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Abstract 1 

Salps are common in oceanic waters and have higher per individual filtration rates than any other 2 

zooplankton filter feeder. Though salps are centimeters in length, feeding via particle capture 3 

occurs on a fine, mucous mesh (fiber diameter d ~ 0.1 μm) at low velocity (U = 1.6 ± 0.6 cm s-1, 4 

mean ± SD) and is thus a low-Reynolds number (Re ~ 10-3) process. In contrast to the current 5 

view that particle encounter is dictated by simple sieving of particles larger than the mesh 6 

spacing, a low-Re mathematical model of encounter rates by the salp feeding apparatus for 7 

realistic oceanic particle size distributions shows that submicron particles, due to their higher 8 

abundances, are encountered at higher rates (particles per time) than larger particles. Data from 9 

feeding experiments with 0.5, 1 and 3 μm diameter polystyrene spheres corroborate these results. 10 

Though particles larger than 1 µm (e.g. flagellates, small diatoms) represent a larger carbon pool, 11 

smaller particles in the 0.1–1 μm range (e.g. bacteria, Prochlorococcus) may be more quickly 12 

digestible because they present more surface area, and we find that particles smaller than the 13 

mesh size (1.4 μm) can fully satisfy salp energetic needs. Furthermore, by packaging 14 

submicrometer particles into rapidly sinking fecal pellets, pelagic tunicates can substantially 15 

change particle size spectra and increase downward fluxes in the ocean. 16 

\body 17 

Introduction 18 

Filter feeding is a common strategy among marine plankton for collecting small food particles 19 

from a suspension. Pelagic tunicates in the class Thaliacea, order Salpida, have the highest per 20 

individual filtration rates of all marine zooplankton filter feeders (1). Weight-specific clearance 21 

rates (70–4153 ml mg-1 C h-1, 2) are higher than most copepod and krill species. Salps filter feed 22 

by rhythmically pumping water into the oral siphon, through the pharyngeal chamber and out the 23 



 3 

atrial siphon (Fig. 1A). This pumping action, generated by circular muscle bands, also creates a 1 

propulsive jet for locomotion. Food particles entering the pharyngeal chamber are strained 2 

through a mucous net that is continuously secreted and rolled into a food strand that moves 3 

posteriorly towards the esophagus. The bag-like net is secreted by the endostyle and fills much of 4 

the pharyngeal chamber (Fig. 1A). This feeding mechanism results in ingestion of any particles 5 

that enter the atrial siphon and adhere to the filtering mesh.   6 

After digestion, particles are packaged into dense fecal pellets, which often contain 7 

undigested or partially digested plankton (3, 4). These pellets remain intact for days (4) and have 8 

sinking speeds (200–3646 m d-1; 5, 6) that are higher than most copepod or krill pellets (3).  9 

Furthermore, diurnal vertical migration by some species may accelerate vertical export (7, 8).  10 

The combination of high filtration rates, small mesh size and rapid pellet sinking implies that 11 

salps have the potential to shift particle distributions towards larger sizes, contribute to vertical 12 

transport and remove substantial amounts of primary production from surface waters. These 13 

impacts will be particularly profound following population increases, which can occur suddenly 14 

under favorable conditions due to short generation times and a two-part life cycle comprising 15 

asexually reproducing individuals and pseudo-colonial chains of sexually reproducing salps (1).  16 

Generally, encounter rates between particles and filter elements depend on the Reynolds 17 

number (Re = dU/ν, where d is mesh fiber diameter, U is velocity and ν is kinematic viscosity), 18 

which measures the relative importance of inertial and viscous forces. At low-Re (Re << 1) 19 

viscous effects prevail and prevent flow separation around filter elements (9). Filtration in salps 20 

operates in this regime, as Re ~ 2×10-3, based on mesh fiber diameter (d ~ 0.1 μm, 10), velocity 21 

at the mesh (U = 1.6 ± 0.6 cm s-1, mean ± SD), and seawater viscosity (ν = 0.83 × 10-6 m2 s-1). 22 

