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[1] Mathematical solutions for constant potential vorticity critically controlled flow
through ocean passages are complicated and not available in simple form. Therefore, to
provide formulas for numerical circulation and ocean climate models, two simple formulas
for volume flux are developed here. They are fitted to numerical values of the critical flux
for constant potential vorticity flow over a flat bottom through a constriction. The two
formulas of increasing complexity agree with the numerical values to better than 6% and
1.4%. These flux values are up to 24% less than the values of flux from zero potential
vorticity formulas presently applied to ocean passages. The most precise new formula is
used to predict flux magnitude through nine ocean passages that have current meter
measurements. The size of the revisions compared to zero potential vorticity predictions is
a few percent in the direction of better agreement. For further improvement between
prediction and observation, other factors such as realistic bottom topography, friction,
mixing, waves, and eddies must be included.
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1. Introduction

[2] The very deepest portions of the main bodies of the
oceans (exclusive of trenches) consist of a number of large
basins greater than 5000 m deep separated by topography
with the deepest sill at some shallower depth. The very
coldest and densest ocean water in the world migrates from
deep basin to deep basin by filling the basin closest to the
cold-water source and then overflowing through the deepest
passage into the next basin. This basin is filled in a similar
manner, and the cold water leaves through the deepest exit
passage of that basin as an overflow. This sequence con-
tinues for a number of basins.
[3] Since the volume flux of a layer of water exiting a

basin through a passage is an important variable to know in
physical oceanography, for over 30 years simple formulas
based on ‘‘rotating hydraulics’’ dynamics have been devised
and used to estimate flux through gaps between large ocean
basins. The typical model is a large basin filled with dense
water with a passage to another basin. The dense water exits
by gravity flow. Most extant theories assume inviscid
dynamics of a rotating fluid. The solutions are generally
quite complicated to find analytically. One case in which the
basin fluid is infinitely deep compared to the depth of fluid
in the passage [Whitehead et al., 1974] is referred to as the
zero potential vorticity solution. Those formulas for volume
flux are quite simple and easy to use for predicting flow
through deep ocean passages [Whitehead, 1989, 1995,
1998]. Although they have been applied to various passages
in the ocean, the case in which the bottom of the layer of
dense fluid in the upstream basin has finite depth, rather

than infinite depth, is clearly more realistic since ocean
water is stratified. That case is referred to as the constant
potential vorticity case. Here we show that the inclusion of
constant potential vorticity makes small changes (generally
<20%) to the zero potential vorticity volume flux estimates.
In addition, corrections applied to ocean examples are even
smaller than 20% because most ocean passages have a
width different from the widths with the greatest changes.
[4] Unfortunately, the general problem of flux as a

function of passage width for critically controlled flow over
a flat bottom is complicated enough to make analytic
formulas difficult to simplify. Most cases have only been
numerically calculated [Gill, 1977; Pratt and Armi, 1987;
Whitehead and Salzig, 2001]. Such a computation involves
resolving the flow to the equivalent of a kilometer or less in
the lateral direction for a typical ocean, and this is a finer
scale than is easily achieved either in most oceanographic
field programs or by numerical models of general ocean
circulation. What would be more useful for field ocean-
ographers or numerical modelers is a simple formula to
estimate flux better than the zero potential vorticity flow.
These are developed here for constant potential vorticity
flow.
[5] Nine ocean locations have current meter data exten-

sive enough to measure a long time averaged flux. These
locations are listed in Table 1. The magnitudes of volume
flux with our new formulas at each location will be
compared here with the zero potential vorticity formula
and with ocean measurements.

2. Method

[6] The objective is to produce two simple empirical
formulas that agree with the numerical calculations of the
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constant potential vorticity solutions to successively greater
precision. The governing equations are well known [Gill,
1997] and will not be reviewed here except to say that they
are steady semigeostrophic equations for a layer of rotating
fluid beneath a less dense motionless fluid. Upstream, there
is a wide basin with a flat bottom and stagnant fluid layer,
with boundary currents along one or both walls. This is the
standard case for constant potential vorticity. The fluid
flows through a passage of finite width with a flat bottom
at a different depth and then into a deeper downstream
basin. Flow is critically controlled in the passage.
[7] There are a number of parameters describing this

problem. The presence of rotation dictates two depths.
These will be considered fixed in the upstream basin. The
first depth is D*r = (v*ur

