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The Entrainment and Homogeni z a t i  on o f  Tracers 

w i t h i n  the Cyclonic Gul f  Stream Reci rcu la t ion Gyre 

Robert S. P ickar t  

The various d i s t r i bu t i ons  o f  t r ace r  associated w i t h  the Northern Recir-  

cu l a t i on  Gyre o f  the Gul f  Stream (NRG) are studied t o  t r y  t o  obta in  informa- 

t i o n  about the flow. An advecti  ve-di f f u s i  ve numerical model i s  imp1 emented 

t o  a i d  i n  t l ie  invest igat ion.  The model i s  composed o f  a  gyre adjacent t o  a  

boundary cu r ren t  i n  which a source of t r ace r  i s  spec i f i ed  a t  the upstream 

edge o f  the  current .  This se t  up attempts t o  simulate the l a t e r a l  t r a n s f e r  

o f  proper t ies  from the Deep Western Boundary Current (DWBC) t o  the i4RG i n  

the reg ion where the two flows are i n  c lose contact  west o f  the  Grand Banks. 

The resul t s  o f  the model are analyzed i n  some detai  1. Tracer i s  en- 

t ra ined  i n t o  the gyre as a  plume which extends from the boundary cu r ren t  and 

s p i r a l s  across stream1 i'nes toward the gyre center. The maintenance o f  the  

sp i r a l  dur ing spi n-up and i t s  re la t ionsh ip  t o  the occurrence o f  homogeniza- 

t i o n  a t  steady s ta te  i s  examined. An asymmetry i n  the sp i r a l  ex i s t s  due t o  

the e l  1  i p t i c i t y  o f  the gyre, which a1 so e f f e c t s  homogenization. 

The anomalous proper t ies  t h a t  are f luxed i n t o  the NRG include sa l t ,  

oxygen, and f reon. These p a r t i c u l a r  t racers  a re  independent from each other, 

the former two because they are characterized by d i f f e r e n t  v e r t i c a l  p r o f i l e s  

i n  the deep layer .  This r e s u l t s  i n  a  decay o f  oxygen bu t  n o t  sa l t ,  due t o  

the presence of ve r t i ca l  mix ing as discussed by Hogg e t  a l .  (1986, Deep-Sea 

Research, - 33, 1139-1165). Their  ana lys is  i s  expanded upon here. The e f f e c t  

o f  v e r t i c a l  mix ing on the gyre/boundary cu r ren t  system i s  examined w i t h i n  the 

context  o f  the numerical model. Results are app l ied t o  recen t l y  c o l l e c t e d  

water sample data from the region which leads t o  an estimate o f  t l ie  l a t e r a l  
- and v e r t i c a l  eddy d i f fus ion c o e f f i c i e n t s  and an est imate o f  the amount of 

oxygen i n  the NRti t h a t  tias d i f fused  from the DWBC. 

The accumulatifon o f  f reon w i t h i n  the NRG i s  considered i n  add i t i on  t o  

s a l t  and oxygen. Appreciable l eve l s  o f  f reon have been present i n  the  ocean 

only since 1950, and the atmospheric source funct ions have been increas ing 

s tead i l y  since then. A simple overflow model i s  presented o f  the manner i n  



which f reon may be s t i r r e d  i n  the  Norwegian-Greenland basin p r i o r  t o  over- 

f lowing and enter ing the DWBC. Once i n  the boundary cu r ren t  the concentra- 

t i o n s  are  d i l u t e d  by way o f  mix ing w i t h  surrounding water. Two d i f f e r e n t  

schemes are considered i n which the immediate surrounding water accumul ates 

a  substant ia l  amount of f reon as t ime progresses. These models suggest t h a t  

the f reon-1l : f  reon-12 r a t i o  may no t  be a  conserved quant i ty  f o r  the water i n  

the  core o f  the  DWBC. It i s  found t h a t  the  l e v e l  o f  f reon i n  the NKG i s  

bare ly  above the e x i s t i n g  background leve l .  
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In t roduct ion 

Over t he  past  several years a  c l ea re r  p i c t u r e  has emerged o f  the mean - 

abyssal c i r c u l a t i o n  o f  the  western North A t l an t i c .  I n  p a r t i c u l a r  the e x i  s- 

tence o f  a  deep cyclonic gyre s i tua ted  between the  New England seamounts and 

Grand Banks, whose eastward f l ow i  ng po r t i on  cont r ibutes t o  the  deep Gul f 

Stream, has been addressed by Hogg i n  a  ser ies  o f  works. Tn is  i s  i n  con t ras t  

t o  the deep ant icyc lon ic  subtropical  gyre described by Worthington (1976). 

Worthington postulated using a  h i s t o r i c a l  data s e t  t h a t  roughly 60 

Sverdrups o f  water co lder  than ~ O C  r ec i r cu la te  t o  the  south o f  the Gul f 

Stream. I n  order t o  produce a cons is tent  f l ow  pattern, the cons t ra in t  o f  

geostrophy was relaxed i n  ce r t a i n  regions o f  the  gyre where instead t he  

con t i nu i t y  of water proper t ies  was used as a  guide f o r  f l ow  l ines.  Several 

years 1  a t e r  Wunsch and Grant (19821, w i t h  the  same data set, produced a very 

d i f fe ren t  deep flow pa t t e rn  using inverse methods. They postulated a  cyclon- 

i c  gyre t ranspor t ing roughly 25 Sverdrups (which d i d  s a t i s f y  geostrophy 

everywhere). I n  add i t i on  t o  t h i s  evidence based on hydrographic data, there 

i s a1 so d i r e c t  evidence f o r  cyc lon ic  r e c i  r cu l  a t ion.  

I n  1983 Hogg compiled a l l  the ava i lab le  deep, long-term cur ren t  meter 

measurements i n  t h i s  region o f  t he  North A t l an t i c .  From t h i s  data he i n f e r -  

red a  cons is tent  stream1 i ne  pa t te rn  which includes a  cyc lon ic  gyre t h a t  he 

estimates t o  be car ry ing  "20 Sverdrups. It i s  somewhat d i f f e r e n t  from the  

Wunsch and Grant gyre however; i t  i s  smaller i n  ex tent  both zonal ly  and mer- 

id iona l  l y .  Also i n  con t ras t  t o  t he  Wunsch and Grant pa t t e rn  i s  the presence 

of a  small ant icyc lon ic  gyre j u s t  t o  the south o f  the cyc lon ic  rec i rcu la t ion .  

Hogg estimates t h i s  f l ow  t o  be 10 Sverdrups. 

Recently add i t iona l  cu r ren t  meter data has become ava i lab le  i n  t h i s  

region o f  the  Gul f  Stream. Hogg e t  a1 . (1986) incorporated these measure- 

ments i n t o  the  e x i s t i n g  h i s t o r i c a l  data set, and re f i ned  the e a r l i e r  p i c t u r e  

presented by Hogg (1983). I n  pa r t i cu l a r ,  the north-south length  scale o f  the  

cyc lon ic  r ec i r cu la t i on  appears t o  be even smal l e r  yet .  A schematic stream- 

l i n e  o f  the gyre, which Hogg e t  a l .  have termed t he  Northern Rec i rcu la t ion  

Gyre (NRG),  i s  shown i n  Figure 1.1. One o f  the  experiments t h a t  y i e l ded  the 

new cur ren t  meter data was the  Abyssal C i r cu la t i on  Experiment (ABCE). I n  



1983-84 ABCE was ca r r i ed  ou t  t o  l e a r n  more about the  NRG. It consisted i n  

p a r t  o f  a  moored array of cur rent  meters centered near 67%, 4 0 O ~ .  I n  addi- 

t i o n  t o  the evidence f o r  t i g h t e r  r e c i r c u l a t i o n  i t  was found t h a t  the  westward 

r e t u r n  f l ow  of the gyre i s  near ly depth independent. 

A t  t h i s  po in t  i t  seems evident t h a t  there i s  a  substant ia l  cyc lon ic  r e -  

c i r c u l a t i o n  of the deep Gulf Stream. It i s  no t  evident, however, what dr ives 

t h i  s  gyre. There has been a consi derabl e  amount o f  model 1  i n g  work t h a t  has 

addressed i n  one form o r  another the presence o f  deep f low i n  t h i s  region. A 

feature o f  eddy reso lv ing Gul f Stream numerical simul a t ions  i s the ex i  stence 

o f  one o r  more regions of closed c i r c u l a t i o n  i n  the deep layer.  Some models 

e x h i b i t  only ant icyc lon ic  deep f l ow  wh i le  others contai n  both an t i cyc lon ic  

and cyc lon ic  deep gyres (Ho l l  and and ii n, 1975) . Harr ison ( 1  982) proposes 

t h a t  the cyc lon ic  r e c i r c u l a t i o n  i n these model s may be inheren t l y  re1 ated t o  
quasigeostrophic, adiabat ic considerations. 

One such numerical experiment which contains deep cyc lon ic  f low i s  t h a t  

o f  Hol land (19781.   he model i s  a  two l aye r  quasigeostrophic f low dr iven by 

symmetric wind stress. Holland and Rhines (1980) analyzed t h i s  model i n  some 

d e t a i l ,  and showed t h a t  the deep gyres (both  ant icyc lon ic  and cyc lon ic)  are 

d r i ven  by eddy thickness f luxes ( o r  equivalent ly ,  heat f l uxes)  i n  the  surface 

1  ayer. Aogg (personal communication) has app l ied t h i s  idea t o  the NRG using 

a  1  im i ted  heat f l u x  data set. This f i r s t  attempt has suggested t h a t  t h i s  may 

n o t  be the d r i v i n g  mechanism i n  the  ocean. 

The mean, lower l a y e r  po ten t i a l  v o r t i c i t y  f i e 1  d  (Q) i n  the Holland 

(1978) s imulat ion shows an area o f  uniform i n  the region o f  the two most 

intense counter - ro ta t ing gyres. Rhines and Young (1982a) have shown t h a t  i n  

the  presence of weak eddies, homogenization o f  w i l l  tend t o  occur w i t h i n  

closed stream1 ines. Hogg and Stommel (1985) used as a  premise the cond i t i on  

of uniform po ten t ia l  v o r t i c i t y  and der ived deep cyc lon ic  r ec i r cu la t i on  t o  the 

nor th  o f  the Gul f  Stream i n  an ana l y t i ca l  framework. Their  model re1 i e s  on 

the  presence of var iab le  bottom topography and the thermocline topography 

associated w i th  the Gulf Stream (both of which were modelled rea l  i s t i c a l l y ) .  

I n  the model they show t h a t  the southward extent  o f  the gyre f low i s  deter- 

mined by the  pos i t i on  o f  the surface Gul f  Stream, which lends support t o  the  

idea o f  t i g h t  r ec i r cu la t i on  suggested by the  newer data. 



One o f  the  inconsistencies between the numerical models and the  data i s  

t h a t  i n  the ocean, d i r e c t l y  beneath the  surface Gu l f  Stream, i s  t l ie  westward 

re tu rn  f l ow o f  the NRG. I n  the model s the separated Gul f  Stream extends from 

top t o  bottom. Richardson (1985) constructed f rom a combination o f  cu r ren t  

meter, surface d r i f t e r ,  and SOFAR f l o a t  data an average ve loc i t y  sect ion a t  

5 5 " ~  which seems t o  resolve t h i s  inconsistency. He shows a Gul f  Stream t h a t  

i s top t o  bottorn but  i n  the  v e r t i c a l  i s  sloped t o  the south. On e i t h e r  s ide 

o f  the Stream i s  westward flow, consistent  w i t h  t he  double gyre scheme of 

Hogg (1983). The other inconsistency between the  model ocean and rea l  ocean, 

t h a t  regarding the d r i v i n g  mechanism, remains t o  be sorted out. Hogg and 

Stomnel (1985) have revealed some elements t h a t  seem important i n  regard t o  

cyc lon ic  rec i rcu la t ion ,  bu t  t h i s  has no d i r e c t  bearing on what forces t he  

flow. 

The homogenization t h a t  accompanies f l ow w i t h i n  c losed streamlines 

reveals i t s e l f  i n  another context  as wel l ,  t h a t  o f  passive t racers.  The 

un i fo rm i ty  of < i s  c r u c i a l l y  t i e d  t o  the s t ruc tu re  and dynamics o f  the 

c i r c u l a t i o n  f i e l d ,  which a lso makes i t  d i f f i c u l t  t o  address. I n  terms o f  a 

passive t r ace r  however homogenization i s more e a s i l y  studied, which suggests 

t h a t  the case o f  a passive t r ace r  be c a r e f u l l y  examined. It i s  the hope 

t h a t  the ideas and i ns i gh t s  developed i n  these simpler surroundings can then 

be appl l e d  t o  the  more complicated case o f  a dynamically ac t i ve  quant i ty .  

Musgrave (1985) d i d  a numerical study o f  t he  homogenization o f  passive 

t racers  i n  the thermocl i n e  o f  a subtropical  gyre. The process he model l e d  

was t h a t  o f  t r ace r  being subducted i n t o  the gyre from outcropping l i n e s  i n  

the northern regions. The abyssal gyres are n o t  subject  t o  t h i s  type o f  

ven t i l a t ion .  However, as depicted i n  Figure 1.1, a po r t i on  o f  the dorthern 

Rec i rcu la t ion Gyre passes very c lose ly  t o  the North A t l a n t i c  Oeep Western 

Boundary Current (DWK) whicn f lows along the cont inental  slope. The water 

i n  the boundary current ,  having recen t l y  come from h igh 1 a t i  tudes, has very 

d i s t i n c t i v e  character is t ics ,  and so the  DWBC represents a source o f  t r ace r  

i n t o  the deep layer.  

The other  component o f  ABCE was a hydrographic c ru i se  covering a s iz -  

able por t ion  o f  the NRG, i n  which water sample data was a lso col lected.  Hogg 
e t  a l .  (1986), using data from several previous cru ises as wel l ,  mapped ou t  



the  corresponding l a t e r a l  d i  s t r i  but ions o f  var ious t racers.  The conspicuous 

feature i n  a1 1 of the d i s t r i b u t i o n s  was a reg ion o f  very weak gradients, 

be1 ieved t o  be i n response t o  the s t i r r i n g  ac t i on  o f  the  cyc lon ic  r e c i  rc u- . 

1 at ion. Hogg e t  a1 . presented a simple model o f  t he  manner i n  which t r a c e r  

d i f f uses  from the boundary cu r ren t  and subsequently becomes homogenized wi th-  

i n the gyre. I n  t h i s  work we examine t h i s  process i n  some de ta i l .  We anal- 

yze more thoroughly var ious aspects o f  the model used by Hogg e t  al., and 

apply the r e s u l t s  t o  the ABCE data set. 

The DWBC i s  characterized by a d i s t i n c t  s ignal  i n  sa l t ,  oxygen, s i l i c a ,  

f reon, and various other tracers. As described i n  Hogg e t  a1 . (1986) i t  i s  

be1 ieved t h a t  the eastward f l ow  o f  the  NKG p u l l  s  a plume o f  these t r ace rs  

away from the boundary. Th is  type o f  process was mentioned by McCartney 

e t  a1 . (1980) i n  descr ib i  rig a meridional sect ion o f  s i l i c a  a t  55"~. Here we 

consider only the d i s t r i bu t i ons  of sa l t ,  oxygen, and freon. By studying the 

i n te rac t i on  between d i f f u s i o n  from the  cur ren t  and advection from the nearby 

rec i r cu la t i on  we can obta in  informat ion about the  entrainment and homogeni za- 

t i o n  t h a t  occurs i n  a gyre, and about spec i f i c  charac te r i s t i cs  o f  t he  NRG. 

To a i d  i n  t h i s  study a simple two-dimensional advect ive-d i f fus ive model 

was implemented which was designed t o  represent the DWK/i4KG system. The 

ve loc i t y  f i e l d  i n  the model i s  speci f ied,  and a source o f  t r a c e r  i s  i n t r o -  

duced. I n  chapter one we discuss some o f  t he  r e s u l t s  o f  the numerical model. 

We s p l i t  the  analysis i n t o  two parts, the f i r s t  p a r t  focussing on the process 

by which t r a c e r  penetrates the stream1 ines  o f  the  gyre dur ing spi n-up. A 

s ing le  numerical experiment i s  analyzed t o  understand the d e t a i l s  o f  how t h i s  

occurs. The entrainment i s  character ized by a plume o f  t r a c e r  which extends 

from the boundary cu r ren t  and wraps i n t o  the gyre, s p i r a l l i n g  across stream- 

1 ines towards the  gyre center. We f i r s t  examine what f ac to r s  cause the plume 

t o  cross streamlines i n  the  simpler context  o f  a r e c t i l i n e a r  shear flow. 

Results obtained f o r  t h i s  idea l i zed  f l o w  pa t t e rn  are  then appl ied t o  t he  

fu l l -b lown case o f  the gyre i n  the numerical model. 

The second p a r t  o f  the numerical model ana lys is  focusses on the occur- 

rence o f  homogenization w i t h i n  the gyre a t  steady state. Me discuss how the 

ve loc i t y  s t ruc tu re  o f  the  gyre and t he  character  o f  the s p i r a l l i n g  plume are 

t i e d  i n t o  t h i s  process. Results from several d i f f e r e n t  numerical runs are 



compared as we l l  t o  i l l u s t r a t e  the e f f e c t  t h a t  vary ing the d i f f u s i v i t y  has 

on homogenization. 

Chapter one deals w i t h  the model gyre c i r c u l a t i o n  alone, and r e s u l t s  

obtained apply t o  any c losed c i r c u l a t i o n  o f  t h i s  form, no t  j u s t  the  NRG. I n  

chapter two we take a  broader perspective and inc lude the f a c t  t h a t  the 

t r ace r  f i l l i n g  the i n t e r i o r  d i f fused  from the boundary current .  We use t h e  

numerical model t o  help analyze t r ace r  d i s t r i b u t i o n s  from ABCE i n  order t o  

l ea rn  more about the NRG. To make the  comparison between model and data more 

reveal ing a  simp1 i f i e d  box model representat ion o f  the numerical model i s  

solved ana l y t i ca l l y .  We f i r s t  apply the  box model t o  the numerical model i n  

order t o  help i n t e r p r e t  some o f  the resu l t s .  The in format ion obtained by 

t h i s  comparison i s  then used t o  i n t e r p r e t  the data. Among other  th ings we 

1 earn about the s i ze  of the NKG, how much t r ace r  i t  entrains, and what values 

o f  d i f f u s i v i t y  ( l a t e r a l  a r~d  v e r t i c a l )  a re  associated w i t h  t he  f low. We a l so  

lea rn  what fac to rs  d i c t a t e  how qu ick ly  the gyre i s  f i l l e d  and r e l a t e  t h i s  t o  

the ana ly t i ca l  r esu l t s  o f  Rhi nes and Young (1983). 

I n  t h e i r  work regarding the t r ace r  d i s t r i b u t i o n s  associated w i t h  the 

NKG, Hogg e t  a l .  (1986) discussed a subt le  d i f fe rence  between those d i s t r i b u -  

t i o n s  o f  s a l t  and oxygen. They explained the d i f fe rence  as a  r e s u l t  o f  ver- 

t i c a l  mixing. I n  chapter two t h i s  d i s t i n c t i o n  i s  considered i n  greater  

de ta i  1. We are able t o  d is t ingu ish  between a sa l  t - type t r a c e r  and oxygen- 

type t r ace r  i n  the numerical model and box model. (Chapter one deal s  

exc lus ive ly  w i t h  a  sa l t - t ype  tracer, so the r e s u l t s  apply d i r e c t l y  t o  t he  

ABCE s a l i n i t y  data.) I n  chapter two we compare the  r e s u l t s  o f  two numerical 

runs t h a t  inc lude v e r t i c a l  mixing w i t h  two of the  runs o f  chapter one (w i th -  

ou t  v e r t i c a l  mixing), and show t h a t  some o f  the  in format ion about the NRG can 

only come from an oxygen-type tracer. A f u r t h e r  run wi thout  ve r t i ca l  mix ing 

i s  presented t o  i l l u s t r a t e  the e f f e c t  o f  western i n t e n s i f i c a t i o n  o f  t he  gyre. 

Freon i s  a lso an oxygen-type t racer,  bu t  i t  i s  unique i n  t h a t  the  

amount of f reon i n  the  wor ld oceans i s  i n c r e a s i l ~ g  very rap id ly .  While i t  i s 

be1 ieved t h a t  the  oxygen and s a l t  d i s t r i b u t i o n s  i n  the reg ion o f  the NRG are 

c lose t o  steady state, t he  d i s t r i b u t i o n  o f  f reon i s constant ly changing. I n  

order t o  understand the evo lu t ion i t  i s  necessary t o  know how the DWBC source 

strength changes i n  time. It i s  evident then t h a t  t o  study freon, a  regional  



mode1 i s  n o t  su f f i c i en t ;  we must consider t he  evo lu t ion o f  f reon i n  h i gh  

l a t i t u d e  source waters, and throughout the DWBC. 

Chapter three addresses t h i s  previous h i  s to ry  o f  t h e  f reon and how i t . 

af fects the d i s t r i b u t i o n  found i n  the NRG. The treatment i s  i n  three par ts :  

the overf low process i n  the  Norwegian-Greenland Sea which leads t o  the  forma- 

t i o n  of the DWBC, the advection and mixing t h a t  occurs i n  the boundary cur- 

rent, and f i n a l l y  the d i f f u s i o n  i n t o  the I4KG ( w i t h i n  the regional  domain o f  

the previous chapters). The treatment i n  chapter three i s  ana ly t i ca l .  

Simple models are used t o  determine f reon concentrat ions i n  the overf low 

water and DWBC, and t h i s  information i s  used t o  d r i ve  the box model o f  the 

NRG region. ( I t  i s  no t  feas ib le  t o  use the numerical model o f  the previous 

chapters. Freon has been i n  the ocean since roughly 1950. I t s  atmospheric 

source func t ion  i s we1 1 defined and i n recent years measurement techniques 

have improved, both of which make freon an appealing t r ace r  t o  study. Cor- 

respondingly f reon studies have become more common, and experiments have now 

been ca r r i ed  out  i n  various regions inc lud ing the Arc t i c ,  Antarct ic ,  and 

Mediterranean. Studies i n  the At1 an t i c  inc lude TTO (Transient  Tracers i n 
the Ocean) and ABCE. 

Using the atmospheric f reon concentrat ions and seawater solubi 1 i t ies ,  

estimates have been made o f  the r a t e  i n  which water i s  being t ransported 

from northern 1 a t i  tudes along the western boundary o f  the At1 an t i c  (Smethie 

and Trumbore, 1984; Weiss e t  al., 1985). When t h i s  type o f  ca l cu la t i on  i s  

appl ied t o  the DWBC, i t  pred ic ts  a core speed o f  -1 cm/sec. These estimates 

do n o t  take i n t o  account water formation processes and a lso  r e l y  on the 

assumption t h a t  the d i l u t i o n  which occurs i s  w i t h  f reon-free water. I n  chap- 

t e r  three we address both o f  these po in ts .  We f i n d  t h a t  the  overf low process 

has s i gn i f i can t  bearing on the ca lcu la t ion,  and using two separate boundary 

cu r ren t  models a r r i v e  a t  l a r g e r  core speeds f o r  t he  DWBC. Estimates o f  the 

d i f f u s i v i t i e s  t h a t  come ou t  o f  these models are s i m i l a r  t o  the independent 

estimate from the NKG ca l cu la t i on  o f  chapter two. We f i n d  a lso  t h a t  f reon  

i s  only now beginning t o  accumulate w i t h i n  the Northern Rec i rcu la t ion  Gyre. 



CHAPTER ON E : GY RE PROCESSES 

Prel i m i  nar ies  

The northern rec i r cu la t i on  gyre (NRG) i s  be1 ieved t o  be a weakly depth 

dependent f 1 ow t ranspor t ing roughly 20 Sverdrups, d r i ven  by eddies from the. 

surface Gu l f  Stream (Hogg e t  a1 . , 1986). During a po r t i on  o f  i t s  c i r c u i t  the 

water passes c lose ly  t o  the DWBC (Figure 1.1) a t  which p o i n t  i t  i s  ven t i l a t ed  

by l a t e r a l  d i f f us i ve  t r ans fe r  o f  various water proper t ies  from the cur ren t  

( ven t i l a t ed  i n  the sense t h a t  the gyre i s  replenished by younger boutidary 

cu r ren t  water). A simple two-dimensional numerical model was constructed t o  

represent t h i s  process. The streamlines o f  the model are  shown i n  F igure 1.2 

and cons i s t  of a boundary cu r ren t  s i tuated alongside a gyre. Flow speeds are 

representat ive o f  the  cu r ren t  meter data i n  Hogg (1983), atid the s i ze  o f  t he  

gyre i s  roughly t h a t  su'ggested by Hogg. A t  the  northern edge o f  the model 

boundary cu r ren t  a steady Gaussian source o f  t r a c e r  i s  specif ied, and a t  the  

southern edge t racer  i s  a1 lowed t o  advect out  o f  the  domain. Everywhere e l  se 

along the boundary there i s  no f l ow  ( v e l o c i t i e s  there were se t  i d e n t i c a l l y  

equal t o  zero) and open boundary condi t ions enable t r ace r  t o  d i f f use  ou t  o f  

the region. 

The evo lu t ion of t r ace r  i n  the i n t e r i o r  i s  governed by a f i n i t e -  

dif ference approximation o f  the two-dimensional advecti  ve -d i f f  us i  ve equation, 

where e(x,y) = t r ace r  concentrat ion, 

K = eddy d i f f u s i v i t y  (constant),  

u(x,y) = ve loc i t y  vector, .., 

and a a v = i - + j - ,  
, ,ax  ,ay 

The c i r c u l a t i o n  i s  steady, and i n i t i a l l y  the domain i s  t r a c e r  free. We se t  
6 2 the d i f f u s i v i  t y  = 10 cm /sec. De ta i l s  o f  the se t  up and numerics o f  the 



Figure  1.1: Schematic f l o w  p a t t e r n  o f  t h e  Northern Rec i rcu la t ion  Gyre and 
Deep Western Boundary Current  as deduced from long term cur ren t  meter data  
( f rom Hogg, 1983). A smal ler  scal e  an t i cy lcon ic  r e c i r c u l a t i o n  i s out1 ined  
as  we1 1. 



0 

0 5 10 15 20 25 

Distance (km X 100) 

Figure 1.2: Streamlines of the numerical model. Values a re  i n  Sverdrups 
(assuming a depth o f  1000 m). 



model are  discussed i n  Appendix A. The scheme t h a t  was used i s  based on t h a t  

of Smolarkiewicz (19831, w i t h  the add i t i on  o f  a centered-dif ferenced d i f f u -  

sion term, and so includes a co r rec t i ve  step t o  minimize i m p l i c i t  d i f f us i on .  - 

As the s imulat ion i s  a1 lowed t o  progress, t racer  advects downstream and 

spreads l a t e r a l l y .  Some o f  it, having d i f f used  i n t o  t he  edge o f  t he  gyre, i s  

p u l l e d  eastward fonning a plume which wraps around the gyre (Figure 1.3). 

Tracer slowly f i 11 s the gyre i n t h i  s manner u n t i  1 a t  steady s ta te  a homogene- 

ous pool forms w i t h i n  the gyre. 

The focus of t h i s  chapter i s  an ana lys is  o f  the processes involved i n  

the subsequent entrainment, i.e. once t r a c e r  has entered the edge o f  the  

gyre. The ideas t h a t  are discussed apply then no t  only t o  the NRG bu t  t o  
any c losed c i r c u l a t i o n  o f  t h i s  form near an external  source. The discussion 

f i r s t  centers on the i n i t i a l  penetrat ion of t racer  i n t o  the gyre. Th is  pro- 
cess i s  i so l a ted  i n  the context  of a s impler f l ow  f i e l d .  Then the occurrence 

of homogenization a t  steady s ta te  i s  discussed. 

I n i t i a l  Penetrat ion 

C l  oser inspect ion of Figure 1.3 shows t h a t  the plume o f  t racer,  as i t  

winds around the  gyre, migrates across stream1 ines  toward the  gyre center. 

The reason f o r  t h i s  s p i r a l  i s  t h a t  the p o r t i o n  o f  the plume which spreads 

inward enters a region o f  st ronger ve loc i t y  and advects around more quickly.  

Note a lso t h a t  the sp i r a l  i s  asyrnmetric i n  t h a t  where the f low i s  zonal the 

sp i r a l  i s  no t  as pronounced as i n  the meridional f low. The s p i r a l  character-  

i zes  t he  entraintnent of t r ace r  i n t o  the gyre and i t  i s  o f  i n t e r e s t  t o  con- 

s ide r  i t  i n  some d e t a i l .  To understand why the  asyrmetry e x i s t s  i t  must be 

understood what fac to rs  govern the sp i ra l .  To do t h i s ,  a problem invo lv ing  

d i f f u s i o n  i n  a simple shear f l o w  i s  considered. 

The e f f e c t  t h a t  ve loc i t y  shear has on the spreading o f  a passive t r ace r  

has been studied considerably, i n p a r t i c u l a r  the  process o f  shear d ispersion 

whereby cross-stream shear enhances the spreading o f  t r ace r  along streamlines 

(Rhines, 1983). Here a d i f f e r e n t  aspect i n  which cross-stream shear i n f l  u- 

ences the d i f f u s i o n  o f  t r ace r  i s  addressed. 

For  a given d i s t r i b u t i o n  o f  t r a c e r  consider the  parameter which i s  t he  

r a t i o  o f  the alongstream grad ient  t o  the  cross-stream gradient: 
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Figure 1.3: Plume o f  t r a c e r  sp i ra l  1 i n g  i n t o  gyre ( instantaneous d i s t r i b u t i o n  
during spin-up). The dark 1 irles a re  the  bounding stream1 ines  o f  the  gyre and 
boundary current .  



The value o f  aL i s  one measure o f  the extent  t o  which shear d ispers ion 
occurs. For  the same shear and d i f f u s i v i t y ,  a  l a rge  aL means preva lent  

shear d ispersion whereas a  small aL means t h i s  e f f e c t  i s  neg l ig ib le .  Shear 

d ispers ion ac ts  on a  d i s t r i b u t i o n  of t r a c e r  t o  reduce i t s  aL (Rhines, 1983). 
Here we are in te res ted  i n  the e f f e c t  t h a t  cross-stream shear has i n  t he  

spreading o f  t r ace r  across stream1 i nes, when the  d i  s t r i  b u t i  on o f  t r a c e r  i s 

character ized by a  small sL. The analysl  s  app l ies  t o  s i t ua t i ons  i n which 

there i s  a  1  ocal ized source o f  tracer. Such a d i s t r i b u t i o n  i n  a 1  inear  shear 
f l ow  i s  analogous t o  the plume o f  t r a c e r  penetrat ing the edge o f  the  gyre. 

A) L inear  Shear Flow 

The equation governing the hor izontal  evo lu t ion o f  t r ace r  i s  the two- 

dimensional advecti  ve -d i f fus ive  equation, 

where x = zonal distance, 

y = meridional distance, 

8 = concentrat ion o f  t racer,  

u = zonal ve loc i ty ,  

v  = meridional ve loc i ty ,  

and K = d i f f u s i v i t y .  

So lu t ions were obtained numerical ly using the f i n i t e  g r i d  approximation d is -  

cussed i n  Appendix A. I n  t he  region o f  i n f l o w  a Gaussian concentrat ion o f  

t racer  i s  assigned, and where there i s  outf low t r a c e r  advects ou t  o f  the 

domain. Where the  cross boundary f l ow  i s  i n s i g n i f i c a n t  the d i f f u s i v e  open 

boundary condi t ions are appl ied. 

The set  up o f  the problem i s  depicted i n  F igure  1.4. A t  t = 0 a 

step func t ion  source i s  turned on, and t r a c e r  progresses downstream whi le  

spreading l a t e r a l l y .  The center  o f  mass o f  the tongue proceeds t o  migrate 



Figure 1.4: Graphic depicting a plume o f  t racer  i n  a l i n e a r  show flow. 
Length scales of the plume are  as shown; t racer  i s  introduced a t  u = Uo. 



across streamlines as w i t h  the gyre f low. It i s  re levan t  t o  define four  

leng th  scales f o r  t h i s  problem: 

L = The cross-stream penetrat ion o f  t racer,  defined as the  maximum 
P 

meridional ex tent  o f  a chosen concentrat ion o f  t racer.  

La = 
The alongstream length o f  the tongue, defined as the  zonal d i  s- 

tance t o  where the meridional penet ra t ion i s  greatest. 

LC, = The displacement o f  the  center  o f  mass o f  the tongue across 

streamlines a t  the p o i n t  where the meridional penet ra t ion i s  

greatest. Thi s measures migrat ion o f  t l ie  tongue. (Note t h a t  

migrat ion requires cross-s tream shear. ) 

LS = Lp - Thi s measures spreading o f  the tongue. 

Tne quan t i t i es  La and L are  the respect ive x and y leng th  scales o f  
P 

the  t r ace r  d i s t r i bu t i on ,  LC,, and Ls a re  the f i r s t  and second y-moments 

(Figure 1.4). 

For a northward d i f f u s i n g  p a r t i c l e  o f  t racer,  consider the balance 

between advection and d i f f u s i o n  where u = Uo + sy ( v  = 0) .  

where Uo = (constant) reference ve loc i ty ,  

and a = cross-stream shear. 

We estimate the order o f  magnitude of each term i n  (1.3) using the x 
and y 1 ength scales, and def ine the  f o l l  owing non-dimensi onal parameters : 

L 
6 = i s  the aspect r a t i o ,  - L 

a 

( Uo+aL )La 
P E i s  the alorlgstream Peclet  number = alongstream d i f f u s i v e  time scale a K advecti  ve time scale s 

P . P 6* i s  the cross-stream Peclet  number = cross-stream d i f f u s i v e  t ime scale 
c a advecti  ve t ime scal e 



I n  terms of these parameters (1.3) becomes 

( i Large alongstream Peclet  number: re1 at ionships between 1 ength scales. 

Consider f i r s t  the l i m i t  o f  small d i f f u s i v i t y  where Pa >> 1 bu t  PC 

remains O(1). I n  t h i s  1 i m i  t the aspect r a t i o  w i l l  necessar i ly  be small, 

6 << 1, and the dominant balance i n  (1.4) i s  

Note t h a t  the alongstream Pec le t  number i s  composed o f  two pa r t s  which can be 

thought o f  as two separate alongstream Peclet numbers, one f o r  the shear p a r t  

of the f l ow  and one f o r  the  uniform par t .  We de f ine  the parameter S as t he  

r a t i o  o f  these two Pecl.et numbers, which i s a measure o f  t he  shear which t h e  

t r ace r  experiences, 

Using t h i s ,  (1.5) can be rewr i t ten,  

L imi ts :  S << 1 

This cond i t i on  causes the shear t o  be negl ig ib le ,  and L obeys the 
P 

rule,  

S >> 1 
I n  t h i s  case the shear i s  so strong t h a t  the  reference ve loc i t y  i s  

neg l ig ib le .  Here L obeys the ru le,  
P 



S - 1  

Both the shear and the reference ve loc i t y  are important, 

Three d i f f e r e n t  examples o f  d i s t r i b u t i o n s  i n  which Pa >> 1, PC - 1 

appear i n  Figure 1.5. Each one represents a snapshot as t he  tongue evolves. 

I n  the f i r s t ,  corresponding t o  S << 1, 

I n  the second, corresponding t o  S >> 1, 

S = 2.3, and L - Lcm >> LS . 
P 

I n  the t h i r d ,  

S = .6, and L > LC, 
P 

- Ls . 

( A complete 1 i s t i  ng o f  parameters appears i n  Tab1 e 1.1.) 

As seen i n  Figure 1.6, as the  plume i n  t he  f i r s t  example progresses 

downstream 'L i s  cons is tent  w i t h  the S << 1 law, and i n  the second 
P 

example i t  i s  consistent  w i t h  the S >> 1 law. ( I n  the former, where the  

shear i s  neg l ig ib le ,  an ana l y t i c  so lu t i on  i s  obtainable which agrees w i t h  

tne numerical r e s u l t  t h a t  L t races o u t  a parabola. I n  the t h i r d  example, 
P 

P 
corresponds t o  ne i the r  of these laws. I n i t i a l l y  the slope i s  c lose t o  

1/2 as the shear i s  no t  y e t  f e l t ,  b u t  approaches t h a t  o f  1/3 as penet ra t ion 

increases. 



