residues, 42% identity) and grouped in a relatively weakly supported node
with a crab hemocyanin sequence (63% bootstrap support). A previous study [31] identified two forms
of hemocyanin in the shrimp Marsupenaeus japonicas (also called Penaeus japonicas), one of which was
induced by viral infection (“L” subunit) and one of which remained unchanged (“Y” subunit). Our lobster
hemocyanin sequences were equally related to these two shrimp genes; thus the inducibility of
crustacean hemocyanin isoforms appears to be species- and gene-specific.

The remaining seven genes (CRUSTIN, GPCR, HACD, KCP2, MBP, A2M, MVK) each were expressed
most highly in ovarian tissue (A2M shown in Figure 1E, other genes not shown). Three of these genes
(MBP, MVK and A2M) were measured in individual ovarian tissues, but only A2M showed a trend with
disease state, with higher mean expression in ovary of symptomatic lobsters (p=0.0589, Figure 1F). This
difference was nearly statistically significant; statistical power was relatively low because the analysis
was restricted to the female animals.

4. Discussion

Using SSH, we generated libraries enriched for genes that vary between symptomatic and
asymptomatic lobsters. These libraries were produced from a mixture of lobster tissues and were
dominated by abundant transcripts. The only crustacean genome that has been sequenced to date is
from the distantly related cladoceran, Daphnia pulex [36, 37]. Thus, it is not surprising that over half of
the sequences could not be identified, or could only be matched to other ESTs of unknown function.
Additional crustacean genomic resources are sorely needed, and the present study and other EST
projects [24, 38, 39] will facilitate future molecular studies in crustaceans. In spite of limited genomic
resources, several dozen genes could be provisionally identified based on their similarity to annotated
sequences. Nine genes of interest were selected for additional characterization and three of these
appear to be associated with disease state.

We consistently observed decreased expression of arginine kinase (AK) in the muscle of symptomatic
lobsters. AK is a highly conserved phosphotransferase that helps to regenerate adenosine triphosphate
(ATP) and plays an important role in cellular energetics. The AK sequence has previously been described
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in lobsters and other crustaceans [40], and increases in AK activity in lobster hemolymph, which indicate
enzyme leakage across muscle cellular membranes, have been proposed as a useful indicator of
systemic disease state [41]. In some euryhaline crabs, AK activity (but not RNA expression) is induced in
the gills by osmotic stress [42]. Increased AK protein levels were reported in gills of Penaeus vannamei
infected with yellow head virus [26]. Wang et al. [27] reported decreased expression of AK in
cephalothorax of shrimp infected with white spot syndrome virus. Our results suggest that infection
with shell disease may create an energetic drain that physiologically compromises muscle function.
Future assays of AK activity in both muscle tissues and hemolymph of epizootic shell diseased lobsters
would be informative in this regard.

We identified two different hemocyanin (HC) sequences in our SSH library and observed highest HC
expression in hepatopancreas. Crustaceans typically have several forms of HC, which function primarily
as oxygen carriers [43] but can also play a role in wound healing and innate immunity. Some forms of HC
can be cleaved to produce antimicrobial peptides [44, 45] or to acquire phenoloxygenase activity [46,
47]. The form of HC measured in our study is most similar to a crayfish protein that has been shown to
produce antimicrobial peptides [45]; thus, it seems possible that the lobster protein is similarly cleaved
to produce antimicrobial peptides. HC mRNA expression in lobster hepatopancreas observed in our
study is consistent with previous characterization of hepatopancreas as the primary site of crustacean
HC synthesis [48] and mRNA expression [49]. Some crustacean HCs are upregulated in pathogen-
resistant animals or induced by microbial challenge, while others are not [31, 49]. Phylogenetic analysis
did not allow us to match our sequences with sequences that are known to be induced by microbial
challenge in other crustaceans. While mean HC expression was lower in symptomatic lobsters,
expression was highly variable and not statistically different from expression in asymptomatic lobsters.
An additional study with a larger sample size is warranted.

a2-Macroglobulins (A2Ms) are highly abundant proteins both in vertebrate plasma and arthropod
hemolymph. While the best-characterized function of A2Ms is the binding and clearance of destructive
endogenous and exogenous proteases, A2Ms are relatively unreactive with essential endogenous
proteases. Forinstance, A2M found in the plasma of crayfish shows only weak inhibitory activity against
the protease responsible for activating the prophenoloxidase defense system, which is also present in
the plasma and responsible for melanin formation during pathogen invasion [34, 50, 51]. In our study,
an A2M-like gene was expressed primarily in ovary with a trend toward increased expression in
symptomatic lobsters. Although the difference was not significant, the statistical power was relatively
low (due to the small sample size for ovarian tissue). Most studies have not explicitly quantified A2M
expression in crustacean ovary, although one study reports weak expression in ovary of kuruma shrimp
[52]. A2M expression has been more thoroughly studied in mammalian ovaries, where it regulates
protease activity necessary for ovulation and associated tissue remodeling [53, 54]. Other studies of
A2M expression in crustacean tissues have found that A2M transcripts are expressed most strongly in
hemocytes [52, 55, 56] and that expression can be induced by microbial challenge [52, 55, 57].
Hemocytes were not analyzed in our study, and we anticipate that we might find elevated expression of
A2M in hemocytes of symptomatic lobsters. A2M expression in relation to lobster epizootic shell disease
merits additional study, including quantification in hemocytes and a larger number of ovarian samples.

