The role of multixenobiotic transporters in predatory marine molluscs as counter-defense mechanisms against dietary allelochemicals

[^0]
Abstract

Multixenobiotic transporters have been extensively studied for their ability to modulate the disposition and toxicity of pharmacological agents, yet their influence in regulating the levels of dietary toxins within marine consumers has only recently been explored. This study presents functional and molecular evidence for multixenobiotic transporter-mediated efflux activity and expression in the generalist gastropod Cyphoma gibbosum, and the specialist nudibranch Tritonia hamnerorum, obligate predators of chemically defended gorgonian corals. Immunochemical analysis revealed that proteins with homology to permeability glycoprotein (P-gp) were highly expressed in T. hamnerorum whole animal homogenates and localized to the apical tips of the gut epithelium, a location consistent with a role in protection against ingested prey toxins. In vivo dye assays with specific inhibitors of efflux transporters demonstrated the activity of P-gp and multidrug resistance-associated protein (MRP) families of ABC transporters in T. hamnerorum. In addition, we identified eight partial cDNA sequences encoding two ABCB and two ABCC proteins from each molluscan species. Digestive gland transcripts of C. gibbosum MRP-1, which have homology to vertebrate glutathione-conjugate transporters, were constitutively expressed regardless of gorgonian diet. This constitutive expression may reflect the ubiquitous presence of high affinity substrates for C. gibbosum glutathione transferases in gorgonian tissues likely necessitating export by MRPs. Our results suggest that differences in multixenobiotic transporter expression patterns and activity in molluscan predators may stem from the divergent foraging strategies of each consumer.

Key words

ABC-transporter, allelochemical, calcein-am, gorgonian, MK571, MRP, P-gp, verapamil

1. Introduction

Soft-bodied benthic organisms produce a vast number of structurally diverse secondary metabolites, many of which function as feeding deterrents in marine systems (Hay et al. 1988; Harvell et al. 1989; Paul 1992; Hay 1996; Stachowicz 2001). For marine consumers, the consequences of ingesting chemically defended prey can be quite severe (Targett et al. 2001), yet specialized consumers that solely feed on toxic prey can apparently tolerate these dietary compounds, and in some cases, even concentrate the defensive compounds for their own protection (Cimino et al. 1985; Cronin 2001). Few studies have explored the physiological targets of these compounds in generalist consumers or the mechanisms by which more specialized predators are able to cope with their toxic prey (Sotka et al. 2009).

The activity of multixenobiotic resistance transporters (MXRs) provides one mechanism by which consumers protect themselves from toxin-laden prey (Epel 1998). MXR proteins may actively export allelochemicals out of cells or facilitate the sequestration of toxins within specialized cells or organelles, effectively compartmentalizing them away from vulnerable protein and DNA targets (Sorensen et al. 2006). Many of the proteins involved in the transport of xenobiotics across membranes belong to the ATP Binding Cassette (ABC) family. Several members of the ABCB (P-glycoprotein; P-gp or MDR) and ABCC (multidrug resistanceassociated protein or MRP) subfamilies function as highly promiscuous transporters, capable of trafficking a diverse array of moderately hydrophobic xenobiotics across cell membranes (Bodo et al. 2003). Together, the overexpression of both P-gp and MRP in tumor cells has long been known to mediate the ATP-dependent efflux of anticancer agents, conferring resistance to natural product chemotherapeutic compounds (Deeley et al. 2006; Sarkadi et al. 2006). Only
recently has it been suggested that ABC transporters are responsible for regulating the absorption of allelochemicals in the guts of consumers, and may therefore have a significant influence on the foraging patterns and ultimately diet choice of these organisms (Sorensen et al. 2006; Sotka et al. 2008).

The ubiquity of MXRs in aquatic organisms has been confirmed by immunological crossreactivity studies, in vivo functional assays, competitive inhibition substrate binding assays (Bard 2000; Eufemia et al. 2000; Scherer et al. 2008; Lüders et al. 2009), and more recently by molecular evidence (Goldstone et al. 2006; Goldstone 2008; Sturm et al. 2009; Venn et al. 2009). The distribution of MXRs in tissues involved in absorption, secretion and barrier functions in aquatic invertebrates (Bard 2000) suggests that they may play a role in the prevention of dietary xenobiotic absorption. Furthermore, several pharmacological-based studies have also identified marine natural products from algae, sponges, tunicates, sea hares, gorgonians and marine bacteria that may be substrates for MXR proteins (Suganuma et al. 1988; Chambers et al. 1993; Williams et al. 1993; Aherne et al. 1996; Quesada et al. 1996; Schroder et al. 1998; Tanaka et al. 2002; Shi et al. 2007; Tanabe et al. 2007; Barthomeuf et al. 2008; Henrich et al. 2009), suggesting that the pool of potential substrates in marine ecosystems may be extensive. Given the myriad allelochemically-rich prey and hosts in marine communities, the constitutive or inducible expression of MXRs may serve as a protective counter-response in marine consumers by reducing dietary toxin absorption.

Studies from both human pharmacology (Marchetti et al. 2007) and aquatic systems (ContardoJara et al. 2008) (Amé et al. 2009) reveal that natural products from both terrestrial and marine
sources can induce the expression and activity of MXRs. If inducers of MXR activity are present in sufficient concentration in the diet of a consumer, ingestion of compounds could result in the enhanced efflux of co-ingested allelochemicals and possibly promote feeding. However, recent evidence also suggests that the unpalatability of some diets may be linked, in part, to the presence of potent MXR inhibitors (Smital et al. 2004) that are produced by the host/prey to directly interfere in efflux activity. These inhibitory compounds could act as "potency enhancers" by blocking transport activity, therefore resulting in increased accumulation of additional noxious allelochemicals (Sorensen et al. 2006). This inhibitory strategy may be employed by chemically defended invasive species to thwart their consumption (Smital et al. 1996; Schroder et al. 1998; Smital et al. 2004) by naïve consumers who may lack the adequate molecular architecture to cope with the invasive's chemistry. These findings emphasize the need to explore whether marine consumers that are regularly exposed to a diversity of toxic allelochemicals in their diet may have evolved greater tolerance of chemical defenses if they maintain high levels of ABC transporter protein and/or activity in vulnerable tissues.

The objective of this study was to characterize the MXR proteins potentially involved in resistance to dietary allelochemicals in two species of tropical gastropods that feed exclusively on allelochemically defended gorgonian corals. A combination of molecular, immunological and functional approaches were used to examine the expression and activity of molluscan ABC transporters in Tritonia hamnerorum, a specialist nudibranch that feeds on a single genus of gorgonian, and Cyphoma gibbosum, a generalist gastropod that includes multiple gorgonian families in its diet. Evidence from chemical ecology studies in terrestrial systems suggests that generalists, as a result of their chemically diverse diets, have evolved a greater diversity of
catalytically versatile xenobiotic resistance mechanisms as compared to specialists that are exposed to a reduced spectrum of allelochemicals due to their narrow foraging range (Li et al. 2004; Sorensen et al. 2006; Whalen et al. 2010b). This study presents the initial characterization of MXRs likely responsible for xenobiotic resistance in these two molluscs as part of an effort to obtain a more complete understanding of how generalists and specialists cope with their allelochemical diet(s) (Whalen et al. 2010a; Whalen et al. 2010b).

2. Material and Methods

2.1 Animal collection

In 2004, over 200 adult Tritonia hamnerorum, ranging in size from 3 mm to 13 mm , were collected from shallow reefs $(<10 \mathrm{~m})\left(\right.$ Big Point $-23^{\circ} 47.383^{\prime} \mathrm{N}, 76^{\circ} 8.113^{\prime} \mathrm{W}$; North Normans $23^{\circ} 47.383^{\prime} \mathrm{N}, 76^{\circ} 8.264^{\prime} \mathrm{W}$) surrounding the Perry Institute of Marine Science (PIMS), Lee Stocking Island, Exuma Cays, Bahamas. The purple sea fan, Gorgonia ventalina, was the only species of octocoral observed to serve as host for T. hamnerorum at our study site. The density of T. hamnerorum on individual sea fans ranged from two to over 500 individuals per sea fan. Nudibranchs were collected by removing the portion of sea fan housing them with scissors and transporting both the gorgonian and nudibranchs back to wet laboratory facilities provided by PIMS where they were maintained in flowing filtered seawater until further use. Nudibranchs used for RNA and protein isolation were removed from their host gorgonian, pooled, flash frozen in liquid nitrogen and kept at $-80^{\circ} \mathrm{C}$ until processing.

In 2006, a total of 141 adult Cyphoma gibbosum (ca 2-3 cm length) were collected from five shallow reefs ($<20 \mathrm{~m}$) (Big Point $-23^{\circ} 47.383^{\prime} \mathrm{N}, 76^{\circ} 8.113^{\prime} \mathrm{W}$; North Normans $-23^{\circ} 47.383^{\prime} \mathrm{N}$,
$76^{\circ} 8.264^{\prime} \mathrm{W}$; Rainbow Gardens $-23^{\circ} 47.792^{\prime} \mathrm{N}, 76^{\circ} 8.787^{\prime} \mathrm{W}$; Shark Rock $-23^{\circ} 45.075^{\prime} \mathrm{N}$, $76^{\circ} 7.475^{\prime}$ W; Sugar Blue Holes $-23^{\circ} 41.910^{\prime} \mathrm{N}, 76^{\circ} 0.23^{\prime} \mathrm{W}$) surrounding PIMS. Snails were immediately transported to web laboratory facilities provided by PIMS, where a series of feeding assays were conducted with seven gorgonian species (Briareum asbestinum, Eunicea mammosa, Gorgonia ventalina, Pseudopterogorgia acerosa, Pseudopterogorgia americana, Pseudopterogorgia elisabethae, Plexaura homomalla) observed to serve as hosts for C. gibbosum in the field. A detailed description of the feeding assay is reported in (Whalen 2008).

2.2 RNA isolation and RT-PCR cloning

Total RNA was isolated from a pool of whole T. hamnerorum (267.9 mg ; $\mathrm{n} \sim 40$ individuals) using the RNeasy Maxi Kit (Qiagen, Valencia, CA) following the manufacturer's instructions. In addition, a series of feeding assays conducted in 2004 at PIMS with 15 adult C. gibbosum feeding on four gorgonian species (Briareum asbestinum, Gorgonia ventalina,

Pseudopterogorgia acerosa, Pseudopterogorgia americana) provided the material for the initial cloning of ABC transporter cDNA fragments. Upon completion of these feeding assays, C. gibbosum digestive glands were immediately dissected and stored in RNALater ${ }^{\circledR}$ at $-80^{\circ} \mathrm{C}(\mathrm{n}=$ 15 digestive glands) until further processing. Total RNA was isolated from the pooled C. gibbosum digestive glands using RNA STAT-60 (Tel-Test B, Inc., Friendswood, TX) according to the manufacturer's protocol. Poly(A)+ RNA from both molluscan species was then purified using the MicroPoly(A)Purist mRNA purification kit (Ambion, Austin, TX) according to the manufacturer's instructions. First-strand cDNA was reverse transcribed from $2 \mu \mathrm{~g}$ poly(A)+ RNA using OmniScript reverse transcriptase (OmniScript RT kit, Qiagen) with random hexamer primers.

Degenerate primers for MRP were a generous gift from David Epel and Amro Hamdoun, Hopkins Marine Station and were designed against the conserved Walker A/B domains (Allikmets et al. 1998; Dean et al. 2001) (Supplementary Table S1). PCR and nested PCR were performed using AmpliTaq Gold DNA polymerase (Applied Biosystems) under the following conditions: $94^{\circ} \mathrm{C}$ for $10 \mathrm{~min} ; 35$ cycles of $94^{\circ} \mathrm{C}$ for $15 \mathrm{sec}, 52^{\circ} \mathrm{C}$ for $30 \mathrm{sec} ; 72^{\circ} \mathrm{C}$ for 7 min and with degenerate primers pairs (MRP_F/MRP_R and nestMRP_F/nestMRP_R). PCR products were visualized on agarose gels, gel purified (Gene Clean II, Bio 101, Inc.), ligated into pGEM-T Easy© plasmid vector (Promega, Madison, WI), and transformed into JM109 cells (Promega). PCR products were sequenced in both directions using an ABI 3730XL capillary sequencer at the Keck Facility located at the Josephine Bay Paul Center for Comparative Molecular Biology \& Evolution at the Marine Biological Laboratory (Woods Hole, MA). A minimum of twelve clones were sequenced for each PCR fragment. Clones were grouped based on nucleotide sequence with Sequencher 4.6 (Gene Codes Corporation) and a consensus sequence was generated and then examined by NCBI/GenBank BLASTX for gene identification (Altschul et al. 1997). BLASTX searches identified two partial sequences from C. gibbosum and two partial sequences from T. hamnerorum as having homology to MRP transporters; these were designated as CgMRP isoform 1, CgMRP isoform 2, ThMRP isoform 1 and ThMRP isoform 2.

2.3 Rapid amplification of cDNA ends (RACE)

Initial P-gp cDNA fragments were amplified from both gastropod species by RACE using degenerate primers designed to the nucleotide binding domain (Supplementary Table S1) and adaptor-ligated ds cDNA libraries that were constructed as described below (see Supplemental

File S 1 for additional information). BLASTX searches identified two partial sequences from C. gibbosum and two partial sequences from T. hamnerorum as having homology to P-gp transporters; these were designated as CgPgp isoform 1, CgPgp isoform 2, ThPgp isoform 1 and ThPgp isoform 2.