TABLE 1.1: Parameters associated wi th  the  d i f f e r e n t  examples i n  the l i n e a r  

shear f l o w  problem. 
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Figure 1.5: Instantaneous d is t r ibu t ion  o f  t r a c e r  i n  which Pa >> 1, PC " 1. 
( a )  S = .l, which corresponds t o  spreading. 
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(b) S = 2.3, which corresponds t o  migrat ion.  
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( c )  S = .6, which i s  i n  between t h e  l i m i t s  o f  spreadir~g and 
migrat ion.  



Figure  1.6: The re la t ionsh ip  between t h e  x and y length  scales o f  t h e  
plumes i n  F igure  1.5 a t  f o u r  successive times. A slope equal t o  one-half  i s  
consistent  w i t h  1 . 6  ; a slope equal t o  one-thi r d  i s  consi sterit  w i t h  (1.7). 

( a )  F o r  the  plume o f  F igure  1.5a. 
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( b )  For the  plume o f  Figure 1.5b. 



( c )  For the  plume o f  Figure 1.5~. 



When the shear i s  neg l ig ib le ,  spreading o f  the  tongue accounts f o r  most 

o f  the penetrat ion o f  t racer  across streamlines. On the other hand, i n  a 

strongly sheared f l ow  the  penetrat ion i s  most ly due t o  migrat ion of the  

tongue. I n  the  t h i r d  example, which i s  between these extremes, spreading and 

migrat ion are  both substant ia l  , b u t  w i t h  increasing penet ra t ion the s i t u a t i o n  

approaches t h a t  o f  the shear extreme, and correspondingly Lcm becomes more 

c lose ly  co r re la ted  w i t h  L Note t h a t  t h i s  example does no t  correspond 
P' 

exact ly  t o  the S " 1 case discussed above. Th is  means t ha t  when u and AU 

are o f  equal magnitude, spreading and mig ra t ion  do n o t  con t r ibu te  equal ly  t o  

the  penetrat ion b u t  ra ther  migrat ion i s somewhat more prevalent. 

These r e s u l t s  can a1 so be obtained a n a l y t i c a l l y  through an analys is  o f  

a s l i g h t l y  d i f f e r e n t  problem, t h a t  o f  a p o i n t  discharge o f  dye i n  a l i n e a r  

shear flow. Smith (1982) solved t h i s  case, and wh i le  t he  discharge i s  n o t  a 

continuous source b u t  ra ther  an i n i t i a l  spot t h a t  evolves, the same infortila- 

t i o n  regarding penetrat ion can be derived. I n  terms o f  the present no ta t ion  

the f low f i e l d  considered by Smith i s  

and the l e v e l  o f  discharge i s  y = 0. I n  our  case both the  reference 

ve loc i t y  and cross-stream shear a re  constants, Uo( t )  = Uo and a( t )  = a. 

The so lu t ion  i s a Gaussian i n  the cross-stream d i r e c t i o n  o f  the  form 

e(x,y,t) = c(x , t )  exp 

where V( t )  = variance, 

yo(x, t )  = p o s i t i o n  o f  the o r i g i n ,  

and c(x , t )  = amplitude. 

I n  each sect ion across-s tream the  tiaussi an i s centered progressi ve'ly f u r t h e r  

t o  the  nor th  look ing downstream, w i t h  a d i f f e r e n t  amplitude. The variance 

i s  independent o f  alongstream d i r e c t i o n  b u t  var ies  i n  time. A snapshot o f  a 

spot o f  t r ace r  progressing downstream appears i n  Figure 1.7. 

The analogy t o  the continuous source case i s  t h a t  the leading edge o f  

the dye spot evolves the  same as the  leading edge o f  the  plume discussed 



Figure 1.7: Instantaneous d is t r ibu t ion  o f  t racer  i n  the 1  inear  shear flow of  
Figure 1.5b. I n i t i a l l y  the d is t r ibu t ion  was a  d e l t a  function a t  the or ig in .  

3 

s 
0 

1 

X 
E 
z 
Y 

Q) 
0 
C 
Q - -1 -- 
V) 

5 

- 3  

- 5 0 5 10 
Distance (km X 100) 

I 

-- 

-- 

I 

-- 



previously.  The penetrat ion here i s  defined exact ly  as before: the maximum 

cross-stream extent  o f  a g iven concentrat ion i so l ine .  Note t h a t  f o r  the  
example shown t h i  s does no t  occur a t  the  extreme downstream edge o f  the dye . 

spot, bu t  r a the r  j u s t  upstream o f  t h i s  (Figure 1.8). As before we def ine the 

alongstream p o s i t i o n  t h a t  corresponds t o  the  maximum cross-stream penet ra t ion 

as x = La. I n  the  l i m i t  of small shear L, corresponds t o  the  center o f  

the  dye spot, whereas i n  the opposite 1 i m i  t La corresponds t o  i t s  down- 

stream edge. 

The penetrat ion i s  equal t o  the sum of the distance t o  t he  o r i g i n  o f  

the Gaussian and the square r o o t  o f  i t s  variance, 
L~ 

= yo + fi (yo  and fi 
are analogous t o  LC,, and LS  respect ively,  Figure 1;81. The shear parameter 

aL- 
S i s  defined as before, S = fl . I n  Figure 1.9 the re la t ionsh ip  between 

0 
L and La 

P 
shown i s  

e t r a t i  on 

i s  p l o t t e d  as t ime progresses f o r  a s t rong ly  sheared flow. Also 

S versus La. Consistent w i t h  what was found ea r l i e r ,  when the  pen- 

i s  so small t h a t  the shear i s  negl i g i b l e  w i t h  respect t o  the re fe r -  

ence ve loc i t y  (S << 1) L obeys a square r o o t  law. A t  longer  times 
P 

when tne dye spot has d i f fused  f a r  enough across stream t h a t  the opposite i s  

t r u e  (S >> I ) ,  L obeys a cube r o o t  law. It i s  evident t h a t  i n  the weak 
P 

shear 1 i m i  t L - , whereas i n  the strong shear 1 i m i  t Lp - yo. 
P 

( i i Small a1 ongstream Pecl e t  number: enhancement o f  spreading. 

I n  the f i r s t  se t  o f  examples i t  i s  seen t h a t  f o r  S >> 1 migrat ion o f  

the plume ( i  .e. movement o f  i t s  center o f  mass) i s  more prevalent  than 

spreading, and f o r  S << 1 the  opposite i s  t rue.  I n  each o f  these cases 

Pa >> 1 With a smal l e r  Pa the system becomes less  sens i t i ve  t o  the ve l -  

o c i t y  and, more importantly, changes i n  the  ve loc i ty .  Thus we might expect 

t h a t  a reduced Pa w i l l  d iminish the importance o f  migrat ion versus spread- 

i ng i n  con t r ibu t ing  t o  the penetrat ion, as i s  the  case w i t h  a reduced S. 

The d i  s t i n c t i o n  between S <<  1 versus P a  << 1 should remain c l e a r  however: 

i n  the  f i r s t  instance the  cross-stream change i n  ve loc i t y  i s  n o t  important  

because i t  i s  small, i n  the  second instance i t  i s  n o t  important  because the 

system does no t  recognize it. 
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Figure 1.8: The scales associated with the distribution o f  tracer in the 
point discharge problem. 



Figure  1.9: ( a )  The re la t ionsh ip  between La and L f o r  t h e  d i s t r i b u t i o n  
i n  the  p o i n t  discharge problem. The e a r l y  stage o f  Evolut ion i s  character-  
i z e d  by a slope of one-half and l a t e r  stages by a slope o f  one-third. 



La (km X 100) 

(b)  The value o f  the shear parameter as the  d i s t r i b u t i o n  progresses down- 
stream. The enlarged c i r c l e  and square represent the same stage o f  evolution 
i n  both ( a )  and ( b ) .  



A second se t  o f  examples appears i n  Figure 1.10. I n  1.10a Pa ^ 10 

whereas i n  1.10b Pa - .1 ( S  iscomparable i n  each, see Table 1.1). Indeed 

w i t h  a la rge  alongstream Peclet  number LC, > Ls, and w i t h  a small along- . 

stream Peclet number L s  > Lcm. Note i n  1.10b t h a t  Lp - La, so t h a t  f o r  

t h i s  example the balance o f  terms i n  (1.5) i s  no longer appl icable, i .e. t h e  

aspect r a t i o  i s  now O(1) and the alongstream d i f f u s i v e  f l u x  term must be 

retained. Here both the  alongstream and cross-stream Pecl e t  numbers a re  

small, whereas previously Pa >> 1 and PC - 1. The dominant balance i n  

(1.4) f o r  t h i s  example i s  thus 

( i i i ) Discussion 

It i s  seen t h a t  va r i a t i on  i n  the alongstream Pec le t  number 
Pa a1 t e r s  

the importance o f  the  alongstream d i f f u s i v e  term versus t he  advecti  ve term 

i n  balancing the cross-stream dif fusion. Var ia t ion  i n  t he  shear parameter S 

on the other hand, serves t o  enhance o r  d imin ish advection by a constant  ve l -  

o c i t y  f i e l d  versus a sheared ve loc i t y  f i e ld .  Th is  means t h a t  two c r i t e r i a  

must be s a t i s f i e d  i n  order t o  ob ta in  migrat ion o f  the  plume. F i r s t ,  Pa  
must be l a rge  enough so t h a t  t he  system i s  sens i t i ve  t o  the  ve loc i t y  f i e l d .  

Th is  condi t ion i s  necessary bu t  not  suf f ic ient .  I n  addi t ion,  S must be 

la rge  enough so t h a t  the  cross-stream shear i s  s i gn i f i can t .  

The parameter S depends on the rhieridional 1 ength scale L which i s  
P 

only known a f t e r  the tongue has evol ved. As w i t h  a1 1 problems i n  scal i ng , a 

discussion o f  re levant  balances requires some knowledge o f  the solut ion.  It 

would be desirable however i f ,  given the  values o f  a, Uo and K , we cou ld  

say whether o r  no t  the  tongue w i l l  migrate (provided the  d i f f u s i v i t y  i s  small 

enough t h a t  the advective f l u x  i s  important).  What we can do i s  cas t  the 

answer i n  terms o f  La. 

The idea i s  t o  subs t i tu te  f o r  L i n  the expression f o r  S. When 
P 

S << 1 we use (1.6) w i t h  the  d e f i n i t i o n  o f  S t o  ob ta i n  



Distance (km X 100) 

Figure 1.10: ( a )  Instantaneous d is t r ibu t ion  o f  t r a c e r  i n  which Pa >> 1, 
PC - 1 The value o f  S i s  such t h a t  migration i s  more prevalent  than 
spreadi ng . 



Distance (km X 100) 

( b )  Pa << 1 P << 1 Spreading i s  more prevalent than migration for a 
similar value of S .  



Provided Uo i s  n o t  i d e n t i c a l l y  zero ( i t  can be a r b i t r a r i l y  small) we have 

seen t h a t  f o r  every problem the shear i s  a t  f i r s t  neg l ig ib le ,  bu t  eventual ly  

dominant. We thus s e t  S = 1 i n  (1.8) and determine the  value o f  La, 
La = L , when the  t r a n s i t i o n  occurs, i .e when (1.8) breaks down. For 

a~ 
those cases i n  which the tongue migrates, the t r a n s i t i o n  occurs " i ns tan t l y "  

2 
( i n  the example o f  Figure 1.5b L " 10 km) and f o r  those i n  which t h e  

a~ 
tongue spreads, the t r a n s i t i o n  "never" occurs ( i n  the example o f  F igure 1.5a 

Besides discussing trends i n  L and i t s  re1 a t ionsh ip  w i t h  Lo and 
P 

LS, i t  i s  important t o  say a few words about the extent  o f  the penetrat ion. 

As an a l t e rna t i ve  t o  L as a measure o f  cross-stream penetrat ion, consider 
P 

the  i n teg ra l  of t r ace r  i n  the  region y > 0, x < Lx, i . e. the t o t a l  amount - - 
of t r a c e r  t ha t  has penetrated northward. Here 1 i e s  a f u r t h e r  d i s t i ~ ~ c t i o n  

between the S >> 1 case and S << 1 case. For  two plumes -- one i n  a 

s t rong ly  sheared f l ow  a'nd one i n  a uniform f low -- i n  which La and L a re  
P 

the same, there i s  s i g n i f i c a n t l y  less  t r a c e r  no r t h  o f  y = 0 i n  the shear 

flow. Th is  i s  because the ef fect  o f  northward shear on a d i s t r i b u t i o n  o f  

t r a c e r  i s  t o  increase i t s  northward gradient, and (Figure 1.11) t h i s  causes 

a southward f lux  of t racer  across p a r t  o f  the y = 0 l i n e .  So whereas 

t r ace r  has penetrated j u s t  as f a r  across stream i n  the shear flow, there i s  

less  o f  it. 

A1 though the Pa << 1 case resembles t h a t  f o r  Pa >, 1, S << 1 i n  

t h a t  spreading of the p l  ume domi nates migrat ion, these i nstances represent 

opposite extremes i n  penetrat ion. For  a given f l o w  f i e l d  (Uo and a )  and a 

given La, the value o f  L depends on the  value o f  K . A s u f f i c i e n t l y  small 
P 

K means t h a t  L i s  no t  la rge  enough f o r  the plume t o  no t i ce  the shear -- 
P 

1 arge Pa spreading occurs. With increased K (and L ) the la rge  S 
P 

regime i s approached and m i  j r a t i o n  becomes important. Small Pa spreadi ng , 
on the  o ther  hand, occurs w i t h  l a rge  enough K ,  and t h i s  represents t he  

upper extreme of penetrat ion. 

B) Appl icat ion t o  Gyre Flow 

We re tu rn  now t o  the gyre problem. The process i n  which the plume o f  

t r ace r  gets caught i n  the  edge o f  t he  gyre and d i f fuses  i n t o  a region o f  
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Figure 1.11: Value o f  ~e along t he  l i n e  y = 0. 
(a)  Uniform flow. The meridional f l u x  o f  t r a c e r  i s  everywhere 

northward. 
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( b) Strongly sheared f low.  Downstream o f  x " 3.7 t r a c e r  i s 
be i  ng f 1 uxed southward. 



stronger f l ow  resembles the  shear f l ow  example analyzed above, and some o f  

the ideas t h a t  were developed are now appl ied t o  t h i s  problem. Keep i n  mind 

however t h a t  the re  a re  d i f ferences between t he  two examples. For  instance . 

here the cross-stream shear a var ies  both alongstream and across stream, 

there i s  alongstream shear as wel l ,  the f l ow i s  curved ra the r  than r e c t i l i n -  

ear, and the i npu t  o f  t r ace r  i n t o  the gyre i s  no t  a  step func t ion  i n  time. 

Figure 1.12 shows a t ime h i s t o r y  o f  t r a c e r  enter ing t he  gyre. The 

advancement o f  the plume i n  each one year segment can be thought o f  as d i f -  

ferent  example o f  the shear f l ow  problem examined above, w i t h  the fo l low ing  

def i n i  ti ons : 

La = the distance t h a t  the leading edge o f  the plume t r ave l s  

a1 ongstream i n  a  year. 

= movement of the center o f  mass o f  the lead ing edge o f  the plume 

across-stream i n  a  year. 

a = cross-stream shear a t  the midpoint  o f  La ( t h e  alongstream 

shear i s neg l ig ib le )  . 
" 0  

= ve loc i t y  a t  La = 0, LC. = 0. 

These quan t i t i es  are analogous t o  those s i m i l a r l y  named i n  the  previous shear 

f l ow  problem. The source a t  the  northern edge o f  the  DWBC i s  appl ied as a  

step func t ion  a t  t = 0, bu t  by the  time t r a c e r  reaches the  gyre i t  i s  no 

longer characterized by a  f ront ,  i .e. the  "source" f o r  each o f  t i l e  above ex- 

amples grows i n  amp1 i t u d e  and width. Th is  means we are unable t o  def ine the 

analog t o  L  which i n  t u r n  means we are unable t o  measure d i r e c t l y  the  
P ' 

values o f  Pa and S. We can however estimate the  s ize o f  Pa by not ing t h a t  

6 ,  the aspect ra t io ,  i s  much less  than one f o r  each s ing le  year  segment, and 

t h i s  necessari ly imp l ies  t h a t  Pa  >> 1 So the  f i r s t  cond i t i on  f o r  m ig ra t ion  

i s  s a t i s f i e d  everywhere around the  gyre. 

Because a sp i r a l  does occur i t  i s  natural  t o  assume t h a t  the second 

condi t ion f o r  migrat ion, S >> 1, i s  s a t i s f i e d  as wel l .  Recal l  t h a t  i n  t h e  

migrat ion 1  i m i t  L  - LC.. Since we can measure Lcm we a re  able then t o  
P 

check t h i s  assertion. Fo r  each s i ng le  year segment we can subs t i tu te  the 

values o f  a, La, and K i n t o  ( 1.7). where L  i s replaced by Lcm ( t h e  
P 



Figure 1.12: Time sequence o f  t r a c e r  d i f fus ing  from the boundary current  and 
becoming entrained i n t o  the gyre. Tne dark l i n e s  a re  the bounding stream- 
l i n e s  o f  the two components o f  f low. 



p ropo r t i ona l i t y  constant f o r  (1.7) was determined numerical ly) .  This p re -  

d i c t ed  value o f  LC. can i n  t u r n  be compared t o  the measured value. The 

r e s u l t s  o f  t h i s  comparison are displayed i n  Figure 1.13. It i s  seen t h a t  . 

there i s  good agreement between the  pred ic ted and measured values where the  

f l ow  i s  meridional.  However, whi le  the pred ic ted curve does display l e s s  

penetrat ion i n  t he  zonal f low, t l i e  degree t o  which i t  i s  l e s s  i s  n o t  near ly  

as pronounced as t h a t  which ac tua l l y  occurs, suggesting t h a t  something e lse  

i s happeni ng whi 1 e t he  p l  ume t r ave l  s zonal l y  . 
Figure 1.14 graphs the values o f  Uo and a t h a t  the plume experiences 

as i t  t rave l s  around the  gyre. Also shown i s  the ex ten t  o f  the  corresponding 

sp i ra l .  The f a c t  t h a t  both a and Uo are  l a rge r  i n  the zonal f low, together 

w i t h  the small ex tent  of migrat ion there suggests t h a t  t h i s  corresponds t o  

the advective l i m i t .  I n  pa r t i cu l a r ,  i n  these regions no t  only i s  P a  >> 1, 

bu t  PC >> 1 as we1 1 so t h a t  i sol ines o f  t r a c e r  near ly  co inc ide w i t h  stream- 

1 ines. It i s  more accurate then t o  th ink  o f  the plume as m i r ro r i ng  stream- 

l i n e s  when i t  t r a v e l s  i n  the  stronger zonal flow, wh i l e  s p i r a l i n g  across 

streaml ines i n  the manner o f  the shear f l ow  example when i t  t rave l s  i n  the  

weaker meridional f low. 

C 1 Discussion 

The preceding analysis focussed on the entrainment o f  t r ace r  i n t o  a 

gyre which i n i t i a l l y  was t racer - f ree.  This process i s  character ized by a 

plume o f  t racer  sp i r a l  1 i ng asymmetrical l y  inward across streaml i nes as a re- 

sul t o f  the cross-stream shear. I n  pa r t i cu l a r ,  i n  t i le  zonal f l ow  the s p i r a l  

i s  minimal as the strong f low causes the plume t o  f o l l o w  streamlines. I n  the 

meridional f l ow the s p i r a l  i s  o f  considerable ex ten t  conforming t o  t l ie  ideas 

developed i n  a simpler shear f l ow analysis. 

Previous work has been done on the  mix ing o f  t r a c e r  w i t h i n  a subtrop- 

i c a l  gyre. Musgrave (1985) analyzed steady s ta te  so lu t ions i n  which the 

northern boundary i s mai n t a i  ned a t  a uni form p o s i t i v e  concentrat ion whi 1 e t h e  

southern boundary i s  kept  uni formly negative. He discusses the presence o f  a 

sp i r a l  t h a t  extends from the  boundary t o  the  stagnation p o i n t  o f  the  f low i n  

the  center o f  the gyre. The sp i r a l  a r i ses  because o f  the choice o f  boundary 

condi t ions ( t he  cross-stream shear o f  the  gyre i s  o f  the wrong sense t o  cause 
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Figure 1.13: Comparison o f  LC, as measured from successive d i s t r i b u t i o n s  
o f  Figure 1.12 versus the value predicted using (1 .7 ) .  The plume's d i rec t ion  
o f  t ravel  i s  indicated above. 
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Figure 1.14: ( a )  The value of the reference ve loci ty  f o r  the  d is t r ibu t ions  
o f  Figure 1.12. 
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(b )  The value o f  the  cross-stream shear. 
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( c )  The cumulative m ig ra t ion  o f  t he  plume. 



the type o f  sp i  r a l  d i  scussed here, i .e. a i s everywhere < 01. As t r a c e r  
enters from the  northern boundary i t  t rave l s  an t i c yc l  onical  l y  and spreads 

i n t o  the i n t e r i o r .  Upon encountering the negative plume t h a t  extends from 
the south, the region of p o s i t i v e  concentrat ion s h i f t s  away from the bound- 

ary, hence the  spi r a l  . 
For  the type o f  gyre considered here the inward ex ten t  o f  the s p i r a l  

depends on t he  f low parameters and d i f f u s i  v i  t y  . Far enough i n t o  the gyre the 

ve loc i t y  reaches a maximum before decreasing t o  zero a t  the gyre center. The 

maximum distance over which the  s p i r a l  can extend i s  t o  the  region where the 

cross-stream shear vanishes. As steady s ta te  i s  approached the t r ace r  w i t h i n  

the gyre becomes homogenized. Thi s process i s discussed i n the  next  section. 

Homogeni z a t i  on 

A feature of closed c i r c u l a t i o n  i s  the tendency f o r  proper t ies  t o  

become homogenized i n steady s ta te  i n  t i le  i n t e r i o r  o f  t he  f low. The homogen- 

i z a t i o n  o f  po ten t ia l  v o r t i c i t y  has been studied by Rhines and Young (1982a) 

and i s  an ing red ien t  i n  t h e i r  theory of w i  nd-dri  ven ocean c i  r cu l  a t i o n  (Rhi nes 

and Young, 1982b). The occurrence o f  such homogenization i s  a regu lar  fea- 

t u r e  o f  numerical f l ow  simulat ions (e.y. Holland and Rhines, 1980), and e v i -  

dence f o r  t h i s  i s  foutid i n  data from the North A t l a n t i c  (McDowel l e t  al., 

1982). I n  the context  o f  passive tracers, Musgrave (1985) conducted a numer- 

i c a l  study of homogenization i n  a subtropical  gyre. The s i t u a t i o n  he consid- 

ered however i s  qu i t e  d i f f e r e n t  than t h a t  p resen t l y  being addressed. Rhines 

and Young (1983) examined the time h i s t o r y  o f  the process by which gradients 

are expel led from a c losed c i r cu la t i on ,  r e s u l t s  o f  which a re  appl icdble here. 

I n  the ocean, t i i i l e r  (1982) discussed the homogeneity o f  the s a l i n i t y  f i e l d  

i n  a po r t i on  o f  the  subtropical  North A t l an t i c .  The t r a c e r  data presented 

by Hogg e t  a l .  (1986) f o r  the region of the northern r e c i r c u l a t i o n  gyre also 

exh ib i t s  homogenization, a resul  t which t h i  s study addresses. 

It i s  useful t o  consider homogenization i n  the context  o f  a passive 

tracer, as r esu l t s  may provide i n s i g h t  i n t o  the more complicated case o f  a 

dynamically ac t i ve  quant i ty  such as po ten t i a l  v o r t i c i  ty. Here the occurrence 
o f  homogenization i s  r e l a ted  t o  the  penet ra t ion process t h a t  was analyzed 



above. Before proceeding w i t h  the  present problem though we f i r s t  review t h e  

argument f o r  homogenization f o l l  owing the presentation i n  Rhi nes and Young 

(1982a). 

A)  Review o f  Homogenization 

Consider the steady s ta te  balance o f  advection and d i f f u s i o n  i n  a gyre, 

governed by the steady form o f  ( 1.1) , 

In tegra t ing  over the area bounded by a streamline and applying the divergence 

the0 rem , 

where S i s  the boundary streamline and n -, i s  the u n i t  normal t o  the  

streamline. Note t h a t  the le f thand  s ide o f  (1.9) i s  i d e n t i c a l l y  equal t o  

zero because y and g are perpendicular. 
I n  the l i m i t  o f  strong advection the  is01 ines o f  t r ace r  nearly co inc ide 

w i t h  streamlines, i.e. e = e( $ 1. This gives 

and since the in tegra l  i s  around a streamline, 

The quant i ty ins ide  the  in tegra l  i s  pos i t i ve  de f i n i t e ,  which f u r t he r  imp1 i e s  

t h a t  

e($),,, = 0 , i.e. e = constant , 

Homogenization i s  thus obtained i n  a s t rongly  advective system. 



0 )  S p a t i a l l y  Decaying Gyre 

The f l ow  f i e l d  t h a t  Musgrave (1985) considered i n  h i s  numerical study 

o f  homogenization consisted of a S t m e l - t y p e  gyre i n  which the strongest  
- 

f low occurs a t  the edge of the gyre. He def ined a Pec le t  number, P = UL/K , 
using the leng th  scale o f  the basin and t he  cha rac te r i s t i c  ve loc i t y  o f  t h e  

gyre, and discussed the extent  of the homogeneous pool versus P as wel l  as 

the meridional f l u x  o f  t r a c e r  versus P. I n  terms o f  (1.1) the  Peclet number 

determines t o  what ex tent  advection balances d i f fus ion ,  and L should be 

defined i n  terms o f  t he  t r ace r  d i s t r i bu t i on .  It i s  unclear how t o  discuss 

resu l t s  i n  terms of a Pec le t  number so defined, espec ia l ly  i n  regards t o  

homogenization when l o c a l l y  the  length  seal e becomes i n f i n i t e .  What we do 

here i s  def ine P i n  terms of the plume of t r ace r  which penetrates the gyre, 

as was done i n  the  previous section. 
The gyre present ly being considered has i t s  maximum ve loc i t y  re1 a t i  vely 

c lose t o  the center, de.caying from t h i s  p o i n t  t o  t he  edge. (A ve loc i t y  sec- 

t i o n  through the gyre i s  shown i n  Figure 1.15.) Fo r  s imp l i c i t y ,  f o r  the t ime 

being we consider a symmetric ( i  .e. c i r c u l a r )  gyre. Think o f  the  gyre as 

being d iv ided i n t o  two regions: the o u t s k i r t s  o f  the  gyre were the f low i s  

weak, and the inner  p a r t  where t he  f low i s more in tense (c lose  t o  the gyre 

center the f 1 ow once again becomes weak. ) , 

As the  plume o f  t r a c e r  enters the outer, weaker p a r t  o f  the flow i t  

s p i r a l s  across streamlines (provided the shear i s  st rong enough) i n  the 

manner discussed i n  t he  previous section. T t ~ i  s region i s  character ized by 

P >> 1, PC a 1 Eventual ly  the plume reaches strong enough f low (we c l a r -  

i f y  below what i s  meant by strong enough) t h a t  i t  i s  near ly pu l l ed  r i g h t  

around a streamline. A t  t h i s  p o i n t  the s p i r a l  has "col lapsed" t o  a stream- 

l i n e ,  and here Pa >> 1, PC >> 1. Recall  t h a t  these l a t t e r  condi t ions imply 

t h a t  we are i n  the advective l i m i t ,  which i s  the necessary cond i t i on  f o r  

homogenization. S p e c i f i c a l l y  then, the ou te r  region o f  the gyre i s  where t he  

s p i r a l  occurs, and the inner  region, de l imi ted by the col lapsed sp i ra l ,  i s  

where homogenization occurs. 

For  the asymmetric gyre, we saw e a r l i e r  t h a t  where the  plume f i r s t  

enters the  gyre heading east  t he  f a s t  f l o w  keeps i t  near ly  t racked t o  a 

streamline. However, a f t e r  the plume has turned the corner t o  the north, 
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Figure 1.15: North-south ve loc i t y  sect ion through the  cen te r  o f  t he  gyre o f  
F igure 1.2. 



the f l ow  along t h a t  same streamline weakens and the plume proceeds t o  s p i r a l  

s i g n i f i c a n t l y  inward. I n  t h i s  case the d i v i s i o n  between the two regions o f  

the gyre i s  n o t  so c l e a r  cut .  However, homogenization w i l l  n o t  occur u n t i l  

the plume t racks a streamline around an e n t i r e  c i r c u i t .  So even though 

por t ions  o f  the  s p i r a l  may collapse, i t  i s  on ly  where the cumulative s p i r a l  

col lapses t h a t  marks the t r a n s i t i o n  between the two regions. 

We now examine more c l e a r l y  the cond i t i on  t h a t  t he  f l ow  be strong 

enough t o  keep the  plume from d i f fus ing  appreciably across stream i n  the t ime 

i t  takes t o  rec i rcu la te .  The advective 1 i m i  t corresponds t o  Pa >>  1 and 

PC >> 1 The more s t r i ngen t  o f  these i s PC >> 1, o r  i n  terms o f  scales, 

I n  considering a c i r c u i t  around the gyre the re levant  La i s  La = Ls - = 
- 

perimeter o f  the  stream1 ine,  and the  re levant  U i s  U = vs  - average ve l -  

oc i  t y  around the  stream1 i ne. We def ine t he  homogeni z a t i  on funct ion H as 

the r a t i o  o f  these two quant i t ies ,  which gives 

- 
vs( IV 

where H( $ 1  = l ~ .  The func t ion  H, which i s  the inverse o f  the 

c i r c u l a t i o n  time, can be thought o f  as a measure o f  the tendency f o r  homogen- 

i z a t i o n  t o  occur based on ly  on f l ow  charac te r i s t i cs .  A l a r g e r  H means a 

greater  1 i ko l  i hood f o r  homogenization. 

Consider agai n the  symmetric gyre, whose streamf unc t i  on i s g iven by 

where IV0 = amp1 i tude, L = e - fo ld ing  scale o f  the  gyre. I n  t h i s  case 
- 
V = vs. 

S 
From (1.101, 



The perimeter Ls  = 2 ~ r ,  which gives 

This  says t h a t  t he  greatest tendency f o r  homogenization occurs a t  the center 

of t he  gyre, decreasing l i n e a r l y  w i t h  increasing q . So the  p a r t  o f  t he  gyre 

near the center, where the flow becomes weak again, i s  included i n  the advec- 

t i v e  region because the  f l ow  i s  strong enough i n  t h e  sense t h a t  the  c i r c u l a -  

t i o n  time i s  small ( the perimeter o f  a stream1 i ne i s  small j . Contrast t h i s  
2 t o  a s o l i d  body r o t a t i o n  gyre, = r , where t h e  c i  ~ u l a t i o n  t ime i s  con- 

'' , and the  ten- s tan t  f o r  each streamline. Here vs = 2 $or and H( $ )  = - 
T 

dency f o r  homogenization i s  t he  same everywhere. 

In the asymmetric gyre the ve loc i t y  along a streamline var ies around 

the  gyre. The streamfunction i s  

where Lx and L are the x and y e- fo ld ing length scales. Note t h a t  
Y 

where I' i s  the  c i r c u l a t i o n  around the streamline S. From (l.ll), 



which g ives 

skewness o f  a gyre. It shows t h a t  f o r  a g iven value o f  $ , homogenization 

i s  more 1 i k e l y  t o  occur i n  a more skewed gyre. Note t h a t  t h i s  i s  t r u e  even 

though the ve loc i t y  a t  the two widest sections o f  the gyre approaches zero as 

t he  gyre 's  skewness increases. This i s  because the  p o r t i o n  o f  the streaml ine 

i n  these sections gets vanishingly small as we1 1. 

C) L im i t s  o f  D i f f u s i v i t y  

We examined homogenization w i t h i n  the asymmetric gyre o f  F igure 1.2 f o r  

various values o f  t h e  d i f f u s i v i t y  K. The smal lest  value considered was K " 
6 2 10 cm /sec, and the homogeneous pool of t r ace r  t h a t  formed i n  steady s ta te  

i s  shown i n  Figure 1.17. This i s  the f i n a l  s t a te  o f  the  same example t h a t  

was previously analyzed i n  terms o f  the asymmetric sp i r a l  . Figure 1.17b 

shows the  path  o f  t he  s p i r a l  and how i t  indeed closes i n  on the region t h a t  

eventual ly  becomes homogenized. 
6 2 When the d i f f u s i v i t y  i s  increased t o  K - 5 x 10 cm /sec f o r  the same 

gyre, t h i s  i n  e f f ec t  causes the flow t o  appear weaker t o  the incoming plume 

o f  t racer .  I n  pa r t i cu l a r ,  the  zonal f l ow  where the  plume f i r s t  enters the 

gyre i s  n o t  f a s t  enough anymore t o  be i n  the advective 1 i m i t ,  so a pronounced 

sp i r a l  occurs there as wel l  as i n  the  mer id ional  f l ow  ( t h e  asymmetry no long- 

e r  exists,  Figure 1.17dl. Consistent w i t h  (1.12), the plume now has t o  pene- 

t r a t e  f u r t h e r  i n t o  t he  gyre before i t  encounters f l ow strong enough t o  induce 

homogenization. Correspondingly, the steady s ta te  pool i s  reduced i n  ex tent  

(Figure 1 .17~ ) .  
7 2 Upon increasing K even more (K " 10 cm /set) an abrupt t r a n s i t i o n  

occurs i n  the manner i n  which t r a c e r  f i l l s  the  gyre. What happens i s  t h a t  

the meridional flow, which i s  weaker than the  zonal f low, i s  essen t i a l l y  

turned o f f .  That i s  t o  say the d i f f us i ve  f l u x  there i s  now o f  the order o f  
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Figure 1.16: The value o f  the  homogenization funct ion versus the skewness of 
a gyre. The skewness n i s  defined as the r a t i o  o f  the  major ax is  o f  the 
e l  1 ipse t o  the minor axis.  The area o f  the  gyre i s  the  same i n  each case and 
se t  equal t o  r. 



G 2 Figure  1.17: ( a )  Steady s t a t e  d i s t r i b u t i o n  o f  t r a c e r  f o r  K " 10 cm /sec. 
The shaded region corresponds t o  t h a t  area of t h e  gyre i n  which the  gradient  
o f  t r a c e r  i s  < .1 concentration units/km x 100. This i s  taken as the  c r i -  
t e r i o n  f o r  homogenization. 
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( b )  The region o f  homogenization i n  ( a )  shown i n  r e l a t i o n  t o  
t h e  inward spiral  of the  plume of t racer  during spin-up. The so l id  l i n e s  
a re  the bounding stream1 i nes. 
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6 2 
( c )  Steady state distribution for K - 5 x 10 cm /sec. 



5 10 15 20 2 5 

Distance (km X 100) 

-- 

-- 

6 2 
( d )  Homogenized region and spiral for K " 5 x 10 cm sec. 

-- 

-- 

-- 

-- 

-- 

-- 

I I I I 

I ...... ;;mr

---- Path of Spiral 

................ ................ ............... Region of ...... 1 ......... ................ ................ ................ Homogenization 

I 
I 

1 I I 



the advective f l u x .  Thus t he  plume enters the  gyre, gets  p u l l e d  eastward, 

turns the corner and stagnates. By the t ime t r a c e r  d i f fuses  northward and 

gets caught i n  the zonal f l ow  and subsequently advected westward, the  west- . 

ward d i f fus ing  t r ace r  from the stagnation po in t  has penetrated the cen te r  o f  

the  gyre. So whereas i n  t he  previous two cases t r a c e r  was advected complete- 

l y  around the gyre and f i l l e d  the center i n  a bowl-1 i ke fashion, here i t  i s  

advected t o  the east  and proceeds t o  f i l l  the  gyre from east  t o  west (F igure  

1.19). A small amount o f  homogenization does occur a t  the center o f  the gyre 

(Figure 1.18). 

The f i n a l  case considered can be thought o f  as the d i f f u s i v e  l i m i t  
7 2 ( K " 5 x 10 cm /set). Here the presence of the zonal f low i s  hardly f e l t  

as we1 1 and the  manner i n  which the gyre i s  ven t i l a t ed  undergoes y e t  another 

change. As shown i n  F igure 1.19 t r a c e r  bas i ca l l y  d i f fuses  from west t o  east  

across the gyre, w i t h  an undulat ion corresponding t o  the eastward and west- 

ward flows. 