2/2g*0) + d*ur, (dimensional quantities
are starred, nondimensional ones are not). This is elevation
of the Bernoulli ‘‘head’’ on the right-hand wall above the
bottom of the upstream basin, in which v*ur is velocity along
that wall, d*ur is elevation of the water surface at the
upstream right-hand wall, and the acceleration of the surface
of the fluid layer from gravity (reduced gravity) is g*0 =
g*Dr*/r*, where the layer has density r* + Dr* and a fluid
extending up to infinity above the layer has density r*. The
second length scale is D*1, which is depth of stagnant fluid
in the upstream basin. A region with such stagnant fluid
exists in the interior if the upstream basin is very wide since
in that case, boundary layers along the sidewalls transport
all of the constant potential vorticity fluid. The change in
depth from the upstream basin floor to the passage floor
Dh* gives a third geometric length. Finally, the passage has
width w*. The other two parameters of relevance are
reduced gravity g*0 and the Coriolis parameter from earth
rotation f*.
[8] Following notation used by Whitehead [2003], we

select a depth scale D* = D*r � Dh*. This is divided by
depth of stagnant upstream fluid to give the first important
dimensionless number called the dimensionless potential
vorticity q = (D*r � Dh*)/D*1. A second dimensionless
number is width of the passage divided by Rossby radius
W = w*f*/

ffiffiffiffiffiffiffiffiffiffiffiffi
g*0D*

p
, and the third dimensionless number is

dr = d*r/D*, where d*r is depth of the fluid above the floor of
the passage along the right-hand wall of the passage. Since
there are two dimensions, length and time, using the
parameters D*, D*1, d*r, w*, g

0*, f*, and volume flux Q*,
the Buckingham pi theorem gives that the number of
dimensionless numbers is 7–2, or 5. This reduces to 4
because the semigeostrophic approximation requires that the
so-called hydrostatic number is small, f*D*/

ffiffiffiffiffiffiffiffiffiffiffiffi
g0*D*

p
� 1.

The four dimensionless parameters q, W, dr, and a dimen-
sionless flux Q = f*Q*/g*0D*2 are all related together in
equation (2.12) of Whitehead and Salzig [2001], which in
this notation is

Q dr; q;Wð Þ ¼ 1

2
d2r �

1

2
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2
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[9] The critically controlled flux through a passage is

found by determining the value of dr for
@Q
@dr

= 0, and using it

to calculate a value for maximum flux. The zero potential
vorticity critically controlled flux [Whitehead et al., 1974] is
found in the limit of q ! 0 and it has a simple solution

Q 0ð Þ ¼

1

2

W
2

3
�W 2

12

� �3=2 ; for
W �

ffiffiffi
2

p

W 
ffiffiffi
2

p : ð2Þ

Values of Q(0) for 0  W  4 are shown in Figure 1.
[10] A simple formula for flux for q = 1 is not known. As

a substitute, we fit numerical values to simple empirical
formulas. The flux is calculated for assorted values of dr
using equation (1). Flux maxima for fixed W are found
numerically using equation (1) with q = 1 over the range 0
W  4. These values are called Q(1) and they are shown in
Figure 1. Other calculations in the range 0 < q < 1 have also
been done [Whitehead and Salzig, 2001], and they readily
produce values of flux between the two curves for Q(0) and
Q(1).
[11] This gives us some comparison between the flux

values in the range 0 < q < 1. The greatest value of the ratio
Q(0)/Q(1) is 1.24 at W = 1.1, and the average ratio for 40
equally spaced values in the range 0.1  W  4 is 1.08.
Although this means that the flux equations (2) for zero
potential vorticity are reasonably close fits for oceano-
graphic applications, formulas with even closer fit to the
flux for q = 1 would be more appropriate because the layer
of stagnant fluid in the upstream basin is the same depth as
the Bernoulli Depth, which seems likely since the ocean
water is stratified. If the bottom of the layer is the same
depth as the bottom of the passage, water leaving the basin
flows in a current along the left-hand wall toward the

Table 1. Data and Fluxes of Nine Ocean Passages

Name Dr*/r* � 104 D*, m f* � 104, s�1 w*, km W Q*(0), Sv Q*2, Sv Q*obs, Sv

Flux
Measurements

Source

Anagada Passage 0.45 165 0.45 10 1.65 0.14 0.12 0.11 MacCready et al. [1999]
Discovery Gap 0.1 600 0.87 80 28.4 0.2 0.21 0.21 Saunders [1987]
Romanche Fracture Zone 0.73 380 0.02 20 0.08 2.15 2.09 0.66 Mercier and Speer [1998]
Faroe Bank Channel 5.0 400 1.3 20 1.84 2.62 2.81 1.9 Saunders [1990]
Ceara Abyssal Plain 0.5 430 0.1 700 15.0 4.53 4.62 2 Hall et al. [1997]
Vema Gap 0.5 1000 0.28 9 0.36 3.35 3.03 2.1 McCartney et al. [1991]
Denmark Strait 3.0 580 1.3 350 34.5 3.8 3.88 2.9 Dickson et al. [1990]
Vema Channel (with GEOSECS data) 1.0 1540 0.7 446 25.2 16.6 4 Hogg et al. [1999]
Vema (better data) 1.0 1100 0.7 446 29.8 8.62 8.64 4 Hogg et al. [1999]
Samoa passage 0.3 1050 0.23 240 9.8 7.05 7.19 6 Rudnick [1997]
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passage and out. This seems to be reasonable, since no
specific mechanism is known to produce concentrated
currents along the right-hand upstream wall.
[12] If such right-hand currents are present however, we