Classic principles of low-Re filtration theory (9, 11) show that low-Re filter feeders can collect 23 
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particles smaller than the mesh spacing by relying on mechanisms other than simple sieving. The 1 

primary mechanisms are direct interception of particles traveling on streamlines that come within 2 

one particle radius of the filter element, and diffusional deposition caused by Brownian effects or 3 

random motility, which deflect particles from streamlines and cause contact with the 4 

filter. Theoretical models of caddisfly larvae (12, 13) and experiments on marine 5 

appendicularians (14–16) showed encounter of particles much smaller than the mesh size via 6 

diffusional deposition and direct interception, and theory suggests that other encounter 7 

mechanisms (inertial impaction and gravitational deposition) are negligible for most marine filter 8 

feeders (13, 17, 18). The transition from encounter to capture depends on the sticking coefficient 9 

α, which represents the fraction of encountered particles that is captured.  10 

Empirical studies of salp retention efficiency found a size retention cut-off of 1–2 μm, but 11 

this remains inconclusive because submicrometer particles were neglected (4, 19) or 12 

undetectable (20). In fact, small cyanobacteria (0.7–1 μm) have been removed by salps during 13 

feeding studies (20) and identified in salp fecal pellets (3, 4). Because the smallest particles are 14 

the most abundant in the ocean (Fig. 1B; 29, 30), determining the encounter efficiency of 15 

submicrometer particles is of particular importance to quantify clearance rates and vertical 16 

transport of particulates. Contrary to the current understanding that salps do not retain particles 17 

below 1–2 μm, we show that salps can capture submicrometer particles and do so at rates that 18 

exceed those of larger particles. We calculate that salps can fulfill their energetic requirements 19 

with particles smaller than the mesh width and propose that they can substantially influence 20 

particle size spectra in the upper ocean, increasing particle size and thus accelerating vertical 21 

transport of particulate matter.  22 

 23 
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Results  1 

Epifluorescence images revealed a regularly spaced rectangular feeding mesh (Fig. 2A) with a 2 

mean mesh width and length of W = 1.5 ± 0.5 µm and L = 6.0 ± 1.5 µm (n = 9; mean ± SD), 3 

respectively. Some strands were oriented obliquely or possibly tangled, but their number was 4 

small. Mesh width increased linearly with salp body length, Lb (Fig. 2B), as expected from an 5 

isometric scaling. The use of a rectangular rather than a square mesh is common among aquatic 6 

filter feeders, including appendicularians and caddisfly larvae, possibly optimizing the trade-off 7 

between increasing encounter and lowering the mesh material and pressure drop (31).  8 

 Flow visualization provided both quantitative fluid speeds near the filter and a qualitative 9 

picture of the feeding current. The mean speed (U) and maximum speed near the oral siphon 10 

were 1.6 and 3.8 cm s-1, respectively (Table 1). The mean speed was slightly lower than speeds 11 

measured just aft of the atrial (excurrent) siphon using Particle Image Velocimetry (2.0–2.6 cm s-12 

1; 32), likely because the oral siphon has a larger cross sectional area. Particle trajectories 13 

showed that opening of the oral siphon resulted in the intake of fluid from around the edges of 14 

the siphon (Movie S1). Upon entering the pharyngeal chamber, water accelerated and then 15 

moved in a circular pattern, suggesting a tangential component of encounter between particles 16 

and the filter. The observed feeding current speeds are much higher than those of 17 

appendicularians (0.06–0.32 cm s-1; 17, 33), which pump fluid via sinusoidal motion of the tail, 18 

and doliolids (0.11 cm s-1; 34), which rely on cilia rather than muscles to draw fluid towards a 19 

mucous filter, and are of the same order as feeding currents of copepods and krill (0.6–1 cm s-1; 20 