D ) Concl us i  on s 

Homogenization i s  the steady s ta te  mani festat ion o f  t r ace r  penetrat ing 

a closed c i r cu la t i on ,  provided the system i s  s t rong ly  advective. For t h e  

spa t ia l  l y  decaying gyre considered here, the occurrence o f  homogenization i s  

c lose ly  t i e d  t o  the  charac te r i s t i cs  o f  the s p i r a l  o f  the incoming plume o f  

t r ace r  t h a t  forms during spin up. I n  par t i cu la r ,  where the sp i r a l  col lapses 

t o  a streamline marks the  outer  ex tent  o f  the homogeneous pool t h a t  eventual- 

l y  develops. As the d i f f u s i v i t y  i s  increased the s ize  o f  t h i s  pool shrinks. 

This i s  cons is tent  w i t h  the  idea t h a t  homogenization occurs more read i l y  

nearer the center o f  the  gyre f o r  t h i s  type o f  f low, based on the shorter  

c i  r cu l  a t i o n  times there. 

Rhines and Young (1983) have invest igated how long i t  takes homogeniza- 

t i o n  t o  occur i n  a c losed c i r cu la t i on .  They showed t h a t  the process occurs 

i n  two stages, the slower o f  which i s  the d i f f u s i v e  time o f  the gyre. The 

problem they solved i s  simpler than the one being analyzed here. Their 

i n i t i a l  s t a te  consisted o f  a given d i s t r i b u t i o n  o f  t r ace r  i n  the gyre, which 

evolved w i t h i n  an i nsu la t i ng  boundary. I n  the present problem i n  order t o  

understand the t ime h i s t o r y  o f  homogenization, the  nature o f  the sources and 

sinks o f  t r a c e r  must be considered. This i s  done i n  chapter two. 
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7 2 
Figure 1.18: Steady s t a t e  d is t r ibu t ion  f o r  K " 10 cm /sec. 



Distance (krn X 100) 

Figure 1.19: Instantaneous d is t r ibu t ion  o f  t racer  during spi n-up ill ust ra t -  
ing  manner i n  which t racer  f i l l s  the gyre. Shown above i s  a zonal section 
through the center of the  gyre. 

( a )  K " 106cm2/sec. 
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7 2 ( d )  K - 5 x 10 cm /sec. 



CHAPTER TW 0: THE NORTHERN RECIRCULATION GYRE 

Pre l iminar ies  

Up u n t i l  now we have focussed on the gyre c i r c u l a t i o n  o f  the numerical 

model , i s o l a t i n g  the  processes invo lved i n the  penet ra t ion o f  t r ace r  i n t o  the  

gyre. Having understood the entrainment and homogenization t h a t  occur we now 

consider the  coupled gyre/boundary cu r ren t  system; i .e. we now examine how 

the DWBC suppl i e s  t r ace r  t o  the NRG. 

As mentioned ea r l i e r ,  the DWBC i s  a  source o f  d i f f e r e n t  t racers  t o  the 

abyssal tJorth A t l an t i c .  Having been i n  recent contact  w i t h  t t ie atmosphere 
i t s  waters are  r i c h  i n  oxygen, t r i t i um ,  and freons. I t s  waters are a lso r e l -  

a t i v e l y  c o l d  and f r esh  and marked by a  d i s t i n c t  s ignal  i n  s i l i c a .  Recently 
Hogg e t  a l .  (1986) presented r e s u l t s  from the  OCEANUS 134 hydrographic survey 

o f  t l i e  region where the  NKG and DWBC are i n  c lose  contact, high1 i g h t i n g  sev- 

e ra l  of these tracers. ' (Some data from previous cru ises was a1 so included.) 

They discussed the data i n  r e l a t i o n  t o  t h i s  associated f l o w  pdt tern,  remark- 

i n g  on the area o f  near ly  uniform t r ace r  concentrat ion i n  the  region o f  the 

NKG. It was a lso  shown t h a t  there i s  no p o i n t  i n  consider ing each o f  the  

t racers  i n d i v i d u a l l y  as they do n o t  a l l  g ive independent information. I n  

par t i cu la r ,  t he  d i s t r i b u t i o n  o f  s a l i n i t y  was independent from those o f  t he  

o ther  t racers,  the r e s t  o f  which show near ly i den t i ca l  features. Th is  d i f -  

ference, the  presence o f  a  s l i g h t  minimum near t he  l oca t i on  o f  the  NRG f o r  

a l l  of the t racers  except s a l i n i t y ,  was explained i n  terms o f  v e r t i c a l  

processes. 

Here we consider three d i f f e r e n t  t racers:  s a l i n i t y ,  oxygen, and 

freons. Using the numerical model i n  associat ion w i t h  a simple ana ly t i ca l  

model, we explore what these t r ace r  d i s t r i b u t i o n s  can t e l l  us about the NRG 

and i t s  r e l a t i onsh ip  t o  t he  DWBC and about var ious o ther  proper t ies  o f  t he  
system. We examine more c lose ly  the d i s t i n c t i o n  between s a l t  and oxygen 

suggested i n  Hogg e t  a l .  (1986). Freons are considered as we l l  because they 

a re  i n  a  t r ans ien t  s t a te  and the atmospheric forc ing funct ions are known. 

An inves t iga t ion  o f  t ime dependent i n p u t  i s  the  focus o f  chapter three. 



We s t a r t  w i t h  an analysis o f  numerical model r esu l t s  only. I n  order t o  

understand these resu l ts  more c l e a r l y  a simpler representation o f  the model 

i s solved ana l y t i ca l l y  . Some o f  the  ideas t h a t  are derived from t h i  s analy- 

s i s  are then appl ied t o  the  same data set  discussed i n  Hogg e t  a l .  (1986). 

Model Study 

It i s  assumed t h a t  a tu rbu len t  t ransfer o f  proper t ies  from the DWBC t o  
the NRG occurs along densi ty surfaces, the e n t i r e  gyre being ven t i l a ted  i n  

t h i s  fashion. It i s  o f t en  the case t h a t  along-i sopycnal mix ing i n  the  ocean 

i s presumed t o  dominate cross- i  sopycnal mixing . However, i t i s the  presence 

o f  cross-i  sopycnal mixing t h a t  Hogg e t  a1 . suggest may be the  reason f o r  the 

d i f ference i n the  d i s t r i bu t i ons  o f  s a l i n i t y  and oxygen. 

Consider the v e r t i c a l  p r o f i l e s  o f  F i  yure 2.1 f o r  a s t a t i o n  from the  

OCEANUS 134 data set. A t  t he  densi ty l eve l  o f  t he  OWBC core (average depth 

2 3600 m l  the s a l i n i t y  d i s t r i b u t i o n  decreases monotonically w i t h  depth (dense 

water o f  Antarc t ic  infl'uence keeps near bottom l eve l  s f resh) .  However, t he  

oxygen p r o f i l e  has a r e l a t i v e  maximum a t  t h i s  leve l .  Thus i n  1 i g h t  o f  t he  

associated gradients, f o r  oxygen there i s a cross-isopycnal f l u x  ou t  o f  t he  

deep layer  i n t o  the water above and the  water below, whereas f o r  s a l t  there 

i s  a f l u x  i n t o  the  l a y e r  from above and ou t  o f  t he  l aye r  i n t o  the  bottom 

water. Th is  suggests t h a t  the e f f e c t  o f  cross-i  sopycnal mixing i n  the  deep 

l aye r  may be more pronounced f o r  oxygen than f o r  s a l i n i t y .  

Consider the three-dimensional form o f  the  advect ive-di f fusive 

governing equation ( 1.1) , 

where e(x,y,z) = t r ace r  concentration, 

u(x,y,z) = hor izonta l  ve loc i t y  vector, - 
w( x,y,z) = v e r t i c a l  ve loc i ty ,  

K = 1 a te ra l  eddy d i f f u s i v i t y  (constant), 

and v = v e r t i c a l  eddy d i f f u s i  v i  ty  (constant). 



Salinity (0/00) 

F igure  2.1: ( a )  CTD p r o f i l e  o f  s a l i n i t y  versus depth below 2000 m f o r  
OC134 s ta t ion  40 ( i n  t h e  gyre) .  



Oxygen (ml/L) 

( b )  Oxygen profile. 



We a re  i n te res ted  i n  the evo lu t ion o f  t r ace r  i n  the deep l aye r  which we 

assume i s  bounded above and below by densi ty surfaces which are nearly f l a t  

( thus along-i  sopycnal i s synonymous w i t h  hor izontal  , cross-isopycnal i s 
synonymous w i t h  v e r t i c a l  ) . 

I n  a f i n i te -d i f fe rence  sense we represent the v e r t i c a l  s t ruc ture  w i th  

three g r i d  points,  b u t  only t he  center one i s act ive,  corresponding t o  the 

concentrat ion i n  the center of the  layer. The upper and lower po in ts  are 

f i xed  boundary condi t ions (representing reservoi r val ues above and be1 ow the 

deep layer, F igure 2.2). Applying t h i s  approximation t o  (2.1) (w r O), 

where e&x,y) = value o f  t r ace r  a t  the center o f  the layer ,  

@u = va l  ue of upper reservoi r ( constant), 

e~ = va l  ue .of 1 ower reservoi r ( constant), 

H 
ti 

= l a y e r  thickness ( v e r t i c a l  g r i d  spacing = $, 

eu + eL) o r  i n  terms o f  the anomaly e '  E (eH - --T-- , 

ae' - ae' 
+ U -  

ae' + V - =  K (  a t  ax aY ax 

Th is  equation i s  quasi-three-dimensional i n  t h a t  i t  contains a param- 

e t e r i z a t i o n  o f  a v e r t i c a l  process. Note t h a t  t h i s  v e r t i c a l  f l u x  term has 

tne forrn o f  a rad ioact ive decay term (although f o r  a property such as s i l i c a ,  

which i s  character ized by a r e l a t i v e  minimum i n  the  deep layer,  i t  i s  a 

growth term). As discussed i n  Hogg e t  a1 . (1 9861, f o r  the scales involved, 

t h i s  type of decay i n  oxygen concentrat ion i n  the abyssal ocean overwhelms 

any consumption t h a t  may be occurr ing. 

Equation (2.2) i s  t h a t  which was analyzed by Hogg e t  a l .  i n  d i f f e r e n t i -  

a t i ng  between sal t and oxygen. That ana lys is  i s  expanded upon here. For the  
+ e~ s 

s a l t  case i t  i s  assumed t h a t  7 s eM (e l  ? 0 )  so t h a t  the v e r t i c a l  



8 ,  p = constant DEEP 
LAYER 

Figure 2.2: Schematic showing the  v e r t i c a l  resolut ion o f  the  deep l a y e r  i n  
the numerical model. Three g r i d  points  a re  used t o  represent a continuous 
p r o f i l e  as such. 



f l u x  term i s n o t  l a r g e  enough t o  a f f ec t  t he  d i s t r i b u t i o n .  Se t t i ng  i t  iden t -  

i c a l l y  equal t o  zero reduces (2.2) t o  the  equation which was studied i n  chap- 

t e r  one, ( 1.1). The previous r e s u l t s  concerning e n t r a i  nment and homogeni za- 

t i o n  can be thought o f  then as applying t o  the s a l t  case. We consider t h i s  

eu + 
case fur ther.  For oxygen i t  i s  assumed t h a t  7 c eM and the v e r t i c a l  

f l u x  term i s retained. Using the  same two-dimensional f i n i  te-d i f ference 

scheme t h a t  was appl ied t o  (1.11, equation (2 .2)  i s  then analyzed numerical ly 

and compared t o  the s a l t  case. (Hereaf ter  t he  prime i s  dropped and e 

re fe r s  t o  t he  deep anomaly, ) 

A) Without Ver t i ca l  Flux 

We t u r n  our a t t en t i on  once again t o  the  same numerical s imulat ion t h a t  

was analyzed i n  the  previous chapter ( t h e  small d i f f u s i v i t y  l i m i t  only), b u t  
here we take a broader perspective and consider the f a c t  t h a t  the t r ace r  

which c o l l e c t s  i n  the  gyre o r i g i n a l l y  came from the boundary current .  As 

t r ace r  f i r s t  advects downstream from the northern source and spreads l a t e r -  

a l l y ,  the eastward f l u x  o f  t r a c e r  i n t o  the  i n t e r i o r  i s i n h i b i t e d  by the west- 
ward f l ow o f  the gyre and accentuated by the eastward f l ow  f u r t h e r  t o  the 

south. A1 1 a1 ong t he  reg ion o f  c o r ~ t a c t  t r a c e r  d i f f uses  from the boundary 

cu r ren t  d i r e c t l y  i n t o  the  gyre. However, because o f  the strong gyre flow, 

t r ace r  does no t  penetrate subs tan t ia l l y  i n t o  the gyre before the  f l ow  tu rns  

of f  shore. For  t h i s  reason the  plutne o f  t r ace r  which extends from the bound- 

ary  does no t  co inc ide w i t h  t he  region o f  maximum eastward f l ow  o f  the gyre, 

r a the r  the  plume i s  wel l  south o f  t h i s  region (Figure 2.31. Th is  i s  an 

example then o f  when a tongue o f  t r ace r  does n o t  co inc ide w i t h  the core of 

the cu r ren t  ( r a the r  i t  def ines the cu r ren t ' s  edge). 

Each successive plume o r ig ina tes  f rom the  boundary a b i t  f u r t h e r  t o  

t he  south, as i t  i s  made up o f  t r ace r  t h a t  d i f fused  f u r t h e r  from w i t h i n  the 

cu r ren t  and so was sub ject  t o  stronger southward advection. Throughout the 

s imulat ion the l eve l  o f  t r ace r  across the gyre i s  near ly  f l a t .  (There i s  a 

s l i g h t  minimum i n  t he  center  of the  gyre, Figure 2.4.) The e n t i r e  system 

eventual ly  reaches a steady s ta te  as i npu t  a t  t he  northern edge o f  the cur- 

r e n t  i s  balanced by advective output  a t  i t s  southern edge and d i f f u s i v e  out-  

p u t  along the remaining (quiescent) p a r t  o f  the  boundary. The gyre i t s e l f  
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Figure 2.3: Plume o f  tracer being pulled from boundary in relation to the 
eastward je t  of the gyre. 
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Figure 2.4: Zonal section o f  t racer  through the boundary current  and center  
of the gyre a t  four d i f ferent  times during spin-up. 



a t  steady s ta te  i s marked by pe r f ec t  homogenization, there i s no i n p u t  

anywhere around the gyre nor i s  there output. 
6 2 Two d i f f e r e n t  cases were considered i n  some d e t a i l  K - 10 cm /sec and 

6 2 
K - 5 x 10 cm /sec (herea f te r  re fer red t o  as K and K g ) .  F igure 2.5 

shows the accumulation o f  t r a c e r  a t  the center o f  the  gyre f o r  the two cases. 

(The i n t e r i o r  po r t i on  of the gyre i s  the 1 as t  p lace i n  t he  domain t o  reach 

steady state. ) There are  two th ings  t o  note. F i r s t ,  i t took over th ree  

t i q s  longer f o r  steady s ta te  t o  be reached i n  the  smaller K example (an e- 

f o l d i ng  t ime o f  -80 years versus -25 years). Second, t he  value o f  the  homo- 

genized pool a t  steady s ta te  i s  the  same f o r  both cases. ( A l l  s imulat ions 

were ha1 t e d  when the yea r l y  accumulation r a t e  f e l l  be1 ow 2 percent o f  i t s  

ea r l  i e r  maximum rate.  I n  K t r a c e r  r ead i l y  d i f fuses  o f f  the boundary and 

sp in  up occurs r e l a t i v e l y  quickly, whereas i n  K~ t r ace r  d i f f uses  from the  

cu r ren t  slowly b u t  sp in  up occurs much l a t e r  and t r a c e r  accumulates i n  t h e  

gyre f o r  a longer time. It i s  n o t  obvious why these e f f e c t s  exact ly  balance 

each other  t o  produce t he  same l eve l .  

I n  t h e i r  work on homogenization o f  passive t racers  i n  gyres Khines and 

Young (1983) showed t h a t  t he  t ime scale f o r  homogenization t o  occur i s  t h e  

d i f f us i ve  t ime scale o f  the gyre. It i s  i n t e res t i ng  then t o  compare e s t i -  

mates based on t h i s  t o  the e- fo ld ing t imes observed above. Since the e- 

f o l d i ng  times d i f f e r  i n  the  two examples by. on ly  a f a c t o r  o f  3, it i s  no t  

s u f f i c i e n t  t o  merely consider order o f  magnitude estimates. We therefore  

make use o f  r esu l t s  from the fo l low ing  example o f  t r ace r  d i f f u s i n g  i n t o  a 

closed region. 

Consider a c i r c u l a r  domain o f  area A. w i t h i n  which t r ace r  i s  f r e e  t o  

d i f fuse.  The edge o f  the  domain i s  maintained a t  a constant value e = eo 

and i n i t i a l l y  there i s no t r a c e r  i n  the  i n t e r i o r .  The steady s ta te  d i s t r i b u -  

t i o n  w i l l  be e = eo everywhere, and we are in te res ted  i n  how long i t takes 

t o  reach t h i s  state. The governing equation i s  the  r a d i a l l y  symmetric d i f f u -  

s ion equation, 

where A = area corresponding t o  a y i ven r a d i a l  distance. 



Figure 2.5: Time h istory  o f  t racer  accumulating a t  the center o f  the  gyre 
f o r  two d i f f e r e n t  d i f f u s i v i t i e s .  
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(The equation here i s  w r i t t e n  i n  i t s  area form ra the r  than i n  terms of r a d i a l  

distance. ) 

Th is  problem was solved by Young (personal communicationl , the  so lu t i on  

being 

where eo = homogenized value, 

'G = spin up time, 

and J, = zeroth order Bessel function. 

The expression f o r  the e- fo ld ing t ime rG i s ,  

I n  our case the gyre i s  no t  c i r c u l a r  b u t  e l  1 i p t i c a l  , so A, = .L,L,,.,, 

L, and LM being t he  zonal and meridional scales o f  the  domain. A1 so, 

because the distance between stream1 i nes var ies  around the  gyre (which i n f l  u- 

ences the cross-stream gradients) ,  K i s  replaced by an e f f e c t i v e  d i f f u s i  v- 

i ty re. The d e t a i l s  o f  why t h i s  i s  so are  given i n  Rhines and Young (1983). 

I n  t h a t  work they show t h a t  the  e l l i p t i c a l  analog t o  (2.3) i s  

where A = area w i t h i n  a streamline defined by 4' = constant, 

2 r = JJ  o ly ~ I A  = c i r c u l a t i o n  around a streamline. 
A 

The example t h a t  they solve i s  an e l l i p t i c a l  s o l i d  body f l ow  def ined by 

t he  streamfunction 



ly0 
being the  amp1 i t ude  of the  flow, Lx and Ly t he  x and y leng th  scales. 

For  the gyre t h a t  we are considering, (1.11), i t  tu rns  ou t  t h a t  the  expres- 

s ion  f o r  D i s  exact ly  the  same as f o r  the  s o l i d  body case, 

With th is ,  (2.4) becomes 

Rhines and Young c a l l  the quant i ty  i n  brackets the  e f f e c t i v e  d i f f u s i v i  ty 

r as (2 .5 )  i s j u s t  ( 2 . 3 ) w i t h  K rep lacedby  re. e 
The expression then f o r  the  d i f f u s i v e  t ime o f  the e l l i p t i c a l  gyre of 

the model i s  

(The term ins ide  the brackets represents the dev ia t ion from the simple scale 

analysis estimate. ) 

The scales L, and LM def ine the s ize o f  the domain i n  question, so 
t h e  p a i r  o f  them take on d i f f e r e n t  values f o r  the two examples being consid- 

ered, as the  homogenized region i s  smal ler  f o r  l a r g e r  K .  I n  rl, homogeni- 

za t ion  occurs t o  roughly t h e  ly = 16 streamline, wh i l e  i n  K 5  only t o  t he  

$ = 9 streamline (Figure 1.17). Subs t i tu t ing  the appropr iate values i n t o  

(2.6) g iver  a d i f f u s i v e  t ime o f  5 years f o r  5 and .5 years f o r  K ~ .  Com- 

par ing these values t o  the  actual  t imes we see t h a t  i n  the f i r s t  case sp in  up 

i s  15 times longer than the  d i f fus ive  t ime of the  gyre, and i n  the second 

case i t  i s  50 t imes longer. 

In l i g h t  of the  character  o f  the sp in  up process t h a t  occurs i n  the 

model , t h i  s resul t i s n o t  surpr is ing . It i s evident, s ince the l e v e l  through- 
o u t  the gyre r i s e s  uniformly, t h a t  the r a t e  o f  sp in  up i s  being con t ro l l ed  by 



the  d i f f u s i o n  o f  t r ace r  from the boundary cu r ren t  ( i .e.  i t  takes l i t t l e  t ime 

f o r  t r ace r  t o  d i f f u s e  throughout the gyre once i t  reaches the  edge). I n  

order t o  quan t i f y  t h i  s idea, as we1 1 as understand what f a c t o r s  d i c t a t e  t he  

1 eve1 o f  the homogeneous pool, a simp1 e ana ly t i ca l  model i s  examined below. 

D i f f u s i v e  Transfer Model 

It i s i n s t r u c t i v e  t o  consider the domain o f  the nurnerical model as 

being composed o f  several subregions. The mot ivat ion behind t h i  s i s t o  con- 

s i de r  regions which can only communicate w i t h  one another d i f f us i ve l y ,  so as 

t o  create  a s imp l i f i ed ,  coarsely resolved system w i t h  one l e s s  degree of 

freedom ( i  .e. no advection). The idea i s  t h a t  i n  the  s t rong ly  advective 

1 i m i  t o f  the numerical model i t  i s the slow d i f f u s i v e  processes which regu- 

l a t e  the sp in  up and d i c t a t e  the ne t  t r ans fe r  o f  p roper t ies  i n t o  the i n t e r -  

i o r .  I n  conjunct ion w i t h  the  s i m p l i f i e d  domain we consider a s i m p l i f i e d  sp in  

up process. We assume t h a t  the plume o f  t r ace r  which penetrates the gyre 

immediately conforms t o  a streamline, i .e .  t h a t  t he  advective l i m i t  app l ies  

everywhere i n  t he  gyre (which impl ies  homogenization, as discussed i n  chapter 

one) . 
The f o u r  regions t h a t  are considered are depicted i n  F igure  2.6. The 

f i r s t  region corresponds t o  the boundary current .  Advecti on from the  nor th-  

e r n  source f i l l  s t h i s  reg ion qu ick ly  and co'nt inual ly ac ts  t o  maintain the  

amount o f  t r ace r  so contained w i t h i n  it. The second reg ion i s the  ou te r  

s t r i p  of the gyre (subsequently r e fe r red  t o  as t he  edge o f  the  gyre). Tracer 

d i f f uses  i n t o  t h i s  region from the boundary current ,  and qu ick ly  gets p u l l e d  

around the c i r c u i t  forming a r idge. From here the  t r ace r  proceeds t o  spread 

l a t e r a l l y ,  d i f f u s i n g  inward t o  t he  center  p o r t i o n  of the  gyre ( t h e  t h i r d  

region) and d i f fus ing  outward t o  the vast  area surrounding the  gyre ( t he  

f o u r t h  region). 

We c a l l  t h i s  model the  d i f f u s i v e  t r ans fe r  model. Each o f  the  subre- 

gions o f  the domain i s  represented by a sing1 e value o f  concentrat ion, and 

the d i f f u s i v e  t r ans fe r  between them i s  character ized by a s e t  o f  t ime scales 

which represents the  amount o f  t ime i t  takes t r a c e r  t o  d i f f u s e  from one 

region t o  another. The exchange occurs such t h a t  the  s t rength o f  the f l u x  

i s  proport ional  t o  the dif ference i n  concentrat ion. (Note t h a t  the regions 
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Figure 2.6: Domain o f  the  d i f f u s i v e  t ransfer  model consisting o f  four 
regions. Tracer passes i n t o  adjacent regions by w a y  o f  d i f fus ion  only. 



expressed as such do n o t  have "sizes"; t h i s  in format ion i s  contained w i  t h i  n 

the  t ime scales.) Because o f  the  strong advective i n p u t  i n t o  the  boundary 

cu r ren t  region, i t s  value i s  f i x e d  throughout the  sp in  up. Also, we take t h e  

four th  region t o  be an i n f i n i t e l y  la rge  background reservo i r  whose value can: 

no t  be a l t e red  and so i s  s e t  equal t o  zero. As such then there  are on ly  two 

ac t i ve  regions i n  the model, those which comprise the  gyre. The governing 

equations f o r  the  gyre edge and gyre center  are  

where 6, = concentrat ion o f  gyre edge, 

6, = concentrat ion o f  gyre center, 
@ = concentrat ion o f  boundary cu r ren t  region, 

= boundary t ime scale ( d i f f u s i o n  between boundary cu r ren t  and B 
gyre edge), 

= gyre t ime scale ( d i f f u s i o n  between gyre edge and center) ,  G 
T 

R = reservo i r  t ime scale ( d i f f u s i o n  between gyre edge and 

background reservoi  r )  . 
The i n i t i a l  condi t ions are t h a t  the e n t i r e  gyre i s  f r e e  o f  t racer ,  i .e. 

dc = be = O  a t  t = 0 .  
The system (2.7) i s  a p a i r  o f  ordinary f i r s t  order 1 inear  d i f f e r e n t i a l  

equations which i s  solved s t ra igh t fo rward ly  using t he  operator  method ( Z i l l ,  

1979). It i s  convenient t o  express the r e s u l t s  i n  terms o f  the nondimension- 

a1 parameters representing t he  r e l a t i v e  s izes o f  the  three d i f f u s i v e  t ime 

scal es, 

It i s  no t  obvious a p r i o r i  what the magnitudes o f  these parameters are. 

However, the r e s u l t s  o f  t he  numerical model can be used t o  cons t ra in  them. 



The so lu t ions f o r  de and dc are o f  the  form 

where do i s  the steady s ta te  value and the other  two terms are t ransients.  

O f  the t ransients,  the slower mode ( ~ ~ 1  d i c ta tes  the sp in  up o f  the system. 
We def ine the sp in  up t ime then as T . I n  terms o f  t he  nondimensional 

parameters, 

The funct ion S measures how long the  spin up i s  compared w i t h  the d i f f u s i v e  

t ime of the gyre. Recall  t h a t  the t ime scale over which homogenization 

occurs i n  the numerical model i s  many times greater  than t he  d i f f u s i v e  t ime 

of the gyre ( r >> T due t o  the f ac t  t h a t  spi  n up i s  con t ro l  l e d  by the 

d i f f us i on  of t racer  from the  boundary. Th is  (by the  d e f i n i t i o n  o f  AGB) 
imp l ies  t h a t  AGB << 1. Consider now the e f f e c t  t h a t  varying AGR has on 

t he  value o f  S (keeping AGB << 1). 

- 
1. AGR ' O ( r R  + 

Th is  condi t ion corresponds t o  the  case when there i s  no background 

reservo i r  (a.s if there were an i nsu la t i ng  boundary around t h e  gyre) . When 

A~~ 3 0 (2.9) imp1 i e s  t h a t  S 9 -. However, w i t h  no reservo i r  i t  i s evident 

t h a t  i n  steady s ta te  the gyre w i l l  equ i l i b ra te  t o  the  value o f  the boundary 

cur ren t  region, which i s  no t  the case (Figure 1.17). 

2. 
A~~ - 1 (rG r R ) .  

This says t h a t  as t r ace r  progresses around the edge o f  the gyre i t  j u s t  

as read i l y  d i f fuses  inward as outward. I n  t h i s  case as bGB * 0 the 



func t ion  S + 2.6, i .e. sp in  up can a t  most be roughly two and a h a l f  t imes 

longer than the  d i f f u s i v e  t ime o f  the gyre. However, i n  K~ .r - 1 5 r G  and 

i n  K~ r - 50 TG, so t h i  s  case i s  unacceptable as wel l .  

The reason f o r  the d i f ference i n  the l i m i t i n g  value o f  S f o r  the two- 

cases can be understood as fo l lows. When there i s  no background a l a rge  

amount o f  t r ace r  must accumulate i n  the  gyre (dc t @ )  so i t  takes a long 

time. However, when the reservo i r  i s character ized by " 1, the corres- 

ponding cond i t i on  t h a t  AGB t 0 imp1 i e s  t h a t  r i s  small, i .e. there i s 

strong d i f f u s i o n  i n t o  the  reservoi r. This together w i t h  t he  f a c t  t h a t  the  res- 

ervo i  r concentrat ion i s  maintained a t  zero (by d e f i n i t i o n )  means t h a t  t h i s  

region acts  as a strong s ink.  Thus on ly  a small amount o f  t r a c e r  accumulates 

i n  the gyre (dc << @ )  and so sp in  up does no t  take as long. Note t h a t  i n  

the  extreme l i m i t  no t r ace r  accumulates i n  the gyre, which a1 so means t h i s  case 

i s unacceptable. 

3. bGR >> 1 ( r G  >> . rR l .  

This cond i t i on  leads t o  the same problems as i n  case 2, as d i f f u s i o n  

i n t o  the reservo i r  i s  now even stronger. 

We see then t h a t  the cond i t i on  imposed by the  spin up imp l ies  t h a t  both 

A~~ 
<< 1 and AGR <<  1. However i t  t e l l s  u s n o t h i n g  about the  r e l a t i v e  mag- 

ni tudes o f  these two parameters. For  t h i s  informat ion we examine another 

r e s u l t  o f  the numerical model , t h a t  regarding the  l e v e l  o f  t r a c e r  i n the  

gyre. I n  (2.8) the expression f o r  do f o r  the center o f  the  gyre i s  

The funct ion P represents the f r a c t i o n  o f  the boundary i n p u t  value t h a t  the 

gyre equ i l i b ra tes  to .  Note t h a t  P depends on ly  on A~~~ which measures 

the r e l a t i v e  importance o f  AGB and bGR. We saw e a r l i e r  t h a t  the  l e v e l  o f  

the homogeneous pool i n the  numerical model was independent o f  d i f f  us i  v i  ty . 
I n  terms o f  the d i f f u s i v e  t r ans fe r  model t h i s  suggests t h a t  4, no t  depend 

C 



on any o f  t he  d i f f u s i v e  t ime scales. For t h i s  t o  be so nBR must take on 

the same value i n  each example. To determine t h i s  value we can match (2.10 

t o  the leve l  o f  the homogenized pool. 

I n  order  t o  do t h i s  we have t o  r e l a t e  the  boundary value o t o  an 

appropriate quant i ty  i n the  numerical model . Note t h a t  the set  up o f  the 

t r ans fe r  model i s  such t h a t  @ i s  independent o f  d i f f u s i v i  t y  as wel l  . Since 

the  t o t a l  amount o f  t r ace r  i n  t he  boundary cu r ren t  region var ies w i t h  the 

s i ze  of K (Figure 1.17) we take t he  peak value o f  the  i n p u t  a t  the north-  

e rn  boundary as the value f o r  @ .  (The t rans fe r  i s  based on the presumption 

t h a t  the system i s  s t rong ly  advective. I n  the extreme advective l i m i t  the 

e n t i  r e  boundary cu r ren t  would equ i l i b ra te  t o  the  i npu t  d i s t r i bu t i on ,  i n  which 

case i t  i s  ev ident  t h a t  the  peak value o f  the Gaussian would be the  co r rec t  

choice. ) 
The homogenized 1 eve1 o f  the gyre i s  approximately equal t o  one h a l f  

the peak value o f  the  i npu t  (Figure 1.17) which impl ies  then t h a t  1. 

This cond i t i on  i n  t u r n  .says that ,  i n  each case, the t ime scale i n  which the  

edge of the gyre equ i l i b ra tes  t o  the boundary value i s  a1 so t i le  time scale 

i n  which the edge o f  the  gyre decays i n t o  the  background reservo i r .  It i s  

no t  obvious why t h i s  i s  so, bu t  the  fo l lowing simple argument suggests t h a t  

t h i s  i s  the case. 

Consider the c i r c u l a r  domain i n  Figure 2.7, which i s  meant t o  represent 

the edge of the  gyre. The outer  perimeter i s  d iv ided i n t o  two par ts :  the  

sect ion i n  contact  w i t h  the boundary and t h a t  i n  contact  w i t h  the background 

reservoir .  It i s  assumed t h a t  the advection serves only t o  s t i r  up the 

t r ace r  such t h a t  the concentrat ion e var ies  on ly  i n  the rad ia l  d i rec t ion .  

The governing equation i s the r a d i a l l y  symmetric d i f f u s i o n  equation (2.3) 

( w r i t t e n  i n  r a d i a l  form) 

In tegra t ing  over the area o f  the edge, A,, 



Plan View Cross-Section 

1 Figure 2.7: A s imp l i f i ed  representation of d i f f us i on  i n t o  and ou t  of t h e  
edge of the yyre. A strong f l u x  o f  t racer  i n t o  the edge occurs across the 
dashed border and a weak f l u x  o u t  o f  the edge across the  s o l i d  border. 



where t he  bar  denotes the average over A,. The f i r s t  term on the r i g h t  

hand s ide i s  the con t r i bu t i on  associated w i t h  the  boundary arid the second i s  

t h a t  associated w i t h  the reservo i r  ( A  i s  the azimuthal coordinate). From 

(2.12) i t  fo l lows  t h a t  

where LB and LR a re  the  arc  lengths o f  the boundary and reservo i r  sect ions 

respec ti vely . 
The expressions ins ide  the brackets represent the f l u x  o f  t r a c e r  i n t o  

and ou t  o f  the edge o f  the  gyre i n  the  two regions. I n  l i n e  w i t h  the t rans-  

f e r  model we approximate the gradients i n  a f i n i t e -d i f f e rence  sense. I n  

pa r t i cu l a r ,  where the  gyre i s  adjacent t o  the boundary 

and where i t  borders the  reservoi r 

where A%,AQR = t y p i c a l  change i n  concentrat ion from boundary t o  edge, 
edge t o  reservoir ,  

ALB a ALR = boundary, reservoi  r 1 ength scales associated w i  t h 

~e , reR ( F i  gure 2.7) . B 
With the approximations, (2.13) becomes 

from which i t  i s  ev ident  t h a t  



A L ~  L~ which then g ives ABR = (--I( . 
A L ~  5 

As seen i n  Figure 1.17, the gradient  o f f  the boundary i s  much steeper 

than the  grad ient  from the  gyre t o  the reservo i r .  However t h i s  i s  compen- 

sated f o r  i n  (2.16J by the f a c t  t h a t  most o f  the  gyre borders the reservo i r .  

Using the steady s ta te  d i s t r i b u t i o n s  t o  est imate A L ~  and A L ~  (and the 

streamline pa t t e rn  t o  compute LB and LR) t h i  s  r e s u l t s  i n  an est imate 

f o r  o f  .8 i n  K~ and 1.2 i n  K S .  

Consideration o f  the funct ions S and P thus r e s u l t s  i n  the fo l low ing  

order ing o f  the  d i f f u s i v e  t ime scales, 

TO simp1 i f y  the t rans fe r  model we se t  
AgR 

equal t o  the constant value o f  

one (r = T ~ )  which i n  e f f e c t  leaves us w i t h  a s ing le  non-dimensional 

parameter 

The expressions (2.9) and (2.10) s imp l i f y  t o  

Tne parameter A expresses the r e l a t i v e  strengths o f  the  two funda- 

mental t ime scales o f  the  system. We can now quan t i t a t i ve l y  exp la in  how 

d i f fus ion  from the boundary con t ro ls  the sp in  up. As depicted i n  F igure 2.8 

when A + 0, T 9 T~ and the system spins up on the  boundary t ime scale 



Figure  2.8: The re la t ionsh ip  o f  the  t r a n s f e r  model spin-up t ime t o  t h e  
boundary time scale and gyre t ime scale. The s o l i d  l i n e  i s  the  funct ion  S, 
the  dashed l i n e  A S .  



(once t r a c e r  d i f f uses  from the  boundary t o  the edge o f  the  gyre i t  qu i ck l y  

spreads i n t o  the center) .  Th is  i s  the case i n  the  numerical model. On the 

other hand, when A t r t rG which corresponds t o  t he  Rhines and Young 

example i n  which sp in  up occurs on the gyre t ime scale. In t h i s  case the 

edge o f  the  gyre becomes equ i l i b ra ted  quickly, and t r ace r  then proceeds t o  

d i f f u s e  i n t o  the  center. By matching (2.19a) t o  the  numerical simulat ions 

using the gyre d i f f u s i v e  times estimated e a r l i e r  f o r  the rl and r5 exam- 

ples, we determine nl and b5 such t h a t  the  value o f  S(A) rti matches t h e  

associated . (The magnitude o f  A i s determined i n  t h i  s fashion ra the r  
than from the d e f i n i t i o n  (2.18) because i t  i s  uncerta in what value o f  A, 
t o  use i n  (2.15a). ) With t h i s  in format ion then we can use the  d i f f u s i v e  

t r ans fe r  model t o  p r e d i c t  the amou~it o f  t r ace r  a t  the center o f  the gyre i n  

the numerical model as a func t ion  o f  time. 