In order to obtain additional 5^{\prime} and 3^{\prime} sequence for molluscan ABC transporter cDNAs, gene specific primers were designed to initial cDNA fragments for RACE. One microgram of poly(A)+ RNA was isolated for both molluscan species as described above and used to create an adaptor-ligated double-stranded cDNA library synthesized using the Marathon cDNA Amplification Kit (BD Biosciences, Palo Alto, CA) according to the manufacturer's instructions. All primers were obtained from Sigma Genosys (St. Louis, MO) and PCR amplification conditions are described in Supplemental File S1. PCR products obtained from C. gibbosum and T. hamnerorum RACE reactions were ligated into pGEM-T Easy© plasmid vector (Promega, Madison, WI), transformed into JM109 cells (Promega), sequenced in both directions using an ABI 3730XL capillary sequencer at the Keck Facility located at the Josephine Bay Paul Center for Comparative Molecular Biology \& Evolution at the Marine Biological Laboratory (Woods Hole, MA), and analyzed as described below.

2.4 Sequence alignments and phylogenetic analysis

Clones were initially grouped based on nucleotide sequence identity ($>80 \%$) with Sequencher 4.6 and a consensus sequence was generated and examined by NCBI/GenBank BLASTX for gene identification (Altschul et al. 1997). To place the ABC transporter sequences from Cyphoma and Tritonia within a phylogenetic context, we pursued two lines of phylogenetic
approaches. We first assessed the relative position of gastropod sequences in relation to the full suite of human $A B C$ transporters (i.e., subfamilies ABCA-ABCG). Multiple alignments of molluscan deduced amino acid sequences were performed using ClustalW (Thompson et al. 1994). Human ABC gene subfamilies were aligned using Muscle v3.7 (Edgar 2004) . In order to maintain the proper relationships between the incompletely sequenced ABC domains, C. gibbosum and T. hamnerorum P-gp and MRP sequences were aligned to each other separately and then to the human ABCB (containing P-gp) and ABCC (containing MRP) families using the profile-profile alignment settings of Muscle. Alignments were automatically masked using the alignment quality scores of Muscle; (cut-off score of 20). Maximum likelihood (ML) phylogenetic analyses were performed with RAxML (v7.0.0; (Stamatakis 2006). Two types of analyses were performed: default rapid hill-climbing ML searches, starting from multiple different randomized maximum parsimony (MP) trees; or 100 replicates of rapid MP bootstrapping to find optimal start trees followed by rapid hill-climbing ML optimization. The PROTMIXWAG model of amino acid substitution was used in all analyses; it uses a category model of the WAG amino acid substitution matrix (Whelan et al. 2001) during the hill-climbing ML search but a gamma distribution of substitution rates for a final tree optimization (Stamatakis 2006).

In the second approach, we assessed the ABCB and ABCC phylogeny from gastropods and several other invertebrates (the nematode Caenorhabditis elegans, the arthropod Drosophila melanogaster, the bivalves Brachidontes pharaonis and Mytilus californianus) and Homo sapiens. The putative nucleotide binding domains (hereafter Domains One and Two) were determined using the Conserved Domain Database algorithm on GenBank (Marchler-Bauer et al.
2007). The library SEQINR (Charif et al. 2007) within R (http://www.r-project.org) was used to download amino acid sequences from ProtSwiss (http://www.uniprot.org) and extract the approximately 215-220 amino acids that constitute each domain. Domains were aligned independently using ClustalX and then alignments were concatenated by hand. The most appropriate model of protein evolution as determined using ProtTest 2.4 (Abascal et al. 2005); based on AIC scores) was $\mathrm{LG}+\mathrm{I}+\mathrm{G}$ (Le et al. 2008), but because this recently described model is not implemented in most phylogenetic programs, we used the next most fit model (WAG $+\mathrm{I}+\mathrm{G}$) (Whelan et al. 2001). A maximum likelihood phylogeny was generated using PHYML v2.4.4 (Guindon et al. 2003) and supported with 1000 bootstrap replicates. A Bayesian phylogeny was generated using MrBayes (Ronquist et al. 2003) with two independent runs of 2×10^{7} generations each (sampled every 1,000 generations) and a burn-in of 20,000 generations. In both ML and Bayesian analyses, the gamma distribution of substitution was estimated using four categories (alpha=2.0), and the proportion of invariant sites was 0.2 . Phylogenies were visualized using FigTree (http://tree.bio.ed.ac.uk/software/figtree/) and manipulated using Adobe Illustrator ${ }^{\circledR}$.

2.5 Real-time quantitative RT-PCR and statistical analysis

MRP isoform 1 transcript expression levels in C. gibbosum digestive glands were quantified by real-time quantitative PCR using the iCycler MyiQ Real-Time PCR Detection System (Bio-Rad). Digestive gland total RNA from C. gibbosum participating in the 2006 feeding assays was purified and DNAse treated using the RNeasy Maxi Kit and RNase-free DNAse Kit (Qiagen, Valencia, CA) following the manufacturer's instructions. Poly(A)+ RNA was isolated using the MicroPoly(A) Purist mRNA purification kit according to the manufacturer's instructions. DNAse-treated poly(A)+ RNA ($0.2 \mu \mathrm{~g}$) isolated was used to synthesize cDNA using a blend of
oligo (dT) and random hexamers as described by the iScript ${ }^{\mathrm{TM}}$ cDNA Synthesis Kit (Bio-Rad, Hercules, CA). Quantitative RT-PCR reactions contained $12.5 \mu \mathrm{~L} 2 \mathrm{x}$ SYBR Green Supermix reagent (Bio-Rad), 10 ng cDNA , and 100 nM of each gene-specific primer (136_1_F1/136_1_R1, Supplementary Table S1) in a final volume of $25 \mu \mathrm{~L}$. The PCR conditions were as follows: $95^{\circ} \mathrm{C}$ for $3 \mathrm{~min} ; 40$ cycles of $95^{\circ} \mathrm{C}$ for $15 \mathrm{sec}, 64^{\circ} \mathrm{C}$ for 1 min . PCR product specificity from each primer pair was confirmed by melt curve analysis to ensure that only a single product was amplified. Initially, a representative group of ten poly(A)+ RNA samples was used to perform control cDNA synthesis experiments without reverse transcriptase to check for contamination by genomic DNA. For each RNA sample, relative transcript abundance was calculated from a standard curve that was generated for each qPCR primer set by serially diluting plasmids containing the fragment to be amplified. Each sample and standard was run in duplicate and the expression of C. gibbosum β-actin was used to control for differences in cDNA synthesis among samples.

To examine whether Cyphoma MRP isoform 1 transcript expression differed between snails feeding on a control diet versus a gorgonian diet, a two way analysis of variance (ANOVA) was used with Diet (control vs. gorgonian diet) as a fixed factor and Reef (snail origin) as a random factor. The MRP-1 gene was considered a dependent variable. In addition, a one-way ANOVA was used to examine the variability in MRP-1 expression among reefs, where Reef was considered a random factor. This test was used to investigate reef-specific variation in transcript levels in time-zero snails, and to determine if any such variation persisted in snails collected from these same reefs after being fed a control diet for four days. P-values were corrected for
the two-way ANOVA analysis using by Bonferroni adjustment (Sankoh et al. 1997). Data analysis was performed using SYSTAT® version 11 (Systat Software, Inc., San Jose, CA).

2.6 Western blot for ABC-transporters

Crude homogenates were prepared by homogenizing two C. gibbosum digestive glands and whole T. hamnerorum in 10 mM potassium chloride, 1.5 mM magnesium chloride, 10 mM Tris$\mathrm{HCl},(\mathrm{pH} 7.4)$, containing 2 mM PMSF and 5% (by vol.) SDS at $4^{\circ} \mathrm{C}$. In addition, livers from Fundulus heteroclitus collected from New Bedford Harbor, MA, were also homogenized as described and used as a positive control (Bard et al. 2002). The crude homogenate was centrifuged at $14,000 \mathrm{xg}$ for 2 min at $4^{\circ} \mathrm{C}$, and the supernatant was stored at $-80^{\circ} \mathrm{C}$ until analysis. Protein concentrations were determined using the bicinchoninic acid (BCA) assay (Smith et al. 1985). Crude tissue homogenates were then diluted to $20 \mu \mathrm{~g}$ total protein with standard SDSPAGE sample buffer (50 mM Tris, $\mathrm{pH} 6.8,2 \%$ SDS, 10% sucrose, $0.2 \% \beta$-mercaptoethanol, 0.001% bromphenol blue), denatured at $100^{\circ} \mathrm{C}$ for 3 min , and loaded onto a 7.5% Tris-glycine gel using a 4\% stacking gel. Prestained molecular markers were purchased from Amersham (Full-range Rainbow MW Markers, GE Healthcare, Buckinghamshire, UK). Following electrophoresis, proteins were transferred onto a $0.45 \mu \mathrm{~m}$ nitrocellulose membrane (Schleicher \& Schuell, Keene, NH) at 15 V for 54 min . The membrane was blocked in $5 \%(\mathrm{wt} / \mathrm{vol})$ non-fat milk in Tris buffered saline-Tween 0.1% (TBST) for 1 hr and then hybridized overnight with rocking at $4^{\circ} \mathrm{C}$ in TBST containing $0.4 \mu \mathrm{~g} / \mathrm{mL}$ of the monoclonal antibody C 219 (Signet Laboratories, Dedham, MA). The membrane was subsequently washed ($3 \times 10 \mathrm{~min}$) with TBST and incubated for 1 hr . with horseradish peroxidase-conjugated goat anti-mouse IgG (Jackson

ImmunoResearch Inc., West Grove, PA) diluted 1:7000 in TBST. Detection of HRP activity was by enhanced chemoluminescence (ECL) onto Hyperfilm ECL (Amersham).

2.7 Immunohistochemical analysis

Live nudibranchs and snails were transferred to a 50 mL beaker containing filtered seawater and were relaxed by adding a few crystals of magnesium sulfate until they no longer recoiled to the touch. Digestive glands and mantle tissues from C. gibbosum $(\mathrm{n}=4)$ and whole T. hamnerorum individuals ($\mathrm{n}=2$) were fixed for 2 hours at $4^{\circ} \mathrm{C}$ in a buffered seawater solution of 2% paraformaldehyde, 2.5% glutaraldehyde (Karnovsky's Fixative) obtained from Electron Microscopy Sciences (Hatfield, PA). Tissue samples were then transferred to PBS and kept at $4^{\circ} \mathrm{C}$ till embedding. Paraffin-embedded samples were sectioned at $5 \mu \mathrm{~m}$ and mounted on Superfrost Plus (Fisher Scientific, St. Louis, MO) microscope slides, deparaffined, and then hydrated with normal mouse serum in 10 mM phosphate buffered saline (pH 7.5). Sections were incubated for 1 hr . at room temperature with the mAb C 219 diluted $(2 \mu \mathrm{~g} / \mathrm{mL})$ in Primary Antibody Diluent (Signet). Antibody binding was visualized with a commercial avidin-biotinperoxidase kit using diaminobenzidine tetrahydrochlroide (DAB) as the chromogen (Vectastain ${ }^{\circledR}$ Elite ABC Kit, Vector Laboratories, Inc., Burlingame, CA) according to the manufacturer's instructions. Specific staining was evaluated by light microscopy by comparison of mAB C219 stained and stained serial sections with normal mouse serum.

2.8 In-vivo dye transport assays

MK571 was purchased from Cayman Chemical (Ann Arbor, MI). Calcein-acetoxymethylester (C-AM) was purchased from Axxora (San Diego, CA). Calcein was purchased from Invitrogen
(Carlsbad, CA). Verapamil was purchased from MP Biomedicals (Solon, OH). Concentrated stocks of MK571 and C-AM were prepared in DMSO and were sufficiently concentrated so that the DMSO volume did not exceed 0.5% of the experimental volume.

ABC transporter activity was measured by the accumulation of calcein in whole T. hamnerorum individuals. Calcein-AM (C-AM) is a non-fluorescent substrate for both MRP and P-gp. Any C-AM entering the cell, if not transported out immediately by either ABC transporter, is rapidly hydrolyzed by intracellular esterases to form calcein, a fluorescent membrane-impermeable molecule (Essodaigui et al. 1998). Therefore, exposure to inhibitors of ABC transporter activity results in high calcein accumulation and increased fluorescence, while reduced intracellular accumulation of calcein and fluorescence is observed when transporter activity is increased.

Nudibranchs maintained in the laboratory were removed from their host, G. ventalina, and allowed to depurate for four hours in a beaker of sterile-filtered seawater with aeration. Five similarly sized T. hamnerorum ($\sim 7 \mathrm{~mm}$ in length) were placed in each well of a 24 -well plate and incubated for two hours in 3 mL of 500 nM C-AM resuspended in sterile-filtered seawater. Incubations were performed in the presence or absence of two inhibitors at two concentrations. MK571 specifically inhibits MRP transport activity, while verapamil inhibits P-gp transport activity. Nudibranchs were then rapidly washed two times with sterile-filtered seawater and homogenized for 30 seconds using an electric drill fitted with a Teflon pestle in a 2 mL Wheaton glass homogenizer containing $125 \mu \mathrm{~L}$ of ethanol. The homogenate $(\sim 175 \mu \mathrm{~L})$ was transferred to a 1.5 mL tube and centrifuged at room temperature for 7 min at 6.1 relative centrifugal force (RCF). Eighty-five microliters of supernatant was transferred to a 96 -well black plate containing
a clear bottom to minimize light scattering. The level of calcein in the resulting supernatant was measured fluorimetrically ($\lambda_{\mathrm{ex}}=485 \mathrm{~nm}, \lambda_{\mathrm{em}}=530 \mathrm{~nm}$) using a Cytofluor 2300 plate reader (Millipore). The ratio of intracellular calcein fluorescence in the absence and presence of MK571 or verapamil was used as a measure of the activity of T. hamnerorum MRP and P-gp transporters. Statistical analysis was performed using a two sample t test of the means with a significance level of 5%. In vivo dye assays were unable to be performed with C. gibbosum tissues due to the highly variable natural auto-fluorescence of the digestive gland in the absence of C-AM.