35, 36), which generate flow by the coordinated movement of feeding appendages. However, 21 

salps process much higher fluid volumes than crustaceans, due to the considerably larger cross 22 

sections of their feeding currents. For example, grazing pressure by a bloom of the salp Salpa 23 
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thompsoni in the Southern Ocean was equivalent to more than 100% of daily primary 1 

production, whereas grazing by dominant copepod species was negligible (37).  2 

Both diffusional deposition and direct interception play a role in determining particle 3 

encounter by the filtering mesh, but direct interception is dominant for dP > 0.05 µm (Fig. 3). For 4 

dP = 0.01–0.05 µm (viruses, colloids) diffusion is the primary mechanism of particle encounter, 5 

though efficiency is < 2%. For the smallest particles, Brownian motion results in higher 6 

encounters compared to motility, whereas for dP > 0.2 µm diffusional deposition is larger for 7 

motile microorganisms. On the other hand, swimming is unlikely for organisms smaller than 0.6 8 

µm, as Brownian rotation would turn them too frequently for swimming to be effective (39). For 9 

dP > 0.05 µm, particles are more efficiently encountered via direct interception: for 0.5 µm non-10 

motile particles, encounter by direct interception is 254-fold higher than by diffusional 11 

deposition, while for 1 µm motile particles that increase is 41-fold. 12 

 Because there are substantially higher numbers of small particles in the ocean (Fig. 1B), 13 

these particles can be disproportionately ingested even when encounter efficiencies are relatively 14 

low. Estimates of particle encounter (Eq. 1) based on encounter efficiency (Fig. 3) and realistic 15 

particle concentrations (Fig. 1B) show that, on average, particles in the 0.01–0.1 µm size range 16 

(viruses, colloids) are encountered at ~200 times the rate of particles in the 0.1–1 µm range 17 

(submicron particles, bacteria, Prochlorococcus) (Fig. 4A). On the other hand, larger particles 18 

still contribute more volume and carbon (Fig. 4B). The mean carbon contribution from 0.1–1 µm 19 

particles is 38 times larger than from 0.01–0.1 µm particles. However, 1–10 µm particles 20 

contribute just four times as much carbon as 0.1–1 μm particles (Fig. 4B). If only the outer 0.1 21 

µm of each particle is digested, the situation is reversed: the 0.1–1 µm size range contributes 22 



 7 

20% more carbon than the 1–10 µm range, and the maximum carbon contribution comes from 1 

1.1 µm particles (Fig. 4B).   2 

 The model shows that particles smaller than the mesh width, W = 1.4 µm, supply a total 3 

of 0.15 mg C h-1 to a salp. The carbon ingestion rate of a 40 mm long P. confoederata is 2.2% of 4 

the body carbon content each hour (41), or 0.02 mg C h-1 based on the carbon-to-body-length 5 

relationship of Madin et al. (42). Therefore, even assuming that the sticking coefficient is small 6 

(α = 0.1–0.2), the carbon supplied by particles smaller than the mesh opening can support the 7 

majority or entirety of the organism’s carbon requirement. 8 

To support this conclusion, predicted encounter rates via direct interception were tested 9 

experimentally by offering particles of three sizes (dp = 0.5, 1 and 3 µm) to freshly collected P. 10 

confoederata and quantifying the relative capture rate of particles of each size. The particle size 11 

range where diffusional deposition is predicted to contribute significantly to encounter rates (dP < 12 

0.05; Fig. 3) was not tested in experiments, but its contribution in terms of carbon supply was 13 

predicted to be negligible based on model results (Fig. 4). When the same concentration of each 14 

particle size was offered, capture rates were similar among sizes, with a slight preference for the 15 

larger particles (Fig. 5A). Relative capture rates were 29.1 ± 8.6%, 30.1 ± 5.4% and 40.8 ± 16 