It was discussed above t h a t  both 6, and 6, are sums o f  a steady t e r n  

and two t r ans ien t  modes. It i s t i l e  case t h a t  i n  the  small A l i m i t  which 

appl ies here the f a s t e r  t rans ien t  decays so qu ick ly  r e l a t i v e  t o  the slower 

one t h a t  i t  can be ignored. Consider the  func t ion  R ~ ( A ) ,  def ined as t he  

r a t i o  o f  the t ime scales o f  the two t r ans ien t  modes i n  (2.81, 

This measures the r e l a t i v e  importance o f  t he  two modes. The graph o f  R 1  

versus A i s  p l o t t e d  i n  Figure 2.9 and f o r  A t 0, 1 1 . Note A 

a lso t h a t  when A % the same mode s t i l l  dominates (R1 2 a). The smal lest  
amount o f  discrepancy between the decay t ime o f  the two modes occurs when 

A " 1 and T 2  5 T1. 

Th is  means t h a t  i n  the  A << 1 1 i m i t  t he  t ime dependent p a r t  o f  6, 
(and 6,) i s approximately a s i  ngl e exponential , and suggests t h a t  we re -  

draw Figure 2.5 and normalize the t ime ax i s  by the appropr iate sp in  up times 

o f  the  two examples. This i s  done i n  F igure 2.10. Also shown i n  the  f i g u r e  

are the corresponding bc curves f roin t he  d i f f u s i v e  t r ans fe r  model, normal- 

i zed  i n  a s im i l a r  fashion. Note t h a t  the r1 and r5 examples col lapse t o  a 

s ing le  case. They agree reasonably we1 1 w i t h  the  pred ic t ions.  (Keep i n  mind 



Figure 2.9: The r e l a t i v e  decay o f  the  two t ransient  modes of the t ransfer  
model solutions. The f a s t e r  mode can be ignored f o r  both la rge  and small 
values o f  A .  
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e-folding time 

Figure 2.10: The accumulation curves o f  Figure 2.5 only the  time ax is  has 
been normalized for  each curve by the associated spin-up time. The s o l i d  
1 ines a r e  the predict ions f o r  the  gyre center o f  the  t rans fer  model. 



t h a t  the  t r ans fe r  model i s  a crude s imp l i f i ca t i on ,  meant on ly  t o  reveal some 

of the  prominent d i f fus ive processes a t  work. 1 Not shown i n  the  f i g u r e  are 

the associated 4, curves which c l ose l y  resemble those f o r  t he  gyre center. 
Th is  i s  cons is tent  w i th  the numerical r e s u l t  t h a t  the l e v e l  o f  t r ace r  

throughout the  who1 e gyre r i s e s  a t  near ly  the same r a t e  (as  t r -, Be * 
dc and complete homogenization i s achieved). 

0 )  With Ver t i ca l  F lux  

We now consider the presence o f  v e r t i c a l  mix ing and explore how t h i s  

modi f ies  the var ious r e s u l t s  t h a t  have been obtained thus f a r .  Ttli s  corres- 

ponds t o  the oxygen case, and i n  the numerical model we now inc lude the rad i -  

oact ive  decay term i n  (2.2). The boundary condi t ions a re  i d e n t i c a l  t o  those 

i n  the  s a l t  case as we take eu = eL = 0 ( i  .e. the v e r t i c a l  anomaly i s  j u s t  

equal t o  the concentrat ion i n  the center o f  the layer ) .  Two d i f f e r e n t  simu- 
2 

l a t i o n s  were done, one w i t h  v = 1 cm /sec, H = 1000 m and the  o ther  w i t h  
2 

v = 2 cm /sec, H = 750 .m. These w i l l  be re fe r red  t o  as vl and v2 respec- 
6 2 t i v e l y  ( i n  both cases K = 10 cm /set). 

F igure 2.11 shows a snapshot o f  the  spin up o f  v l .  The f i r s t  t h i ng  t o  

no t i ce  i s  t h a t  i t  would be very d i f f i c u l t  t o  d i s t i ngu i sh  between t h i s  d i s t r i b u  

t i o n  and a s i m i l a r  snapshot from the s a l t  case (i.e. from the sp in  up o f  ul). 

The plume o f  t r a c e r  extends from the  boundary atid s p i r a l s  i n t o  the  gyre i n  

the  same manner. A marked di f ference between the s a l t  and oxygen cases 

occurs only i n  t he  context  o f  steady s ta te .  The steady s ta te  d i s t r i b u t i o n  of 

the v2 experiment appears i n  Figure 2. l2a, t h i s  i s  t o  be compared w i t h  

F igure 1.17a f o r  which the  v e r t i c a l  f l u x  i s  zero. The most s t r i k i n g  t h i ng  i n  

regards t o  such a comparison i s  t h a t  t he  l e v e l  o f  t r a c e r  i n  t he  gyre i n  t he  

non-zero v e r t i c a l  f l u x  case i s  subs tan t ia l l y  smaller. Th is  d i f ference i s  

h igh l igh ted  i n  F igure 2.12b showing the  accumulation o f  t r a c e r  i n  the gyre 

f o r  the  two cases. The reason f o r  t h i s  discrepancy i s  s t ra ight forward i n  

t h a t  f o r  oxygen there i s  an add i t iona l  mechanism present f o r  removing t r a c e r  

from the domain ( t h i s  i s  a1 so the cause f o r  the decrease i n  t ime required 
f o r  sp in  up). 

L e t  us cont rast  the sp in  up o f  vZ t o  t h a t  of rl. The concentrat ion 

o f  t r a c e r  i n  the  boundary cu r ren t  i s  near ly  i d e n t i c a l  t o  t h a t  when there  i s 
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Figure 2.11: Instantaneous d is t r ibu t ion  o f  t racer  during spi n-up, f o r  
experiment v l  which i ncl udes ver t ica l  m i  x i  ng. 
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6 2  Figure 2.12: ( a )  Steady s t a t e  d i s t r i b u t i o n  o f  t racer  for  r - 10 cm /sec 
with the  addit ion o f  ver t ica l  mixing i n which v - 2  cm2/sec. 
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( bi Jime h i  story o f  t r a c e r  accumulating a t  the  center o f  the  gyre f o r  IC - 
10 c /sec comparing the case with no ver t ica l  mixing t o  t h a t  when v " B 2 cm /sec. 



no v e r t i c a l  f l u x .  This i s  because the  strong f l ow  o f  the  cu r ren t  does n o t  

a l low the f l u i d  t o  spend enough t ime i n  t h i s  region t o  be s i g n i f i c a n t l y  i n -  

f luenced by v e r t i c a l  mixing. It i s  whi le  the  t r ace r  d i f f u s e s  l a t e r a l l y  from 

the  boundary t h a t  v e r t i c a l  exchange becomes prominent, ac t i ng  as a  sink. The 

small amount o f  t r ace r  t h a t  does penetrate i n t o  the gyre does so i n  the same 

fashion as i n  Kl. As steady s ta te  i s  approached though, whereas i n  

the  plume extending from the  boundary becomes much less  pronounced, here i t  

remains prominent. Along w i t h  t h i s ,  the s l i g h t  bowl shaped t racer  d i s t r i b u -  

t i o n  i n  the gyre gives way t o  homogenization i n  rl b u t  remains a  permanent 
feature  i n  v2 (Figure 2.13). 

A t  steady s ta te  there can be no ne t  f l u x  o f  t r ace r  i n t o  the reg ion 

bounded by a  stream1 i n e  o f  the gyre. I n  K t h i  s i s  accompl i shed i n the  

center p a r t  o f  the  gyre through homogenization. I n  the ou te r  par t ,  the rem- 

nant of the sp i r a l  weakly pumps t racer  inward i n  the southern and eastern 

regions, and outward t o  the nor th  and west. I n  the oxygen case there  i s  a  

pers is ten t  ve r t i ca l  f l u x  ou t  of the region bounded by a streamline ( t r u e  f o r  

every streamline) which must be balanced by an inward l a t e r a l  f l u x .  One way 

t o  view why the plume o f  s a l t  i s  l ess  pronounced than t h a t  f o r  oxygen a t  

steady s ta te  i s  t o  r e c a l l  t h a t  each successive plume leav ing  the boundary 

cu r ren t  does so from f u r t h e r  downstream. Th is  tends t o  smear the i n t r u s i o n  

as t ime progresses. For oxygen though spin,up occurs more qu ick ly  so t h a t  

t h i s  e f f e c t  i s  not  a t  work f o r  as long. 

It i s  i n t e res t i ng  t h a t  i n  v2, which contains a  r a the r  la rge  v e r t i c a l  

d i f f u s i o n  parameter 8 v  the  penetrat ion o f  t r ace r  i n t o  the gyre so c lose ly  ?' 
resembles t h a t  which occurs i n  rl  (which has no v e r t i c a l  f l u x ) .  Th is  i s  

due t o  the f a c t  t h a t  so l i t t l e  t r ace r  enters the  gyre t h a t  the v e r t i c a l  anom- 

a l y  i s  small , hence weak f l ux .  Consider the steady s ta te  balance o f  terms i n  

(2.21 t h a t  appl ies i n  t he  northward f low o f  the  outer p a r t  o f  the gyre i n  vp, 

where i t  i s  assumed t h a t  alongstream d i f f u s i o n  i s  neg l i g i b l e  w i t h  respect t o  

cross-stream d i f fus ion .  I n  t h i  s  reg ion the  s p i r a l  i s  s i g n i f i c a n t  ( r e c a l l  
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Figure 2.13: Zonal section o f  t r a c e r  through t h e  boundary current  and center  
of the gyre f o r  the steady state d ist r ibut ions o f  Figure 1.17a ( K  , 
10~c&/sec)  and 2.12a ( K  - 106cm2/sec, v - 2 cm2/sec) i l l u s t r a t i n g  the 
e f f e c t s  o f  ver t ica l  mixing. 
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6 2 
t h a t  i n  the example analyzed i n  chapter one K - 10 cm /sec as i t  i s  i n  v 2 )  

so t h a t  the cross-stream length scale i s  "Lm. The s i ze  o f  the terms i n  

(2.20) are then estimated as fol lows, 

where V = representat ive ve loc i t y  

La = alongstream leng th  scale. 

Plugging i n  values f o r  the scales from v2 i t  i s found t h a t  the f i r s t  two 

terms o f  (2.21) balance each other  t o  w i t h i n  5 percent, which i s  the  same 

balance t h a t  characterized the s p i r a l  i n  the s a l t  case. 

This r e s u l t  has an i n t e r e s t i n g  consequence. It says t h a t  a p o i n t  

balance i n  t h i s  region i s  one o f  advection versus l a t e r a l  d i f fus ion .  From 

knowledge o f  the  var ious scales then we can produce an est imate of the 

1 a tera l  d i f f u s i v i  ty, 

However, we know t h a t  i n  terms of an in tegrated balance w i t h i n  a stream1 i ne  

t h a t  the l a t e r a l  f l u x  o f  t r ace r  inward balances the v e r t i c a l  f l u x  outward 

( t h e  con t r ibu t ion  from advection i d e n t i c a l l y  vanishes). I n  par t i cu la r ,  
i n t eg ra t i ng  the steady form o f  (2.2) w i t h i n  a streamline and applying the  

divergence theorem gives, 

where A = area enclosed w i t h i n  the streamline S, 

n = normal t o  the streamline. 

Having estimated K then from (2.22), we can i n  t u r n  use t h i s  value i n  

(2.23) t o  determine V, 



Th is  procedure was appl ied t o  the 
v experiment t o  t r y  and recover 

the  values of l a t e r a l  and v e r t i c a l  d i f f u s i v i t y  from knowledge of t t ie steady 

s ta te  t racer  f i e l d  and the ve loc i t y  f i e l d .  Ttie values so obtained were K - 
6 2 2 1.6 x 10 cm /sec, v - 2.3 cm /sec (actual  values i n  v2 were 1.0 x 

6 2 2 10 cm /sec and 2.0 cm /sec, respect ive ly) .  

Transfer Model w i t h  Ver t ica l  F l  ux 

The d i f f u s i v e  t ransfer  model can a1 so be modi f ied t o  inc lude the 

e f f e c t s  o f  v e r t i c a l  d i f fus ion .  The areas d i r e c t l y  above and below the deep 

1 ayer (represented by eu and eL i n  the numerical model 1 can be thought o f  

as together forming another subregion o f  the domain, consistent  w i t h  the 

premise o f  the model t h a t  t h i s  region be i n  contact  d i f f u s i v e l y  w i t h  adjacent 

regions. The reasons f o r  considering t h i s  add i t iona l  case are the  same as 

before, t o  help more f u l l y  understand the numerical model r e s u l t s  by ga in ing 

i n s i g h t  i n t o  how the various d i f f us i ve  processes in te rac t ,  which i n  t u r n  w i l l  
be useful  when considering the actual  oceanic case. For  instance, we saw 

t h a t  the add i t i on  o f  v e r t i c a l  f l u x  inf luenced sp in  up times, as wel l  as the  

amount and d i s t r i b u t i o n  o f  t r ace r  i n  t t ie gyre. It i s des i rab le  t o  quant i fy  

these e f fec ts .  

The spec i f i cs  o f  the expanded t r ans fe r  model are as fo l lows. The 

add i t i ona l  region i s  i n  contact  w i t h  only two o f  the  previous ones, those 

comprising the gyre ( i .e .  the edge and center) .  The reason why i t  i s  no t  i n  

contact  w i t h  the boundary cu r ren t  region i s  t h a t  we assume the t r a c e r  f lushes 

through t h i s  region too qu ick ly  t o  be a1 tered by v e r t i c a l  d i f fus ion .  It i s  

no t  i n  contact  w i t h  the background reservo i r  f o r  the t r i v i a l  reason t h a t  t l i e  

reservo i r  i s  vo id  o f  t racer .  Because the new region represents a vast  area 

as we l l ,  i t  too i s  assumed t o  be a rese rvo i r  whose value cannot be changed 

and i s  thus se t  equal t o  zero. From here on we must d i f f e ren t i a te  between 

the  l a t e r a l  background rese rvo i r  and the  v e r t i c a l  background reservo i r .  



As such, although we are inc lud ing  another region i t  i s  n o t  an a c t i v e  

one, and consequently we are n o t  faced w i t h  a t h i r d  governing equation. We 
- H 2 

do however need t o  introduce another t ime scale, rV  = 8; , which i s  t h e  . 

time i t  takes t r ace r  t o  decay i n t o  the  v e r t i c a l  reservo i r .  The appropr ia te  

se t  o f  equations i s ,  

Note t h a t  we have se t  rR = rB as before. (The r e l a t i o n  (2.17) must s t i l l  

apply.) The i n i t i a l  condi t ions are the same as before, dc(0) = be(0) = 0. 

When T 3 (no v e r t i c a l  reservoi  rl the  se t  (2.25) col lapses t o  (2.71. 

As before, i t  i s  convenient t o  discuss r e s u l t s  i n  terms o f  notidimen- 

s ional  parameters. With the add i t i on  o f  r V  we introduce another such 
T 

G 
parameter, E - G 

'r 
, i n  add i t i on  t o  A ( 1  def ined e a r l i e r .  Since bo th  

v B 
6 2 o f  the numerical runs w i t h  v e r t i c a l  d i f f u s i o n  had K " 10 cm /sec ( t h e  value 

i n  5 )  we se t  A = al. This  way  we i s o l a t e  the e f f e c t  o f  ve r t i ca l  f l u x  

w i t h i n  the context  of the numerical resul  t s  previously analyzed. Solut ions 

o f  (2.25) are thus presented i n terms o f  the  s i ng le  parameter E, which mea- 

sures the r e l a t i v e  strength o f  l a t e r a l  d i f f u s i o n  i n t o  the gyre versus ver- 

t i c a l  d i f f u s i o n  ou t  o f  the gyre. 

1. Spin up time. 

Because the expanded t r ans fe r  model does n o t  requ i re  a t h i r d  governing 

equation, the so lu t ions f o r  dc and de are s t i l l  of the form (2.81, w i t h  

two t r ans ien t  modes. The spin up t ime i s  defined as before ( t h e  t ime scale 

of the s l  ower mode) , 



where T ~ ( A ~ )  = sp in  up time o f  the  system when there i s  no v e r t i c a l  f l u x ,  

evaluated a t  A = A ~ .  We saw e a r l i e r  t h a t  ro(ol) 2 rg, so the func t ion  

S1 ( <  - 1) measures how much more quickly the system spins up r e l a t i v e  t o  the 

boundary d i f f u s i v e  time. The func t ion  S2 ( <  - 1) measures how much smal ler  

the sp in  up t ime i s  r e l a t i v e  t o  the  o ther  fundamental t ime scale, the v e r t i c -  

a l  d i f f u s i v e  time. I n  the l i m i t  E + 0, which character izes weak v e r t i c a l  

mixing, r t rB. I n  the opposite 1  i m i  t E a (s t rong v e r t i c a l  mix ing),  

. The graph o f  S1 versus E appears i n  F igure 2.14. 

As was the case w i t h  no v e r t i c a l  f l u x ,  under ce r t a i n  condi t ions the 

so lu t ions f o r  bc and be can be approximated by the slower t r ans ien t  mode 

( i n  add i t i on  t o  the steady term). Consider the func t ion  which measures the 

r e l a t i v e  decay o f  the  two t r ans ien t  modes according t o  the  strength o f  ver- 

t i c a l  mix ing ( the  analog o f  R l ) ,  

Uhen the  v e r t i c a l  mix ing i s  weak ( E  + 0) the f a s t e r  decaying mode can be 

ignored ( i n  t h i s  case W2 col lapses t o  R1 evaluated a t  A = A << 1 and 

r e c a l l  t h a t  f o r  small A the s i ng le  mode approximation i s  a  good one). How- 

ever, as seen i n  Figure 2.15, as the  v e r t i c a l  mix ing increases the s ing le  

mode approximation s tead i l y  worsens, and i n  t he  l i m i t  where v e r t i c a l  mix ing 

domi nates, the approximation i s  inva l id .  



Figure 2.14: Comparison o f  the  extent  t o  which the t rans fer  model spin-up 
time, f i n a l  gyre l e v e l ,  and homogenization are af fected by the presence o f  
ver t ica l  mixing. The strength o f  the  mixing i s  measured by the s ize  o f  the  
parameter E. The value of E associated wi th  experiment v l  and t h a t  
wi th  experiment v 2  are  indicated by €1 and €2 respectively.  



Figure 2.15: The r e l a t i v e  decay of the  two t rans ien t  modes o f  the  t ransfer  
model solutions when there i s  ver t ica l  mixing. For  l a rge  values o f  E both 
modes must be considered. 



2. Level i n  gyre. 

The other major d i f fe rence  f o r  the case o f  non-zero ve r t i ca l  f l u x ,  i n  

add i t i on  t o  the shortened spin up time, i s  the  reduced l e v e l  o f  t r ace r  i n  t he  

gyre a t  steady state. Recal l  t h a t  when v e r t i c a l  f l u x  i s  absent the f i n a l  

l eve l  i s  independent o f  the time scales ( o r  i n  terms o f  the  numerical model, 

the  l a t e r a l  d i f f u s i v i  tyl. It happens, however, t h a t  when ve r t i ca l  f l u x  i s  

made d i f f e ren t  from zero ( i  .e. r v  becomes f i n i t e )  no t  only i s  t h i s  l eve l  

dependent on the strength of t h a t  f lux, i t  becomes dependent on the strength 

o f  the 1 a te ra l  f luxes as we1 1 . I n  the  steady state,  the expression f o r  dc 
i s ,  

The funct ion f ( <  - 1) measures the f r a c t i o n  o f  t racer  i n  the gyre r e l a t i v e  

t o  how mucli would be there i f  the  v e r t i c a l  f l u x  were i d e n t i c a l l y  zero. The 

funct ion i s  p l o t t e d  versus E i n  F igure 2.14. 

3. Homogeni z a t i  on 

I n  the discussion o f  the previous t r ans fe r  model i t  was mentioned t h a t  

the evo lu t ion o f  be was near ly i den t i ca l  t o  t h a t  o f  dc, and t h a t  i n  the  

la rge  time l i m i t  de + dc ( i  .e. complete homogenization occurs). I n  l i g h t  

of the numerical model r e s u l t s  w i t h  ve r t i ca l  mixing, i t  i s  no t  su rp r i s ing  

t h a t  t h i s  no longer i s  the  case here. I n  the  f i n a l  s t a te  o f  v p  the d i  s- 

t r i b u t i o n  o f  t r ace r  w i t h i n  the  gyre i s  character ized by a s l i g h t  minimum a t  

the  gyre center. The equivalent  t o  t h i s  i n  the t r ans fe r  model i s  the f a c t  

t h a t  t ) < t + . As a measure o f  how s i g n i f i c a n t  t h i s  fea tu re  i s 

i n  the t rans fe r  model we def ine the funct ion h, which compares the gradient  

o f  t r ace r  o f f  o f  the boundary t o  t he  grad ient  across the  gyre, 



The p l o t  o f  h  versus E appears i n  Figure 2.14. 

It i s  i n t e res t i ng  t o  note i n  F igure 2.14 t h a t  whereas the  sp in  up t ime 

and l eve l  o f  t r ace r  i n  the  gyre are  extremely sens i t i ve  t o  t he  s t rength o f  

v e r t i c a l  mixing, the ex ten t  o f  homogenization, as measured by h, remains 

bas i ca l l y  the  same, i .e. the  gyre i s  near ly homogenized regardless o f  t he  

s i z e  o f  . Closer inspect ion o f  h shows t h a t  the p o i n t  a t  which the 7 
gyre i s  l e a s t  homogenized occurs f o r  a  f i n i t e  value o f  E (F igure 2.16). The 

reason f o r  t h i s  i s  st ra ight forward.  A t  very small values o f  the d i f f u s i o n  

parameter % , the v e r t i c a l  f l u x  i s  so weak t h a t  the system behaves as i n  
H 

the  s a l t  case and homogenization occurs. A t  very la rge  values o f  , t l i e  

strong f l u x  causes the v e r t i c a l  r ese rvo i r  t o  draw away near ly  a1 1  the  t r a c e r  

t h a t  reaches the  edge o f  the  gyre (having d i f fused  from the boundary). Thus, 

very 1  i t t l e  t r a c e r  ends up i n the edge o f  the  gyre and even l e s s  i n  the  

center, so homogenization again occurs ( i n  the  sense t h a t  the gyre i s  uni-  

formly vo id  o f  t racer ) .  The p o i n t  a t  which the gyre i s  l e a s t  homogenized 

then occurs between these l i m i t s .  

Having reviewed these ef fects of v e r t i c a l  f l u x  i n  terms o f  the param- 

e t e r  E, l e t  US see where i n  t h i s  domain the two experiments v l  and v2 

fa1 1. Using the prev ious ly  computed est imate o f  rG  and the  appropr iate 

values o f  v and H, we f i n d  t h a t  v l  corresponds t o  moderate v e r t i c a l  

mix ing and v2 corresponds t o  strong v e r t i c a l  mix ing ( t h e  values o f  c so 

computed, cl and e2, a re  marked i n  F igure 2.14) . As was done ea r l  i e r ,  we 

can use t h i s  knowledge concerning the t ime scales t o  p r e d i c t  the sp in  up o f  

the gyre i n  the  numerical experiments. Such a p red i c t i on  f o r  the v 2  
exampl e  appears i n  Figure 2.17, where the  concentrat ion o f  t he  gyre center i s 

compared w i t h  4, when A = al, E = E ~ .  Also shown are the  s i m i l a r  compar- 

i sons f o r  K~ and K 5 .  It i s  seen t h a t  f o r  t h i s  case as we1 1 the t r a n s f e r  

model provides a reasonable f i t  t o  t he  numerical data. 

There are other i n t e r e s t i n g  d i f ferences when v e r t i c a l  f l u x  i s added t o  

the  ssstem i n  add i t i on  t o  those discussed above. Some o f  these are 



F i g u r e  2.16: Enlargement o f  t h e  graph o f  h i n  F igure  2.14 showing t h e  
degree o f  homogenization versus t h e  strength o f  t h e  v e r t i c a l  mixing. The 
gyre i s  l e a s t  homogenized f o r  E - .23. 
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Figure 2.17: Coinparison of the accumulation of tracer a t  the center of the 
gyre for the different values of lateral and vertical diffusivity. The solid 
lines are the corresponding predictions from the transfer model. 



i l l u s t r a t e d  i n  Figure 2.18, w i t h i n  the context  of the  t r ans fe r  model. When 

there i s  no v e r t i c a l  reservo i r  the steady s ta te  path  o f  t r ace r  i s  from the 

boundary t o  the l a t e r a l  background v i a  the  edge o f  the  gyre. This path be- 

comes more complex when v e r t i c a l  f l u x  i s  introduced. Fo r  instance, t r ace r  i s  

then f luxed  i n t o  and ou t  o f  t he  gyre center, although the  s t rength o f  t h i s  

f l ux  i s  less  than t h a t  through the edge o f  the gyre (which becomes stronger 

w i t h  increased v e r t i c a l  mix ing).  Also i l l u s t r a t e d  i s  t he  manner i n  which t he  

f l u x  away from the edge o f  the gyre i s  par t i t ioned.  I n  pa r t i cu l a r ,  when ver- 

t i c a l  mixing i s  weak the f l u x  i s  near ly a l l  t o  the l a t e r a l  reservo i r ,  bu t  

when ve r t i ca l  mixing i s  strong the f l u x  i s  equal ly  p a r t i t i o n e d  between the 

v e r t i c a l  reservo i r  and the  center o f  the  gyre. Note then t h a t  w i t h  a strong- 

e r  v e r t i c a l  f l ux  more t r a c e r  d i f fuses l a t e r a l l y  from the boundary, bu t  less  

makes i t  i n t o  the i n t e r i o r .  

C) Conclusions 

Two types o f  t racers  have been studied i n  some d e t a i l  using a simple 

numerical model t h a t  was designed t o  represent the NRG/DWBC system. The 

f i r s t  type, of which s a l i n i t y  i s  an example, i s  governed by l a t e r a l  processes 

only whereas the second type, such as oxygen, i s  in f luenced by v e r t i c a l  m i  x- 

i ng as we1 1. The model produced various i n te res t i ng  resu l ts ,  among which i s  

the f a c t  t h a t  when v e r t i c a l  mix ing i s  absent the f i n a l  l e v e l  o f  t r a c e r  i n  t h e  

gyre seems t o  be independent o f  the strength o f  the l a t e r a l  mix ing (provided 

i t  i s weak). It a1 so provided a method f o r  recovering the val ues o f  the eddy 

d i  f f u s i  v i  t i e s .  I n t e rp re ta t i on  o f  the resul  t s  though became c l ea re r  when an 

analogous d i f fus ive t r ans fe r  model was appl i e d  t o  the  numerical model . 
The t rans fe r  model was abl e t o  exp la in  quanti t a t i  vely what fac to rs  

determine how much t r a c e r  d i f f uses  i n t o  the  gyre from the  boundary current .  

I n  par t i cu la r ,  i t  l e d  t o  an expression f o r  the gyre l eve l  which includes the 

core concentrat ion o f  the boundary cu r ren t  and the l a t e r a l  and v e r t i c a l  d i f -  

f u s i v i  t i e s .  When the v e r t i c a l  mixing i s  i d e n t i c a l l y  zero, a1 1 dependence o f  

the l eve l  on the s t rength o f  the l a t e r a l  d i f f u s i o n  drops ou t  as wel l ,  pro-  

vided the nondimensional parameter ABR = rB/h remains constant. It i s  no t  

immediately obvious why t h i s  happens i n  t he  numerical model, and, as such, 

the  t r ans fe r  model does n o t  o f f e r  an explanation as t o  why the l e v e l  i s  inde- 

pendent o f  K bu t  r a the r  exp la ins  what f ac to r s  a re  involved. 



Figure 2.18: The e f f e c t  o f  v e r t i c a l  mix ing on the  steady s t a t e  f l u x  o f  
t r ace r  between the  regions o f  the  t r ans fe r  model. 

(a)  Comparison o f  the  f l u x  i n t o  and o u t  o f  t he  edge o f  t h e  gyre versus 
t he  center o f  the gyre. The non-dimensional funct ions fe and fc measure 
these quan t i t i es  respect ively,  r e l a t i v e  t o  the  value f o r  the edge when 
v e r t i c a l  mixing i s  absent. 



(b)  Comparison showing how the d i f f u s i o n  of t racer  from the edge of  
the  gyre i s  divided. Tracer i s  f luxed from the edge i n t o  the l a t e r a l  back- 
ground, the v e r t i a l  background, and the  gyre center. Tile strength o f  these 
fluxes, re1 a t i ve  t o  the t o t a l  f l u x  ou t  o f  the edge, i s  measured by the non- 
dimensional funct ions f ~ ,  fv, and fc respect ively.  Note t h a t  the sum o f  
these functions i s  always equal t o  one. 



The t r ans fe r  model does, however, n i ce l y  exp la in  var ious o ther  fea tu res  

o f  the numerical resul ts .  The presence o f  homogenization w i t h i n  the gyre i s 

a r igorous feature o f  t l i e  system. A near ly f l a t  p lateau develops regardless 

of the strength of the v e r t i c a l  d i f f u s i v i t y  (provided the 1  a te ra l  d i f f u s i v i  ty 

i s  small enough). The sp in  up o f  the  system i s  slower than might  be suggest- 

ed by the s i ze  o f  the homogenized region i n  the d i f f e r e n t  examples. Th i s  i s  

because the sp in  up i s  d ic ta ted  by the  slow d i f f u s i o n  o f  t r a c e r  from the  

boundary cur rent  t o  the edge o f  the gyre (modi f ied by d i f f u s i o n  v e r t i c a l l y  

out  of the domain). I n  add i t i on  t o  i l l um ina t i ng  some o f  t t ie resu l ts ,  as seen 

below the t ransfer  model i s  a lso necessary i n  order t o  apply them t o  the data. 

Data Comparison 

A major ob jec t i ve  o f  the numerical model study ( i nc l ud ing  the t r ans fe r  

model) was t o  use the  acquired r e s u l t s  t o  address t he  idea t h a t  t h i s  type o f  

advect ive-d i f fus ive s i t u a t i o n  ex i s t s  i n  the ocean. Spec i f i ca l l y ,  does t r ace r  

data from the region support the existence o f  t he  northern r e c i r c u l a t i o n  

gyre? I n  t h i s  sect ion we examine the data from t h i s  perspective. From the 

model we have learned what th ings  t o  be look ing f o r  i n  the  data, how t o  i n- 

t e r p r e t  various features, and now t o  ex t rac t  spec i f i c  in format ion f rom these 

features. We now consider i n  some d e t a i l  the t r a c e r  d i s t r i b u t i o n s  from the  

data se t  described i n  Hogg e t  a l .  (1986). 

The f i r s t  t h i n g  t o  do i s  review general cha rac te r i s t i c s  and see i f  they 

are consistent  w i t h  what i s  bel ieved t o  be the f low f i e l d .  Th is  was done i n  

Hogg e t  a l .  (1986). The d is t ingu ish ing  feature o f  c losed c i r cu la t i on ,  a  

region o f  homogenization, was present i n  a l l  o f  the various t r ace r  f i e l d s .  

Here we comment f u r t h e r  on t h a t  analysis. The main t h r u s t  o f  t h i s  section, 

however, i s  a  more de ta i led  look a t  some o f  the spec i f i c  features o f  the data. 

I n  the model study we needed t o  speci fy boundary condi t ions and c e r t a i n  

parameters ( i .e.  the d i f f u s i v i t i e s ) .  I n  order t o  apply some o f  the r e s u l t s  

so obtained, we need then t o  i d e n t i f y  the analogous boundary condi t i o n s  i n 

the data. It i s  r e s u l t s  o f  t h i s  type which are examined ( f o r  instance, 
determining how much o f  a  g iven t r ace r  has d i f f u s e d  from the  boundary cu r ren t  

i n t o  the gyre) . As a consequence, we acquire know1 edge regarding the oceanic 

values o f  the d i f f u s i v e  parameters. 



A de ta i led  descr ip t ion  o f  t h e  data se t  appears i n  Hogg e t  a l .  (1986). 

The data includes t r a c e r  measurements from various c ru ises  i n  the reg ion 

no r t h  o f  3 5 " ~ ,  west o f  5 5 " ~ ,  and south o f  the 2000 m isobath o f  the  con t in -  

enta l  slope ( the re  are numerous crossings through the DWBC, Figure 2.19). 

Most o f  the data comes from a s ing le  cruise,  OCEANUS 134, which was p a r t  o f  

the Abyssal C i  r cu l  a t i o n  Experiment (1983-84) designed t o  study the NRG. The 

analysis centers on the d i s t r i b u t i o n  o f  oxygen, which i s  assumed t o  be i n  a 
near ly steady state. For  t h i s  reason the r e s u l t s  from the  model regarding 

sp in  up are n o t  d i r e c t l y  appl icable.  We w i l l  d iscuss i n  t u r n  some o f  t he  

o ther  important features. 

A)  Results 

1. Homogenization 

We consider t h i s  feature  f i r s t ,  as t h i s  was a1 ready addressed i n  Hogg 

e t  a l .  (1986). To detect  homogenization requires only in format ion about r e l -  

a t i  ve magnitudes o f  t r ace r  concentrations; thus we need no t  concern oursel ves 

w i t h  boundary condi t ions as ye t .  I n  order t o  reduce the noise l eve l  i n  the 

data, Hogg e t  a l .  employed a v e r t i c a l  averaging scheme. For  each s ta t i on  i n  

Figure 2.19 what i s  desired i s  the value o f  t r a c e r  a t  the  densi ty l eve l  cor-  

responding t o  the core o f  the DWBC (cons is tent  w i t h  the not ion o f  isopycnal 

spreading). Rather than use t h i s ,  Hogg e t  a1 . used the  average concentrat ion 

between two bounding densi ty l eve l s  of the core ( spec i f i ca l l y ,  an anomaly 

averaged over the  deep 1 ayer, def ined here as eav) . They presented 1 a te ra l  

maps o f  eav f o r  various t racers.  

The maps f o r  oxygen appears i n  Figure 2.20. It i s  characterized by a 

strong gradient  o f f  the boundary t h a t  merges i n t o  a broad region which i s  

near ly  uniform. Fur ther  t o  the south the l e v e l  once again drops o f f .  Note 

the  plume o f  h igh  oxygen t h a t  extends o f f  o f  the boundary and we1 1 i r ~ t o  the 

i n t e r i o r .  From t h i s  map, and a s i m i l a r  one f o r  s a l i n i t y  , Hogg e t  a1 . com- 

puted a corresponding average sect ion across the  gyre through the boundary 

current .  These are shown i n  F igure 2.21. Hogg e t  a1 . discussed the f a c t  

t h a t  although both t racers  e x h i b i t  homogenization, the oxyyen d i s t r i b u t i o n  

has a s l i g h t  minimum w i t h i n  t h i s  region, suggestive o f  v e r t i c a l  mixing. 



Figure  2.19:. S t a t i o n  pos i t ions  o f  the  t r a c e r  measurements, from s i x  d i f f e r -  
e n t  cruises,  used i n  the data  ana lys is  ( f rom Hogg e t  a l . ,  1986). 
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Figure 2.20: Lateral map o f  ea, for oxygen, from Hogg e t  a1 . , 1986. 
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Superimposed on the l a t e r a l  map o f  oxygen are two "stream1 ines." The 

outer  one was constructed using the closed deep l aye r  i sopach i n  t h i s  region 

(from Hogg and Stommel , 1985) as a  guide. The inner  one was constructed t o  

fit e n t i r e l y  w i t h i n  the region covered by the t r ace r  data. Note t h a t  the 

oxygen plume emanates from the  boundary beyond the  region where the stream- 

1  ines t u r n  offshore. Th is  i s  e n t i r e l y  cons is tent  w i t h  the numerical model 

r esu l t s  and f u r t h e r  supports the c la im f o r  a  t i g h t  rec i rcu la t ion .  The r idge  

o f  h igh oxygen then proceeds t o  penetrate i n t o  the gyre i n  a  manner s i m i l a r  

t o  the model . Note t h a t  the  f a c t  t h a t  t h i  s  r i dge  i s very s l  i g h t  does no t  

imply t h a t  v e r t i c a l  mixing i s  weak, the t ransfer  model shows t h a t  any ver- 

t i c a l  mixing, weak o r  strong, exh ib i t s  a  sub t le  feature  such as t h i s .  