3. Results

3.1 Identification and phylogenetic analysis of ABC transporters

To define the range of ABC transporter genes expressed in molluscan tissues, a RT-PCR cloning approach with pooled mRNA samples and degenerate oligonucleotide primers was used initially to identify P-gp and MRP fragments with sequence corresponding to the conserved nucleotide binding domain of ABC transporter genes. BLASTX (NCBI) comparison of translated cDNAs indicated homology to mammalian ABCB and ABCC proteins. Initial gene fragment sizes were as follows: C. gibbosum - CgMRP isoform 1 and CgMRP isoform 2, 168 bp; C. gibbosum CgPgp isoform 1 and CgPgp isoform 2, 216 bp ; T. hamnerorum - ThMRP isoform 1 and ThMRP isoform 2, $170 \mathrm{bp} ;$ T. hamnerorum - ThPgp isoform 1 and ThPgp isoform 2, 71 and 182 bp respectively. Specific oligonucleotide primers designed to these initial fragments were used in 5^{\prime} and 3' RACE reactions to obtain the eight partial MXR sequences ranging in length from 390 to 4647 bp (Table 1).

Deduced amino acid alignments of the gastropod MRPs and P-gps generated from nucleotide consensus sequences are shown in Figures S1 and S2 in Supplemental material. ThMRP isoform 1 amino acid alignments with human ABCC sequences revealed a nearly full-length coding sequence of 1549 amino acids. A partial sequence encoding 951 amino acids, including the putative start codon and first two transmembrane spanning domain/nucleotide binding domain, was obtained for CgMRP isoform 1. Polypeptide lengths of 184 and 765 amino acids were obtained for CgMRP isoform 2 and ThMRP isoform 2, respectively, both of which aligned to the first nucleotide binding domain (Figure S1, Supplemental material). An alignment of gastropod P-gp amino acid sequences with human ABCB 1 revealed that both Tritonia P -gp sequences align with the first nucleotide binding domain, while Cyphoma P-gp sequences cover the second half of the protein, including the stop codon (Figure S2, Supplemental material). In addition, hydrophobicity plots (Kyte et al. 1982) of C. gibbosum and T. hamnerorum ABC transporters agreed well with human ABCB 1 and ABCC 3 models (Figure $\mathrm{S} 3, \mathrm{~S} 4$ in Supplemental material), increasing our confidence in the assignment of molluscan transmembrane and nucleotide binding domains.

Phylogenetic analysis of the deduced amino acid sequences revealed that the gastropod ABC transporters belong to the ABCB and ABCC subfamilies (Figure 1). We constructed a phylogeny of $A B C B$ and $A B C C$ subfamilies in order to better define the relationships among proteins from humans, gastropods and a variety of other invertebrates (Figure 2). There is strong Bayesian and ML support (1.0 and 99\%, respectively) for the monophyly of these two subfamilies, and sequences within subfamilies are more similar to each other (Mean \pm S.D.
pairwise similarity of ABCB subfamily $=48 \pm 8 \% ; \mathrm{ABCC}$ subfamily $=54 \pm 7 \%$) than sequences of the other subfamily (Mean \pm S.D. pairwise similiarity $=29 \pm 3 \%)$.

Within the ABCB subfamily, Tritonia Pgp isoform 1 and Cyphoma Pgp isoform 2 are embedded within a well supported clade (0.99 Bayesian posterior probability) that includes sequences from human $(\mathrm{ABCB} 2, \mathrm{ABCB} 3, \mathrm{ABCB} 8, \mathrm{ABCB} 9$ and ABCB 10$)$ and Mytilus californianus $\mathrm{ABCB}-$ like protein. Tritonia Pgp isoform 2 and Cyphoma Pgp isoform 1 cluster with each with other (0.91 Bayesian posterior probability) and sequences from human (ABCB5, $\mathrm{ABCB} 11, \mathrm{ABCB} 1$, and ABCB4) and the bivalve Brachidontes pharaonis (1.0 Bayesian posterior probability).

Within the ABCC subfamily, two Tritonia (ThMRP isoform 1 and ThMRP isoform 2) and a Cyphoma (CgMRP isoform 1) sequences cluster significantly with human ($\mathrm{ABCC} 1, \mathrm{ABCC} 2$, ABCC3 and ABCC6), Drosophila (CG6214) and Mytilus californianus sequences (1.0 and 48\% by Bayesian and ML analysis, respectively). Cyphoma isoform 2 is embedded within a clade with human sequences ($\mathrm{ABCC} 5, \mathrm{ABCC} 11$, and ABCC 12$)$.

3.2 Quantitative RT-PCR analysis of Cyphoma ABCC (MRP-1) expression

Quantitative RT-PCR analysis was used to investigate the constitutive and inducible expression of MRP isoform 1 transcripts in Cyphoma after dietary exposure to several gorgonian species with varying allelochemical profiles. Cyphoma MRP isoform 1 was selected for expression analysis because it is found within a well-supported clade that contains both human MRP1 and MRP2 (ABCC1 and $A B C C 2$, respectively), known for their ability to transport a range of xenobiotics and phase II metabolites, including glutathione-conjugated substrates (Keppler et al.

1997; Nies et al. 2007; Zimmermann et al. 2008). This is particularly relevant to the present study because Cyphoma digestive gland tissues constitutively express high levels of the glutathione-conjugating enzyme, glutathione S-transferase, likely necessitated by the presence of numerous potent inhibitors and/or substrates in its gorgonian diets (Whalen et al. 2008; Whalen et al. 2010b).

Digestive gland CgMRP isoform 1 transcripts were measured by quantitative RT-PCR from adult Cyphoma gibbosum allowed to feed ad libitum for four days on one of seven gorgonian diets or a control diet lacking gorgonian chemistry. MRP isoform 1 transcripts were constitutively expressed in Cyphoma digestive gland and the expression was not affected by gorgonian diet (Supplemental Table S3, Figure 3). MRP isoform 1 transcript expression was also measured in time-zero individuals to determine if collection location had any influence on gene expression. MRP isoform 1 expression was found to significantly differ in time-zero snails as a function of reef location (ANOVA, $\mathrm{F}_{4,26}=2.74, \mathrm{p}=0.05$, Figure 4 and Table S 4 in Supplemental material), but did not significantly differ among snails allowed to feed on a control diet for four days (ANOVA, $\mathrm{F}_{4,28}=0.637, \mathrm{p}=0.640$).

3.3 Expression and localization of ABCB1 ($P-g p$)

Immunochemical detection of P-gp-like enzymes in molluscan tissue homogenates with the monoclonal antibody C219 revealed the presence of immunoreactive bands only for Tritonia homogenates. The antibody recognized a distinct band of expected size, 170 kDa (Juliano et al. 1976), and two larger diffuse bands, $>200 \mathrm{kDa}$, possibility representing differentially glycosylated isoforms of P-gp (Schinkel et al. 1993) or the presence of multiple proteins in

Tritonia (Figure 5). However, similar immunoreactivity was absent for Cyphoma digestive gland homogenates. Based on deduced amino acid sequences, the lack of reactivity in Cyphoma homogenates is somewhat surprising considering that at least one of the Cyphoma proteins (CgPgp isoform 1) contains the epitope VQEALD, among those recognized by C219. Although C219 recognizes this epitope containing Glu (E), it does so less strongly than the epitope containing Ala (A) (VQAALD) (Georges et al. 1990). The partial Tritonia Pgp isoform 1 sequence contains the Ala at this position (VQAALD), which may explain the difference in reactivity between molluscan species. Alternatively, or in addition, there may be differences in P-gp expression that contribute to the differential recognition by C 219 in these immunoblot studies.

The cellular localization of P-glycoprotein was examined in fixed, paraffin-embedded molluscan tissue sections probed with mAb C219. P-glycoprotein expression was detected in the apical tips of the ciliated columnar epithelia cells lining the lumen of the midgut in T. hamnerorum (Figure 6). In the non-distended midgut, immunohistochemical staining helps to accentuate the folded nature of this heavily ciliated epithelia (Millott 1937; Morse 1968). Faint staining was also noted in goblet-like cells found on the nudibranch's epidermis, which may have a role in mucus secretion (Figure 6A). In contrast to the staining in T. hamnerorum tissues, immunoreactive protein was not detected in C. gibbosum mantle or digestive gland tissues. Negative control sections of T. hamnerorum (Figure 6E) or C. gibbosum (data not shown) tissues stained with normal mouse serum displayed no immunolabelling.

3.4 In vivo calcein efflux transport assay

In vivo examination of transporter activity in Tritonia was assessed using the calcein efflux assay. The calcein assay is a functional diagnostic method developed to quantify MXR-mediated efflux activity in cells and tissues. Non-fluorescent calcein-AM rapidly traverses cell membranes where it can be converted to fluorescent calcein by non-specific esterases or extruded by P-gp and MRP before intracellular conversion to the non-MXR substrate. High levels of MXR transport activity can prevent the accumulation of free calcein in the cell, resulting in minimal fluorescent calcein accumulation. Transporter-specific MXR-mediated efflux can be measured by the use of specific MRP (MK571) and P-gp (verapamil) inhibitors. If transport activity is minimal, the transport inhibitor will have limited or no effect resulting in little change in cell fluorescence. However, if transport activity is significant, the presence of an inhibitor will increase calcein accumulation, as indicated by intracellular fluorescence, compared to incubations without the inhibitor present.

Changes in fluorescence intensity of calcein in Tritonia tissues incubated in the presence of 500 nM extracellular C-AM with and without varying concentrations of inhibitors are shown in Figure 7. The addition of verapamil or MK571 to the seawater containing Tritonia significantly increased calcein accumulation compared to DMSO controls. These results indicate that MXRmediated efflux activity prevents calcein accumulation in Tritonia tissues and that inhibiting this activity causes calcein-AM to be retained and hydrolyzed to calcein. Calcein accumulation varied depending on the inhibitor used and its concentration. Increasing verapamil concentration to $25 \mu \mathrm{M}$ did not cause a measurable increase in calcein accumulation compared to $5 \mu \mathrm{M}$ of verapamil, suggesting that the lower concentration of verapamil is sufficient to block the majority of P-gp transporters. In contrast, $30 \mu \mathrm{M}$ MK571 resulted in a further 57% increase in
calcein accumulation compared to that caused by $5 \mu \mathrm{M}$ MK571, and the calcein accumulation was greater than the maximal level obtained in the presence of verapamil. This difference in the absolute level of calcein accumulation suggests that MRP transporters are either more highly expressed or more efficient at exporting C-AM in Tritonia tissues.

4. Discussion

Our knowledge of the function of ABC transporters in marine invertebrates is mostly limited to the response of these proteins under anthropogenic stress conditions (Kurelec 1992; Minier et al. 1993; Smital et al. 2000; Smital et al. 2003; Kingtong et al. 2007). However, for marine consumers that regularly feed on prey/hosts laden with natural toxins, efflux transporters may play a critical role in regulating the absorption of these allelochemicals, thereby influencing diet selection. This study is the first to examine the expression and activity of ABC transporters from two predatory molluscs that feed solely on chemically defended prey.

Molluscan P-glycoproteins

Using a combination of molecular approaches, four partial cDNA sequences of P-gps related to multixenobiotic transporters in vertebrates were identified from the digestive gland of Cyphoma gibbosum (CgPgp isoform 1, CgPgp isoform 2) and whole Tritonia hamnerorum (ThPgp isoform 1, ThPgp isoform 2). ThPgp isoform 2 and CgPgp isoform 1 clusters with human ABCB 1 , $\mathrm{ABCB} 4, \mathrm{ABCB} 5$ and ABCB 11 genes. ABCB 1 (MDR1 or Pgp1) is possibly the most well studied of all the multixenobiotic transporters and is known for its promiscuous transport of hydrophobic substrates, including xenobiotics, lipids, sterols, and chemotherapeutic agents derived from natural products (Choudhuri et al. 2006). Human ABCB4 (MDR3) and ABCB11
are both expressed in the liver and are involved in the secretion of bile acids (Gerloff et al. 1998; Oude Elferink et al. 2007), while ABCB5 is hypothesized to function as a drug resistance mediator, similar to ABCB 1 , and is primarily expressed in the epidermis (Frank et al. 2005). Acquisition of complete ABCB sequences would help to better define the relationships of the molluscan P-gps with particular ABCB members. Nevertheless, the phylogenetic analysis presented here clearly groups these molluscan transporters with those ABCB members known to mediate xenobiotic resistance.

Tritonia Pgp isoform 1 and Cyphoma Pgp isoform 2 appear to cluster with human half transporters ABCB2(TAP1), ABCB3(TAP2), ABCB8(M-ABC1), ABCB9 and ABCB10(M$\mathrm{ABC} 2)$ genes. Human ABCB 2 and ABCB 3 encode half transporters that form a heterodimer and transport peptides derived from proteasomal degradation from the cytosol into the endoplasmic reticulum for loading onto major histocompatibility complex (MHC) class I molecules (Sturm et al. 2009). Human ABCB9 is homodimeric and shares structural similarities to $\mathrm{ABC} 2 / 3$, however its function has yet to be defined, while human mitochondrial transporters ABCB 8 and ABCB 10 function in iron metabolism and transport of Fe / S protein precursors. It is therefore possible that these gastropod isoforms are also half transporters; however, since invertebrates lack the mammalian adaptive immune response, the functional role of these molluscan transporters is not so obvious.

Western blot analysis of molluscan tissues with the mAb C219, which recognizes both human MDR1 (ABCB1) and MDR3 (ABCB4) proteins (Van den Elsen et al. 1999), suggested that homologs of human MDR proteins are expressed in Tritonia tissues but not in Cyphoma
digestive gland. The apparent disparity in P-gp expression between the two predatory molluscs may reflect differences in their foraging behavior. A previous study showed that specialist herbivores that consumed a diet rich in allelochemicals had a higher intestinal P-gp capacity in comparison to sympatric generalists that were unable to tolerate the toxin-laden diet (Green et al. 2004). These results suggest that dietary toxins could be handled differently depending on consumer experience.

