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ABSTRACT

Volcanic accretion at the fast-spreading East Pacific Rise (EPR) occurs over a ~2-4 km
wide neo-volcanic zone on either side of the axial summit trough (AST). Eruption ages
are critical for understanding the distribution and timing of volcanic and magmatic
activity. Uranium series nuclides are susceptible to fractionation by magmatic processes
that occur beneath mid-ocean ridges, and the half-lives of **Ra (1.6 kyrs) and **Th (75
kyrs) make them ideally suited for determining eruption ages and placing constraints on
eruption frequency and temporal changes in magma chemistry. Accordingly, major and
trace element, and long-lived radiogenic and ***U-*"Th-***Ra isotope compositions were
measured in basalts from 9°-10°N EPR to determine eruption ages and to place temporal

constraints on volcanic and magmatic processes.

At 9°30°’N EPR, **U-*"Th-***Ra compositions indicate that trace elementally and
isotopically enriched mid-ocean ridge basalt (MORB) collected off-axis erupted >8 ka
and that E-MORB magmatism is interspersed with normal, depleted MORB magmatism.
Lava ages are consistent with eruption from the AST and flow down the ridge flanks,
which is in contrast to previous studies that suggested E-MORB erupted from off-axis

vents.



At 9°50°’N EPR, discrete eruptive units are distinguished by high precision **U, ***Th,
and *°Ra sample concentrations, but because the resolution of the **Th-**’Ra model age
dating technique is ~+1 kyrs, the surprisingly young ages of these lavas prohibit the
construction of an explicit, time-constrained lava stratigraphy. Nonetheless, seven
different flows identified within 0.8-2.0 km west of the AST imply greater frequency of

flows to these distances than previously recognized.

Model age dating of ferrobasalts, basaltic andesites, andesites, and dacites sampled from
the east limb of the overlapping spreading center at 9°03’N EPR is difficult due to
uncertainties in magma residence times. However, (***Ra/*’Th) disequilibria indicate
recent basaltic volcanism (<<8 ka) up to ~4 km off-axis. The axial graben at the rise crest
sources the most recent volcanic activity and is the dominant location for eruption of
high-silica magmas. Major element, trace element, *’Sr/**Sr, and (**U/**U) isotope
compositions are consistent with the formation of dacite magmas by extensive

crystallization, and *U-""Th-"*Ra systematics imply crustal residence times of ~8 kyrs.
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CHAPTER 1: DETERMINING TIME SCALES OF MID-OCEAN RIDGE
VOLCANISM AND IGNEOUS PETROGENESIS

Volcanic Construction at Mid-Ocean Ridges

The global mid-ocean ridge (MOR) system, a roughly 60,000 km long, nearly
continuous volcanic lineament, marks the locus of the divergent plate boundaries
throughout the ocean basins. The magnetic anomaly reversal patterns and broad scale age
distribution of crust throughout the ocean basins indicates that MORs are the loci for the
construction of new oceanic crust. The classical view of oceanic crustal formation
assumes symmetric rifting occurs by continuous seafloor spreading and volcanic
accretion and dike injection at the ridge axis (Kidd; 1977; Macdonald, 1982). Modern
geophysical and geochemical studies have demonstrated that both volcanic accretion and
magmatic processes are spatially and temporally complex and contribute to asymmetric
crustal accretion over a region that is much wider than the immediate ridge axis.

Oceanic crustal construction at 9°-10°N along the fast-spreading East Pacific Rise
(EPR) has typically been viewed as a geologically continuous process involving
eruptions and dike emplacement within a narrow zone of magmatism defined by the axial
summit trough (AST) (Haymon et al., 1991; Fornari et al., 1998; Perfit and Chadwick,
1998; Schouten et al., 2001; Sims et al., 2003; Soule et al., 2009). However, seismic
studies suggest that layer 2A, inferred to be the extrusive volcanic crust, doubles in
thickness within ~2-4 km from the AST (Christeson et al., 1994; 1996; Harding et al.,
1993; Schouten et al., 1999; Sohn et al., 2004; Vera and Diebold, 1994). This geometry

can only be generated if a large component of crustal accretion occurs outside of the AST
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(Goldstein et al., 1994; Hooft et al., 1996; Perfit et al., 1994; Schouten et al., 1999; Sims
et al., 2003; Soule et al., 2005; White et al., 2002). In light of the observed crustal
thickening, recent efforts have focused on investigating the details of volcanic accretion.
Several mechanisms have been proposed to explain this thickening of layer 2A: eruptions
from vents outside the AST, often in the form of pillow ridges/mounds (Perfit et al.,
1994), axial lobate or sheet lava flows that overflow the AST (Hooft et al., 1996;
Schouten et al., 1999; Sims et al., 2003), and lava channels and tubes that transport axial
lavas several km away from the AST (Hooft et al., 1996; Sims et al., 2003, Soule et al.,
2005). High-resolution field mapping using autonomous benthic explorer (ABE)
bathymetry and DSL-120A side-scan sonar provides evidence for contributions from all

three mechanisms.

U-Series Nuclides: A Tool for Determining an Eruption Age Framework

Although seafloor and high-resolution remote sensing observations are critical for
understanding volcanic accretion, eruption ages are also needed to provide a temporal
framework in which to interpret these spatial observations. For example, how rapidly is
the extrusive crust built? How rapidly does lava geochemistry change, and are these
compositional changes related to time-dependent variations in the spatial distribution of
lava emplacement? Eruption ages are critical for understanding the distribution and
timing of volcanic and magmatic activity.

The half-lives of U-series nuclides, in particular, ***Ra (1.6 kyrs) and **°Th (75

kyrs), make them ideally suited for studying recent geological processes, especially
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magmatism and volcanism. U-series nuclides may fractionate due to partial melting
and/or crystallization, creating disequilibria, but radioactive decay during melt transport,
crustal residence, and post-eruption aging will return them towards a steady-state
condition called “secular equilibrium,” in which the activities of nuclides are equal. In
addition, the magnitude of disequilibria produced by partial melting is affected by the
initial abundance of the U-series nuclides in the melting rock. Thus, the extent of U-series
disequilibrium measured in any lava reflects the integrated signal of a number of
processes that modify an initial mantle rock composition—including partial melting, melt
transport, crustal residence, and seafloor alteration—and the time scales over which these
processes occur, namely subsurface residence in the mantle and crust and post-eruption
aging.

In some instances, the relationships among U-series disequilibria and other
geochemical metrics affected by source composition, partial melting, crystallization, and
crustal residence (e.g., long-lived radiogenic isotope compositions, incompatible element
ratios, and major and trace element abundances) can be used to help disentangle this
convoluted geochemical signal and determine eruption ages. Because a number of
physical volcanic processes contribute to the complicated distribution of lava flows about
the ridge axis, eruption ages are essential for understanding the spatial and temporal
extent of these processes. In particular, variations in eruption volumes, frequency, and
distribution can have profound effects on upper crustal construction. In addition, eruption

ages provide a necessary context for correctly interpreting observed geochemical
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compositions of lavas in terms of variations in mantle geochemistry, partial melting
processes, and subsurface melt distribution.

Indeed, studies of MOR basalts (MORB) using U-series nuclides have
demonstrated their ability to place constraints on melting and melt transport rates in the
mantle (e.g., Jull et al., 2002; Lundstrom et al., 1995; 1998; 1999; 2000; McKenzie et al.,
1985; Rubin et al., 2005; Sims et al., 1995; 1999; 2002), crustal residence times (e.g.,
Cooper et al., 2003; Rubin et al., 2005; Sims et al., 2002), and eruption ages (e.g.,
Bergmanis et al., 2007; Goldstein et al., 1992; 1993; 1994; Rubin et al., 1990; 1994; Sims

et al., 2003; Standish and Sims, 2010; Sturm et al., 2000; Volpe and Goldstein, 1993).

Applying U-Series Ages to Problems of Crustal Construction

Studies of long-lived radiogenic isotope systems in MORB and ocean island
basalts (e.g., Rb-Sr, Sm-Nd, Lu-Hf, U-Pb) have demonstrated the existence of long-term
chemical heterogeneities in the oceanic mantle at different length scales (e.g., Hart et al.,
1973; Hedge and Peterman, 1970; Tatsumoto, 1966; White and Schilling, 1978; Zindler
and Hart, 1986; Sims and Hart, 2006). Even far from the influence of any hot spot, such
as at the East Pacific Rise (EPR), the adjacent and seemingly coeval occurrence of
enriched (E-MORB), normal (N-MORB) and very depleted MORB (D-MORB) attests to
the ubiquitous presence of heterogeneous mantle domains over short length scales (e.g.,
Allan et al., 1989; Castillo et al., 2000; Fornari et al., 1988; 1989; Hekinian et al., 1989;
Langmuir et al., 1986; Lundstrom et al., 1999; Sims et al., 2002; Mahoney et al., 1994;

Niu et al., 1997; Niu et al., 1999; Niu et al., 2002; Perfit et al., 1994; Prinzhofer et al.,
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1989; Reynolds et al., 1992; Reynolds and Langmuir, 2000; Zindler et al., 1984). While
the isotopic and chemical heterogeneity of the present-day mantle almost certainly
represents the continuous processes of differentiation and remixing, the exact origin of
these enriched mid-ocean ridge mantle domains and the genesis of E-MORB are still
vigorously debated. Furthermore, because the ages of E-MORB are not well constrained,
the petrogenetic, temporal, and geological relationships between the less abundant E-
MORB and volumetrically predominant N-MORB are not known.

In Chapter 2, I report new major and trace element abundances, and Sr, Nd, Pb,
Hf, and **U-*"Th-**Ra isotope compositions for a suite of 16 off-axis MORB glasses
from 9°30°N-9°54’N EPR, including eight off-axis E-MORB from 9°30°N. These new
data, in concert with previously published isotopic data for N-MORB from this region
(Sims et al., 2002; 2003), demonstrate the existence of an elementally and isotopically
heterogeneous mantle source beneath the 9°-10°N region of the EPR. Based on U-series
eruption ages obtained on off-axis E-MORB in the 9°30’N region, I argue that the reason
E-MORB are primarily found off-axis in the 9°-10°N region is that after eruption from
the AST and subsequent flow down the ridge flanks, these lavas remained exposed at the
seafloor due to locally asymmetric volcanic construction. This is in contrast to previous
studies that proposed that E-MORB erupt directly on crust several kilometers off-axis
(Perfit et al., 1994). As a result, off-axis lavas provide a window into temporal changes in
mantle composition through the melting region at 9°-10°N EPR. The range of eruption

ages of E-MORB at 9°-10°N EPR and the geochemical mixing trends suggest that
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enriched geochemical heterogeneities are periodically introduced into the mantle melting
regime, producing short episodes of dominantly E-MORB magmatism.

In Chapter 3, I focus on determining eruption ages for a suite of comparatively
homogeneous lavas collected within the neo-volcanic zone at 9°50’N EPR, an area ~2 km
wide on either side of the AST that is argued to be the main location for emplacement of
recently erupted lavas. In order to construct a time-constrained volcanic stratigraphy of
the ridge crest, 22 MORB were collected from several flow units on the east and west
flanks of the ridge axis at 9°50°’N EPR in February-March of 2004 and were measured for
major element, trace element, and *’Sr/**Sr and **U-**Th-**°Ra isotopic compositions.
Additional >**U-*Th-**Ra data obtained from zero-aged samples from the 2005-2006
eruption sequence, when taken together with data for samples from the 1991-1992
eruption, suggest more diversity in initial (***Ra/**°Th) than previously anticipated and
limit the resolution of our dating technique to ~+1 kyrs. I find that ridge flank samples in
this study are younger than ~ 2 kyrs, but that the range of geochemical compositions

226 .
Ra concentrations,

represented by these flank lavas as a group, particularly U, Th, and
is much greater than the range represented by samples from individual eruptions (e.g.,
1991-92 and 2005-06). Some samples have identical geochemical compositions, and this
allows us to identify seven distinct eruptive units despite indistinguishable model ages.
These data suggest more frequent (<300 yrs) emplacement of flows up to 1-2 km from
the AST than has been previously inferred from models of crustal accretion (Hooft et al.,

1996; Bowles et al., 2006). In addition, the variability of geochemical compositions

requires rapid, significant changes in parental melt composition on the order of a few
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hundred years, though much smaller changes than required to produce the E-MORB
discussed in Chapter 2.

Finally, in Chapter 4, I focus on the overlapping spreading center (OSC) centered
at 9°03’N along the EPR, a large non-transform ridge discontinuity that has been the
recent focus of extensive geophysical study (Bazin et al., 2001; 2003; Combier et al.,
2008; Dunn et al., 2001; Kent et al., 2000; Toomey et al., 2007; Tong et al., 2002; 2003;
White et al., 2009). This study has imaged significant melt bodies throughout the crust at
this OSC and has revealed a highly complex and asymmetric crustal melt distribution
compared to other nearby sections of the ridge. This complicated geometry is thought to
have significant implications for the storage and evolution of melt in the crust, and
indeed, a wide range of melt compositions have been sampled at the 9°03’N OSC,
including highly differentiated lavas such as FeTi basalts and dacites (Langmuir et al.,
1986; Wanless et al., 2007). Thus, the 9°03°’N OSC is an ideal location to explore the
relationships between melt composition, melt lens geometry, and crustal accretion.

Accordingly, in Chapter 4, I present major and trace element, and *'Sr/*Sr,
'"Nd/'**Nd, and U-series isotope compositions for a suite of 22 representative lavas,
collected during a cruise in 2007 with the Jason I ROV, that come from along and across
the east limb of the OSC and span a wide range of compositions. When compared with
crystallization models and experiments, the major element compositions of ferrobasalts
and dacites appear well explained by derivation by fractional crystallization of a primitive
basaltic magma similar to that needed to explain compositional trends at 9°50’N EPR.

Coherent mixing trends among major element, trace element, and U-series isotopic
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compositions indicate that mixing of ferrobasaltic and dacitic end members produces
intermediate basaltic andesite and andesite compositions. Constant ¥Sr/**Sr (~0.70250
+50 ppm, 20) and near equilibrium (***U/**U) and (**Ra/*’Th) isotopic compositions in
the dacites argue against their formation by assimilation of partial melts of
hydrothermally altered crust, a process previously proposed to explain the origin of high-
silica MOR lavas (Wanless et al., 2009).

Significant *°Ra excesses measured in all other lavas indicate recent (<<8 kyrs)
volcanic activity has occurred along most of the east limb axial graben (9°03°-9°10") and
out to 4 km off-axis in the region north of the overlap basin. Axial basalts have the
highest (***Ra/*’Th) (2.10- 2.41) and appear extremely young, whereas basalts collected
off-axis have consistently lower (**Ra/*"Th) (1.84-1.96) and appear much older,
suggesting that the axial graben is the primary locus for recent volcanic activity. In
addition, young-appearing axial dacites have much lower, near equilibrium (***Ra/*Th)
values, yet (*°Th/**Th) values that appear unchanged relative to that observed in zero-

age basalts, suggesting residence times of ~8 kyrs.
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CHAPTER 2: PERSPECTIVE ON THE GENESIS OF E-MORB
FROM CHEMICAL AND ISOTOPIC HETEROGENEITY AT 9°-10°N

EAST PACIFIC RISE

ABSTRACT

The discovery of chemically and isotopically enriched mid-ocean ridge basalts (E-
MORB) has lent substantial insight into the origin, length scales, and time scales of
mantle heterogeneity. However, the exact process involved in producing this E-MORB
enrichment is vigorously debated. Additionally, because the ages of E-MORB are not
well constrained, the petrogenetic, temporal, and geological relationships between E-
MORB and N-MORB are not known. To investigate these relationships and to explore
how melting and melt transport processes contribute to or modify enriched mantle source
compositions and generate E-MORB melts beneath mid-ocean ridges, we measured
major and trace elements, and Sr, Nd, Hf, Pb, and U-Th-Ra isotopes for a suite of off-axis
lavas, including several E-MORB, from 9°-10°N along the East Pacific Rise.

These data show coherent mixing trends among long-lived radiogenic isotopes,
U-series nuclides, and incompatible trace elements, implicating mixing of melts from
different sources and at different depths. Our results are consistent with previous studies
that show that melting occurs in a two-porosity melting regime, with high-porosity
channels forming deeply in the presence of garnet and transporting enriched melts with
large Th excesses to the crust, while low-porosity channels transport melts more slowly,
allowing them to equilibrate at shallow depths and develop large Ra excesses at the
expense of diminished Th excesses. Forward modeling of the trace element data is also
consistent with mixing of melts in a two-porosity melting regime.

U-series age constraints suggest that E-MORB erupt at different times from N-
MORB, but not necessarily through different pathways. When viewed in light of both
earlier paleointensity constraints and these new U-series age constraints, geological
evidence suggests that the asymmetric, off-axis distribution of E-MORB at 9°-10°N EPR
is better explained by eruption of E-MORB within the axial summit trough (AST),
subsequent spreading away from the AST, and preservation of their surface expression
through asymmetric construction of the extrusive layer. Taken together, the range of ages
of E-MORB at 9°-10°N EPR and the geochemical mixing trends suggest that enriched
geochemical heterogeneities (i.e. pyroxenite veins) are periodically introduced into the
melting regime and preferentially melted, thus producing short episodes of dominantly E-
MORB magmatism.

*This manuscript was submitted to Journal of Petrology in January 2010
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2.1.INTRODUCTION

The formation of the continental crust from Earth’s early mantle is thought to
have left a complementary upper mantle reservoir largely depleted and broadly
homogeneous with respect to its incompatible element abundances and long-lived
radiogenic isotope compositions (e.g., Allegre et al., 1983; DePaolo & Wasserburg,

1976; Hurley, 1968). This depleted reservoir, termed DMM (Zindler & Hart, 1986), or
depleted MORB mantle, is considered to be the source for mid-ocean ridge basalts
(MORB). However, long-term chemical heterogeneities in the oceanic mantle have long
been known to exist at different length scales (e.g., Hart ez al., 1973; Hedge & Peterman,
1970; Tatsumoto, 1966; White & Schilling, 1978; Zindler & Hart, 1986; Sims & Hart,
2006). Even far from the influence of any hot spot, such as at the East Pacific Rise (EPR),
the adjacent and seemingly coeval occurrence of enriched (E-MORB), normal (N-
MORB) and very depleted MORB (D-MORB) attests to the ubiquitous presence of
heterogeneous mantle domains over short length scales (e.g., Allan et al., 1989; Castillo
et al.,2000; Fornari et al., 1988; 1989; Hekinian et al., 1989; Langmuir et al., 1986;
Lundstrom et al., 1999; Sims et al., 2002; Mahoney et al., 1994; Niu et al., 1997; Niu et
al., 1999; Niu et al., 2002; Perfit et al., 1994; Prinzhofer et al., 1989; Reynolds et al.,
1992; Reynolds & Langmuir, 2000; Zindler et al., 1984). While the isotopic and chemical
heterogeneity of the present-day mantle almost certainly represents the continuous
processes of differentiation and remixing, the exact origin of these enriched mid-ocean
ridge mantle domains and the genesis of E-MORB are still vigorously debated.

Furthermore, because the ages of E-MORB are not well constrained, the petrogenetic,

26



temporal, and geological relationships between the less abundant E-MORB and
volumetrically predominant N-MORB are not known.

To investigate how melting and melt transport processes modify enriched mantle
source compositions and generate E-MORB melts beneath mid-ocean ridges, and to
understand the geological and temporal relationships between N-MORB and E-MORB,
we have measured major and trace elements, and Sr, Nd, Hf, Pb, and U-Th-Ra isotopes
for a suite of off-axis lavas, including several E-MORB, from 9°-10°N along the East
Pacific Rise. These samples were collected using the deep submersible Alvin and their
spatial and geological contexts are well known (Figure 1). U-series model ages of E-
MORB and N-MORB provide an additional temporal context within which to interpret
geochemical and isotopic variability, which reflect time-dependent variations in mantle

melting processes and source compositions.

2.2. PREVIOUS STUDIES OF E-MORB

Although ocean floor basalts classified as E-MORB span a wide range and often a
continuum of enrichment, there are several common compositional characteristics that
are typically observed in E-MORB: (1) E-MORB tend to have slightly higher Al,O;and
lower FeO than N-MORB. (2) E-MORB are more enriched than N-MORB in highly
incompatible trace elements such as Rb, Ba, Th, U, and Nb by more than roughly an

order of magnitude. (3) E-MORB have more fractionated highly incompatible trace
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elements than N-MORB (e.g. La/Smis ~3 times that in N-MORB, and Ba/La up to ~5
times that in N-MORB). (4) In contrast to the light rare earth elements (LREE), heavy
rare earth elements (HREE) are nearly chondritic (e.g. Dy/Yby~1). (5) The Sr isotope
compositions of E-MORB tend to be more radiogenic than N-MORB, whereas Nd and Hf
isotope compositions of E-MORB tend to be less radiogenic than N-MORB, reflecting
enrichment of the more incompatible element (i.e. Rb, Nd, Hf) in the parent/daughter
ratios Rb/Sr, Sm/Nd, and Lu/Hf and subsequent long-term ingrowth. Lastly, (6) young E-
MORB also almost always have large **Th excesses (i.e. (*°Th/***U)>1) but small **Ra
excesses (i.e. (**Ra/**Th)>1) as compared to the relatively small >*°Th excesses and large
*Ra excesses of N-MORB (and even smaller **Th excesses and larger **’Ra excesses of
D-MORB).

In the past, definitions of E-MORB have often relied on trace element
enrichments, such as high K/Ti (defined as K,O/TiO, x 100), Zr/Y, and La/Sm, without
the supporting isotopic information on long-term source enrichment. Because
incompatible elements may be enriched and fractionated by processes such as low extents
of melting without the presence of a long-term enriched mantle source reservoir, a
diagnostic property of E-MORB (as described above), definitions based on incompatible
element abundances alone are incomplete. Prior to this study, studies of seamount lavas
from near 9°-10°N EPR (Fornari et al., 1988; 1989; Niu et al., 1997; 1999; 2002;
Prinzhofer et al., 1989; Zindler et al., 1984) and lavas from the nearby Siqueiros Fracture
Zone at 8°25’N EPR (Sims ef al., 2002) have demonstrated the presence of isotopic

source heterogeneity beneath this region of the EPR, but suggestions of heterogeneity in
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the immediate area near the axis from 9°17°N-10°N have largely been defined by
variations in incompatible element ratios such as K/Ti and Zr/Y (Batiza & Niu, 1992;
Perfit et al., 1994; Smith et al., 2001). In fact, the samples selected for this study were
defined as N-MORB and E-MORB according to the classification by Smith et al. (2001)
that defines N-MORB as lavas with K/Ti <11 and E-MORB as lavas with K/Ti>11
(Figure 2). However, because incompatible element ratios may be variably fractionated
due to differences in the degree of melting, comparison of long-lived radiogenic isotope
compositions (i.e. Sr, Nd, Hf, Pb) with incompatible element ratios is required to
decipher the relative effects of partial melting versus the presence of source heterogeneity
over the length scale of melting (cf. Sims and Depaolo, 1997).

Enriched source compositions for E-MORB are generally argued to derive from
either melt metasomatism of peridotite, either cryptically or in the form of fine dikes or
veins (e.g., Donnelly et al., 2004; Galer & O’Nions, 1986; Niu et al., 2002) or from
formation of garnet pyroxenite or eclogite veins through stretching and thinning of
subducted oceanic crust (e.g., Allegre & Turcotte, 1986; Ben Othman & Allegre, 1990;
Hirschmann & Stolper, 1996; Lundstrom et al., 1999; Prinzhofer et al., 1989). In all
models positing a metasomatic origin, a common requirement is that an earlier episode of
low-degree melting of some other enriched mantle source must occur to generate the
elevated highly incompatible trace element abundances (Donnelly et al., 2004; Niu et al.,
2002). Proposed low-degree melt mechanisms include metasomatism of overlying mantle
by melting of eclogitized recycled crust in subduction zones (Donnelly et al., 2004),

metasomatism by melting of mantle within the low-velocity zone beneath oceanic
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lithosphere (Niu et al., 2002), and metasomatism of subcontinental lithosphere and
subsequent delamination (Galer & O’Nions, 1986). These low-degree melt-
metasomatized mantle packages subsequently undergo larger extents of melting (up to
10%) beneath oceanic ridges as spinel peridotite to produce E-MORB (Donnelly et al.,
2004). The absence of residual garnet is used to explain the observed chondritic Dy/Yb of
most E-MORB (Donnelly et al., 2004). However, this inference is contradictory to the
observation that E-MORB typically have large Th excesses (Goldstein et al., 1992; 1994;
Sims et al., 1995; Lundstrom et al., 1995; 1998; 1999) which indicates residual garnet in
the source (Beattie, 1993; Elkins et al., 2008; Hauri et al., 1994; LaTourrette ef al., 1993;
Pertermann et al., 2004; Salters & Longhi, 1999; Salters et al., 2002).

Production of E-MORB by melting of mafic components in a two lithology
mantle of pyroxenitic/eclogitic recycled crust and peridotite requires recent (<375 ka)
low-degree melting in the presence of garnet to generate the large observed **Th
excesses and efficient segregation and preservation of these low-degree melts. Melting of
mafic veins has been proposed to explain U-Th disequilibria in E-MORB (e.g. Ben
Othman & Allegre, 1990; Hirschmann & Stolper, 1996; Lundstrom et al., 1995; 1998;
1999), but in the absence of isotopic heterogeneity, deep, low-degree melting of
unmetasomatized garnet peridotite could also potentially explain the disequilibria (Sims
etal., 1995;2002).

Although both the “metasomatic” and “recycling” models provide potential
explanations for the ultimate origin of the long-term E-MORB mantle source reservoir,

they do not account for how enriched melt compositions are preserved from the time the
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enriched mantle source melts beneath the mid-ocean ridge to the time they are erupted on
the seafloor. For example, E-MORB from the fast-spreading ridge at 9°17°-10°N EPR
(Batiza & Niu, 1992; Perfit et al., 1994, Perfit & Chadwick, 1998; Smith ez al., 2001) and
similarly enriched “T-MORB” from 17°30’S EPR and 12°-13°N EPR (Bergmanis et al.,
2007; Reynolds et al., 1992; Reynolds & Langmuir, 2000) have been sampled adjacent to
N-MORB, suggesting that N-MORB and E-MORB melts are either generated and
erupted at discrete time intervals (e.g. Batiza & Niu, 1992; Bergmanis et al., 2007;
Hekinian e al., 1989; Reynolds et al., 1992) or are extracted and transported to the
seafloor along different mantle and crust pathways (e.g. Perfit ez al., 1994).

With regards to E-MORB melt preservation, it is important to note that
pyroxenitic melts may react and freeze when they encounter a peridotitic matrix. Whether
or not mafic lithologies freeze is a function of composition (i.e., more silica-rich melts
produced by melting of MORB-like eclogite are more likely to freeze than silica-deficient
garnet pyroxenite melts; Yaxley & Green, 1998; Hirschmann et al., 2003; Kogiso et al.,
2004), the length scale of pyroxenite melt transport pathways, and the time scale over
which pyroxenite melt interacts with peridotite matrix (Kogiso et al., 2004). Thus, for
melts of mafic lithologies to be preserved with U-series isotopic disequilibria requires
that the enriched melts are extracted efficiently with little or no interaction with
surrounding peridotite matrix. Evidence of enriched melt preservation requires the
existence of distinct pathways where pyroxenite melts are effectively isolated from the
ambient mantle peridotite matrix, whether by orthopyroxene reaction bands between

pyroxenite melt and peridotite (e.g. Kogiso et al., 2004), or by extraction through pre-
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existing high porosity dunite conduits (e.g. Kelemen et al., 1997). Alternative, ‘hybrid’
lithologies that melt only upon peridotite melting have been suggested as a consequence
of freezing of silica-rich melts upon reaction with peridotite. However, as noted by
Kogiso et al. (2004), such a reaction will create a permeability barrier that traps
pyroxenite melt in reaction zones and prevent pervasive refertilization of peridotite. In
addition, large reaction zones of pyroxenite melt will most likely not behave according to
peridotite phase equilibria. Indeed, the correlations observed in this study among fast-
diffusing major elements like FeO and MgO, slower diffusing trace elements, long-lived
radiogenic isotopes (Sr, Nd, Hf, and Pb), and U-series isotopes imply efficient
segregation of enriched, pyroxenite melts.

U-series and isotope studies examining the relationship between E-MORB and N-
MORB have suggested that mixing of deep, small-degree melts with shallow, high-
degree melts is required to produce correlations between U-Th disequilibria and Sm/Nd
fractionation (Sims et al., 1995). Studies of U-series disequilibria in demonstrably young
(relative to the half-life of ***Ra) 9°-10°N EPR N-MORB lavas have shown that for lavas
to have both negatively correlated primary *Ra and **Th excesses and positively
correlated (*°Th/**Th) and (**U/**Th), the melting must occur in a two-porosity mantle,
with high porosity channels forming deeply in the presence of garnet and transporting
melts with large *°Th excesses to the crust, while low porosity channels transport melts
more slowly, allowing them to equilibrate at shallow depths and develop large *’Ra
excesses at the expense of diminished *°Th excesses (Sims et al., 1999; Jull et al., 2002;

Lundstrom, 2000; Sims et al., 2002). Hence, given the observation of large ***Th
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excesses and small **Ra excesses in E-MORB, we hypothesize that E-MORB represent
deep melts of an enriched source that have been effectively segregated into high porosity
channels and largely removed from interaction with incompatible element-depleted,
peridotitic, N-MORB melts.

To shed light on how melting and melt transport processes —in particular two-
porosity melt transport—contribute to or modify enriched mantle source compositions
and generate E-MORB melts beneath mid-ocean ridges, we analyzed major and trace
element abundances, Sr, Nd, Hf, and Pb isotope compositions, and U-Th-Ra disequilibria
for a suite of 16 off-axis N- and E-MORB glasses from 9°31’N — 9°54’N EPR. These
glasses were collected off-axis during the AdVenture Series cruises (dive 2489; see Perfit
& Chadwick, 1998, Fig 20)) from 1991-1997 and during the Abyssal Hill Cruise (dives
2697,2700,2701, 2702, 2703, 2706) in 1992 (Macdonald et al., 1996) with the
submersible Alvin from lava flows < 4 km west of the axis at 9°50’N and < 5 km east of
the axis at 9°31-9°35’N (herein referred to as 9°30°N). Hence, the location and geological
context of these samples are known precisely (Figure 1, Table 1). Given model eruption-
age constraints from **U-*"Th and **Th-"°Ra disequilibria and accurate knowledge of
the spatial distribution of E-MORB relative to N-MORB at 9°-10°N, we can place
additional constraints on the temporal variability of the isotopically and trace elementally

heterogeneous EPR mantle.
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2.3. SAMPLE LOCATIONS AND GEOLOGICAL BACKGROUND

The second-order ridge segment from 9°-10°N East Pacific Rise (EPR) is fast-
spreading with a half-spreading rate of ~5.5 cm/yr. Magnetic data show that it has been
spreading at this rate for the last 2 m.y. (Carbotte & Macdonald, 1992). This segment of
the EPR is far from the influence of hot spot interaction and erupts predominantly N-
MORB. It is bounded to the north by the Clipperton transform fault at 10°10’N and to the
south by a large overlapping spreading center (OSC) at 9°03’N (Macdonald et al., 1984;
1986). It is interrupted by a third order ridge discontinuity with a ~0.45 km offset and 3
km overlap at ~ 9°36- 9°38°N, which has been termed a ‘small OSC’ (Smith et al., 2001).
This discontinuity is thought to represent a volcanological divide: the eastern limb of the
axial summit trough (AST) appears to be propagating southward, while magmatic activity
on the western limb appears to be waning (Smith ez al., 2001). This interpretation is
based largely on qualitative evidence, namely the presence of extinct hydrothermal vents
and older-looking lava flows to the south of the discontinuity, as well as young-looking
lava flows and hydrothermal activity indicative of a more recent eruption to the north
(Smith et al.,2001). North of 9°38°N, the ridge segment near 9°48’N — 9°52’N has a
broad, inflated bathymetric cross-sectional profile with a shallow, narrow (~50 m) AST
and is considered magmatically robust (Cochran et al., 1999; Fornari et al., 1998;
Scheirer & Macdonald, 1993). Two eruptions have been documented north of 9°38’N
near 9°50°N during 1991-1992 and 2005-2006 (Haymon et al., 1993; Tolstoy et al., 2006,

Soule et al.,2007) with no corresponding volcanism south of the small OSC. The profile
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at 9°31°N is flatter, with a deeper, wider (~250 m) AST nested within the broad summit
depression of a developing axial summit graben (ASG) (Fornari ef al., 1998; Scheirer &
Macdonald, 1993). Hence, the ridge south of 9°36’N to ~9°30°N is thought to be
comparatively magmatically “starved.”

Previous sampling of over 1200 basalts from between 9°17°N and 10°N EPR

(major elements compositions for ~300 samples can be found at www.petdb.org;

additional data is expected to be available 1/1/2010 at http://marine-
geo.org/portals/ridge2000) has documented eight E-MORB (defined by K/Ti>11) near
9°30°N, with seven of the eight samples deriving from the east side of the AST (Perfit et
al., 1994; Perfit & Chadwick, 1998). Ten E-MORB were collected by wax-filled rock
core at the small OSC at 9°36°-9°38’N (Smith et al., 2001). Seven of these samples were
collected from west of the western limb, two from east of the eastern limb, and one from
in between the two limbs (Figure 1; see Figure 4 from Smith et al., 2001). One E-MORB
also was collected by dredging from just south and east of the western limb of the
discontinuity at 9°35°N and has been measured for its Sr, Nd, Pb, (**U/*°Th),
(*°Th/**Th), and (***Ra/*Th) isotopic compositions (sample R54-2; Batiza & Niu, 1992;
Goldstein et al., 1993; Harpp et al., 1990; Volpe & Goldstein, 1993). Although there has
been extensive sampling within and immediately adjacent to the AST, no E-MORB have
been recovered from the axial region (< ~0.5 km) anywhere from 9°17°’N-10°N EPR
(Figure 1).

A more recent geochemical study of lavas recovered from the AST by the deep

submersible Alvin from 9°17°N to 9°52°’N EPR demonstrated that axial lavas (all
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depleted, tholeiitic N-MORB) are homogeneous with respect to *’Sr/*Sr, *Nd/'"*Nd,
"SHf/"""Hf, and ***Pb/**Pb, suggesting that the mantle source region is isotopically (and
by inference elementally) homogeneous over the length scale of melting (Sims ef al.,
2002). Similarly, N-MORB collected up to 4 km off-axis in the 9°50’N region are
isotopically indistinguishable from the axial lavas (Sims et al., 2003). Sims et al. (2003)
inferred that these off-axis lavas were produced from the same mantle source and
underwent similar processes during melting and melt transport; however, they also noted
that many of the off-axis flows were not sourced by off-axis eruptions, but erupted within
the AST and subsequently flowed off-axis. (Indeed, at 9°51.2’N, lava from the recent
eruption in 2005-2006 flowed up to ~2 km away from the axis (Soule et al., 2007)).
Given this assumption, it was possible to compare the (**Th/***U) and (***Ra/*"Th) of the
off-axis samples of unknown age to the (**Th/**U) and (***Ra/**Th) of zero-age axial
samples and date the off-axis samples. These ages are in agreement with ages estimated
using paleointensity data (Bowles et al., 2006), thus lending credence to the radiometric
ages determined by Sims et al. (2003).