2. F lux  Ualances 

We saw e a r l i e r  t h a t  the p o i n t  balance o f  terms i n  (2.20) i n  the reg ion 

o f  the s p i r a l  l e d  t o  an est imate o f  the  l a t e r a l  d i f f u s i v i  ty. I n  the oxygen 

d i s t r i b u t i o n  o f  F i  gure '2.20 we see evidence o f  such a  s p i r a l  i n  the data. 

However, i t  should be noted t h a t  the d i s t r i b u t i o n  i s  a  synoptic one, and, 

t h i s  being an area character i  zed by strong time-dependent f 1  uc tua t i  ons, such 

a  d i s t r i b u t i o n  i s  sure t o  d i f f e r  somewhat from the  average pat tern.  For 

t h i s  reason, applying a  p o i n t  balance ca l cu la t i on  involves a  la rge  amount o f  

uncertainty, and therefore  we do no t  make use o f  (2.22) . 
The other f l u x  balance t h a t  was discussed was an in tegrated balance 

w i t h i n  a  streamline o f  the gyre. The l a t e r a l  f l u x  o f  t r ace r  i n t o  the gyre 

matches the ve r t i ca l  f l u x  i n t o  the upper and lower layers.  Th is  equa l i t y  

l e d  t o  an est imate o f  the v e r t i c a l  d i f f u s i v i t y ,  

Since (2.28) involves spa t ia l  in tegra ls ,  t h i s  removes some of the  noise due 

t o  t rans ien ts  so the balance can be appl ied t o  t i l e  oxygen d i s t r i b u t i o n  w i t h  

some confidence. I n  (2.28) r e c a l l  t h a t  the  value o f  e i s  ac tua l l y  the  



e~ + e~ v e r t i c a l  anomaly, e = % - 7 (eu and eL are  the  respect ive values a t  

t he  top and bottom o f  the deep layer, e,,, i s  the value i n  the center o f  the 

l aye r ) .  I n  the model study we s e t  eu = eL = 0, b u t  i n  the ocean t h i s  i s 

c e r t a i n l y  no t  the case. 

Consider again the  oxygen p r o f i l e  versus depth i n  Figure 2.1 f o r  a sta- 

t i o n  i n  the center po r t i on  o f  t he  gyre. The p r o f i l e  i s  asymmetric i n  t h a t  

the value near the top o f  the deep signal i s  smaller than t h a t  below the  deep 

signal . Thi s i s t r u e  o f  most o f  the s ta t ions  i n the  domain. As a resu l t ,  

the f l u x  ou t  o f  the top o f  the deep l aye r  i s  greater than the f l u x  out  o f  the 

bottom, and i n  f a c t  t h i s  downward f l u x  can be ignored. I n  terms o f  (2.2), 

when there i s  upward f l u x  only the value o f  the v e r t i c a l  mixing parameter 

decreases by a f a c t o r  o f  two, and the  anomaly s i m p l i f i e s  t o  e = eM - @u 
( the  expression (2.28) i s  a1 tered accordingly). For reasons t h a t  w i l l  be 

explained l a te r ,  the l aye r  thickness was chosen t o  be H = 2500 m. For  each 

s ta t ion,  eM was i d e n t i f i e d  w i t h  the deep r e l a t i v e  maximum i n  the  oxygen 

p r o f i l e ,  and eu the value 1250 meters above t h i s  (% so def ined conforms 

approximately t o  an isopycnal surface). With t h i s  d e f i n i t i o n  o f  the anomaly, 

the denominator i n  (2.28) was estimated f o r  the  reg ion w i t h i n  t he  inner  

streaml i ne o f  F igure 2.20. 

To compute t he  value o f  the  l i n e  i n t eg ra l  i n  (2.28) we broke the 

streaml i n e  i n t o  two parts,  a northern ha1 f and a southern ha l f ,  and used a 

f o r  each part ,  estimated from the average s ing le  representat ive value o f  

sect ion i n  Figure 2.21 (although the sect ion p l o t s  values o f  eav, the l a t -  

e ra l  gradients o f  eav c lose ly  resemble those o f  e). Thus we obta in  an 

est imate f o r  the term i n  brackets i n  (2.28) ( f o r  the case o f  upward f l u x  

only) .  Since there e x i s t s  the  uncerta inty i n  an est imate f o r  K ,  i t  i s  

best  t o  keep it as a var iab le  and th ink  i n tenns o f  (K , V )  pai rs ,  i .e. f o r  

a given value o f  K the in tegra ted  f l u x  balance imp l ies  an associated value 

of V. As such, (2.28) p red ic ts  the fo l low ing  pairs,  



3. Gyre Level 

We now address the  question of how much oxygen i s  contained w i t h i n  the 

NKG w i t h  regard t o  the DWBC source. A functional re la t ionsh ip  between the  . 

concentrat ion of the gyre center and the boundary inpu t  was derived from the 

d i f fus ive t r ans fe r  model. It includes the values o f  the var ious t ime scales 

b u t  a lso r e l i e s  i m p l i c i t l y  on the f a c t  t h a t  the l a t e r a l  and v e r t i c a l  back- 

ground reservo i rs  are vo id  of t racer .  As t h i  s i s no t  the case i n  the data, 
the expression (2.27) must be r e v i  sed accordi ngly . 

We w i l l  assume the fo l low ing  scenario f o r  what happens i n  the ocean. 

I n i t i a l l y ,  when inpu t  from the DWBC begins t o  penetrate the i n t e r i o r ,  there 

e x i s t s  a non-zero, uniform background oxygen concentrat ion everywhere below 

the thermocline resu l t i ng  from remote sources and sinks (e.g. d i f f u s i o n  from 

the surface water).  Strong l a t e r a l  d i f f u s i o n  from the boundary then i n f l  u- 

ences the concentrat ion i n  the deep layer,  bu t  ve r t i ca l  d i f f u s i o n  i n t o  the 

l aye rs  d i r e c t l y  above arid below i s  n o t  substant ia l  enough t o  s i g n i f i c a n t l y  

r a i s e  the l eve l  i n  these regions. Thus the upper and lower layers  remain a t  

the concentrat ion o f  the i n i t i a l  state. Thi s scenario i s extremely oversi  m- 

p l i f i e d ,  bu t  such a representat ion o f  events i s  necessary i n  order t o  analyze 

the data w i t h i n  the  context  o f  the t r ans fe r  model. 

To incorporate a non-zero background i n t o  the t rans fe r  model, the se t  

(2.25) must be a1 tered as fol lows. We def ine d as the value o f  both back- 

ground reservo i rs  as we1 1 as the i n i t i a l  concentrat ions o f  bc and be, and 
I - w r i t e  the equations i n  terms o f  the d-anomaly, dC1 dc - $, de = de -6, 

' 
@ - . When w r i t t e n  as such the  equations f o r  the primed var iab les  

have the same form as (2.251, thus we use those so lu t ions derived e a r l i e r  

w i t h  the  appropriate subst i tu t ions.  I n  pa r t i cu l a r ,  the expression f o r  the  

amount o f  t r ace r  a t  the gyre center (2.27) becomes, 

The second term on the r i g h t  hand s ide represents the co r rec t ion  due t o  non- 

zero background. 

It i s  o f  i n t e r e s t  t o  con t ras t  (2.30) w i t h  the analogous expression when 

v e r t i c a l  mix ing i s  absent. I n  t h a t  case the amount of t r ace r  i n  the  gyre i s  



Note t h a t  the background cor rec t ion  f o r  the two cases i s  d i f f e r e n t .  Consider 

then the  analog t o  the func t ion  f when there i s non-zero background ( r e c a l l  

t h a t  f measures how mucli t r ace r  accumulates i n  the gyre r e l a t i v e  t o  the  

amount present i f  v e r t i c a l  mixing were absent). This quant i ty  i s the  r a t i o  

of the expressions (2.30) and (2.31). When w r i t t e n  i n  terms o f  the parameter 
- - a  
m s a s  which measures the strength o f  the anomaly suppl ied by the DWBC, i t  

takes the form 

F igure 2.22, which p l o t s  versus m , shows t h a t  f o r  m t 1 (small  anom- 

a l y )  f + 1, and f o r  m + ( l a rge  anomaly) f t f. This quan t i f i es  t he  

i n t u i t i v e  r e s u l t  t h a t  when there i s  non-zero background the e f f e c t  o f  ver- 

t i c a l  mixing i s lesseneh ( f o r  the same concentrat ion o f  t r ace r  i n the DWBC) . 
I n  the data we can read i l y  measure the equivalent  o f  dc( t 9 a), the 

concentrat ion a t  the center  o f  the gyre. However, i n  order t o  apply t h e  

r e s u l t  (2.30) we have t o  i d e n t i f y  what the equivalent  boundary condi t ions are 

i n  the  data, i .e. t i le  analogs t o  4 and B .  Consider f i r s t  the boundary i r ~ p u t  

value . We saw from applying the resu l t s .  o f  the  t r ans fe r  model t o  the  

numerical model t h a t  i n  terms o f  the  boundary current ,  the  appropr iate source 

concentrat ion t h a t  d ic ta tes  the l eve l  i n  the gyre i s  the value o f  t r ace r  a t  

the core o f  the  current .  It i s  a mat ter  then o f  choosing t i le  appropr iate 

l oca t i on  along the DWBC f o r  wnich t h i s  r e l a t i o n  holds i n  the data. 

I f  t h i s  l oca t i on  i s  chosen so f a r  upstream o f  the yyre  t h a t  some of 

the t racer  d i f fuses d i r e c t l y  from the boundary cu r ren t  i n t o  the l a t e r a l  back- 

ground (wi thout  having f i r s t  been advected around tt le gyre) then the assump- 

t i o n s  t h a t  accompany the t r ans fe r  model are v i o l a ted  and the  r e l a t i o n  w i l l  be 

inaccurate. On the o ther  harld i f  t he  l oca t i on  i s  no t  f a r  enough upstream 

then some o f  the t r ace r  t h a t  enters the gyre, having d i f fused  from f u r t h e r  

upstream, w i l l  no t  be accounted f o r  arld again the  r e l a t i o n  w i l l  no t  hold. 



Figure  2.22: The e f f e c t  o f  a non-zero background on the  steady s t a t e  gy re  
l e v e l  of the t ransfer  model. The l e v e l  o f  the  gyre, normalized by i t s  value 
when v e r t i c a l  mixing i s  absent, i s  shown i n  r e l a t i o n  t o  the  strength o f  t h e  
i nput anomaly. 



The co r rec t  l oca t i on  then 1 i e s  j u s t  i n  between these l i m i t s ,  and i n  1 i g h t  o f  

F igure  1.1 i s  near 50"~. Immediately upstream from there the cu r ren t  t w i s t s  

around the  Grand Banks and most c e r t a i n l y  communicates d i r e c t l y  w i t h  t he  

1 a te ra l  background. (Note t h a t  i n  the numerical model the northern boundary 

cou ld  be anywhere south o f  t h i s  c r i t i c a l  l oca t i on  and the r e l a t i o n  would 

s t i l l  hold. 

I n  regard t o  the background reservo i r  value d, it i s  no t  s t r a i g h t f o r -  

ward t o  i d e n t i f y  such a quant i ty  i n  the data. Thi s being the case we t u r n  

the ca l cu la t i on  around and t r e a t  6 as the unknown ( i .e.  solve (2.30) f o r  

8 ) .  This quant i ty  i s  s i m i l a r  t o  a quant i ty  such as the d i f f u s i v i t y  i n  t h a t  

we are unable t o  d i r e c t l y  measure it, bu t  can comnent on whether an est imate 

i s  reasonable o r  not. As a guide f o r  such an est imate we consider t he  f o l -  

1 owing averaged 1 ayer val  ue. 

Recal l  t h a t  i n  the descr ip t ion  o f  the  numerical model governing equa- 

t i o n  (2.2) the upper and lower reservo i r  values, eu and eL, were indepen- 

dent o f  x and y .  I n  order t h a t  the model behave i n  a manner s i m i l a r  t o  t h e  

ocean ( i n  regard t o  v e r t i c a l  mixing) both the assumption o f  a reservo i r  and 

t h a t  o f  no spa t ia l  dependence must ho ld  t o  some ex ten t  i n  the data. I n  view 

of the oxygen p r o f i l e  i n  Figure 2.1 the reservo i r  assumption f o r  the upper 

l aye r  seems v a l i d  (keep i n  mind t h a t  the  shape o f  the  oxygen p r o f i l e  i s  t yp -  

i c a l  o f  the e n t i  r e  data set ) .  However, the. 1 ower 1 ayer value never l eve l  s 

off ,  which may be re l a ted  t o  t he  f a c t  t h a t  t h i s  value i s  cons is ten t l y  h igher  

than i t s  upper l a y e r  counterpart.  The idea i s  t h a t  the bottom boundary l i m -  

i t s  the s i ze  o f  the  lower layer ,  and as a consequence the l aye r  begins t o  

f i l l  up w i t h  oxygen t h a t  has d i f f used  from above. 

I n  order t o  address the  question o f  spa t i a l  dependence, the  concentra- 

t i o n  o f  t h e  O2 maximum was compared t o  the concentrat ion a given distance 

above and below fo r  a l l  the s ta t ions  w i t h i n  the i nne r  streamline. It was 

found t h a t  w i t h  increased separation the  c o r r e l a t i o n  between e,,,, and the up- 

per  value decreased substant ia l ly ,  whereas t h e  c o r r e l a t i o n  between eM and 

the lower value d i d  not. Thi s i s cons is tent  w i t h  t he  reservoi  r discrepancy 

mentioned above, and suggests t h a t  when modell ing the e f f e c t  o f  v e r t i c a l  

mixing we should i n  f a c t  inc lude two terms i n the  governing equation. One 



should be a decay term l i k e  the  one t h a t  was considered, b u t  only as a repre- 

sentat ion o f  mixing w i t h  water above the deep layer.  Mix ing w i t h  the bottom 

l aye r  i s  character ized more appropr ia te ly  by a constant f l u x  (independent of 

the concentrat ion o f  the deep 1 ayer) which has the  form o f  a consumption 

term. Recall, however, t h a t  the  near bottom gradients are  very weak and t he  

consumption term can be ignored w i t h  respect t o  the rad ioact ive decay term. 

As a value then w i t h  which t o  compare estimates f o r  , the average o f  

eu a t  a distance wel l  above the O2 maximum was computed over a l l  the 

s ta t ions  enclosed by the inner  streamline. The distance t h a t  was chosen was 

H/2 = 1250 m, as a distance greater  than t h i s  does no t  cause the  c o r r e l a t i o n  

t o  decrease s i gn i f i can t l y .  The values o f  e,,,, and eu f o r  the group o f  sta- 

t i o n s  appears i n  Figure 2.23 (a1 so shown i s  5 )  . The two quan t i t i e s  exhi b i  t 

s i m i l a r  trends, a1 though the  standard dev ia t ion o f  iu i s substant ia l  l y  

smaller than t h a t  f o r  $. It should be noted t h a t  i n  the in tegra ted  f l u x  

balance ca lcu la t ion  above, the r e s u l t  would be the same i f  we had used the 
- 

value o f  LeM - eu) a t  each s ta t i on  ra the r  than (eM - e,,) . 
The value o f  6 depends on the value o f  f, and r e c a l l  t h a t  the func- 

t i o n  f depends on the  parameters A and E (where the expression f o r  E 

now r e f l e c t s  the  f a c t  t h a t  there i s  f l u x  through one l aye r  on ly ) .  Estimating 

the  area o f  homogenization from the  data se t  and using a value o f  ii = 2500 m, 

we can use the numerical model t o  compute an associated value o f  E and A 

f o r  each p a i r  o f  d i f f u s i v i t i e s  i n  (2.29). Th is  i n  t u r n  gives the correspond- 

i n g  magnitude o f  f. It i s  the  case, however, t h a t  the values o f  d ( f )  so 

pred ic ted from (2.30) are s i g n i f i c a n t l y  l a rge r  than 5,. I n  o ther  words the 

t r ans fe r  model says t h a t  there should be less  oxygen than t h a t  wnich has 

dif fused i n t o  the NRG according t o  the data. Th is  discrepancy i s  reconci led 

below by considering va r i a t i ons  i n the numerical model streamfunction. 

Western I n t e n s i f i c a t i o n  

Admittedly there i s  some question as t o  the  v a l i d i t y  o f  using 5, as 

a measure o f  the  "background" oxygen concentrat ion i n  the deep layer.  Thi s 

being so, an inconsistency concerning the leve l  o f  oxygen i n  the NKG should 

no t  i n  i t s e l f  be cause t o  completely res t ruc tu re  the model t h a t  has been used. 



Station Number 

Figure 2.23: The value o f  the  oxygen maximum i n  the  deep layer ,  and t h e  
value 1250 m above t h i  s for  each of the stat ions w i th in  the inner stream1 i n e  ~- ~ 

of  Figure 2.20. 



I n  addi t ion,  the re  i s  uncer ta in ty  i n  t he  in tegra ted  f l u x  balance ca lcu la t ion ,  

and i t  i s  possib le t h a t  (2.29) does no t  express the  t r u e  re l a t i onsh ip  between 

the two d i f f u s i v i  t i e s .  Nonetheless i t  i s  des i rab le  t o  t r y  and f i t  a1 1  t he  

pieces o f  the ca l cu la t i on  together i n  a  cons is tent  fashion and o f f e r  the 

r e s u l t  as one poss ib le  i n t e rp re ta t i on  o f  the data. 

The ve loc i t y  f i e l  d  o f  the numerical model was chosen as a  simp1 i f i e d  

representat ion o f  the DWBC/iJRti system, and, f u n c t i o n i r ~ g  as a  t o o l  t o  reveal 

processes, t h i s  f l ow f i e l d  i n  conjunct ion w i t h  the remainder of the model 

proved useful.  It i s ,  however, c e r t a i n l y  no t  the  only streamfunction t h a t  

coul d have been used, a1 though i t  i s  hoped t h a t  employing a s imi  1  a r  f l ow pat- 

t e r n  would no t  a1 t e r  the major r e s u l t s  o f  the model bu t  r a the r  have only a  

m i l d  e f f e c t  on spec i f i c  features. I n  l i g h t  o f  the inconsistency above, one 

such feature t h a t  we concern ourselves w i t h  now i s  the s t rength o f  the f l u x  

of t racer  i n t o  the gyre. 

The reason why we choose t o  a1 t e r  the ve loc i t y  f i e l  d  i s  twofold. 

F i r s t ,  the s t rength o f  . th i  s f l u x  i s  indeed sens i t i ve  t o  the spec i f i cs  o f  the  

streamfunction. Second, the cur rent  meter data t h a t  was used t o  def ine the 

NRG i s  somewhat sparse, thus al lowing f o r  some leeway i n  specifying a  corres- 

ponding simulated f low f i e l d ,  i.e. the spec i f i c  d e t a i l s  are r e a l l y  an unknown 

i n  the  model t h a t  we are f r e e  t o  vary. This process o f  a1 t e r i n g  the stream- 

functiot-t can be thought o f  as f i n e  tuning. . 

There are  several ways t h a t  the ve loc i t y  s t ruc tu re  can be changed t o  

cause t racer  t o  f i l l  the gyre a t  a  f a s t e r  rate. Four such var ia t ions  appear 

i n  Figure 2.24. I n  the f i r s t  example the gyre i s  moved c l ose r  t o  the bound- 

ary  cur rent  and the two f lows p a r t i a l l y  merge. Tracer now d i f f uses  i n t o  

stronger f low and i s  advected more qu ick ly  i n t o  the  i n t e r i o r .  I n  the second 

example the 'gyre i s again moved towards the boundary cu r ren t  b u t  the two do 

no t  merge, r a the r  the boundary f l ow converges. This strengthens the zonal 

gradient  o f  t r ace r  there causing a  stronger of fshore f lux.  I n  the t h i r d  

example the gyre i s  turned on i t s  s ide so t h a t  there i s  a  greater  region o f  

contact  between the flows, which a lso serves t o  enhance the v e n t i l a t i o n  o f  

the gyre. I n  the  f i n a l  example the gyre i s  no longer symmetric bu t  western 

i n t ens i f i ed .  Th is  causes i t  t o  f i l l  up more rap id l y  f o r  the same reason as 

i n  the  f i r s t  example. 



Plan View Cross-Section 

Figure 2.24: Schematic showing f o u r  examples i n  which the streamline p a t t e r n  
o f  F igure 1.2 i s  a l t e red  i n  a  way t h a t  causes the  gyre t o  accumulate t r a c e r  
more rap id ly .  The bounding stream1 ines  o f  the  boundary cu r ren t  and gyre a re  
shown alongside a  zonal ve loc i t y  sect ion through the  cur ren t  and center o f  
t he  gyre. The unal tered streaml ine pa t t e rn  appears a t  the  top. (a) The 
gyre i s  s h i f t e d  towards the boundary cu r ren t  and p a r t i a l l y  merges w i t h  it. 
(b )  The gyre i s  s h i f t e d  towards the  boundary cu r ren t  arid causesothe boundary 
cu r ren t  streamlines t o  converge. ( c )  The gyre i s  ro ta ted  by 90 . (d)  The 
gyre i s  made western in tens i fed.  



It i s possible t h a t  t o  one extent  o r  another a1 1 o f  these e f f e c t s  a re  

present i n  t he  ocean and have n o t  been accounted f o r  i n  the  model. Cer ta in ly  
the NRG and DWBC are adjacent over a greater  distance than i s  port rayed i n  

the model. We have chosen here t o  consider the e f f e c t  o f  western i n t e n s i f i -  

cat ion, as the data imp l ies  t h a t  there i s  very l i t t l e  separation between the  

two f lows wnen they are side by side. The streamfunction t h a t  was used i s  

shown i n  Figure 2.25 compared t o  the  previous streamfunction. The boundary 

cu r ren t  i s  i den t i ca l  i n  both cases, and the only major d i f fe rence  between 

the  gyres i s  t h a t  now the  maximum southward f l ow  o f  the gyre i s  comparable i n  

magnitude t o  the core speed o f  the boundary cu r ren t  and i s  c loser  i n  proxim- 

i t y  t o  the boundary current .  

A s ing le  experiment (abbreviated W1) was done i n  which K - 1 x 
6 2 10 cm /sec ( l a t e r a l  d i f f u s i o n  on ly) .  The r e s u l t i n g  t r a c e r  f i e l d  i s  shown 

i n  Figure 2.26 and should be compared t o  t h a t  o f  the K experiment (F ig-  

ure  1.17a). As a r e s u l t  o f  the increased speed w i t h  which t r ace r  i s  t rans- 

por ted i n t o  the i n t e r i o r ,  the center of the gyre i s  f i l l e d  a t  a f a s t e r  r a t e  

than i n  r l .  However, t h i s  does no t  mean t h a t  more t r a c e r  u l t ima te l y  d i f -  

fuses i n t o  the gyre, f o r  i n  F igure 2.27 i t  i s  seen t h a t  the  l eve l  asymptotes 

t o  the same l eve l  as i t  d i d  i n  kl (and a,-) which means only t h a t  the spin 

up t ime i s  shorter. Since we need more t r a c e r  i n  the  gyre i n  order t o  recon- 

c i l e  the discrepancy w i t h  the data i t  seems. then t h a t  a l t e r i n g  the stream- 

funct ion i n  t h i s  way does no t  prove useful .  Keep i n  mind, however, t h a t  f o r  

oxygen there i s  v e r t i c a l  f 1 ux present. Th is  causes the system t o  sp in  up 

rap id l y  which i n  t u r n  preserves any d i f ferences i n  the t r ans ien t  s ta tes of  

the two cases, i n  p a r t i c u l a r  the f a c t  t h a t  ea r l y  on there i s  more t r ace r  i n  

the  western i n t e n s i f i e d  gyre. 

I n  order t o  apply t h i s  r e s u l t  t o  the data i t  i s  f i r s t  necessary t o  

couple the t r ans fe r  model t o  W1 (note t h a t  we do no t  have t o  a l t e r  the 

s e t  up of the t r ans fe r  model t o  r e f l e c t  the change i n  the numerical model, 

because the spec i f i cs  o f  the advective processes are n o t  inc luded w i t h i n  the  

realm o f  the t r ans fe r  model ) . Thi  s coup1 i ng was done by matchi ng (2.19a) t o  

the spin up of W 1  and determining A. It i s the case t h a t  the value o f  A 

i s  again small as i t  was i n  the rl and experiments. Th is  t e l l s  us 

imnediately then t h a t  W1 i s  i n  the  same 1 i m i t ,  namely t h a t  the spin up i s  
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Figure 2.25: Streamlines o f  the  boundary current  and yyre, wi th  a zonal ve l -  
oc i ty  section through the current  and center o f  the gyre shown above. 

( a )  The western i n t e n s i f i e d  gyre used i n  experimerlt w l .  
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(b) The zonally symmetric gyre o f  Figure 1.2 used i n  the previous 
experiments. 
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6 2  Figure 2.26: Steady s ta te  d is t r ibu t ion  o f  t racer  f o r  * 10 cm Isec 
wi th  the western in tens i f i ed  gyre o f  Figure 2.25. 
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Figure  2.27: T,'me h i  story o f  t r a c e r  accumulating i n the  western i n t e n s i f i e d  
6 1 gyre ( K - 10 cm /sec, no v e r t i c a l  mixing) compared wi th  the  same curve f o r  

the  symmetric gyre. 
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con t ro l l ed  by d i f f u s i o n  from the boundary and behaves as a  s ing le  exponen- 

t i a l .  F igure 2.28 shows t h a t  a l l  the experiments w i t h  j u s t  l a t e r a l  d i f f u s i o n  

co l lapse t o  a  s ing le  case. 

To account f o r  the e f f ec t  of v e r t i c a l  f l u x  on the gyre l eve l  w i t h i n  the  

context  o f  western i n t ens i f i ca t i on ,  a  corresponding value o f  E must accompany 

A. Values of both parameters were computed f o r  the d i f f u s i v i t i e s  and leng th  - ,.. 
ti 

scales re levant  t o  the data. Recal l  t h a t  A = - and E = - T . We need t h e  ' B v  
numerical model t o  compute rB, the sp in  up t ime o f  the system ( r  - r B )  , 
as t h i s  quant i ty  can no t  be deduced from the data. It i s  here t h a t  the d i s -  

t i n c t i o n  appears between the western i n t e n s i f i c a t i o n  case and the symmetric 

gyre case. The t ime scale rB  i s  the  only one o f  the th ree  t ime scales t h a t  

i s  d i f f e r e n t  f o r  the two cases ( w i t h  regard t o  the data) so whi le  the values 

o f  E t h a t  accompany (2.29) w i l l  be t he  same here as before, the values of 

A w i l l  be somewhat la rger .  This i n  t u r n  a l t e r s  the associated values o f  the  

f unc t i on  f used i n  (2.30). 

As seen i n  Figure 2.29 we can now ge t  good agreement between eu and 

one o f  the  pred ic ted values o f  d ( f ) .  The p a i r  o f  d i f f u s i v i t i e s  t h a t  g i v e  
6 2  2  t h i s  agreement are  K " 10 cm Isec and v " 10 cm /sec. ( I n  order t o  g e t  a  
6 2 p red i c t i on  f o r  K " 5 x  10 cm Isec  we assumed t h a t  a  corresponding western 

i n t e n s i f i c a t i o n  numerical run would be re l a ted  t o  r 5  i n  the  same manner 

t h a t  W1 was re l a ted  t o  K A1 so shown i n the  f i g u r e  a re  the  resu l  t i n g  

p red ic t ions  i f  we disregard the f l u x  balance cons t ra in t  and a r b i t r a r i l y  s e t  

v = 1. I n  t h a t  case the v e r t i c a l  f l u x  i s  extremely weak which r e s u l t s  i n  a  

comparatively small background. When the gyre o f  Figure 2.27a i s  ro ta ted  

90" t o  the l e f t  (which combines the  e f f e c t  o f  increased contact  w i t h  western 

i n t ens i f i ca t i on )  a  sp in  up t e s t  shows t h a t  t r ace r  f i l l s  the gyre a  b i t  more 

qu ick ly  yet .  This would cause even c l ose r  agreement i n  F igure 2.29. 
2 A value of -10 cm /sec f o r  v i s  subs tan t ia l l y  l a rge r  than some 

e a r l i e r  estimates o f  the v e r t i c a l  d i f f u s i v i t y  a t  thermocline depths ( f o r  
2 instance Rooth and ~ s t l u n d ,  1972). However, values as l a rge  as 3-4 cm Isec 

have been ca lcu l  ated f o r  the An ta rc t i c  bottom water f 1  owing northward a1 ong 

t he  western boundary o f  t he  South A t l a n t i c  (Hogg e t  al., 1982; Whitehead and 
6 2  Worthington, 1982). The ca lcu la ted  value o f  K " 10 cm Isec on the o ther  
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Figure 2.28: The accumulation curves f o r  each o f  the  three experiments 
without ver t ica l  mixing (Figures 2.5 and 2.27) where the  time ax is  has been 
normalized by the associated spi n-up time. 
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Figure 2.29: The value of the  oxygen background concentration as predicted 
by the transfer model. The p a r t i c u l a r  values f o r  the examples discussed are  
shown i n  comparison t o  the measured quanti ty Bu. 



hand i s  smaller than most o f  the  estimates found i n  the 1 i terature .  Fo r  

example, d i r e c t  estimates o f  K can be made using SOFAR f l o a t  data, and 
6 2 Free1 and e t  a1 . (1975) ca lcu la ted  a value of 7 x 10 cm /sec using data c o l -  

1 ected fo r  the MODE area ( 2 8 " ~ ,  69'1). Using the same technique Pr i ce  (per- 
7 2 

sonal communication) computed values i n  the range o f  1.5-8.2 x 10 cm /sec 

f o r  the LDE region ( 3 1 " ~ ~  7 0 ' ~ ) .  It should be noted though t h a t  these e s t i -  

mates are  f o r  t he  thermocline, and P r i ce  detects a decrease i n  the  s i ze  of K 

w i t h  depth. S t i l l ,  the eddy coef f ic ients  ca lcu la ted here are f o r  the area 

near the  Gul f  Stream which i s  an area o f  increased eddy a c t i v i t y .  

B) Conclusions 

The review o f  the data i n  Hogg e t  a l .  (1986) showed t h a t  i n  the deep 

l aye r  there i s  a broad reg ion character ized by very weak property grad ients  

t o  the south o f  the  DWBC centered a t  roughly 60"~. Such homogenization i s  

suggestive o f  c losed c i r cu la t i on ,  i .e. the  Northern Keci r c u l a t i o n  Gyre. I n  

addi t ion,  i t  imp1 i e s  t h a t  the Peclet  number o f  the f low i s  1 arge i n  the sense 

discussed i n  chapter one. Closer inspect ion o f  t i l e  data, w i t h i n  the context  

of the present model study, y i e l d s  a cons is tent  p i c t u re  i n  regards t o  t h i s  

fea tu re  and o ther  features which are l e s s  reveal ing. 

The plume o f  oxygen which extends from the DWBC i n t o  the i n t e r i o r  de- 

l i m i t s  the southern ex ten t  o f  the  gyre f l ow  t h a t  has turned offshore. Thi s 

serves as add i t iona l  evidence f o r  the argument o f  t i g h t  r ec i r cu la t i on  o f  the 

NRG. I n  con t ras t  t o  the  s a l i n i t y ,  the d i s t r i b u t i o n  o f  oxygen has a s l i g h t  

re1 a t i  ve minimum i n  the center o f  the gyre which may be a trademark o f  ver- 

t i c a l  mixing. The inward f l u x  o f  oxygen associated w i t h  t h i s ,  along w i t h  
the value of the minimurn gives r i s e  t o  oceanic mix ing c o e f f i c i e n t s  o f  K " 

6 2 2 10 cm /sec, v " 10 cm /sec f o r  t h i s  region. 

The value o f  the v e r t i c a l  d i f f u s i v i t y  seems somewhat large, bu t  when 

viewed i n  terms o f  the model the system i s  character ized by only moderate 

v e r t i c a l  mixing. The model impl ies  t h a t  the amount o f  t r ace r  which enters 

the  gyre i s  r e l a ted  t o  the amp1 i tude  o f  an appropriate sect ion across the 

UWBC, most l i k e l y  near 50°w. When appl ied t o  t ne  data t h i s  says t h a t  the  

gyre contains approximately 40 percent o f  the oxygen t h a t  i s  ava i lab le  t o  i t  



( t h a t  i s  t o  say 40 percent o f  the l e v e l  t h a t  would e x i s t  i f  there  were no 

v e r t i c a l  mix ing a t  a l l ) .  I n  l i g h t  o f  how sens i t i ve  the gyre l e v e l  i s  t o  

v e r t i c a l  mix ing (Figure 2.14) i t  i s  the  case then t h a t  t h i s  e f f e c t  i s  mi ld .  

Th is  should i n  t u r n  be contrasted t o  the case o f  the  symnetric model 

gyre. When apply ing t h a t  case t o  the  data i t  tu rns  ou t  t h a t  on ly  10 percent 
of the ava i lab le  oxygen makes i t i n t o  the gyre ( r e c a l l  t h a t  t h i s  resu l ted  i n  

an inconsistency) which i s  approaching the 1 i m i  t o f  strong v e r t i c a l  mixing. 

We see then t h a t  i t  i s  a very important consequence t h a t  the  gyre f low come 

i n  such c lose contact  w i t h  t he  boundary current .  It g rea t l y  increases the  

e f f i c i ency  w i t h  which t r ace r  i s  transported i n t o  the i n t e r i o r  and enables the 

l a t e r a l  f l u x  t o  overcome the  la rge  v e r t i c a l  f l u x  i n  supplying the NRG w i t h  a 

s i g n i f i c a n t  amount o f  oxygen. Th is  e f f e c t  has no bearing on the s a l i n i t y  

d i s t r i b u t i o n  however. The r e s u l t s  o f  the  numerical model imply t h a t  w i thou t  

v e r t i c a l  f l u x  c e r t a i n  charac te r i s t i cs  o f  the f l ow  f i e l d  have no e f f e c t  on the 

l eve l  o f  the gyre. 



CHAPTER THREE : TIME DEPENDENT INPUT 

Pre l  i m i  nar ies  

I n  the previous two chapters a simple model was presented o f  the  advec- 

t i o n  and d i f f u s i o n  o f  a passive t r a c e r  from the  Deep Western Boundary Current 

i n t o  the Northern Rec i rcu la t ion Gyre o f  the deep Gulf Stream. I n  chapter two 
when the r e s u l t s  were appl ied t o  the  data, on ly  the d i s t r i b u t i o n s  o f  s a l t  and 

oxygen were considered. It i s  assumed t h a t  these t racers  are i n  quasi-steady 

state, t h a t  i s  t o  say the  source o f  t r ace r  provided by t he  DWBC i s  n o t  chang- 

i ng subs tan t ia l l y  i n  time. I n  t h i s  chapter we consider what happens when 
t h i  s  source grows i n time, as i s the  case w i t h  f reon. 

The DWBC f l uxes  various t racers  i n t o  the  North A t l an t i c ,  among which 

are substances ca l  l e d  ch l  o ro f  1 uoromethanes. The two which are most r ead i l y  

measured are commonly re fe r red  t o  as f reon-11 (F-11) and f reon-12 (F-121. 

Freon i s  man-made ( f o r  instance i t  i s  used i n  r e f r i ge ran t s )  atld substant ia l  

amounts began t o  accumulate i n  the  atmosphere around 1950. Since t h a t  t ime 

product ion has increased rap id ly .  As i s  t he  case w i t h  oxygen, the surface 

waters of the  Norwegian-Greenland (N-G) Sea t h a t  sink t o  form the UWUC, hav- 

i n g  been i n  contact  w i t h  the atmosphere, are  h igh  i n  f reon content. I n  s ta rk  

con t ras t  t o  oxygen though, and what makes f reon so i n te res t i ng  t o  study, i s  

the f a c t  t h a t  they have been present f o r  on ly  a shor t  time. 