Deduced amino acid sequences from two partial Cyphoma P-gps indicate that at least one of the forms (CgPgp isoform 1) contains the correct epitope (VQEALD) in its nucleotide binding domain and therefore would be recognized by C219 if expressed in the digestive gland. It is possible that CgPgp isoform 1 is expressed in tissues other than the digestive gland; however, immunohistochemical analysis of whole Cyphoma tissue sections with C219 did not detect any immunoreactive protein. Based on sequence data, multiple forms of P-gp are expressed in Cyphoma digestive gland, yet their detection may be limited by the reactivity of the antibody used here, suggesting that western blots should be interpreted with caution. In contrast, Tritonia tissue homogenates displayed a distinct band at 170 kDa , in agreement with human MDR proteins (Choudhuri et al. 2006) and two diffuse bands at $>200 \mathrm{kDa}$. Similar multiple banding patterns (i.e., 170 kDa , and $>200 \mathrm{kDa}$ banding) have also been observed in the gill tissue of mussels Mytilus californianus, M. galloprovincialis, and M. edulis and oysters Crassostrea gigas and C. virginica (i.e., $>200 \mathrm{kDa}$) (reviewed in Bard 2000). Protein bands $>200 \mathrm{kDa}$ may represent post-translational modifications or differential glycosylation states, not uncommon among mammalian P-glycoproteins (Schinkel et al. 1993).

Immunohistochemical staining of Tritonia tissues by C219 indicated that P-gp proteins were localized to the apical epithelial of the midgut and to a lesser extent in the epidermis. The location of P-gp in Tritonia digestive tissues is in agreement with the localization of mammalian ABCB 1 on the apical (or luminal) surface of polarized epithelia of many tissues, such as the gastrointestinal tract, kidney proximal tubules and biliary heptocytes (Klein et al. 1999). Based on the location of mammalian ABCB 1 in barrier tissues coupled with its function as a unidirectional transporter of a range of toxic substrates, it is likely that the physiological role of ABCB 1 and its orthologs is to protect cells and ultimately organisms against toxic compounds (Schinkel et al. 1994; Schinkel et al. 1997). The two tissues types observed to exhibit the greatest P-gp expression in Tritonia, the gut epithelia and the epidermis, correspond to those tissues that would be exposed to the greatest concentration of gorgonian allelochemicals, due to the fact that Tritonia both resides on and consumes its gorgonian host.

Interestingly, this nudibranch is able to selectively sequester a furano-germacrene feeding deterrent from its gorgonian host, Gorgonia ventalina, and concentrate this chemical defense four-fold (dry mass basis) relative to the gorgonian (Cronin et al. 1995). While the exact mechanism of sequestration in nudibranch tissues is unknown, recent studies have demonstrated that mammalian MXR transporters can reduce the intracellular concentration of toxins by actively sequestering them in subcellular compartments, away from vulnerable cellular targets (Van Luyn et al. 1998; Molinari et al. 2002; Rajagopal et al. 2003; Ifergan et al. 2005) or within certain organs (Jonker et al. 2005). Furthermore, MXR members can have different activity profiles depending on membrane location (i.e., plasma membrane versus lysosomal membrane), which may be linked to the lipid environment or post-translational modification of the
transporter that can occur within subcellular compartments (Rajagopal et al. 2003). This intracellular sequestration phenomenon has also been observed in mussel blood cells, whereby the intracellular accumulation of the fluorescent P-gp substrate Rhodamine B in lysosomes could be reversed if incubated with verapamil (Svensson et al. 2003). In addition, MXR-mediated subcellular localization is suspected to be responsible for the sequestration of the marine toxin, okadaic acid in the mussel Mytilus edulis (Svensson et al. 2003). Transporters have also been suggested as a mechanism by which herbivorous insects can sequester unmetabolized host plant toxins in diverticular pouches, defensive glands or hemolymph (Sorensen et al. 2006). Chemical analysis of nudibranch tissues indicated that diet-derived allelochemicals are selectively accumulated in the mantle border and in mucus secretions (Pawlik et al. 1988; Garcia-Gomez et al. 1990; Fontana et al. 1994; Avila et al. 1997). In Tritonia, the precise tissue location of toxin sequestration is unknown; however, P-gp immunoreactive protein was detected on this nudibranch's epidermis, a location consistent with the site of toxin accumulation in other nudibranch species. Further work is needed to determine whether ABCB1-like proteins within the dermis of nudibranchs participate in toxin accumulation; nevertheless, the presence of ABC transporters in these specialist consumers may not only function as a protective mechanism against cytotoxicity, but may have an added advantage of providing these consumers with their own chemical protection.

The in vivo activity of MXR transporters was investigated in Tritonia using ABC subfamily specific transport inhibitors capable of blocking the P-gp- and MRP-mediated efflux of C-AM. Both inhibitors resulted in increased dye accumulation in Tritonia tissues, which is consistent with previous competitive dye transport assays reporting MXR-mediated transport activity in a
variety of marine invertebrates (grass shrimp (Finley et al. 1998), worm (Toomey et al. 1993), sponge (Muller et al. 1996), oyster (Keppler 1997), mussel (McFadzen et al. 2000), sea urchin (Hamdoun et al. 2004)). Varying inhibitor concentration did not increase P-gp-mediated calcein accumulation, but did cause a substantial impact on MRP-mediated calcein accumulation. The greater level of calcein accumulation in Tritonia exposed to MRP inhibitor suggests that MRPmediated efflux may contribute more to xenobiotic resistance than P-gp in Tritonia.

Molluscan multixenobiotic resistance-associated proteins

While both subfamilies of transporters confer multixenobiotic resistance, the substrate selectivities of P-gp and MRP differ markedly. P-gp transport neutral or mildly positive lipophilic compounds, while MRP substrates are lipophilic anions capable of transporting a range of substrates including glutathione (GSH), glucuronide, or sulfate conjugates of phase II detoxification reactions (Kruh et al. 2003). Phylogenetic analysis of molluscan MRP sequences obtained here indicate that CgMRP isoform 1, ThMRP isoform 1 and ThMRP isoform 2 fall within a well-supported clade containing the mammalian $\mathrm{ABCC} 1, \mathrm{ABCC} 2, \mathrm{ABCC} 3$ and ABCC 6 proteins, known for their ability to transport a variety of glutathione conjugates including natural product cancer drugs and prostaglandins (Evers et al. 1997; de Waart et al. 2006). The Caribbean gorgonian Plexaura homomalla is regularly consumed by Cyphoma despite the high concentration of prostaglandin A_{2} esters (Gerhart 1986), which function as potent feeding deterrents in this coral (Gerhart 1984; Pawlik et al. 1989). Recent evidence suggests that Cyphoma may be able to tolerate dietary prostaglandins and other lipophilic gorgonian compounds by conjugating them with GSH, catalyzed by glutathione S-transferases (GSTs). GSTs are highly expressed in the digestive gland of this predator, and a screening of gorgonian
lipophilic extracts suggests that all gorgonian diets may contain substrates for Cyphoma GSTs (Whalen et al. 2010b). Therefore, the constitutive expression of MRP isoform 1 in the digestive gland of Cyphoma may facilitate the efficient biliary excretion of putative glutathione-conjugates of prostaglandins and other lipophilic compounds (Evers et al. 1997; Paumi et al. 2003; de Waart et al. 2006). MRP isoform 1 expression was also detected in the snails feeding on control diets lacking gorgonian allelochemicals, suggesting that these transporters may also be responsible for the export of physiological substrates, in addition to their roles in multixenobiotic resistance. In contrast, MRP isoform 1 expression significantly varied in time-zero snails as a function of reef location. While it is difficult to conclusively pin point the cause of this reef-specific variation, the length of snail foraging time on a single colony or the presence of additional gorgonian species not tested in our feeding assays may have had an effect on MRP isoform 1 expression.

Phylogenetic analysis revealed that Cyphoma MRP isoform 2 is significantly divergent from the other molluscan MRPs identified in this study and falls into the clade containing human ABCC5, ABCC 11 and ABCC 12 . All three of these transporters are at the early stages of investigation and their physiological functions are not well understood. However, studies indicate that they mediate the transport of antiretroviral nucleosides and lipophilic glutathione-conjugates (Wijnholds et al. 2000; Kruh et al. 2007).

Conclusions

Mounting evidence suggests that ABC transporters likely regulate the absorption and subsequent distribution of natural toxins in marine organisms (Toomey et al. 1993; Toomey et al. 1996; Keppler et al. 2001; Eufemia et al. 2002). The present work describes the first efforts to identify

MXR genes that may protect marine invertebrates that have adapted to exclusively feed on allelochemically-rich prey. Messenger RNA encoding MXR transporters is expressed in both generalist and specialist molluscan species and these transporters share sequence and organizational structure similar to MXRs of distantly related organisms, indicating the likelihood of shared function as natural product transporters between mammalian and molluscan orthologs. A second piece of evidence supporting the role of MXR proteins as dietary allelochemical efflux pumps comes from the results of immunohistochemical analyses in Tritonia tissues, where P-gp expression was highest in the tissues most vulnerable to allelochemical exposure. Additionally, in vivo studies of MXR activity using ABC subfamily-specific inhibitors provided added support for the presence and function of MXR transporters in Tritonia. However, for organisms where in vivo dye assays may not be feasible, real-time qPCR provided a highly robust and sensitive method for quantifying MXR isoform-specific expression. Constitutive expression of selected promiscuous MXR transporters may be advantageous to a generalist predator like Cyphoma that maintains a chemically diverse diet. Support for this hypothesis may come from screening gorgonian extracts in competitive substrate inhibition assays with transfected cell lines or isolated membrane vesicles overexpressing molluscan MXRs of interest. This initial screening approach would facilitate comparisons of substrate breadth between MXRs from generalist and specialist consumers and allow one to begin to test predictions about whether generalist MXRs possess greater structural and functional flexibility in their substrate specificity compared to specialists (Li et al. 2004).

The elucidation of the molecular mechanisms underlying consumer tolerance is a prerequisite to understanding the foraging behavior of marine consumers. This study provides a much needed
first step in identifying putative environmental chemical stress genes capable of ameliorating allelochemical-induced toxicity. It is likely that both MRP and P-gp play significant roles in natural toxicant efflux in marine consumers. Future work aimed at elucidating those marine natural products capable of interacting with substrate-binding sites on MXRs will provide valuable insight into the evolution of ABC transporter-mediated consumer counter-defense mechanisms.

Abbreviations

ATP Binding Cassette (ABC); Calcein-AM (C-AM); Multidrug resistance-associated protein (MRP); P-glycoprotein (P-gp).

Acknowledgements

We thank the staff of the Perry Institute for Marine Science, Carly Gaebe, Terry Rioux and Ann Tarrant for their assistance with animal collection. We thank David Epel and Amro Hamdoun for their invaluable input. Microscopy support was graciously provided by Louie Kerr and Michael Moore. Financial support was provided by the Ocean Life Institute Tropical Research Initiative Grant (WHOI) to KEW and MEH; the Robert H. Cole Endowed Ocean Ventures Fund (WHOI) to KEW; the National Undersea Research Center - Program Development Proposal (CMRC-03PRMN0103A) to KEW; and the National Science Foundation (Graduate Research Fellowship to KEW and DEB-0919064 to EES).

The work described in this article has carried out in accordance with the EC Directive 86/609/EEC for animal experiments.

The authors have declared that no competing interests exist.

Figure Captions

Figure 1. Phylogenetic relationships of Cyphoma, Tritonia and human ABC transporters. Maximum likelihood (ML) trees were constructed as described in the Methods. Out of a possible 3450 positions, 1821 positions (or 52.8%) were used to construct the final tree. Molluscan sequences are highlighted in red. Values at branch points represent ML bootstrap values calculated with 100 replications. Triangles represent portions of the tree that were collapsed due to poor resolution of the taxa within each clade as evidenced by bootstrap analysis. GenBank sequences in the tree include: Human ABCA proteins (ABCA1, NP 005493.2; $A B C A 2, \mathbf{N P} 001597.2 ; A B C A 3, \mathbf{N P 0 0 1 0 8 0 . 2} ; ~ A B C A 4, \mathbf{N P} \mathbf{0 0 0 3 4 1 . 2} ; ~ A B C A 5, \mathbf{N P} 061142.2 ;$ $A B C A 6, \underline{\mathbf{N P}} \mathbf{5 2 5 0 2 3 . 2} ; A B C A 7$, $\underline{\mathbf{N P} \text { 061985.2; }}$ ABCA8, $\mathbf{N P}$ 009099.1; $A B C A 9$, NP 525022.2; $A B C A 10$, $\mathbf{N P}$ 525021.3; $A B C A 12$, $\mathbf{N P}$ 775099.2), human $A B C B$ proteins (ABCB 1 , NP 000918.2; ABCB 2 , $\mathbf{N P} \mathbf{0 0 0 5 8 4 . 2} ; \mathrm{ABCB} 3$, NP 000535.3; $A B C B 4$, NP 000434.1; $A B C B 5, \mathbf{N P}$ 848654.3; $A B C B 6$, NP 005680.1; $A B C B 7$, NP 004290.2; $A B C B 8$, $\mathbf{N P}$ 009119.2; $A B C B 9$, $\underline{\mathbf{N P} \text { 982269.1; }} A B C B 10$, $\mathbf{N P}$ 036221.1; $A B C B 11$, NP 003733.2), human $A B C C$ proteins ($A B C C 1$, NP 004987.2; $A B C C 2$, NP 000383.1; $A B C C 3, \underline{\mathbf{N P} 003777.2} ; A B C C 4, \mathbf{N P} 005836.2 ; A B C C 5, \mathbf{N P} 005679.2 ; ~ A B C C 6$, NP 001162.3; $A B C C 8$, NP 000343.2; $A B C C 9 \mathrm{a} / \mathrm{b}$, $\underline{\mathbf{N P} 005682.2, \mathbf{N P} 064693.2 ; ~ A B C C 10, ~}$ NP 258261.2; $A B C C 11, \underline{\mathbf{N P} 115972.2} ; A B C C 12, \mathbf{N P}$ 150229.2; $A B C C 13, \underline{\text { EAX10058.1), }}$ human $A B C D$ (ABCD 1 , $\mathbf{N P} \mathbf{0 0 0 0 2 4 . 2} ; \mathrm{ABCD} 2$, $\mathbf{N P} \mathbf{0 0 5 1 5 5 . 1} ; ~ A B C D 3$, $\mathbf{N P} \mathbf{0 0 2 8 4 9 . 1}$, $A B C D 4, \underline{\mathbf{N P}} \mathbf{0 0 5 0 4 1 . 1}$), human $A B C E(A B C E 1, \mathbf{N P} 002931.2)$, human $A B C F(A B C F 1$, NP 001020262.1; $A B C F 2$, NP 009120.1; $A B C F 3$, $\underline{\text { NP 060828.2 }), ~ h u m a n ~ A B C G ~(A B C G 1, ~}$ NP 997057.1; $A B C G 2$, NP 004818.2; $A B C G 4, \underline{\mathbf{N P} 071452.2 ;} A B C G 5$, $\underline{\text { NP 071881.1; }}$