The existence of E-MORB in the study area suggests that MORB genesis is more
complicated than what was inferred solely from N-MORB compositions (Sims et al.,
2002; 2003). Although incompatible element ratios (e.g., K/Ti, Nb/Th, Th/U, Zr/Y)
cannot be used exclusively to infer source characteristics (e.g., Sims & DePaolo, 1997),
the higher abundances of moderately and highly incompatible trace elements in E-MORB
requires generation of enriched parent melts, whether by melting of a heterogeneous

mantle source or by low degrees of melting of a homogeneous source, and subsequent
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preservation of these melts. Notably, global studies of E-MORB have demonstrated that
low degrees of melting of a homogeneous peridotitic mantle source alone cannot produce
the trace element patterns of E-MORB (Donnelly et al., 2004).

Previous studies of E-MORB at 9°-10°N EPR have arrived at two different
models for the emplacement of E-MORB parent melts (Batiza & Niu, 1992; Perfit et al.,
1994). Based on ***Ra/**Th-Ba/Th model age dating of samples from 9°17°N — 9°54°N,
including two N-MORB and one E-MORB (Volpe & Goldstein, 1990; 1993), and
following the model of Hekinian et al. (1989), Batiza & Niu (1992) suggested that E-

MORB (T,,,..~6.40 kyrs) were generated from an older episode of magmatic activity

model

different from that which produced N-MORB (T, 4.~2.40 — 2.65 kyrs). This older

model
episode potentially involved progressive melting and persistent depletion of a
heterogeneous mantle source over time. In essence, Batiza & Niu (1992) suggested, as
did Reynolds et al. (1992) for 12°N EPR and Bergmanis et al. (2007) for 17°S EPR, that
periods of E-MORB eruption may alternate with periods dominated by N-MORB
eruption, reflecting temporal changes in the composition of the mantle source and axial
magma chamber (AMC) magma supply. In contrast, based on observations of young off-
axis N-MORB (Goldstein et al., 1994), Perfit et al. (1994) assumed that the adjacent E-
MORB were also young and advocated for an off-axis pathway that allowed E-MORB
melts to escape extensive mixing with the voluminous N-MORB melts that reside in the
AMC. Here we use new major and trace element compositions, Sr, Nd, Hf, and Pb

isotopic compositions, and U-Th-Ra disequilibria collected on a suite of off-axis lavas

from 9°31°’N-9°54’N EPR to explore these two hypotheses.
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24. ANALYTICAL METHODS

The analytical details for major element analyses by electron microprobe are
reported in the footnotes to Table 2. Details for trace element concentration data obtained
by ICP-MS are reported in the footnotes to Table 3. Isotopic compositions were measured
by MC-ICP-MS, and details of these measurements are reported in the footnotes to Table
4.**U and *’Th concentrations were measured at WHOI by ID-ICP-MS using the
ThermoFinnigan Element 2 and **U/**U, *°Th/**Th and ID **Ra were measured using
the WHOI ThermoFinnigan Neptune MC-ICP-MS. Analytical details are reported in
Table 5. For more information on the **U-""Th-**"Ra chemical and analytical procedures
at WHOI, see Appendix Al of Sims et al. (2008a). More details of Th and U isotopic
measurement methods and standards are summarized in Ball ez al. (2008) and Sims et al.
(2008b).

The data for 9°50°N off-axis lavas reported by Sims et al. (2003), compiled from
ICP-MS data produced by the Geological Survey of Canada (GSC), plot at suspiciously
high values for Lu/Hf, especially considering the exceptional compositional similarities
of these off-axis samples as compared to axial samples reported in Sims et al. (2002). We
reanalyzed 12 of the 14 off-axis samples reported by Sims et al. (2003) as well as seven
of the 19 axial samples reported by Sims et al. (2002) (similarly compiled from data from
the GSC) for a selection of REE and incompatible trace elements. These data are reported
in the Appendix Table Al. Samples were measured at the University of Florida (UF)

using a Thermo Finnigan Element2 inductively coupled plasma mass spectrometer (ICP-
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MS), as were off-axis lavas reported in this study, and the analytical details are the same
as described in Table 3. The new Lu and Hf UF ICP-MS data for off-axis samples plot at
values more similar to the axial samples than the older GSC data. In fact, nine out of
eleven off-axis samples reanalyzed at UF have Lu/Hf higher than the GSC
measurements, with eight of these ~9-15% higher. Two off-axis samples have ~13%
lower UF Lu/Hf than GSC. Notably, trace element abundances are not systematically
offset between the GSC measurements and the UF measurements, but seven out of twelve
of the UF Hf measurements of off-axis samples are ~11-16% lower than the GSC data,
and only three GSC Hf measurements are higher than UF Hf measurements (6%, 6%, and
34%). Lu data from UF are more consistently offset to lower (~2-8%) values than the
GSC measurements, with only two samples measured at UF with higher Lu. We also note
that Sm, Nd, Th, and U concentrations as measured by ICP-MS at UF and GSC and by
ID-TIMS at the University of California, Berkeley (Sims et al., 2002; 2003) are all
generally within + 5-10%.

With regard to U-series analyses, we are suspicious of (***Ra/**Th) for three E-
MORB samples that could not be replicated due to sample size limitations (2700-7, 2701-
11a, and 2702-1). These samples have slight *’Ra excesses of 1.06, 1.08, and 1.06,
respectively, and video observations show sediment cover similar to that seen for samples
2489-3 and 2489-4a, which have replicated measurements of (***Ra/*°Th) that are all in
equilibrium within analytical uncertainties (2489-3: 0.97, 0.98; 2489-4a: 0.99, 1.02;
Table 5). Thus, we interpret these three samples as being in secular equilibrium but with

large measurement uncertainties (~<8%), though we cannot rule out the possibility that
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they have small *°Ra excesses. Regardless of whether these samples have small **Ra

excesses or are in secular equilibrium, the main conclusions of this study do not change.

2.5.RESULTS

2.5.1. Major elements

Major element concentrations are reported in Table 2. These off-axis samples
have a wide range of compositions, with K/Ti ranging from 5.5 to 25.1 and molar Mg#
(Mg/(Mg + Fe)) ranging from 0.51-0.62 (Figure 2A). The off-axis N-MORB from
9°30°N span the previously reported range in Mg# for 9°50°N off-axis samples and have
relatively constant K/Ti. However, the off-axis samples, particularly those in the 9°30’N
area, have more variable and lower Mg# (< 0.55) than the correlative axial samples.
Compared to axial N-MORB samples, the off-axis E-MORB have lower and less variable
Mg# and higher and more variable K/Ti. Off-axis E-MORB from 9°30°’N EPR exhibit
increasing K/T1 with decreasing Mg#. Additionally, K/Ti in E-MORB from 9°30’N EPR
is negatively correlated with Fe,, and CaO/Al,O, (Figures 2B, 2C) and positively
correlated with Nag, (Figure 2D; Fe,, and Nag, were calculated by the method of Klein &
Langmuir (1987) using a linear regression of MgO vs. FeO and Na,O for 9°-10°N EPR
samples from this study, axial samples from Sims et al., 2002, and off-axis samples from

Sims et al., 2003). E-MORB trend towards lower Fey, (8.96-9.70) and CaO/Al,0O, (0.71-
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0.82) yet have similar Nag, (2.60-2.90) compared to N-MORB (Fe;, = 9.49-10.50;

CaO/ALO; = 0.78-0.85, Nay, = 2.57-2.86).

2.5.2. Trace elements

Trace element abundances are reported in Table 3. Primitive mantle-normalized
abundances of incompatible elements for off-axis N-MORB are similar to those in axial
or previously reported off-axis samples (Figure 3; cf., Sims et al., 2002; 2003). Compared
to N-MORB, off-axis E-MORB have higher abundances of the most incompatible
elements (Rb through Nd), but similar abundances of the less incompatible elements (Zr
through Lu) (Figure 3) (see also Perfit ef al., 1994 and Smith et al., 2001 for similar
observations) . This results in a continuum of spidergram patterns (Figure 3) from the
most depleted N-MORB to the most enriched E-MORB, with the patterns essentially
anchored by the heavy rare earth elements (HREE) and fanning out towards the more
incompatible elements. N-MORB and E-MORB all have similar middle rare-earth
element (MREE) and HREE abundances, but fanning light rare earth element (LREE)
patterns. Both off-axis N-MORB and off-axis E-MORB patterns show consistent
depletions of Pb and Sr relative to similarly incompatible elements (Figure 3). Aside from
differences in the abundances of the more incompatible elements (Rb through Nd), the
most striking difference between the E-MORB and N-MORB patterns is that E-MORB
have Ba enrichments relative to Rb and Th, whereas both off-axis and axial N-MORB

have Ba depletions relative to Rb and Th (Figure 3).
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Correlations exist between incompatible element ratios for axial and off-axis lavas
when including the off-axis E-MORB suite (e.g., Ce/Yb vs. Th/U, Sm/Yb vs. Sm/Nd; see
Figures 4A, 4C). Although the axial and off-axis N-MORB appear to be compositionally
similar, when also taking into consideration the off-axis E-MORB suite, the total range of
trace element compositions and the correlations between incompatible element ratios are
strongly suggestive of mixing. Thus, in terms of trace element compositions, the 9°30’N
off-axis suite shows a continuum of compositions from depleted N-MORB (both off-axis

and axial) to off-axis E-MORB.

2.5.3. Long-lived radiogenic isotopes: Sr, Nd, Hf, and Pb

Sr, Nd, Hf, and Pb isotopic compositions are reported in Table 4 and are shown in
Figures 5 and 6. Note that we also report corrected Nd isotope values for Sims et al.
(2002; 2003) using the time-dependent correction outlined in Bryce et al. (2005) (see
Appendix Table A2 for details). The analytical details are reported in the footnotes to
Table 4. The newly analyzed off-axis N-MORB data overlap with the range of existing
data for axial and off-axis N-MORB samples (Sims et al., 2002; 2003) with respect to Sr
(*’Sr/*Sr = 0.70244-0.70257), Nd (gy, = +9.9 to +10.6), and Hf (g;;; = +14.1 to +15.0)
isotopic compositions. However, the 9°30’N off-axis N-MORB exhibit overlapping, but
slightly higher ¥Sr/*Sr (0.70249-0.70262) and lower &, (+13.6 to +14.2) and gy, (+9.7 to
+10.1) values (Figure 5) than the 9°50’N N-MORB. In comparison, off-axis E-MORB
from 9°30’N have more radiogenic Sr isotopes and exhibit a much wider range of

¥7Sr/**Sr (0.70248-0.70286) and a lower range of e, (+7.9 to +9.1) with a narrower,

42



lower range of €, (+10.7 to +12.7) compared to the N-MORB (Figure 5). The E-MORB
from 9°50°N has Sr (*’Sr/**Sr = 0.70258), Nd (&gy, = 10.0), and Hf (e, = 14.6) isotopic
compositions that are strikingly similar to N-MORB despite having a primitive mantle-
normalized incompatible element abundance pattern and incompatible element ratios
more similar to E-MORB (Figures 2A, 3,4, 7B).

Pb isotope data for newly analyzed off-axis N-MORB from 9°50’N coincide with
existing Pb isotope data for axial and off-axis N-MORB (Figure 6; Sims et al., 2002;
2003). The range in Pb isotopic compositions for the newly measured off-axis N-MORB
is narrower than that of both off-axis and axial lavas reported by Sims et al. (2002; 2003).
The off-axis E-MORB (sample 2697-1) from 9°50°N is compositionally indistinguishable
from the N-MORB suites with respect to ***Pb/***Pb and **’Pb/***Pb, but has slightly
higher **Pb/***Pb than the N-MORB suites for a given **Pb/***Pb or *’Pb/***Pb (Figures
7B & 7C). As shown in Sims et al. (2002; 2003), ***Pb/***Pb, *’Pb/***Pb, and ***Pb/***Pb
for 9°17°N-10°N lavas are positively correlated. The off-axis E-MORB from 9°30°N can
be subdivided into two different groups in terms of Pb isotopic values: a “more
radiogenic” group and a “less radiogenic” group (Figures 6 & 7). The “more radiogenic”
group includes two samples that have higher ***Pb/***Pb, *’Pb/***Pb, and **°Pb/***Pb than
all of the other lavas from 9°17°N-10°N EPR (Figure 6). The “less radiogenic” group has
the lowest **Pb/***Pb and ***Pb/***Pb, and intermediate *’Pb/***Pb (Figures 6 & 7). Pb
isotopes also correlate with incompatible element ratios and Sr, Nd, and Hf isotopes
(Figure 7). Finally, correlations exist between incompatible element ratios and Sr, Nd,

and Hf isotopes for off-axis lavas from 9°30°’N. Many of these correlations appear to be
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hyperbolic in geometry and are suggestive of two-component mixing (e.g., K/T1 vs. gy,

Ce/YDb vs. gy; Figures 4B, 4D).

2.54.U-Th-Ra Disequilibria
U, Th, and ***Ra concentrations and (**U/**U), (**Th/**Th), (**Th/**U), and
(***Ra/*°Th) for 9°30°N and 9°50°N off-axis N-MORB and E-MORB are reported in
p

Table 5 and are shown in Figure 8.

254.1.(7°U) -(P*U)

All samples measured have (**U/***U) in equilibrium within analytical
uncertainties (+0.5%) indicating that these samples have not suffered secondary alteration
due to seawater-rock interaction following eruption. Note that two samples have slightly
higher (**U/**U) ~1.006, but show no other signs of alteration (see Sims et al., 2003 for
discussion on alteration). (**U/**U) is a sensitive indicator of alteration for submarine
basalts since seawater is significantly enriched in ***U relative to **U (for seawater,
(3*U/®U) ~ 1.15) (Henderson et al., 1993; Ku et al., 1977; Robinson, 2004; Thurber,

1962).

2.54.2.(P*U)-(*°Th)-(*Ra)
All of the samples measured from both 9°30’N and 9°50°’N EPR have
(**Th/?*U)>1, or Th excesses. Based on experimental studies, this large ***Th enrichment

relative to *U indicates melting began in the presence of garnet (Beattie, 1993; Hauri et
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al., 1994; Landwehr et al., 2001; LaTourrette et al., 1993; Salters & Longhi, 1999;
Salters et al., 2002). *°Th excesses are highly variable (1.054-1.198), encompass much of
the compositional range previously measured in MORB from this region, and are
negatively correlated with (**U/**Th) (cf., Goldstein et al., 1993; Goldstein et al., 1994;
Volpe & Goldstein, 1993; Lundstrom et al., 1995; 1998; 1999; Sims et al., 2002; Sims et
al.,2003) (Figure 8). In addition, (**Th/**Th) correlates with (**U/**Th), in which E-
MORB have the lowest (*°Th/**Th) (1.10-1.23) and (**U/**Th) (1.00-1.08), N-MORB
have intermediate (**Th/**Th) (1.26-1.38) and (**U/**Th) (1.11-1.25) and D-MORB
have high (**Th/**Th) (1.39-1.40) and (**U/***Th) (1.30-1.32) (Figure 8A). This
correlation has previously been shown and discussed by Goldstein et al. (1993) for 9°-
10°N EPR samples and extended by Lundstrom et al. (1999) to include E-MORB, N-
MORB, and D-MORB from the Siqueiros Fracture Zone, N-MORB from 9°-10°N, and
D-MORB from the Lamont Seamounts. The samples in this study augment this trend by
including samples with compositions that are transitional to the E-MORB and D-MORB
end members. Two samples have E-MORB-like (**Th/**Th) and (***U/**Th) but are only
slightly enriched with respect to incompatible element compositions and have Sr, Nd, Hf,
and Pb isotope compositions similar to N-MORB (e.g., 2697-1 and 2489-12 have Th/U =
2.94 and 2.73, respectively) (Figures 2-8). Additionally, samples 2697-9 and 2706-7 have
(**Th/**Th), (**U/**Th), and incompatible element compositions that are transitional to
Lamont and Siqueiros D-MORB compositions (Th/U = 2.33 and 2.30, respectively).
Three samples have measurable (***Ra/**Th) disequilibria. Sample 2697-1

((®**Ra/*Th) = 1.65) is an E-MORB collected from ~3.5 km off-axis at 9°50°’N, and
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samples 2697-9 ((**Ra/*"Th) =1.37) from 9°50°N and 2706-7 ((***Ra/**Th) = 1.52) from
9°30°N are both incompatible element-depleted N-MORB collected from <1.9 km off-
axis (Figure 9B). All other samples analyzed for (***Ra/*"Th)—including all E-MORB
from 9°30’N —are in equilibrium and were collected >1.9 km off-axis. For the three
samples with **’Ra excesses ((***Ra/*’Th)>1), *’Th excesses can be assumed to be
primary, as *°Th undergoes insignificant decay over 8 kyrs (i.e., five half-lives of ***Ra—
the time it takes for (***Ra/*’Th) to return to equilibrium). For the samples in equilibrium,
this indicates an eruption age of at least 8 ka, and suggests that “*Th excesses may need
to be age-corrected to recover primary *°Th disequilibria, assuming these samples were
generated with significant **Ra excesses. Because most samples have (**Ra/*Th) in
equilibrium, these samples do not conform to the apparent negative correlation between
(***Ra/*’Th) and (**Th/**U) observed for young axial samples. The samples with ***Ra
excesses have low (**Ra/*"Th) compared to the axial, zero-age trend (Sims et al., 2002),

and this is likely an effect of aging.

2.6. DISCUSSION

2.6.1. Correlations between chemical and isotopic variability
Based on Sr, Nd, Hf, and ***Pb/**Pb isotopic evidence, Sims et al. (2002)
considered the axial samples from 9°17°N to 10°N EPR to be derived from a mantle

source that was homogeneous over the length scale of melting. Our additional data show
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that off-axis E-MORB have mantle source compositions that are isotopically distinct
from all 9°-10°N EPR N-MORB. We posit that the majority of the trends observed when
including the new data for off-axis N-MORB and E-MORB in addition to previously
published data for N-MORB from 9°-10°N EPR (Sims et al., 2002; 2003) result from
mixing of melts derived from a heterogeneous mantle source with at least two major
components that are chemically and isotopically distinct. As mentioned above, Pb
isotopes appear to be more discriminating and demonstrate mixing between each of two
distinct off-axis E-MORB end members and a more depleted end member. (In this
regard, we note that Sims et al. (2002) also could not reconcile the Pb isotopes with their
assumption of source homogeneity and decided that the ***Pb/**Pb, which was uniform in
their data set, was the most important variable for their interpretation of U-series data as
it implied constant time-integrated source **Th/**U.) Despite this apparent tertiary
mixing relationship with respect to Pb isotopes, we focus on two-component mixing
because it appears sufficient to explain the entirety of the geochemical trends except Pb.
This is consistent with other studies that have shown on a global scale that U-Th, Nd, and
Sr isotope systematics support a model of binary mixing, whereas inclusion of Pb
isotopes requires several additional components (Sims & Hart, 2006).

To test the plausibility of two-component mixing, we have calculated binary
mixing curves between incompatible element and long-lived radiogenic isotope
compositions using the most depleted off-axis sample (2706-7) and the most enriched
off-axis E-MORB (sample 2703-1) from this study as end member compositions. The

resulting mixtures appear to reproduce the 9°-10°N EPR trends quite well (Figures 4 &
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5). We have also calculated mixing curves between Siqueiros E-MORB and D-MORB
using the isotopic data from Sims et al. (2002) and the concentration data for the same
samples published in Perfit ef al. (1996) and Lundstrom et al. (1999). These represent
some of the most incompatible element-enriched and -depleted samples from the first
order EPR segment between the Siqueiros and Clipperton transform faults and may be
plausible regional end member mantle source compositions. However, the mixing curves
between these Siqueiros compositions do not appear to fit the 9°30°N off-axis data as
well as mixing between depleted off-axis N-MORB and off-axis E-MORB. The isotopic
variability present in the mantle source of Siqueiros transform fault lavas is similar to, but
distinct from that at 9°30’N. Thus, it seems that 9°30°’N and Siqueiros lavas may have
slightly different mantle sources, which may reflect the length scale (or time scale) of
mantle heterogeneities throughout the region. We have also calculated mixing between
the Siqueiros D-MORB sample D20-2 (Lundstrom ef al., 1999) and the trend line age-
corrected E-MORB sample 2701-1 (Figure 8; see Figure 8 caption for details). Again,
binary mixing between end member melt compositions reproduces the entire data suite

quite well.

2.6.2. Are E-MORB erupted on- or off-axis?

Two physical processes have been proposed to explain the emplacement of
geochemically enriched signatures of E-MORB melts along the EPR. In the first process,
as advocated by Perfit ez al. (1994), E-MORB melts are transported away from the AMC

to small, off-axis melt lenses, from which they subsequently erupt. Some unavoidable
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mixing of enriched melts with depleted melts occurs, generating the observed mixing
arrays. This model requires that E-MORB erupt off-axis. Although we cannot rule out
this model, concurrent production of N-MORB with E-MORB melts while preserving the
E-MORB signature requires minimal mixing in the crust between the enriched melts and
the normal/depleted melts.

The alternative hypothesis, which in this case is better supported by the existing
data, is that production of E-MORB and N-MORB occur at different times, and that
mixing of enriched and depleted melts occurring during progressive depletion produced
the observed geochemical variations (e.g., Batiza & Niu, 1992; Hekinian et al., 1989). In
other regions of the EPR, such as from 11°45’N-13°N, E-MORB are known to erupt
within the ridge axis (e.g., Castillo et al., 2000; Hekinian et al., 1989; Reynolds et al.,
1992). They also display similar correlations between incompatible element enrichment
and isotopic enrichment. At 17°30’S EPR, mantle melting processes and source
characteristics have been argued to vary over the course of hundreds of years based on
the distribution of five geochemically and magnetically distinct lava sequences
(Bergmanis et al., 2007). We expect similar variations here at 9°-10°N EPR, though
perhaps over somewhat longer time scales, as the spreading rate is significantly slower
(11 cm/yr at 9°-10°N vs. ~14.6 cm/yr at 17°S).

Because of the detailed studies conducted at 9°17°N-10°N EPR, we can readily
identify relationships between spatial variations in lava chemistry and variations in lava
age. In particular, we have excellent constraints on the extent of the neo-volcanic zone in

this region from side-scan sonar imaging and magnetization profiles (e.g., Escartin et al.,
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2007; Fornari et al., 1998; Fornari et al., 2004; Schouten et al., 2004; Sims et al., 2003;
Schouten et al., 1999; Soule et al., 2005; Soule et al., 2009), qualitative age constraints
on lava flows outside of the axial summit trough from submersible observations (Haymon
etal., 1993; Sims et al.,2003; Soule et al., 2007), and quantitative age constraints

obtained from paleointensity (Bowles et al., 2006) and U-series analyses (e.g., Goldstein

et al., 1994; Rubin et al., 1994; Sims et al., 2003; Volpe & Goldstein, 1993).

2.6.2.1. Geological constraints

In the past, the coupled observations that E-MORB occur off-axis and young N-
MORB occur in close relation (Goldstein et al., 1994) have been used to infer that E-
MORB are erupted off-axis (Perfit et al., 1994). However, based on observations of E-
MORB within the axis in other locations, particularly in the 12°-13°N region (e.g.,
Hekinian et al., 1989; Langmuir et al., 1986; Niu et al., 1999; Reynolds & Langmuir,
2000; Reynolds et al., 1992) and the 17°S EPR (Bergmanis et al., 2007), there appears to
be no justification for requiring off-axis eruption of these 9°-10°N EPR E-MORB melts.
Instead, we suggest that the distribution of E-MORB is closely tied to the volcanic
processes that locally contribute to crustal construction. The focus of many past studies at
9°-10°N EPR has been to understand why seismic layer 2A, interpreted as the extrusive
crust, rapidly doubles in thickness within ~2 km of the AST and then maintains a
constant thickness (Bowles e al., 2006; Christeson et al., 1994; 1996, Escartin et al.,
2007; Goldstein et al., 1994; Harding et al., 1993; Hooft et al., 1996; Schouten et al.,

1999; Sims et al., 2003; Vera & Diebold, 1994). Although many of these studies
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preferentially advocate for different individual lava emplacement mechanismes, it is likely
that lavas that breach the AST flow down the ridge flanks (particularly in channels and as
larger flows) and interact with faults that dam these flows ~1-2 km off-axis to thicken the
extrusive crust (Sims et al., 2003; Soule et al., 2005; Escartin et al., 2007). Off-axis
eruptions and pillow ridges probably play a less significant role in crustal construction
(cf. Sims et al., 2003). What has become increasingly clear from these studies is that lava
emplacement is not confined to the AST and that young lava flows extend up to ~2 km
on both sides of the AST (Figure 1). This area of young lavas has been termed the “neo-
volcanic zone”, and the difference between young, “neo-volcanic” seafloor and flanking
old seafloor has been interpreted to correspond to age differences ranging on the order of
~1-10 kyrs (Escartin et al., 2007).

In general, E-MORB are located in areas of diminished volcanic activity,
particularly near the dying western limb of the small OSC and east of the neo-volcanic
zone in the 9°30°N region northwards to 9°36’N, with a smaller population west of the
neo-volcanic region at 9°50’N (Figure 1). Evidence of decreased fault density (Escartin et
al.,2007), increased lava channel density (Soule et al., 2005), thicker extrusive layer
volumes (Harding et al, 1993; Soule et al., 2005; Escartin et al., 2007), decreased
apparent sedimentation in side-scan sonar (Fornari et al., 1998, Fornari et al., 2004, Soule
et al.,2009), higher magnetic anomalies (Schouten ef al., 1999), and a westward offset of
the AMC relative to the AST (Crawford & Webb, 2002; Escartin et al., 2007; Soule et
al., 2005) indicate that volcanic activity and crustal accretion are preferentially

distributed to the west side of the axis at 9°30°N, opposite the highest concentration of E-
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MORB. Similarly, at 9°50’N, these lines of evidence (note the AMC is offset to the east
at 9°50°N) indicate that volcanism and crustal accretion are focused to the east side of the
AST. Thus, given the sampling distribution of E-MORB, the geological evidence
suggests that E-MORB (with the exception of R54-2, a dredged E-MORB sampled east
of the small OSC at 9°37°N), are indeed older and not currently erupting within the AST,
and that current exposure on the seafloor simply reflects the fact that they have not been

covered by younger lava flows of axial N-MORB compositions.

2.6.2.2. Paleointensity Age Constraints

Bowles et al. (2006) reported paleointensities on ~175 samples from 9°-10°N
EPR, including nine off-axis E-MORB. Of these nine off-axis E-MORB, three are from
north of the small OSC at 9°37°N, and only two of these three samples have
paleointensities >20 uT, and one sample has a paleointensity ~7.7 uT. The remaining six
off-axis E-MORB come from east of the AST at 9°30°N, include three of our samples,
and have paleointensities <15 uT (samples 2489-3 (~13.8 uT), 2489-4A (~12.4 uT), and
2489-5 (14.7 uT), see Table 6). Paleointensity measurements on off-axis N-MORB
sample 2489-12 (~6.6 uT) and other lavas from the same area east of the AST at 9°30°N
have the lowest paleointensities of any samples from 9°-10°N EPR (~6-8 uT) and are
most likely associated with the globally-observed Laschamp excursion at ~40 ka (Bowles
et al.,2006). The Laschamp excursion lasted for at most a few kyrs, and it is the only
period in the last ~100 kyrs when the paleointensity field reached such low magnitudes

(see Bowles et al., 2006; Laj et al., 2000). Following the Laschamp excursion,
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paleointensities increased until they peaked about ~500-2000 years ago (<~53 uT) and
since then have been declining to the present day value of ~36 uT. As noted above, the
off-axis E-MORB also have relatively low paleointensities (<20 uT), but because of
incomplete knowledge of the paleointensity field variations, Bowles et al. (2006) restrict
their interpretation to saying that these samples are most likely older than ~20 kyrs.
Given the similarity in paleointensities and major element compositions of off-axis E-
MORB samples 2489-3, 2489-4A, and 2489-5, Bowles et al. (2006) suggested that these
samples were erupted within ~100 years of each other and may even have been part of
the same flow unit (here we have shown that they are very similar with respect to trace
element and isotopic compositions as well; see Tables 3 & 4). Because of the large
number of samples east of 9°30’N with low paleointensities, they suggest that no flows

reached >1.74 km from the axis for the last 20 kyrs.

2.6.2.3. U-series Age Constraints

»¥U-*Th and *Th-**Ra disequilibria can be used to place constraints on lava
eruption ages; these constraints are shown in Table 6. Both (**Th/**U) and (***Ra/**’Th)
return to secular equilibrium within analytical uncertainties after about five half-lives, or
375 and 8 kyrs, respectively. Thus, samples with ***Ra excesses erupted less than ~8 ka,
and samples with (**Ra/*Th) in equilibrium are older than 8 ka, assuming they were
erupted with *°Ra excesses. (Note that the inverse correlation between (*°Th/**U) vs.
(***Ra/*’Th) would predict that E-MORB have high *°Th excesses and low **’Ra

excesses.) Since all samples from this study have *°Th excesses, they can be assumed to
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be younger than ~375 ka. However, no E-MORB samples have ***Ra excesses, indicating
that all of these 9°30°N E-MORB were erupted >8 ka (provided that they were even
erupted with significant *’Ra excesses). Only three samples from this study have
significant *’Ra excesses, indicating their eruption occurred within the last few thousand
years: an N-MORB from 9°30°N, an N-MORB from 9°50’N, and an E-MORB from
9°50’N (Figure 8B; see Results section).

A trend line model age technique has been applied to N-MORB from the 9°50°’N
area to provide more rigorous lava age constraints (Sims et al., 2003). We extend this
trend line model age method to dating E-MORB at 9°-10°N EPR. However, as explicitly
outlined in Sims et al. (2003), calculating robust ***U-*"Th and **Th-***Ra model ages
requires (1) that primary magmatic processes generated the initial ***U->"Th and **Th-
**Ra disequilibria and that these lavas have remained a closed system; (2) that magmas
have not resided for significant periods of time in a magma chamber relative to the ***U,
*Th, and **Ra half-lives; (3) that the mantle source between the zero-age lava and a
sample of unknown age is compositionally constant; and, (4) that the initial extent of
disequilibria in the zero-age lava and sample of unknown age is the same. These criteria
were met by off-axis N-MORB samples from 9°50’N EPR (Sims et al., 2003). However,
because there is only one E-MORB sample from 9°-10°N EPR with a ***Ra excess
(sample 2697-1), this is the only E-MORB from 9°-10°N for which the initial
(®°Th/**Th) and *°Th excess is also known. In turn, regressing initial (**Th/**Th)
against (**U/*”Th) data on an equiline diagram to generate a zero-age trend line for

purposes of **U-""Th dating means that the enriched end of this trend line is weighted
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only by this one sample, leaving the range of initial *Th disequilibria for E-MORB
highly uncertain. Furthermore, there are no E-MORB with known zero-age **’Ra
excesses, and hence dating by the **Th-"*’Ra method is highly problematic.

Thus, more uncertainty lies in determining model ages for E-MORB. However,
given the negative correlations among ***Ra excesses, >°Th excesses, and (***U/**Th) for
E-MORB, N-MORB, and D-MORB samples from the Siqueiros Fracture Zone, the
Lamont Seamounts, and 9°-10°N EPR, it seems likely that the primary processes (namely
partial melting and mixing during melt transport) that generate U-series disequilibria in
N-MORB are also responsible for generating disequilibria in E-MORB (Figure 8C).
Furthermore, all samples in this study have been analyzed for (**U/**U) and are in
equilibrium, indicating that these lavas have remained closed systems after eruption.
Additionally, because long-lived radiogenic isotopic compositions, (**Th/**Th), and
(**U/7’Th) are all correlated because of mixing, as described above, the zero-age trend
line also represents mixing of partial melts of isotopically distinct sources. Hence, by
extrapolating the zero-age ***U-""Th and *"Th-***Ra trend lines for axial N-MORB to
include D-MORB and E-MORB, we also account for source heterogeneity (note that
Sims et al., 2003 only regressed zero-age, axial N-MORB with uniform isotopic
compositions to date off-axis N-MORB of unknown age). We note that this is not strictly
true, since the Siqueiros E-MORB are not isotopically identical to the 9°-10°N E-MORB,
have different U and Th abundances, and do not derive from the same mantle source as
9°-10°N E-MORB:; yet, they heavily weigh the enriched end of the ***U-*"Th zero-age

trend line.
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Finally, a recent study of *'°Pb disequilibria by Rubin et al. (2005) limits crustal
residence time at 9°-10°N EPR to less than a few hundreds of years; thus—as with N-
MORB — it is unlikely that magma storage has a significant impact on the extent of **Th
and *°Ra disequilibria in E-MORB. Although trend line model ages for E-MORB will
not be as robust as those for N-MORB, they should still provide reasonable estimates.
Better knowledge of primary (**Th/**Th) and (***U/*°Th) in a larger number of E-
MORB from 9°-10°N EPR would undoubtedly allow for much more robust model age
calculations. Details of the trend line model age calculations are reported in the caption to
Table 6.

»%U-*Th trend line model ages for both N-MORB and E-MORB are generally
significantly younger than the spreading ages, which is consistent with significant crustal
accretion up to ~3 km off-axis (e.g., Goldstein et al., 1993; Hooft et al., 1996; Schouten
etal.,1999; Sims et al.,2003) (Figure 9). All N-MORB (except for samples 2489-12)
have (**Th/*’Th) indistinguishable from axial N-MORB samples ((**Th/**Th)>~1.35)
and thus may have been more recently erupted. Four of these N-MORB samples have
(***Ra/*’Th) in equilibrium and must have erupted >8 kyrs ago. Figure 9 illustrates the
relationship between trend line age, spreading age (or distance from the AST) and the
effect of off-axis emplacement on the spreading age. The relatively young trend line ages
for the distance from the AST for these samples indicate lava emplacement generally
occurred <1-3 km off-axis, which is consistent with the extent of the neo-volcanic zone
on the western side of the axis (Escartin et al., 2007). Thus, lava distribution may have

occurred via off-axis eruption or by eruption within the AST and subsequent transport to
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the ridge flanks — a feature now well documented in the 9°50°N area (Schouten et al.,
2004; Sims et al., 2003; Soule et al. 2005; 2009).