Our study is the first to apply SSH and gPCR to increase our understanding of the potential causes for
the recent outbreak of epizootic shell disease in southern New England lobsters. While the current
study does not unequivocally point to causes or mechanisms of lobster shell disease initiation or
progression, it identifies three genes (AK, HC and A2M) that appear to be associated with epizootic shell
disease and contributes to the fledgling of crustacean genomics. Future work should focus on evaluating
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lobsters of varying disease severity, molt stage, and reproductive condition. Notably the symptomatic
lobsters used in this study were all moderately to severely diseased. Additional studies are particularly
needed to identify markers associated with early disease incidence and susceptibility.
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Tables

Table 1. General characteristics of lobsters used in molecular analyses.

SSH 1

Gender  Disease condition  Carapace Length Weight
Female  50% lesions 12 cm 697 g
Female  Asymptomatic 11.4 cm 541g

SSH 2 and gPCR studies

Gender  Disease condition  Carapace Length Weight

Male 50% lesions 9.6 cm 600 g
Male 50-100% lesions 7.8cm 365¢g
Male > 75% lesions 7.9cm 436 ¢g
Male > 75% lesions 8.8cm 578 ¢g
Female > 75% lesions 8.2cm 485 ¢g
Female 75% lesions 7.4cm 283 g
Female > 75% lesions 7.3cm 266 g
Female 25-50% lesions 7.9cm 365¢g
Male Asymptomatic 53cm 107 g
Male Asymptomatic 7.4 cm 308¢g
Male Asymptomatic 8.0cm 401g
Male Asymptomatic 8.5cm 449 g
Female Asymptomatic 7.2cm 336¢g
Female Asymptomatic 6.8cm 248 g
Female Asymptomatic 6.7cm 197 g
Female Asymptomatic 6.8cm 249 g




Table 2. General characteristics of lobster ESTs (Expressed Sequence Tags) from suppressive subtractive hybridization. Some categories
represent multiple distinct transcripts: subunits of cytochrome b and c have been grouped, and “myosin” and “actin” each refer to multiple
isoforms or gene regions. C1-C22 refer to unidentified ESTs clustered into highly similar “contigs.” For each gene or contig, one representative

Genbank ID is listed.

Upregulated in

Downregulated in

GenBank ID Symptomatic Lobsters Symptomatic Lobsters

Study SSH1 SSH2 SSH1 SSH2 (GO271478-

Gene Annotation (GO271212- (GO271350- (GO271285- G0271604,

G0271284, G0271477, G0271349, G0271608-
G0271605) G0271607, G0271606) G0271609)
G0271610)

Total 82 163 84 168
Ribosomal RNAs 8 33 18 39
Putative mRNAs 74 130 66 129
Unidentified 44 87 43 86

C1 G0271212 29 11 7 7
C2 G0271375 2

Cc3 G0271214 5 2 3

c4 G0271369 2

C5 G0271497 2
C6 G0271221 2

c7 G0271327 3 1 2
C8 G0271364 2

9 G0271415 2

C10 G0271434 2 2 3
Cc11 G0271455 2 1
C12 G0271451 3 3
C13 G0271263 1 1

C14 G0271347 3 1
C15 G0271312 1 4 2
Cl6 G0271558 2
C17 G0271527 1 2
C18 G0271404 2 3
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C19
Cc20
Cc21
C22
Other

Identified mRNAs
Arginine kinase
Cysteine proteinase
Cytochrome b orc
Hemocyanin
Keratinocyte Associated
Muscle LIM protein
Myosin
Ornithine decarboxylase

antizyme

Reproductive-related
Skeletal muscle actin
Mannose binding protein
Crustin
Xbox-binding protein
Other (single ESTs)

G0271550
G0271394
G0O271512
G0271337

G0O271571
G0271459
G0271434
G0271600
G0271423
G0271411
G0271255
G0271403

G0O271389
G0271225
G0271257
G0271426
G0271285

30

16

11

23

22
23

A NN W

A

24
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Table 3. ESTs chosen for characterization by qPCR. Reference species indicates the organism and
accession number from the most significant match found by the blastx algorithm. The library category
indicates whether the gene was predicted to be upregulated in asymptomatic or symptomatic animals.
The number of ESTs in the library is also indicated. In two cases (AK and MBP) the gene was found in
both the symptomatic and asymptomatic libraries. The E-value indicates the probability that another
alignment would have a higher degree of similarity due to chance.