ABCG8, NP 071882.1), Cyphoma gibbosum MRP isoform 1 (EU487192), MRP isoform 2
(EU487193), Pgp isoform $1(\underline{\mathbf{E U 4 8 7 1 9 0}})$, Pgp isoform $2(\underline{\mathbf{E U 4 8 7 1 9 1}})$, Tritonia hamnerorum MRP isoform $1(\underline{\mathbf{E U 4 8 7 1 9 4}})$, MRP isoform $2(\underline{\mathbf{E U 4 8 7 1 9 5}})$, Pgp isoform $1(\underline{\mathbf{E U 4 8 7 1 9 6}})$, Pgp isoform 2 (EU487197).

Figure 2. Phylogenetic relationships of Cyphoma and Tritonia ABC proteins with human and invertebrate $A B C B$ and $A B C C$ subfamilies. The Bayesian phylogeny is presented with posterior probability and ML bootstrap support indicated for each branch (e.g., Bayesian/ML). ML bootstrap support greater or equal to 70% is indicated by an asterisk $\left({ }^{*}\right)$, less than 70% is indicated by a dash (-). Gastropod sequences are highlighted in red. GenBank sequences included in the tree can be found in Supplemental File S2.

Figure 3. Mean MRP isoform 1 transcript expression among C. gibbosum individuals feeding on a gorgonian or control diet for four days. Bars represent the mean transcript expression $(\pm \mathrm{SE})$ of snails feeding on B. asbestinum $(\mathrm{n}=13)$, E. mammosa $(\mathrm{n}=12), G$. ventalina $(\mathrm{n}=13), P$. acerosa $(\mathrm{n}=10), P$. americana $(\mathrm{n}=12), P$. elisabethae $(\mathrm{n}=6), P$. homomalla $(\mathrm{n}=11)$ or a control diet $(\mathrm{n}=33)$. The relative number of transcripts per $0.2 \mu \mathrm{~g}$ of poly(A)+ RNA was calculated from the standard curve and normalized by a β-actin correction factor. Results of a two-way ANOVA indicate no differences in MRP isoform 1 expression in snails feeding on different diets.

Figure 4. Mean MRP isoform 1 transcript expression among time-zero and four day control diet fed C. gibbosum collected from five reefs. (A) Time-zero snails; mean MRP isoform 1 expression (\pm SE) in snails ($\mathrm{n}=31$ snails) collected from five reefs and immediately
dissected to preserve reef-specific gene expression signals. (B) Control snails; mean MRP isoform1 expression (\pm SE) in snails ($\mathrm{n}=33$ snails) collected from five reefs and fed a control diet (e.g., alginic acid + squid powder) for four days. Values in parentheses indicate the number of replicate snails examined per reef. The relative number of transcripts per $0.2 \mu \mathrm{~g}$ of poly(A)+ RNA was calculated from the standard curve and normalized by a β-actin correction factor.

Figure 5. Detection of P-glycoprotein proteins in molluscan tissue homogenates. (A) Western blot was probed with anti-P-glycoprotein mAb C219 which reacted with one sharp band at 170 kDa and two diffuse bands at $>170 \mathrm{kDa}$ in T. hamnerorum whole cell lysates. No bands were detected in C. gibbosum digestive gland lysates. (B) Fundulus heteroclitus liver cell lysates were used as a positive control.

Figure 6. Immunohistochemical analysis of T. hamnerorum tissues. Tangential sections through T. hamnerorum probed with mAb C219. Orange-brown staining indicates immunoreactive protein. (A) Black arrows indicate intense staining by C 219 ; grey arrow indicates lighter staining by C 219 along the epidermis; bm. buccal mass; mg. midgut; oe . esophagus; ra. radula; (50x). (B) Magnification (100x) of esophagus and midgut. (C) Further magnification (200x) of the midgut ciliated columnar epithelia; cilia indicated by white arrow. (D, E) C219 probed tissue section (D) and unlabeled serial section (E) depicting P-glycoprotein localization to the apical tips of the midgut epithelium (indicated by black arrows) (200x).

Figure 7. Change in intracellular fluorescence in T. hamnerorum incubated with MRP (MK571) and P-gp (verapamil) inhibitors compared to untreated controls. Bars represent mean fluorescence ($\pm \mathrm{SE}$) of T. hamnerorum tissue homogenates from four or eight replicate
wells. Number of replicate wells for DMSO control (grey bars) and inhibitor exposed (black bars) are indicated in the parentheses. All inhibitor exposures resulted in a significant increase in calcein accumulation. MK571 at $30 \mu \mathrm{M}$ exposure resulted in the greatest inhibition of transport activity in T. hamnerorum. ${ }^{*} P=0.001,{ }^{* * P<0.001}$

Tables
Table 1. Summary of MXR cDNAs from Cyphoma gibbosum and Tritonia hamnerorum

				Length of cloned fragment		
Gene subfamily	Species	Tissue	Gene designation	Nucleotide (bp)	Amino acid (a.a.)	GenBank Accession no.
ABCB	Cyphoma gibbosum	Digestive	Pgp isoform 1	1755	584	EU487190
		gland	Pgp isoform 2	1029	342	EU487191
	Tritonia hamnerorum	Whole	Pgp isoform 1	390	130	EU487196
		animal	Pgp isoform 2	410	136	EU487197
ABCC	Cyphoma gibbosum	Digestive	MRP isoform 1	2853	951	EU487192
		gland	MRP isoform 2	554	184	EU487193
	Tritonia hamnerorum	Whole	MRP isoform 1	4647	1549	EU487194
		animal	MRP isoform 2	2297	765	EU487195

Supplementary Material

Table Descriptions

Supplemental Table S1. Primers used in the present study
Supplemental Table S2. Results of a two-way ANOVA to investigate differences in MRP-1 gene expression in C. gibbosum feeding on control versus gorgonian diets

Supplemental Table S3. Results of a one-way ANOVA to investigate reef-dependent MRP-1 gene expression in time-zero and four day control fed C. gibbosum

Figure Descriptions

Supplemental Figure S1. Alignment of deduced amino acid sequences of Cyphoma and Tritonia MRP proteins

Supplemental Figure S2. Alignment of deduced amino acid sequences of Cyphoma and Tritonia P-gp proteins with Human ABCB1

Supplemental Figure S3. Comparison of molluscan and human P-gp hydropathy profiles Supplemental Figure S4. Comparison of molluscan and human MRP hydropathy profiles

Additional Files

Supplemental File S1. Description of Rapid Amplification of cDNA Ends (RACE)
Supplemental File S2. List of GenBank accession no. for Figure 2.

References Cited

Abascal, F., Zardoya, R., Posada, D., 2005. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104-2105.

Aherne, G.W., Hardcastle, A., Valenti, M., Bryant, A., Rogers, P., Pettit, G.R., Srirangam, J.K., Kelland, L.R., 1996. Antitumour evaluation of dolastatins 10 and 15 and their measurement in plasma by radioimmunoassay. Chemother. Pharmacol. 38, 225-232.

Allikmets, R., Dean, M., 1998. Cloning of novel ABC transporter genes. Methods in Enzymology 292, 116-130.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

Amé, M.V., Baroni, M.V., Galanti, L.N., Bocco, J.L., Wunderlin, D.A., 2009. Effects of microcystin-LR on the expression of P-glycoprotein in Jenynsia multidentata. Chemosphere 74, 1179-1186.

Avila, C., Paul, V.J., 1997. Chemical ecology of the nudibranch Glossodoris pallida: is the location of diet-derived metabolites important for defense? Mar. Ecol. Prog. Ser. 150, 171-180.

Bard, S.M., 2000. Multixenobiotic resistance as a cellular defense mechanism in aquatic organisms. Aquat. Toxicol. 48, 357-389.

Bard, S.M., Bello, S.M., Hahn, M.E., Stegeman, J.J., 2002. Expression of P-glycoprotein in killifish (Fundulus heteroclitus) exposed to environmental xenobiotics. Aquat. Toxicol. 59, 237251.

Barthomeuf, C., Bourguet-Kondracki, M.-L., Kornprobst, J.-M., 2008. Marine metabolites overcoming or circumventing multidrug resistance mediated by ATP-dependent transporters: a new hope for patient with tumors resistant to conventional chemotherapy. Anti-Cancer Agents in Med. Chem. 8, 886-903.

Bodo, A., Bakos, E., Szeri, F., Varadi, A., Sarkadi, B., 2003. The role of multidrug transporters in drug availability, metabolism and toxicity. Toxicol. Lett. 140-141, 133-143.

Chambers, T.C., Raynor, R.L., Kuo, J.F., 1993. Multidrug resistant human KB carcinoma cells are highly resistant to the protein phosphatase inhibitors okadaic acid and calyculin A. Analysis of potential mechanisms involved in toxin resistance. Int. J. Cancer 53, 323-327.

Charif, D., Lobry, J.R., 2007. seqinr 1.0-2: a contributed package to the $\{R\}$ project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla, U., Porto, M., Roman, H.E., Vendruscol, M. (Eds.), Structural approaches to sequence evolution: Molecules, networks, population, Springer Verlag, New York, pp. 207-232

Choudhuri, S., Klaassen, C.D., 2006. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB 1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int. J. Tox. 25, 231-259.

Cimino, G., De Rosa, S., De Stefano, S., Morrone, R., Sodano, G., 1985. The chemical defense of nudibranch molluscs: structure, biosynthetic origin and defensive properties of terpenoids from the dorid nudibranch Dendrodoris grandiflora. Tetrahedron 41, 1093-1100.

Contardo-Jara, V., Pflugmacher, S., Wiegand, C., 2008. Multi-xenobiotic-resistance a possible explanation for the insensitivity of bivalves towards cyanobacterial toxins. Toxicon 52, 936-943.

Cronin, G., 2001. Resource allocation in seaweeds and marine invertebrates: chemical defense patterns in relation to defense theories. In: McClintock, J.B., Baker, B.J. (Eds.), Marine Chemical Ecology, CRC Press, Boca Raton, FL, pp. 325-353

Cronin, G., Hay, M.E., Fenical, W., Lindquist, N., 1995. Distribution, density, and sequestration of host chemical defenses by the specialist nudibranch Tritonia hamnerorum found at high densities on the sea fan Gorgonia ventalina. Mar. Ecol. Prog. Ser. 119, 177-189.
de Waart, D.R., Paulusma, C.C., Kunne, C., Oude Elferink, R.P., 2006. Multidrug resistance associated protein 2 mediates transport of prostaglandin E2. Liver Int. 26, 362-368.

Dean, M., Rzhetsky, A., Allikmets, R., 2001. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11, 1156-1166.

Deeley, R.G., Cole, S.P., 2006. Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett. 580, 1103-1111.

Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797.

Epel, D., 1998. Use of multidrug transporters as first lines of defense against toxins in aquatic organisms. Comp. Biochem. Physiol. A 120, 23-28.

Essodaigui, M., Broxterman, H.J., Garnier-Suillerot, A., 1998. Kinetic analysis of calcein and calcein-acetoxymethylester efflux mediated by the multidrug resistance protein and pglycoprotein. Biochemistry 37, 2243-2250.

Eufemia, N., Clerte, S., Girshick, S., Epel, D., 2002. Algal products as naturally occurring substrates for p-glycoprotein in Mytilus californianus. Mar. Biol. 140, 343-353.

Eufemia, N.A., Epel, D., 2000. Induction of the mulixenobiotic defense mechanism (MXR), Pglycoprotein, in the mussel Mytilus californianus as a general cellular response to environmental stresses. Aquat. Toxicol. 49, 89-100.

Evers, R., Cnubben, N.H.P., Wijnholds, J., van Deemeter, L., van Bladeren, P., Borst, P., 1997. Transport of glutathione prostaglandin A conjugates by the multidrug resistance protein. FEBS Lett. 419, 112-116.

Finley, D.B., Scott, G.I., Karnaky, K., 1998. Investigation of the presence and function of a putative multidrug transporter in the grass shrimp, Palaemonetes pugio. In: Society of Environmental Toxicology and Chemistry, 19th Annual Meeting, Charlotte, NC,

Fontana, A., Gimenez, F., Marin, A., Mollo, E., Cimino, G., 1994. Transfer of secondary metabolites from the sponges Dysidea fragilis and Pleraplysilla spinifera to the mantle dermal formations (MDFs) of the nudibranch Hypserlodoris webbi. Experientia 50, 510-516.