One of the most striking aspects of these data is that there is no systematic
difference between E-MORB and N-MORB emplacement distances (and ages). Thus,
there is also no reason to suspect that the mechanism of emplacement of E-MORB is
different from N-MORB: both N-MORB and E-MORB likely erupt in the AST and flow
off-axis up to several kilometers, though it is possible that a relatively small volume of N-
MORB and E-MORB erupt off-axis from axis-parallel faults and fissures. It should be
noted that many of the E-MORB in this study from 9°30’N were sampled from pillow
lavas in association with fault scarps. However, these E-MORB were generally sampled
at the tops of outward dipping faults, and several were sampled from intact pillows
midway up fault scarps (e.g. 2701-1,2702-1), suggesting that many of these E-MORB
are pillow lavas draped over volcanic growth faults (Macdonald et al., 1996). Thus, an
axial origin for these lavas is consistent with dive observations, remote sensing imagery,
and the paleointensity and **U-""Th-"*Ra age constraints. From these lines of evidence,
we can infer that these off-axis E-MORB were emplaced within <1-3 km of the axis
within the present-day extent of the neo-volcanic zone (Fornari et al., 1998; Schouten et
al., 1999; Sims et al., 2003; Soule et al., 2005), and that their distribution reflects that of
preservation, and not eruption: abundant E-MORB are found in areas of diminished
young volcanism and volcanic repaving of the ocean floor. Furthermore, though the
resolution of the **U-""Th dating technique, particularly for E-MORB, is not precise

enough to make a robust analysis, we speculate that variations in the mantle source
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composition from N-MORB to E-MORB may occur over relatively short time scales,
perhaps <1-10 kyrs (Figure 9).

E-MORB samples 2489-3 and 2489-4a plot above the line for axial emplacement
because they have *U-""Th model ages of 81 + 26 and 100 =+ 27 kyrs, respectively,
which are much greater than their spreading ages (41 kyrs and 48 kyrs, respectively). One
possible explanation for why these lavas have model ages ~40 kyrs older than their
spreading ages is that they have been exposed by faulting. However, although many of
the E-MORB in this study —including samples 2489-3, 2489-4a, and 2489-5, which are
nearly identical with respect to their chemical compositions and paleointensities —were
sampled from a large volcanic growth fault (Macdonald ef al., 1996), the exposed graben
on the east side of the axis at 9°30°N is only ~75 m below what would be expected if the
extrusive layer were constructed symmetrically. This only amounts to ~500 to several
thousand years worth of volcanic construction (Escartin et al., 2007). Thus, exposure of
these E-MORB by uplift is not sufficient to explain this age disparity. Hence, this age
disparity is physically implausible and must be explained otherwise.

Older eruption age estimates by *'Pa model age dating on sample 2489-3 gave a
similar result of 64 + 3 kyrs (Goldstein et al., 1994). Goldstein et al. (1994) attribute this
discrepancy to either a longer magma residence time for this sample or asymmetric
spreading with slower spreading on the Cocos side. Although longer magma residence
times can explain this discrepancy, constraints from other U-series disequilibria, namely
*Ra and *'’Pb disequilibria, indicate very short residence times (Sims et al., 2002; Rubin

et al.,2005) of 100’s of years, vs. the ~40 kyrs needed to explain this discrepancy.
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Furthermore, such a melt body would likely undergo substantial cooling, crystallization,
and compositional evolution over such a long span of time, and we note that these
samples are not significantly differentiated. Despite substantial evidence for asymmetric
construction of the extrusive layer to the east of the AST at 9°30’N, given the bilateral
symmetry of small and large flow fronts on either side of the AST, spreading is most
likely a symmetric process from 9°30°N to 9°50°’N EPR (Fornari et al., 2004). Instead, we
suggest that the coherent isotopic variations seen between off-axis N-MORB and off-axis
E-MORB from this area hint at complexity in the processes (namely, coupled variations
in degree of melting and source composition) that generate U-series disequilibria, and as
such, it is likely that both our model age calculations and those of Goldstein et al. (1994)
may be flawed because of invalid assumptions about the initial (**Th/***Th) and
('"Pa/**U) disequilibria (cf. Sims et al., 2003).

We also note that Goldstein et al. (1994) calculated a model age of 74 + 3 kyrs for
sample 2489-12. This is consistent with the spreading age of 78 kyrs, but much greater
than the age indicated by its paleointensity (~40 kyrs) and our U-Th model age of 31 + 11
kyrs. The reason for this discrepancy is because we use a different initial (*°Th/***Th)
based on the zero-age trend line, whereas Goldstein et al. (1993; 1994) use a single and
constant initial (**Th/**Th) and (*'Pa/*°U) value. For sample 2489-12, from its lower
(*°Th/**Th) and (*U/**Th) and more radiogenic isotope composition, we see that this
assumption of constant initial disequilibria for all N-MORB is clearly erroneous.
Likewise, we speculate that near the E-MORB end member, our zero-age trend line is not

necessarily an accurate representation of the initial (**Th/**Th) disequilibria for samples
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2489-3 and 2489-4a. The initial (**Th/**Th) disequilibria for these samples were
possibly much lower and more similar to the enriched Siqueiros lavas. The wide range of
(**Th/*’Th) and large scatter around the zero-age trend line exhibited by E-MORB from
9°-10°N EPR (Sims et al., 2002; 2003; Goldstein et al., 1993; 1994), Siqueiros
(Lundstrom et al., 1999), and Juan de Fuca and Gorda Ridge (Goldstein et al., 1992;
1993) seem to suggest that it is somewhat difficult to predict initial (**Th/**Th)
disequilibria for some samples for the purpose of model ages. In contrast, initial
(**Th/*’Th) disequilibria in N-MORB appear much more homogeneous and predictable,
as suggested by the coherent ages determined by U-series (Sims et al., 2003) and

paleointensity (Bowles et al., 2006) methods.

2.6.3. Petrogenesis of E-MORB

Recent studies of E-MORB far from hotspots have argued for a globally common
process for MORB source enrichment through subduction of oceanic islands or through
metasomatic enrichment of the mantle wedge or oceanic lithospheric mantle (Hemond et
al.,2006; Nauret et al., 2006; Niu et al., 2002; Donnelly et al., 2004). For example,
Donnelly et al. (2004) argue that E-MORB are produced by a process in which small-
volume (0.5%), low-degree melts (1%) of eclogitized slab enrich the overlying mantle
wedge peridotite (of depleted mantle composition) in the most incompatible trace
elements. This metasomatized peridotite is subsequently entrained in the upper mantle,
and undergoes high degrees of melting (9%) beneath ridges to produce E-MORB. By

batch melting metasomatized spinel peridotite, this model accounts for the chondritic
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Dy/Yb in E-MORB —as they argue that melting in the presence of garnet will produce
too high Dy/Yb.

Although the Donnelly et al. (2004) model reproduces the trace element
abundances of the EPR E-MORB fairly well (see Figure 12), they did not address the
observations of **Th excesses in MORB (e.g. Goldstein et al., 1992; 1993; 1994;
Lundstrom et al., 1995; 1999; 2000; Sims et al., 1995; 2002; 2003; Volpe & Goldstein,
1993), which require very recent melting in the presence of garnet (<<375 kyrs). Previous
experimental studies have demonstrated that large *Th excesses must be generated in the
presence of garnet, and that even in the presence of garnet, significant fractionation of Th
over U may only occur at very low degrees of melting (Beattie, 1993; Elkins et al., 2008;
Hauri et al., 1994; Landwehr et al., 2001; LaTourrette et al., 1993; Pertermann et al.,
2004; Salters & Longhi, 1999; Salters et al., 2002). Because of the small D values for Th
and U in all relevant phases, batch melting of metasomatically enriched spinel peridotite
to F~8-10% is inconsistent with observed large *Th excesses in both Pacific N-MORB
and E-MORB (unless the metasomatism is recent—i.e. much less than ~375 ka).
However, this recent metasomatism is not supported by the long-lived radiogenic isotope
compositions of E-MORB, which imply an old (10*-10° yrs) enrichment process and
subsequent ingrowth.

Studies of U-series disequilibria at 9°-10°N EPR and the Juan de Fuca ridge
demonstrate a positive correlation between (**Th/**Th) and (**U/**Th) (Figure 8a)
(Goldstein et al., 1993; Lundstrom et al., 1995; Lundstrom et al., 1999; Sims et al., 1995;

2002) and negative correlations between Th excesses and (**U/**Th) and between
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primary **Th and **Ra excesses (Figures 8b, 8c) (Lundstrom et al., 1995; Lundstrom et
al., 1999; Sims et al., 1995; 2002; Volpe & Goldstein, 1993). These N-MORB and E-
MORB data also show a distinct correlation between **U-""Th disequilibria and Sm/Nd
fractionation (Sims et al., 1995). Data presented in this study augment these correlations
(Figure 8). The most recent studies of U-series disequilibria in 9°-10°N EPR lavas have
shown that for lavas to have both negatively correlated primary **Ra and **Th excesses
and positively correlated (**Th/***Th) and (***U/**Th), the melting must occur in a two-
porosity melting regime (Kelemen ez al., 1997; Sims et al., 1999; Jull et al., 2002;
Lundstrom, 2000; Sims et al., 2002). Based on these U-series constraints, which require
recent fractionation in the presence of garnet and subsequent mixing of melts, we propose
that the mixing trends among trace elements and long-lived radiogenic isotopes reflect
mixing of melts during melt extraction and crustal residence and not ancient, low-degree
melt metasomatism. Below, we posit an alternative model in which low-degree melting
of an enriched, garnet-bearing source occurs deep in the MORB melting regime. We
accept that metasomatism, recycling of ocean crust, and recycling of OIB are all still
possible candidates for the origin of the mantle source enrichment, but not that the low-
degree melting event responsible for the trace element enrichments in E-MORB occurs as

a direct consequence of ancient metasomatism.

2.6.3.1. Melting Model
We model the melt extraction process as 1-D progressive depletion of a two

lithology source composed of peridotite (52% olivine, 18% clinopyroxene, 30%
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orthopyroxene) and pyroxenite (82% clinopyroxene, 18% garnet), similar to that of
Stracke & Bourdon (2009). Melt fractions are calculated as a function of pressure using
estimates of productivity for peridotite and pyroxenite (Petermann & Hirschmann, 2003).
To simulate the effect of a two-porosity model on trace element abundances, we mix
accumulated fractional melts generated at high pressure with accumulated fractional
melts generated at low pressure. Model parameters are illustrated in Figures 10-12, and
melting model details are given in the figure captions.

One of the strongest constraints on the genesis of EPR E-MORB is the presence
of both shallow MREE/HREE slopes (Donnelly et al., 2004) and large **Th excesses.
Although the shallow, near chondritic MREE/HREE slope would suggest a lack of garnet
in the mantle source residue, the *"Th excesses indicate otherwise. This seeming
discrepancy can be easily reconciled by recognizing that highly incompatible elements
such as U and Th are strongly partitioned into the melt in the smallest melt fractions,
whereas the concentrations of moderately incompatible elements like the MREEs and
HREESs are much more sensitive to the degree of melting. For example, the melting
trajectories in Figures 11A & B show there is a large change in Th/U (and Th and U
abundances, not shown) for the first percent or so of melting of garnet pyroxenite and
essentially no change in Sm/Yb (note that Mix1G (1405°C) pyroxenite starts mixing with
peridotite at ~1.2% melting). At higher degrees of melting of pyroxenite (>1.2%), and by
mixing increasing volumes of spinel peridotite melt into the relatively small volumes of
pyroxenite melt (note that even small degrees of melting of peridotite will produce large

volumes of depleted melt because of the large solid proportion of peridotite; Figure 10B),
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the influence of deep garnet pyroxenite melts on the MREE and HREE composition of
the mixed melts is rapidly diminished while there are no longer any significant changes in
the concentrations of highly incompatible elements (Figure 11). Hence, in this
progressive depletion model, the first increments of melting will determine the direction
and initial extent of U-Th disequilibria but melting over a much larger interval will
control the MREE/HREE slope.

Figures 11A and 11C show that the curvature of the 9°-10°N EPR mixing array
can only be generated if the enriched component is substantial (i.e. generated in the first
few degrees of melting of the enriched source). Mixing with peridotite at higher degrees
of pyroxenite melting (>1-2%) results in a hyperbola with the wrong sense of curvature
(Figure 11C-G2 mixed melts) or too high Sm/Yb at a given Sm/Nd (Figure 11C-Mix1G
(1375°C) mixed melts). However, if the pyroxenite solidus is much closer to the
peridotite solidus (i.e., a Mix1G solidus of 1405°C at 2.5 GPa), then only ~1% pyroxenite
melting may occur prior to peridotite melting, and the curvature and magnitude of Sm/Nd
and Sm/Yb fractionation is much closer to the observations. However, when considering
more highly incompatible element ratios (i.e., Th/U), the melt mixing trend does a
relatively poor job fitting the data (Figures 11A & B). Figure 12A shows how the overall
trace element abundances that result from this type of progressive depletion model (rather
than a two-porosity model) compare to E-MORB sample 2703-1. Although the trace
element abundances produced by the progressive depletion model are not entirely
unsatisfying, the two-porosity models provide much better matches to the data,

particularly for Th and U (Figures 12B & C). The mismatch in the abundances,
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particularly in the highly incompatible elements, may be due to differences in the model
and actual source. In all cases, shallow melts produced by progressive depletion of a
lithologically and chemically heterogeneous mantle source are reasonable matches to
average 9°-10°N EPR N-MORB. Due to the higher peridotite productivity used for the
case of Mix1G (1405°C), the N-MORB composition is more depleted in incompatible
trace elements for the progressive depletion model than for the two-porosity models

(Figure 12A).

2.7. CONCLUSIONS

Geological and geophysical evidence for diminished volcanic activity in the
9°30°N region, particularly to the east side, have been presented in numerous studies
(e.g., Bowles et al., 2006; Crawford & Webb, 2002; Escartin et al., 2007; Fornari et al.,
1998; Harding et al., 1993; Schouten et al., 1999; Soule et al., 2005). However,
decreased volcanism and the preservation of E-MORB have so far only been tentatively
linked (Reynolds et al., 1992; Smith et al.,2001). Our examination of geological,
paleointensity, and U-Th-Ra age constraints indicates that 9°-10°N EPR E-MORB
compositions are preserved on the surface because of locally diminished volcanic activity
west of the AST at 9°50°N, east of the AST at 9°30°N, and near the dying western limb
tip at 9°37°N. Paleointensities and U-Th-Ra disequilibria further suggest that

emplacement of flows occurs up to ~3 km off-axis and is similar for E-MORB and N-
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MORB throughout the 9°-10°N region. This further implies that E-MORB, like N-
MORB, erupt from within or near to the AST.

Based on the nonsystematic model age distribution of E-MORB relative to N-
MORB analyzed in this study, it seems likely that volumetrically small proportions of
enriched pyroxenite veins periodically enter the mantle source region beneath 9°-10°N. In
other words, the length scale among mantle heterogeneities is great enough that enriched
mantle domains are not homogeneously distributed throughout the melting region
beneath 9°-10°N EPR, and this is consistent with other studies that proposed alternating
intervals of enriched and depleted melt supply to the ridge axis (Batiza & Niu, 1992;
Bergmanis et al., 2007; Hekinian et al., 1989; Reynolds et al., 1992). Prompted by U-
series constraints on MORB petrogenesis in the 9°-10°N region, forward models of
incompatible element data suggest an alternative model for E-MORB genesis in which
small volumes of low-degree melts of pyroxenite veins mix with much greater volumes
of large melt fractions of peridotite, either during melt extraction in a two-porosity
melting regime or in the axial magma chamber. Due to the enhanced productivity of
pyroxenite, intervals of E-MORB magmatism and volcanism are probably short-lived
(<1-10 ka), with variations in the degree of enrichment reflecting the extent of depletion

of the enriched source over time.
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Figure 1. Sample location maps for 9°-10°N East Pacific Rise (EPR). Upper left inset
shows the study area with respect to Mexico and the EPR from 8°N to 19°N. Multibeam
bathymetry (Cochran et al., 1999) in the lower left map underlies sample locations for
samples collected from 9°29°N to 9°55°N EPR by rock core and Alvin (Perfit et al., 1994;
Perfit & Chadwick, 1998; Smith et al., 2001; Sims et al., 2002; Sims et al., 2003). The
axial high is at ~2100 m depth, with the flanks deepening to ~3000 m depth. The extent
of the neo-volcanic zone is delimited by a red line; the axial summit trough (AST) is
outlined by a thin black line (Soule et al., 2009). Variations in sample K/T1 (K,0/TiO, x
100) are shown by colored symbols. Blue crosses designate samples analyzed in this
study. Focus areas of this study are outlined by black boxes and expanded to the right.
The upper and lower right-hand side maps show side scan sonar imaging for the western
side of the 9°50°N region and the eastern side of the AST at 9°30°’N — 9°35°N,
respectively (Fornari ef al., 2004). Samples are colored as in the lower left map. Also
shown are the AST (white line), neo-volcanic zone (red line) (Soule et al., 2009) and
faults (green lines) (Escartin et al., 2007). Notably, all samples from this study were
collected from outside of the neo-volcanic zone, and enriched MORB from 9°30°N were
recovered from more highly tectonized terrain.
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Figure 2. (A) Plot of molar Mg# vs. K/Ti (wt% K,O/TiO, x 100). A horizontal dashed
line at K/Ti = 11 separates the fields for N-MORB (<11) and E-MORB (>11) (Smith et
al.,2001). Off-axis lava samples from 9°30’N are labeled with black diamonds; off-axis
samples for this study from 9°50’N are labeled with black squares. Axial samples from
9°17°N-9°54’N (Sims et al., 2002) are labeled as white squares. Off-axis symbols from
9°50°N (Sims et al., 2003) are labeled by gray squares. An E-MORB from Batiza & Niu
(1992) at 9°35°N is marked by a black triangle, and E-MORB from the small OSC at
9°37°N (Smith et al., 2001) are marked by red triangles. Siqueiros data (black and white
circles) are from Perfit et al. (1996). (B) Plot of Feg, vs. K/Ti. Feq,is negatively
correlated with K/Ti (as is Fe,,; Niu & O’Hara, 2008), where E-MORB trend to lower
Fe;, and higher K/Ti than N-MORB. Similarly, (C) CaO/AlO; is negatively correlated
with K/Ti. (D) Nayg , is positively correlated with K/Ti. These correlations suggest that E-
MORB melts derive from a greater contribution of garnet than N-MORB —more garnet
results in higher AL,O, concentration, lower CaO/Al,O; and a more fertile mantle
corresponds to more Na-rich clinopyroxene, a higher clinopyroxene/olivine abundance
ratio, and lower Fe, Mg,and Mg# (Niu et al., 2008).
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Figure 3. Spidergram of sample incompatible element concentrations normalized to
primitive mantle concentrations (McDonough & Sun, 1995). E-MORB from 9°30’N are
designated by red patterns, the E-MORB from 9°50°’N by a pink pattern, and all N-
MORB by black patterns. Note that E-MORB and N-MORB have similar, relatively flat,
REE patterns. In contrast, E-MORB exhibit a wider range of highly incompatible
elements and consistently have positive Ba anomalies.
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Figure 4. Plots of (A) Th/U vs. Ce/YDb, (B) K,O/TiO, x 100 vs. &y, (C) Sm/Nd vs.
Sm/Yb, and (D) Ce/Yb vs. gy, for 9°N EPR lavas. The dashed black line is a mixing
trajectory between Siqueiros D-MORB (A2384-6) and E-MORB (A2390-5) end
members (Perfit er al., 1996; Lundstrom et al., 1999; Sims et al., 2002). The solid black
line is a mixing trajectory between the most depleted (2706-7) and enriched (2301-1)
samples from this study. Mixing increments of 5% are designated by black plusses. Also
shown in (C) are modal accumulated fractional melting curves of garnet peridotite (red
line) and spinel peridotite (blue line). Plusses on the melting trajectories indicate 0.1%, 1-
10% in 1% increments, 12.5%, 15%, 17.5%, and 20-100% in 10% increments. See text
for details. Inset is the same as (C) but at different Sm/Yb scale to show the large extent
of Sm/Yb fractionation by garnet as compared to clinopyroxene. The symbols are the
same as in Figure 2.
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Figure 5. &, vs. g, for 9°-10°N EPR lavas. The dashed line is a binary mixing curve
between Siqueiros E-MORB and D-MORB. The solid line is a binary mixing curve
between 9°30°N off-axis N-MORB (sample 2706-7) and off-axis E-MORB (sample
2703-1). Data sources and symbols are the same as in Figure 2. Additional Siqueiros
isotope data comes from Sims et al. (2002). Data for sample R54-2 comes from Harpp et
al. (1990). See text for discussion.

92



38.1 S
38 1 A
o]
8. 37.9 1 More
& O~"Radiogenic
S 37.8 - O
g e
g 387.7 1 Eﬁﬁﬁ
. Less
o7 A Radiogenic
37.5 ; :
15.44 15.48 15.52 15.56
207Ph/204Ph
38-2 Toadal
38.1 { BOff-axis
09°50'N N-MORB °
38 | 29°30N N-MORB
o | +830NEMoRB
g. 37.9 1 2g!q EMSEB o S d_ore _
% 37.8 1 AR'5q4_2' B adiogenic
& 377 1 O 2697-1
" 376 Less B
375 ~_Radiogenic
18.0 18.2 18.4 18.6
206Ph/204Pb
15.55
 J
15.53 1 More
a15.51 1 F*aclioge%
<':'L15 49 %O
- 3 ®
0.15.47 1 O 56971
S
~15.45 { Less [
Radiogenic C
15.43 ; : .
18.0 18.2 18.4 18.6
206Pb/204Phb

Figure 6. (A) **Pb/**Pb vs. *’Pb/***Pb, (B) ***Pb/***Pb vs. **Pb/***Pb, and (C) *’Pb/***Pb
vs. 2Pb/***Pb for 9°-10°N EPR samples. Data sources and symbols are the same as in
Figures 2 and 5. Also marked are “more radiogenic” and “less radiogenic” off-axis E-
MORB groups as well as the off-axis E-MORB from 9°50°’N —see text for discussion.
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Figure 7. Plots of (A) ***Pb/**'Pb vs. "*Nd/'*Nd, and (B) **Pb/**°Pb vs. Th/U. Mixing
lines are designated by a dashed line between samples 2706-7 (depleted end member) and
2703-1 (more radiogenic E-MORB Pb end member) and a solid line between 2706-7 and
2489-3 (less radiogenic E-MORB Pb end member). Data sources and symbols are the
same as in Figures 2 and 5.
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Figure 8. (A) Plot of positively correlated (**U/**Th) vs. (**Th/**Th) for Pacific MORB
showing the mixing relationship between D-MORB to E-MORB. D-MORB have
essentially negligible *°Th excesses, suggesting depleted melts were last equilibrated
with spinel peridotite. In contrast, the large *°Th excesses of E-MORB indicate melting
in the presence of garnet. N-MORB represent mixtures of these enriched and depleted
melts. Note the greater variability in (*°Th/**Th) for E-MORB than for N- or D-MORB.
Mixing between the Siqueiros D-MORB sample D20-2 (Lundstrom et al., 1999) and the
trend line age corrected E-MORB 2701-1 (the sample with the lowest (**U/**Th)) is
represented by the black line, which is nearly identical to a regression line through
samples with **Ra excesses from 9°-10°N EPR, the Siqueiros Fracture Zone, and the
Lamont Seamounts, or those samples with primary **Th excesses. This regression line is
the zero-age trendline used to calculate U-Th model ages in Table 6 and is described by
the equation (*°Th/**Th) = 0.6381 x (**U/**Th) + 0.6. Plusses along the mixing line
represent 0%, 5%, 10%, 25%, 50%, and 100% mixing increments. >*°Th excesses are
indicated in 5% increments by dashed lines. Symbols for samples from this study are the
same as in Figure 2. Also included are samples from Juan de Fuca and Gorda Ridge
(open triangles) (Goldstein et al., 1992; 1994), additional samples from 9°-10°N EPR
(solid triangles) (Goldstein et al., 1993; 1994), and the Lamont Seamounts (blue circles)
(Lundstrom et al., 1999). (B) Plot of negatively correlated (**Th/**U) vs. (**Ra/**’Th) for
Pacific MORB. The linear regression used to estimate the zero-age trendline used for
calculating Th-Ra model ages, indicated by a dashed line, included only samples from
Sims et al. (2002) (open squares). (C) Plot of negatively correlated (**U/*°Th) vs.
(**Th/**U). E-MORB samples from Juan de Fuca and Gorda Ridge that lie below the
correlation have been interpreted as being older (>50-220 kyrs; see Goldstein et al., 1992;
1993 for details).
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Figure 9. Plot of spreading age (kyrs) vs. model age trend line age (kyrs) and distance
from the AST (km). Spreading ages were calculated as described in Table 6. Model U-Th
and Th-Ra ages are plotted as colored symbols (as in Figure 2). Dashed lines between
solid diamonds and colored symbols connect U-Th ages and paleointensity age
constraints for samples (Bowles et al., 2006). Black diamonds connected by dotted lines
with arrows represent minimum ages from paleointensity constraints. Solid and dashed
lines represent the effect of variable lava emplacement distances on spreading ages.
Shown are lines for lava emplacement in the axial summit trough, 1 km off-axis, 2 km
off-axis, and 3 km off-axis. We interpret the trend line age as the true sample age,
whereas spreading ages may also reflect the distance the lava was emplaced off-axis.
Trend line model ages significantly younger than the spreading ages are consistent with a
significant component of off-axis volcanic accretion. Emplacement may occur via
eruption within the AST and subsequent flow away from the AST or from direct
emplacement due to off-axis eruption. The gray field represents lava ages older than the
spreading age, a physical implausibility. Note that Th-Ra model ages often provide
higher resolution, and significantly different age information than U-Th ages. Error bars
for Th-Ra ages are smaller than the size of the symbol.
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Figure 10. (A) Plot of pressure (GPa) vs. temperature (°C) showing the adiabatic gradient
and the solidi for peridotite and three different pyroxenites used to calculate trace element
compositions of melts produced by melting of a lithologically and compositionally
heterogeneous mantle source. The mantle potential temperature was set at 1340°C with
an adiabatic gradient of 10°C/GPa (Ita & Stixrude, 1992), which coincides with melting
of dry peridotite at ~60 km, or ~2 GPa, using the solidus of Hirschmann (2000). Three
different pyroxenite solidi were used to investigate variations in melt composition that
result from changes in the depth of the pyroxenite solidus relative to the peridotite
solidus. The deepest pyroxenite solidus was parameterized after the G2 solidus
(Pertermann & Hirschmann, 2003), and the shallower pyroxenite solidi, which are
intended to be representative of the range of possible solidi expected for the silica
deficient pyroxenite Mix1G (Hirschmann et al., 2003; Kogiso et al., 2003; Elkins et al.,
2008), were assumed to be parallel to the solidus of G2. We assume maximum and
minimum solidi for Mix1G of 1375°C and 1405°C at 2.5 GPa (similar to the range of
1375°C-1400°C found by Hirschmann et al., 2003).

(B) Plot of pressure (GPa) vs. melt fraction (%), showing the effect of different
productivities and solidi depths on the total melt fraction, as modeled in this study.
Pyroxenite productivity was calculated as a function of pressure based on the
parameterization of a silica-rich pyroxenite (G2) from Pertermann & Hirschmann (2003).
Under these conditions, G2 pyroxenite crosses its solidus at ~3.5 GPa and melts >60%
prior to peridotite melting. In contrast, the Mix1G pyroxenite crosses its solidus between
2.16 and 2.45 GPa and melts only ~1-8% before peridotite starts melting. Once peridotite
melting begins, pyroxenite productivity decreases to a constant 16.5%/GPa (Hirschmann
& Stolper, 1996). G2 pyroxenite melts almost 100% by the time peridotite melting
ceases; total melting of Mix1G pyroxenite ranges from 35-42%. We assume peridotite
melting begins in the spinel stability field and that peridotite productivity is constant,
adjusting peridotite productivities in each of the three cases (dF/dP;,= 5%/GPa,
dF/dPy;ix16.1375c=3%/GPa, and dF/dPyy;,,.1405:c=11%/GPa) to best match the trace element
abundances of E-MORB and N-MORB samples.

(C) Plot of pressure (GPa) vs. relative melt fraction (%), showing the relative
contribution of melt from either peridotite or pyroxenite source for each different
pyroxenite solidus, assuming pyroxenite constitutes 3% of the total solid mantle, which is
consistent with constraints on G2 pyroxenite solid volumes based on crustal thickness
(Pertermann & Hirschmann, 2003). Peridotite and pyroxenite melts are mixed in
proportions based on their relative melt fractions (where relative melt fraction =F,, x
Koy B X X + Fregonie X (1-X,,,)), where X is the solid fraction of pyroxenite). Given
the productivities shown in (D), for a large difference in pyroxenite and peridotite solidi,
as is the case for G2 pyroxenite, pyroxenite melt compositions will have a more lasting
influence on the bulk melt composition and ultimately contribute a much greater fraction
of the total volume of melt than the unmelted pyroxenite did to the solid mantle (~22%
vs. 3%). In contrast, more similar pyroxenite and peridotite solidi (e.g., Mix1G) result in
much more rapid decreases in the proportion of pyroxenite melt and thus pyroxenite
compositional influence. In all cases, however, peridotite melting overwhelms pyroxenite
melting —pyroxenite melt constitutes only 5-22% of the total melt.
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(Figure 10, cont’d) (D) Plot of pressure (GPa) vs. pyroxenite productivity (%/GPa)
showing model parameterization, after Pertermann & Hirschmann (2003) and
Hirschmann & Stolper (1996). G2 pyroxenite initiates melting at ~3.5 GPa and
productivity increases rapidly to ~67%/GPa before peridotite begins melting. Mix1G
pyroxenite (with the minimum solidus estimate of 1375°C) initiates melting ~2.45 GPa
and productivity peaks at ~27%/GPa. The hotter Mix1G pyroxenite solidus (1405°C)
crosses the adiabat at ~2.16 GPa and increases productivity to a rate of ~15%/GPa. Once
peridotite begins melting, all pyroxenite productivities are ~16.5%/GPa. Pyx-Gt= garnet
in pyroxenite; Spl=spinel; Pdt=peridotite.
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Figure 11. (A) Sm/Yb vs. Sm/Nd; (B) blow up of (A); (C) Sm/YDb vs. Th/U; and (D)
blow up of (C). Arrows along melting trajectories indicate decreasing pressure and
increasing extent of melting. Each lithology undergoes modal fractional melting
independently and the accumulated melts from both lithologies are mixed at all depths.
These trajectories are marked as “mixed melts”. “Two-porosity” trajectories are
generated by mixing of deep and shallow melts—see Figure 12 caption for details.
Plusses along two-porosity mixing trajectories in (B) and (D) represent 1% mixing
increments. Data symbols are the same as for Figure 2. For the peridotite source, we use
the depleted DMM composition of Workman & Hart (2005), and for the pyroxenite
source, we use the composition of Donnelly et al. (2004) for average EPR oceanic crust,
noting that the true sources —particularly the enriched source —are not well-constrained.
Peridotite partition coefficients are taken from a compilation by Donnelly ef al. (2004),
and bulk pyroxenite partition coefficients are calculated from Pertermann & Hirschmann
(2004), using the cpx/melt Ds from run A343 and garnet/melt Ds from the “preferred
average” (see Table 9 of Pertermann & Hirschmann, 2004). Spinel peridotite mineral
proportions are 52% olivine, 18% clinopyroxene, and 30% orthopyroxene (from
Donnelly et al., 2004). Trace elements are assumed to partition between spinel and melt
similarly to olivine/melt. Pyroxenite mineral proportions are 82% clinopyroxene and 18%
garnet, as described by Pertermann & Hirschmann (2003). We also assume that garnet is
no longer stable in pyroxenite at the peridotite solidus (Pertermann & Hirschmann, 2003).
Pdt= peridotite; MM= mixed melts; TP= two-porosity.
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Figure 12. Trace element abundances of modeled E-MORB and N-MORB melts
normalized to average axial 9°-10°N EPR N-MORB (Sims ef al., 2002) for 1-D melting
of peridotite and (A) Mix1G (1405°C), (B) G2, and (C) Mix1G (1375°C) pyroxenites.
The most enriched (2703-1) and depleted (2706-7) 9°30°N EPR samples from this study
are shown for comparison. Using the parameters described in the captions to Figures 10
and 11, we have tried to match the most enriched E-MORB composition and still
adequately match the average N-MORB composition by progressive depletion of a
heterogeneous source. For extraction of N-MORB melt, we cease melting of Mix1G
(1405°C) + peridotite at 1 GPa, G2 + peridotite at 1 GPa, and Mix1G (1375°C) +
peridotite at 0.1 GPa. Both G2 and Mix1G (1375°C) model N-MORB are very similar to
average 9°-10°N EPR N-MORB, but the Mix1G (1405°C) model N-MORB is more
depleted than average 9°-10°N EPR N-MORB due to higher peridotite productivity
(11%/GPa). Mix1G (1405°C) pyroxenite-peridotite mixed melts were extracted at ~1.96
GPa to best reproduce the incompatible element abundances of E-MORB 2703-1. In
contrast, G2 and Mix1G (1375°C) pyroxenite-peridotite melt mixes resemble pure
enriched pyroxenite melts when their abundances in the most incompatible elements are
similar to E-MORB 2703-1 because these melts are largely composed of pyroxenite melt
and peridotite melting has not substantially diluted the abundances of the MREE and
HREE (Figure 11), so we can rule out progressive depletion as a source for E-MORB
under conditions with deeper solidi. To simulate the effect of a two-porosity model on
trace element abundances, we mix accumulated fractional melts generated at high
pressure with accumulated fractional melts generated at low pressure (B&C). Binary
mixing of ~1% melts of G2 and Mix1G (1375°C) pyroxenites (with deep melt
proportions of 5%) with peridotite-pyroxenite melt mixes at 1 GPa and 0.1 GPa (the
pressures for N-MORB extraction) result in excellent matches to the pattern for E-MORB
2703-1, suggesting a two-porosity melting regime is plausible, but indicating that melting
of the enriched component must be limited to about 1% (for accumulated fractional
melting).
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Table A2. Corrected values for *Nd/'**Nd isotopic measurements
reported in Sims et al. (2002) and Sims et al. (2003)". See Table 4 for details.

Originally Reported in Sims et al. (2002):

Sample Corrected "“Nd/"**Nd
2359-4 0512358 Originally Reported in Sims et al. (2003):
2497-1 (1) 0512353 Sample Corrected "*Nd/"**Nd
2359-5 0.512363
2368-4 0.512367 2737-8 0.512376
2372-1 0.512363 2746-4 0.512362
2392-9 0.512362 2746-7 (1) 0.512361
2752-6 0.512357 2746-9 0.512366
2504-1 0.512352 2746-14 0.512364
2351-2 0.512368 2759-12 (1) 0.512373
2746-4 0.512367 2759-14 (1) 0.512366
2746-3b 0.512345 2768-3 0.512361
2370-6 0.512357 2768-4 0.512364
2370-1 0.512363 2768-6 0.512375
2355-8 0.512352 2768-8 0.512354
2356-7 0.512359 2771-1 0.512374
2361-6 0.512362 2772-1 0.512366
2352-2 0.512370 2772-2 0.512360
2358-3 0.512372 2772-3 0.512351
2358-4 0.512373
2365-3 0.512350
Siqueiros
2390-5 0.512208
D20-2 0.512350
A2384-3 0.512354
A2384-6 0.512353

‘For data originally reported in Sims et al. (2002), a correction of 0.65 Epsilon units was
applied. For data reported in Sims et al. (2003), the correction was 0.70 Epsilon units.
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CHAPTER 3: EVALUATING THE RESOLUTION OF U-SERIES
AGE CONSTRAINTS: AN APPLICATION TO RIDGE FLANK

CONSTRUCTION AT 9°-10°N EAST PACIFIC RISE

ABSTRACT

Models of crustal accretion at fast-spreading ridge segments such as at 9°-10°N
East Pacific Rise (EPR) assume that volcanic accretion is symmetrical and confined to a
narrow, axial summit trough (AST). Recent studies have revealed that volcanic accretion
occurs over an area up to at least ~2-4 km to either side of the ridge axis, and that lava
may be emplaced in a variety of ways, including direct emplacement via off-axis
eruptions on the ridge flanks as well as AST overflow and focused transport in off-axis
lava channels or dispersed flow down the ridge flanks. Most of the ridge crest is
dominated by overlapping flows that have breached the AST and flowed to variable
distances off-axis, as observed in side-scan sonar and high resolution bathymetry that
show the presence of ‘shingled’ terrains.