GenBank Abbreviation Reference species Library length E-value
ID (gene name) (Accession Number) (# of ESTs) bp
G0271571 AK (Arginine kinase) Homarus gammarus Asymptomatic 485 7e-76
(P14208) (4);
Symptomatic (1)
G0271287 CRUST (crustin-like Homarus americanus ~ Asymptomatic 492 6e-40
protein precursor) (ABM92333) (2);
G0271592 GPCR (G-protein Ixodes scapularis Asymptomatic 673 le-13
coupled receptor) (EEC06829) (1)
G0271496 HACD (hydroxyacyl Aedes aegypti Asymptomatic 225 6e-13
dehydrogenase) (XP_001659937) (1)
G0271600 HC (Hemocyanin) Pacifastacus Asymptomatic 516 6e-76
leniusculus (2);
(AF522504)
G0271423 KCP2 (Keratinocyte Litopenaeus vannamei  Symptomatic (2) 144 8e-16
associated protein 2)  (ABI93175)
G0271317 MBP (mannose- Pacifastacus Asymptomatic 334 9e-18
binding protein) leniusculus (2); Symptomatic
(AAX55747) (5)
G0271388 A2M (alpha-2- Macrobrachium Symptomatic (1) 217 3e-4!
macroglobulin-like) rosenbergii
(ABK60046)
G0271349 MVK (mevalonate Danio rerio Asymptomatic 472 6e-17
kinase-like) (CAM15186) (1)

! This e-value is above the cutoff we used to annotate other genes; however, the relatively low similarity is most
likely because the lobster EST is homologous to a poorly conserved part of the A2M gene between the highly
conserved thioester motif and receptor binding domain.
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Table 4. Sequences of oligonucleotide primers used in gPCR assays
3.

Gene Primer sequences
AK F: 5-CATCGCAAAGTTGGAGGAAGG-3’
R: 5-GCCAGTCTTCTTGGCCTTGAG-3’
CRUST F: 5-GGTGCAATTTCCCAGAGGATG-3’
R: 5-GAACCTTGCGCACGTTATATGC-3’
GPCR F: 5-ACCTTCACGAGACGCTGGAAC-3’
R: 5’-TCCATCGGTGTTCATCTGCTG-3’
HACD F: 5'-GCCCTGACTTAGCAAGATCC-3'
R: 5'-AGGCAGGTCACAGATCACAG-3'
HC F: 5-ATCAGCGTCGTGGATCAGTTG-3’
R: 5’-TGCTCGACACCTTCTGGACTG-3’
KCP2 F: 5-CCGAACATGACGTTTTCCAAG-3’
R: 5’-GACCCAGTTGGGTGCAACAAG-3’
MBP F: 5-CGGGCATACCACTTCTCTTGG-3’
R: 5-GCTGACCGCCTGGAAGTTATG-3’
A2M F: 5-TCCAGCTGCCCAGTGTGTAAG-3’
R: 5-ACTCGGCATGAGGCAACTGAG-3’
MVK F: 5-CGGGTCCGAACACATCTCAC-3’
R: 5’-TCGTGCATGGTTTTCATCGTC-3’
16S F: 5’-AATACCGCGGCCCTTTAGTTTG-3’
R: 5-TTGGTGTGGGTTAAGGAACTCG-3’

13

. Full gene names are shown in Table



Figure Captions

Figure 1: Gene expression in asymptomatic (white bars) and symptomatic (black bars) lobsters as
measured by gPCR. (A, C, and E) Expression in pooled cDNAs from tissues used in SSH. Each bar
represents a single pooled sample. Due to large differences in expression among tissues, a log scale is
shown. Tissue types are muscle, M; gill, G; heart, H; hepatopancreas, HP; brain, B; testes, T; and ovary,
0. (B, D, and F) The two bars at the left of each plot indicate mean * standard error expression for
asymptomatic and symptomatic animals, respectively. The remaining bars indicate expression in
individual samples used to comprise tissue pools.

Figure 2: Unrooted parsimony-based phylogenetic analysis of selected crustacean hemocyanin amino
acid sequences. Taxa used were Cancer magister, Marsupenaeus japonicas, Litopenaeus vannamei,
Pacifastacus leniusculus, and Homarus americanus. Numbers at nodes indicate the percentage of 1000
bootstrap replicates supporting a given clade. GenBank Accession numbers are indicated under each
species name. Subunit designations are those reported in GenBank submissions and associated papers.
Two hemocyanin ESTs (designated “novel sequence” and indicated in bold) were detected within the
subtractive libraries in the present study. Expression of one of these (indicated with asterisks), was
measured by gPCR.
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