Frank, N.Y., Margaryan, A., Huang, Y., Schatton, T., Waaga-Gasser, A.M., Gasser, M., Sayegh, M.H., Sadee, W., Frank, M.H., 2005. ABCB5-Mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 65, 4320-4333.

Garcia-Gomez, J.C., Cimino, G., Medina, A., 1990. Studies on the defensive behavior of Hypselodoris species (Gastropoda: Nudibranchia): ultrastructure and chemical analysis of mantle dermal formations (MDFs). Mar. Biol. 106, 245-250.

Georges, E., Bradley, G., Gariepy, J., Ling, V., 1990. Detection of P-glycoprotein isoforms by gene-specific monoclonal antibodies. Proc. Natl. Acad. Sci. 87, 152-156.

Gerhart, D.J., 1984. Prostaglandin A2: An agent of chemical defense in the Caribbean gorgonian Plexaura homomalla. Mar. Ecol. Prog. Ser. 19, 181-187.

Gerhart, D.J., 1986. Gregariousness in the gorgonian-eating gastropod Cyphoma gibbosum: tests of several possible causes. Mar. Ecol. Prog. Ser. 31, 255-263.

Gerloff, T., Stieger, B., Hagenbuch, B., Madon, J., Landmann, L., Roth, J., Hofmann, A.F., Meier, P.J., 1998. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J. Biol. Chem. 273, 10046-10050.

Goldstone, J.V., 2008. Environmental sensing and response genes in cnidaria: the chemical defensome in the sea anemone Nematostella vectensis. Cell. Biol. Toxicol. 24, 483-502.

Goldstone, J.V., Hamdoun, A.M., Cole, B.J., Howard-Ashby, M., Nebert, D.W., Scally, M., Dean, M., Epel, D., Hahn, M.E., Stegeman, J.J., 2006. The chemical defensome: Environmental
sensing and response genes in the Strongylocentrotus purpuratus genome. Dev. Biol. 300, 366384.

Green, A.K., Haley, S.L., Dearing, M.D., Barnes, D.M., Karasov, W.H., 2004. Intestinal capacity of P-glycoprotein is higher in the juniper specialist, Neotoma stephensi, than the sympatric generalist, Neotoma albigula. Comp. Biochem. Physiol. A 139, 325-333.

Guindon, S., Gascuel, O., 2003. A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Syst. Biol. 52, 696-704.

Hamdoun, A.M., Cherr, G.N., Roepke, T.A., Epel, D., 2004. Activation of multidrug efflux transporter activity at fertilization in sea urchin embryos (Strongylocentrotus purpuratus). Dev. Biol. 276, 452-462.

Harvell, C.D., Fenical, W., 1989. Chemical and structural defenses of Caribbean gorgonians (Pseudopterogorgia sp.): intracolony localization of defense. Limnol. Oceanogr. 34, 382-389. Hay, M.E., 1996. Marine chemical ecology: what's known and what's next? J. Exp. Mar. Biol. Ecol. 200, 103-134.

Hay, M.E., Fenical, W., 1988. Marine plant-herbivore interactions: the ecology of chemical defense. Annu. Rev. Ecol. Syst. 19, 111-145.

Henrich, C.J., Robey, R.W., Takada, K., Bokesch, H.R., Bates, S.E., Shukla, S., Ambudkar, S.V., McMahon, J.B., Gustafson, K.R., 2009. Botryllamides: Natural Product Inhibitors of ABCG2. ACS Chem. Biol. 4, 637-647.

Ifergan, I., Scheffer, G.L., Assaraf, Y.G., 2005. Novel extracellular vesicles mediate an ABCG2dependent anticancer drug sequestration and resistance. Cancer Res. 65, 10952-10958.

Jonker, J.W., Merino, G., Musters, S., van Herwaarden, A.E., Bolscher, E., Wagenaar, E., Mesman, E., Dale, T., Schinkel, A.H., 2005. The breast cancer resistance protein BCRP (ABCG2) concentrates drusg and carcinogenic xenotoxins into milk. Nat. Med. 11, 127-129.

Juliano, R.L., Ling, V., 1976. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455, 152-162.

Keppler, C., 1997. Expression of multixenobiotic resistance proteins and total proteins and total proteins in gills of the oyster Crassostrea virginica. In: Masters thesis, College of Charleston, Charleston, SC,

Keppler, C., Ringwood, A.H., 2001. Expression of P-glycoprotein in the gills of oysters, Crassostrea virginica: seasonal and pollutant related effects. Aquat. Toxicol. 54, 195-204.

Keppler, D., Leier, I., Jedlitschky, G., 1997. Transport of glutathione conjugates and glucuronides by the multidrug resistance proteins MRP1 and MRP2. Biol. Chem. 378, 787-791.

Kingtong, S., Chitramvong, Y., Janvilisri, T., 2007. ATP-binding cassette multidrug transporters in Indian-rock oyster Saccostrea forskali and their role in the export of an environmental organic pollutant tributyltin. Aquat. Toxicol. 85, 124-132.

Klein, I., Sarkadi, B., Varadi, A., 1999. An inventory of the human ABC proteins. Biochim. Biophys. Acta 1461, 237-262.

Kruh, G.D., Belinsky, M.G., 2003. The MRP family of drug efflux pumps. Oncogene 22, 75377552.

Kruh, G.D., Guo, Y., Hopper-Borge, E., Belinsky, M.G., Chen, Z.S., 2007. ABCC10, ABCC11, and ABCC12. Pflugers Arch. 453, 675-684.

Kurelec, B., 1992. The multixenobiotic resistance mechanism in aquatic organisms: ecotoxic consequences. Sci. Total Environ. 171, 197-204.

Kyte, J., Doolittle, R.F., 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132.

Le, S.Q., Gascuel, O., 2008. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307-1320.

Li, X., Baudry, J., Berenbaum, M.R., Schuler, M.A., 2004. Structural and functional divergence of insect CYP6B proteins: From specialist to generalist cytochrome P450. Proc. Natl. Acad. Sci. 101, 2939-2944.

Lüders, A.-K., Saborowski, R., Bickmeyer, U., 2009. Inhibition of multidrug/xenobiotic resistance transporter by MK571 improves dye (Fura 2) accumulation in crustacean tissues from lobster, shrimp, and isopod. Comp. Biochem. Physiol. C 150, 368-371.

Marchetti, S., Mazzanti, R., Beijnen, J.H., Schellens, J.H.M., 2007. Clinical relevance of drugdrug and herb-drug interactions mediated by the ABC transporter ABCB 1 (MDR1, $\mathrm{P}-$ glycoprotein). The Oncologist 12, 927-941.

Marchler-Bauer, A., Anderson, J., Derbyshire, M., DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, SH., B., 2007. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. 35, 237-240.

McFadzen, I., Eufemia, N.A., Heath, C., Epel, D., Moore, M., Lowe, D., 2000. Multidrug resistance in the embryos and larvae of the mussel Mytilus edulis. Mar. Environ. Res. 50, 319323.

Millott, N., 1937. On the morphology of the alimentary canal, process of feeding, and physiology of digestion of the nudibranch mollusc Jorunna tomentosa (Cuvier). Philos. Trans. R. Soc. London, Ser. B 228, 173-217.

Minier, C., Akcha, F., Galgani, F., 1993. P-glycoprotein expression in Crassostrea gigas and Mytilus edulis in polluted seawater. Comp. Biochem. Physiol. B 106, 1029-1036.

Molinari, A., Calcabrini, A., Meschini, S., Stringaro, A., Crateri, P., Toccacieli, L., Marra, M., Colone, M., Cianfriglia, M., Arancia, G., 2002. Subcellular detection and localization of the drug transporter P-glycoprotein in cultured tumor cells. Curr. Protein Pept. Sci. 3, 653-670.

Morse, M.P., 1968. Functional morphology of the digestive system of the nudibranch mollusc Acanthodoris pilosa. Biol. Bull. 134, 305-319.

Muller, W.E.G., Steffen, R., Rinkevich, B., Matranga, V., Kurelec, B., 1996. The multixenobiotic resistance mechanism in the marine sponge Suberites domuncula: its potential
applicability for the evaluation of environmental pollution by toxic compounds. Mar. Biol. 125, 165-170.

Nies, A.T., Keppler, D., 2007. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch. 453, 643-659.

Oude Elferink, R.P., Paulusma, C.C., 2007. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch. 453, 601-610.

Paul, V.J., 1992. Chemical defenses of benthic marine invertebrates. In: Paul, V.J. (Ed.) Ecological Roles of Marine Natural Products, Comstock and Publishing Associates, London, pp. 164-188

Paumi, C.M., Wright, M., Townsend, A.J., Morrow, C.S., 2003. Multidrug resistance protein (MRP) 1 and MRP3 attenuate cytotoxic and transactivating effects of the cyclopentenone prostaglandin, 15-deoxy-delta-12, 14-prostaglandin J2 in MCF7 breast cancer cells. Biochemistry 42, 5429-5437.

Pawlik, J.R., Fenical, W., 1989. A re-evaluation of the ichthyodeterrent role of prostaglandins in the Caribbean gorgonian coral Plexaura homomalla. Mar. Ecol. Prog. Ser. 52, 95-98.

Pawlik, J.R., Kernan, M.R., Molinski, T.F., Harper, M.K., Faulkner, D.J., 1988. Defensive chemicals of the Spanish dancer nudibranch Hexabranchus sanguineus and its egg ribbons: Macrolides derived from a sponge diet. J. Exp. Mar. Biol. Ecol. 119, 99-109.

Quesada, A.R., Gravalos, M.D., Puentes, J.L., 1996. Polyaromatic alkaloids from marine invertebrates as cytotoxic compounds and inhibitors of multidrug resistance caused by Pglycoprotein. Br. J. Cancer 74, 677-682.

Rajagopal, A., Simon, S.M., 2003. Subcellular localization and activity of multidrug resistance proteins. Mol. Biol. Cell 14, 3389-3399.

Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574.

Sankoh, A.J., Huque, M.F., Dubey, S.D., 1997. Some comments on frequently used multiple endpoint adjustments methods in clinical trials. Statistics in Medicine 16, 2529-2542.

Sarkadi, B., Homolya, L., Szakacs, G., Varadi, A., 2006. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol. Rev. 86, 11791236.

Scherer, C., Wiltshire, K., Bickmeyer, U., 2008. Inhibition of multidrug resistance transporters in the diatom Thalassiosira rotula facilitates dye staining. Plant Physiol. Biochem. 46, 100-103.

Schinkel, A.H., Kemp, S., Dolle, M., Rudenko, G., Wagenaar, E., 1993. N-glycosylation and deletion mutants of the human MDR1 P-glycoprotein. J. Biol. Chem. 268, 7474-7481.

Schinkel, A.H., Mayer, U., Wagenaar, E., Mol, C.A., van Deemter, L., Smit, J.J., van der Valk, M.A., Voordouw, A.C., Spits, H., van Tellingen, O., Zijlmans, J.M., Fibbe, W.E., Borst, P., 1997. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drugtransporting) P-glycoproteins. Proc. Natl. Acad. Sci. 94, 4028-4033.

Schinkel, A.H., Smit, J.J., van Tellingen, O., Beijnen, J.H., Wagenaar, E., van Deemter, L., Mol, C.A., van der Valk, M.A., Robanus-Maandag, E.C., te Riele, H.P., al., e., 1994. Disruption of the mouse mdrla P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491-502.

Schroder, H.C., Badria, F.A., Ayyad, S.N., Batel, R., Wiens, M., Hassanein, H.M.A., Kurelec, B., Muller, W.E.G., 1998. Inhibitory effects of extracts from the marine alga Caulerpa taxifolia and of toxin from Caulerpa racemosa on multixenobiotic resistance in the marine sponge Geodia cydonium. Environ. Toxicol. Pharmacol. 5, 119-126.

Shi, Z., Jain, S., Kim, I.W., Peng, X.X., Abraham, I., Youssef, D.T., Fu, L.W., El Sayed, K., Ambudkar, S.V., Chen, Z.S., 2007. Sipholenol A, a marine-derived sipholane triterpene, potently reverses P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells. Cancer Sci. 98, 1373-1380.

Smital, T., Luckenbach, T., Sauerborn, R., Hamdoun, A.M., Vega, R.L., Epel, D., 2004. Emerging contaminants - pesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms. Mutat. Res. 552, 101117.

Smital, T., Pivcevic, B., Kurelec, B., 1996. Reversal of multidrug resistance by extract from the marine alga Caulerpa taxifolia. Period. Biol. 98, 1197-1203.

Smital, T., Sauerborn, R., Hackenberger, B.K., 2003. Inducibility of the P-glycoprotein transport activity in the marine mussel Mytilus galloprovincialis and the freshwater mussel Dreissena polymorpha. Aquat. Toxicol. 65, 443-465.

Smital, T., Sauerborn, R., Pivcevic, B., Krca, S., Kurelec, B., 2000. Interspecies differences in Pglycoprotein mediated activity of multixenobiotic resistance mechanisms in several marine and freshwater invertebrates. Comp. Biochem. Physiol. C 126, 175-186.

Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D.e.a., 1985. Measurement of protein using bicinchonicic acid. Anal. Biochem. 150, 76-85.

Sorensen, J.S., Dearing, M.D., 2006. Efflux transporters as a novel herbivore countermechanism to plant chemical defenses. J. Chem. Ecol. 32, 1181-1196.

Sotka, E.E., Forbey, J., Horn, M., Poore, A., Raubenheimer, D., Whalen, K.E., 2009. The emerging role of pharmacology in understanding consumer-prey interactions in marine and freshwater systems. Integr. Comp. Biol. 49, 291-313.