The primary objective of this study is to use **Th-**’Ra model ages, in
conjunction with precise knowledge of sampling locations, to identify the mechanisms
and ordering of flow emplacement of individual ‘shingles’, and to discern the
relationships between adjacent flow units. In order to construct a time-constrained
volcanic stratigraphy of the ridge crest, 22 mid-ocean ridge basalts were collected from
several flow units on the east and west flanks of the ridge axis at 9°50’N EPR in
February-March of 2004 and were measured for major element, trace element, and
¥’Sr/**Sr and **U-*"Th-*Ra isotopic compositions. Additional **U-**Th-**Ra data
obtained from zero-aged samples from the 2005-2006 eruption sequence, when taken
together with data for samples from the 1991-1992 eruption, suggest more diversity in
initial (***Ra/*Th) than previously anticipated and limit the resolution of our dating
technique to ~+1 kyrs. We find that ridge flank samples in this study are younger than ~2
kyrs, but that the range of geochemical compositions represented by these flank lavas as a
group, particularly U, Th, and **Ra concentrations, is much greater than the range
represented by samples from individual eruptions (e.g., 1991-92 and 2005-06). Some
samples have identical geochemical compositions, and this allows us to identify seven
distinct eruptive units despite indistinguishable model ages. These data suggest more
frequent (<300 yrs) emplacement of flows up to 1-2 km from the AST than has been
previously inferred from models of crustal accretion. In addition, the variability of
geochemical compositions requires rapid, significant changes in parental melt
composition on the order of a few hundred years.
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3.1. INTRODUCTION

Mid-ocean ridge (MOR) spreading at the East Pacific Rise (EPR) from 9°-10°N
has typically been viewed as a geologically continuous process involving eruptions and
dike emplacement within a narrow zone of magmatism defined by the axial summit
trough (AST) (Figure 1) [Gregg et al., 1996; Haymon et al., 1991; Fornari et al., 1998;
Perfit and Chadwick, 1998; Schouten et al., 2001; Soule et al., 2009]. However, seismic
studies suggest that seismic layer 2A, inferred to be the extrusive volcanic crust, doubles
in thickness within ~2-4 km from the AST [Christeson et al., 1994; 1996; Harding et al.,
1993; Schouten et al., 1999; Sohn et al., 2004; Vera and Diebold, 1994]. This geometry
can only be generated if a large component of crustal accretion occurs outside of the AST
[Goldstein et al., 1994; Hooft et al., 1996; Perfit et al., 1994; Sims et al., 2003; Soule et
al., 2005; White et al., 2002]. In light of the observed crustal thickening, recent efforts
have focused on investigating off-axis volcanic features and their spatial relationships.

Several mechanisms have been proposed to explain this thickening of layer 2A:
eruptions from vents outside the AST, often in the form of pillow ridges/mounds [Perfit
et al., 1994], lobate or sheet lava flows that overflow the AST [Hooft et al., 1996;
Schouten et al., 1999; Sims et al., 2003], and lava channels and tubes that transport axial
lavas several km away from the AST [Hooft et al., 1996; Sims et al., 2003, Soule et al.,
2005]. High-resolution autonomous benthic explorer (ABE) bathymetry and DSL-120A
side-scan sonar imagery in the 9°50°N region show that both the east and west ridge

flanks up to ~2 km from the AST are dominated by shingle-patterned lava terrain with
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high acoustic backscatter (Figure 2) [e.g., Fornari et al., 2004, Plate 2; Sims et al., 2003,
Figure 1b]. Bounding this ~4 km wide, axially centered, but asymmetric, ‘neo-volcanic’
zone are regions of low acoustic backscatter, interpreted to be more heavily sedimented,
older lavas [e.g., Escartin et al., 2007; Fornari et al., 2004; Soule et al., 2009]. The neo-
volcanic zone is inferred to be produced by overflow of the AST and off-axis transport of
relatively young lava by either dispersed flow or focused flow through channels or tubes
down the ridge flanks [Fornari et al., 2004; Soule et al., 2005]. Off-axis pillow mounds
are present but appear to comprise only a small component of off-axis accretion [cf.,
Sims et al., 2003, Figure 1b]. Thus, eruption from within the AST and lava flow down the
ridge flanks appears to be the primary mechanism for volcanic accretion outside of the
AST at 9°50’N EPR.

Although high-resolution spatial observations provide controls on the mechanisms
of volcanic accretion, they are limited in their ability to quantitatively constrain temporal
aspects of ridge evolution. In particular, identifying differences or similarities in the ages
and compositions of adjacent ‘shingles’ (or flow lobes), as observed in side-scan and
bathymetric imagery, is necessary for determining whether the shingled terrain observed
along the ridge flanks outside of the AST at 9°50’N EPR [Fornari et al., 2004] is
produced by the overlapping of flows from multiple eruptions, fed by lava tubes from the
AST, or reflects ridge crest repaving by single, large eruptions.

Dating methods have the potential to address this important issue, but placing age
constraints on young mid-ocean ridge basalts (MORB) has proven to be difficult. Age

estimates based on sedimentation or alteration rates are qualitative, as they depend on
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lava morphology and sedimentation rates [e.g., Haymon et al., 1993; Perfit and
Chadwick, 1998; Rubin and MacDougall, 1990; Sturm et al., 2000]. Traditional
radiometric dating techniques are either limited by their temporal sensitivity (e.g., Rb-Sr,
Sm-Nd, U-Pb) or by a lack of requisite closed system behavior (e.g., K-Ar, Ar-Ar)
[Duncan and Hogan, 1994]. Recent studies using magnetic paleointensities to constrain
lava ages have proven valuable for young lava flows [Bergmanis et al., 2007; Bowles et
al., 2006], but paleointensity field variations become non-unique after a few kyrs, which
increases estimated uncertainties for older flows, and paleointensity estimates in MORB
glasses may be biased slightly low due to local field effects and cooling rate bias [Bowles
et al., 2006].

Uranium decay series (U-series) dating techniques provide an effective means for
accurately dating MORB on timescales of ~0.1-375 ka, and they are not subject to the
same limitations as paleomagnetic and traditional radiometric methods [Cooper et al.,
2003; Goldstein et al., 1992; 1993; 1994; Lundstrom et al., 2003; Rubin and MacDougall,
1990; Rubin et al., 1994; Sims et al., 2003; Standish and Sims, 2009; Sturm et al., 2000;
Waters et al., in review]. The presence or absence of disequilibria among the daughter
products (e.g., **Th, **Ra, *'°Pb, and *'Pa) can place absolute age limits on lava samples,
and under certain conditions disequilibria can be can used for model age dating, which
can provide a much finer temporal resolution [Sims et al., 2003].

Sims et al. [2003] established the use of U-series model ages at 9°50’N EPR as a
valid dating technique and provided temporal evidence confirming both geological and

geophysical observations that MOR volcanic construction is not limited to the AST and
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occurs over the full width of the neo-volcanic zone [e.g., Christeson et al., 1994; 1996;
Fornari et al., 2004; Harding et al., 1993; Hooft et al., 1996; Perfit and Chadwick, 1998;
Perfit et al., 1994; Schouten et al., 1999; Sohn et al., 2004]. Indeed, the ***Th-**Ra model
ages calculated by Sims et al. [2003] for the majority of samples collected within the neo-
volcanic zone are much younger than ages expected based on the spreading rate and the
sample distance from the axis, which is consistent with flow of lava off-axis. However,
the samples dated by Sims et al. [2003] were collected using the submersible Alvin from a
variety of locations on the 9°50°N EPR ridge flanks, with no more than a few samples
selected in any one location, and thus Sims et al. [2003] lacked the sampling continuity
needed to identify age relationships between adjacent lava flows.

During a recent cruise to 9°50’N EPR, new sample suites were collected by Alvin
along two dive transects that traversed across the east and west ridge flanks from the edge
of the neo-volcanic zone (~2 km) to ~0.7 km from the AST (Figures 1, 2) [Schouten et
al., 2004]. These samples were collected directly from pillow lavas and adjacent lobate
and sheet flows that correspond to the fronts and bodies of flow shingles, respectively, in
side-scan sonar and ABE bathymetry. Thus, these suites provide the necessary sample
resolution and continuity for determining the geochemical and age relationships among a
stratigraphically related series of flow shingles. We study these sample suites to
investigate the origin of shingled terrain and to place temporal constraints on the

formation of the neo-volcanic zone at 9°50°’N EPR.
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3.2. SAMPLE LOCATIONS AND DESCRIPTIONS

Dives 3963 and 3974

Dive 3963 and 3974 samples were collected using the submersible Alvin during
cruise AT11-7 to 9°-10°N EPR [Schouten et al., 2004]. Lava samples were collected at
and between inferred lava flow fronts up to ~2 km to the east and west side of the ridge
crest, respectively (Fig. 1). Observations of lava morphology and qualitative age
indicators were made along the dive tracks. ABE bathymetry, shipboard multibeam
bathymetry, and high-resolution side-scan sonar imaging are also available for this area
[Cochran et al., 1999; Fornari et al., 1998; 2004]. Dive track and sample locations are
shown in Figures 1 and 2(A-D). In situ dive observations, hand sample descriptions, and
the locations of samples with respect to morphological characteristics, such as pillow
flow fronts and lobate/sheet flow units, are summarized in Table 1. Dive summaries can

be found in Appendix A.

2005-2006 Flow: Five samples acquired from flows associated with the 2005-2006
eruption at 9°50’N EPR [Soule et al., 2007; Goss et al., in review] have also been
analyzed for *U-""Th-**Ra disequilibria. Because these samples are recently erupted,
they provide additional constraints on the initial disequilibria present upon eruption and
augment the zero-age trend previously documented for samples erupted during 1991-
1992 [Sims et al., 2002]. Four samples were collected with the submersible Alvin. Two of

these (4202-4, 4202-6) were collected at 9°50°-9°51’N and the other two Alvin samples
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(4205-5, 4205-6) were collected further south at 9°46°-9°47°N. The fifth sample (NH-

DI1A) was collected by dredge slightly off-axis at 9°54’N. Sample locations are shown in

Figure 1.

3.3. U-SERIES MODEL AGE DATING

The assumed starting condition of U-series nuclides in the mantle source prior to
partial melting is one of secular equilibrium, in which the activities of the constituent U-
series nuclides are equal, and their activity ratios (herein denoted by parentheses) are
equal to unity. Because the U-series decay chain is composed of different elements, in
particular U, Th, and Ra, magmatic processes such as mantle melting, melt segregation,
melt transport, and fractional crystallization may fractionate these elements and perturb
the steady-state condition. In addition, the magnitude of disequilibria can be affected by
the original mantle source composition. Secular equilibrium is again reached in roughly
five half-lives, or ~8 kyrs and ~375 kyrs for **°Ra (t,,=1.6 kyrs) and *Th (t,,=75 kyrs),
respectively. Thus, the presence of disequilibrium in a lava, for example (**Ra/**Th)z1,
or (*°Th/**U)z1, immediately limits the lava eruption age to <8 ka or <375 ka.

Furthermore, if the initial extent of disequilibrium in a basalt sample upon
eruption can be established, the difference between that initial activity and the current
measured activity can be used to explicitly determine the lava eruption age. U-series

model ages for off-axis MORB have been calculated by estimating the initial activities
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from data for the youngest axial basalts and comparing these with the activities measured
in a sample of unknown age [Goldstein et al., 1993; 1994; Sims et al., 2003]. For
example, when calculating model ages of samples from 9°-10°N EPR, initial activity
ratios can be estimated based upon measurements from lava collected exclusively within
the AST and known to have erupted in 1991-92 (Figure 3; [Sims et al., 2002; 2003]).

It is important to note that these U-series ages are “model” ages in that they
assume a constant source (spatially and temporally) and are the sum of magma chamber
residence time and eruption age. When determining U-series model ages, several criteria
must be met to assure that the initial extent of disequilibria in the lava of known age and
the sample of interest is the same:

(1) Primary magmatic processes initially created U-series disequilibria and the lavas
being dated have not undergone significant secondary alteration. These lavas
have remained a closed system with respect to Th/U after eruption.

(2) After melt generation and transport, the magma has not resided for significant
periods of time in a magma chamber relative to the half-lives of **Th (~75 kyrs)
and **Ra (~1.6 kyrs).

(3) The source of the axial and off-axis lavas is constant, both spatially and
temporally, with respect to Th/U.

(4) Both the axial lavas and the off-axis lavas were derived by similar degrees of
melting and that the depths of melting and melt transport rates were also similar
[e.g., McKenzie, 1985; Rubin et al., 2005; Spiegelman and Elliot, 1993; Williams

and Gill, 1989].
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These criteria were met by a suite of off-axis samples from a previous dating
study at 9°50°’N EPR [Sims et al., 2003]. Prior work has confirmed that U-series
disequilibria in both axial and off-axis lavas have been generated by primary magmatic
processes (1.e., melting, melt segregation, and melt transport in the mantle) [Sims et al.,
2002; 2003]. These primary disequilibria are best represented by the negative correlation
between (***Ra/**Th) and (**Th/**U) (Figure 3), the positive correlation between
(*°Th/**Th) and (**U/**Th), and the essentially constant (**'Pa/**U) for variable
(**Th/**U) in samples known to have erupted during 1991-1992. Samples are always
screened for alteration/closed system behavior by measuring (**U/**U) and/or CI/K
ratios [Sims et al., 2002; 2003]. A recent study of *'°Pb disequilibria by Rubin et al.
[2005] limits crustal residence time at 9°-10°N EPR to less than a few hundreds of years;
thus, it is unlikely that magma storage has a significant impact on the extent of **Th and
**Ra disequilibria. Furthermore, previous studies have characterized the 9°-10°N EPR
axial lavas in terms of major and trace element compositions, and Sr, Nd, Hf, and Pb
isotopic compositions [Sims et al., 2002; 2003]. The first of these studies [Sims et al.,
2002] established that axial lavas are derived from a source that is constant with respect
to the time-integrated values for Sm/Nd, Lu/Hf, Rb/Sr, and Th/U. The second study,
focused at 9°50'N [Sims et al. 2003], demonstrated that the measured off-axis lavas in
this region have isotopic compositions that are uniform and identical to the axial lavas,

and hence are inferred to come from the same mantle source. In addition, recent Sr, Nd,
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and Pb isotopic analyses on lavas from the 2005-2006 eruption also indicate constancy in
the mantle-source composition [Goss et al., in review].

Having satisfied all of the above listed criteria, Sims et al. [2003] were able to
calculate model ages using best fit trend lines on plots of (**U/**Th) vs. (**Th/**Th) and
(P°Th/7®U) vs. (*Ra/*’Th) to represent initial (**Th/**Th) and (***Ra/*Th) disequilibria
in young (<200 yrs) lavas collected from within the AST from 9°17°-9°54’N EPR (Figure
3) [Sims et al., 2002; 2003]. Aging from these trend lines follows a vertical trajectory,
and the difference in (*°Th/**Th) and (***Ra/***Th) from the initial value estimated by the
trend line can be used to calculate the lava eruption age, again assuming that the initial

disequilibria in the sample of known age and the sample of interest are equal (Figure 3).

3.4. COMPARISON OF U-SERIES DATING WITH OTHER AGE

CONSTRAINTS AT 9°50°N EPR

The Sims et al. [2003] study showed that model ages for spatially constrained and
well-documented off-axis lavas are generally consistent with field observations of lava
ages based on the extent of alteration and sediment cover. However, they also found that
observations of sediment cover and alteration are qualitative and subject to local
variations in hydrothermal and pelagic sedimentation rates. This is consistent with the
findings of Sturm et al. [2000] on the Mid-Atlantic Ridge. Recent paleointensity

measurements made on several of the same samples analyzed in Sims et al. [2003] and in
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a recent study by Waters et al. [in review] are consistent with U-series ages, but are
limited by an imperfect knowledge of field variations at 9°-10°N EPR and the inherent
non-uniqueness of paleointensities [Bowles et al., 2006]. In addition, paleointensity
measurements provide no constraints on petrogenetic processes. It is for these reasons
that we use U-series measurements to provide the necessary information for deciphering
individual flow units. We compare our quantitative age results with qualitative
submersible and hand sample observations of sediment cover and glass alteration to

further evaluate the value of each method.

3.5. ANALYTICAL METHODS

Major elements were analyzed on polished glass chips at the USGS Microbeam
Laboratory in Denver, Co. using a JEOL 8900 Electron Microprobe. Analysis of seven
to ten separate points (including spots on separate chips of the same sample) were
averaged for each sample and then normalized and corrected for instrument drift based on
the established values for in-house standards JAF-D2 [Reynolds et al., 1995] and
ALV2392-9 [Smith et al., 2001]. The 2s errors calculated from variation in the analyses
of ALV2392-9 during these analytical runs are listed in Table 2.

Samples were analyzed for trace elements at the University of Florida using a
Thermo Finnigan Element II Inductively Coupled Plasma Mass Spectrometer (ICP-MS).

The analyses were performed in medium resolution with Re and Rh used as internal
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standards to correct for instrumental drift and matrix effects. Concentrations were
calculated by external calibration using a combination of USGS (BHVO-1) and in-house
(ENDV, and Endeavor Ridge MORB standard from the Geological Survey of Canada,
Ottawa) rock standards. Repeated chemical analyses of a second in-house MORB
standard (ALV2392-9) during each run were used to assess instrumental drift as well as
evaluate accuracy and precision of the measurements. Precision (2s) was found to be
better than = 5% for the rare earth elements, Ba, Hf, Nb, Rb, Sr, Th, Y, and Zr, and better
than = 9% for Pb, Ta, and U.

Sr isotopic analyses were conducted both at Woods Hole Oceanographic
Institution (WHOI) using a Thermo Finnigan Neptune multi-collector inductively
coupled mass spectrometer (MC-ICP-MS) and at Boston University (BU) using the
Thermo Finnigan Triton thermal ionization mass spectrometer (TIMS). Measurements of
Sr isotopic compositions at WHOI have internal precision of 5-10 ppm. After adjusting
to 0.710240 (NBS SRM 987), external precision is estimated at 15-30 ppm.

%0, #*Th,*Ra, (**Th/**Th), and (**U/**U) were measured at WHOI using the
Thermo Finnigan Neptune MC-ICP-MS. Extensive details of the U-Th-Ra chemical and
analytical procedures at WHOI are presented in Appendix Al of Sims et al. [2008a].
More details of Th and U measurement methods and standards are summarized in Ball et

al. [2008] and Sims et al. [2008b] and in the caption to Table 5.
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3.6. RESULTS

3.6.1. Major Elements

Major element compositions are reported in Table 2 and have previously been
reported by J. Hinds [M.S. Thesis, University of Florida, 2005]. All lava samples are low
K, tholeiitic, normal MORB (N-MORB; K/T1 < 0.11). Samples from dive 3963 —east of
the axis—have wt% MgO ranging from 7.7-9.0 and molar Mg# (molar Mg# = Mg/(Fe +
Mg) x 100) from 60 to 67 (Fig. 4a, Table 2). Dive 3974 samples—west of the axis—
have wt% MgO from 7.6 to 8.7 and Mg# from 60 to 64. In both flow sequences, the
lavas closest to the AST are the most primitive, with lavas becoming progressively more
evolved with increasing distance from the AST (Fig 4b, Fig. 6). Dive 3963 lavas have a
bimodal distribution of Mg# and wt% MgO —samples 3963-1 through 3963-6 and 3963-
8 have wt% MgO ~7.7-8.0, whereas 3963-7 and 3963-9 through 3963-11 have wt% MgO
~8.7-9.0 (Fig. 4a, Fig. 6). Samples 3963-1 through 3963-6 and 3963-8 either belong to
flow fronts or flow units #1 or #2 (Table 1). Samples 3963-7,9, 10, and 11 were sampled
from flow front #3 or beyond. Sample 3963-9, which has the highest wt% MgO (~9.0)
was sampled from a lava channel.

Dive 3974 lavas show a more continuous distribution of wt% MgO and Mg#.
The first flow front (3974-2) and the sheet flow sampled before the first flow front (3974-
1) have consistently lower wt% MgO (~7.6) as compared to the mixed lobate and sheet
flow unit (3974-3,4,7) beyond them (wt% MgO ~8.0-8.1). The second flow front

(3974-5, 6, 8) has wt% MgO similar to the first flow front (~7.6-7.9), which is also lower
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than the flow unit beyond it (3974-9, wt% MgO ~8.4). In contrast to the first two flow
fronts, the third flow front (3974-10) has relatively high wt% MgO (~8.3). The sample

closest to the axis, 3974-11, has the most primitive wt% MgO (~8.7) and Mg# (~64).

3.6.2. Trace Elements

Trace element abundances are reported in Table 3 and have also previously been
reported by J. Hinds [M.S. Thesis, 2005]. Dive 3963 and 3974 lavas are all depleted N-
MORB with depletions in the most incompatible trace elements (Fig. 5). In general,
compatible trace element abundances like Ni and Sc correlate with wt% MgO and Mg#,
indicating most of these lavas are derived from a similar parent magma. However,
samples 3974-5 through 3974-9 have higher incompatible element ratios (e.g., La/Sm =
1.25-1.34 for samples 3974-5 through 3974-9) than the other samples from both flows

(La/Sm =0.96-1.17).

3.6.3. ¥Sr/**Sr Isotopes

¥’Sr/**Sr isotope compositions are reported in Table 4. All Dive 3963 and 3974
samples are indistinguishable from each other within analytical uncertainty with respect
to ¥’Sr/**Sr (BU Triton TIMS) isotope compositions (*’Sr/**Sr = 0.702465-0.702570; Fig.
6). These samples are also isotopically indistinguishable from previously measured N-
MORB lavas from 9°-10°N EPR with respect to *’Sr/**Sr [Goss et al., in review; Sims et
al., 2002; 2003] (Fig. 6). Despite the fact that the precision of the ¥Sr/**Sr isotopic

measurements are better (~10-20 ppm 2SE) than the total range of the sample
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compositions (+50 ppm, 20), there are no discernable systematics between isotope
compositions and major and trace element compositions, suggesting that indeed,
variations in the melting and magma chamber processes are responsible for the major and
trace element variability and not variations in mantle source composition. This is
especially notable with regards to the incompatible element enrichment we see in the

middle samples (5, 6,7, 8,9) from dive 3974.

3.6.4. U-series Isotopes
¥U-2Th-**Ra, (*°Th/*’Th), and (**U/**U) isotopic compositions and U, Th and

Ra abundances, as measured by isotope dilution (ID), are reported in Table 5.

3.64.1.(7'UPU)

All samples measured have (**U/**U) in equilibrium within analytical
uncertainties (+ 0.5%) indicating that these samples have not suffered secondary
alteration due to seawater-rock interaction following eruption. For submarine basalts,
(**U/?*U) is a sensitive indicator of alteration, as seawater is significantly enriched in
24U relative to Z*U (for seawater, (**U/~*U) = 1.14 + 0.03; [Thurber, 1962; Ku et al.,

1977; Henderson et al., 1993; Robinson et al., 2005]).

3.64.2.U, Th, and (**U/**Th)

U and Th concentrations measured by isotope dilution (ID) are consistent with,

but more precise than, trace element data measured by ICP-MS at the University of
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Florida (Table 3; Table 5). Samples collected during dive 3974 have variable U and Th
concentrations and (**U/**Th) (U = 0.056-0.096 ppm, Th = 0.131-0.247 ppm,
(**U/**Th) = 1.173-1.304), but can be grouped based on their U and Th compositions, as
several lavas have essentially identical compositions. Each group likely represents
individual eruptions or lava flows. Samples 3974-3 and 3974-4 can be grouped (U =
0.072 ppm, Th = 0.175-0.176 ppm), as can samples 3974-5 and 3974-6 (U = 0.95-0.96
ppm, Th = 0.245-0.247 ppm), and samples 3974-7, 3974-8, and 3974-9 (U = 0.088 ppm,
Th =0.225 ppm). Samples 3974-1,3974-2,3974-10, and 3974-11 are distinct and cannot
be grouped with other samples (though we note that 3974-1 and 3974-11 have strikingly
similar U and Th compositions, though they are spatially removed from each other).
Samples from the middle of the dive traverse (i.e., 3974-3 through 3974-9) have higher U
(0.072-0.096 ppm) and Th (0.175-0.247 ppm) concentrations and lower (**U/**Th)
(1.173-1.242), and 3974-5 and 3974-6 have the highest U and Th concentrations and
lowest (**U/**Th). The samples most depleted in U and Th also have the highest
(**U/°Th). The four samples analyzed for U and Th concentrations from dive 3963 are
generally more depleted than dive 3974 samples (U = 0.039-0.065 ppm, Th = 0.093-
0.153 ppm, (**U/**Th) = 1.282-1.293), with the exception of 3963-5 (U = 0.079 ppm, Th
=0.208 ppm, (**U/**Th) = 1.150). Because only four samples here have been measured,
systematic variations are not as apparent as they are with dive 3974 samples, and there
are no clear groupings, although samples 3963-9 and 3963-10 have similar U and Th

concentrations, and 3963-6, 3963-9, 3963-10 have similar (**U/**Th). Sample 3963-5 is
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distinctly enriched with respect to U and Th and has lower (**U/**Th) relative the other
samples.

Our U-Th ID concentrations for samples from the 2005-2006 eruption are within
~1% and ~2% of the U and Th ID concentrations, respectively, for all samples measured
at the University of Hawaii, SOEST [K. Rubin, pers. comm.] and the University of
Bristol, Isotope Group [J. Prytulak and T. Elliot, pers. comm.], with the exception of
sample 4205-6 which is ~4-5% low for both U and Th relative SOEST and Bristol. As a
group, these U and Th ID measurements are consistently different from ICP-MS
measurements reported in Goss et al. [in review], which are ~5-10% high for U and ~3-
5% high for Th, values that are roughly within the analytical uncertainties reported by the
University of Florida (see Section 5). These samples show subtle variations (e.g., samples
4202-4 and 4202-6 are indistinguishable from each other and slightly more depleted than
similarly indistinguishable samples 4205-5 and 4205-6), but are in general very similar
and quite depleted (U = 0.053-0.058 ppm, Th = 0.123-0.136 ppm, (**U/***Th) = 1.291-
1.305). These samples have compositions within the range of previously measured,
recently erupted samples from the AST from 9°17°N-9°54°N EPR, including samples
from the eruption in 1991-1992 (U = 0.042-0.068 ppm, Th = 0.105-0.169 ppm,

(**U/?°Th) = 1.167-1.239) [Rubin et al., 2005; Sims et al., 2002].

3.6.4.3.(*°Th/**Th) and (*°Th/**U)

Dive 3974 samples have (*°Th/**°Th) ranging from 1.297-1.437 and are positively

correlated with (**U/**Th), as shown on an equiline diagram (Figure 7). (**Th/**Th) is
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negatively correlated with U and Th elemental abundances (not shown). As with Th and
U abundances, (**Th/**Th) compositions are identical within analytical uncertainties for
samples 3974-3 and 3974-4; samples 3974-5, 3974-6, and 3974-7; and, samples 3974-7,
3974-8, and 3974-9. Samples 3974-5 through 3974-9 have higher U and Th abundances
and lower (**Th/**Th) than all previously measured normal, N-MORB samples from
9°50°’N EPR. Samples 3974-1,3974-2,3974-10, and 3974-11 have distinct (**Th/**Th).
These samples, as well as 3974-3 and 3974-4, are similar in U and Th concentrations and
(**Th/**Th) to previously measured N-MORB from 9°50’N EPR [Goldstein et al., 1993;
1994; Lundstrom et al., 1999; Sims et al., 2002; 2003; Waters et al., in review]. All dive
3974 samples have *°Th excesses (i.e. (*°Th/**U) >1), which range from 1.130-1.171,
well within the range of values previously measured (1.087-1.190) in young axial and
off-axis samples with **Ra excesses from 9°50’N EPR [Sims et al., 2002; 2003]. *°Th
excesses are correlated with U and Th concentrations, and Th/U.

Dive 3963 samples have (*°Th/*°Th) similar to axial lavas, ranging from 1.342-
1.410, with the most enriched sample (3963-5) having the lowest (**Th/**Th) and fitting
into the trend defined by dive 3974 lavas that extends to lower (**Th/***Th) and
(***U/7°Th) than previously reported for young N-MORB from 9°50’N EPR [Sims et al.,
2002; 2003]. Like dive 3974 samples, dive 3963 samples also all have *Th excesses
(1.122-1.165) that are comparable to those of young N-MORB from 9°50°’N EPR [Sims
et al., 2002; 2003].

The five samples from the 2005-2006 eruption are indistinguishable from lavas

collected from the 1991-1992 eruption with respect to (**Th/***Th). Four of these samples
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define a very narrow range of (**Th/**Th) (1.383-1.398), though sample NH-D1A has
somewhat higher (**Th/**Th) than the other samples ((**Th/**Th)=1.451). This value is
still within uncertainties of the (**Th/**Th) reported for axial samples by Sims et al.
[2002]. We do note that NH-D1A was sampled by dredge slightly off-axis and has a
major element composition that is different from all other samples from the 2005-2006
eruption (e.g. lower wt% MgO, Al,O;, CaO, and higher wt% TiO,) [Goss et al., in

review].

3.644.(°°Ra)-(*Th)

All dive 3974 samples have large **’Ra excesses ranging from 1.86-2.43 (Figure
8; Table 5) and trend to lower values than previously measured axial samples (2.01-2.89;
[Rubin et al., 2005; Sims et al., 2002]). As with all other U-series concentration and
isotope measurements, ***Ra concentrations and (***Ra/*"Th) can be used to group these
samples (again, samples 3974-1, 2, 10, and 11 are all different from 3974-3 and 4, 3974-5
and 6, and 3974-7, 8, and 9). We note that (**Th/**Th) for sample 3974-7 is more similar
to samples 3974-5 and 6 than to 3974-8 and 9, but given the similarity in the U, Th, and
2°Ra concentrations among samples 3974-7, 8, and 9, and the distinct and consistent U,
Th, and ***Ra concentrations of samples 3974-5 and 6, we assert that 3974-5 and 6 should
be grouped, and samples 3974-7, 8, and 9 should be grouped. The samples with the
highest **’Ra excesses include both the lavas most proximal and distal to the axis: 3974-1,
3974-2,3974-10, and 3974-11. Lavas from the middle of the dive transect have the

lowest ***Ra excesses (1.86-1.96) and highest [**°Ra] (60.75-69.76 fg/g). We also note the
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gross similarity between samples 3974-1 (this study) and 2771-1 (reported in [Sims et al.,
2003]) with respect to major element, trace element, and *’Sr/**Sr isotope compositions,
and U-Th-"**Ra concentrations and isotopic compositions. Sample 2771-1 was collected
just to the south and west of sample 3974-1, and both are immediately adjacent to a
prominent pillow ridge, as seen in the side scan sonar imagery (Figure 1).

All dive 3963 samples also have significant ***Ra excesses (1.21-2.73). *Ra
excesses are smallest for those samples farthest from the AST and increase with
decreasing distance to the axis (east to AST: 3963-6,3963-5, 3963-9, 3963-10). Although
both 3963-9 and 3963-10 have indistinguishable ***Ra excesses, all samples have distinct
[**Ra], implying that although these two lavas may be of a similar age, in contrast to dive
3974 samples, none of these samples was collected from the same flow unit.

Samples from the 2005-2006 eruption have ***Ra excesses ranging from 2.41-
2.56, with the exception of sample NH-D1a, which has an anomalously low (***Ra/*Th)
of 1.11 (Table 5, Figure 8). Because we cannot satisfactorily explain this low **Ra excess
with existing petrogenetic models, we suspect that this dredged sample is actually older
and not part of the recent eruption. Major and trace element systematics are also not
consistent with derivation from the 2005-06 eruption [Goss et al., in review]. Regardless,
it is not critical to our current analysis, and we exclude this measurement from our age
calculations and any further discussion. Samples 4202-4 and 4202-6 have
indistinguishable [**°Ra] and (***Ra/*"Th) compositions, as do samples 4205-5 and 4205-
6, yet these two groups have compositions that are distinct from each other. These *Ra

systematics match [U] and [Th] systematics, as discussed above. As compared to
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previous *’Ra data obtained on samples from the AST, these samples have slightly lower
(**Ra/*"Th) at a given (*°Th/**U) (Figure 8).

Furthermore, because >*Th does not decay appreciably over the time it takes for
**Ra to return to secular equilibrium with *°Th (about five half-lives of **’Ra, or ~8
kyrs), both measured (**Th/**Th) and (**Th/**U) have not changed after eruption and
can be interpreted as primary features of these lavas [Sims et al., 2002; 2003]. This is
supported by the coherency of these data with data from the 1991-1992 eruption that
show a negative correlation between **Th excesses and MgO (wt%) and Mg#. Finally,
the presence of **’Ra excesses indicates that all dive 3974 and 3963 lavas must have

erupted within the last ~8 kyrs.

3.7. DISCUSSION

We seek to improve our understanding of ridge crest volcanic construction, and in
particular, to place age constraints on the formation of the shingled terrain and the
geochemical and temporal relationships between flow lobes. In the following section, we
investigate whether measurements of U, Th, and ***Ra concentrations and isotopic
disequilibria can resolve geochemical differences among a suite of lavas that appear
geochemically homogeneous by less sensitive metrics, and we assess whether **Th->*Ra
model ages are sufficient for discerning age variations in lavas that appear to be of

similar age based on limited variations in sediment cover and weathering. Finally, we
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interpret our results in light of previous studies of neo-volcanic zone construction at 9°-

10°N EPR and use these constraints to modify existing models.