12.9% (mean ± SD) for 0.5, 1 and 3 µm particles, respectively. They were in general agreement 17 

with relative encounter rates from direct interception (relevant for particles >0.05 µm; Fig. 3), 18 

predicted to be 13.8%, 32.9% and 53.3%, respectively. The discrepancy at the smallest size 19 

suggests that the contribution of smaller particles is even more pronounced than the model 20 

predicts. A model of simple sieving (17, 43) was an inferior predictor of relative encounter rates 21 

and was particularly poor at predicting encounter rates of the smallest particles, with mean 22 

relative encounter rates of 3.7%, 14.5% and 81.9% for dp = 0.5, 1 and 3 µm, respectively.  23 



 8 

Offering a suspension of particles skewed towards higher concentrations at the smallest 1 

sizes confirmed these findings: measured rates were similar to those predicted by the direct 2 

interception model, and very different from the simple sieving model (Fig. 5B). In this case also, 3 

experiments showed an even higher capture rate of smaller particles than anticipated from 4 

modeled encounter rates. This difference could be due to a size dependence of the sticking 5 

coefficient α, for example due to larger drag forces experienced by larger particles (44).  6 

 7 

Discussion 8 

Taken together, these results suggest that simple sieving is not the sole feeding mechanism for 9 

salps and, instead, that low-Reynolds number filtering mechanisms play a major and possibly 10 

dominant role by enabling salps to capture submicrometer particles. This is in stark contrast to 11 

previous results, which found that salp filter feeding was characterized by a size cutoff of 1–2 12 

µm (2, 10). Particles smaller than the mesh opening W were considered unimportant for feeding 13 

in view of their negligible sieving efficiency, yet direct verification was hampered by 14 

measurement sensitivity (2, 10). Our model results show that diffusional deposition allows 15 

encounter of the smallest particles (dp < 0.05 µm), though very inefficiently (Fig. 3). However, a 16 

large fraction of submicrometer particles (0.05 µm < dp < W) can be efficiently encountered by 17 

direct interception (Fig. 4) and can largely or entirely satisfy salps’ energetic requirements even 18 

if the sticking coefficient α is as small as 0.1.   19 

If particles were fully digested, the majority of carbon would be supplied by particles in 20 

the 1–10 μm range (flagellates, small diatoms), which are primarily encountered by simple 21 

sieving, still with a significant contribution of 0.1–1 μm particles (bacteria, Prochlorococcus) 22 

encountered by direct interception. Contents of fecal pellets indicate that digestion of particles as 23 
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small as 1 µm is partial (3, 4) and when digestion is limited to the outer shell of the particles (e.g. 1 

0.1 µm), submicrometer particles can represent the majority of the carbon supply. The thinner 2 

the digested shell, the larger the contribution of smaller particles, because the nutritional value of 3 

larger particles now scales with their surface area (~dp
2), rather than volume (~dp

3). The particle 4 

size range providing the largest carbon contribution, then, results from a trade-off between 5 

particle abundance decreasing and volume increasing with particle size. Yet, more experiments 6 

are required to quantify the degree of digestion of various particle types and the nutritional value 7 

of the digested fraction, especially considering the role of morphological and chemical properties 8 

of particle coating (labile organic coatings vs. cell walls, exoskeletons, plates, spines).  9 

The model calculations presented here rely on a relation for carbon content originally 10 

developed for phytoplankton (2 < dP < 60 µm; 40). It is thus important to establish whether the 11 

carbon content of micron- and submicron-scale particles in the ocean is consistent with this 12 

assumption. Of particular interest is the carbon content of marine colloids, which are highly 13 

abundant particles in the 1 nm – 1 µm range, constituting 30–50% of 'Dissolved' Organic Carbon 14 