Sotka, E.E., Whalen, K.E., 2008. Herbivore offense in the sea: the detoxificaiton and transport of secondary metabolites. In: Amsler, C. (Ed.) Algal Chemical Ecology, Springer, New York, pp. 203-221

Stachowicz, J.J., 2001. Chemical Ecology of Mobile Benthic Invertebrates: Predators and Prey, Allies and Competitors. In: McClintock, J.B., Baker, B.J. (Eds.), Marine Chemical Ecology, CRC Press, Boca Raton, pp. 157-194

Stamatakis, A., 2006. Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690.

Sturm, A., Cunningham, P., Dean, M., 2009. The ABC transporter gene family of Daphnia pulex. BMC Genomics 10, doi:10.1186/1471-2164-1110-1170.

Suganuma, M., Fujiki, H., Suguri, H., Yoshizawa, S., Hirota, M., Nakayasu, M., Ojika, M., Wakamatus, K., Yamada, K., Sugimur, T., 1988. Okadaic acid: an additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proc. Natl. Acad. Sci. 85, 1768-1771.

Svensson, S., Sarngren, A., Forlin, L., 2003. Mussel blood cells, resistant to the cytotoxic effects of okadaic acid, do not express cell membrane p-glycoprotein activity (multixenobiotic resistanc). Aquat. Toxicol. 65, 27-37.

Tanabe, K., Lamping, E., Adachi, K., Takano, Y., Kawabata, K., Shizuri, Y., Niimi, M., Uehara, Y., 2007. Inhibition of fungal ABC transporters by unnarmicin A and unnarmicin C , novel cyclic peptides from marine bacterium. Biochem. Biophys. Res. Commun. 364, 990-995.

Tanaka, J., Trianto, A., Musman, M., Issa, H.H., Ohtani, I., Ichiba, T., Higa, T., Yoshida, W., Scheuer, P.J., 2002. New polyoxygenated steroids exhibiting reversal of multidrug resistance from the gorgonian Isis hippuris. Tetrahedron 58, 6259-6266.

Targett, N.M., Arnold, T.M., 2001. Effects of secondary metabolites on digestion in marine herbivores. In: McClintock, J.B., Baker, B.J. (Eds.), Marine Chemical Ecology, CRC Press, Boca Raton, pp. 391-411

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.

Toomey, B.H., Epel, D., 1993. Multixenobiotic resistance in Urechis caupo embryos: protection from environmental toxins. Biol. Bull. 185, 355-364.

Toomey, B.H., Kaufman, M.R., Epel, D., 1996. Marine bacteria produce compounds that modulate multixenobiotic transport activity in Urechis caupo embryos. Mar. Environ. Res. 42, 393-397.

Van den Elsen, J.M.H., Kuntz, D.A., Hoedemaeker, F.J., Rose, D.R., 1999. Antibody C219 recognizes an alpha-helical epitope on P-glycoprotein. Proc. Natl. Acad. Sci. 96, 13679-13684.

Van Luyn, M.J.A., Muller, M., Renes, J., Meijer, C., Scheper, R.J., Nienhuis, E.F., Mulder, N.H., Jansen, P.L.M., De Vries, G.E., 1998. Transport of glutathione conjugates into secretory vesicles is mediated by the multidrug-resistance protein 1. Int. J. Cancer 76, 55-62.

Venn, A.A., Quinn, J., Jones, R., Bodnar, A., 2009. P-glycoprotein (multi-xenobiotic resistance) and heat shock protein gene expression in the reef coral Montastraea franksi in response to environmental toxicants. Aquat. Toxicol. 93, 188-195.

Whalen, K.E., 2008. Functional characterization and expression of molluscan detoxification enzymes and transporters involved in dietary allelochemical resistance. In: Biology Department, vol. Biological Oceanography PhD. Joint Program in Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution, p. 362

Whalen, K.E., Goldstone, J.V., Hahn, M.E., 2010a. Cytochrome P450 diversity and induction by gorgonian allelochemicals in the marine gastropod Cyphoma gibbosum. in preparation.

Whalen, K.E., Lane, A.L., Kubanek, J., Hahn, M.E., 2010b. Biochemical warfare on the reef: the role of glutathione transferases in consumer tolerance of dietary prostaglandins. PLoS One 5, e8537.

Whalen, K.E., Morin, D., Lin, C.Y., Tjeerdema, R.S., Goldstone, J.V., Hahn, M.E., 2008. Proteomic identification, cDNA cloning and enzymatic activity of glutathione S-transferases from the generalist marine gastropod, Cyphoma gibbosum. Arch. Biochem. Biophys. 478, 7-17.

Whelan, S., Goldman, N., 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691-699.

Wijnholds, J., Mol, C.A., van Deemter, L., de Haas, M., Scheffer, G.L., Baas, F., Beijnen, J.H., Scheper, R.J., Hatse, S., De Clercq, E., Balzarini, J., Borst, P., 2000. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc. Natl. Acad. Sci. 97, 7476-7481.

Williams, A.B., Jacobs, R.S., 1993. A marine natural product, patellamide D, reverses multidrug resistance in a human leukemic cell line. Cancer Lett. 71, 97-102.

Zimmermann, C., van de Wetering, K., van de Steeg, E., Wagenaar, E., Vens, C., Schinkel, A.H., 2008. Species-dependent transport and modulation properties of human and mouse multidrug resistance protein 2 (MRP2/Mrp2, ABCC2/Abcc2). Drug Metab. Dispos. 36, 631-640.

Figure 1. In color online only

Figure 2. In color online only

Figure 3

Figure 4

Reef Location

Figure 5

Figure 6. In color in print and online

Figure 7

Supplemental Table S1. Primers used in the present study

Gene \quad Primers \quad Direction Sequences (5' to 3')

Degenerate Primers

MRP	MRP_F	Forward	CTD GTD GCD GTD GTD GG
	MRP_R	Reverse	RCT NAV NGC NSW NAR NGG NTC RCT
	nest_MRP_F	Forward	CGG GAT CCA GRG ARA AYA THC TNT TTG G
	nest_MRP_R	Reverse	CGG AAT TCN TCR TCH AGN AGR TAD ATR TC
P-gp	Pgp_Bbox_F $^{\text {Pg__Cdomain_F }}$	Forward	GGI GGI CAG AAR CAR MGI ATI GC
	Pgp_Cdard	GAY GAR GCI ACI TCI GCI CTI G	

Gene-specific Primers
(Cyphoma gibbosum $=\mathbf{C g}$; Tritonia hamnerorum $=\mathbf{T h})$

CgMRP isoform1	MRP-R1	Reverse	CCG GGC TAA ACT CAC TCT CTG TTT CTG G
	CgMRP-1_R8	Reverse	CAT CCA TGA CCT GAG AAG ATC TGG
	CgMRP-1_R9	Reverse	GGT TCA CAA ACT GCA ACA GGT CG
	CgMRP-1_F8	Forward	CCA GAA ACA GAG AGT GAG TTT AGC C
	CgMRP-1_F9	Forward	GAA TGG CAC CGT CAT CGT ACA GAG
	CgMRP-1-F10	Forward	ATT GAC GCC TGT GCC CTT CGC AC
CgMRP isoform 2	CgMRP-2_F6	Forward	GAG ACA TTT GGA GCT GGG GAC CAG
	CgMRP-2_F7	Forward	GTG TCA GCA TGC TGT CTG GAC AAA G
CgPgp isoform 1	P-gp_R4	Reverse	CCT CTG TCA CCA CAC CAT GTC G
CgPgpisoform 2	P-gp_R5	Reverse	GTT GGC CAC AAA GCC AGC GTA GGC
	P-gp_R6	Reverse	CTC CAA CAC CTG ACC GTT CTC C
ThMRP isoform 1	MRP_F4	Forward	CAA TCG GAT ATT GAC ATT CTC CCT GGC
	MRP_F5	Forward	GCT GTG TAC AGT GAC CAA GAC
	MRP_R4	Reverse	CAG GGA GAA TGT CAA TAT CCG ATT GG
	MRP_R5	Reverse	GTC TTG GTC ACT GTA CAC AGC
	ThMRP-1_F6	Forward	AAA TGA CGT CCG CTG CTG GTG TCC
	ThMRP-1_F7	Forward	AGG CAT TTG GCT GAC GGA GTG GAC
	ThMRP-1_R6	Reverse	AAA CAT GGC CAC GCC TAG TTG GTC
	ThMRP-1_R7	Reverse	GGA AGT CTC ATC GCC AAT GCT GG
ThMRP isoform 2	MRP_F2	Forward	GGT CCA GAT CTG CAA ATG CTG
	MRP_F3	Forward	GCA AAT GCT GCC AGA TGG TGA TC
	MRP_R2	Reverse	CAG CAT TTG CAG ATC TGG ACC
	MRP_R3	Reverse	GAT CAC CAT CTG GCA GCA TTT GC
	ThMRP-2_R9	Reverse	GGA CTT GAC CAA ATT GCC CAG CC
	ThMRP-2_R8	Reverse	TGA CCC GTG AAG TGA AGC GCT ATC
	ThMRP-2_F10	Forward	GTG GAA GGG AGT GTT GTC ATG AGG
	ThMRP-2_F11	Forward	GAA TCA ACG TGA CGA TTC CAG ACC
Adaptor primers	RACE_1_F		AAT ACG ACT CAC TAT AGG
	AP1		CCA TCC TAA TAC GAC TCA CTA TAG GGC
	AP2		ACT CAC TAT AGG GCT CGA GCG GC

qPCR primers

CgMRP isoform1	$136 _1$ F1	Forward	ACG AGG AGC TGA TGT GTC ACG ATG G
	13611	Reverse	GTC CTC CTC ATC CAC ATC TTC ATC G

Supplemental Table S2. Results of a two-way ANOVA to investigate differences in MRP-1 gene expression in C. gibbosum feeding on control versus gorgonian diets.

Factors	df	MS	F	p
Control vs. B. asbestinum				
Diet	1	5.3×10^{9}	0.797	0.422
Reef	4	1.4×10^{10}	0.423	0.791
Diet x Reef	4	6.6×10^{9}	0.204	0.935
Error	36	3.2×10^{10}		
Control vs. E. mammosa				
Diet	1	5.4×10^{9}	3.22	0.147
Reef	4	3.2×10^{9}	0.106	0.980
Diet x Reef	4	1.7×10^{10}	0.555	0.697
Error	35	3.0×10^{10}		
Control vs. G. ventalina				
Diet	1	5.9×10^{10}	5.91	0.072
Reef	4	1.4×10^{10}	0.432	0.785
Diet x Reef	4	1.0×10^{10}	0.313	0.867
Error	35	3.2×10^{10}		
Control vs. P. acerosa				
Diet	1	2.0×10^{10}	0.948	0.385
Reef	4	5.5×10^{10}	1.87	0.139
Diet x Reef	4	2.1×10^{10}	0.723	0.582
Error	33	3.0×10^{10}		
Control vs. P. americana				
Diet	1	1.9×10^{10}	1.01	0.371
Reef	4	2.5×10^{10}	0.852	0.502
Diet x Reef	4	1.9×10^{10}	0.651	0.629
Error	35	2.9×10^{10}		
Control vs. P. elisabethae				
Diet	1	1.7×10^{10}	5.02	0.154
Reef	2	1.8×10^{10}	1.30	0.297
Diet x Reef	2	3.5×10^{10}	0.249	0.782
Error	18	1.4×10^{10}		
Control vs. P. homomalla				
Diet	1	6.4×10^{10}	9.66	0.036
Reef	4	4.5×10^{9}	0.157	0.958
Diet x Reef	4	6.6×10^{9}	0.230	0.920
Error	34	2.9×10^{10}		

A p ≤ 0.007 should be accepted as significant (Bonferroni adjusted).

Supplemental Table S3. Results of a one-way ANOVA to investigate reef-dependent MRP-1 gene expression in time-zero and four day control fed C. gibbosum. Reefs considered random factors.

Factors	df	MS	F	p
Reef (Experiment 1) Control diet	4,28	2.1×10^{10}	0.637	0.640
Reef (Experiment 2) Time-zero group	4,26	3.1×10^{10}	2.74	$\mathbf{0 . 0 5 0}$

Supplemental Figure S1. Alignment of deduced amino acid sequences of Cyphoma and Tritonia MRP proteins. Molluscan deduced amino acids sequences were aligned using ClustalX. Identical residues in at least two sequences are outlined and shaded in grey. Black and red boxes represent the putative nucleotide binding domains and hydrophobic transmembrane domains, respectively. Domains were predicted using the algorithm of Kyte and Doolittle (1982) (window of 13 amino acids) and with NCBI Conserved Domain Database searches (Marchler-Bauer 2007). Predicted start codons for Cyphoma MRP isoform 1 and Tritonia MRP isoform 1 are indicated by a downward arrow above the alignment. A dash (-) indicates missing or gapped residues. GenBank sequences included in the alignment: Cyphoma MRP isoform 1 (CgMRP_1; ACA53359.1); Cyphoma MRP isoform 2 (CgMRP_2; ACA53360.1); Tritonia MRP isoform 1 (ThMRP_1; ACA53361.1); Tritonia MRP isoform 2 (ThMRP_2; ACA53362.1).

> Supplemental Figure S2. Alignment of deduced amino acid sequences of Cyphoma and Tritonia P-gp proteins with Human ABCB1. Molluscan deduced amino acid sequences and human protein sequence were aligned using ClustalX. Identical residues are outlined and shaded in grey. Black boxes represent the putative nucleotide binding domains and red boxes represent the putative hydrophobic transmembrane domains. Transmembrane and nucleotide binding domains were predicted using the algorithm of Kyte and Doolittle (Kyte et al. 1982) (window of 13 amino acids) and with NCBI Conserved Domain Database searches (Marchler-Bauer et al. 2007). An asterisk indicates a stop codon and a dash (-) indicates missing or gapped residues. GenBank sequences included in the alignment: human ABCB1 (NP_000918.2), C. gibbosum Pgp isoform 1 (CgPgp_1; ACA53357.1), C. gibbosum Pgp isoform 2 (CgPgp_2; ACA53358.1), T. hamnerorum Pgp isoform 1 (ThPgp_1; ACA53363.1), T. hamnerorum Pgp isoform 2 (ThPgp_2; ACA53364.1).