By keeping t rack o f  the production o f  f reon by indust ry  versus natural  

deplet ion, the  atmospheric source func t ion  from 1950 t o  the  present i s  known 

w i t h  some c e r t a i n t y  (Smethie, personal communication). Th is  presents a very 

good opportuni ty t o  study the invasion o f  a passive t r a c e r  i n t o  the worl d 

oceans as re l a ted  t o  i t s  input. Th is  i s  no t  the only appealing aspect o f  

studying f reon  though. Unl ike i t s  counterpart  t r i t i u m ,  w i t h  the advent o f  

recent technology f reon i s  r e l a t i v e l y  easy t o  measure and can be done so 

aboard ship. I n  addi t ion,  measurements tend t o  be characterized by a h igh 

s ignal  t o  noise r a t i o  (Hogg e t  a1 . , 1986). 

Wi th in  the  realm o f  the  present study i t  i s  o f  i n t e r e s t  t o  consider 

f reon i n  add i t i on  t o  the steady t racers  a1 ready analyzed. (For instance we 
know how long  f reon has been i n j ec ted  a t  h igh  northern l a t i t udes :  has t h i s  



been long enough f o r  a substant ia l  amount t o  accumulate i n  t l ie  NRG?) It i s 

however no t  t r i v i a l  t o  incorporate such t ime dependency i n t o  the machinery 

t h a t  has been developed. This i s because there  i s much involved i n  the h i  s- 

t o r y  o f  a water parcel as i t  passes from the surface water i n  the N-G Sea 

v i a  the  DWBC t o  50°w, a t  which p o i n t  i t  enters our domain o f  study. For t he  

cases o f  s a l i n i t y  and oxygen we cou ld  ignore t h i s  previous h is tory ,  i t  was 

assumed t h a t  a property sect ion across t he  DWBC remains s ta t ionary  i n  time. 

For  f reon t h i s  i s  obviously no t  t rue.  

I n  the numerical runs o f  the previous chapters the i npu t  o f  t r ace r  i n t o  

the  domain was spec i f i ed  as a Gaussian d i s t r i b u t i o n  across the upstream edge 

o f  the boundary cu r ren t  ( a  step func t ion  i n  t ime). I n  l i g h t  o f  a1 1 the fac- 

t o r s  involved i n  the overf low process as we1 1 as the shear s t ruc tu re  o f  the  

DWBC, i t  would be extremely d i f f i c u l t  t o  est imate how t h i s  i npu t  would behave 

as a func t ion  o f  space and t ime f o r  the f reon  case. As such, a numerical 

model w i t h  a regional domain i s  no t  useful here. However, r e c a l l  t h a t  the 

i npu t  t o  the d i f f u s i v e  t r ans fe r  model corresponds t o  j u s t  the core value o f  

the d i s t r i b u t i o n  across the boundary current .  Therefore t o  make use o f  the 

t r ans fe r  model we need only know how the  f reon  core value evolves i n  t ime a t  

5 0 " ~  -- a problem which i s  much more t rac tab le .  

It i s  the  case then t h a t  before we make use o f  the  t r ans fe r  model f o r  

the DWBC/NRG system, we must f i r s t  model i n  a cons is tent  fashion how the 

atmospheric i npu t  o f  f reon i s modi f ied dur ing t he  processes which eventual l y  

1 ead i t  around the Grand Banks i n  the core o f  the DWBC. Th is  has been done 

i n  two stages: the  deep water formation stage which simulates the overflow 

process, and the subsequent boundary cu r ren t  stage where the water t r ave l s  

away from the overf low region wh i l e  mix ing w i t h  surrounding water. aoth of 

these representat ions are  g rea t l y  s imp l i f i ed ,  b u t  t h i s  i s  i n  the s p i r i t  o f  

the  t r ans fe r  model. The end r e s u l t  o f  these processes i s  f i n a l l y  coupled t o  

the t r ans fe r  model and contrasted t o  the  s a l t  and oxygen cases. 

I n  the  l i t e r a t u r e  there have been a t  l e a s t  two cases i n  which the age 

o f  the water comprising a cu r ren t  has been estimated using i t s  F-1l:F-12 

r a t i o  values (Smethi e and Trumbore, 1984; Weiss e t  a1 . , 1985). The method 

assumes t h a t  the f l ow  mixes w i t h  surrounding water which i s  mostly vo id  o f  

freon, and a lso t h a t  the  r a t i o  o f  the source waters i s  n o t  a l t e red  dur ing t h e  



formation process. When t h e  method i s  app l i ed  t o  t h e  OWBC w i t h  t h e  ABCE d a t a  

set ,  t h e  age of t h e  water so ca l cu la ted  suggests an unreasonably slow co re  

speed. Two separate boundary c u r r e n t  models a r e  presented here, each based 

on t h e  premise t h a t  as t ime progresses t h e  mix ing  t h a t  occurs i s  no longer  

w i t h  f reon-f ree water. When considered along w i t h  t h e  over f low process, t h i  s  

1  eads t o  s u b s t a n t i a l l y  l a r g e r  values o f  t h e  core speed. 

Overf 1  ow Basi n  Model 

There a re  two areas a t  h igh  1  a t i t u d e  where convect ive over turn ing  

occurs supply ing deep water i n t o  t h e  nor thern  North At1 a n t i c :  t h e  Norwegian- 

Greenland Sea and t h e  Labrador Sea. The water which i s  formed i n  t h e  N-G Sea 

i s  more dense than i t s  Labrador counterpar t ,  and i t  i s  t h i s  water  which upon 

entra inment  forms t h e  DWBC (Worthington, 1970). There are  t h r e e  s i l l s  over  

which t h e  newly formed water i n  t h e  N-G Sea f l ows  i n t o  t h e  A t l a n t i c .  These 

areas a re  t h e  Denmark S t r d i t s ,  t h e  Iceland-Faeroe Ridge, and t h e  Faeroe Bank 

Channel (F igu re  3.1). The 1  a t t e r  two a r e  so c lose  t o  each o t h e r  t h a t  they 

a re  usua l l y  considered as a  s i n g l e  over f low reg ion c a l l e d  t h e  Iceland- 

Scot1 and Ridge. 

A t  p resent  i t  i s  unce r ta in  as t o  what ex ten t  each o f  these over f lows 

c o n t r i b u t e s  t o  t h e  water which comprises t h e  OWBC downstream from t h i s  drea. 

It i s  documented t h a t  t h e  I c e l  and-Scot1 and overflow, having t r a v e l e d  down 

t h e  s lope f rom t h e  s i l l  , t r d v e l  s  westward through t h e  G i  bbs f r a c t u r e  zone. 

According t o  Worthington (1970) t h i s  f l o w  then j o i n s  t h e  Denmark S t r a i t s  

ove r f l ow  and t h e  combined f l o w  even tua l l y  makes i t s  way southward as t h e  

DWBC. S w i f t  (1984) argues t h a t  t h e  dens i t y  o f  t h e  over f low water  a t  t h e  two 

1  ocat ions  i s comparable, b u t  t h e  I c e l  and-Scot1 and f l o w  undergoes more in tense  

m ix ing  as i t  progresses f rom t h e  s i l l  so t h a t  t h e  water which passes through 

t h e  G i  bbs f r a c t u r e  zone i s  l e s s  dense t h a n  t h e  Denmark S t r a i t s  c o n t r i b u t i o n .  

As a  r e s u l t  t h e  two f l ows  d o n ' t  r e a l l y  combine b u t  r a t h e r  i n f l u e n c e  one 

another. More i n  1  i n e  w i t h  t h i s ,  Smethie and Trumbore (1984) present  a  

water p roper ty  ana lys i s  t h a t  suggests t h e  c l a s s i c a l  DWBC found south o f  t h e  

Grand Banks i s  comprised main ly  o f  Iceland-Scotland overf low, and t h a t  i n  

t h i s  area the  f low which o r i g i n a t e d  f rom t h e  Denmark S t r a i t s  occurs as 

weaker, more dense f il ament-type f lows. 



Figure  3.1: Map showing the  th ree  overflows o f  t i le  Norwegian-Green1 and Sea 
(from Warren, 1981) which eventual ly  combine t o  form the  DWBC as described 
by Worthi ngton, 1970. 



For t h i s  work i t  has been assumed t h a t  t he  DABC i s  composed so le l y  of 

water o f  Iceland-Scotland o r ig in .  It i s  c l e a r  though t h a t  there are  o ther  

inf luences a t  work w i t h  regard t o  the  f reon s ignal  o f  t he  current ,  and i t  

would be benef ic ia l  t o  study t h i s  p o i n t  i n  greater  d e t a i l .  S t  i s  an accepted 

idea now t h a t  t i le  f l u i d  which overf lows the Iceland-Scotland Kidye (as we1 1 

as t h a t  which overflows the Denmark S t r a i t s  s i l l )  o r ig ina tes  no t  from abyssal 

depths, bu t  from intermediate depths i n  the basin ( B u l l i s t e r ,  1984). It i s  

cons is tent  then t h a t  the water a t  these depths i s  replenished convect ively 

[due t o  surface coo l ing (Worthington, 1970) 1 and t h a t  the re  i s  only d i f f u s i v e  

i nteract ion w i t h  the deepest water. 

Th is  suggests the fo l low ing  overf low basin model t o  compute the f l u x  o f  

f reon over the s i l l .  An i n f l u x  o f  water i n t o  the  basin occurs i n the  surface 

1  ayer, the water acqui r i n g  a  f reon concentrat ion according t o  the atmospheric 

l eve l  a t  the time. As a  r e s u l t  o f  heat l oss  t o  the atmosphere the f l u i d  then 

sinks, ven t i l a t es  the intermediate layer,  and resides i n  the basin f o r  a  

whi l  e  before eventual ly  overflowing. While below the surface the f l u i d  can 

mix d i f f u s i v e l y  w i t h  both the water w i t h i n  the layer  and w i t h  the abyssal 

water. Based on e q u i l i b r a t i o n  times f o r  f reon i t  i s  reasonable t o  assume 

t h a t  the  surface l aye r  i s  i n  equ i l i b r ium w i t h  the atmosphere a t  a l l  t imes 

(Smethie, personal communication). Using estimates o f  s o l u b i l i t y  then, the  

freon concentrat ion o f  the surface water becomes a known func t ion  o f  time. 

This in format ion i s  the  s t a r t i n g  p o i n t  o f  t he  model, i t  i s  from t h i s  funct ion 

t h a t  the overf low concentrat ion i s  computed and u l t ima te l y  the DWBC core con- 

cen t ra t ion  a t  5 0 O ~ .  

The d e t a i l s  o f  the  model are out1 ined i n  Figure 3.2 which shows the 

simp1 i f i e d  scenario o f  the  overf low process. I n  the ocean the convective 

process i s  bel ieved t o  happen as l oca l i zed  events. Because such events are 

f r e e  t o  occur anywhere throughout the  basin we envis ion a  s p a t i a l l y  uniform 

f l u x  from surface l a y e r  t o  intermediate layer,  which i s  represented by a  

speci f  l e d  volume t ranspor t  o f  f reon concentrat ion ell t )  . Lateral  mix ing 

a lso occurs uni formly throughout the basin s t i r r i n g  up t r a c e r  i n  the i n t e r -  

mediate layer. It i s  therefore  assumed t h a t  the amount of freon convected 

from above i n  a  given t ime increment i s  "instantaneously" d i l u t e d  t o  a  un i -  

form concentrat ion throughout the intermediate 1  ayer. Th is  representat ive 



Figure  3.2: Sckeniatic out1 in ir lg  t h e  overf low process. The dashed reg ion  i s 
t h e  in termedia te  1 ayer from where the overflow o r i g i n a t e s .  



concentrat ion eo( t )  i s then a1 so the  concentrat ion o f  the  overflow, whose 

t ranspor t  matches the convective t ransport .  To keep the s i t u a t i o n  as simple 

as possib le we have chosen t o  ignore any d i f f u s i o n  between t he  intermediate 

l aye r  and the abyssal layer,  arguing t h a t  t he  e f f e c t  o f  such d i f f u s i o n  i s  o f  

secondary importance re1 a t i  ve t o  the convection. 

The f reon budget f o r  the  intermediate 1 ayer t h a t  r e s u l t s  from t h i s  

convective source and overf low s ink  i s  represented as f o l l  ows, 

where F = t o t a l  amount o f  f reon i n  the intermediate layer, 

Q = t ranspor t  i n t o / o u t  o f  the  intermediate layer ,  

ei( t )  = surface l aye r  concentration, 

and eo( t )  = i ntermediate 1 ayer concentrat ion (overf low concentrat ion). 

The quant i ty  of freon F i s  equal t o  Yeo( t )  where V = volume o f  the 

intermediate layer,  and const ra in ing V t o  remain constant the above 

expression can be w r i t t e n  

where TR = residence t ime o f  the  intermediate layer.  

Assuming t h a t  the intermediate l aye r  i s  i n i t i a l l y  freon-free, the  so lu t ion  

t o  (3.11 i s  

The two l i m i t s  o f  (3.2) are as fo l lows. I f  the residence t ime o f  the l aye r  

i s  much smaller than the t ime scale over which the i npu t  changes, then the 

overf low concentrat ion mimics the surface water concentration, o r  i n  terms o f  

(3.2), 



I n  t h e  opposi te extreme when t h e  i n p u t  t ime scale i s  s u b s t a n t i a l l y  s h o r t e r  

than t h e  residence time, (3.2) g ives  

which says t h a t  successive i n p u t  concentrat ions a re  cont inuously being mixed 

i n  t h e  in termedia te  l aye r .  I n  t h e  former l i m i t  no te  then t h a t  t he re  i s  no 

need f o r  t h e  overf low bas in  model i n  so f a r  as determining t h e  core concen- 

t r a t i o n  requ i red  a t  5 0 ' ~ .  

F igu re  3.3 shows t h e  surface 1 ayer F-12 concent ra t ion  versus t ime f rom 

1950 t o  1983 using s o l u b i l i t y  values f o r  O*C, 35O/oo (1983 i s  t h e  y e a r  t h e  

f r e o n  data  was c o l l e c t e d  i n  t h e  reg ion  o f  t h e  NKG) . The s i l l  depth o f  t h e  

Faeroe-Bank Channel i s  "850 m. We assume t h a t  t h e  sur face l a y e r  i s  approxi-  

mately 300 m t h i c k ,  and t h a t  t h e  in termedia te  l a y e r  extends f rom t h e r e  t o  

-1000 m. Est imates f o r  t h e  over f low o f  t h e  Iceland-Scotland System p u t  t h e  

t r a n s p o r t  a t  roughly 1-2 Sverdrups ( f o r  example, Worthington, 13701. Approx- 

imat ing  t h e  1 a t e r a l  ex ten t  o f  t h e  reg ion which suppl i e s  water t o  t h i s  over- 

f l o w  then g ives  an est imate o f  t h e  residence t ime o f  t h e  in termedia te  l a y e r  

TR - 10 years. Th is  value i s  i n  between t h e  l i m i t s  (3.3) and (3.41, and 

t h e  r e s u l t i n g  F-12 over f low concent ra t ion  versus t ime i s  shown i n  F igu re  3.3 

compared w i t h  t h e  sur face water concentrat ion.  

There has been on ly  one c r u i s e  which has sampled f reon  near t h e  Faeroe- 

Bank Channel. Th is  was t h e  HUDSON 82-001 exped i t i on  conducted i n  1982. 

B u l l  i s t e r  (1984) graphs t h e  values o f  f reon  versus dens i t y  f o r  t h e  two sta- 

t i o n s  nearest  t h e  s i l l .  Using t h e  est imate o f  t h e  over f low dens i t y  t h e r e  

from S w i f t  (1984) t h i s  g ives  a F-12 over f low concent ra t ion  o f  "1 p-mole/kg i n  

1982, which i s reasonably c l o s e  t o  t h e  bas in  model value f rom F igu re  3.3. 

(Note t h a t  t h e  agreement cou ld  be made p e r f e c t  by adding a small amount o f  

mix ing  w i t h  t h e  abyssal l aye r . )  

The F-1l:F-12 Ra t io  

One aspect o f  f r e o n  t h a t  has a use fu l  a p p l i c a t i o n  i s  t h e  f a c t  t h a t  t h e  

amount o f  F-11 i n  t h e  atmosphere (and sur face water) has been increas ing a t  



1950 Time (yr) 1983 

Figure 3.3: Concentrations o f  F-12 i n  the  surface water and overflow water, 
assumi ng a residence time of 10 years f o r  the  intermediate 1 ayer o f  the over- 
f low basin. The f i r s t  measurement (year  one) corresponds t o  1950, and 1983 
i s  the year the ABCE f reon data was col lected.  



a quicker r a t e  than t h a t  o f  F-12 over much o f  the  t ime t h a t  the two have been 

present. F igure 3.4 p l o t s  the  r a t i o  o f  the  concentrat ion o f  F-11 t o  t h a t  of 

F-12 i n  the surface water versus time. Suppose the water which forms a cur -  

r e n t  exh ib i t s  t h i s  t rend and as i t  progresses downstream mixes e n t i  r e l y  w i t h  

f l u i d  t h a t  i s  freon-free. This means t h a t  wh i le  the  F-11 and F-12 content  o f  

the water decreases, the r e l a t i v e  amount remains the  same as i t  was when the 

water l e f t  i t s  source, i .e. the value o f  the r a t i o  remains constant. Since 

the r a t i o  a t  the source i s  constant ly increasing, t h i s  means the water down- 

stream can be matched t o  the t ime when i t  was i so l a ted  from the  source, so 

i nd i ca t i ng  the age o f  the water and the  speed o f  the current .  

This technique has been used by Weiss e t  a l .  (1985) t o  determine t he  

age o f  h igh f reon intermediate water along the  western boundary o f  the South 

A t lan t i c ,  and by Smethie and Trumbore (1984) appl ied t o  the DWBC. I n  both  

instances i npu t  funct ions were derived from the atmospheric concentrat ion 

data using s o l u b i l i t i e s  appropr iate t o  the  source waters ( t h e  Labrador Sea 

and Norwegian-Green1 and Sea respect ively)  . The corresponding r a t i o  curves 

were then used t o  determine the  age. dote t h a t  t h i s  corresponds p rec i se l y  t o  

using ei ( t )  as the i npu t  f o r  the DWBC, 1.e. ignor ing the e f f e c t  o f  t he  f o r -  

mation process. I n  F igure 3.4 i t  i s  seen t h a t  F-1l:F-12 r a t i o  o f  ei( t )  

f l a t t e n s  ou t  as o f  1978. The above r a t i o  curves e x h i b i t  t h i s  fea tu re  accord- 

ing ly ,  which means t h a t  a measured value of .  the r a t i o  near t h a t  l e v e l  can a t  

best  determine the age w i t h i n  a range o f  poss ib le  values. This d i f f i c u l t y  

arose i n  both studies. 

I n  the overflow basin model we can eas i l y  see how the  F-1l:F-12 r a t i o  

i s  a f fec ted  by the  overf low process. I n  the  small residence t ime l i m i t  t he  

r a t i o  o f  the overf lowing water i s  i den t i ca l  t o  t h a t  o f  the surface water (as 

are the  concentrat ions themselves) . I n  the  1 arge residence t ime 1 i m i  t, (3.4) 
g ives 
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Figure 3.4: Value o f  the  F-1l:F-12 r a t i o  i n  the  surface water o f  the over- 
f low basin. 



where R,( t )  = r a t1  o o f  overf low water, 

'i , = surface water concentrat ion o f  F-11, 

'i = surface water concentrat ion o f  F-12. 

Note t h a t  i n  both  1 i m i t s  the r a t i o  i s  independent o f  the residence t ime 
TR. 

I n  one case i t  i s  the r a t i o  o f  the  concentrations, and i n  the  o ther  i t  i s the  

r a t i o  o f  t h e i r  i n t eg ra l  s. These two curves a re  p l o t t e d  i n  F igure 3.5. The 

d i f ference between them represents the maximum extent  by which the F-1l:F-12 

r a t i o  can be a1 tered i n  the  overf low basin. 

I n  between these l i m i t s  the r a t i o  curve does depend on TR. The case 

f o r  TR = 10 y r  i s  a1 so p l o t t e d  i n  Figure 3.5. Note t h a t  because o f  t h e  

averaging process t h a t  occurs i n  t he  basin the 10 year overf low curve mono- 

t o n i c a l l y  increases i n  t ime i n  con t ras t  t o  t h a t  f o r  the surface water. Th is  

means then no t  only are  the r a t i o s  lowered, b u t  the  ambiguity i n  determining 

the  age no longer ex is ts .  These r e s u l t s  suggest t h a t  i t  i s  important  t o  

consider the overf low process when apply ing the  f reon da t ing  technique. 

Boundary Current Model s 

I n  the ocean as newly formed water f lows over a s i l l  i t  proceeds down- 

slope and ent ra ins  water, forming a cu r ren t  o f  increased strength. Through- 

o u t  the length  o f  the cu r ren t  i t  i s  constant ly mixing w i t h  surrounding f l u i d .  

The f l u i d  w i t h  which i t  mixes contains vary ing amounts o f  t he  p roper t ies  

which are being advected by the flow, and f o r  the case o f  freon i t  i s  usua l l y  

assumed t h a t  the l eve l  i n  the neighboring f l u i d  i s  neg l i g i b l e  compared w i t h  

t h a t  i n  the current. We are present ly  considering only the core o f  the f l ow  

and w i t h i n  t h i s  context  can devise a s imulat ion o f  the mix ing process t h a t  

enables us t o  quan t i ta t i ve ly  discuss the r a t i o  dat ing process and the f reon- 

f r e e  mix ing assumption t h a t  goes w i t h  it. 

We assume t h a t  the current, which has no "thickness" and i s  represented 

by a speed U, f lows adjacent t o  a reservo i r  which i s  character ized by a 

given (constant) concentrat ion o f  f reon eB. The mixing t h a t  occurs i s  

represented by a d i f f u s i v e  time scale (as i n  chapter two). The governing 

equation f o r  the evo lu t ion o f  f reon i n  the cu r ren t  i s  



ABCE 

Time (yr) 

Figure 3.5: Value o f  the  F-1l:F-12 r a t i o  i n  t he  overf low water compared t o  
t h a t  i n  the  surface water of the  basin. The two overf low curves are those 
f o r  a 10 year residence t ime and an i n f i n i t e l y  long residence time. The 
s o l i d  l i n e  marks the  r a t i o  value o f  1.97, t h a t  value a t  5 0 O ~  i n  the  core o f  
the  DWBC as ex t rapo la ted upstream using t he  ABCE data from 1983. It i s  seen 
t h a t  t he  TR = 10 year  curve reaches t h i s  value -8.5 years p r i o r  t o  1983, 
wh i le  the  surface water curve reaches i t  "13 years before. 



where e(x, t )  = freon concentrat ion i n  the  cu r ren t  

and -c = d i f f u s i v e  decay time. 

A simple scale analysis (using the d i f f u s i v i t i e s  estimated i n  chapter 

two and t yp i ca l  lengths scales o f  the DWBC f reon s igna l )  suggests t h a t  ver- 

t i c a l  mix ing i n  the  cu r ren t  i s  as important as cross-stream 1 a te ra l  mixing, 

and t h a t  alongstream l a t e r a l  mix ing i s  neg l i g i b l e  w i t h  respect t o  these. I n  

1 i n e  w i t h  t h i s ,  i n  (3.6) we have ignored the l a t t e r  and have represented the 

o ther  two by a sing1 e decay term. The quant i ty  eB should be thought o f  

as a basin-wide average concentrat ion o f  the  surrounding f l u i d .  The upstream 

i npu t  of f reon t o  (3.6) i s  the overf low concentrat ion versus t ime t h a t  was 

computed from the  overf low basin model, and the i n i t i a l  cond i t i on  i s  t h a t  

the l e v e l  o f  t r ace r  i n  the cu r ren t  (and overflow) i s  the same as t h a t  i n  the 

reservo i r .  The so lu t i on  t o  (3.6) i s  

The data s e t  t h a t  was described i n  chapter two contains f reon measure- 

ments a t  the s t a t i o n  loca t ions  o f  the OCEAEIUS 134 c ru i se  i n  1983 (Figure 

2.19). This provides a value o f  the core concentrat ion a t  w i t h  which t o  

compare e(x  = 5500 km, t = 34 y r ) ,  where x = 5500 km i s  the  estimated d i s -  

tance along the DWBC from the Iceland-Scotland overf low t o  !%OW, and t = 

34 y r  corresponds t o  1983. A value o f  eB t o  use i s  t he  f reon equiva lent  

o f  the oxygen background t h a t  was used i n  chapter two (Figure 2.27). Wi th  

these we use (3.7) t o  deterrnine a value of r = 1.06 y r  and ob ta in  how the 

core concentrat ion o f  f reon changes i n  t ime a t  50&, which i s  the informat ion 

required f o r  the NRG t r ans fe r  model. 

Consider the expression f o r  the F-1l:F-12 r a t i o  a t  5 0 " ~  as computed 

from (3.71, 



where eel' egl 
= overf  1 ow, background concentrat ions o f  F-1 1 

'FI2 = overflow, background concentrat ions o f  F-12 

- 

L = distance from overf'l ow t o  50°w. 

The term i n  square brackets i n  (3.8) represents the  dev ia t ion o f  the r a t i o  

from t h a t  a t  the  overf low (besides from the. delay i n  time due t o  advection) . 
a(p)eg 

I n  order f o r  the  dev ia t ion  t o  be small, the  quant i ty  -- must be small 
eo 

f o r  both F-11 and F-12. The parameter p i s  a Peclet  number which measures 

the advective s t rength o f  the  cu r ren t  versus the mix ing t h a t  occurs, and f o r  

l a rge  values of p the  funct ion a(p) i s  small. So there  a re  three condi- 
t i o n s  which w i l l  cause the r a t i o  o f  the  water t o  remain unchanged through the 

course o f  progressing downstream: very strong input ,  very weak background, 

o r  very weak mix ing between the f low and surrounding f 1 uid. 

This imp l ies  t h a t  t he  freon overflow concentrat ions have indeed become 
l a rge  enough by 1983 t h a t  the dev ia t ion due t o  non-zero background i s  ney l ig -  

i b l  e, i .e. the  f reon da t ing  technique i s appl i cab l  e t o  the  present data set. 

However, when the measured r a t i o  i s matched t o  t he  overf low r a t i o  i t  gives an 

advective t ime of 8.5 yrs ,  which trans1 ates t o  a core speed o f  approximately 



2 cm/sec . Thi s value seems too small . Be1 ow we discuss two separate bound- 

a ry  cu r ren t  model s t h a t  t r e a t  the mix ing d i f f e r e n t l y  and r e s u l t  i n  l a r g e r  

estimated core speeds f o r  the same overf low r a t i o  curve o f  Figure 3.5. 

Using the value o f  r and a value o f  U = 8 cdsec ,  the  Pec le t  number 

i s  found t o  be 0 (  1). This means t h a t  the freon overflow concentrat ions have 

become la rge  enough by 1983 t h a t  the dev ia t ion due t o  nonzero background i s  

neg l ig ib le ,  i .e. the freon-f ree mix ing assumption appears v a l i d  i n  the  pre- 

sent case. I f  we compute the age o f  the water as was done i n  the studies 

described above, t h i s  r e s u l t s  i n  a DWBC core speed o f  "1 cm/sec (Figure 3.5). 

If we include the overf low process b u t  s t i l l  make the f reon-f ree mix ing 

assumption, t h i s  increases the p red i c t i on  t o  "2 cm/sec. These values seem 

too  small. For  example, t o  ge t  a t ranspor t  o f  10 Sverdrups ( t h e  value e s t i -  

mated by Worthington (1971)) f o r  the  DWBC) f o r  a cu r ren t  200 km wide and 

1000 m deep, the average f low speed must be 5 c d s e c .  Below we discuss two 

separate boundary cu r ren t  model s which conta in  d i f f e r e n t  m i x i  r ~ g  schemes t h a t  

r e s u l t  i n  l a r g e r  estimated .core speeds f o r  the same overf low r a t i o  curve o f  

Figure 3.5. 

A) Back-Mixing Model 

Expressiori (3.8) t e l l  s  us j u s t  how 1 arge the  background concentrat ion 

o f  f reon would have t o  be i n  order t o  a f f e c t  t he  r a t i o  o f  the  cu r ren t  a t  

5 0 ' ~ .  When appl ied as above, t h i s  o f  course assumes t h a t  the  background 

value computed from the  OCEANUS 134 data se t  i s  v a l i d  a t  a1 1 times and a t  

every l oca t i on  along the current ,  which i s  c e r t a i n l y  no t  t l i e  case. Even so, 

the assumption o f  f reon- f ree mixing r e s u l t s  i n  an unreal i s t i c  core speed and 

suggests t h a t  we explore the p o s s i b i l i t y  t h a t  t h i s  i s  no t  the  case. Two 

scenarios are  considered here, the  f i r s t  o f  which i s based on the f o l l   OW^ ng 

simple idea. We assume t h a t  the f i r s t  b i t  o f  water contain ing f reon which 

overflows the  s i l l  does mix e n t i r e l y  w i t h  f reon- f ree water. However, the  

amount o f  f reon t h a t  i t  imparts along i t s  path t o  the surrounding f l u i d  i s  

enough t o  s i g n i f i c a n t l y  r a i s e  the f reon l e v e l  there. Thus the next  b i t  of 

water t h a t  f lows through mixes no t  w i t h  f reon-free water, b u t  w i th  water t h a t  

has a concentrat ion reminiscent of the  previous flow, i .e. some o f  boundary 

cu r ren t  water t h a t  d i f fuses  i n t o  the  neighboring f l u i d  then proceeds t o  



back-mix w i t h  newer boundary cu r ren t  water. It i s  ev ident  then why t h i s  

ef fect  can reduce the r a t i o  i n  the current, f o r  i t s  water i s  constant ly 

mixing w i t h  older; lower r a t i o  water. The d i f fe rence  between t h i s  model and 

the  process described by equation (3.6) i s  t h a t  here we keep t rack o f  the 

surrounding f l u i d  as we1 1 as the  f l u i d  i n  t he  current .  

Consider a shor t  sect ion of boundary cu r ren t  (and surrounding f l u i d )  

as depicted i n  Figure 3.6, extending from the  overf low region. We i d e n t i f y  

three regions: the inner  core which moves w i t h  constant speed U, ( I  .e. the 

cur rent ) ,  the adjacent shoulder water (which i s  s t i l l ) ,  and the " i n f i n i t e "  
amount of f l u i d  which surrounds t h i s .  It was mentioned e a r l i e r  t h a t  v e r t i c a l  

mix ing and 1 a te ra l  cross-stream mixing are o f  comparable strength i n  the cur -  

r e n t  (and t h a t  a1 ongstream mixing can be ignored). We are now more prec ise 

about t h i  s. Consider the  advecti  ve-di f f us i  ve equation 

where x = alongstream distance, 

y = cross-stream distance, 
z = v e r t i c a l  d i  stance, 

K , v = 1 a te ra l  , v e r t i c a l  d i  f f us i  v i  ty (assumed constant) , 
u = f 1 ow speed, 

and e = f reon concentrat ion. 

We l e t  H, L and Lx represent the ve r t i ca l ,  cross-stream, and alongstream 
Y S  

leng th  scales o f  the t racer  d i s t r i bu t i on .  Inspect ion o f  the ABCE data shows 

t h a t  i n  the  boundary cu r ren t  H << L << Lx. I f  (3.9) i s  scaled accordingly 
Y 

i t  i s  seen t h a t  the r a t i o  o f  the alongstream d i f f u s i v e  term t o  the cross- 
2 stream d i f fus ive  term i s  O(L /L ) << 1 and so t o  lowest order the balance 

Y x 
i s  

We now introduce a stretched coordinate i n  the v e r t i c a l  d i rec t ion .  I n  

pa r t i cu l a r ,  we def i ne 



Figure 3.6: Schematic depicting the  DWBC as being composed of marly short  
sections of length La. An enlargement i s  shown o f  the f i r s t  such section 
or ig inat ing from the overflow basin. The flow i s  confined t o  the innermost 
region. 



i n  terms o f  which (3.10) becomes 

I n  chapter two we constrained the values of K and v by the r e l a t i o n  (2.281, 

which says t h a t  K / V  - lo5 (see (2.29)). Using H - 1000 rn, L " 300 km 
Y 

(F igure 3.7) t h i s  r esu l t s  i n  L ~ ~ / H ~  - lo5  as wel l ,  which impl ies  t h a t  

both  types o f  mixing are equal ly  as important. We therefore  set  the r a t i o  
2 

K H ~ / ~ L  = 1, 
Y 

and rewr i t e  (3.11) as 

where 

The stretcned coordinate then increases the v e r t i c a l  d i f f u s i v e  length  t o  tne 

s i ze  o f  the  cross-stream d i f fus ive  1 ength, so t h a t  d i f f u s i o n  acts  i so t rop i c -  

a l l y  i n  the y-z '  plane. 

It i s  t h i s  coordinate frame i n  which the f reon s ignal  associated w i t h  

the boundary cu r ren t  appears c i r c u l a r  (Figure 3.7) and f o r  which the  schem- 

a t i c  i n  Figure 3.6 applies. Accordingly, the sect ion o f  boundary cu r ren t  i s  

described using c y l i n d r i c a l  coordinates (x, r, A). The x d i r e c t i o n  i s  taken 

alongstream, and r and A, the rad ia l  and azimuthal coordinates, are defined 

by 
y = r cosx, 

Z '  = r sinx. 

Equation (3.12) i s  then w r i t t e n  

It i s  assumed t h a t  the  concentrat ion o f  t r ace r  i s  independent o f  A. ( I n  the 

ou te r  reservo i r  t l i e  concentrat ion i s  taken t o  be zero.) The alongstream and 
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Figure  3.7: V e r t i c a l  sect ion  o f  F-12 ( p-moles/kg x 10)' used t o  est imate  t h e  
scales of t h e  DWBC signal (present  aga inst  t h e  s lope) .  



r ad i  a1 dependency i s t rea ted  using a f i n i  te-d i  f ference representat ion so t h a t  

t he  concentrat ion i n  each region i s  characterized by a s ing le  value. 

The leng th  o f  the  sect ion La i s  taken small enough t h a t  f l u i d  

f lushes through the core region very quickly. Correspondingly, i t  i s  assumed 

t h a t  the region adjusts i n s t a n t l y  t o  changes i n  input ,  and so i s  governed by 

the  steady s ta te  balance 

K 
Uc$ = - (rer), a t  a l l  times. r (3.14a) 

The shoulder water acquires t racer  by way o f  d i f f u s i o n  from the core, and 

loses t r ace r  through mixing w i t h  the f l u i d  i n  the outer  reservoi  r. The 

shoul der water i s governed by the equation 

Using upstream d i f fe renc ing  i n  the alongstream d i rec t ion,  (3.14a) and 

(3.14b) become 

where the subscr ipt  j denotes the x -g r i d  p o i n t  index (La i s  the g r i d  

spacing). In tey  r a t i n g  (3.15a) and (3.15b) over the  cross-sectional area o f  

t he  core and shoulder regions respect ive ly  g ives 

where the l i m i t s  o f  i n t eg ra t i on  are  depicted i n  F igure  3.6. 



Using centered d i f fe renc ing  i n  the r a d i a l  d i rec t ion ,  (3.16a) and 

( 3.16b) become 

where A r c  and nr, are  the g r i d  spacings, A denotes cross-sectional area, 

and the subscr ipts c and s are the rad ia l  g r i d  p o i n t  ind ices r e f e r r i n g  t o  

the  core and shoulder regions respect ive ly  (Figure 3.6). 

The i n p u t  i n t o  the  core region, ec ( t )  , i s  s e t  equal t o  the over- 
.i- 1 

f l ow  eo( t ) .  Also, we do no t  want the shoulder region t o  be too vast  ( t o  

a1 1 ow i t  t o  read i l y  accumulate t racer )  , so AS i s  se t  equal t o  Ac . (Th is  

serves as a s i m p l i f i c a t i o n  as wel l .  ) Then w i t h  some rearratlgement (3.17a) 

and (3.17b) become 

'a where Tr = = residence time o f  the f l u i d  i n  the core region, 
C 

AcArc 1 
'c = (--) ; = di f fus ive  time between the core and shoulder, 

C 

= d i f f u s i v e  decqy t ime o f  the  shoulder i n t o  the reservo i r ,  s  K s 

and PC, Ps = outer  perimeter of core, shoulder region. 