3.7.1. Geochemical Relationships Among Samples and Flow Units

Because of the apparent geochemical similarities among dive 3974 samples, we
conducted a cluster analysis on dive 3974 major element, trace element, and U-series
data. Details of the cluster analysis and associated dendrograms (Figure A1) are reported
in Appendix B. Given the geochemical similarities among many of these samples, we
interpret samples that belong to the same cluster of the U-series dendrogram and were
sampled adjacent to each other on the seafloor as belonging to the same flow unit. We
use the U-series data for this purpose over the major and trace element data because the
U-series data are most precise and least affected by fractional crystallization. Hence,
based on our geochemical observations, and in keeping with geological observations as
much as possible, we group 3974-3 and 3974-4 as ‘Flow 3, samples 3974-5 and 3974-6
as ‘Flow 4,” and samples 3974-7,3974-8, and 3974-9 as ‘Flow 5. We interpret samples
3974-1,3974-2,3974-10, and 3974-11 as belonging to distinct flow units, and we refer to
them as ‘Flow 1,” ‘Flow 2,” ‘Flow 6,” and ‘Flow 7’ (Table 6). Although significant
similarities exist between other samples (e.g., between 3974-1 and 3974-11 and between
Flow 3 samples and 3974-10), these samples were not collected from the same flow unit
as defined by side-scan sonar imagery. Furthermore, although 3974-1 and 3974-11 have

nearly identical U and Th concentrations, they have different (**Th/**Th); in contrast,
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Flow 3 samples and 3974-10 have similar (**Th/**Th) but different U and Th
concentrations.

Figure 9 shows Th concentration variations with longitude for dive 3974 and 3963
samples. The variability of Th concentrations among samples collected from within the
AST from 9°17°N-9°54’N, including a few samples confirmed to be from the 1991-1992
eruption based on *'’Po-*'’Pb dating [Rubin et al., 2005; Sims et al., 2002] and samples
from the 2005-2006 eruption, are also shown for comparison. Based on the extent of
geochemical diversity within documented, discrete eruptions and the similarities in the
geochemical compositions of lavas erupted during two eruptions thirteen years apart, it
seems likely that at the least, Flows 4 and 5 originated from an eruption that was distinct
from the eruptions that sourced Flows 1, 2,3, 6, and 7. It also seems possible, if not
probable, that each Flow unit originated from a different eruption. Because the four
samples from dive 3963 for which we measured U-series concentrations and isotopic
ratios all appear to have significantly different U, Th, and ***Ra concentrations, we do not
attempt to group these into flows. Instead, we also interpret each sample as belonging to
a different flow unit. Lastly, there appear to be no geochemical relationships among dive
3963 and dive 3974 samples (e.g., Figures 4B, 8, 9). This suggests asymmetry either in
the flow emplacement distribution of individual eruptions at this latitude [cf., Soule et al.,
2009] or in the rate of seafloor resurfacing at this latitude. Alternatively, it cannot be
ruled out that the sample coverage in this area is too sparse to recognize patterns in lava

geochemistry about the axis.
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3.7.2. Age Constraints

Table 6 shows the results of **Th-**Ra trend line model age dating and maximum
and minimum **Th-**Ra ages for all samples (as described in section 3), as well as
average lava flow unit ages. *’Th-"*’Ra model ages were calculated using the model age

equation from Sims et al., [2003]:

1 n(mRa/mTh)m—l
Ao (°Ra/™Th), -1

T=—

2

where A,y is the decay constant for **°Ra (4.332 x 10™ yr™"), subscript (m) refers to the
measured sample activity ratio, and subscript (0) refers to the initial disequilibria upon
eruption. Table 6 reports model age uncertainties that include only analytical
uncertainties on the (***Ra/*°Th), which assumes that (***Ra/*’Th), is known exactly.
Because this is not the case, we have also calculated minimum and maximum model
ages, as described above in section 3, though these ages most certainly overestimate the
model age uncertainties. More robust age uncertainties require additional assessment of
the error associated with uncertainty in initial (***Ra/**Th), which amounts to the
uncertainty in fitting the zero-age data with a trend line.

We have calculated a double-error, maximum likelihood, non-linear least squares
fit for a line [Sohn and Menke, 2002] to both data obtained on samples collected within
the AST north of 9°37°N EPR [Sims et al., 2002], and data obtained in this study for
samples collected from flows associated with the 2005-2006 eruption (Figure 8). Many of
the samples collected from the AST from north of 9°37°N are presumed to have erupted

during the 1991-1992 eruption including several samples whose eruption dates have been
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constrained to the 1991-1992 eruption by *'°Po-*'’Pb dating [Rubin et al., 1994].
Estimates of standard error (90% confidence limits) on the slope (+5.3/-7.6) and intercept
(+8.5/-6.1) were calculated by bootstrapping one thousand samples. We performed an
outlier test by adding one sample from dive 3974 and 3963 to the zero-age data set (1991-
92 and 2005-06 data), regressing these data with the slope and intercept set at -
17.71283+8(s%) and 22.66071+8(s), respectively, calculating the Studentized residuals
for this data set, and comparing these samples to a critical value for outliers (based on the
Bonferroni inequality) at the 95% confidence level [Sohn and Menke, 2002]. This
procedure was repeated for all dive 3974 and 3963 samples. Using this method, only
sample 3963-6 ((***Ra/*Th) ~1.21) was identified as an outlier at the 95% confidence
interval. Thus, the scatter about the “zero-age” trend line results in poorly constrained
initial (***Ra/*Th) at a given (**Th/**U), such that only one sample can be identified as
belonging to a population that is distinct in both (**Th/**U) and (***Ra/**Th) from the
zero-age population at the 95% confidence level. This result suggests that although flow
units consisting of multiple samples can be distinguished based on geochemistry, the
variability of (**Ra/**Th) and (**Th/**U) of zero-age samples prevents us from
distinguishing these distinct flow units on the basis of U-series model ages. Instead, we
can only say with certainty that with the exception of sample 3963-6 (3.6-5.1 ka), all

samples are <~2 ka.
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3.7.3. Reconciling Geochemical and Model Age Observations with Seafloor
Observations

Figure 10 compares flow divisions based on geochemistry with those based on
general in situ dive observations and the assumption that flow units consist of a terminal
pillow flow front and an internal flow body of lobate and sheet flows. Sample 3974-2 is
defined from in situ geological observations as being from the first flow front, but despite
its close proximity to overlying lobate and sheet samples 3974-3 and 3974-4, it is
geochemically distinct (Tables 1, 5; Figures 9, 11). However, samples 3974-3 (sheet) and
3974-4 (lobate) were interpreted as being collected from the same flow unit (Flow 3)
consisting of mixed lobate and sheet flows, and this is confirmed by the geochemistry.
Samples 3974-5 and 3974-6 are also confirmed by geochemistry as both belonging to a
different pillow front, as was interpreted based on seafloor observations. Based on
seafloor observations, sample 3974-8 was suggested as belonging to the same flow front
as samples 3974-5 and 3974-6, and sample 3974-7 (sheet) was interpreted as being older
than and underlying 3974-5, 3974-6, and 3974-8. However, although our model ages
suggest that samples 3974-5 and 3974-6 may indeed be younger than 3974-7, from side-
scan sonar imagery and ABE bathymetry (Figures 2A, 2C, and 11), it can be seen that
3974-7 lies at the western extent of a flow lobe that appears unrelated to flow 4.
Additionally, from cluster analysis of the geochemistry (see Discussion above and
Appendix B), we can confidently group 3974-7 with 3974-8 and 3974-9, which were all
sampled from the same flow lobe as identified in side-scan sonar and bathymetric maps

(Figures 2A,2C, and 11). Interestingly, sample 3974-8 was taken from a pillow flow

134



front overlying sheet flow sample 3974-7; thus, it seems likely that flow fronts may not
always represent the edges of flow units, and that breakouts can and do occur,
complicating the identification of flow units from remote sensing techniques. Given the
confusion surrounding in situ observations of the relationships among samples 3974-5,
3974-6,3974-7, and 3974-8, we suggest that the inherently small field of view from the
submersible and natural spatial variability that undoubtedly exists on an outcrop scale led
to confusion about the relative locations of these different sampling sites. Note that
samples 3974-5 and 3974-6 are north of 3974-7, -8, and -9 (Figures 2A, 2C, 10, 11).
Furthermore, photo observations of sediment cover suggest that samples 3974-5
and 3974-6 (i.e., Flow 4) are younger than adjacent Flows 3 and 5, and this observation is
supported by the younger average model age of Flow 4 (~150 yrs) as compared to that of
Flow 3 (~650 yrs) and Flow 5 (~750 yrs) (see Table 6, Figures 10, 11). Sample 3974-10
was interpreted as belonging to a pillow flow front that is distinct from Flow 5, and the
morphological difference is also evidenced by a geochemical difference and an apparent
age decrease (750 yrs to <150 years; Figure 10). Based on geochemical evidence, sample
3974-11 belongs to a different flow unit than 3974-10, but there is no evidence of a
pillow front between the two samples, only a change in morphology. Thus, because
pillow flow fronts were used to identify geologically distinct flow units, and there are no
high relief pillow flow fronts between samples 3974-10 and 3974-11, in situ observations
were unable to distinguish these two flow units (Figures 2A, 2C, 10, and 11). In general,
there is a lack of pillow flow fronts within ~1 km of the AST, and this may be due to

higher effusion rate near the AST, smoother substrate, or a propensity for EPR lavas to
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travel >1 km. If pillow flow fronts do not necessarily occur at the termini of flows near
the AST, for whatever reason, it will be more difficult to identify flow fronts in ABE
bathymetric and side-scan sonar maps near the AST with the same ease as it is farther
than ~1 km off-axis up to the edge of the neo-volcanic zone.

Geochemical constraints are consistent with seafloor observations made during
dive 3963. Sample 3963-6 was interpreted as a sheet flow collected from below the
pillow flow front of the “second” flow unit (sample 3963-5), and 3963-9 as a channel
flow that is distinct from 3963-10, a pillow flow front (Table 1). In addition, based on
relative sediment cover, sample 3963-6 was interpreted as being older than sample 3963-
5 (Table 1, Figures 10, 11), and our model age calculations indicate this is true. At a
qualitative level, it also appears that samples 3963-9 and 3963-10, which are closest to
the axis, have much younger-looking (***Ra/**Th)-(**Th/**U) systematics —they have
maximum **Th-"*’Ra model ages that are less than the minimum model ages of samples
3963-5 and 3963-6. Thus, it appears that at least on the east side of the AST at 9°50°N,
there is a general trend of increasing lava age with distance away from the AST.

In general, side-scan sonar and ABE bathymetric maps appear to correspond quite
well with geochemical observations. In contrast, significant discrepancies between
geochemical and seafloor observations exist, particularly with respect to the grouping of
samples collected over distances significantly greater than a few hundred meters (Figure
10). Individual dive observations at sample locations (Table 1, Figure 11) are
qualitatively consistent with model age constraints (Table 6). In general, the close

correspondence of model ages with relative ages from photo observations suggests that
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the statistical approach to our model age uncertainties is conservative. Based on this
information, and given the inherent “near-sightedness” of submarine observations, we
strongly recommend that high-resolution bathymetry and side-scan sonar imagery be
used as maps for real-time seafloor navigation in complicated geological terrain. We also
note that lower resolution maps than that of ABE bathymetry (~5m/pixel) do not show

the detail necessary for resolving flow units at this scale.

3.7.4. Extrusive Crustal Construction at 9°-10°N EPR: The Origin of Shingled
Terrain

Side-scan sonar, magnetic, and U-series and paleointensity dating studies at
9°50°’N EPR have shown that the neo-volcanic zone extends up to ~2-4 km on each side
of the AST [Bowles et al., 2006; Fornari et al., 1998; Goldstein et al., 1994; Schouten et
al., 1999; Sims et al., 2003; Soule et al., 2009]. However, the surface construction of the
neo-volcanic zone and the formation of the ubiquitous shingled flow lobes have not been
satisfactorily explained. In a general sense, the thickening of seismic layer 2A (the
extrusive layer) within the extent of the neo-volcanic zone can be well explained by a
bimodal lava emplacement model in which ~50% of the extrusive volume is made up of
small lava flows confined to the AST and 50% is made up of large flows that overflow
the AST and spill out onto the ridge flanks [Hooft et al., 1996]. Presumably, shingled
terrain is the surface expression of the large flows, but whether the shingle-like texture

arises from stratigraphic superposition of flows, stagnation of individual flows forming
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pillow fronts and subsequent breakouts of these same flows, or subsurface lava flow
through existing lava tubes remains unclear.

Taken together, the geochemical concentration data (in particular the high-
precision U-Th-"’Ra ID data) and the **Th-"*’Ra model ages are consistent with simple
stratigraphic superposition of lavas emplaced by surface flow. As discussed above in
section 7.1, the geochemical variations are large enough such that samples from adjacent
flow units, as determined from ABE bathymetry and side-scan sonar, are not likely from
the same eruption. Furthermore, there is sufficient evidence from side-scan sonar and
seafloor observations to rule out an off-axis eruptive origin for all samples except 3974-1,
which is geochemically similar to sample 2771-1 from Sims et al. [2003], and both may
be related to a nearby off-axis pillow mound (see section 6.4.4. above, Figure 1).
Although there is some limited evidence for breakouts from pillow lava fronts (see
section 7.3), these breakouts do not appear to be a dominant, ubiquitous feature at flow
fronts, and in general, do not produce areally extensive lava units. This is consistent with
recent mapping of the 2005-2006 eruption that documented pillow lavas primarily at flow
termini [Fundis et al., 2009].

Because dive 3974 and 3963 lava ages are sufficiently young such that we cannot
statistically resolve sample ages within a ~2 kyr age population, we cannot rule out the
possibility of subsurface transport of flows by lava tubes [e.g., Gregg and Fornari, 1998],
which would cause younger flows to be emplaced farther from the axis than earlier flows.
It should be noted that even if absolute lava ages could be determined for such young

lavas, this type of plan-view, lava age distribution can also result from axis-parallel or
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oblique flow of lava due to variable seafloor topography or fault/pillow ridge
embankment, and does not necessarily preclude simple superposition of flows [cf.
Escartin et al., 2007, Figure 3d].

Despite the lack of age constraints, not only do the surprisingly systematic
geochemical variations distinguish individual flow units, but they also place constraints
on the morphological makeup of flow units, the relationships between adjacent flow
units, and the cross-axis extent of flow units (Figure 2). From these data, we know that
samples from within an individual, chemically distinguishable flow unit may have
different morphologies (e.g., Flow 3 is composed of both sheet and lobate morphologies
whereas Flow 5 is composed of sheet, lobate, and pillow morphologies), and thus
morphological contacts are not diagnostic of a geological contact between discrete lava
flows. Instead, such morphological changes reflect variations in the local volume flux due
to changes in the underlying substrate, slope, and/or effusion rate at the vent [e.g., Gregg

and Fink, 1995; 2000].

3.7.5. The Youth of the Neo-volcanic Zone

One of our most striking results is the young model ages of lavas beyond the edge
of the neo-volcanic zone as it has been interpreted from remote sensing data (Figure 2;
Table 6; Escartin et al., 2007; Soule et al, 2005). These data suggest that the neo-volcanic
zone is truly “young”: lavas within the neo-volcanic zone are much younger than their
spreading rate ‘age’, and this can be explained by lavas that overflow the AST and flow

down the ridge flanks. In fact, the age constraints from this study and other dating studies
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at 9°50’N EPR [Bowles et al., 2006; Sims et al., 2003] are consistent with the region up
to ~2 km (~36 kyrs spreading age) on either side of the AST at 9°50’N EPR being mostly
covered by lavas less than ~2 ka. We dated only one lava sample, from the east side of
the AST (sample 3963-6), that appears to be older than ~2 ka, but at ~5 kyrs
(paleointensity of ~44.5 uT is consistent with this age; [Bowles et al., 2006]), it is still
considerably younger than its spreading age (~31 kyrs). Given similar age constraints
obtained from **U-*"Th and **Th-***Ra model age dating in other studies [Sims et al.,
2003; Waters et al., in review], it appears that lavas outside the neo-volcanic zone are
older (>5-10 kyrs), typically have equilibrium (***Ra/*"Th) values, have paleointensities
generally lower than the present-day field, and have ages that cannot be resolved from the
spreading rate ‘age’ with lower resolution **U->"Th or *’U-*'Pa model ages. Overall, it
appears that at 9°50°N, there is a bimodal distribution of lava ages (either >8 kyrs outside
of the neovolcanic zone or <2 kyrs within the neovolcanic zone).

This bimodal age distribution may suggest that the region at 9°50’N EPR has
experienced a period of increased volcanic activity for the past ~2 kyrs, with relatively
frequent large volume flows reaching ~1-2 km on either side of the AST. This model is
consistent with recent observations of the 2005-06 flow distribution and AST geometry at
9°-10°N EPR [Soule et al., 2009] and evidence from 17°-18°S EPR [Cormier et al., 2003]
that support cyclic changes in magmatism over time. However, Bowles et al. [2006] find
that age offsets of ~5-10 kyrs between neo-volcanic lavas and lavas on highly tectonized
‘old’ crust can be well explained by a unimodal lava emplacement model that links

eruption volume linearly with time between eruptions [Bowles et al., 2006]. In this
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model, the time between eruptions is not linked to the spreading rate but is instead
determined by a standard gamma distribution with a median scaled to the median time
between eruptions. Bowles et al. [2006] find ~70 year recurrence interval and a dike
location with a standard deviation of ~100 m is a good match with their paleointensity
observations. Their model shows that the time elapsed between flows preserved on the
seafloor beyond ~1 km from the AST is >250 yrs [Bowles et al., 2006, Figure 13e]. At
the sampling level represented by the Dive 3974 samples on the west flank, the average
recurrence interval of eruptions that reach distances ~0.8-2 km from the AST is at most
~285 years (~330 yrs if we exclude 3974-1 on the basis that it erupted off-axis during
construction of a pillow ridge). Although there are likely additional flow units to be
identified in a cross-axis traverse of this section of the ridge flank, this recurrence interval
is reasonably consistent with the model of Bowles et al. [2006]. Furthermore, we observe
more frequent eruptions reaching ~1-2 km off-axis in this location (~6-7 per 2 kyrs) than

the model of Bowles et al. [2006] predicts (2-3 per 2 kyrs).

3.7.6. Implications for Lava Stratigraphy

These observations have significant implications for volcanic stratigraphy,
particularly for interpretations of and correlations among drill cores sampling the
extrusive crust of a fast-spreading MOR. For example, the significance of subsurface lava
flow and lava tubes is unclear from our seafloor mapping. If subsurface flow plays an
important role in off-axis lava transport, it is likely that drill cores will sample a larger

number of lava flows than we observe on the seafloor. Furthermore, if this is the case, it
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cannot be assumed that the oldest flows are on the bottom of the core, and the youngest
flows are at the top of the core. Although this may be the general trend when considering
the entirety of the extrusive pile, in more detail, younger flows may be intercalated with
older flows. We also observe that individual flow units may be composed of multiple
lava morphologies (e.g., sheet vs. lobate. vs. pillow). This may result in variable
thicknesses of individual flow units (e.g., pillow flow thicker than sheet flow); thus,
correlating flow units based on flow thickness or morphology will likely often result in
erroneous interpretations of stratigraphic relationships among spatially separated drill
cores.

Additionally, plan-view lava flow relationships are complicated, as has been
observed in this study and mapping studies of the 1991-92 and 2005-06 eruptions
(Fornari et al., 1998; 2004; Soule et al., 2007; 2009). Lava flow geometry is not
symmetrical about the ridge axis, and individual flow lobes of a single eruption extend to
different distances off-axis at any given latitude. As a result, lava flow stratigraphy at any
given location may be nearly unique, and therefore, a drill core section at one location
may not be representative of any other location. In turn, we suggest, on the basis that the
AST is the source of most volcanic activity at 9°-10°N EPR, that drilling and dating the
extrusive section near the AST will produce the most complete record of eruptions and
eruption ages, allowing for the best estimate of eruption frequency, with the caveat that
not all eruptions/lava flows will be observed at any given latitude. Also, a lava flow
present at the AST may or may not exist in the off-axis stratigraphy at a given location,

depending on the distribution of that flow about the axis.
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A second effect of complicated, plan-view, lava geometry is that the presence of
an individual lava flow lobe at a given distance from the axis does not mean that the
eruption that sourced that flow was large in volume —it simply indicates that a lava flow
from an individual eruption reached a certain distance off-axis in one location. More
extensive, detailed geochemical mapping, especially mapping done using trace element
concentrations measured by isotope dilution, would be necessary in any attempt to
correlate flow units along and across the axis and to determine flow volumes of
individual eruptions. Thus, we are careful in this study to not interpret flow lengths as

representative of flow volumes.

3.7.7. Rapid Temporal Variations in Melt Supply

A recent dating study of lavas at the very fast (14.6 cm/yr full spreading rate)
spreading ridge at 17°30’S EPR used geochemical data, side scan sonar imaging, and
submersible observations to map out several different flow fields. Based on the age
constraints obtained from coupled paleointensity and (*'’Pb/**’Ra) measurements of
representative samples from each of these flows, they argued that at least five
geochemically distinct eruptive episodes occurred over the last ~500 years [Bergmanis et
al.,2007]. Indeed, Bergmanis et al. [2007] argued that significant major and trace
element variations occurred over surprisingly short time scales, indicating variations in
mantle melting processes at rates at least as frequent as eruption rates. Notably, even

individual flow fields exhibit variable lava compositions.
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The compositional variability among adjacent flow ‘units’ as we define them,
which are markedly more divisive than the flow ‘fields’ described in Bergmanis et al.
[2007], is often great enough such that each flow unit was probably sourced from a
temporally distinct eruption. Given that all dive 3974 and 3963 samples (except one)
were erupted within the last ~2 kyrs, the significant compositional variability among
ridge flank lavas suggests relatively rapid variability in the parental magma compositions
fed to the AMC, similar to that observed by Bergmanis et al. [2007]. As stated above, the
average recurrence interval of eruptions that reach from 0.8-2 km is at most ~300 years.
However, there are most certainly additional flow units to be identified in a cross-axis
traverse of this section of the ridge flank, especially if pillow flow fronts do not mark the
boundary between all flow units, as discussed above in section 7.3. Furthermore, as
discussed by Bowles et al. [2006], eruption frequency may be linked with eruption
volume; thus, an eruption size-frequency distribution is probably more meaningful than
an average recurrence interval. Unfortunately, we do not have sufficient age constraints
or clearly mapped flow contacts along and across the ridge flank to construct such a
distribution. Nevertheless, our data suggest measurable mantle source variability on the

order of less than a few hundred years.

3.8. CONCLUSIONS
In this study, we attempt to constrain the timing of emplacement and formation of

different lobes of ‘shingled’ neo-volcanic terrain, the dominant feature observed in side-
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scan sonar at 9°-10°N EPR. To this end, we have measured samples collected in a dive
traverse across the western and eastern ridge flank for major element, trace element,
¥’Sr/**Sr, and **U-*"Th-**Ra isotope compositions. One of the most striking features of
dive 3974 lavas is the similarity in major element, trace element, and U-series
compositions of sets of two or three samples. Although the trace element concentrations
strongly suggest that samples may be grouped (Figure 5), the U-Th-**Ra ID,
(*°Th/**Th), and (***Ra/*Th) compositions are identical within analytical error for
several sets of samples (Figures 7, 8; Table 5). We believe that identical **U-*"Th-"*Ra
systematics for a set of samples virtually necessitates that these samples are of the same
age and therefore belong to the same lava flow. Hence, we interpret samples with
identical U, Th, and ***Ra concentrations as belonging to the same lava flow.

Seafloor dive observations and geochemical observations are sometimes
discrepant, and this may be related to limited visibility in Alvin and lateral variability
inherent in the emplacement of overlapping lava. In contrast, side-scan sonar and ABE
bathymetry are relatively consistent with geochemical observations. The one exception to
this may be that high relief pillow flow fronts, which can be observed in both bathymetric
and side-scan sonar maps, do not always mark absolute boundaries delimiting the edges
of flow units. Additionally, morphology is not a good indicator of flow boundaries, as a
single flow unit may consist of pillow, sheet, and lobate morphologies. Rather,
morphology is likely related to slope, substrate, or effusion rate properties.

Additional samples collected from the 2005-2006 eruption at 9°50’N EPR have

been analyzed for U-Th->’Ra abundances and isotopic compositions to augment the
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existing “*Th-**Ra dataset and provide a more robust zero-age (*°Th/***U)-(***Ra/*Th)
trend line from which to calculate unknown sample model ages. However, the large
amount of scatter about the zero-age trend line indicates large uncertainties in initial
(***Ra/*’Th) disequilibria, and statistical analysis indicates that of all dive 3974 and 3963
samples, only sample 3963-6 has a sample age that is significantly different from the
zero-age trend line (95% confidence limit). All other samples are surprisingly young
(probably <<2000 yrs) and this suggests that the neo-volcanic zone marks a ~0-2 km
wide swath on either side of the axis that is similarly young.

We also note the rather large range in chemical variability documented by flows
in this transect, and we reach a conclusion similar to that of Bergmanis et al. [2007], that
variations in chemistry are rapid—perhaps even as rapid as the eruption frequency. In
addition, with seven documented large volcanic events within the span of ~2000 years,
the maximum eruption recurrence interval of eruptions reaching up to ~1-2 km on the
west flank at 9°50°’N EPR is ~300 years, which is more frequent than, but consistent with

that predicted by Bowles et al. [2006].
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Table 4. *Sr/**Sr isotopic compositions
of lavas collected during Dives 3963 and
3974 at 9-10°N EPR.

Sample ¥7Sr/*Sr +2 SE (ppm)
3974-1 0.702653*

0.702465° 8

0.702492° 24
3974-2 0.702566°

0.702504° 10

0.702491° 33
3974-3 0.702580°

0.702494° 9
3974-4 0.702635*

0.702492° 7

0.702501¢ 11
3974-5 0.702610*

0.702513° 7

0.702537¢ 23
3974-6 0.702577*

0.702524° 11

0.702590° 36
3974-7 0.702581?

0.702492° 9

0.702542¢ 21
3974-8 0.702522°

0.702570° 8

0.702558° 17
3974-9 0.702592*

0.702513¢ 20
3974-10 0.702498?

0.702569° 9

0.702588° 29
3974-11 0.702536°

0.702508° 13
3963-3 0.702512° 9
3963-5 0.702498° 7
3963-6 0.702497° 10
3963-9 0.702472° 9
3963-10 0.702475° 7
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Analytical Notes: “Sr isotopic
composition measured at Woods Hole
Oceanographic Institution by Neptune
MC-ICP-MS; glass was not leached;
internal precision is estimated at £5-10
ppm. After adjusting to 0.71024 (NBS
SRM 987), external precision is
estimated at 15-30 ppm.

°Sr isotopic composition measured at
Boston University by Thermofinnigan
Triton TIMS on 2/23/09; glass was
leached; ~100 ng of Sr was loaded onto
a Re single filament.

‘Sr isotopic composition measured at
Boston University by Thermofinnigan
Triton TIMS on 1/29/09; glass was
leached; ~10 ng Sr was loaded onto the
filament.



YOL'T 96'SH Iv11 100'1 011 vET 1 6S¥'T  LEVOO SLOT'0 01-€96€

9TL'T 9¢'6¢ 12N €00'1 v6¢'1 9TT'1 YLY'T  LLEOO 1£60°0 6-€96€

60T’ 65'8¢C wr €00'1 G8¢'l €T 9T €290°0 SEST'0 9-€96¢

€69'1 69'CS Sor'l 001 we'l 0ST'1 8¢9°C  06L0°0 #8070 G-€96¢

SEv'T €8'CS 8¢l €00'1 1LET €T’ 1 €CS'T  ¥95S0°0 0ZrI1°0 11-vL6€
€L T L8S'T  ¥€90°0 8¢91°0

(V[ LTSS 0ST'1 001 se1 881°I €SS°T  8£90°0 6291°0 01-¥L6€
8TI'I 689C  6£80°0 €5TT0

0961 18°€9 LYT'1 €00'1 L6T' 1 Erl 189C 1+80°0 €5TT0 6-L6€
€11 789C  TH800 §STTO

6581 SL'09 LYT'1 2001 00¢'1 €l 189C T¥80°0 LSTTO 8-1.6€
Wl YOL'T  6£80°0 €97T°0

126'1 €T€9 191°1 €00'1 So¢'1 eerl 8L9°C  0¥80°0 0STT0 LL6E
€Tl €0L'T 90600 T 0

€6l TT'89 911 100'1 60¢'1 wr YOL'T L0600 vS¥T0 9-vL6€
0TIl 60L'C €1600 89¥C°0

0€6'1 9L°69 ILT'1 0001 1At 748! 00L'C 91600 wLYTO S-L6€
6LT'T TLST  LL9OO 8ELT'0

L61'T vI'LS 9¢T'1 6660 €rel L8T'T SSS'T 98900 €SLT'0 v-vL6E
181°1 89S'C  6L90°0 0 ZAN0)

9L1'T 96'9¢ el 100'1 ove' 1 €8Il S9S'T 98900 09L1°0 €¥L6E
LETT SYT LESOO PIET0

8¢TT 16'St 0T 1 6660 10t 1 Tl SPFT  9€50°0 11€1°0 T-vL6E
oIl 1€t 1 STl €TrT  $8S0°0 91¥1°0

LITT 62°0S 8Pl 1001 LEY'T LYT1 €EYT  €850°0 8I¥1°0 1-¥L6€

(ULyr/®Uozy)  (3/3)) [BWype]l  (Mger/ULosr)  5(Mger/Nper)  o(ULger/ULog)  pe(Ulger/Nger) QUL yo(udd) [A] . (wdd) [yy] opdures

"SIN-dOI 10399[[09
-9[3uts pue SIN-dOI-DIN Aq PSINSEIW SUOHENUIOU0D BY PUL ‘UL ‘N PUL ‘(Nger/Nyer) “(ULoee/P¥oze) (Ngee/MLoge) (UlLeee/ULogr) *S PIABL

160



'SBIq SSBW QUIULISJOP 0} sjuawaInseaw o[dwes [[e 10J pIepue)s SurjoyorIq & Sk pasn uay) sem 010N "010N
91RIQI[BI-SSOIO 01 O] (O() PIepurls Aq paradoriq IsIY sem 096 SAN [€00T ‘310gp[oD pue 11yory] 0100 10F wdd 84S JO (ge,/N,e;) WNHQIINDS ue Suisn ‘10110
UIgim | = (Ngep/Nyep) SOIAUWES 38343 105 19597 > (07) S1013 “ IK O] X €28 = *YY {JOHM 18 SIN-dDI-DIN dumdaN uesruur] owidy], £q paInseaw (Nee./Nyer)s
"oNIds v, SYI AJRIQI[ED 0) PIsn piepuels BY,,, SAN
Ay} Uuo (%G1 $07) senurelraoun £q pajyw| st Koevinooe sojdwes [[e 10 %%y 10 (9,4 () 9%y UI SOIIUIRIIOOUN 9PNJOUT JOU OP PUR 9,6 Q- 9,7’ ¢ WOIJ dFueI (07) SI0LId
JuowaInseaw ¢ IK, O] X 1€€° Y = 7%y ([eg00c] ‘T8 19 SWIS 108 [OHM 18 SIN-dDI-DIN dumdoN ueSiuury owray ], 9y) Suisn uonnfip 9dojost A4q painseaw (0o,
"(%5°0) *Y 10 (%% 0) * UT SANUTEIIdOUN SPN]IUT JOU OP PUE 9%9'| - 9% L'() WO} dFURI (07) SIOLD : 1K | 0T X 8%6' % = “U pue 1K 01 X G61°6 = "

Sursn paje[nores sonel AJ1A10R {[q8O0T ‘T 12 SWIS 00T ‘T8 12 [Ted] IOHM e SIN-dDI-DIA 2umdoN ueSruur] oulay ], Aq painseaw suonisodwos o1dojost yJ,
(%5°0) Y 10 (%L0°0)
8£0y Ul SOMIUIR}IAOUN IPN[OUI JOU OP PUB 96 T-%6 | WOIJ 93uel (S7) SIOLD (Y Lo/ Nger) r.bA 101 X 896’ = Ly x.bﬁ -0l X I6S'T = 8£0y £31A1308 S910UdP ( o
" K19A1309dSaI €95 G 7> pu® 917>
je pajewnse are [y ] pue [O] 10} (sg) Afiqronpoidar JUSWAINSBAA “JUSWA[H UeSIuul] OWIdY ], oy} Suisn SN-dDI-] & Sursn painseawr a1om [y 1] pue [O],
¢/ TIANLL 103 paajossIp sem 1opmod apdwes jo Sw 0oy~ a
‘[q “eg00Z] ‘T 10 SWIS Ul pauIpIno sanbruyo9)

[eorwoyd Sursn pojeredas a1om BY pue ‘Y[, ‘N udy) pue payids ‘pajonbife ‘pojossIp uayy a1om (8 ¢-7~) sypds ojdureg ‘uoneid)fe [ensia JO PIOASP SSe[T ULI[O
QInsse 0} oW} puodas € 10J adoosolorr Aq paxord-puey uay) a1om sojdwes “(Urw G| JoJ S} Yora ‘901m)) Iajem [(J pue ‘“OQ°H 9%¢ snid proe o1exo N1'( ‘(urw

G JIoJ awur} yoeo ‘001m)) 19jem [ (Ut 1) “O°H %z snid [DH N1 0 Jo siuawieon [enjuanbos ur payoe9] A[[eoruosenin uay) ‘odossoromu e ropun paydrd-puey
arom sordwres ayj ‘K10JRI0qR[ 9U) U "UOTIN[OSSIP SSe[3 aures ay) Jo sojdwres ajeredas 103 yJ, pue ) jo uoneoyrnd pue Juryids juosardar syuowarnseow ajedrdn(g ,

SOJON [BODA[RUY

SL60 9 €8 a8 820'I

9001 ¥'198 120! 100'1 LIOT €160 e wWITT €TS'L ¢/OULY
¥66°0 vLO'T

SI0°1 869°¢ €660 €LO'T

8101 60L°¢ 0001 1801

6001 SLY'E T00'1 €80'1 L90'1 W8T 8YLLOI 0S29°0¢

110°1 699°¢ T00'1 T00'1 780'1 8L0°1 vI8T  t6180I1 €Y8€°0¢ ¢/TNL

o111 8¥°CT €LI'T 2001 1SH'1 SETT LS¥'T  TISO0 SSTI'0 e[dHN

0SS'C LTS 0zTI'1 T00'1 06¢'1 6£T 1 8Y¥'C  LYSO'0 SEET'0 9-60TY

SSS'T LS€S wr T00'1 €8¢l 0€T 1 L9¥'T €SSO0 T9€1°0 S-S0ty

8LY'C v LYy 801'I 100'1 96¢'1 8ST'1 TIvT  TISO0 €TI0 9-20CY

Sov'C Loy 8IT'I 0001 86¢' I 6vT 1 0¢¥'C  SISO0 6vC1°0 v-T0Ty

(ULyr/®Uoz)  (3/3)) [BWyre]  (Mger/ULosr)  5(Mger/Npe)  o(ULger/ULoe)  pe(Ulger/Nger) QUL yo(udd) [A] . (wdd) [yr] opdures