Marchler-Bauer, A., Anderson, J., Derbyshire, M., DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, SH., B., 2007. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Research 35, 237-240.

Supplemental Figure S3. Comparison of molluscan and human P-gp hydropathy profiles. Deduced amino acid sequences from Cyphoma and Tritonia P-glycoprotein profiles were aligned to human ABCB1 using ClustalX. The human ABCB1 plot is indicated by the red line and is overlaid by Cyphoma Pgp isoforom 1 (maroon line), Cyphoma Pgp isoform 2 (black line), Tritonia Pgp isoform 1 (blue line), and Tritonia Pgp isoform 2 (green line). Black bars above the plots indicate positions of the two transmembrane regions (TM1, TM2) and nucleotide binding domains (NB1, NB2) in ABCB proteins. Values above and below the horizontal line indicate hydrophobic and hydrophilic regions, respectively. Hydrophobicity plots were generated using the KyteDoolittle algorithm (Kyte et al. 1982) with a window of 13 residues by BioEdit v7.0.5.2. GenBank sequences included in the alignment: human ABCB1 (NP_000918.2), C. gibbosum Pgp isoform 1 (ACA53357.1), C. gibbosum Pgp isoform $\overline{2}$ (ACA53358.1), T. hamnerorum Pgp isoform 1 (ACA53363.1), T. hamnerorum Pgp isoform 2 (ACA53364.1).

Supplemental Figure S4. Comparison of molluscan and human MRP hydropathy profiles. (A) Deduced amino acid sequences from Cyphoma and Tritonia MRP profiles were aligned using ClustalX. Tritonia MRP isoform 1 plot is indicated by the red line and the Cyphoma MRP isoform 1 (blue line), Tritonia MRP isoform 2 (green line), Cyphoma MRP isoform 2 (maroon line) are layered on top. (B) Deduced amino acid sequence from Tritonia MRP isoform 1 (blue line) aligned with human ABCC3 (red line) using ClustalX. Black bars above the plots indicate positions of the three transmembrane regions (TM1, TM2, TM3) and nucleotide binding domains (NB1, NB2) in ABCC proteins. Values above and below the horizontal line indicate hydrophobic and hydrophilic regions, respectively. Hydrophobicity plots were generated using the KyteDoolittle algorithm (Kyte et al. 1982) with a window of 13 residues by BioEdit v7.0.5.2.
GenBank sequences included in the alignment: human ABCC3 (NP_003777.2), C. gibbosum MRP isoform 1 (ACA53359.1), C. gibbosum MRP isoform 2 (ACA53360.1), T. hamnerorum MRP isoform 1 (ACA53361.1), T. hamnerorum MRP isoform 2 (ACA53362.1).

Kyte, J., Doolittle, R.F., 1982. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157, 105-132.

Supplemental File S1. Description of Rapid Amplification of cDNA Ends (RACE)

Cyphoma RACE-PCR.
One microgram of poly(A)+RNA isolated from pooled C. gibbosum digestive glands, as described above, was primed with modified oligo (dT) primers and used to create an adaptor-ligated, double-stranded (ds) cDNA library using the Marathon cDNA Amplification Kit (BD Biosciences, Palo Alto, CA) according to the manufacturer's instructions. Gene specific primers were designed to both MRP cDNA fragments (CgMRP isoform 1 and CgMRP isoform 2) (Supplementary Table S1) and were used in combination with adaptor-specific primers in nested 5' and 3' RACE reactions. Amplification of C. gibbosum MRP specific PCR products was carried out according to the Advantage 2 PCR Enzyme Kit (Clontech, Mountain View, CA) and cycling parameters were as follows: $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec} ; 5$ cycles of $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 2.5 min ; 5 cycles of $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 70^{\circ} \mathrm{C}$ for $2.5 \mathrm{~min} ; 25$ cycles of $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 68^{\circ} \mathrm{C}$ for 2.5 $\mathrm{min} ; 68^{\circ} \mathrm{C}$ for 5 min with the following specific primers pairs (MRP-R1/RACE_1_F); or $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec} ; 5$ cycles of $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for $4 \mathrm{~min} ; 5$ cycles of $94^{\circ} \mathrm{C}$ for 5 sec , $70^{\circ} \mathrm{C}$ for $4 \mathrm{~min} ; 25$ cycles of $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 68^{\circ} \mathrm{C}$ for 4 min with the following specific primer pairs (CgMRP-1_F9/AP1 then CgMRP-1_F10/AP2; Cg_MRP-1_F10/AP1 then CgMRP-1_F8/AP2; CgMRP-1_R9/AP1 then CgMRP-1_R8/AP2; CgMRP-2_F7/AP1 then CgMRP-2_F6/AP2).

The C. gibbosum adaptor-ligated ds cDNA library was also used to amplify partial P-gp cDNA sequences by RACE using degenerate primers designed to the conserved portion of the nucleotide binding domains (Supplementary Table S1). Nested-RACE was performed with the following degenerate primers pairs (Pgp_Bbox_F/RACE_1_F then Pgp_Cdomain_F/RACE_1_F) (Supplementary Table S1) using the Advantage 2 PCR Enzyme Kit with the following cycling parameters: $94^{\circ} \mathrm{C}$ for 30 sec; 30 cycles for $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 55^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 68^{\circ} \mathrm{C}$ for 2 min . BLASTX searches identified two partial sequences having homology to P-gp and these were designated as CgPgp isoform 1 and CgPgp isoform 2. Gene specific primers were designed to CgPgp isoform 1 and CgPgp isoform 2 fragments and used in combination with adaptor-specific primers in nested 5 , RACE reactions. PCR products were amplified with Advantage 2 polymerase with the following cycling parameters: $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec} ; 5$ cycles for $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 3 min; 5 cycles for $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 70^{\circ} \mathrm{C}$ for $3 \mathrm{~min} ; 25$ cycles for $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 68^{\circ} \mathrm{C}$ for 3 min with the following specific primer pairs (Pgp_R4/AP1; Pgp_R5/AP1 then Pgp_R6/AP2) (Supplementary Table S1).

Tritonia RACE PCR.

One microgram of poly(A)+RNA, isolated as described above, was used to create an adaptor-ligated ds cDNA library using the Marathon cDNA Amplification Kit according to the manufacturer's instructions. Gene specific primers were designed to both MRP cDNA fragments (ThMRP isoform 1 and ThMRP isoform 2) (Supplementary Table S1) and were used in combination with adaptor-specific primers in nested 5' and 3' RACE reactions. T. hamnerorum MRP specific PCR products were amplified using the

Advantage 2 PCR Enzyme Kit; cycling parameters were as follows: $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec} ; 5$ cycles for $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for $3 \mathrm{~min} ; 5$ cycles for $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 70^{\circ} \mathrm{C}$ for $3 \mathrm{~min} ; 25$ cycles for $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 68^{\circ} \mathrm{C}$ for 3 min with the following specific primer pairs (MRP F4/AP1 then MRP F5/AP2; MRP R5/AP1 then MRP R4/AP2; ThMRP1_R6/AP1 then ThMRP-1_R7/AP2; ThMRP-1_F7/AP1 then ThMRP-1_F6/AP1; MRP_R3/AP1 then MRP_R2/AP2; MRP_F2/AP1 then MRP_F3/AP2; ThMRP2_R9/AP1 then ThMRP-2_R8/AP2; ThMRP-2_F11/AP1 then MRP_F3/AP2; ThMRP2_F10/AP1 then MRP_F3/AP2).

The T. hamnerorum adaptor-ligated ds cDNA library was also used to amplify partial Pgp cDNA sequences by RACE using a combination of degenerate primers designed to the conserved nucleotide binding region and specific adaptor primers (Supplementary Table S1). Nested-RACE was performed with degenerate primer pairs (Pgp_Bbox_F/RACE_1_F then Pgp_Cdomain_F/RACE_1_F) using the Advantage 2 PCR Enzyme Kit with the following cycling parameters: $-94^{\circ} \mathrm{C}$ for $30 \mathrm{sec} ; 5$ cycles for $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 61^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 68^{\circ} \mathrm{C}$ for $2 \mathrm{~min} ; 5$ cycles for $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 59^{\circ} \mathrm{C}$ for 30 $\mathrm{sec}, 68^{\circ} \mathrm{C}$ for $2 \mathrm{~min} ; 20$ cycles for $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 57^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 68^{\circ} \mathrm{C}$ for 2 min . BLASTX searches identified the two partial sequences as having homology to P-gp; these were designated as ThPgp isoform 1 and ThPgp isoform 2. Gene specific primers were designed to ThPgp isoform 1 and ThPgp isoform 2 fragments and used in combination with adaptor-specific primers in nested RACE reactions. PCR products were amplified with Advantage 2 polymerase with the following cycling parameters: $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec} ; 5$ cycles for $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for $3 \mathrm{~min} ; 5$ cycles for $94^{\circ} \mathrm{C}$ for 5 sec, $70^{\circ} \mathrm{C}$ for $3 \mathrm{~min} ; 25$ cycles for $94^{\circ} \mathrm{C}$ for $5 \mathrm{sec}, 68^{\circ} \mathrm{C}$ for 3 min with the following specific primer pairs (ThPgp-1_R8/AP1 then ThPgp-1_R7/AP2; ThPgp-1_R8/AP1 then ThPgp1_R7; ThPgp-2_R10/AP1 then ThPgp-2_R9/AP2).

Supplemental File S2. List of GenBank accession no. for Figure 2
GenBank sequences in the tree include: Brachidontes pharaonis ABCB (CAI99869); Caenorhabditis elegans ABCB proteins (CePgp-1, CAB01232; CePgp-2, AAB52482; CePgp-3 CAA91467; CePgp-4, CAA91463; CePgp-5, CAA94202; CePgp-6, CAA94220; CePgp-7, CAA94219; CePgp-8, CAA94203; CePgp-9, CAB03973; CePgp10, AAC48149; CePgp-11, CAA88940; CePgp-12, CAA91799; CePgp-13, CAA91800; CePgp-14, CAA91801), Caenorhabditis elegans ABCC proteins (CeMrp-1, AAD31550; CeMrp-2, AAB07022; CeMrp-3, CAA92148; CeMrp-4, CAB02667; CeMrp-5, CAB54225; CeMrp-6, AAA82317; CeMrp-7, CAA21622; CeMrp-8, CAA22110), Drosophila melanogaster ABCB proteins (DmCG10226, AAF50670; DmMdr65, NP 476831; DmMdr49, NP 523724; DmMdr50, NP 523740), Drosophilia melanogaster ABCC proteins (DmCG5772/Sur, NP 477472; DmCG10505, AAF46706; DmCG11898, AAF56870; DmCG11897, AAF56869; DmCG7627, AAF52648; DmCG31792, NP 724148; DmCG8799, AAF58947; DmCG9270, AAF53950; DmCG31793, NP 609930; DmCG14709, AAF54656; DmCG4562, AAF55707; DmCG5789, AAF56312; DmCG7806, AAF52639), Homo sapiens ABCB proteins (ABCB1, NP 000918.2; $A B C B 2$, NP 000584.2; $A B C B 3$, NP 000535.3; ABCB4, NP 000434.1; $A B C B 5$, NP 848654.3; ABCB6, NP 005680.1; ABCB7, NP 004290.2; $A B C B 8$, NP 009119.2; ABCB9, NP 982269.1; ABCB10, NP 036221.1; ABCB11, NP 003733.2), Homo sapiens ABCC proteins (ABCC1, NP 004987.2; ABCC2, NP 000383.1; $A B C C 3$, NP 003777.2; $A B C C 4$, $\mathbf{N P} 005836.2 ; ~ A B C C 5$, $\mathbf{N P} 005679.2 ;$ ABCC6, NP 001162.3; ABCC7, NP_00483.3; ABCC8, NP 000343.2; ABCC9 a/b, NP 005682.2, NP 064693.2; $A B C C 10$, NP 258261.2; $A B C C 11$, NP 115972.2; ABCC12, NP 150229.2), Mytilus californianus ABCB (ABS83556.1) and ABCC (ABS83557), Cyphoma gibbosum ABCB proteins (CgPgp isoform 1, ACA53357.1; CgPgp isoform 2, ACA53358.1); Cyphoma gibbosum ABCC proteins (CgMRP isoform 1 ACA53359.1; CgMRP isoform 2, ACA53360.1), Tritonia hamnerorum ABCB proteins (ThPgp isoform 1, ACA53363.1; ThPgp isoform 2, ACA53364.1), Tritonia hamnerorum ABCC proteins (ThMRP isoform 1, ACA53361.1; ThMRP isoform 2, ACA53362.1).

[^0]: Kristen E. Whalen, ${ }^{a, \dagger, 1}$ Erik E. Sotka, ${ }^{\text {b }}$ Jared V. Goldstone ${ }^{\text {a }}$ and Mark E. Hahn ${ }^{\text {a }}$
 ${ }^{\text {a }}$ Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
 ${ }^{\mathrm{b}}$ Department of Biology, College of Charleston, Charleston, SC 29412
 ${ }^{\dagger}$ Corresponding author
 Kristen Whalen
 Marine Science Institute
 University of California, Santa Barbara
 Santa Barbara, CA 93106
 Phone: 1-805-893-6176

 Fax: 1-805-893-8062
 Email: whalen@msi.ucsb.edu

 Footnote:
 Present address - ${ }^{1}$ Marine Science Institute, University of California, Santa Barbara, Santa
 Barbara, CA 93106, USA