The parameter y i s  c a l l e d  the  rese rvo i r  parameter. The value o f  l / y  

represents the f r a c t i o n  of the core concentrat ion t h a t  the shoulder water 

would e q u i l i b r a t e  t o  i f  given s u f f i c i e n t  time. This parameter i s  t t le key t o  

the model. When T~ + 0 ( Y  + -1 the outer reservo i r  p r o h i b i t s  any t r ace r  

from accumulating i n  the shoulder region, so the core mixes w i t h  f reon- f  ree 

water. We are in te res ted  then i n  f i n i t e  values o f  y. When rS + - ( = 1) 

t h i s  corresponds t o  the case when the shoulder water i s most r ead i l y  f i l l e d  

w i t h  t racer  ( t he  outer reservo i r  i s  "turned o f f " ) .  Thus the 1  arger the value 

of y, the more the  shoulder water ac ts  as a reservo i r  s ink  f o r  the  core. 

When y = 1 t h i s  i s  referred t o  as the f i n i t e  reservo i r  case, and when y + 
t h i s  i s  c a l l e d  the  i n f i n i t e  reservo i r  case. I n  between these 1 i m i  ts ,  the 

shoulder water can be thought of as a  semi - in f in i te  reservo i r .  

I n  the l i m i t  when the mix ing between the  core and shoulder goes t o  zero 

( r C  9 - 1  the concentrat ion of f reon leaving the core i s  the same as t h a t  

which enters. I n  the l i m i t  of very strong mixing (T, + 0) the coupled set  
(3.18) g ives 

(remember t h a t  ec L t j  and es (tl vary on the t ime scale o f  the inpu t ) .  For  
J J 

Y > 1 t h i s  impl ies  t h a t  e  ( t )  = es ( t )  = 0, 
C: 

which i s  cons is tent  i n  t h a t  

no f reon can accumulate i n  e i t h e r  the-core o r  shoulder. When y = 1 the 

shoulder w i l l  i n s t a n t l y  e q u i l i b r a t e  t o  the  l e v e l  i n  the core, and the  govern- 

i n g  equations t e l l  us only t h a t  e  ( t )  = es ( t ) .  It i s  obvious t h a t  we do 
t j 

no t  wish t o  consider e i t h e r  o f  these cases, thus rc i s  constrained t o  be 

> Tr (and f i n i t e ) .  - 
Because the f l u i d  spends only a  shor t  t ime ins ide  the core and because 

the r a t i o  o f  the shoul der con t inua l l y  increases as we1 1, the amount by which 

the r a t i o  o f  the boundary cu r ren t  i s  lowered i s  minimal. However i f  t h i s  

process occurs along the  e n t i r e  leng th  o f  t he  cu r ren t  the  e f f e c t  can be sub- 

s t a n t i a l .  So we t h i nk  o f  the  boundary cu r ren t  (and shoulder water) then as 



being made up o f  many o f  these sections, each one represented by a d i f f e r e n t  

value o f  the index j. The output  from the  core o f  a g iven sect ion i s  i n  

t u r n  t he  i npu t  t o  t h a t  o f  the adjacent one. However we do no t  a l low in te rac -  

t i o n  between adjacent shoulder regions. (Note t h a t  t h i s  i s  cons is tent  i n  

t h a t  we are ignor ing  alongstream d i f fus ion . )  It i s  ev ident  t h a t  the  amount 

by which the core r a t i o  decreases depends on the length  o f  t ime the f l u i d  

spends i n  each section, which w i l l  enable us t o  t r ack  the  r a t i o  versus advec- 
t i v e  t ime and match the observed r a t i o  i n  the  data. 

The so lu t i on  t o  (3.18) i s  

1 6 
where r = - - 

T ( Y  -,-I s 
C 

These represent the  concentrat ions f o r  the f i r s t  sect ion 1 , and (3.19a) 

should i n  t u r n  be used as the i n p u t  t o  t he  next  core. Considering successive 

sections as such, however, r e s u l t s  i n  an insurmountable amount o f  algebra, 

and a s imp l i f y ing  assumption must be made. What we do i s  approximate the  

overf low concentrat ion curve o f  Figure 3.3 ( f o r  both F-11 and F-12) by an 

exponential . 
When the expression eo ( t )  = Ae t'T i s  subs t i tu ted  i n t o  (3.191, t h i  s 

gives 



The important t h i ng  here i s  t h a t  t he  terms propor t iona l  t o  ert decay very 
qu ick ly  r e l a t i v e  t o  those proport ional  t o  eo( t )  (which grow i n  t ime).  Th is  

means t h a t  t o  a  good approximation, 

where Gc =- I +  6 

r c ( l  + a12(-r + 

s 

and - 1 
Gs - 1 r c ( l  + 6 ) ( - r  + T) 

With t h i s  being the case i t  i s  s t ra ight forward t o  combine successive sec- 

t i ons .  A f t e r  n  sections (3.21) g ives t h a t  the concentrat ions are  

The functions Gc and Gs are  c a l l e d  decay f ac to r s  (whose magnitudes 

a re  - < 1). For  F - l l  the overf low concentrat ion growth scale T i s  " 5 yr, 

and f o r  F-12, T " 7 yr. It i s  t h i s  s l i g h t  d i f fe rence  which i s  the reason 

why the r a t i o  proceeds t o  decrease as the f l u i d  progresses downstream. The 
Gc(T = 5) n 

guanti  t y  k c ( ,  = ,)I measures t h i s  decrease, and i n  1  i ne  w i t h  what was 

mentioned above, only f o r  a  1  arge enough n i s  the  d i f ference substant ia l .  

F igure 3.8 p l o t s  the core concentrat ion decay f a c t o r  and r a t i o  decay f a c t o r  

versus the strength o f  the mixing between core and shoulder f o r  the three 

d i f f e r e n t  types o f  reservo i rs  ( the re  i s  no r a t i o  decay f o r  the i n f i n i t e  

reservoi  r )  . As expected the concentrat ion decays more w i  t h  small e r  rc. 
Note the  d i f fe rence  between the  r a t i o  decay o f  t he  f i n i t e  reservo i r  case 



0 finite reservoir 
A semi-infinite reservoir 
x infinite reservoir 

F igure 3.8: The dependence o f  the  core decay f a c t o r  on the  strength of t h e  
mix ing between the core and shoulder f o r  three d i f f e r e n t  values o f  the  reser- 
v o i r  parameter y: y = 1 ( f i n i t e  reservo i r ) ,  y = 1.25 ( sem i - i n f i n i t e  
reservo i r )  , y + a ( i n f i n i t e  reservoi  r )  . The value o f  the  residence t ime 
o f  t he  sections i s  taken t o  be .2 years. (a)  The f reon  concentrat ion decay 

Gc(T = 5 yr) + Gc(T = 7 y r )  
f a c t o r  2 



0 finite reservoir 
A semi-infinite reservoir 

Gc(T = 5 yr)  
( b) The freon ratio decay factor Gc(T = I yr) 



versus the semi - in f in i  t e  case. I n  t he  l a t t e r ,  n o t  only i s the  decay l e s s  

pronounced, b u t  f o r  small values o f  
rc the decay decreases w i t h  increased 

mixing. This i s  because f o r  very strong mixing no t r ace r  i s  able t o  accumu- 

1 a te  w i t h i n  the  shoulder water ( i n  con t ras t  t o  a f i n i t e  reservo i r  where the - 

shoulder l e v e l  approaches t h a t  o f  the  cur rent ) .  

As seen i n  Figure 3.9, f o r  a g iven value o f  mixing, as the s ize o f  the 

reservoi  r parameter gets small e r  the  amount o f  r a t i o  decay i ncreases, whereas 

the  amount o f  concentrat ion decay decreases. So depending on the value o f  y 

which i s  chosen, the model w i l l  p r e d i c t  a d i f f e r e n t  core speed. Note a1 so 

t h a t  w i t h i n  t he  context o f  t h i s  model the f reon dat ing technique involves no t  

only matching the r a t i o  bu t  the concentrat ion as wel l .  The technique i s  

appl ied as fo l lows. 

F i  r s t  we choose the magnitude o f  the  residence t ime t h a t  character izes 

the component sections. The value t h a t  was used i s  Tr = .2 y r  ( t h i  s  i s 

a rb i t r a r y ,  a1 though the smaller the  value o f  Tr, the  higher the reso l  u- 
t i o n ) .  For a given value o f  y then there are  two unknowns, the s t rength o f  

t he  mix ing rc and the  value o f  n. It i s then j u s t  a mat ter  o f  determi ning 

these unknowns by f o r c i ng  the core concentrat ion o f  F-12 and the value o f  the 

r a t i o  ( o r  equ iva lent ly  t he  two concentrat ions themselves) t o  match the  data 

a t  50"~. (The ABCE reg ion extends only t o  55'~; an ext rapo la t ion was used t o  

ob ta in  a core value o f  3.34 p-moles/kg x 10 f o r  F-12 and 1.97 f o r  the  

F-11512 r a t i o  a t  50~1.1 It should be noted t h a t  even though we make use o f  

(3.221, the actual  eo( t )  curves are used i n  t he  ca l cu la t i on  ( ra ther  than 

the exponential approximations) . 
For the case o f  a f i n i t e  reservo i r  ( Y  = 1) i t  i s  no t  possib le t o  get  

a cons is tent  solut ion.  This i s  because when t he  r a t i o  i s  matched t o  t he  

value i n  the data there i s too much t r ace r  i n  t h e  shoulder water t o  d r i v e  
1 down the F-12 concentration. I n  t he  i n f i n i t e  r ese rvo i r  case, Gc = 

1 
so t he  concentrat ion decay amp1 i t u d e  a f t e r  n sect ions i s ( - 1  . From 

L 

(3.7) we see t h a t  i n  t he  continuous case the  equ iva lent  quan t i t y  i s  e - IE 
( the re  i s  no background so eB = 0) .  I n  the 1 i m i t  as n s the  f i n i t e -  

d i f fe rence  so lu t ion  approaches the continuous resu l t .  Th is  can be seen by 



Figure 3.9: The dependence o f  the  core concentration decay fac tor  and core 
r a t i o  decay fac tor  on the  s ize  o f  the reservoir  parameter y. The strength 
of the  mixing between the  core and shoulder i s  held constant ('rc = 1.5 y r )  
as i s the residence time o f  the sections (Tr  = .2 y r ) .  



La L 1 
n 

n o t i n g t h a t  s = - = -  a n d b y d e f i n i t i o n  l i m  - - 
'C 

C 
u.rCn * 

L - -  n+- + (++I 
e "C ( r c  and r are equivalent  i n  t h i s  case). Thus the  scenario which 

accompanies the  freon-f ree mix ing assumption i s  contained as a special case 

w i  t h i  n the  present boundary cu r ren t  model . 
I n  Figure 3.10 the resu l t i ng  core speeds are p l o t t e d  versus various 

values o f  y. For Y near ly equal t o  one, the  model g ives a core speed as 
1 arge as 6 cm/sec (remember t h i  s i s  an average over the 1 ength o f  current ,  

from the overf low t o  50°w) . As a possi b l  e guide i n determining which o f  

these examples might be the most r e a l i s t i c  i n  terms of the ocean, we can con- 

s ide r  the corresponding values of rC and es ( t )  f o r  each example. Smaller 
j 

val ues of the  reservoi  r parameter requi  r e  stronger m ix i  ng ( i n each exampl e 

-C > T which accompany higher shoulder water concentrat ions (F igure 3.11). 
C 

An observation t h a t  has l e d  t o  the freon-free mix ing assumption i s  t h a t  
successive loca t ions  along a cu r ren t  show 1 ittl e v a r i a t i o n  i n  the  core value 

o f  the F-11:F-12 r a t i o  (Smethie and Trumbore, 1984). Because the  r a t i o  i s  
n o t  a conserved quan t i t y  i n  t h i  s model ( f o r  f i n i t e  i t  might seem then 

t h a t  the resu l t i ng  downstream v a r i a t i o n  con t rad ic ts  t h i s  observation. Th i s  

i s  n o t  the case however. I n  f ac t ,  even though the amount o f  decay var ies  

w i t h  y, the alonystream change i n  r a t i o  i s  comparable i n  each case. 

The OCEANUS 134 data s e t  contains several crossings o f  the DWBC w i t h  

which t o  compare the model p red ic t ions  concerning t h i s  po in t .  I n  the  1 i m i t  

o f  f reon-free mix ing ( y  , 1 the  core r a t i o  var ies  s l  i g l l t l y  alongstream 

because the r a t i o  a t  the source (overf low) i s  changing i n  time and the core 

speed i s  only 2 cm/sec. With such a small core speed the  i npu t  a t  a g iven 

t ime cannot 'propagate very f a r  downstream before another change i n  i npu t  

occurs. The r e s u l t i n g  downstream t rend  i n  r a t i o  agrees we1 1 w i t h  what i s  

observed i n  the data. I n  the opposite l i m i t  o f  Y , 1, the r a t i o  decays as 

the  f l u i d  proceeds downstream, b u t  because i t  f lows so qu ick ly  a s ignal  w i l l  

propagate a long way before the  i npu t  changes appreciably. Thus the  e f f e c t  

t h a t  caused t he  v a r i a t i o n  f o r  the  y + case has l i t t l e  consequence here, 

and i t  turns ou t  t h a t  the  decay process r e s u l t s  i n  an alongstream gradient  o f  

near ly  i den t i ca l  magnitude. I n  between these 1 i m i t s  the  importance o f  the  



Figure 3.10: The boundary current  core speed associated wi th  the  value of t h e  
reservoir  parameter. 
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Figure 3.11: Graph showing t he  mix ing t h a t  i s  required f o r  the d i f f e r e n t  core 
speeds and the resu l t i ng  cross-stream va r i a t i on  i n  concentrat ion f o r  the  back- 
mix ing model. The sol i d  1 i n e  measures t he  s t rength o f  the  mix ing between the  
core and shoulder r e l a t i v e  t o  what i t  would be i f  the core were mixing w i t h  a 
f reon-f ree shoulder. The dashed 1 i ne p l o t s  the  concentrat ion o f  the shoulder 
re1 a t i  ve t o  t h a t  o f  the core ( x  10). 



two e f f e c t s  var ies  inverse ly  making i t  hard t o  d i s t i ngu i sh  between any of t h e  

cases. The observed feature i n  the data can therefore be explained by any o f  

the examples o f  the  model (as can the  v a r i a t i o n  i n  concentrat ion, F igure 3.12). 

B )  Shear Model 

I n  the above representat ion i t  was assumed t h a t  the  boundary cu r ren t  had 

no s t ruc tu re  t o  it, i .e. the  f l o w  was represented by a s i ng le  core ve l -  
oc i ty .  It was seen t h a t  the mix ing between the core and shoulder water re- 

sul t e d  i n  decay o f  t he  core r a t i o  when the shoulder d i d  n o t  a c t  as an i n f i  n- 

i t e  reservo i r  sink. It i s  easy t o  env is ion a d i f f e r e n t  type o f  scenario which 

cou ld  a1 so decrease t he  f reon  r a t i o  o f  the  core. We consider a boundary cu r -  

r e n t  t h a t  has cross-stream shear (so t h a t  the core re fe r s  t o  only the fas test  

p a r t  o f  the  f low)  and assume t h a t  the  core mixes e n t i r e l y  w i t h  the o u t l y i n g  
weaker flow. Because t h i s  slower t r ave l  1 i ng  water i s  o lder  and has a lower 

freon ra t i o ,  t h i s  w i l l  tetld t o  d r i v e  down the core r a t i o .  We s t ruc tu re  the  

model the same way as the previous back-mixing model i n  t h a t  the boundary 

cu r ren t  i s represented as a number o f  sections. 

Consider the f i r s t  such section, which receives i t s  i n p u t  from the 

overf low as depicted i n  Figure 3.13. As before i t  i s  comprised o f  the core, 

the shoulder, and the vast amount o f  surrounding f l u i d  (which again i s  taken 

t o  be an i n f i n i t e  s ink) .  The d i f fe rence  here though i s  t h a t  the shoulder 

water i s  moving as we1 1 -- the core i s  character ized by speed Uc and the 

shoulder by US  ( <  Uc). So whereas previously the cu r ren t  corresponded t o  

j u s t  the core region, now i t  i s  made up o f  the core and shoulder together. 

We assume again t h a t  the  concentrat ions are  uniform i n  the  azimuthal d i rec -  
t i o n  and apply the same f i n i  te -d i  f ference approximations r a d i a l l y  and a1 ong- 

stream. 

I n  the core region the governing equation i s  as before, 

Because of the advection i n  the shoulder, (3.23) i s  the governing equation 

there as we1 1, w i t h  U s  rep lac i  ng Uc. A f t e r  i ntegra t i  ng over the 

cross-section and f i n i  te -d i f fe renc ing  , the  two governing equations become 



Longitude 

F-11 :F-12 Ratio 

Figure 3.12: The alongstream var ia t ion  i n  core concentration and r a t i o  as pre- 
d ic ted from the back-mixi ng model , compared wi th  t h a t  observed i n  ABCE. Three 
d i f f e r e n t  examples are shown. The curves are  normalized by the values a t  ! B o w .  



Figure 3.13: Schematic depict ing the  DWtlC as being composed o f  many short  
sections, as i n  Figure 3.6. I n  the shear niodel f low occurs i n  both the core 
and shoulder regions. 



which should be compared t o  (3.17a,b). [dl 1 labe ls  here are the same as i n  

(3.17a,b) . I  
Both ec ( t )  and es ( t )  are  se t  equal t o  the overf low eo( t )  . 

j- 1 j -1  
A1 so, we take rc << r so- that  the  l a s t  term on the r i g h t  hand side o f  s 
(3.24b3 can be ignored. (Note t h a t  as rc , 0, A r c  remains f i n i t e . )  Th is  

says t h a t  the area o f  contact  between the  core and shoulder i s  so small t h a t  

t he  d i f f u s i v e  f l u x  i n t o  the shoulder across t h i s  surface i s  neg l i g i b l e  

compared w i t h  the  f l u x  across the outer  surface o f  the  shoulder. The s e t  

(3.24a,b) can then be w r i t t e n  as 

where T =r= La residence t i n e  o f  f l u i d  i n  core region, 
rc C 

'a 
TrS = 5 residence t ime o f  f l u i d  i n  shoulder region, 

and T~ and ds are defined as before. Note t h a t  whereas i n  the previous 

back-mixing model the amount o f  shoulder water i s  comparable t o  the amount 

o f  core water, i n  the present shear model the  shoulder reg ion i s  much l a r g e r  

than the core region. Also note t h a t  i n  the  previous model the shoulder 

receives a l l  o f  i t s  t r a c e r  by way o f  d i f f u s i o n  from the core, whereas i n  t h i s  

model the shoulder receives a l l  o f  i t s  t r ace r  through advection from the 
overflow. 



The so lu t ions t o  (3.25) are  determined s t ra ight forward ly ,  

However, we must account f o r  the f a c t  t h a t  once f reon has f i l l e d  the  core, 

the  f l u i d  there mixes w i t h  f reon- f ree water u n t i  1 t h a t  t ime l a t e r  when f reon 
a lso f i l l s  the shoulder. The t ime over which t h i s  f reon-free mix ing occurs 

i s  T - T AT,. The term i n  parenthesis i n  (3.26b) represents the  
r~ rc 

shoulder concentrat ion t h a t  mixes w i t h  the core. It should therefore  be 

delayed i n  t ime by the increment bTr, 

The degree t o  which the  core speed and shoulder speed vdry can be taken 

as a parameter i n  the model. Spec i f i ca l l y  l e t  T = gT ( 8  2 1). A1 so, we 
r~ r~ 

3 - define the r a t i o  -;- - - a, which measures the discrepancy i n  decay times 
L 
C, 

0 between the  core and shoulder. It fo l lows t h a t  6 = ( 1  6 .  Dropping the  

subscr ipts on the core variables, the expression (3.27) then becomes 

This represents t he  core output  a f t e r  the f i r s t  sect ion (j=l) and must 

i n t u r n  be used as the i n p u t  i n t o  the next core. A s i m i l a r  coup1 i ng  occurs 

w i t h  t he  shoulder, b u t  note t h a t  the  shoulder evolves independently o f  the 



core. A f te r  n sections the shoulder concentrat ion w i t h  which the co re  

mixes i s  

where n( 13 - l )T r  i s  the discrepancy i n  advective t ime between t he  core and 
shoulder. It fo l lows t h a t  the concentrat ion o f  the core a f t e r  n sect ions i s  

dote t h a t  expression (3.29) i livol ves no s imp l i f y i ng  assumption concerning the  

overf  1 ow concentration, as was necessary i n  the  back-mixing model ( the reason 

f o r  t h i s  i s  the governing equations (3.25a, b) are algebraic, and the task o f  

coup1 i ng sections together remai ns manayeabl e) . 
As was the case i n  the back-mixing model, the core r a t i o  i n  the  shear 

model i s  only a l te red  s i g n i f i c a n t l y  when n i s  la rge  ( i .e. the process must 

occur throughout the 1 ength o f  t h e  cur rent ) .  As the  magnitude o f  B i s  made 

1 arger the discrepancy i n  r a t i o  between the core and shoulder increases, and 

the mix ing then causes a greater  r a t i o  decay i n  the core. However, 13 even- 

t u a l l y  becomes so l a rge  t h a t  f o r  the ma jo r i t y  o f  the t ime the core mixes w i t h  

f reon-free water. For t h i s  range o f  B then the  r a t i o  decay decreases w i t h  

increasing 8. The ef fec t  of making a l a r g e r  i s  t o  cause the  shoulder con- 

cen t ra t ion  t o  decay more s lowly r e l a t i v e  t o  t he  core. This means simply t h a t  

there i s  more f reon w i t h  which t o  in f luence the  core, so the r a t i o  decay o f  

the  core w i l l  be more pronounced. 

Figure 3.14 i l l u s t r a t e s  these e f f e c t s  on the r a t i o  decay o f  the core. 

The f i g u r e  p l o t s  the  f reon  r a t i o  as pred ic ted from (3.29) a t  t = 34 y r  

( i . e. the year the data was c o l l  ected) versus the magnitude o f  13. Note t h a t  

when a i s  made g rea te r  than 1 n o t  on ly  i s the r a t i o  lowered, b u t  t he  

value o f  B corresponding t o  the maximum decay i s  sh i f ted .  As 13 , = a1 1 

the curves w i l l  converge t o  the  i n p u t  r a t i o .  For the  case when B = 1 the  

curves a lso maintain the value o f  the input .  I n  t h i s  case the core and 



Figure 3.14: Three d i f f e r e n t  examples showing the value o f  the core r a t i  o 
a f t e r  a number of sections, as a function of the discrepancy i n  speeds 
between the core and shoulder. 



shoulder progress as one un i t ,  surrounded by a f reon-free reservo i r  (hence no 

r a t i o  decay). Note t h a t  t h i s  i s  the same se t  up as the i n f i n i t e  reservo i r  

case o f  the back-mixi ng model . 
The manner i n  which the shear model i s  app l ied t o  the data t o  determine 

age i s exact ly  t he  same as was done previously w i t h  the back-mixi ng model , 
only  i n  t h i s  case there i s  an add i t iona l  parameter. I f  a i s  maintained a t  

a f i x e d  value, then f o r  each s t t ie  matching process described e a r l i e r  g ives 
an est imate o f  the  mixing c o e f f i c i e n t  rc and the core speed. As expected, 

the core speed estimate w i l l  a t  f i r s t  increase w i t h  increasing s b u t  even- 

t u a l l y  f a l l  back t o  the f reon-free value o f  2 cm/sec. S im i l a r  curves can be 

generated f o r  d i f f e r e n t  values o f  a. Three such curves are shown i n  F igure  

3.15 (Tr i s  s e t  equal t o  .2 y r  as before) and i t  i s  evident how successive 

curves w i t h  l a r g e r  a take longer t o  reach t h e i r  peak. As seen, i t i s  pos- 

s i  b l  e t o  ob ta in  core speeds i n  the  range o f  6-8 cm/sec. 

Figure 3.16 shows two examples o f  the cross-stream v a r i a t i o n  i n  F-12 

( a t  50°w) and the  s t rength o f  t he  mix ing as a f unc t i on  o f  core speed. It i s 

the analog t o  Figure 3.11. I n  the present case the cross-stream va r i a t i on  

increases w i t h  l a r g e r  core speed: t h i s  i s  i n  con t ras t  t o  the  previous back- 

mix ing case i n  which i t  decreases. A1 so r e c a l l  t h a t  stronger mix ing i s  

required a t  l a r g e r  core speeds i n  the  previous case. Here t he  mix ing remains 

near ly constant. ( I n  each example the d i f f u s i v e  times are l a r g e r  than the 

residence times as required. 1 
A1 though the core speed i s sens i t i ve  t o  the value o f  e, the corre- 

sponding shoulder speed stays i n  the  range o f  1-2 cm/sec. This can be under- 

stood as fol lows. The shoulder water mixes w i t h  a f reon- f ree reservoir ,  thus 

i f  i t  f lows a t  2 cm/sec then a t  50°w i t s  r a t i o  w i l l  rnatch t h a t  which i s  

observed i n  the data f o r  the  core. However, the core has t o  decay by way o f  

mix ing w i t h  water o f  a lower r a t i o .  This puts  an upper bound on the shoulder 

o f  2 cm/sec. Recal l  t h a t  i n  the back-mixing mode1 the a1 ongstream va r i a t i on  

i n  core r a t i o  was near ly  independent o f  core speed. For the  same reasons 

t h i s  i s  a1 so t r u e  i n  the shear model. 



Figure 3.15: The boundary current  core speed associated w i th  the magnitude 
o f  s, f o r  three chosen values o f  a. 
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Figure 3.16: Graph showing the  mixing and cross-stream v a r i a t i o n  i n  concen- 
t r a t i o n  corresponding t o  the d i f fe ren t  core speeds, as i n  F igure 3.11, f o r  
the  shear model. Two examples w i t h  d i f f e r e n t  values o f  a are compared. 



A Comparison o f  t he  Back-mixing and Shear Model s  

For  both o f  the above boundary cu r ren t  models there i s  a  whole range o f  

possib le solut ions, each one associated w i t h  a  d i f f e r e n t  value o f  t i l e  core 

speed and mixing c o e f f i c i e n t  rc. It i s  in format ive t o  compare a  so lu t i on  

from each model w i t h  regard t o  what i s  known about the DWBC and i t s  associ- 

ated freon signal.  Thi s  can he1 p us b e t t e r  understand the  d is t ingu ish ing  

aspects o f  the two models. 

It i s  obvious t h a t  we do no t  wish t o  consider so lu t ions w i t h  a  small 

core speed, as such a  value does no t  seem t o  be representat ive o f  the  DWBC. 

(Th is  was the po in t  i n  developing the two models.) However we a lso cannot 

use the l a rge  core speed extremes i n  e i t h e r  o f  the cases, f o r  a  d i f f e ren t  

reason. I n  the back-mixing model, i n  the 1  i m i t  o f  small y, the concentra- 

t i o n  o f  the shoulder water approaches t h a t  o f  the core so t h a t  there i s  no 
cross-stream va r i a t i on  i n  f reon, which i s  c e r t a i n l y  no t  the case i n  the data 

(Figure 3.7). I n  the  l a rge  s 1 i m i  t o f  the  shear model the opposite hap- 

pens, and the concentrat ion o f  the shoulder water approaches zero. Th is  i s  

unacceptable as we1 1. I n  fac t ,  there i s  r e a l l y  only a  very small range o f  

core speed f o r  which the so lu t ions are reasonable phys ica l ly .  

The two examples which are compared a re  the 5 cm/sec so lu t i on  from t i l e  

back-mixing model and the 6 c d s e c  (a = 36) so lu t ion  from the shear model. 

Refer r ing t o  Figure 3.6 o f  the bac k-mi xi ng model , we are f r ee  t o  specify the 

value of rS, i .e. the width o f  the freon s ignal  ( rc i s  constrained by 

t he  f ac t  t h a t  the core and shoulder cross-sectional areas are the same). The 

wid th  i s a lso f r e e l y  spec i f i ed  i n  the shear model. (There rc must sa t i s fy  

the  r e l a t i o n  r << r ,  Figure 3.13). We consider a  va r i e t y  o f  widths and 

show how the two so lu t ions vary accordingly. 

Recal l  t h a t  each so lu t i on  was determined by matching the value o f  t he  

core concentrat ion and core r a t i o  t o  the data. This was accomplished by 

evaluat ing the core speed ( t he  value o f  n) and the mixing time scale 
rc.  

When w r i t t e n  e n t i r e l y  i n  terms of the rad ia l  distances, the mixing t ime scale 

rcrs 1 takes the form = ( 1  . It i s  therefore  evident t h a t  i n  speci fy ing 

t he  wid th  rs (and r c )  , t h i s  determines both the t ranspor t  o f  the cur- 

r e n t  and the value of the d i f f u s i v i t y  K . Figure 3.17 p l o t s  the t ranspor t  



Figure 3.17: Transport o f  the  OWBC associated w i t h  the value o f  d i f f u s i v i  t y  
as predicted by the two boundary current  models. 
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versus K f o r  d i f f e r e n t  choices of the  width. (Recal l  t h a t  the v e r t i c a l  d i f -  

f u s i v i t y  v i s  re la ted  t o  K by (2.281.) Table 3.1 shows the corresponding 

values o f  the  r a d i a l  distances r r and g r i d  spacings arc, ars. It i s  

seen t h a t  both model s produce comparable t ransports,  however we can use 

another consistency check w i t h  the data t o  p i n  down which values are most 

r e a l i s t i c  f o r  each model. 

Consider again the trends i n  the cross-stream va r i a t i on  o f  f reon f o r  

the two model s (Figures 3.11 and 3.16) .  For the  two examples here, the back- 

mix ing model p red ic ts  the shoulder concentrat ion t o  be -70 percent t h a t  o f  

the  core; the  shear model p red ic ts  20 percent. For  the f reon sect ion o f  F ig-  

ure 3.7, as w i t h  any such sect ion across the DWBC, a Gaussian-type d i s t r i bu -  

t i o n  i s  associated w i t h  a r a d i a l  c u t  extending from t t ie core. For purposes 

of comparison, a Gaussian was f i t  t o  the hor izonta l  c u t  f o r  the sect ion i n  

the f i gu re .  We take the average value o f  the c u t  from r = 0 t o  r = rC as 

a measure o f  the  core concentration, and the average from r = rc t o  r = r 
S 

as the shoulder concentrat ion. Figure 3.18 shows the  comparison o f  these 

concentrat ions t o  the corresponding model p red ic t ions  f o r  a range o f  trans- 

p o r t s  ( i  .e. range o f  widths). It shows t h a t  the  back-mixing model gives bet -  

t e r  agreement f o r  smaller t ransports ("5 S v ) ,  whereas the shear model does so 
f o r  l a rge r  t ranspor ts  (-15 Sv) . (A smaller w id th  c l e a r l y  means a l a rge r  per- 

cent  concentrat ion f o r  the shoulder, as t h i s  means the shoulder region i s  

c loser  i n  prox imi ty  t o  t he  peak o f  the  Gaussian.) 

We can now more f u l l y  appreciate how the scenarios o f  the two boundary 

cu r ren t  model s d i f f e r .  The cu r ren t  i n  the back-mixi ng model i s character ized 

by th in ,  uniform f low w i t h  a small t ransport .  High concentrat ions o f  t racer  

a re  found i n the  water d i r e c t l y  surroundirig t he  f low. I n  t he  shear model the  

boundary cu r ren t  i s  much more broad w i t h  more intense f low a t  the core, and 

has a la rge  t ransport .  Only a small amount o f  t r a c e r  accumulates i n  the 

water j u s t  outs ide o f  the current .  These d i f ferences are depicted i n  Figure 

3.19. I n  the fonner, the f reon r a t i o  o f  the core decays because of a d i f fus-  

i v e  mechanism; i n  the l a t t e r  i t  decays because o f  an advective mechanism 

(a1 though d i f f u s i o n  i s s t i l l  important).  

A t  the present t ime there i s  some uncerta inty as t o  what cons t i tu tes  a 

representat ive value o f  the  core speed o f  the DWBC, as we1 1 as a 



TABLE 3.1: Magnitudes of the  rad ia l  distances and g r i d  spacings (Figures 3.6 

and 3.13) associated wi th  the d i f fe ren t  values o f  transport i n  Figure 3.17, 

f o r  the  two boundary current  model s. 

Transport rs (width) rc Arc Ars 
( Sverdrups) (km) (km) (km) (km) 

Bac k-mixi ng model 

195 136 98 

Shear model 

50 
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Figure 3.18: Predicted concentrations re1 a t i v e  t o  those measured from f i g- 
ure 3.7 f o r  the core and shoulder regions, f o r  d i f f e r e n t  values o f  the DWBC 
transport. (a )  Back-mixi ng model . 
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Figure 3.19: The core and shoulder regions (denoted by th ick  l i n e s )  for  an 
example from each of the two boundary current models superimposed on the  F-12 
section of Figure 3.7. ( a )  Back-mixing model case i n  which the  DWBC trans- 
p o r t  i s  5 Sverdrups. 
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(b) Shear model case i n  which the  DWBC t ranspor t  i s  15 Sverdrups. 



representat ive value o f  the t ransport .  The DWBC i s  known t o  pu lsate  i n  t ime 

( f o r  example Richardson, 1977) as wel l  as meander up and down the slope 

(Luyten, 1977) which compl i ca tes  the  determination o f  these quant i t ies .  

Estimates of the  t ranspor t  vary from values as small as 4 Sverdrups (Pierce, 

1986) t o  those as la rge  as 24 Sverdrups (Richardson, 19771, a1 though the  

former i s  a synoptic estimate and the l a t t e r  inc ludes slope water as shallow 

as 200 m. More o f  the estimates a re  i n  the  range o f  8-12 Sverdrups ( f o r  
example Joyce e t  a1 . , 1986; Hogg, 1983; Richardson and Knauss, 1971) . 

I n  regard t o  t he  core speed, numerous d i r e c t  measurements have been 

made. Instantaneous values have been recorded as la rge  as 50 c d s e c  

(Richardson, 1977) , a1 though mean speeds appear t o  be more i n the  range o f  

5-8 c d s e c  (Luyten, 1977; Richardson, 1977). Jenkins and Rhines (1980) 

found a mean DWBC core speed o f  2 1  cmlsec near the  Blake-Bahama ou te r  ridge, 

b u t  t h i s  region i s  character ized by strong convergence o f  the isobaths which 

shoul d accelerate the  f 1 ow. 

Both o f  the boundary cu r ren t  solut.ions mentioned here fa1 1 w i t h i n  t h i s  

range o f  t ranspor ts  and core speeds. A1 though ne i the r  o f  t he  models i s  en- 

ti r e l y  sa t i s fac to ry  by i t s e l f ,  they do suggest t h a t  t o  one extent  o r  another 

both o f  the f reon r a t i o  decay mechanisms may be present i n  the DWBC. For a 

t ranspor t  o f  5 Sverdrups i n  the back-mixing model and 15 Sverdrups i n  the 

shear model, the d i f f u s i v i t i e s  so p red ic ted 'a re  i n  the range o f  2-4 x 
6 2 2 10 cm /sec f o r  K (20-40 cm /set f o r  V )  , which i s i n  reasonable agreement 

w i t h  the est imate from the  f l u x  balance ca l cu la t i on  o f  chapter two. 

T i  me Dependent Transfer Model 

I n  the previous sections we have invest igated various advect ion/di f fu-  

sion schemes which in f luence  t he  s ignal  o f  f reon being c a r r i e d  by t he  core o f  

the DWBC. The boundary cu r ren t  represents the  primary source o f  f reon i n t o  

the deep l a y e r  i n  t h i s  p a r t  o f  t he  ocean, and i t i s o f  i n t e r e s t  t o  study the  

process by which the f reon eventual ly  f i  11 s the e n t i r e  l a y e r  (throughout the 

various basins). O f  t he  components o f  mean c i r c u l a t i o n  i n  the  i n t e r i o r  abys- 

sal  western North A t l a n t i c  are regions o f  c losed c i r cu la t i on ,  and here we 

comment on the penet ra t ion o f  f reon  i n t o  the  cyc lon ic  r e c i r c u l a t i o n  gyre o f  



the Gul f  Stream, o r  the Northern Rec i rcu la t ion Gyre (NRG) as i t  has come t o  

be cal led.  