(PAu0d) *s 3[qe],

161



"SIBA 0197 st pa110odal are 9S8 WNWIUIW dANBSAN "oN[BA [BONILIO SIY) AQ QUI] pudJ} 938
-019Z J1§-1$3q Y} WOy JAsJJO sAul| £q PajuasaIdar aq ued ([BAISIUT DUIPIFUOD %66 Y3 ) uone[ndod 95e-019Z SIY) 10§ (YL,/®¥,,,) [BHIUT WU
pue wnwrxew Sunuasardaor sQUI] puas) 1By} SWNSSE AN “[9AS] OUIPLJUOD 9, G6 AY) I8 UOHINQLIISIP-T, S, JUIPNIS Y} JO AN[BA [BONLIO Y] JOJ dUI|

pusx) 938-019Z 9Y} WOIJ J3SJJ0 UBIW Y} FUNL[NOLd q PIUIULISIOP 1M SOFE [SPOW WNWIXBW Pue wnwiurw ey-yJ, -d[dwes ays Jo (YL../t¥,;,)

U1 SanuIeIadUN [eonAeue A[uo djerodiodur 1oLy “(UONE[NO[Ed SUI| PUSL} AY) JO S[IBISP J0) § SIS 998) ((ge,/ULyc,) Q1duwes 3yl 18 (YL ./ ¥.,)

quI[ pudI) 958-0I9Z [BNIUI UB WOIJ ABOIP [BONIOA Surwnsse pue [¢00z] ‘Te 10 swiS woiy uonenbo oy Sursn poje[noed a1om sage [9powr QuI] Pual],,
“IK/wd ¢ ¢ Jo djex Jurpeards-Fley JueisuOd B JUIUNSSE PIUNLINIP 1M $dTe Jurpeardg,
‘(86611 ‘& 19 LIBUIO JO SUOIBOO] [ SV SUISN PIUILId)P SIOUBISI(] ,

YL YL-0 ov9 0 9¢91 060 01-€96¢
68 68 -0 7L 0 16°0C ST 6-€96¢
1961 79T * 196¥ 2009 1824 €L'0¢g 691 9-€96¢
419 LOT FCI16 Yvee 0 00°0¢ SOl G-£96¢
Sll 8LFGCII 7601 0 €SPl 080 I1-vL6c 7 mojq
8L €91 -0 1611 0 0C'1¢C LT'1 0l-vL6E g mopg
96 F €LL 1981 0 SY' v Se'l 6-vL6¢E
991 * 0€01 881¢ 0 SL'LT €Sl 8-1L6€ S Moj ]
8L €6 ¥ 0CY 1L91 0 8'LT €Sl LVL6€
001 * IC¢ LT91 0 LT0¢E L91 9-vL6¢E
161 €8-0 16€l 0 67’ ce 781 C-YL6E Sl
69 F9LG €eql 0 9L ¢e 98’1 V-vL6¢E = HoT]
169 08 F STL 8¢91 0 L9CE 08’1 €VL6E
¢<9 SLF SS9 89¢1 0 €6 Ve 6’1l vL6E 7 nolq
69¢ ILF69C 9I¢€l 0 €L'9¢ ¢ 1-vL6E T %074
(s1K) 98y ,(81K) 93V [opON ,(SIK) 98y ,(81K) a8V %w;vs ey L) LSV jun
MO[] 93BIOAY QuITT pudll, BY-U], wnuwrixey ey-yL wnwiury ey-yL Surpeaidg uo poseq 93y woIJ 20UeISI( #91dwes MO[q

*$oSe [opoW JUI[ puaL} PUE ‘WNWIUIW ‘WNWIXEW IpN[oul Sage [opoJA “S9[dwes £9g6¢ AIP PUR 1/ 6¢ AP 10J SaSe [opow BY-UL, Pue YL-N "9 dqe]

162



Figure 1. (Inset) Location map of the study area, 9°-10°N, along the East Pacific Rise
(EPR). (At Left) EM300 bathymetric map of the region from 9°45°N-9°56’N EPR [White
t al. 2006] showing sample locations for Alvin dives 3974 and 3963 as well as samples
analyzed from the 2005-2006 eruption.
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Figure 2. ABE bathymetric maps [Fornari et al., 2004] of (A) Alvin dive 3963 and (C)
Alvin dive 3974 study areas, with 2 m contours showing flow fronts, sample locations,
and dive track. DSL-120A side-scan sonar maps [Escartin et al., 2007; Fornari et al.,
2004] of (B) Alvin dive 3963 and (D) Alvin dive 3974 study areas. The dive tracks are
shown as white or yellow lines that connect red, numbered, sample locations.
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Figure 2 (cont’d).
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Figure 3. (***Ra/*°Th) and (**Th/**U) disequilibria for 9°-10°N EPR axial (solid black
squares) and off-axis lavas (white squares) [Sims et al., 2002; 2003], showing the "zero-age"
trend line (solid black line), an external isochron from which model ages can be calculated
for other lavas at 9°-10°N EPR. Dashed lines show isochrons after decay from the trend line
from 0.5 — 4 half-lives of ***Ra (800-6400 yrs). Model ages are determined by calculating the
corresponding time interval (i.e., At) needed to produce the difference in the initial
(***Ra/*°Th) disequilibria and the current measured (***Ra/*Th) disequilibria by aging (cf.,
[Sims et al., 2003] for sample details). The initial extent of (***Ra/*"Th) disequilibria in an
unknown sample is assumed to correspond to the (***Ra/**Th) disequilibria on the zero-age
trend line at the same (*°Th/**®U) as the sample. The solid black arrow shows the effect of
decay due to aging. Decay follows a vertical trajectory until the (**Ra/*Th) disequilibria for
a sample reaches the equiline after ~8 ka. Lavas that have no measurable *°Ra excesses (i.e.,
(**Ra/*"Th)=1% 0.05 (2SE)) are older than ~8 ka. After ~8 ka, decay of >°Th becomes
appreciable, and aging will shift samples along the (***Ra/*Th) to the left, towards
(230Th/238U)=1 .

166



68
©3974

66 1 B3963

64 -

|
|
|
|
|
|
|
|
|
|
|
62' |
|
|
60 A !
|
|
L] !
2

Mg#

58 T T T
-3 - -1 0 1 2 3
Distance from AST (km)

68
03974
66 1 W3963

64 -

Mg#

62 -

58

2 3 4 5 6
La (ppm)

Figure 4. (A) Distance from the AST vs. molar Mg# (Mg/(Mg+Fe) x 100) for dive 3974
(blue diamonds) and dive 3963 samples (red squares). Note the relative continuum of
Mgi# for dive 3974 samples contrasts with the bimodal distribution of Mg# for dive 3963
samples. Both suites of dive samples show an increase in Mg# with decreasing distance
from the AST (dashed vertical line). (B) La (ppm) vs. Mg# for dive 3974 samples and
dive 3963 samples. Mg# is independent of [La] for dive 3974 samples, whereas there is
an apparent negative correlation between [La] and Mg#; i.e., the group of more evolved
samples is also more enriched. This feature is also shown in Figure 5B.
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Figure 5. Spidergram showing trace element abundances of (A) dive 3974 lavas and (B)
dive 3963 lavas. Dive 3974 lavas exhibit a continuum of trace element abundances;
however, trace element abundances do not correlate with Mg#. In contrast, dive 3963
lavas can be divided into two groups: a group of more enriched samples that are
relatively far from the AST and have low Mg#, and a more depleted group of samples

closer to the AST that have higher Mg# (cf. Figure 4B).
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2003] and Waters et al. [in review]. Axial samples are shown as black squares [Sims et
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dive 3974 samples as blue diamonds, and dive 3963 samples as red squares.
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Figure 7. (A) Equiline diagram comparing (**U/**Th) with (**Th/**Th) among samples
collected from within the AST from 9°17°N-9°54’N, including many presumed to be
from the 1991-1992 eruption (black squares; [Sims et al., 2002]); samples collected from
up to ~4 km off-axis at 9°50’N (white squares; [Sims et al., 2003; Waters et al., in
review]); E-MORB and N-MORB collected from up to ~5 km east of the AST at 9°30°’N
(white triangles; [Waters et al., in review]); samples from dive 3974 on the west flank of
the ridge crest at 9°50’N (blue diamonds; this study); samples from dive 3963 on the east
flank of the ridge crest at 9°50’N (red squares; this study); and, samples collected from
near the AST and presumed to represent the 2005-2006 eruption (purple squares; this
study). (B) Expanded view of (A). Note the positive correlation between (**Th/**Th) and
(**U/7’Th) for Alvin Dive 3974 samples, which trend towards E-MORB compositions
but do not have enriched long-lived radiogenic isotope compositions.
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Figure 8. (P°Th/**U) vs. (**Ra/*Th), showing the zero-age trend line calculated from a double-
error, maximum likelihood, non-linear least squares fit for a line [Sohn and Menke, 2002] to both
data obtained on samples collected within the AST north of 9°37°’N EPR (black squares; [Sims et
al., 2002]), and data obtained in this study for samples collected from flows associated with the
2005-2006 eruption (purple squares). Many of the samples collected from the AST are presumed
to have been erupted during the 1991-1992 eruption including several samples (yellow squares)
whose eruption dates have been constrained to the 1991-1992 eruption by *'’Po-*'’Pb dating
[Rubin et al., 1994]. (The equation for this line is (**Ra/*Th) = -17.71283 x (*"Th/**U) +
22.66071, r = -0.665, mean square of the weighted deviates (MSWD) = 10.051). The dashed lines
that are parallel to the trend line are the 95% confidence limits for the ‘zero-age’ population. We
note that this trend has previously been interpreted as a mixing trend [Sims et al., 2002; 2003] and
since the denominators for the X- and Y-axes are not equivalent, we should expect mixing to be
best approximated by a hyperbola. However, fitting a hyperbola to these data requires confidence
in our knowledge of the end member mixing components [Sohn, 2005], but these end members
are poorly constrained by few samples with known initial (***Ra/*Th) [cf., Elkins, 2009;
Lundstrom et al., 1999; Sims et al., 2002; Waters et al., in review]. Thus, we approximate the
mixing trend with a line, noting that fitting a binary mixing curve through these “zero-age” data
[Sohn, 2005] using two (X,Y) coordinates calculated from the line fit for end member ratios
results in a curvature of 0.967 + 0.07. This value is within error of 1, the case for a straight line,
providing some evidence that our approximation of linearity is justified. Dive 3974 samples are
plotted as blue diamonds, and dive 3963 samples are plotted as red squares. Also shown for
comparison are samples collected off-axis at 9°50°N and previously dated with the *°Th-**Ra
model age technique (white squares; [Sims et al., 2003; Waters et al., in review]).
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Figure 9. Plot of sample distance from the AST vs. Th concentration (ppm). Samples
analyzed by isotope dilution (ID) from dive 3974 and dive 3963 are shown in blue
diamonds and red squares, respectively. Dive 3963 ID data is supplemented by traditional
ICP-MS concentration data where ID data is not available. Also shown are the ranges of
concentrations for samples collected from the eruptions occurring from 1991-1992 (solid
line, as measured by isotope dilution; [Sims et al., 2002]) and from 2005-2006 (dashed
line, this study). Note that the samples defining the range in Th concentration for the
1991-1992 eruption may not all be from the 1991-1992 eruption but were collected from
within the AST from 9°48°N-9°53’N and are likely less than ~ 200 yrs old [Sims et al.,
2002].
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Figure 10. Schematic cross-sectional profiles and interpretations of flow units sampled
during (A) Alvin dive 3974 and (B) Alvin dive 3963 summarizing model ages,
geochemistry and compositional trends for flows, and flow divisions determined by
geochemistry vs. in situ seafloor dive observations. F1=flow 1. In interpretative maps,
colors delimit individual lava flows for matching samples. Note that similar colors for
dive 3974 and 3963 flow units are not intended to imply matching flows on the west and
east flanks. Because U and Th concentrations were determined by isotope dilution for
only a subsample of Alvin dive 3963 samples, additional subdivisions of flow units
shown in Figure 10B were made using the U and Th concentrations reported in Table 3.
Because propagated uncertainties for Th/U measured by ICP-MS without isotope dilution
are large(>10%), we only show Th/U as measured by isotope dilution.
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Appendix A. Dive Summaries

Dive 3963: Eleven samples were obtained during a west to east traverse of the eastern
flank of the ridge crest (Fig. 1, 2, Table 1) [Schouten et al., 2004]. Dive 3963 began ~2.2
km to the east of the AST in a flat location of older-appearing ropey sheet flows (samples
3963-1 and 3963-2). These flows transitioned to lobate flows mixed with flat and ropey
sheet flows covered with a similarly thin veneer of sediment. A change in morphology to
pillow lavas was accompanied by a change in slope, presumed to be a pillow flow front
(sample 3963-3). This morphological sequence was repeated up to a second flow front,
from which pillow lava samples 3963-4 and 3963-5 were collected. Sample 3963-6 is a
sheet flow from the lobate/sheet terrain at the base of this second pillow flow front. The
top of the flow front was covered by younger-looking lobate flows with lighter sediment
cover. The morphological sequence was repeated again to the west, and sample 3963-7
was collected from a third flow front. The third pillow flow front was surveyed using
sonar Imagenix (Fig. 1,2). Sample 3963-8 was obtained from the lobate flows at the
base of the flow front. Beyond the flow front, a lava channel was located (identified
earlier from ABE bathymetry) in a flat area of lobate and sheet flows. Sample 3963-9
was collected from the wall of the channel, and the area was surveyed with Imagenix.
The channel was followed towards the ridge axis, and terminated in lobate and sheet
terrain. A few hundred meters beyond the channel termination, samples 3963-10 and

3963-11 were obtained from a fourth pillow flow front.
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Dive 3974: Eleven more samples were acquired on the western flank during dive 3974
(Fig. 1,2, Table 1) [Schouten et al., 2004]. The dive traversed west-to-east along and
across a series of four flow fronts identified from ABE bathymetry and by their pillow
morphology during dive observations, starting ~1.9 km west of the AST and following
the fronts back up the western ridge flank towards the AST. As in dive 3963, each flow
front was composed of steep (10°-45°), pillow lavas located between flat (0°-4°) areas of
mixed sheet and lobate flows [Schouten et al., 2004]. Of the 11 samples collected, five
pillow lavas were sampled directly from the flow fronts, and three sheet flows and three

lobate flows were sampled from flat areas adjacent to the flow fronts.

In both dives, flat sheet flows sometimes appeared to form channels in the hackly
sheet and lobate flows [Schouten et al., 2004]. In at least one case, the flat and hackly
sheet flows appeared to flow down a flow front (flat sheets appeared superposed on the
adjacent pillow lavas). Dive notes speculate that the pillow lavas may have been a late
eruptive phase that extruded from the hackly flow unit [Schouten et al., 2004]. In both
dives, sediment cover along the dive track was relatively constant, with slightly more

sedimentation farther away from the axis.

Appendix B. Cluster Analysis
We used the JMP® statistical software package to conduct a hierarchical cluster analysis

on dive 3974 samples using Ward’s criterion, in which the distance between two clusters
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is the analysis of variance (ANOVA) sum of squares between the two clusters summed
over all of the variables, and clusters are grouped at each generation by merging two
clusters such that the within-cluster sum of squares is minimized. We constructed
separate dendrograms based exclusively on standardized (1) major element concentration
data (Table 2), (2) trace element concentration data (including U and Th ID
concentrations) (Tables 3 and 5), and (3) U, Th, and Ra isotope dilution concentration
data, Th/U, (**U/**Th), (*°Th/**Th), (*°Th/**U), and (***Ra/*’Th) (Table 5; Figure Al;
n.b. including only U, Th, and Ra concentration data and (**Th/**Th) does not change
the structure of the dendrogram, and results in only minor differences in distances).
Though these dendrograms differ in their details, there are several consistent clusterings.
With respect to all data sets, samples 3974-3 and 3974-4 are the samples that are most
similar and thus are always clustered together. Although 3974-5 and 3974-6 are not
consistently the next most similar samples, they are also always clustered together. In
addition, samples 3974-7 and 3974-8 belong to the same cluster when considering major
elements, but 3974-7 and 3974-9 are clustered together when considering trace element
and U-series data. Both major and trace element dendrograms group 3974-8 with the
cluster containing 3974-3 and 3974-4, whereas the U-series dendrogram groups 3974-8
with 3974-7 and 3974-9. We note that regardless of which data set we consider (major
element, trace element, or U-series), sample 3974-7 is always more similar to 3974-8 and

3974-9 than to 3974-5 and 3974-6.
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Figure Al. Dendrograms
of Alvin dive 3974
samples constructed by
hierarchical cluster
analysis using Ward’s
criterion for clustering
and distance as a measure
of similarity. Distances
are marked at each
linkage; note the
dendrograms are not to
scale. Data used for each
cluster analysis were
standardized and include
(A) major elements, (B)
trace elements (including
U and Th concentration
data by ID), and (C) U,
Th, and Ra
concentrations (by ID)
and isotopic
disequilibria.



CHAPTER 4: >2*U-*'TH-*RA CONSTRAINTS ON THE VOLCANIC
AND MAGMATIC EVOLUTION OF AN OVERLAPPING

SPREADING CENTER AT 9°03’N EAST PACIFIC RISE

ABSTRACT

Recent geophysical studies of the overlapping spreading center (OSC) at 9°03°’N
along the East Pacific Rise (EPR) have imaged significant melt bodies throughout the
crust and reveal a complex and asymmetric crustal melt distribution compared to adjacent
ridge segments. This complicated geometry is thought to have significant implications for
the storage and evolution of melt in the crust, and indeed, a wide range of melt
compositions have been sampled at the 9°03’N OSC, including highly differentiated lavas
such as FeTi basalts and dacites. Thus, the 9°03’N OSC is an ideal location to explore the
relationships between melt composition, melt lens geometry, and crustal accretion.

Here we present major and trace element compositions, and *’Sr/**Sr, '*Nd/'**Nd,
and U-series isotope compositions for a suite of 22 representative lavas, collected during
a cruise in 2007 with the Jason II ROV, that come from along and across the east limb of
the OSC and span a wide range of compositions. When compared with crystallization
models and experiments, the major element compositions of ferrobasalts and dacites are
well explained by derivation by fractional crystallization of a primitive basaltic magma
similar to that needed to explain compositional trends at 9°50’N EPR. Coherent mixing
trends among major element, trace element, and U-series isotopic compositions indicate
that mixing of ferrobasaltic and dacitic end members produces intermediate basaltic
andesite and andesite compositions. Constant *’Sr/*Sr (~0.70250 +50 ppm, 20) and near
equilibrium (**U/**U) and (**Ra/*"Th) isotopic compositions in dacites argue against
their formation by assimilation of partial melts of hydrothermally altered crust, a process
previously proposed to explain the origin of high-silica MOR lavas.

Significant 2°Ra excesses measured in ferrobasalt, FeTi basalts, and basaltic
andesites indicate recent (<<8 kyrs) volcanic activity has occurred along most of the east
limb axial graben (9°03°-9°10’) and out to 4 km off-axis in the region north of the overlap
basin. Axial basalts have the highest (***Ra/*°Th) (2.10- 2.41) and appear extremely
young, whereas basalts collected off-axis have consistently lower (***Ra/**Th) (1.84-
1.96) and appear much older, suggesting that the axial graben is the primary locus for
recent volcanic activity. In addition, young-appearing axial dacites have much lower,
near equilibrium (***Ra/*’Th) values, but (*°Th/***Th) values that appear unchanged
relative to that observed in zero-age basalts, suggesting residence times of ~8 kyrs.
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4.1. INTRODUCTION

Mid-ocean ridge (MOR) segmentation is a ubiquitous feature of the global ridge
system, and understanding the origin and evolution of the discontinuities that separate
ridge segments is fundamental to understanding the tectonic and magmatic interactions
among the different components of the oceanic lithosphere and the underlying
asthenosphere. Ridge discontinuities exist on many scales, ranging from 1* order
transform faults that offset ridge axes by 100s of kms, to 4™ order discontinuities such as
small (<0.5 km), non-overlapping, lateral offsets or kinks or bends in the strike of the
ridge axis (Batiza and Margolis, 1986; Langmuir et al., 1986; Macdonald et al., 1988;
1998; White et al., 2001; 2002; 2006). Ridge discontinuities also appear to separate
regions of geochemically distinct melt supply, as observed by significant changes in
petrology, lava geochemistry, and volcanic and hydrothermal activity across
discontinuities (e.g., Haymon et al., 1991; Langmuir et al., 1986; Smith et al., 2001;
Thompson et al., 1985). However, although magmatic discontinuities have been inferred
from correlations among bathymetry (particularly variations in the axial geometry
observed in cross-sectional profiles), tectonic structure (e.g., presence or absence of an
axial graben), and magmatic structure (e.g., the presence or absence of an axial magma
chamber (AMC)) (e.g., Detrick et al., 1987; Kent et al., 2000; Macdonald et al., 1988),
direct evidence of intrinsic relationships between magmatic and tectonic segmentation
has typically been obfuscated by a lack of geophysical constraints on crustal melt

distribution in places where geochemical data are also available.

184



In contrast to many large MOR discontinuities, the large overlapping spreading
center (OSC) at 9°03°N East Pacific Rise (EPR), a 2" order discontinuity with an ~8 km
offset and ~27 km of overlap, has been the subject of extensive tectonic and geophysical
study (Bazin et al. 2001; 2003; Carbotte and Macdonald, 1992; Combier et al., 2008;
Dunn et al., 2001; Sempere and Macdonald, 1984; 1986a.,b; Toomey et al., 2007; Tong et
al., 2002; 2003; Singh et al., 2006; White et al., 2009), including the first detailed 3-D
multi-channel seismic reflection survey of a MOR (Kent et al., 2000). However, only
limited geochemical and petrologic work has been done to date and these studies
(Langmuir et al., 1986; Natland and Melson, 1980; Natland et al., 1986a, b) indicate that
this tectonic discontinuity delimits a significant magmatic discontinuity. For example,
highly evolved ferrobasalt, FeTi basalts, and high silica lavas are present along the
eastern limb of the OSC, but the western limb appears to erupt more primitive mid-ocean
ridge basalts (MORB) as well as enriched MORB (E-MORB) with higher Ba/TiO, and Sr
concentrations (Langmuir et al., 1986).

A recent research cruise (AT15-17) to the OSC at 9°03’N EPR in March-April of
2007 sought to improve our knowledge of this area by combining a DSL-120A side-scan
sonar survey with mapping and sampling by ROV Jason Il and Towcam photo surveys.
Two hundred eighty-two rock samples were collected, including evolved ferrobasalts
(>11 wt% FeO), FeTi basalts (FeO/MgO>1.75), basaltic andesites, andesites, and dacites
(Wanless et al., 2007). Because of the comprehensive spatial coverage provided by this
new sample suite on a geophysically and tectonically well-characterized ridge

discontinuity, this sample suite presents an ideal opportunity to determine the distribution

185



of neo-volcanic activity and to understand the linkages between geochemistry and
subsurface melt distribution at a significant tectonic discontinuity.

We measured major and trace element, Sr, Nd, and ***U-*"Th-**Ra isotopic
compositions on a representative suite of 22 lavas that encompass a wide compositional
range and spatial distribution with respect to the seismically imaged melt lens (Figure 1).
The primary goal of this study is to use U-series nuclides to determine eruption ages of
lavas. Lava ages are critical for interpreting petrological and geochemical data and for
understanding how tectonic and magmatic processes contribute to the distribution of lava
and organization of extrusive layer construction at MORs. In addition, U-series nuclides
have the potential to provide constraints on magma transport rates and magma chamber
residence times, and these constraints are important for understanding magmatic

evolution at MORs.

4.2. GEOLOGIC SETTING AND SAMPLE DESCRIPTIONS

The East Pacific Rise from 8°-10°N is a fast-spreading ridge segment with a half-
spreading rate of 5.5 cm/yr. It is bounded to the north at 10°10’N by the Clipperton
Fracture Zone and to the south at ~8°20°N by the Siqueiros Fracture Zone. The
overlapping spreading center (OSC) centered at 9°03°N consists of two north-south
trending spreading ridges that overlap by ~27 km and are offset east to west by ~8 km

(Figure 1). The OSC has been migrating southward for the last 1.8 My at an average rate
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of ~42 mm/yr and the propagating eastern limb is thought to be truncating the receding
western limb (Carbotte and Macdonald, 1992). An extensive geophysical study at the
OSC documented evidence for a continuous supply of melt in the uppermost mantle
across the OSC, with the lowest velocity anomaly centered beneath the east limb ridge
axis (Dunn et al., 2001; Toomey et al., 2007), a melt accumulation in the overlying
lowermost crust (Singh et al., 2006), and a mid-crustal mush zone at the northern end of
the overlap basin at ~9°08’N (Bazin et al, 2003; Combier et al., 2008; Crawford and
Webb, 2002).

Kent et al. (2000) conducted a 3-D multi-channel seismic reflection study at the
OSC, and this study revealed details of the melt network geometry. A robust, ~4 km wide
mid- to upper-crustal melt network offset to the west of the eastern limb ridge axis is
located just north of the overlap basin (Kent et al., 1993; 2000). Melt reflectors deepen to
the west, suggesting melt is being fed from an off-axis source (potentially from beneath
the northern part of the overlap basin) to the deep, off-axis part of this melt lens, which is
consistent with the melt-rich nature of this melt lens as interpreted by Singh et al. (2006).
The melt lens narrows to <1500 m wide to the south at ~9°06°’N, and becomes centered
beneath the morphological ridge axis. At this point, the melt lens exhibits a sudden
decrease in depth before plunging ~500 m over 6 km towards the eastern ridge tip in a
series of small, ~200 m en echelon steps. Beyond ~9°02°N, the melt lens extends south
and east of the southwest trending morphological ridge axis (nearly perpendicular to the
spreading direction), finally narrowing to ~250 m wide at its most southern extent before

disappearing.
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One of the primary objectives of the 2007 cruise AT15-17 was to sample along
and across the wide melt lens (Figure 1). The ridge axis is dominated by the presence of
an axial graben, as typically exhibited by intermediate spreading ridges (N.B. here the
fast, full spreading rate of 11 cm/yr is partitioned between the two limbs). Within the
~750 m wide axial graben are two troughs, separated by a central, discontinuous volcanic
ridge (Combier et al., 2008). Side-scan sonar images (White et al., 2009) and seismically
determined bathymetry (Combier et al., 2008) reveal a large, axis-parallel pillow ridge
and a flat-topped seamount at the westernmost extent of the wide melt lens (Kent et al.,
2000) that are speculated to originate from vertical diking and off-axis volcanism (Figure
1; Combier et al., 2008; White et al., 2009).

Major element analyses of glasses from ROV Jason I samples reveal a wide
range of compositions, including basalts, ferrobasalts, basaltic andesites, andesites, and
dacites; roughly 33% of lavas sampled have >52% Si0O, (Wanless et al., 2007; in review).
Lavas appear to be distributed systematically, such that the most evolved compositions
were sampled from the axial graben and overlie the eastern edge of the melt lens. The
volcanic ridge in the axial graben is composed primarily of andesitic and dacitic lavas,
and the lavas in the troughs surrounding the ridge are predominantly basaltic sheet and
lobate flows. The immediate flanks of the axial graben are dacitic and andesitic in
composition. Off-axis lavas are almost entirely ferrobasaltic in composition.

We have selected 22 samples that include a wide range of compositions from
along and across the axial graben (up to the western extent of the wide melt lens) for U-
Th-"*°Ra isotopic analysis and **U-*"Th and **Th-**’Ra model age dating. These

samples provide excellent coverage over the east limb and the off-axis region to the west
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of the east limb. Because of the coverage this sample suite provides, the relationship
between their geochemistry and the imaged distribution of the underlying melt sill may
provide important insights into the distribution, residence time, and eruptive frequency of
different magma types. These samples and their locations are illustrated in Figure 1, and
sample descriptions and locations are reported in Table 1.

A total of eight off-axis samples were selected for U-series analysis: four basalts
from the off-axis pillow ridge (265-13, 265-18, 265-19, 265-20); one basalt from the off-
axis flat-topped volcano (265-06); one basalt (265-12) from immediately adjacent to the
off-axis pillow ridge; and, two basalts from mid-way across the wide melt lens (265-32,
265-33; from herein referred to as ‘flank’ basalts). The remaining 14 samples are axial
samples: a ferrobasalt and a FeTi basalt from the axial graben at 9°03’N (266-18,267-
09); two basalts from the axial graben at 9°08° (265-74, 265-76); six basaltic andesites
from 9°05°-9°10°N within the axial graben (264-13, 264-17, 264-20, 265-49, 265-106,
265-108); an andesite (265-64) and a dacite (265-66) from within the axial graben at
~9°08.5’N; and, two dacites (265-83, 265-85) from the immediate flank on the west side
of the axial graben at ~9°07.7°N.

Since it is critical that samples be young (less than a few kyrs old) to confidently
link them to the seismically imaged melt sill and because we are primarily interested in
the distribution of the most recent volcanic activity, most of these samples were selected
based on the extremely fresh appearance of glass in hand sample and dive photos (e.g.
minimal sediment cover, preserved pillow decorations and buds, vitreous luster; Figure

2). Six of the off-axis samples, 265-06,265-12,265-13,265-18,265-19, and 265-20, all
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had significant Mn crusts in hand sample and substantial sediment cover in dive photos

(Figure 2).

4.3. U-SERIES DATING AND MOR CRUSTAL CONSTRUCTION

K-Ar and Ar-Ar dating of non-marine sediments and volcanic rocks and
correlation of non-marine and marine magnetic isochrons have traditionally been used to
estimate the age of crust throughout the ocean basins (e.g. Cox et al., 1964; Muller et al.,
2008), but direct age determinations of young submarine lavas (<375 ka) using these
techniques are problematic and lack the resolution to discern the fine-scale age
differences of neo-volcanic crust near MOR axes (Duncan and Hogan, 1992). At present,
the most promising techniques for dating young MOR lavas are U-series and magnetic
paleointensity techniques; these techniques have produced concordant ages on individual
samples (cf., Bergmanis et al., 2007; Bowles et al., 2006; Sims et al., 2003; Waters et al.,
in review; in prep). Although both techniques have contributed greatly to our
understanding of crustal construction, U-series dating of young MORB has arguably been
explored more extensively than magnetic paleointensity techniques.

U-series dating methods are particularly appealing because they provide
constraints on both petrogenetic processes and eruption ages. The half-lives of U-series
nuclides, in particular **Ra (1.6 kyrs) and **°Th (75 kyrs), make them ideally suited for
studying recent geological processes, especially magmatism and volcanism. U-series

nuclides may fractionate due to partial melting and/or crystallization, creating
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disequilibria, but radioactive decay during melt transport, crustal residence, and post-
eruption aging will return them towards a steady-state condition called “secular
equilibrium,” in which the activities of nuclides are equal and the activity ratios (e.g.,
(**°Ra/*Th), (*°Th/**U)) are unity. In addition, the magnitude of disequilibria produced
by partial melting is affected by the initial abundance of the U-series nuclides in the
melting rock.

Thus, the extent of U-series disequilibria measured in any lava reflects the
integrated signal of a number of processes that modify an initial mantle rock
composition—including partial melting, melt transport, crustal residence, and seafloor
alteration—and the time scales over which these processes occur, namely subsurface
residence in the mantle and crust and post-eruption aging. In some instances, the
relationships among U-series disequilibria and other geochemical metrics affected by
source composition, partial melting, crystallization, and crustal residence (e.g., long-lived
radiogenic isotope compositions, incompatible element ratios, and major and trace
element abundances) can be used to help disentangle this convoluted geochemical signal
and determine eruption ages. Indeed, studies of MORB using U-series nuclides have
demonstrated their ability to place constraints on melting and melt transport rates in the
mantle (e.g., Jull et al., 2002; Lundstrom et al., 1995; 1998; 1999; 2000; McKenzie et al.,
1985; Rubin et al., 2005; Sims et al., 1995; 1999; 2002), crustal residence times (e.g.,
Cooper et al., 2003; Rubin et al., 2005; Sims et al., 2002), and eruption ages (e.g.,
Bergmanis et al., 2007; Goldstein et al., 1992; 1993; 1994; Rubin et al., 1990; 1994; Sims

et al., 2003; Standish and Sims, 2010; Sturm et al., 2000; Volpe and Goldstein, 1993).
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Because secular equilibrium is reached again in roughly five half-lives following
the fractionation of nuclides, or ~8 kyrs and ~375 kyrs for *Ra and **Th, respectively,
the presence of disequilibrium in a lava, for example (***Ra/**Th)#1, or (**Th/**U)=1,
immediately limits a lava’s eruption age to <8 ka or <375 ka. In addition, if the initial
extent of disequilibria in a basalt sample upon eruption can be established, the difference
between that initial activity and the current measured activity can be used to explicitly
determine the lava eruption age. U-series model ages for off-axis MORB have been
calculated by estimating the initial activities from data for the youngest axial basalts and
comparing these with the activities measured in a sample of unknown age (Goldstein et
al., 1993; 1994; Sims et al., 2003). For example, when calculating model ages of samples
from 9°-10°N EPR, initial activity ratios can be estimated based upon measurements from
lava collected exclusively within the AST and known to have erupted in 1991-92 (Sims et
al., 2002; 2003).

It is important to note that these U-series ages are “model” ages in that they
assume a constant source (spatially and temporally) and are the sum of magma chamber
residence time and eruption age. When determining U-series model ages, several criteria
must be met to assure that the initial extent of disequilibria in the lava of known age and
the sample of interest is the same:

(1) Primary magmatic processes initially created U-series disequilibria and the lavas
being dated have not undergone significant secondary alteration. These lavas

have remained a closed system with respect to Th/U after eruption.

192



(2) After melt generation and transport, the magma has not resided for significant
periods of time in a magma chamber relative to the half-lives of **°Th (~75 kyrs)
and **°Ra (~1.6 kyrs).

(3) The source of the axial and off-axis lavas is constant, both spatially and
temporally, with respect to Th/U.

(4) Both the axial lavas and the off-axis lavas were derived by similar degrees of
melting and that the depths of melting and melt transport rates were also similar
(e.g., McKenzie, 1985; Rubin et al., 2005; Spiegelman and Elliot, 1993; Williams

and Gill, 1989).

These criteria have been met by off-axis samples from dating studies at 9°50’N
EPR (Sims et al., 2003; Waters et al., in prep.). Having satisfied all of the above listed
criteria, both Sims et al. (2003) and Waters et al. (in prep) were able to calculate model
ages using best fit trend lines on plots of (**U/**Th) vs. (*°Th/***Th) and (**°Th/***U)
vs. (***Ra/*’Th) to represent initial (*°Th/***Th) and (***Ra/***Th) disequilibria in young
(<200 yrs) lavas collected from within the AST from 9°17°-9°54’N EPR and from the
2005-2006 flow (Sims et al., 2002; 2003; Waters et al., in prep.). Aging from these trend
lines follows a vertical trajectory, and the difference in (**°Th/*?Th) and (**°Ra/*°Th)
from the initial value estimated by the trend line can be used to calculate the lava eruption
age, again assuming that the initial disequilibria in the sample of known age and the
sample of interest are equal.

Because a number of physical volcanic processes contribute to the complicated

distribution of lava flows about the ridge axis, eruption ages are essential for
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understanding the spatial and temporal extent of these processes. In particular, variations
in eruption volumes, frequency, and distribution can have profound effects on upper
crustal construction. In addition, eruption ages provide a necessary context for correctly
interpreting observed geochemical compositions of lavas in terms of variations in mantle
geochemistry, partial melting processes, and subsurface melt distribution.