(DOC) in the upper ocean (45). These particles originate from biological processes including cell 15 

exudation (e.g. transparent exopolymers), viral infection, autolysis, egestion by flagellates, and 16 

sloppy feeding (46). Thus, labile colloidal components can be rich in polysaccharides, proteins 17 

and lipids (46, 47) and can play an important role in biogeochemical processes (48–50).  Though 18 

a conclusive understanding of the bioavailability of colloidal particles remains a major frontier 19 

for biogeochemists, work conducted in several aquatic ecosystems has shown that colloids are 6–20 

37% organic carbon (median = 27%) (47). This finding is consistent with, and even somewhat on 21 

the larger side of the figure for carbon content utilized here (~11%, based on CC = 0.11V0.99 [ref. 22 

40] and a colloid density of ~ 1 g ml-1 [ref. 51]). Regardless of the nutritional value, salps 23 
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influence the turnover of the colloidal fraction of DOC through encounter and, ultimately, 1 

assimilation or defecation.  2 

Salp filtration rates are among the highest in the ocean, reaching up to 15.3 ml s-1 (2, 52), 3 

yet, pelagic tunicates have among the smallest diameter mesh elements (see Fig. 6 in ref. 53) and 4 

mesh spacing (10) of all marine filter feeders. By constantly pumping large volumes of seawater 5 

through their bodies and retaining micron-scale and submicrometer particles, salps are well 6 

adapted for existence in the oligotrophic ocean. Most salp species are more oceanic than neritic 7 

in distribution, and high particle concentrations in coastal areas can clog their filtering apparatus 8 

and disrupt feeding (54). Oceanic waters are frequently dominated by plankton that is too small 9 

to be captured by sieving. The finding that salps can fulfill their energetic requirements with only 10 

submicrometer particles contributes to explain this geographic distribution. 11 

Carbon in the euphotic zone is typically regenerated on the order of hours via the 12 

microbial loop (55). Salps and other pelagic tunicates remove particles that are four to five orders 13 

of magnitude smaller than themselves, thereby bypassing several trophic levels (55).   In 14 

addition, muscular pumping achieves a high throughput of seawater and associated particles 15 

compared to the much slower feeding currents generated by flagella or cilia in other planktonic 16 

filter feeders. Particles are packaged into membrane-bound fecal pellets that are often 17 

incompletely digested and therefore rich in carbon, nitrogen and phosphorous (56), and contain 18 

trace elements (e.g. Ca and Mg; 4). Fecal pellets sink quickly and are transferred to a longer-19 

lived pool in deeper water, where material is sequestered on time scales of years to centuries. 20 

The efficiency with which salps repackage and export carbon from surface waters suggests that 21 

salps, particularly in bloom proportions, can profoundly influence biogeochemical cycling, as 22 

indicated also by a recent proposition to increase global salp populations to mitigate climate 23 
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change (57). In summary, the high filtration rates of small particles imply that salps can rapidly 1 

transfer carbon and energy from the submicron size range of the particle spectrum to higher 2 

trophic levels by grazing, and to larger depths via their rapidly sinking fecal pellets. As such, 3 

salps can provide a substantial shortcut to flocculation in determining the contribution of small 4 

particles to vertical transport of particulate matter.  5 

 6 

Materials and Methods 7 

Specimen collection. Pegea confoederata were collected in individual 800 ml plastic jars using 8 

blue-water SCUBA techniques (58) at the Liquid Jungle Lab off the Pacific coast of Panama (7° 9 

50' N, 81° 35' W) during January 2007, 2008 and 2009. Animals were maintained in collection 10 

jars or in tanks (6–11 liters) of field-collected seawater at in situ temperatures (26–28 ºC). All 11 

measurements were made within 12 h of collection. 12 

Measurements of mesh size and flow speed. Filter mesh measurements were obtained by 13 

epifluorescence microscopy. Part of the mesh of P. confoederata was removed by gently 14 

inserting a ~1×1 mm section of a glass coverslip through the oral siphon and sweeping it through 15 

the pharyngeal chamber using forceps. After adding 50–100 μl of  lectin-fluorescein 16 

isothiocyanate in seawater solution (1 mg ml-1), the mesh was imaged using a Zeiss Axiostar 17 