OCEANUS c ru ise  134 ( p a r t  o f  the Abyssal C i  r c u l  a t i on  Experiment i n  1983- 

84) co l l ec ted  water sample data i n  the reg ion o f  the  NRG, and i t  included 

several crossings o f  the DWBC which n i ce l y  show the signal o f  F-12 associated 

w i t h  the current .  The e n t i r e  c ru i se  t r ack  i s  shown i n  Figure 3.20. The ver- 

t i c a l  sections of F-12 and po ten t ia l  temperature, f o r  l i n e s  1-4, are present- 

ed i n  Figure 3.21. Note i n  each sect ion t h a t  there are two d i s t i n c t  regions 

i n  which the f reon i s  higher near the inshore edge than on the same tempera- 

t u r e  surfaces f u r t h e r  i n  t he  i n t e r i o r .  A strong upper signal appears i n  t he  

po ten t i a l  temperature range 4"-6'~, which i s  i n t e res t i ng  i n  i t s  own r i gh t .  A 

water property analysis suggests t h a t  t h i s  water i s  o f  Labrador Sea o r i g i n ,  

y e t  i t  i s  no t  i n  the temperature range o f  c l ass i ca l  Labrador Sea Water (which 
i s  - 3 . 5 " ~ ~  Tal l e y  and McCartney, 1982). This fea tu re  warrants f u r t h e r  inves- 

t i ga t i on ,  althouyh i t  i s  no t  addressed i n  t h i s  study. 

Deeper i n  the water column, against  the  slope, i s  a somewhat weaker 

s ignal  associated w i t h  the DWBC. As explained i n  chapter two i t  i s  bel ieved 

t h a t  the eastward f l ow  o f  the  NRG p u l l s  a plume o f  t r ace r  from t h i s  DWBC 

signal.  If t h i s  i s  indeed the case then the of fshore signal from the gyre 

should become more d i s t i n c t  from the DWBC signature as one progresses from 

sect ion 1 t o  4. Evidence f o r  such a separation i s  c l ea r  i n  F igure 3.21. 

The d i f fe rence  between t racers  such as s a l t  and oxygen (whose charac- 

t e r i s t i c s  w i t h i n  the NRG were discussed i n  chapter two) and f reon i s  t h a t  the 

source o f  f reon has only j u s t  been "turned on," so we are present ly  i n  t he  

midst  o f  the sp in  up process. This presents an idea l  s i t u a t i o n  i n  the ocean 

t o  moni tor  the accumulation o f  a passive t r a c e r  i n t o  a c losed c i r cu la t i on ,  

knowing t h a t  i n i t i a l l y  there was no f reon present. I n  t h i s  sect ion we make 

use o f  the machinery t h a t  was developed i n  chapter two regarding t he  f l u x  of 

t r ace r  i n t o  the NRG, and incorporate a time-dependent source. The data t o  

which these ideas are appl ied i s a sing1 e synoptic view o f  the region. It 

would be bene f i c ia l  t o  add t o  both i t s  spa t ia l  and temporal resolut ion,  thus 

a l lowing f o r  a more extensive i t l ves t iga t ion  i n t o  the  accumuldtion process. 



Figure 3.20: Station posi t ions  of  OC134, June/July 1983. Sections 1 through 
4 are marked. 
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Figure 3.21: Vert ical  sections o f  F-12 (p-moles/kg x 10) and potent ia l  tem- 
perature ( O C J  corresonding t o  sections 1-4 o f  Figure 3.20. 
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A )  Boundary Input o f  Freon 

As i s  the case w i t h  oxygen, the deep l aye r  i n  t h i s  region i s  character- 

ized by higher concentrations o f  f reon than those found i n  the  layers  above 

and below. This means t h a t  we must consider the  e f f ec t s  o f  ve r t i ca l  mixing. 

I n  par t i cu la r ,  we w i l l  apply t he  d i f f u s i v e  t r ans fe r  model developed e a r l i e r  

t o  the d i s t r i b u t i o n  o f  F-12. Recall  t h a t  the  i npu t  t o  the t r ans fe r  model 

corresponds t o  the value a t  t ne  core o f  t he  DWBC near 50°w. The t ime h i s t o r y  

o f  the F-12 core i s  provided by the boundary cur rent  models discussed above 

(although i t  i s  seen t h a t  there i s  more than one possible i npu t  curve). 

Before making use o f  t h i s  informat ion we f i r s t  examine the case o f  an a rb i -  

t r a r y  source i n the  context  o f  t he  t rans fe r  model . 
The only change t h a t  must be made i n  the  model i s t o  a1 low the i n p u t  

value t o  vary i n  time. Thus the  appropriate equations are (2.25) where a( t )  

replaces . The solut ions can s t i l l  be obtained easi ly,  and are o f  the fonn 

Note the s i m i l a r i t y  o f  (3.30) t o  (2.8). Recall  t h a t  i n  the  constant i npu t  
t - -  

case t he  t rans ien t  mode propor t iona l  t o  e  . was neg l ig ib le .  I n  t h e  

present case the  two amplitudes bl( t )  and b2( t )  grow i n  time, y e t  i t  i s  

s t i l l  t r u e  (over the t ime per iod being considered) t h a t  the  term proport ional  
t - -  

t o  e  
' 1 can be ignored. Accounting f o r  the f a c t  t h a t  there i s  a  s l i g h t  

non-zero background, t i le  expression f o r  t he  l e v e l  o f  f reon i n  t he  gyre center  

i s then g i  ven approximately by 

- It 
t' - 

d c ( t )  " c e  @ ( t ' ) e T  d t '  + ( 1  - c r ) d  
0 

where c = 1 1 



d = (constant background concentrat ion. 

It i s  o f  i n t e r e s t  t o  consider how the F-1l:F-12 r a t i o  var ies  i n  the 

center  o f  the  gyre. Using (3.31), the  expression f o r  the r a t i o  i s  

where 

rl( t), Q2( t) = i n p u t  concentrations o f  F-11, F-12 

dl, d2 = background concentrations o f  F-11, F12. 

Note the s i m i l a r i t y  between (3.32) and (3.8), as the bracketed term i n  both 

expressions measures the e f f e c t  o f  non-zero background on the r a t i o .  I n  the 

present case the quot ient  

'r c e  1; m ( t ' ) e T  d t '  

must be small f o r  both freons i n  order t o  ignore the background. 



The quan t i t y  measures how qu ick ly  the system would sp in  up i f  t h e  

i n p u t  were t o  become steady (i.e. i t  i s  j u s t  the sp in  up t ime f o r  the oxygen 

case). When r i s  l a rge  (3.33) i s  approximated by 

Th i s  1 i m i  t appl ies when e i t h e r  rg o r  rG i s  1 arge ( r v  must be la rge  i n  

e i t h e r  case). It happens t h a t  regardless o f  which one i s  spec i f i ed  as such 

the term i n  brackets + ". This means t h a t  even f o r  a l a rge  i n p u t  atid small 

background the r a t i o  i s  a1 tered by the background concentrat ion (because i t  

takes so long f o r  t racer  t o  accumulate i n  t l ie  gyre) . 
I n  the opposite case when r i s  small (3.33) reduces t o  

I n  order f o r  t h i s  t o  be t r u e  e i t h e r  rv must be small o r  both rG and rg 

have t o  be small . When t he  former i s t r u e  the term i n brackets , oD , b u t  when 

the l a t t e r  appl ies the quot ient  approaches a f i n i t e  value. Thus i n  the f i r s t  

instance the background con t r i bu t i on  i s  substant ia l ,  b u t  i n  the  second 

instance i t  w i l l  become neg l i g i b l e  i f  i n  t ime the  i npu t  concentrat ion becomes 

s i g n i f i c a n t l y  l a r g e r  than t h a t  o f  the  background. (Th is  makes sense i n  t h a t  

when rv  9 0 a l l  the t r ace r  d i f fus ing o f f  the boundary immediately gets 

f i uxed  v e r t i c a l l y  ou t  o f  the  deep layer, b u t  when rg and rG i 0 t r a c e r  

r ap id l y  accumulates i n  the  gyre. ) 

I f  i t  i s  such t h a t  the  background concentrat ion can be ignored then 

Rc( t )  - K,( t )  . Note t h a t  Rl( t )  has t he  exact same form as the  expression 

f o r  the  f reon r a t i o  i n  t he  overflow bas in  ( 1  .e. the  r a t i o  formed from (3.2) ) .  

Even though d i f f u s i o n  i n t o  t he  gyre i s  a d i f f e r e n t  process than t h a t  which 

occurs i n  the overflow basin, because i n  both instances the  mix ing i s  assumed 

t o  occur instantaneously throughout t h e  region i t  tu rns  ou t  t h a t  the  two pro- 

cesses are described by the same type o f  equation. Th is  means t h a t  the same 

1 i m i t s  concerning the f reon r a t i o  t h a t  were discussed i n  the context  o f  t he  



overf low apply here (on ly  w i t h  t he  d i f f u s i v e  t ime T rep1 acing the  residence 

t ime). I n  pa r t i cu l a r ,  i f  the i npu t  t ime scale va r ies  more s lowly than T , 
then 

whereas i n  the  opposite case when the i npu t  t ime scale var ies  more qu ick ly  

than T, 

I 0, ( t ' )  d t '  

l o  Q 2 ( t 1 )  d t '  

8 )  F-12 Level i n  the NKG 

I n  chapter two when the numerical model and t rans fe r  model were appl ied 

t o  the  d i s t r i b u t i o n  o f  oxygen i t  was determined t h a t  roughly 40 percent o f  

the  ava i lab le  oxygen from the DWBC had accumulated i n  the MRG. We are now i n  

a p o s i t i o n  t o  ob ta in  the  analogous in format ion concerning F-12 ( o r  F-11) . It 

i s  j u s t  a mat ter  o f  apply ing (3.31) t o  determine the leve l  i n  1983 using the 

values f o r  t he  unknowns suggested by the  data. I n  regard t o  the DWBC i n p u t  

value we consider only the back-mixing case, i.e. (3.22a). 

As was done w i t h  oxygen, a western i n t e n s i f i e d  gyre i s  considered, and 

the  value o f  the background i s  taken t o  be the average concentrat ion a t  

1250 m above the  deep f reon  maximum. I n  l i g h t  o f  the  discussion o f  the 

previous sect ion i t seems t h a t  we should use f o r  the inpu t  a boundary cur rent  

so lu t i on  t h a t  has a core speed near 5 cm/sec. As i t  tu rns  ou t  however we can 

use any o f  the solut ions, f o r  they a l l  r e s u l t  i n  riearly i den t i ca l  pred ic t ions 

f o r  the  F-12 l e v e l  i n  the gyre versus time. The reason f o r  t h i s  i s  t h a t  the 

F-12 l eve l  ( a t  5 0 O ~ )  i n  the boundary cur rent  i s  i t s e l f  near ly  the same f o r  

each case. When the core speed i s  small the l e v e l  i n  the cu r ren t  i s  zero 

over a 1 arge extent  of time, bu t  when the core speed i s  1 arge the increased 

mixing t h a t  i s  required keeps the  l e v e l  near zero f o r  almost the same amount 



of t ime (and keep i n  mind t h a t  a1 1 the  curves are constrained t o  reach t h e  

same value i n  1983). A1 though t h i s  r e s u l t  may seem surp r i s ing  remember t h a t  

f o r  small l e v e l s  a small change i n  concentrat ion can mean a s i g n i f i c a n t  

change i n  r a t i o .  It i s  the case t h a t  a f t e r  1983 the curves w i l l  begin t o  

separate, so t h a t  subsequent f reon measurements i n t h i s  reg ion o f  t he  DWBC 

would help ind ica te  if the 5 c d s e c  so lu t ion  i s  i n  f a c t  the co r rec t  one. 

The l e v e l  o f  F-12 t h a t  i s  pred ic ted f o r  the  gyre agrees c lose ly  w i t h  

t h a t  measured i n  the data. However, t h i s  l e v e l  i s  hardly d is t ingu ishable  

from the  small amount o f  background present. The model p red i c t s  t h a t  t he  

amount o f  F-12 i n  the gyre i s  only -7 percent o f  t h a t  which i s  ava i lab le  from 

the boundary as o f  1983 ( t h e  ava i lab le  amount i s  one-ha1 f the  concentrat ion 

o f  the core). The data says t h a t  the l eve l  i s  "9 percent. F igure 3.22 com- 

pares the gyre l eve l  f o r  oxygen and freon. That the  F-12 l e v e l  i s on ly  

around 10 percent (versus 40 percent f o r  02) i s cons is tent  w i t h  the f a c t  

t h a t  the  sp in  up t ime -c i s  i n  f a c t  longer than the  freon i n p u t  t ime scal e 

( i .e .  the gyre cannot respond qu ick ly  enough t o  changes i n  the  inpu t ) .  Note 

t h a t  t h i s  a1 so means t he  1 i m i  t (3.37) would apply f o r  the  gyre r a t i o .  

However the leve l  i s  so c lose t o  the background t h a t  the quot ient  (3.33) i s  

1 arge and thus causes Rc( t )  t o  deviate s i g n i f i c a n t l y  from R,( t )  . I n  
time, a1 though the l eve l  may remain near 10 percent o f  the ava i lab le  amount, 

i t  w i l l  nonetheless increase subs tan t ia l l y  above the  background 

concentration. 

Conil usions 

The process by which f reon accumulates i n  the  Northern Rec i rcu la t ion 

Gyre, the  f reon having o r i g i n a l l y  come from the  surface water i n  t he  

Norwegian-Green1 and Sea, i s qu i t e  compl icated. It has been described here 

very crudely as being composed o f  th ree  stages. I n  the  f i r s t  stage t he  sur- 

face water i n  the N- t i  Sea sinks t o  mid-depths where i t  undergoes cont inual  

m ix i  rlg f o r  roughly 10 years  before overf lowing a s i l l  and forming a boundary 

current .  It has been assumed t h a t  the  major con t r ibu to r  t o  the DWBC i s  the 

Ice1 and-Scot1 and overflow, b u t  t h i  s  p o i n t  remains unclear. The second stage 

corresponds t o  the t ime dur ing which the f reon t r ave l s  i n  the  boundary cur- 

rent, making i t s  way around the Grand Banks t o  the region near the WRG. 
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Figure  3.22: Average sections o f  f reon and oxygen through the  DWBC and NKG 
as  i n  F igure  2.21. The concentration o f  the  deep anomaly i s  p lo t ted ,  normal- 
i z e d  by i t s  value a t  the  boundary. 



F ina l l y ,  i n  the l a s t  stage, the  f reon d i f f uses  from the DWBC and becomes 

entrained i n t o  the gyre. 

For  the case of oxygen which was discussed i n  chapter two i t  was only 

necessary t o  consider the  l a s t  stage, b u t  un l i ke  oxygen t he  l e v e l  o f  f reon 

i n  the ocean i s  increasing a t  a r ap id  rate.  It i s  assumed t h a t  the  surface 

water concentrat ion o f  f reon versus t ime i n  the N-G Sea i s  known w i t h  some 

c e r t a i n t y  . Thi s i nfortnation represents the  boundary cond i t i on  f o r  the  th ree  

coupled components. Because there  i s  a discrepancy i n  t he  increase o f  F-11 

versus F-12 t h i s  means t h a t  the F-1l:F-12 r a t i o  i n  t he  surface water, and 

consequently the  water which overf lows t he  s i l l  , changes [ increases) con t i  nu- 

a l l y  i n  time. 

I n  the descr ip t ion o f  the second stage two d i f f e r e n t  schemes were pre- 

sented i n  which the  core o f  the  cu r ren t  mixes w i t h  surrounding water o f  a 

lower F-115-12 ra t i o .  Extreme cases i n  both models p r e d i c t  t h a t  the  r a t i o  

o f  the core remains unchanged, and t h i s  i s  i n  l i n e  w i t h  previous ideas i n  

which the boundary cu r ren t  core speed i s  estimated using the value o f  the 

ra t i o .  However there a re  many o ther  so lu t ions i n  t h e  two models which a l t e r  

t h i s  p red ic t ion  by varying amounts. A t  present each o f  these so lu t ions pro- 

duces an accurate est imate o f  the  F-12 l e v e l  i n  the NKG, as the  l e v e l  i s  

barely above t h a t  o f  the background. 



Summary 

The d i f f u s i v e  t ransfer  o f  proper t ies  from the  Deep Western Boundary 

Current (DWBC) i n t o  the  Northern Rec i rcu la t ion Gyre o f  the  Gul f  Stream was . 

invest igated i n  some d e t a i l .  An advect ive-d i f fus ive numerical model was im-  

p l  emented t o  a i d  i n the  study. The model consisted o f  a spec i f i ed  gyre c i  r- 

c u l a t i o n  located alongside a boundary current, both f lows being steady. 

Tracer was i n j ec ted  continuously i n t o  t he  boundary cu r ren t  upstream o f  t he  

gyre, and the manner i n  which the t r ace r  eventual ly  f i l l s  the domain was 

moni tored. 

The entrainment of t r ace r  i n t o  the e l  1 i p t i c a l  model gyre from the 

boundary cu r ren t  i s  character ized by a plume e n c i r c l i n g  the gyre, whi le  sp i -  

r a l l  i n g  i n  towards i t s  center. The extent  of the sp i r a l  can be re la ted  t o  

the  cha rac te r i s t i c s  o f  the gyre ve loc i t y  f i e l d .  I n  pa r t i cu l a r ,  where t he  

f low i s  strong and the cross-stream shear i s  l a rge  the sp i r a l  i s  hardly 

noticeable, whereas i n  the weak f l ow  where the  cross-stream shear i s  small 

the sp i r a l  i s  more pronounced. The inward progression o f  the  sp i r a l  eventu- 

a l l y  h a l t s  as the  plume penetrates the  i n t e r i o r ,  f a s t e r  f lowing por t ion  o f  

the  gyre. It i s  t h i s  region which becomes homogenized i n  the steady state, 

provided the  l a t e r a l  d i f f u s i  v i  ty  i s  small enough. As the d i f f u s i  v i t y  i s  

increased, the manner of entrainment i s  a1 tered and the pool o f  homogenized 

t r ace r  shr inks i n  size. 

A simple box-model representat ion o f  the processes occurr ing i n  the nu- 

merical model was solved ana ly t i ca l l y ,  which l e d  t o  a more quan t i ta t i ve  un- 

b2rstanding o f  some o f  the numerical resu l ts .  Two d i f f e r e n t  types o f  t racers  

were studied, one o f  which was subject  t o  l a t e r a l  d i f f u s i o n  only, the o ther  

subject  t o  l a t e r a l  and v e r t i c a l  d i f fus ion .  It was found t h a t  the presence o f  

v e r t i c a l  mix ing has l i t t l e  e f f e c t  on the homogenization t h a t  occurs i n  the  

gyre, bu t  has a profound e f f ec t  on the amount o f  t r ace r  which gets entrained 

and how qu ick ly  the steady s ta te  i s  reached. With no ve r t i ca l  mixing, the  

l eve l  o f  the homogenized pool i n  the gyre i s  independent o f  the strength o f  

the  l a t e r a l  mix ing and i s equal t o  one-ha1 f the core concentrat ion o f  the  

boundary cu r ren t  a t  the upstream boundary. When ve r t i ca l  mix ing i s  added the 

gyre l e v e l  decreases and a lso  becomes dependent on the  s ize  o f  the l a t e r a l  

d i f f u s i v i t y .  The e q u i l i b r a t i o n  time o f  the gyre decreases as wel l .  



Various r e s u l t s  from t h e  numerical and box-model study were appl ied t o  

t h e  ABCE t race r  data set. The presence o f  v e r t i c a l  mixing appears t o  be the 

reason f o r  a discrepancy between the  deep l a t e r a l  d i s t r i b u t i o n s  o f  s a l t  and 

oxygen, the l a t t e r  being characterized by a s l i g h t  minimum i n  the  reg ion o f  

the  NRG. The values o f  d i f f u s i v i t y  which g i ve  the  best  agreement between 

data and model concerning the l eve l  o f  oxygen i n  the  NRG and the associated 
6 2 2 d i f f us i ve  f luxes are K 10 cm /sec ( l a t e r a l )  and v 10 cm /sec (ver -  

t i c a l ) .  Although seemingly large, such a value f o r  v r e s u l t s  i n  on ly  a 

moderate e f fec t  on the  oxygen l eve l  f o r  an WRG which i s  western-i n tens i f ied.  
The evol u t i o n  o f  f reon w i  t h i  n the  NRG was studied as we1 1 , b u t  on ly  i n 

t h e  context  of the box-model. Because o f  the  t ime dependency o f  f reon a 

broader perspective had t o  be taken which addresses what happens t o  t h e  f reon  

p r i o r  t o  when i t  diffuses from the  DWBC i n t o  the  NRG. A simple representa- 

t i o n  o f  t he  overf low process i n t h e  Norwegian-Greenland Sea p red i c t s  t h a t  

both the  f reon concentrat ion and f reon r a t i o  a re  a1 tered by t h i s  process. 

Two d i f f e r e n t  boundary cu r ren t  model s show how the  r a t i o  may be f u r t h e r  

a l t e red  by way o f  mixing i n  the  DWBC. These mixing schemes suggest a DWBC 

core speed o f  5-6 cm/sec. When the  p r i o r  h i s t o r y  o f  t he  f reon i s  viewed 

together w i t h  the  regional  box-model , i t  imp1 i e s  t h a t  f reon i s  on ly  now 

beginning t o  accumulate i n the  NRG. 
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APPENDIX A 

Abbreviations and symbol s: 

AX,AY zonal, meridional g r i d  spacing 

~t temporal g r i  d spacing 

ADE approximate d i f ference equation 

FT forward i n  t ime 

US upstream i n  space 
CT centered i n  t ime 

CS centered i n  space 

I n t e r i o r  Scheme 

The governing equation i s ,  

(A. 1) 

Several f i n i  te-di  f ference schemes were tested. 

1. CTCS advection/FTCS d i f f u s i o n  

The d i f f u s i v e  t e s t  produced accurate resu l ts .  However, i t  i s  a proper- 

ty o f  the CTCS scheme t h a t  advective phase e r r o r  occurs. B r i e f l y ,  t h i s  means 

t h a t  the phase speed of a wave depends on i t s  wave number, so ra ther  than a 

disturbance propagating as a u n i t  a t  the advective speed ( t h e  ana ly t i ca l  

r e s u l t )  i t  disperses i n t o  i t s  component as shor ter  waves 1 ag 1 onger ones. 

Figure A.la 'shows t h e  r e s u l t  o f  a zonal advective tes t .  There are two ways 

t o  reduce phase error.  One i s  t o  choose the parameters AX and ~t such t h a t  

the courant number, C, = U A ~ / A X  , i s c lose t o  one. (Cx E 1 e l  iminates 
phase e r r o r  altogether.) The other  i s  t o  increase the  spa t ia l  resolut ion.  

The e f f e c t  o f  these adjustments i s  i l l u s t r a t e d  i n  Figures A.lb and A.lc. 

Many numerical schemes inc lude a s t i p u l a t i o n  on the  parameters o f  t he  

ADE i n  order t o  avoid numerical i n s t a b i l i t y  (an a r t i f a c t  o f  the  ADE t h a t  

g ives r i s e  t o  an unstabl e so lu t ion)  . Some schemes are uncondi t iona l ly  



Figure A . l :  (a )  The e f f e c t  o f  phase e r r o r  on a Gaussian d i s t r i b u t i o n  o f  
t r a c e r  being advected by a uni form flow. The amp1 i t ude  o f  the strongest 
t r a i l i n g  wave i s  "2  percent t h a t  o f  t he  Gaussian. Note t h a t  i n  add i t i on  t o  
the  dispersion, phase e r r o r  manifests i t s e l f  through d i s t o r t i o n  o f  the ( i n i -  
ti a1 l y  symmetric) d i s t r i bu t i on .  



(b )  The same d is t r ibu t ion  and f low f i e l d  as i n  ( a )  only t l ie courant 
number U A ~ / A X  has been made close t o  one. 
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( c )  Same condit ions a s  i n  ( a )  b u t  w i t h  twice  t h e  s p a t i a l  reso lut ion .  



unstable as such. (An example i s  CTCS f o r  d i f fus ion ,  which i s  why FTCS was 

chosen even though it i s  a l ess  accurate approximation.) For  CTCS advection, 

s t a b i l i t y  places an upper bound on the  s ize  o f  the  courant number. For t h i s  

app l i ca t ion  of the scheme, AX and ~y cannot be made small enough t o  keep 

the phase e r r o r  a t  an acceptable l eve l  whi 1 e s t i l l  sa t i s f y i ng  t he  s t a b i l i t y  

c r i t e r i o n .  As f o r  the other adjustment t o  minimize phase error,  the v e l o c i t y  

f i e 1  d i s  too complex (among other  reasons) t o  keep the  courant number c lose  

t o  one everywhere i n  the domain. 

2. FTUS advection/FTCS d i f f u s i o n  

A1 though phase e r ro r  i s  absent i n  the lower order scheme, another phen- 

omenon, i m p l i c i t  d i f fus ion ,  i s  present. This e r r o r  source causes a d i s t r i b u -  

t i o n  of t racer  t o  spread as i f  i t  were being acted upon by e x p l i c i t  d i f f u s i o n  

(Figure A.2). As w i t h  t he  higher order scheme, increased spa t ia l  r eso lu t i on  

reduces the error.  However, i t  i s  impossible t o  keep the  i m p l i c i t  d i f f u s i o n  

l ess  than the e x p l i c i t  d i f f u s i o n  wi thout  causing numerical i n s t a b i l i t y  , 
w i th i n  the realm o f  desired parameters. 

It i s  a property o f  h igher order advective schemes t o  e x h i b i t  phase 

e r r o r  and those o f  lower order t o  e x h i b i t  imp1 i c i t  d i f f u s i o n  (Smolarkiewicz, 

1983). The approximation t h a t  was appl ied t o  (A.1) makes use o f  a lower 

order advecti ve scheme developed by Smol a r k i  ewicz (1983) t h a t  i ncl  udes a sep- 

arate step t o  counteract the  i m p l i c i t  d i f fus ion .  The procedure i s  based on 

t i l e  f a c t  t h a t  the form o f  the i m p l i c i t  d i f f u s i v i t y  can be determined. ( It 

depends on the parameters i n  the  problem.) Therefore a process t h a t  acts  as 

the reverse o f  d i f f u s i o n  can be adjusted t o  o f f s e t  the i m p l i c i t  d i f fus ion .  

The an t i - d i f f us i on  procedure i s cas t  i n t o  t he  form o f  advection ( w i t h  an 

e f f e c t i v e  ve loc i t y )  . 
The composite scheme t h a t  was used then cons is ts  o f  three steps: 

1) FTUS advection 

2) FTUS advection w i t h  e f f e c t i v e  ve loc i t y  ( i  .e. an t i - d i f f us i on )  
3) FTCS d i f f u s i o n  

The accompanying s t a b i l  i ty c r i t e r i o n  i s ( Roache, 1972) 



F i g u r e  A.2: The e f f e c t  o f  imp1 i c i  t d i f f u s i o n  on a  Gaussian d i s t r i b u t i o n  i n  
a  uniform flow. 



A1 though the problem of imp1 i c i t  d i f fus ion i s  addressed, t h i s  scheme 

i s  no t  w i thout  errors.  For example, a r t i f i c i a l  d i f f u s i o n  occurs dur ing t h e  

second advecti ve step (Smol arkiewicz, 1983). Another drawback o f  FTUS f o r  

advection i s the presence o f  a d i rec t iona l  l y  dependent d i s t o r t i on .  Thi s 

e r r o r  reveals i t s e l f  only when both u and v a re  non-zero and i s  most 

preva lent  when I u 1 and I v  1 a re  equal (see Figure A.3 f o r  a discussion). 

Boundary Conditions 

The edges o f  the domain do no t  correspond t o  s o l i d  boundaries b u t  

r a the r  open ocean. There a re  three f l ow  regimes t h a t  e x i s t  along d i f f e r e n t  

por t ions  o f  the boundary. 

A) In f low 

Where the boundary cu r ren t  f lows i n t o  the domain the concentrat ion o f  

t r a c e r  i s  specif ied. 

a )  out f low 

Where the boundary cu r ren t  f lows ou t  o f  the domain d i f f u s i o n  normal t o  

the boundary i s omitted, as i s an t i - d i f f us i on .  Advection and cross-stream 

d i f f u s i o n  are ca r r i ed  o u t  as i n  the i n t e r i o r .  (F igure A.4 shows r e s u l t s  

from an experiment t e s t i  ng the  out f low boundary condi t ion.  1 

C) NoFlow 

The i n f  1 ow and out f low boundary condi t ions are  appl i e d  where the bound- 

ary  cu r ren t  ve loc i t y  i s  s i g n i f i c a n t l y  greater  than zero (which was chosen t o  

be greater than .2 cm/sec). Along the remaining p a r t  o f  t he  boundary ve loc i -  

t i e s  are  smaller than t h i s  and a re  s e t  equal t o  zero, so t h a t  on ly  the  d i f f u -  

s ion step requires a boundary condit ion. However, CS d i f f u s i o n  requ i res  t h a t  

the concentrat ion be known a t  neighboring g r i d  points,  which i s  n o t  poss ib le  

a t  the boundary. An ext rapo la t ion boundary cond i t i on  was devel oped which at-  

tempts t o  simulate open boundary d i f fus ion .  It i s  based on the  f a c t  t h a t  

the  normal gradient  o f  t r a c e r  along the no-flow segments w i l l  be everywhere 

inward, i .e. there w i l l  be an outward d i f f u s i v e  f lux .  



Figure A.3: ( a )  Gaussian i n  a uniform flow i n  which 1 u l  = I v l  demonstrat- 
i n g  another type o f  e r ror  associated with the FTUS scheme. (There i s  negl ig- 
i b l e  imp1 i c i  t d i f fus ion  because the  correct ive  step has been employed. 



(b )  Same condi t ions as i n  (a)  on ly  the  advection i s  performed i n  two 
steps -- each dimension separately. Th is  el iminates the  d is to r t ion .  (Im- 
p l  i c i t  d i f f u s i o n  i s  present because the  co r rec t i ve  step was omitted. ) This 
technique i s  not  feasible, however, because i t  must be accompanied by two 
an t i -d i  f f u s i  ve steps, and the  r e s u l t i n g  computational expenses woul d be t oo  
high. 



Figure A.4: Test o f  the  outflow boundary condition. Gaussian d is t r ibu t ion ,  
uniform current.  



The simp1 e s t  approximation t o  an open boundary cons is ts  o f  speci fy ing 

a constant f l u x  a t  the boundary ( a  passive f l ux ) .  Th is  means t h a t  the  con- 

cen t ra t i on  there woul d evol ve i n t ime (an ac t i ve  concentrat ion) . A1 1 owi ng 
the f l u x  t o  change i n  t ime according t o  a spec i f ied c r i t e r i o n  (an ac t i ve  

f l u x )  forms an improved estimate. A natural  way t o  come up w i t h  such a c r i -  
t e r i o n  would be t o  make use o f  what i s  known about the f l u x  j u s t  i ns i de  o f  

the boundary; i n  par t i cu la r ,  compute the  t rend  o f  outward f l u x  approaching 

the  boundary along 1 ines  perpendicular t o  it, and extrapolate t o  compute the 

f l u x  a t  the  boundary -- from which the concentrat ion i s  then determined. I n  

1 i n e  w i t h  th i s ,  consider the fo l low ing  procedure t o  be performed a t  each 

t ime step a f t e r  the  i n t e r i o r  so lu t i on  has been determined. 

i Tne value of the f l ux  a t  a p o i n t  i s  def ined i n  an upwind sense 

where eitl i s the concentrat ion adjacent t o  ei i n  the  d i rec-  

t i o n  o f  the inward normal, and A S  i s  the g r i d  spacing (equal t o  

AX o r  ~ y ) .  The value o f  Fi near the boundary must always be 

< 0. Fi i s  computed a t  t i l e  three po in ts  p r i o r  t o  the boundary - 
along the normal ( i  = 1 corresponds t o  the p o i n t  c loses t  t o  the 

boundary) . 
i i Let  Fo denote the value o f  Fi a t  the boundary. I f  F1 = 0, 

Fo i s  s e t  = 0. 

i i i )  I f  F1 i s  non-zero, Fo i s  pred ic ted using a three-point  

extrapolat ion:  Fo = 3F1 - 3F2 + F3. 

i v )  I f  t h e p r e d i c t e d  Fo i s  > O ,  Fo i s  rese t  =O .  

v) The concentrat ion o f  t r ace r  a t  the boundary i s  then determined 

from the  value o f  Fo. ( I f  the  ca lcu la ted concentrat ion i s 

< O ,  t h e n i t i s r e s e t  = 0 . )  

Th is  procedure was appl ied i n  a tes t - run  which consisted o f  having a 

Gaussian spot o f  t r a c e r  d i f f u s e  near a boundary. Kesul t s  o f  the  t e s t  a re  

shown i n  Figure A.5. Note t h a t  as time progresses the  contours r i g h t  next  

t o  the boundary become a r t i f i c i a l l y  squi shed, i n d i c a t i n g  t h a t  t he  grad ients  



Figure  A.5: Test  of t h e  f lux -ex t rapo la t ion  ( a c t i v e  f l u x )  boundary condi t ion .  
Gaussian d i s t r i b u t i o n .  



there a re  too large.  This problem can be corrected by ext rapo la t ing a d i  f -  

ferent  quant i ty  other than the f l ux .  

Consider the  parameter Ri = ( 
' i 

) , which i s  the  r a t i o  o f  adja- 
e i + l  ' E 

cent  concentrat ions i n  the d i r ec t i on  o f  the inward normal ( E  i s  a small nurn- 

ber t o  prevent d i v i s i o n  by zero). I n  the  region near the  boundary Ri w i l l  
always fa1 1 between zero and one ( t h e  former means t r ace r  i s  j u s t  beginning 

t o  penetrate the area, the l a t t e r  corresponds t o  no f l u x ) .  I f  Ri i s  ex- 
t rapo la ted i n  the  manner described above i n  order t o  ca lcu la te  t he  boundary 
concentration, t h i s  r esu l t s  i n  weaker gradients than the w i t h  f l u x  extrapola- 

t i on .  The reason f o r  t h i  s  i s t h a t  t h i  s  procedure invo lves percents r a the r  

than di f ferences.  For  example, i f  there were a l i n e a r  decrease i n  concentra- 

t i o n  towards the  boundary, the  f l u x  p red i c t i on  f o r  e a t  the  boundary woul d 

continue t h i s  trend, whereas the r a t i o  p red i c t i on  would cause the  t rend t o  

f l a t t e n  out, which i s  more r e a l i s t i c  o f  d i f f us i on .  

Tne ac t i ve  f l u x  cond i t i on  t h a t  was used i n  the  model then i s  out1 ined  

as fo l lows. 

I )  The value of Ri i s  computed a t  the three po in ts  p r i o r  t o  the 

boundary along the normal ( i  = 1 corresponds t o  the p o i n t  c l oses t  

t o  the  boundary). 

i i) L e t  Ro denote the value o f  Ri a t  the  boundary. I f  R1 = 0, 

Ro i s  se t  = 0. 

i i i )  I f  R1 i s  non-zero, Ro i s  pred ic ted using a three-point  

extrapolat ion:  Ro = 3R1 - 3R2 + R3. 

i v) I f  t he  pred ic ted Ro  > 1, Ro i s  rese t  = 1. 

v) I f  t he  pred ic ted Ro  t 0, R o  i s  r ese t  = 0. 

v i )  The concentrat ion o f  t r ace r  a t  the boundary i s  then determined 

from the  value o f  Ro. 

Resul ts from the same test - run appl ied above, using t h i s  scheme, are  shown 

i n  Figure A.6. It i s  seen t h a t  the  i s o l i n e s  near the  boundary no longer  

appear t o  ge t  d is tor ted.  



Figure A.6: Test o f  the  r a t i  o-extrapolation (ac t ive  f l u x )  boundary condition. 
Gaussian d i  s t r i  bution. 



Corners 

The four corners o f  the domain l i e  i n  the no-flow region; the act ive  

f l u x  condition i s applied a t  each, wi th  the  extrapol a t ion  performed a1 ong 
the diagonal . 

Tab1 e A . l  contains a sumnary o f  the boundary conditions. 



TABLE A. 1 

BOUNDARY CONDITIONS 

I. F i r s t  Step: Advection 

( i j  in f low,  

( i i  outf low,  

( i i i )  no-flow, 

I I. Second Step: An t i -d i f fus ion  

( i )  in f low,  

( i i )  outf low, 

( i i i )  no-flow, 

111. T h i r d  Step: D i f f u s i o n  

(i) inf low,  

( i i )  outf low, 

( i i i )  no-flow, 

specify concentration 

- 

specify concentration 

omi t normal f 1 ux 

specify concentration 

omit  normal f l u x  

a c t i v e  f l u x  
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