For example, when compared with high-resolution bathymetric and side-scan
sonar imagery and magnetic profiles (Cochran et al., 1999; Escartin et al., 2007; Fornari
et al., 1998; Schouten et al., 1999; Sims et al., 2003; Soule et al., 2009), the young U-
series ages of many off-axis lavas from 9°17°-9°54°’N EPR indicate that volcanic
construction occurs over a wide zone extending up to several kilometers outside of the
AST (Goldstein et al., 1994; Sims et al., 2003; Waters et al., in prep.; in review).
Similarly, U-series observations of ***U-""Th and **Th-***Ra disequilibria have shown
that recent volcanism occurs over a surprisingly wide spatial extent at the intermediate-
spreading Juan de Fuca and Gorda ridge segments (Goldstein et al., 1992; 1993; Cooper
et al., 2003), the slow-spreading Mid-Atlantic Ridge at the Kane Fracture Zone (Sturm et
al., 2000), and the ultra-slow spreading Southwest Indian Ridge (Standish and Sims,

2010).
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44. ANALYTICAL METHODS

Major elements were analyzed on polished glass chips at the USGS Microbeam
Laboratory in Denver, Co. using a JEOL 8900 Electron Microprobe. Analysis of seven
to ten separate points (including spots on separate chips of the same sample) were
averaged for each sample and then normalized and corrected for instrument drift based on
the established values for in-house standards JAF-D2 (Reynolds et al., 1995) and
ALV2392-9 (see Smith et al., 2001). Analytical uncertainties are reported in Table 2.

Samples were analyzed for trace elements at the University of Florida using an
Element II Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The analyses
were performed in medium resolution with Re and Rh used as internal standards.
Concentrations were calculated by external calibration using a combination of USGS
rock standards. Repeated chemical analyses of in-house MORB standard AL'V2392-9
during each run were used to evaluate and correct for instrument drift as well as evaluate
the accuracy and precision of the measurements. Analytical uncertainties are given in
Table 3. Details of both major element analyses by electron probe and trace element
analyses by ICP-MS can be found in Wanless et al. (in review).

Sr isotopic analyses were conducted either at WHOI using a Thermo Finnigan
Neptune multi-collector inductively coupled mass spectrometer (MC-ICP-MS) or at
Boston University using the Thermo Finnigan Triton thermal ionization mass
spectrometer (TIMS). All Nd isotopic measurements were conducted at WHOI on the
Neptune. Measurements of Sr and Nd isotopic compositions at WHOI have internal

precision of 5-10 ppm. After adjusting to 0.710240 (NBS SRM 987) and 0.511847 (La
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Jolla Nd Standard), for Sr and Nd, respectively, external precision is estimated at 15-30
ppm. &y, values were calculated using ('*Nd/"**Nd)cyuro, = 0.512638. Replicate
analyses by MC-ICP-MS Neptune on the same sample splits for Sr isotopic
measurements are well within analytical uncertainties of the measurements by TIMS
Trition (see Table 4).

U and *”Th concentrations were measured at WHOI by isotope dilution ICP-
MS using the ThermoFinnigan Element 2 and **U/**U, **Th/***Th and *Ra
concentrations (by isotope dilution) were measured using the WHOI ThermoFinnigan
Neptune MC-ICP-MS. Analytical details are reported in Table 5. For more information
on the **U-*"Th-***Ra chemical and analytical procedures at WHOI, extensive details are
presented in Appendix Al of Sims et al. (2008a). More details of Th and U measurement
methods and standards are summarized in Ball et al. (2008) and Sims et al. (2008b) and

in the caption to Table 5.

4.5. RESULTS

Major and trace element data are compiled in Tables 2 and 3 for convenience;
these data will be published as a subset of a larger data set elsewhere (Wanless et al., in
prep). We report additional measurements of Sr and Nd isotope compositions in Table 4,
as well as U, Th, and ***Ra concentrations by isotope dilution, and (***U/**Th),

GTh?*U), **Th/*?Th), (*Ra/**Th), and (**U/**U) in Table 5.
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4.5.1. Major Elements

Samples from the east limb of the OSC encompass a wide range of major element
compositions, including ferrobasalt (S10,<52 wt%, FeO>11 wt%, but FeO/MgO<1.74),
FeTi basalt (FeO/MgO>1.74, total FeO>12 wt%, TiO,>2 wt%, and Si0,<52 wt%),
basaltic andesite (52%<Si0,<57 wt%), andesite (57 wt%<Si10,<62 wt%), and dacite
(>62% Si0,). The entire suite of 9°03°’N EPR lavas appears to be related by mixing,
although the east limb OSC basalts generally appear to represent a continuum of
compositions with lavas from 9°17°N-9°54’N EPR (Figure 3). As a group, basaltic lavas
from the eastern limb at 9°03’N EPR are quite homogeneous, but have higher wt% Si0O,,
Na,0, K,0, FeO, TiO,, and P,0s, and lower wt% MgO (and molar Mg#), CaO, and Al,O,
compared to axial lavas collected from 9°17°N-9°54’N EPR and on the ridge flanks at
9°50’N EPR (Figure 3; Sims et al., 2002; 2003; Waters et al., in prep). Basalts from
9°03’N EPR have a lower, narrower range of Mg# than 9°17°-9°54’N EPR basalts, due to
both consistently higher abundances of FeO (11.22-12.08 wt% vs. 8.82-11.74 wt%,
median 10.06 wt%) and lower abundances of MgO (6.60-7.21 wt% vs. 6.78-8.94 wt%,
median 7.95 wt%). Indeed, there appear to be no primitive basalts (e.g., MgO> ~8 wt%)
on the eastern limb of the 9°03’N OSC (Wanless et al., 2007).

When examined more closely, there appears to be a relationship between the
spatial distribution of east limb basaltic lavas and their geochemistry. On average,
basaltic lavas located farthest from the ridge axis (i.e., those lavas belonging to the pillow
ridge and flat-topped volcano) have higher Mg#, wt% MgO, CaO, and AL, O5; lower wt%
Si0,, FeO, Ti0O,, and P,0Os; slightly lower wt% K,O (and K,0/TiO, x 100; herein referred

to as K/T1) and higher wt% Na,O; yet, similar total alkalis and CaO/Al,O; in comparison
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to axial and flank basalts (Figure 3; Table 2). Similarly, axial and flank basalts can be
grouped based on similar wt% TiO,, Al,O;, and MgO, although flank basalts are
transitional between pillow ridge and axial basalts with intermediate Mg#, wt% CaO,
FeO, and P,0;. Lastly, pillow ridge basalt 265-12 is distinct from all other pillow ridge
basalts with notably low wt% CaO and MgO (and Mg#) and high wt% K,O and appears
more akin to axial and flank basalts. However, we note that this sample was collected
away from the pillow ridge and is also significantly more enriched in incompatible trace
elements as exhibited by much higher K,O and K,0/Ti0O, compared to all other east limb

basaltic lavas (see section 5.2, Table 3, and Figures 4, 5).

4.5.2. Trace Elements

Basalts from the eastern limb of the OSC at 9°03’N EPR are remarkably
homogeneous with respect to both their trace element abundances (Figure 4A, B) and
ratios (Figure 5). Sample 265-12 has higher abundances of Th and U, but we do not have
other trace element abundances for comparison. Axial basalts have slightly higher
abundances in the most incompatible elements and slightly lower abundances of
compatible elements (Figure 4B). Flank basalts are intermediate in composition to axial
and pillow ridge basalts. East limb basalts have very similar trace element abundance
patterns to 9°17°N-9°54’N basalts, but they are generally more enriched than 9°17°N-
9°54°’N EPR basalts in incompatible trace elements, with the least incompatible elements
(i.e. heavy rare earth element (HREE)) showing the most relative enrichment, and the

most incompatible elements (Ba, Th, U, Nb) being most similar.

198



Basaltic andesites, andesites, and dacites have higher incompatible element
concentrations and lower compatible element concentrations than basalts (Figure 4A). In
addition, basaltic andesite, andesite, and dacite trace element patterns are largely similar,
but andesite and dacite compositions appear transposed to higher incompatible element
abundances and lower compatible element abundances than basaltic andesites. These
evolved lavas have trace element patterns that are similar to the basalts, but have
pronounced Th and U anomalies relative to Ba and Nb, more prominent Sr and Ti
depletions, and very large depletions of the most compatible elements (V, Sc, Cu, Cr, and
Ni). As with major element systematics, these trace element systematics indicate mixing

between evolved and primitive lavas (Figure 5).

4.5.3.¥Sr/**Sr and '*Nd/'*Nd isotope compositions

We report St isotope compositions for 17 lavas and Nd isotope compositions for
18 lavas in Table 4 and Figure 6. These analyses include axial basalts, flank basalts,
basaltic andesites, and andesites and dacites. We have no Sr or Nd isotope data for off-
axis pillow ridge basalts, although we do report Nd isotope measurements for 265-06, the
sample from the flat-topped volcano. All east limb lavas have very homogeneous Sr and
Nd isotope compositions that overlap with those of lavas from 9°17°N-9°54’N EPR.
There are no systematic differences between axial and flank basalts, nor among basalts,
basaltic andesites, andesites, and dacites. This isotopic homogeneity indicates constancy
in the time-integrated parent/daughter ratios Rb/Sr and Sm/Nd of the mantle source for

east limb lavas in this study, and it implies that the east limb lavas reported in this study
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originally melted from a common mantle source that is similar to the mantle source for

lavas from 9°17°-9°54’N.

4 5 4 238U_230Th_226Ra
¥U-2'Th-**Ra, (*°Th/*?*’Th), and (**U/**U) isotopic compositions and U, Th and Ra

abundances, as measured by isotope dilution (ID), are reported in Table 5.

4.54.1.(7'U/”U)

For submarine basalts, (**U/**U) is a sensitive indicator of alteration, because
seawater is significantly enriched in ***U relative to ***U (for seawater, (**U/**U) = 1.14
+ 0.03; Thurber, 1962; Ku et al., 1977; Henderson et al., 1993; Robinson et al., 2005).
Nearly all samples measured have (**U/**U) in equilibrium within analytical
uncertainties (+ 0.5%) indicating that these samples have not suffered secondary
alteration due to seawater-rock interaction following eruption. Only four samples have
(**U/7*U) more than +0.5% out of secular equilibrium: 265-06 (1.006), 265-13 (1.006),
265-74 (1.008), and 265-76 (0.993). However, samples 265-06, 265-74, and 276-76 show
no other indications that the **U concentrations have been perturbed.

In contrast, samples 265-12, 265-13, 265-19, and 265-33 have (**U/>*U) ~1.004-
1.006 and also have exceptionally high (***Th/***Th) values compared to other young
MORB from 9°-10°N EPR (1.45-1.58 vs. 1.30-1.44; Sims et al., 2002; Waters et al., in

prep.). Using the anomalous (**°Th/**Th) values to calculate (*°Th/***U) and
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(***Ra/?Th) also results in unreasonably high (*°Th/***U) at a given (***Ra/**"Th), and
the (***Ra/*’Th) values are significantly different from those of samples collected in

22°Ra concentrations. Given the old

close proximity that have nearly identical U, Th, and
appearance of these samples in hand specimen and the significant Mn crust (e.g. up to ~8
mm on 265-12; Figure 2B, C, F, G), we suspect that the procedure used for cleaning these
glasses (described in Table 5) was insufficient for removing all surface glass
contaminants. In particular, Mn crusts are known to have extremely high (*°Th/***Th)
(>100) at Th/U relatively similar to MORB (Chabaux et al., 1997). Thus, we consider the

U-series abundances and disequilibria for these samples to be affected by post-eruptive

secondary contamination and we exclude them from further discussion.

4.542.(F°Th/”’Th)-(°U/’Th) and (*°Th/**U)

The variation in (**U/**Th) with (*°Th/***Th) for east limb OSC samples is
shown in Figure 7. All samples plot to the left of the equiline and have significant *Th
excesses (i.e. (P*Th/**U)>1), indicating recent fractionation in the presence of garnet
(<375 ka) (e.g. Beattie, 1993; La Tourette et al., 1994; Salters et al., 1999; Salters and
Longhi, 2002; Elkins et al., 2008). Furthermore, all east limb samples overlap with data
for axial and off-axis N-MORB samples from 9°17°-9°54’N EPR with respect to
(*°Th/**Th) and (**U/**Th) (Figure 7; Sims et al., 2002; 2003; Waters et al., in review;
in prep.). (**U/**Th) generally decreases and (**Th/**U) increases with increasing wt%
SiO, (i.e., from basalt to dacite) and decreasing Mg# at nearly constant (**Th/>*Th):
pillow ridge basalts have the highest (**U/**Th) and smallest *°Th excesses (though all

basalts have surprisingly similar **Th excesses of ~1.10-1.13), and dacites have the
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smallest (**U/**Th) (~1.17-1.18) and largest (**Th/**U) (~1.16-1.18; Figures 7B, 8).
Pillow ridge basalts have higher (**U/**Th) (~1.27) relative to both flank and axial
basalts, which have similar (**U/**Th) (1.22-1.25). Both flank and pillow ridge basalts
have slightly higher (*°Th/***Th) (~1.41) than axial samples (~1.35-1.38; including
basalts, basaltic andesites, and dacites).

Dacites have significantly higher **Th excesses than basalts and basaltic andesites
(Figures 7 and 8). Although, the basalts analyzed in this study all have **Th excesses that
are small compared to 9°-10°N EPR N-MORB (~1.10 as compared to up to ~1.11-1.19,
though very similar to 2005-2006 eruption samples, Figure 8; Sims et al., 2002; 2003;
Waters et al., in prep), basaltic andesites and dacites have larger 20Th excesses (1.10-1.16
and 1.16-1.18, respectively) that are much more akin to more enriched N-MORB at 9°-
10°N EPR. Furthermore, plots of either U or Th vs. (*°Th/**U) and (**U/***Th) look
nearly identical and show enrichments of U and Th that strongly resemble mixing trends.
Also, a plot of Mg# vs. (*"Th/***U) shows a strong mixing relationship among

ferrobasalts, basaltic andesites, andesites, and dacites (Figure 9A).

4.54.3.(*Ra/*’Th)

Figure 8 illustrates variations of (***Ra/**Th) with (**Th/***U) for all east limb
samples. All samples have **’Ra excesses (i.e., (*°Ra/**Th)>1) with the exception of two
dacites. These dacites (265-83, 265-85) are the most evolved dacite samples and appear
relatively young in dive photographs despite being collected just to the west of the axial
summit graben at 9°08°N and having equilibrium (***Ra/*Th) values of ~0.99-1.04.

Pillow ridge basalts, which appear quite sediment covered in dive photos (Figure 2C, G),
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have (***Ra/**’Th) of 1.81-1.87. The flank basalt (265-32; Figure 2B) has similar, but
slightly higher (***Ra/*"Th) ~1.96. Axial basalts appear fresh in dive photos (Figure 2D)
and have higher (***Ra/*"Th) of 2.10-2.43, which approaches the zero-age (**Ra/*"Th)
values of samples with similar (**Th/**U) collected from the 1991-1992 and 2005-2006
eruptions at 9°50’N EPR (2.66-2.89, and 2.41-2.56, respectively; Sims et al., 2002;
Waters et al., in prep). However, (***Ra/>Th) in east limb basalts appears to be higher at
a given Mg# than what would be expected based on the negative correlation observed
among zero-age samples from 9°17°N-9°54’N EPR (Figure 9B).

Basaltic andesites from the axis appear as fresh as axial basalts (Figure 2E) but
have lower (***Ra/*"Th) ~1.21-1.77. The two axial dacites also appear exceptionally fresh
in dive photos yet have very low (**Ra/*°Th) ~1.35-1.36 (Figure 2A; n.b.: sample 265-66
is nominally an andesite but is nearly identical in composition to adjacent axial dacite
sample 265-64). Samples with **’Ra excesses ((***Ra/**Th)>1) indicate that **Ra must
have been fractionated from **Th within the past ~8 kyrs (five 1600 yr half-lives of
*Ra), and these extant **’Ra excesses also indicate maximum lava eruption ages of ~8
kyrs. Samples with **’Ra excesses are relatively young compared to the half-life of **Th
(~75 kyrs); thus, the (**Th/**Th) and (**Th/**®*U) for these samples can be considered

unchanged by decay since the time of eruption.

4.6. DISCUSSION

4.6.1. Eruption Ages
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All samples have (*Th/**U)>1, indicating that these samples erupted less than
~375 ka, or five-half lives of *’Th. With the exception of dacite samples 265-83 and 265-
85, all samples also have (**Ra/*"Th)>1, limiting possible eruption ages to <8 kyrs. In
addition, (***Ra/*"Th) values measured in axial basalts are similar to zero-age lavas from
near 9°50°N, suggesting they are quite young, and this is supported by their young
appearance in dive photos (Figure 2D). Although this is not unexpected for samples
collected within the axial graben—crustal ages determined from spreading rates suggest
possible lava ages of up to ~13 kyrs within the axial graben (assuming a half-spreading
rate of 2.75 cm/yr, or 5.5 cm/yr for the ridge segment from 9°-10°N EPR divided between
the east and west limbs)—this is a surprising result for both the off-axis flank and pillow
ridge lavas, which were emplaced on crust with nominal spreading ‘ages’ of ~75-150 ka.
In contrast, (**Ra/*°Th) values measured in basaltic andesites, andesites, and dacites
collected within the axial graben are much lower and suggest (***Ra/**Th) may be
significantly diminished by crustal residence times and mixing.

In addition to determining eruption age limits by the presence or absence of ***U-
*Th-**%Ra disequilibria, when certain criteria are met (outlined in section 4.3), U-series
disequilibria can be used to calculate explicit model eruption ages. Samples potentially
altered by post-eruptive alteration processes have already been eliminated from
consideration (see section 4.5.4.1). In addition, the *’Sr/*Sr and '*Nd/"*'Nd isotopic
compositions of the east limb OSC lavas indicate that their parent magmas were
generated in a mantle source that is indistinguishable from the source of N-MORB
magmas at 9°17°N-9°54’N EPR. This implies that melt compositions, and thus initial

(P°Th/**U) and (**Ra/*’Th) disequilibria in east limb magmas are not influenced by
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mantle source heterogeneity with respect to the parent-daughter ratios of these U-series
nuclides. Lastly, although the zero-age trend line defined by axial lavas from 9°17°N-
9°54°’N EPR inherently accounts for variation in the degrees and depths of melting since
it covers a wide range of initial (***Ra/*"Th) and (**Th/**U), the nearly constant
(P°Th/*®U) of east limb OSC basalts overlaps with that of 9°17°-9°54’N EPR basalts and
implies similar degrees and depths of melting for their parental magmas.

Although three of the four criteria for determining model ages are met, it is
unclear if crustal residence times of east limb OSC basalts are similar to those of basalts
from 9°17°N-9°54’N EPR. Despite this uncertainty, we assume that residence times are
similar and follow the model age dating method of Sims et al. (2003) and Waters et al. (in
prep.) to calculate trend line model ages for basalts (Table 6). We caution that these
model ages may include a component of the crustal residence time. The implications of
extended crustal residence times are discussed below in section 4.6.1. We do not report
model ages for basaltic andesites, andesites, and dacites, since these lavas most likely
have significantly longer residence times, and thus their model ages will not be
equivalent to eruption ages.

*Th-**Ra trend line model ages indicate that as a group, axial basalt samples are
the youngest samples, ranging from ~500-1600 yrs old (Table 6). Flank basalt samples
are slightly older at ~1300 yrs old. Pillow-ridge basalts are even older, ~2100 yrs old.
Sample 265-06, collected from the flat-topped volcano adjacent to the pillow-ridge, is
slightly older than the oldest pillow ridge basalts, ~2400 yrs old. The model age
relationships among these samples are grossly consistent with photo and hand sample

observations (Figure 2). However, the amount of sedimentation covering several of the
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pillow ridge samples, including samples 265-06, 265-18, and 265-20 (Figures 2C and
2F), is quite substantial and greater than what might be expected from an eruption age of
~2 kyrs. Qualitative sedimentation metrics (e.g., Macdonald et al., 1988; Haymon et al.,
1991) suggest ages of 5-20 kyrs when sediment has accumulated enough to connect
between pillows, as is the case for these samples. However, sedimentation rates along the
EPR vary widely, ranging from 0.3-2.6 cm/yr (Dekov and Kupstov, 1992; Lonsdale and
Spiess, 1980; Marchig et al., 1986; McMurtry et al., 1981) as do age estimates based on
sediment cover (Ballard et al, 1981; Haymon et al., 1991; Macdonald et al., 1988), and
such estimates may be different than actual eruption ages by more than an order of

magnitude (Haymon et al., 1991; Sturm et al., 2000).

4.6.2. The Effect of Residence Times on Model Ages

In calculating the model ages described above, we assumed residence times equal
to those of axial basalt from the 9°17°N-9°54°N region. However, given the evolved
nature of ferrobasalts at the east limb of the 9°03’N OSC, it is possible that their
residence times are longer than the residence times of the N-MORB that comprise the
zero-age trend line, and that the corresponding time needed for crystallization to occur
may be reflected in the (***Ra/*°Th). However, assuming the initial (***Ra/>*°Th) of
magma injected into the crust beneath the east limb of the 9°03’N OSC is equivalent to
that at 9°17-9°54°N, then longer residence times would result in lower initial (***Ra/**Th)
upon eruption than the zero-age N-MORB trend line (***Ra/*"Th) assumes, and the

calculated model ages in Table 6 would be erroneously older than the true eruption age.
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If the true eruption ages are older than our model ages, as we speculate based on
sediment cover, the initial (***Ra/*°Th) of off-axis 9°03’N OSC lavas must have been
higher than the initial (***Ra/*°Th) of 9°17°N-9°54’N lavas upon eruption. This is
possible by either shorter residence times or greater primary (**Ra/*°Th) disequilibria
upon injection into the crust. Significantly greater primary disequilibria seems unlikely
because major element constraints suggest that both ferrobasalts and the more primitive
basaltic lavas from 9°17°N-9°54’N derive from similar parental magmas (see section
4.6.2. below), and because (**Th/**Th) and (**Th/**U) are similar between primitive
basalts and ferrobasalts. In contrast, shorter residence times may be possible if primitive
basaltic magma injected into the relatively cool crust of the OSC quickly crystallizes to
ferrobasalt compositions and is then transported by vertical diking to the seafloor
(Combier et al., 2008). This is consistent with the offset to lower Mg# at a given
(***Ra/*’Th) for axial lavas as compared to zero-age lavas from 9°17°N-9°54’N (Figure
9B), though from the current data set, there is no way of knowing whether axial and off-
axis lavas had similar initial (**Ra/*°Th). Indeed, axial lavas may have longer residence
times than off-axis lavas due to lateral transport from the western edge of the melt lens to
beneath the ridge axis.

If we assume that the east limb axial basalts with the highest (**Ra/*’Th) (265-
76, 266-18) are of zero-age, then the trend line model ages reported in Table 6 are
actually estimates of residence time for these lavas, and may suggest that transport from
the western edge of the melt lens to the axis and subsequent residence is on the order of
~500-1000 yrs. However, without knowledge of true eruption ages and the initial

(***Ra/*’Th) disequilibria upon eruption, basaltic magma residence times are
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unconstrained. In turn, the complexity of the magmatic system underlying the 9°03’N
OSC and the effect of residence times on (***Ra/**Th) disequilibria in basaltic magmas

add additional, and currently irreconcilable, uncertainty to eruption model ages.

4.6.3. Petrologic Relationships Among Primitive Basalts (9°17°N-9°54’N) and
Ferrobasalts

In general, trends of major element abundances vs. molar Mg# (Mg/(Mg+Fe) x
100) of basalts can be approximated by fractional crystallization from a primitive basaltic
magma (e.g., sample 2752-6 from 9°50’N EPR (Sims et al., 2002), Mg#~64, using the
model from Weaver and Langmuir (1990); Figure 3). Most high Mg# MORB initially
crystallize olivine, followed by crystallization of olivine and plagioclase, and then
crystallization of olivine, plagioclase, and clinopyroxene (Figure 3; e.g., Grove et al.,
1992; Presnall et al., 1978; Yang et al., 1996). Interestingly, basalts from 9°03’N EPR
appear to extend the liquid line of descent (LLD) of N-MORB from 9°17°N-9°54’N EPR,
implying very similar parent magmas. This observation is consistent with experimental
results indicating that extensive crystallization of plagioclase and olivine followed by
plagioclase, olivine, clinopyroxene, and ilmenite from a primitive MORB can produce
FeTi basalt (Dixon and Rutherford, 1979; Juster et al., 1989; Walker et al., 1979), and
with least-squares calculations of major element compositions of 85°W Galapagos
Spreading Center lavas (Perfit and Fornari, 1983). LLDs calculated assuming a single
parent magma for N-MORB from 9°17°N-9°54’N EPR reproduce general major element
trends for 9°17°N-9°54’N EPR lavas quite well with crystallization of olivine and

plagioclase, and continued crystallization of olivine and plagioclase as well as
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clinopyroxene is consistent with the major element compositions of east limb 9°03’N
OSC ferrobasalts (Weaver and Langmuir, 1990).

The onset of clinopyroxene crystallization in east limb ferrobasalts is consistent
with crystallization at lower temperatures. For example, using the model of Weaver and
Langmuir (1990) the onset of olivine crystallization in sample 2752-6 at a constant 0.5
kbar (roughly equivalent to the ~1.5 km depth axial magma chamber beneath 9°50°’N
EPR) occurs at 1216°C, plagioclase crystallization occurs at 1201°C, and clinopyroxene
(augite) crystallization occurs at 1144°C. The model of Weaver and Langmuir (1990)
does not account for fractional crystallization of either low-Ca pyroxene such as
pigeonite or Fe-Ti rich oxides like titanomagnetite or ilmenite, and hence much of the
LLD at low Mg# is inaccurate, particularly with respect to FeO and TiO, enrichment

(Figures 3B, 3D).

4.6.4. Previous Models for the Genesis of MOR High-Silica Lavas

There are two main models that have been proposed to explain the formation of
high silica lavas in fast-spreading mid-ocean ridge settings. The first model posits an
origin through extensive fractional crystallization during crustal residence and late stage
differentiation of Fe-Ti oxides (e.g., Juster et al., 1989; Shi, 1993; Thy and Lofgren,
1994; Toplis and Carroll, 1995). The second model suggests that high silica lavas are
formed by partial melting of hydrated altered wall rock, in particular, anatexis in the roof
zone of the AMC (e.g., Casey et al., 1981; Gillis and Coogan, 2002; Gregory and Taylor,

1979; Michael and Schilling, 1989; Wanless et al., in review).
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4.6.5. Apparent Discrepancies with Assimilation of Partial Melts of Hydrothermally
Altered Wall Rock

Assimilation of partial melts of hydrothermally altered AMC roof material is a
plausible explanation for many of the geochemical features observed in east limb 9°03°’N
OSC dacites. However, the dacitic end member appears to be quite well defined, whereas
hydrothermal alteration should variably alter wall rock, and different degrees of partial
melting of such compositionally and mineralogically diverse rock should result in a
broader range of high silica end member compositions. In addition, there are several
other features of our data set that are in apparent contradiction to a model requiring
assimilation of partial melts of altered ocean crust to generate MOR dacites.

In particular, recent (<~1 Ma) assimilation of hydrothermally altered gabbroic or
dike material should increase both (**U/**U) and *’Sr/**Sr in more evolved lavas over
that of basalts (Figure 10). ¥Sr/**Sr and (**U/**U) in seawater are ~0.709 and 1.14,
respectively, and concentrations are high enough (~7.45 ppm and ~3.1 ppb) in EPR
seawater (Ku et al., 1976; Ravizza et al., 2001) to substantially affect rock compositions
for low degrees of water-rock interaction (Figure 10). Altered oceanic crust is typically a
sink for fluid mobile elements such as Rb, Cs, K, U, and Pb, and almost always shows
increased ¥'Sr/**Sr (Bach et al. 2003; Hauff et al., 2003). It has been argued that the
precipitation of Sr-rich minerals in cooler recharge zones depletes seawater type
hydrothermal fluids of Sr (Berndt et al., 1988; Michael and Schilling, 1989), but studies
of hydrothermal fluids sampled from vents at 9°46’N-9°54’N EPR have *¥’Sr/*Sr
~0.70381-0.70790, suggesting that even vent fluids in the upflow zone may retain a

significant seawater component (Ravizza et al., 2001), and that hydrothermal fluids with
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seawater influenced ¥Sr/*Sr isotopic composition should have a significant impact on the
¥7Sr/**Sr composition of altered wallrock.

Indeed, we find hydrothermal fluid-rock interaction of a fresh rock sample with
average *’Sr/*°Sr= 0.70249 and [Sr]=120 ppm with a hydrothermal fluid with
conservative ¥’Sr/*Sr of 0.70381 and [Sr] ~13.1 ppm (Ravizza et al., 2001) requires a
fluid:rock ratio of only 1 to change the *'Sr/*Sr to >0.7026. Given the minimum *’Sr/**Sr
and typical [Sr] used for hydrothermal fluid, this represents a conservative estimate.
Using the same fluid ([U]=0.3 ppb) and assuming seawater (**U/**U)=1.14, a fluid:rock
ratio of 25 is required to change the rock to (**U/**U)~1.01. Using seawater as an end
member fluid gives much lower fluid:rock ratios of 0.5 and 2 for ¥Sr/**Sr and (**U/**U),
respectively. Thus, ¥’Sr/**Sr appears to be a more sensitive indicator of seawater
contamination than (**U/**U). However, all lavas, including basalts, basaltic andesites,
andesites, and dacites, have (**U/?*U)~1 and *'Sr/**Sr within ~50 ppm of typical axial
MORB (~0.70248) from 9°17°N-9°54’N EPR and show no clear evidence of a
hydrothermally altered wall rock melt component, particularly one altered enough to have
amphibole as a stable mineral. We also see no signs of increasing *’Sr/**Sr or (**U/**U)
with increasing wt% SiO, or decreasing Mg#, which would be expected if end member
dacitic melts derived from melting of altered wall rock and intermediate magmas
originated from mixing of unaltered basalt and dacite magmas.

A second observation that leads us to believe that assimilation of altered wall rock
is not a plausible mechanism is that magmatic and hydrothermal fluids are typically
enriched in U over relatively immobile Th, and alteration of basaltic rock generally

results in U enrichment (Bach et al., 2003; Hauff et al., 2003; Jochum and Verma, 1996;
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Macdougall et al., 1979; Nakamura et al., 2007; Ridley et al., 1994; Valsami-Jones and
Ragnarsdottir, 1997; Verma, 1992). Given our current understanding of equilibrium
partitioning of U-series nuclides between a variety of minerals (including amphibole,
clinopyroxene, olivine, orthopyroxene, plagioclase, ilmenite, magnetite, and apatite) and
silicate melt (e.g., Berlo et al., 2004; Blundy and Wood, 2003; Fabbrizio et al., 2009;
Klemme et al., 2006; Miller et al., 2007; Prowatke and Klemme, 2006), we expect that
subsequent partial melting and assimilation of wall rock should produce ***U excesses
over *’Th (Figure 11, Table 7), and additional U in the source composition would only
serve to accentuate this effect and produce higher (**U/***Th) and lower (**Th/**U).
However, dacites have systematically lower (**U/**Th) and higher (**Th/***U) than
basalts (Figure 7).

Finally, we also observe equilibrium (***Ra/*Th) in visibly young dacitic lavas. If
partial melting of wall rock were a continuous process that produced dacitic magmas in
an isolated magma chamber, one would expect that some volume of recently formed
dacitic magma would be erupted on the seafloor. However, partial melting of altered wall
rock (likely consisting of some proportion of plagioclase, which would fractionate Ra
from Th) would almost certainly decrease (***Ra/*"Th) disequilibria (Figure 11, Table 7),
yet we see very small to absent **’Ra excesses in young appearing dacite lavas, indicating
that the process that formed dacites originally produced (***Ra/**Th)>1 and that event is

long past (i.e., >8 kyrs).

4.6.6. Crystallization Origin for the Petrogenesis of Dacites
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The observations of near equilibrium (**U/***U) and depleted EPR mantle-like
¥’Sr/**Sr compositions in high silica lavas suggests assimilation of partial melts of
hydrothermally altered oceanic crust is not a fundamental process contributing to the
formation of dacitic magmas. We propose that extensive fractional crystallization is a
simpler explanation for the formation of dacites, and one that we find more consistent
with major element, trace element, ¥'Sr/*Sr, (**U/**U), and *®U-""Th-**Ra systematics.

Arguments against a crystallization origin for dacites have been made based on
model LLDs calculated using the MELTS program (Ghiorso and Sack, 1995; Wanless et
al., in review). In particular, dacites have too high wt% Al,O, and K,O, and too low wt%
CaO, FeO, and P,O; at a given Mg# (Figure 3; Ghiorso and Sack, 1995; Wanless et al., in
review). However, unlike the LLDs calculated from MELTS, the experimental data of
Juster et al. (1989) appear to reproduce the end member dacites quite well (Figure 3).
Juster et al. (1989) conducted 1 atm isobaric experiments over a range of temperatures
and oxygen fugacities on a synthetic analogue of a Galapagos Spreading Center FeTi
basalt (POO.82N2) from the 85°W region (Byerly et al., 1976). In particular, the most
silica rich experimental compositions have wt% CaO, K,0, Al,O;, and FeO that closely
resemble the most silica rich east limb magmas (Figures 3B-E). The low wt% P,0O,
compared to MELTS can be explained by apatite saturation (see Figure 12 of Juster et al.,
1989).

Thus, extensive fractional crystallization (~85%) appears to provide a plausible
mechanism for the origin of end member major element dacite compositions.
Intermediate basaltic andesite and andesite compositions most likely result from these

dacite magmas mixing with ferrobasaltic magmas. This mixing relationship is apparent in
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plots of major elements, trace elements, and U-series isotopes (Figures 3, 5,7, 8,9).
Mixing trends among geochemical parameters like wt% MgO vs. (**U/**Th) indicate
that a dacitic magma component was formed independently from magmas of intermediate
compositions, which are likely mixes of basalt and dacite magmas. The mixing trend
observed on a plot of (**Th/**U) vs. (**Ra/*"Th) indicates that intermediate magma
compositions were formed by mixing of the dacitic magmas with young basaltic magma
with large **°Ra excesses (Figure 8).

A simple modal fractional crystallization calculation (85% crystallization), using
the “non-amphibole bearing gabbro” mineral modes with “andesite” partition coefficients
from Wanless et al. (in review) and an average 9°17°-9°54’N EPR N-MORB (Sims et al.,
2002) for an initial composition, appears to reproduce the trace element abundance
pattern reasonably well (Figure 12). In particular, plagioclase fractionation alone does an
excellent job reproducing the negative Sr and Eu anomalies. The biggest differences are
that modeled Th and U abundances are lower, and the Nb abundance is higher, than
dacite compositions. We suspect the discrepancy with U, Th, and Nb concentrations in
the fractional crystallization model reflects uncertainties in partitioning behavior between
low-Ca pyroxene, Fe-Ti oxides and relatively dry silica-rich melt. In addition,
fractionation of accessory phases like apatite may control U-Th partitioning. However,
recent partitioning experiments show a wide range of Dy,/Dy, between apatite and silicate
melt, with both D, /D,; greater than and less than one (Prowatke and Klemme, 2006).