Plus microscope with an HBO 50 epifluorescence lamp, a 100× objective and a Nikon Coolpix 18 

8800 camera. This is the first time the filtering mesh was imaged using a ‘wet’ preparation in 19 

order to reduce sample distortion caused by drying and shrinking associated with TEM and SEM 20 

techniques (3, 59). Data were acquired from six P. confoederata solitaries and three aggregates, 21 

ranging from 16 to 60 mm long. Mesh length, L, and width, W, were measured in ImageJ (NIH) 22 

for multiple mesh openings (mean ± SD = 16 ± 10) and averaged for each individual.   23 
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The flow pattern and speed were determined using particle tracking. Individual P. 1 

confoederata were placed in custom-built acrylic tanks with field-collected seawater seeded with 2 

10 ± 2 μm titanium dioxide particles. Particles were illuminated with a 1-mm-thick laser sheet 3 

(30 mW, 500 nm wavelength) generated using a Powell lens (Lasiris) and their motion 4 

videotaped with a Sony HDR-HC7 videocamera (1440x1080 pixels, 30 fps). Because salps are 5 

transparent, particles could be tracked within the pharyngeal chamber until contact with the 6 

filtering mesh occurred. Velocities were determined by tracking individual particles between 7 

frames relative to landmarks on the salp body or by measuring particle streak lengths in a single 8 

frame using ImageJ.  9 

Particle encounter model. The encounter rate (60) 10 

EQCCP == β  (particles s-1)       [1] 11 

is the product of the encounter rate kernel, β (ml s-1), and the particle concentration, C (particles 12 

ml-1). Here, β = EQ, where E (dimensionless) is the capture efficiency (Supplementary 13 

Information) and Q (ml s-1) is the volume flow rate through the salp. Both E and C depend on 14 

particle diameter, dp. Particle capture by salps is a low-Re number process, indicating that 15 

viscous forces dominate over inertial forces in determining capture. The flow through the mesh 16 

has Re = WU/ν ~ 3×10-2  and the flow around an individual mesh strand (diameter d  ~0.1 µm; 17 

10) has Re = dU/ν ~ 2×10-3. Particle inertia is negligible, as the Stokes number dp
2Uρp/18ρνd is 18 

always less than 1 for dp < 10 µm, particle density ρp = 1037 kg m-3 and seawater density ρ = 19 

1030 kg m-3. Thus, particle capture is limited to non-inertial mechanisms, which include direct 20 

interception and diffusional deposition (12).  21 

We used a model for capture efficiency, E, by a rectangular mesh (Supplementary 22 

Information; 12), with parameters that were directly measured (mesh dimensions, flow through 23 



 13 

the filter) or taken from literature (mesh fiber diameter, particle size distribution). We assumed 1 

spherical particles in Eq. 1. The encounter of non-motile and motile particles by diffusional 2 

deposition was modeled by a diffusivity based on Brownian motion and random motility, 3 

respectively (Supplementary Information).  4 

 The volume flow rate through the salp, Q = 1.69 ml s-1, was determined as the average 5 

from three studies (20, 52, 61) and had a standard deviation of 1.44 ml s-1. The particle size 6 

distribution, concentration C of particles of size dP, was obtained from four Atlantic Ocean 7 

transects (28) and is likely a conservative estimate, as other studies found higher concentrations 8 

in all size ranges (Fig. 1B). Carbon encounter was calculated using the relation CC = 0.11V0.99 9 

(40) between carbon content, CC (pg C cell-1), and particle volume, V (µm3), for phytoplankton 10 