could expect that q > 1. In order to consider the entire range
of possible potential vorticity for oceanic flows, the flux has
been determined for critical flow for a value of q = 1.5.
There is a reduction of flux up to 20% compared to flux for
q = 1 as shown in Figure 1. However, q = 1.5 possesses
extremely unlikely upstream layer depths and flow patterns
for the ocean. For example, the upstream potential vorticity
depth satisfies D*1 = 2=3 D* so that the upstream layer is
actually shallower than the layer flowing out through the
passage. It is difficult to see how any continuously stratified
fluid would allow this. Therefore, except for noting that
such an extreme condition as q = 1.5 reduces flux by up to
20%, the focus of the rest of this study will be on flux with
q = 1.
[13] After considering a variety of simple formulas, we

found that a good formula for a first approximation toQ(1) is

Q1 ¼ 0:5� 0:5e�1:0405W : ð3Þ

This matches the two values Q(1) = 0,0.5 at W = 0, 1 and

minimizes the largest value of the scaled difference
Q 1ð Þ�Q1

Q 1ð Þ

			 			
to the value 0.0567 atW = 1.4. Therefore this formula is less

than 6% away from Q(1) for all W.
[14] A more accurate formula has an additional term that

allows a match with dQ/dW at W = 0. It is

Q2 ¼ 0:5� 0:6331e�1:45W þ 0:1331e�2:9W : ð4Þ

[15] The exponential coefficients �1.45 and �2.9 mini-
mize the largest value of the normalized difference

Q 1ð Þ�Q2

Q 1ð Þ

			 			

to a value of 0.0133. This greatest difference is found at
both W = 0.5 and W = 2.0. Therefore this formula is less
than 1.4% away from Q(1) for all W. Equation (1) for
critical flux with q = 1 and equations (2)–(4) are shown in
Figure 1. It is obvious that equation (4) agrees closely with
equation (1) with q = 1. We assert that this formula, or
equation (3) if a simpler one is needed, is best for ocean
applications. In all events, equation (4) matches any con-
ceivable upstream potential vorticity (0 < q < 1.5) to better
than ±25%, which is almost certainly the range for the
ocean.

3. Results

[16] To illustrate the practical use of equation (4) in
comparison to equation (2), they are both applied to nine
ocean passages in Table 1 and Figure 2. This exercise is
similar to that of Whitehead [1989, 1995], and in Table 3
and Figure 12 of Whitehead [1998], where hydrographic
and bathymetric data were used to estimate, using our
notation, the passage width w*, depth of a fluid layer in
an upstream basin D*, a bulk density difference of the
flowing layer Dr*/r*, and Coriolis parameter from rotation
f*. All these ocean passages have direct current meter
measurements as a basis for their estimate of volume flux,
so that comparison between an estimate using equations (2)
and (4) and ocean current meter results can be made. The
parameters are listed in Table 1.
[17] The Anagada Passage is added here since current

meter results are now available. Also, hydrographic data
from Hogg et al. [1999] give a clearer estimate of D*
upstream of the Vema Channel. The volume flux estimate is
considerably lower than the previous one (Vema Channel

Figure 1. Flux curves from equations (1)–(4). The top
solid curve is from equation (2) for zero potential vorticity.
The bottom solid curve is for Q(1) (upstream layer depth
equal to depth at the sill). The plus sign trajectory is from
equation (3), and the X values are from equation (4). The
dashed line is from equation (1) for q = 1.5 with maximum
flux.

Figure 2. Comparison of zero and constant potential
vorticity formulas (equations (2) and (4), respectively) with
ocean measurements for nine passages with current meter
measurements as listed in Table 1.
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with GEOSECS data), which used GEOSECS to estimate
D*. That case was known to be poorly approximated.
[18] Figure 2 shows that the estimates for flux in the

ocean are very insensitive to whether q is 0 or 1. Why are
the ocean cases so insensitive? The reason is that the widths
W of the listed passages do not fall within the range where
the ratio is significantly larger than 1. To illustrate this,
Figure 3 shows the scaled difference between the zero and
the constant potential vorticity formulas f = (Q(0) � Q2)/Q2

as a function of passage width W. This figure shows that f >
1.1 only in the range 0.36 < W < 1.85. There are only three
ocean cases within this range, and they fall near the values
where f = 1.1. Therefore, in many cases, equation (2) is
adequate, but at best, equations (3) and (4) are as good as
needed to estimate inviscid steady flow over a passage with
a flat bottom. One or the other might be useful for express-
ing flux through passages in ocean numerical models.
[19] Naturally, there are many additional factors in the

ocean that can affect flux. Probably, the two most important
factors are shape of the passage and friction. In addition, the
effects of adjacent currents, mixing effects, and time-
dependent effects from waves or eddies would have quan-
tifiable effects. For flows through ocean passages, it is not

yet known which one (or ones) of these additional factors is
most prominent in modifying flux rates from the first
approximations given here.
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Figure 3. Relative flux difference f = (Q(0) � Q2)/Q2 as a
function of passage width W. Widths for the ocean passages
listed in Table 1 and in Figure 2 are shown by pluses.
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