A second line of evidence used to argue against a differentiation origin for high
silica MOR lavas is the over-enrichment of Cl gas (Michael and Schilling, 1989).

Chlorine concentrations are too high to be derived from differentiation alone, even
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assuming complete incompatibility, and thus the over-enrichment of CI has been argued
to come from assimilation of hydrothermally altered crust with a significant seawater
component (Michael and Schilling, 1989). Although this argument is perhaps more
difficult to explain, we support the notion that Cl over-enrichment may result from
accumulation of Cl in overlying high silica lavas by exsolution of a Cl rich vapor phase
during crystallization of dense, underplating ferrobasalt and FeTi basalt. Michael and
Schilling (1989) could not rule out such a mechanism on the basis of geochemical
evidence, but they decided against this mechanism largely because of the difficulties in
conceiving of a physically plausible model in which exsolved Cl-rich fluids could be
transferred to a highly differentiated magma.

However, the magma supply at the 9°03’N OSC appears to be quite robust and if
the roof of the melt lens is a permeability boundary (Kent et al., 2000), the source of the
ClI could be the extensive crystal mush zone where magma is evolving to ferrobasalt and
FeTi basalt compositions, and transport of this Cl rich vapor phase may parallel transport
of magma from the off-axis melt source towards the shallow melt lens beneath the ridge
axis, where the high silica lavas are forming. We note that the excess degassing and
accumulation of volatile contents in subaerially erupted silicic lavas has commonly been
attributed to degassing of deeper, underlying magma bodies (e.g., Kayzar et al., 2009;
Kazahaya et al., 1994; Stevenson and Blake, 1998; Wallace, 2001).

Finally, a last observation used to against crystallization as the origin for high
silica MOR lavas is that there appears to be a gap in the crystallization sequence from
FeTi basalt to dacite. However, this is consistent with arguments made by Grove and

Donnelly-Nolan (1986) that experimentally determined plagioclase+augite+low Ca
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pyroxene+magnetite cotectics have nearly flat liquidus slopes such that there is a large
change in composition for a small change in temperature. For example, the crystallization
on FeTi basalt of Juster et al. (1989) show a change from 51.9 wt% SiO, to 67.3 wt%
Si0O, over a 35°C decrease in temperature (1075°C to 1040°C). A result of the rapid
change in composition is that there is a lesser probability of sampling magmas of
intermediate composition. In addition, based on the concept that magma chambers are
density filters (Sinton and Detrick, 1992; Stolper and Walker, 1980), we suggest that with
differentiation beyond FeTi basalt liquid compositions, magmas may also become too
dense to erupt, as they are significantly enriched in Fe and Ti. If magmas evolve beyond
this stage, then they are likely to continue crystallizing until their density is again low
enough to be erupted. Thus, the only erupted intermediate lavas are those that are low Ti,

low Fe, mixed magmas, and not those that follow the LLD.

4.6.7. #*U-*"Th-*Ra Systematics among Basaltic Andesites and Dacites

The relatively constant (*°Th/***Th) for all samples indicates that evolution from
basalt to dacite occurs on a time scale that is much shorter than the half-life of *°Th (~75
kyrs). Given that dacites appear young in field observations and dive photos, and given
their location within or directly adjacent to the axial graben, we suggest that they are
indeed very young, and that the measured (***Ra/*Th) in dacites is very close to the
initial (***Ra/*Th) present upon eruption. Thus, because the most evolved dacites (265-
83 and 265-85) have equilibrium (***Ra/*Th), and because they appear to be end
member compositions, it is likely that they have not experienced significant melt

recharge. This is also consistent with the idea that dacites are formed in isolated melt
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pockets or even cupolas near the roof of a magma chamber (Wallace, 2001). A similar
eruption age for these samples is supported by the similar locations and visual appearance
of these samples and by the apparent relationships between sedimentation and **Th-"°Ra
model ages of basalts (see section 4.6.1 above).

Samples 265-83 and 265-85 appear to represent a fairly accurate end member
composition for mixing with a young axial ferrobasalt magma to produce basaltic
andesites (Figure 8, 9), and its residence time was probably on the order of ~ 8 kyrs, just
enough time to bring its (***Ra/*"Th) to equilibrium, but not long enough to significantly
change (*Th/**U). If we assume, based on their young appearance in dive photos, that
both the youngest axial ferrobasalts and these dacites have (**Ra/*°Th) that is unchanged
from the time of eruption, we can also infer that zero-age intermediate lavas generated by
mixing of these lavas (as suggested by major and trace element systematics) should also
lie along a mixing line between zero-age axial ferrobasalts and dacites. We suggest that
we can use this zero-age (**Th/**U)-(***Ra/*"Th) mixing trend line to calculate model
ages for intermediate lavas that do not lie near this trend line (i.e., outside of analytical
uncertainties).

A zero-age trend line for mixed lavas (Figure 8) was calculated using a double-
error, non-linear least squares fit to a line (Sohn and Menke, 2002), giving the equation
(**°Ra/*’Th)=-21.01425 x (**Th/**U) + 25.74449, with a high r=-0.935 and low
MSWD=2.654. Basaltic andesite samples 264-13, 264-17, 264-20, 265-64, 265-66,
young axial basalts 265-74, 265-76, 266-18, and end member dacite 265-85 were all
included in the calculation. Note that the flank basalts that lie along this mixing trend,

which are clearly older in dive photos (Figure 2), have higher initial (**Ra/*"Th) at a

217



given (*Th/**U), and are not part of this mixing trend. We use the zero-age trend line of
Sims et al. (2002) and Waters et al. (in prep.) for calculating basalt model ages (see
section 6.1.).

Of the three evolved lava samples analyzed in this study that do not already lie
along this trend line, only sample 265-49 is interpreted to potentially result from direct
mixing of a dacite and ferrobasalt. However, the calculated model age of ~3600 yrs for
this sample is extremely unrealistic considering its location and its young appearance in
dive photos (Figure 2). Two other basaltic andesites (265-106, 265-108) have lower
(**Th/**U), similar to basalts, and they appear to be either products of fractional
crystallization or mixes of different end member compositions (see Figures 3, 5). Thus,
residence times may have had a different effect on the (**Ra/*°Th) values of these lavas,
and we cannot use the ferrobasalt-dacite trend line to calculate model ages. If we do
assume that these lavas were derived from a zero-age basalt parent from 9°17°N-9°54’N
EPR (with trend line initial (***Ra/*°Th)) via fractional crystallization and no mixing,
then the model ages for samples 265-106 and 265-108 are 2800 and 4200 yrs,
respectively (Table 6), with the caveat that we cannot decouple residence time from
eruption age and that these model ages are therefore the sum of the residence time and

eruption age.

4.6.8. Implications for Volcanic Accretion at the 9°03’N OSC
The spatial distribution of lava ages indicates that the most recent volcanism is
indeed occurring within the axial summit graben, but that substantial amounts of off-axis

volcanic accretion are occurring. If we take our model ages at face value, the off-axis
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pillow ridge overlying the western edge of the seismically imaged melt lens appears to be
composed of lavas ~2 ka. The contiguous flat-topped volcano to the south is slightly
older (~2400 yrs). On this basis, we speculate that off-axis volcanism began at this
seamount ~2400 yrs ago, tapping the melt supply directly beneath it. As the melt supply
developed, extensional stresses focused at this asperity, and volcanism began propagating
northward and formed the off-axis pillow ridge within a few hundred years.

The relatively young age (~1300 yrs) of lava collected from mid-way across the
ridge flank between the axial graben and off-axis pillow ridge suggest more recent
volcanic activity in this area. Off-axis eruption of these flank lavas is consistent with their
transitional geochemical compositions and spatial locations with respect to the underlying
melt network. Lavas from the pillow ridge to the west are generally more primitive,
whereas lavas from the axial graben to the east are more evolved. Sampling a continuum
of geochemical compositions from pillow ridge to axial graben is consistent with a
scenario where melts supplied from beneath the western edge of the melt lens are
transported laterally towards the ridge axis over time (e.g., Kent et al., 2000).

There is also seismic evidence that the melt lens is currently shallower (~1.8 km
depth) underneath the western ridge flank (Kent et al., 2000; see Figure 5b of Combier et
al., 2008) than beneath the pillow ridge. Ridge segment scale observations have linked
AMC depth with magma supply (e.g., Macdonald et al., 1988), and there may be a direct
connection between volcanic activity and melt lens depth even at a local scale. Along
these same lines, we note that the shallowest portion of the melt lens is located beneath
the ridge axis, which is clearly the most active part of the OSC. There are also locations

beneath the axial graben where the melt lens is notably shallower than surrounding
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regions, such as at 9°06’N, and the overlying lavas also appear younger than lavas
directly to the north (Nunnery et al., 2009).

Axial basalts are extremely fresh appearing and have model ages 500-1600 yrs,
although they may be younger than this, particularly given their evolved nature and
possibly longer residence times. There is no systematic difference in the ages of axial
basalts collected from ~9°08’N versus those collected from 9°03’N, suggesting neo-
volcanism occurs along much of the axis. However, our sample coverage is not great
enough to discern any differences in eruptive frequency between the northern part of the
axial graben overlying the wide melt lens or the southern propagating tip that deviates
from the trace of the melt lens.

The young appearances and ages of a wide range of lava compositions (basalt to
dacite) erupted within the axial graben suggest a highly heterogeneous melt lens and
mush zone that is effective at keeping melts of distinct composition from mixing. Off-
axis volcanism is primarily limited to basaltic volcanism, suggesting that whatever
processes contribute to the formation of high-silica lavas occur primarily under the ridge
axis. Whereas the pillow ridge basalts represent the most primitive melts found at the east
limb of the 9°03’N OSC and are the most crystal rich lavas, axial basalts are more
evolved but are generally aphyric (Zaino, 2009). Because pillow ridge lavas were likely
sourced from the western, deepest extent of the wide melt lens and were transported via
vertical dikes directly to the seafloor, these lavas probably spent little time in a developed
AMC. Their evolved compositions likely result from rapid crystallization in a cold, mid-
crustal, crystal mush zone. In contrast, axial basalts that reside in a melt-rich AMC

probably reflect efficient melt-crystal segregation (Sinton and Detrick, 1992). Thus,
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pillow ridge basalts are crystal rich as compared to the generally aphyric basalts that pass
through the shallow AMC and erupt within the ridge axis from 9°-10°N EPR.

The two basaltic andesites that do not appear to follow the mixing trend between
axial ferrobasalts and dacites were sampled from south of the wide melt lens at ~9°06’N,
in contrast to the majority of basaltic andesites sampled north of ~9°09°N. This suggests a
direct relationship between the nature of the basaltic magma supply and how intermediate
lavas are generated. There were an abundance of FeTi basalts collected off-axis from
9°05°N-9°06’N, and these lavas are coincident with observed melt runnels that are
sourced from beneath the overlap basin and appear to feed the axis-centered part of the
melt lens (Kent et al., 2000; see Figure 7 of White et al., 2009). Thus, whereas basaltic
andesites from north of 9°06N may be formed by mixing of axial dacite magma with
axial basalt magma, basaltic andesites from south of 9°06’N may be formed by mixing of
axial dacite magma with FeTi basalt magma from these melt runnels. Alternatively,
samples 265-106 and 265-108 may be crystallization products of these FeTi basalt

magmas.

4.7. CONCLUSIONS

Major element, trace element, ¥Sr/**Sr and '*Nd/'**Nd isotope compositions, and
U-series disequilibria place strong constraints on the petrogenesis and eruption times of
basalt, basaltic andesite, andesite, and dacite lavas from along and across the east limb of

the of OSC at 9°03’N EPR. Basaltic lavas range from slightly evolved ferrobasalts to
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FeTi basalts and likely differentiate from a parent magma similar to that inferred from the
more primitive magmas erupted within the AST at 9°17°’N-9°54’N EPR. *’Sr/**Sr and
"“Nd/"**Nd isotopic compositions are indistinguishable from 9°17°-9°54’N EPR lavas and
imply partial melting of a similar mantle source composition. Comparison of east limb
basalt major element data with experiments by Juster et al. (1989) suggests a
crystallization origin for dacitic magmas, and mixing of dacites with ferrobasalt and FeTi
basalts to produce basaltic andesites, andesites, and dacites of intermediate composition.
Trace element data and U-series disequilibria further support this observation of mixing,
and equilibrium (***Ra/*’Th) values in dacites imply crystallization times of ~8 kyrs.
Models for an origin of dacitic magma by partial melting of hydrothermally altered
magma chamber wall rock are inconsistent with ¥’Sr/*Sr and (**U/**U) isotope
compositions and **U-*Th-**Ra systematics in east limb dacite magmas.

*Th-**Ra disequilibria indicate that young volcanic activity (<8 kyrs) appears to
be distributed widely throughout the region. Because of the complex magmatic system at
the 9°03’N OSC and the highly evolved nature of east limb OSC lavas, U-series model
eruption ages for basalt are likely affected by uncertainties in crustal residence times.
However, when taken at face value, “*Th-"*’Ra model ages suggest that lavas from the
flat-topped seamount and pillow ridge at the western edge of the seismically imaged melt
lens (Kent et al., 2000) are surprisingly young (2.1-2.4 kyrs) given their location with
respect to the ridge axis. Lava collected from north of the overlap basin near 9°09’N and
mid-way between the axial graben and pillow ridge also appears relatively young (~1.3

kyrs). However, the axial graben appears to be the primary location for the most recent
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volcanic activity and sources the youngest, and most evolved ferrobasalts, as well as

basaltic andesites, andesites, and dacites.
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Table 3. Trace element abundances of 9°03’N EPR Overlapping Spreading Center East

Limb Lavas.
265- 265- 266- 267- 265- 265- 265- 265- 264- 264-
Sample 74 76 18 09 31 32 33 18 13 17

Li 8.4 8.2 8.7 8.2 7.9 7.8 8.2 7.5 154 10.9
Sc 40.7 41.8 414 425 41.8 42.6 423 429 34.5 38.0
\Y 339 339 354 354 342 351 341 338 265 297
Cr 714 82.1 71.6 87.2 112 114 124 166 86.5 117
Co 40.0 41.1 41.8 41.0 41.1 42.1 42.8 41.8 332 372
Ni 457 497 450 46.1 539 57.7 62.0 52.7 404 50.2
Cu 57.2 60.8 62.2 60.3 59.2 64.5 58.3 63.6 464 549
Zn 90.7 90.9 97.2 95.8 93.6 95.6 93.8 94.7 96.9 94.9
Ga 16.3 16.3 17.0 18.6 18.2 16.7 16.5 18.1 18.6 17.3
Cs 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.04 0.03
Rb 1.32 1.20 141 1.50 1.25 1.27 1.26 1.00 3.76 2.34
Ba 10.8 10.0 11.3 11.1 8.7 93 10.9 6.9 234 159
Th 0.21 0.20 0.23 0.23 0.20 0.21 0.21 0.16 0.65 0.40
U 0.09 0.08 0.10 0.09 0.08 0.08 0.09 0.07 0.26 0.16
Nb 348 327 3.89 3.65 3.21 3.32 3.35 2.76 641 481
Ta 0.23 022 0.26 0.25 022 022 022 0.19 043 0.32
La 4 .47 4.20 5.01 479 471 4.46 4.56 4.27 9.75 6.95
Ce 13.8 13.1 15.5 150 14.6 14.0 14.2 134 29.0 21.0
Pb 0.61 0.57 0.63 0.59 042 0.64 0.68 0.38 1.36 0.92
Pr 2.35 2.24 2.62 2.56 240 2.38 243 2.21 4.57 3.39
Nd 12.5 12.0 14.0 13.5 12.7 12.7 12.9 11.9 22.5 17.3
Sr 120 121 121 113 118 118 118 126 112 115
Sm 4.37 4.17 4.88 4.69 4.44 447 451 4.15 7.36 5.77
Hf 347 3.33 3.88 3.58 3.52 3.51 3.62 3.23 7.72 5.32
Zr 128 121 144 140 131 130 131 122 288 201
Eu 1.51 148 1.66 1.58 148 1.52 1.55 1.40 2.02 1.73
Gd 5.69 5.54 6.33 6.10 5.83 5.81 5.92 5.46 9.05 7.23
Tb 1.08 1.04 1.19 1.14 1.09 1.10 1.11 1.02 1.72 1.38
Dy 7.06 6.86 7.83 7.36 7.24 7.25 7.30 6.74 11.5 9.09
Ho 1.51 1.46 1.68 1.56 1.54 1.55 1.56 144 2.49 1.95
Y 440 429 48.6 43.6 44 4 45.6 459 419 754 58.8
Er 432 421 4.82 4 .47 445 452 4.50 4.15 7.33 5.73
Tm 0.66 0.65 0.74 0.68 0.68 0.69 0.69 0.63 1.16 0.90
Yb 428 4.16 475 435 445 4.39 441 4.16 7.50 5.77
Lu 0.65 0.63 0.73 0.66 0.68 0.67 0.68 0.64 1.15 0.88
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Table 3 (cont’d).

Sample 264-20 265-49 265-106 265-108 264-14 265-66 265-64 265-83 265-85

Li 15.8 11.9 15.6 15.7 264 369 33.6 324 314
Sc 324 369 339 335 23.6 26.2 19.9 110 145
v 250 287 240 235 160 184 140 32 73

Cr 732 107 40.6 38.7 40.7 153 12.3 34 4.6
Co 323 359 324 32.1 212 23.1 17.3 8.3 12.3
Ni 423 46.6 29.8 30.5 21.7 14.7 9.8 4.7 6.6
Cu 524 51.6 429 450 294 244 19.1 14.0 18.8
Zn 98.7 933 113 114 114 143 124 103 108
Ga 18.5 17.2 19.7 19.3 26.2 421 354 292 28.1
Cs 0.05 0.03 0.04 0.04 0.10 0.12 0.12 0.17 0.15
Rb 3.70 245 3.18 3.19 7.79 11.6 10.5 155 13.8
Ba 23.6 16.6 2277 230 435 62.6 57.1 76.4 68.1
Th 0.64 041 0.59 0.59 1.28 2.00 1.82 2.80 2.43
U 0.25 0.17 0.24 0.25 0.51 0.71 0.65 1.05 0.92
Nb 6.46 491 8.18 8.31 114 16.8 14.8 15.6 153
Ta 0.44 0.33 0.53 0.54 0.80 1.23 1.10 1.08 1.05

La 9.79 7.04 109 112 194 289 26.3 30.7 29.1
Ce 29.1 213 339 34.6 570 84.2 76.5 87.2 82.5
Pb 1.40 0.99 1.20 1.28 2.67 6.24 5.05 3.80 3.59

Pr 4.61 343 5.54 5.66 8.47 12.5 114 12.3 11.8
Nd 22.6 17.5 283 289 39.1 58.3 52.8 540 52.1
Sr 107 113 116 116 975 114 89.7 76.2 80.6
Sm 7.36 5.84 9.46 9.66 124 17.1 154 16.5 16.0
Hf 7.70 546 8.77 8.94 14.8 23.1 209 24.8 230
Zr 283 205 339 341 542 945 842 922 872
Eu 2.01 1.75 2.60 2.67 2.75 3.78 3.35 3.05 301
Gd 9.14 7.36 11.6 12.1 14.8 204 18.1 18.9 18.5
Tb 1.76 1.40 2.19 2.27 2.86 3.83 343 3.64 3.55
Dy 11.7 9.30 14.4 15.0 19.3 253 22.8 24.5 23.8
Ho 2.52 2.00 3.10 3.18 4.14 5.42 4.88 5.27 5.12

Y 750 59.7 93.8 95.0 124 164 148 159 154
Er 7.44 5.87 8.99 9.23 124 164 14.7 16.2 155
Tm 1.17 091 1.40 1.43 1.98 2.58 2.33 2.62 2.49
Yb 7.62 5.84 9.06 9.25 13.1 16.8 15.2 17.5 16.7
Lu 1.16 0.90 1.40 1.42 2.04 2.55 2.31 2.72 2.58

Samples were analyzed for trace elements at the University of Florida using an Element II
Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The analyses were performed in
medium resolution with Re and Rh used as internal standards. Concentrations were calculated by
external calibration using a combination of USGS rock standards. Repeated chemical analyses of
in-house MORB standard ALV2392-9 during each run were used to evaluate and correct for
instrument drift as well as evaluate accuracy and precision of the measurements. Precision (20)
was found to be better than = 5% for the REE, Ba, Hf, Nb, Rb, Sr, Th, Y, Zr, and better than =
9% for Pb, Ta, and U.
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Table 6. 9°03’N Overlapping Spreading Center East Limb Basalt **Th-***Ra model

ages’.

Minimum Model Maximum
Sample Age (yrs) Model Age (yrs) Basalt Trend Line Age (yrs)
Axial Basalts
265-74 0 1744 1029 + 148
265-76 (avg.) 0 1267 461 £ 134
266-18 0 1638 959 + 151
267-09 695 2255 1604 = 170
Flank Basalts
265-32 92 2157 1348 + 184
Pillow Ridge Basalts
265-06 1516 2987 2366 + 247
265-18 1164 2765 2101 £ 235
265-20 1123 2783 2099 + 158

“Trend line model ages were calculated using the zero-age trend including samples from
the 1991-92 and 2005-06 eruptions ~9°50°’N EPR as reported in Sims et al. (2002) and
Waters et al. (in prep.) assuming vertical decay from an initial zero-age trend line
(***Ra/*’Th) at the sample (**Th/>**U). Errors incorporate only analytical uncertainties in
the (**Ra/*Th) of the sample. Th-Ra minimum and maximum model ages were
determined by calculating the mean offset from the zero-age trend line for the critical
value of the Student’s T-distribution at the 95% confidence level. We assume that trend
lines representing maximum and minimum initial (***Ra/*Th) for this zero-age
population (at the 95% confidence interval) can be represented by lines offset from the
best-fit zero-age trend line by this critical value. Negative minimum ages are reported as
Zero years.
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Table 7. U, Th, and Ra mineral/melt partition coefficients used for equilibrium melting
calculations. Partition coefficients were compiled from Berlo et al. (2004), Blundy and Wood
(2003), Klemme et al. (2006), and Miller et al. (2007). Most phases have Dy, >1 and Dg,,<<1,
which will increase U/Th and Ra/Th in the melt during melting or crystallization.

Element Olivine Opx Cpx Plagioclase Ilmenite Amphibole
Ra 1E-7 1E-7 9E-7 0.040 1E-07 0.028
Th 0.00001 0.0015  0.045 0.0003 0.0027 0.022

U 0.00006 0.0007  0.008 0.00006 0.01 0.007
D1,/Dy 0.2 2.1 5.6 5.0 0.3 3.1
Dg,/Dry 0.01 0.00007 0.00002 130 0.00004 13
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Figure 1. (A) EM300 bathymetric map (White et al., 2006) of study area showing locations and
types of samples analyzed in this study. The off-axis volcanic pillow ridge that overlies the
western extent of the axial magma chamber (AMC; shown as gray overlay; Kent et al., 2000) is
encircled by a dashed line, as is the flat topped volcano from the center of which sample 265-06
was collected. (B) DSL-120A side-scan sonar map of study area (White et al., 2009). Basaltic
samples are shown as red circles, FeTi basalts by orange circles, basaltic andesites by blue
circles, andesites by green circles, and dacites by yellow circles.
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A) 265-64: Axial Dacite E) 265-49:

B
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F) 265-12: Off-axis Basalt from Away
from Pillow Ridge

B) 265-33: Flank Basalt

C) 265-06: Flat-topped Volcano Basalt

G) 265-13: Off-axis Pillow Ridge
Basalt

D) 265-74: Axial Basalt

Figure 2. Jason II Virtual Van dive
photos for select rock samples
(http://4dgeo.whoi.edu/webdata/virtualv
an/html/VV-at15-17/index.html).
Samples span a range of compositions
and locations about the eastern limb of
the OSC at 9°03’N EPR. In general, off-
axis basalts (B, C F, G) appear much
older than samples collected from within
the axial summit graben.
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Figure 3. Molar Mg# (Mg/(Fe+Mg) x 100) vs. wt% (A) SiO,, (B) CaO, (C) K,0, (D)
ALO;, (E) FeO, and (F) TiO,, showing east limb axial basalts (light red squares), flank
basalts (medium red squares), pillow ridge basalts (dark red squares), basaltic andesites
(blue diamonds), and andesites-dacites (yellow diamonds) collected at the OSC at 9°03°’N
EPR. Additional east limb lava major element data from Wanless et al. (in prep.) are
plotted for comparison (light blue circles). Also plotted are basalts collected from within
the axial summit trough from 9°17°N-9°54’N EPR (white squares; Sims et al., 2002;
Waters et al., in prep), and basalts collected from up to 5 km off-axis on the ridge flanks
at 9°50’N EPR (gray squares; Sims et al., 2003; Waters et al., in prep). Ferrobasalts from
9°03°’N EPR appear to be related to basalts from 9°17°N-9°54’N EPR by fractional
crystallization of a similar parent magma; liquid lines of descent (LLD) calculated with
the model of Weaver and Langmuir (1990) at 0.5 kbar using the parental melt
composition of primitive basalt 2752-6 (Sims et al., 2002) are shown by purple curves.
Because this model does not account for oxide crystallization such that there is no
decrease in FeO or TiO,, we have plotted dry LLDs (blue lines) determined by MELTS at
0.5 kbar using 2752-6 as the parent melt, as well as the experiments of Juster et al. (1989)
(JGP) using the 85°W Galapagos Spreading Center FeTi basalt POO.82N2 as a starting
composition (orange circle). Black lines are drawn in to highlight the trends of these
experimental data. Dacites from 9°03’N EPR appear to represent end member
compositions of extensive crystallization (as shown by the experiments of Juster et al.
(1989), but not seen by either Weaver and Langmuir or MELTS models), and mixing
between axial ferrobasalt (266-18) and dacite (265-85) compositions appears to explain
much of the range of basalt, basaltic andesite, and andesite-dacite compositions (black
curve; plusses mark 5% increments of mixing). Note that two basaltic andesites do not
appear to be related to other lavas by mixing, but can instead be explained by larger
extents of crystallization, perhaps at different fO,. Similar mixing relationships exist
among trace elements and U-series isotopic data (see Figures 4, 5, 9). Basaltic lavas from
9°03’N EPR have lower Mg# than basalts from 9°17°-9°54’N EPR, as they are more Fe-
rich and Mg-poor. When considered in light of their spatial distribution, some notable
systematics emerge among basaltic lavas: flank basalts from mid-way across the wide
melt lens appear compositionally transitional to lavas collected within the axial graben
and pillow ridge basalts. In addition, with the exception of sample 265-12, which was
sampled just off of the large pillow mound, lavas sampled from the pillow mound and
nearby flat-topped volcano are very similar to each other. We note that 265-12 is
generally more enriched than all other pillow ridge basalts with regard to incompatible
trace elements. See text for details.
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Figure 4. (A) Spidergram of primitive mantle (McDonough and Sun, 1995) normalized
trace element abundances for all samples in this study in order of increasing compatibility
from left to right (after Hofmann, 1988). Compatible elements (Li, Ga, V, Sc, Cu, Zn, Co,
Cr, and Ni) were arranged so as to eliminate any anomalies. (B) Spidergram of primitive
mantle normalized trace element abundances for all basalts in this study. Shown for
comparison are data from basalts collected from within the axial summit trough from
9°17°N-9°54’N EPR (Sims et al., 2002).
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Figure 5. Plots of Y vs. Zr and Dy/Yb vs. Ce/Sm for east limb 9°03’N OSC samples as
compared to axial (white squares) and off-axis (gray squares) basalts from ~9°50’N EPR
(Sims et al., 2002; 2003; Waters et al., in prep.). Axial basalts are plotted as light red
squares, flank basalts as medium red squares, pillow ridge basalts as dark red squares,
basaltic andesites as blue diamonds, and andesites-dacites as yellow diamonds. Black
lines indicate mixing trajectories between axial basalt 266-18 and dacite 265-85, with
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Figure 6. Plot of ¥’Sr/**Sr vs. '"*Nd/"**Nd, showing basalts as red squares, basaltic
andesites as blue diamonds, and andesite-dacites as yellow diamonds. Shown for
comparison are axial (white squares) and off-axis (gray squares) basalts from 9°17°N to
9°54’N EPR (Sims et al., 2002; 2003).

Figure 7 (facing page). (A) Equiline diagram showing variation of (**U/***Th) with
(*°Th/**Th) for east limb lavas. Lavas overlap with data for N-MORB from 9°17°-
9°54’N EPR. (B) Expanded view of (A) which shows that 9°03’N east limb lavas define a
nearly horizontal array (note: the four basaltic samples that may have been contaminated
with **Th-enriched Mn oxide crusts or otherwise altered have not been plotted; see Table
5 for data). Axial basalts from 9°17°-9°54’N EPR including samples from the 1991-1992
and 2005-2006 eruption sequences are plotted as white squares (Sims et al., 2002), off-
axis samples from 9°30°-9°54°N are plotted as gray squares (Sims et al., 2003; Waters et
al., in review; in prep), and samples from the Siqueiros Fracture Zone are plotted as white
circles (Lundstrom et al., 1999). A mixing trajectory between axial basalt sample 266-18
and dacite sample 265-85 is shown as a black line with plusses indicating 5% increments
of mixing.
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Figure 8. (**Ra/*Th) vs. (**Th/***U) for East Limb samples as compared to axial and
off-axis samples collected further north from 9°17°-9°54’N EPR and samples collected
from the Siqueiros Fracture Zone. Symbols and data sources are the same as in Figure 7.
Note that samples from the 2005-2006 eruption sequence at ~9°50’N EPR have been
marked as purple squares (data from Waters et al., in prep.). Equilines are denoted by
dashed lines at (**Ra/**Th)=(*"Th/**U)=1. The solid black line shows the zero-age trend
line including 2005-06 (Waters et al., in prep) and 1991-92 samples (Sims et al., 2002;
2003), and the solid blue line shows the zero-age trend line of mixed lavas from this
study. The thin black line with plusses shows mixing in 5% increments between dacite
sample 265-85 and the young axial basalt, sample 266-18.
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Figure 9. Plot of molar Mg# (Mg’ /(Mg + Fe’)) vs. (A) (**Th/**U) and (B) (***Ra/*’Th).
Symbols are as in Figures 7 and 8. A mixing curve between dacite 265-85 and young
axial basalt 266-18 is shown as a black line with 5% mixing increments shown as plusses.
Note that axial basalts from 9°03’N plot at lower Mg# for a given ***Ra excess as
compared to what is expected from the zero-age correlation observed at 9°17°N-9°54’N
EPR. It is coincidental that flank and pillow ridge basalts intersect the zero-age
correlation—they are clearly older in dive photos and have diminished **°Ra excesses
(see Figures 2 and 8).
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Figure 10. Plot of (**U/**U) vs. *’Sr/*Sr, showing the effect of seawater-rock and
hydrothermal fluid interaction (black line) in comparison to east limb lava compositions.
Plusses along seawater-rock and hydrothermal fluid curves mark water:rock ratios (W/R).
Interaction of even small amounts of seawater with wall rock (e.g., W/R ~0.5) is
sufficient to change the *’Sr/**Sr composition of the lavas from 0.70248 to 0.70265,
which is more similar to 9°-10°N EPR E-MORB compositions (Waters et al., in review)
than typical N-MORB (e.g., Sims et al., 2002; 2003). A similar calculation shows
hydrothermal fluid-rock interaction is less sensitive, but should still result in significant
changes in *’Sr/*Sr at low W/R (<2). Although (**U/**U) is less sensitive to water/rock
interaction than *’Sr/*Sr, even a W/R as low as ~2 is sufficient to change the (**U/**U)
from ~1 + 0.05% to >1.01. We assume [Sr].,,...= 7-45 ppm and *’Sr/*Sr.,... = 0.70916,
and [U],,ue = 3.1 ppb and (P*U/7*U),,.uee = 1.14 for East Pacific Rise seawater (Ku et
al., 1976, Ravizza et al., 2001). [Sr], ., [U]oers * SI/*Sr1, 4, and (P*U/7*U),,, are assumed
to be 120 ppm, 0.70248, 80 ppb, and 1.00, respectively. For hydrothermal fluids, we use
values of *’Sr/**Sr=0.70381, [Sr]=13 ppm, (**U/**U)=1.14, and [U]=0.3 ppb (Ravizza et
al., 2001). Neither basaltic lava nor high silica lava shows any sign of incorporation of
hydrothermally altered material.
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Figure 11. Plot of (*"Th/**U) vs. (***Ra/*Th) illustrating the effect of modal equilibrium
partial melting of different mineral phases (plagioclase=blue, clinopyroxene
(Cpx)=black, ilmenite=green, amphibole=red, orthopyroxene (Opx)=purple) expected in
gabbro or dikes. Also shown as is the mixing line between ferrobasalt 266-18 and dacite
265-85 (solid black line; see Figure 8). Although ilmenite can produce *Th excesses, it
occurs in minor amounts and cannot control the direction of fractionation of Th from U in
a bulk rock. Plagioclase fractionates Ra from Th with little change in Th/U.
Clinopyroxene and amphibole result in lower (**Th/**U) with small changes in
(**Ra/*Th). Melting of orthopyroxene (and olivine) have little effect on Ra/Th or U/Th.
Thus, partial melting of a hydrothermally altered wall rock (dotted black line) with 5%
amphibole, 20% clinopyroxene, 49% plagioclase and 1% ilmenite (Haase et al., 2005;
Wanless et al., in review) will result in a net decrease in (***Ra/*°Th) and (**Th/**U),
which is inconsistent with measured U-series systematics. Symbols along melting
trajectories indicate 5% increments. Data symbols are the same as in Figure 8. The
horizontal and vertical dashed lines show equilibrium (***Ra/**Th) and (**Th/**U),
respectively. Mineral/melt partition coefficients are given in Table 7. The source
composition was assumed to have [***Ra]=33.3 fg/g, [Th]=0.226 ppm, [U]=0.084 ppm,
(*°Th/**Th)=1.325, (**Th/**U)=1.175, and (**Ra/***Th)=1.00, a composition similar to
an enriched N-MORB from 9°50’N EPR decayed to equilibrium (***Ra/**Th) over 8 kyrs
(cf., Waters et al., in prep.).
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Figure 12. Primitive mantle-normalized trace element spidergram, showing average
9°17°-9°54’N EPR N-MORB (solid black line), a typical 9°03’N OSC east limb
ferrobasalt (solid green line), and andesites and dacites from this study (gray lines). Also
shown is an 85% fractionally crystallized average 9°17°9°54’N EPR MORB. Mineral
modes and partition coefficients for the fractional crystallization model were taken from
Wanless et al. (in review), assuming a “non-amphibole bearing gabbro” composition
(19% olivine: 30% clinopyroxene: 50% plagioclase: 1% ilmenite) and “andesite partition
coefficients.”
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