(similar relations apply for bacterioplankton and colloids; 47, 62). Because partially undigested 11 

particles are frequently observed in salp fecal pellets (3, 4), we also explored the implications for 12 

carbon encounter if only the outer 0.1 μm of each particle is digested. Relative estimates of 13 

particle and carbon encounters mentioned in the text were computed based on uniformly 14 

distributed values of particle diameter with spacing of 0.01 µm. 15 

Particle capture experiments. Relative retention efficiencies of dP = 0.5, 1 and 3 μm 16 

fluorescent polystyrene microspheres (Polysciences, Inc.) were determined using two feeding 17 

experiments, performed within 3 h of specimen collection. Microspheres were pretreated with 5 18 

mg ml-1 bovine serum albumin for 12–48 h to avoid clumping (63). In the first experiment, 19 

microspheres were added to each jar at a concentration C ≈ 103 ml-1 for each size.  After 2 h, P. 20 

confoederata guts were excised and ground using a mortar and pestle along with several 21 

microliters of seawater. Two 2 µl subsamples of the homogenate were examined using 22 

epifluoresence microscopy at 200× magnification and 365 ± 12 nm excitation, and particles of 23 
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each size were counted from three fields of view from each 2 µl subsample. The three particle 1 

sizes were distinguished based on size (dP = 0.5, 1 and 3 μm) and emission wavelength (486, 2 

407, 486 nm, respectively). Each count included a minimum of 50 particles. In the second 3 

experiment the starting concentrations were C ≈ 105, 104 and 103 ml-1 for dP = 0.5, 1 and 3 μm, 4 

respectively, to better represent the prevalence of small particles in the ocean (Fig. 1B). For both 5 

experiments, relative retention efficiencies were determined by dividing the count for a given 6 

particle size by the total count for all three sizes. Comparisons were made between relative 7 

retention efficiencies from experiments, the low-Re encounter model and a simple sieving model 8 

based on an experimentally determined Gaussian distribution of mesh widths (17, 43). 9 
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Figure Legends 12 

Fig. 1. Pelagic tunicates and particulate food. (A) Schematic of three Pegea confoederata 13 

individuals (aggregate stage). Mucous feeding filter (normally transparent) is shaded in red and 14 

direction of feeding current shown with arrows. (B) Size distribution of living and non-living 15 

particles in the upper ocean, including viruses (21), colloids (22), submicron particles (23), 16 

bacteria (24, 25), Prochlorococcus (26), Synechococcus (25), nanoplankton (24, 27), and 17 

microplankton (24, 27). Line is regression of microphytoplankton concentration versus cell 18 

diameter, log10C = -0.91 log10(dp
3 π/6) + 3.5; C in particles ml-1 and dp in µm (28). Graphic by E. 19 

P. Oberlander, WHOI. 20 

 21 

Fig. 2. Filtering mesh of P. confoederata. (A) Epifluorescent image of mesh. Scale bar is 5 μm. 22 

(B) Mesh width, W (µm), as a function of body length, Lb (mm) (n = 9). The line corresponds to 23 

W = 0.02Lb + 0.58 (n = 9; r2 = 0.70). 24 

 25 

Fig. 3. Particle encounter efficiency predicted for P. confoederata over a range of particle sizes. 26 

Efficiency of direct interception (blue) is shown for the mean measured mesh width W = 1.4 µm 27 

(solid line), with lower and upper bounds (dashed lines) corresponding to minimum and 28 



 20 

maximum mesh widths (W = 0.5 and 2.3 μm, respectively; Fig. 2B). Efficiency of diffusional 1 

deposition is shown in green for passive particles and in red for motile microorganisms, with 2 

diffusivities from Visser and Kiørboe (D = 2.8dp 
1.71, D in cm2 s-1 and dp in cm, ref. 38) for the 3 

latter. The red line is dashed for dp < 0.6 μm because motility is unlikely for organisms of that 4 

size (39). Vertical grey dotted lines correspond to experimental particle sizes. 5 

 6 

Fig. 4. Combined encounter rate predicted for direct interception and diffusional deposition 7 

(passive and motile particles) as a function of particle diameter for P. confoederata. Calculation 8 

based on Eq. 1,with E from Fig. 3, Q = 1.69 ml s-1 and log10C = -0.91 log10 (dp
3 π/6) + 3.5 (28; 9 

Fig. 1). (A) Particle encounter rate and (B) carbon encounter rate based on CC = 0.11V0.99, where 10 

CC is carbon content (pg C cell-1), and V is particle volume (µm3) (40). For the latter, two cases 11 

were considered: that the full particle is digested (solid line), or that only the outer 0.1 µm-thick 12 

shell of each particle is digested (dashed line). Note that above dp = 1.2 µm, direct interception 13 

efficiency is 100%. 14 

 15 

Fig. 5. Relative proportions of 0.5, 1 and 3 µm microspheres in P. confoederata gut after feeding 16 

experiments (Exp), compared to relative proportions predicted by direct interception (Dir int) 17 

and simple sieving (Sieving). (A) Equal initial concentrations of each particle size class (~103 18 

particles ml-1). (B) Higher initial concentration of smaller particles (0.5, 1 and 3 µm particle 19 

concentrations were ~105, ~104 and ~103 particles ml-1, respectively). 20 

 21 



 21 

Table 1. Flow speed at P. confoederata feeding filter. Values expressed as mean ± SD, with 1 

number of measurements in parenthesis. The mean speed weighted by the number of 2 

measurements for each organism was 1.5 ± 1.1 cm s-1. 3 
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    Individual Stage Body length, Lb (mm) Mean speed, U (cm s-1) Max speed (cm s-1) 

1 Aggregate 27 2.3 ± 1.1 (3) 4.1 
2 Solitary 30 1.2 ± 0.9 (9) 4.1 
3 Solitary 34 1.5 ± 0.1 (15) 2.4 
4 Solitary 53 1.9 ± 1.0 (13) 3.9 
5 Solitary 56 2.0 ± 1.8 (11) 6.7 
6 Solitary 62 0.8 ± 0.2 (14) 1.6 

Mean ± SD (n) 
 

1.6 ± 0.6 (6) 3.8 ± 1.7 (6) 
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SUPPORTING INFORMATION 

The efficiency of direct interception by a single fiber was computed as (12)  

Λ+−= − /]ln2[ 1
**** EEEEER ,      [S1] 

where 

 

 

E* = 1+
dP

d
,         [S2] 

 

 

Λ = 1− 2lnτ +
τ 2

6
−

τ 4

144
+

τ 6

1080
,      [S3] 

 

 

τ = πd W 2 + L2 /(WL) .       [S4] 

W and L are width and length of the mesh opening, respectively, and d is the fiber diameter. 

Direct interception efficiency reaches 100% when particle size is equal to mesh width. Although 

the model assumes dP 

 The efficiency of diffusional deposition by a single fiber is (12): 

<< d, the above expressions are still realistic as validated by several other 

studies where particles are larger than the mesh diameter (12, 17, 64).   

 

ED = 3.7Λ−1/ 3Pe−2 / 3 + 0.62Pe−1,      [S5] 

where Pe = dU/D is the Peclet number and D is the diffusion coefficient of the particles. For 

colloidal particles or non-motile organisms, diffusion arises from Brownian motion and D = 

kT/(3πρνdP), where k = 1.38×10-23 m2 kg s-2 K-1 is Boltzmann’s constant and T is temperature. 

For motile microorganisms diffusivity results from random motility, increasing with swimming 

speed, and D was computed using the semi-empirical results of Visser and Kiørboe (D = 2.8dp 

1.71, D in cm2 s-1 and dp in cm, ref. 38).  

 Finally, the total efficiency of a rectangular filter, which was used in the calculations, is 

(12) 
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where hE = WL/(W+L) is the equivalent mesh spacing. 
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