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Abstract

Background: Bisphenol A (BPA), used in the manufacture of plastics, is ubiquitously distributed in the aquatic environment.
However, the effect of maternal transfer of these xenobiotics on embryonic development and growth is poorly understood
in fish. We tested the hypothesis that BPA in eggs, mimicking maternal transfer, impact development, growth and stress
performance in juveniles of rainbow trout (Oncorhynchus mykiss).

Methodology/Principal Findings: Trout oocytes were exposed to 0, 30 and 100 mg.mL21 BPA for 3 h in ovarian fluid,
followed by fertilization. The embryos were maintained in clean water and sampled temporally over 156-days post-
fertilization (dpf), and juveniles were sampled at 400-dpf. The egg BPA levels declined steadily after exposure and were
undetectable after 21- dpf. Oocyte exposure to BPA led to a delay in hatching and yolk absorption and a consistently lower
body mass over 152-dpf. The growth impairment, especially in the high BPA group, correlated with higher growth hormone
(GH) content and lower GH receptors gene expression. Also, mRNA abundances of insulin-like growth factors (IGF-1 and IGF-
2) and their receptors were suppressed in the BPA treated groups. The juvenile fish grown from the BPA-enriched eggs had
lower body mass and showed perturbations in plasma cortisol and glucose response to an acute stressor.

Conclusion: BPA accumulation in eggs, prior to fertilization, leads to hatching delays, growth suppression and altered stress
response in juvenile trout. The somatotropic axis appears to be a key target for BPA impact during early embryogenesis,
leading to long term growth and stress performance defects in fish.
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Introduction

Bisphenol A is a common plasticizer used in the production of

polycarbonate and epoxy resins and is widely distributed in the

aquatic environment [1]. This chemical is toxic to fish at

environmentally relevant levels, and chronic exposures leads to

embryonic deformities and abnormal development in early life

stages [2,3], as well as growth retardation and reproductive

impairment in adults [4,5]. As with mammals, this chemical

mimics the action of female sex steroid hormone 17b-estradiol (E2)

in fish, including the synthesis of egg yolk protein vitellogenin [6].

Indeed the majority of studies on BPA exposure in fish have

focused on its role as a xenoestrogen [6], whereas the action of this

chemical on other endocrine systems has received scant attention

[7]. In mammals, BPA disrupts the GH/IGF (somatotropic) axis

and the action of thyroid hormones leading to abnormalities in

growth and development [8]. Majority of those studies utilized in

vitro cell systems to understand the mechanism of action of BPA in

impacting the functioning of the somatotropic axis, while

demonstration of its disruption by BPA in whole animal models

are lacking.

In fish, as in mammals, the endocrine regulation of growth and

development is under the control of the somatotropic axis,

including GH, IGF-1 and IGF-2, their receptors and plasma

binding proteins [9]. While recent studies suggest that xenobiotics

may target this key axis regulating growth in fish especially during

the early life stages [7], a role for BPA in this developmental and

growth abnormalities are unclear. This is a cause for concern

given the recent findings that BPA accumulates in lipid depots,

which could potentially lead to maternal transfer of this chemical.

Indeed large scale accumulation of xenobiotics occurs in eggs via

maternal transfer in feral population from polluted waters

[10,11,12], while the longer-term implications of this on

development and growth in fish are currently unknown.

We tested the hypothesis that maternal transfer of BPA into

eggs, prior to fertilization, leads to developmental defects and long-

term impact on growth and performance in fish. To test this, we

exposed rainbow trout (Oncorhynchus mykiss) oocytes to different
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concentrations of BPA for 3 h just prior to fertilization, mimicking

accumulation by maternal transfer, and monitored development,

growth and stress performance over a 1 year period. Temporal

changes in GH levels and mRNA abundances of GH, IGF as well

as their receptors were determined to assess whether the

somatotropic axis was a possible target for BPA impact. The

longer-term impact on fish performance was assessed by subjecting

the juveniles to a standardized stressor challenge and measuring

plasma cortisol and glucose responses [13]. Plasma cortisol and

glucose elevations in response to an acute stressor exposure are an

evolutionarily conserved adaptive response to regain homeostasis

in vertebrates, and a well-established marker of stress performance

in animals [14,15].

Results

Bisphenol A (BPA) concentrations and VTG expression
BPA was undetectable in the control eggs and embryos. BPA

concentrations after 3 h exposure were 3269 and 417678 ng.oo-

cyte21, which was 1.2% and 4.5% of the toxicant in the ovarian

fluid in the low and high BPA treatment groups, respectively

(Fig. 1A). The BPA content in the embryos dropped by at least

90% in the low (2.460.7 ng.embryo21) and high (4465 ng.em-

bryo21) groups at 13-dpf (Fig. 1A). By day 21, the BPA levels were

below the level of detection in the low group, whereas it had

dropped further to 2.660.1 ng.embryo21 in the high group

(Fig. 1A). BPA levels were below detection in both groups at 35-

dpf and onwards.

As BPA is estrogenic in fish, VTG gene expression was used to

confirm BPA exposure. There was a significant elevation in VTG

mRNA abundance in the embryos reared from the BPA exposed

oocytes compared to control at 13-dpf (when BPA was present in

the embryos) and 140-dpf (when BPA was undetectable; Fig. 1B).

No significant differences in VTG mRNA levels were observed

between low and high BPA groups either at 13-dpf or 140-dpf

(Fig. 1B). Liver VTG protein expression was also significantly

higher in fish (140 dpf) reared from BPA exposed oocytes

compared to the control group (Fig. 1C). No significant difference

in VTG protein expression was observed between low and high

BPA groups (Fig. 1C). Gonadal histology at 150-dpf showed no

significant sex differences in the BPA groups compared to the

control (data not shown).

Phenotypic changes, survival and growth
BPA exposure did not affect fertilization rate of the eggs.

However, embryonic development was delayed in the high BPA

group compared to the control and low BPA exposed groups. In

the BPA exposed group, there was a delay in hatching, yolk

reabsorption and first feeding by about 7 days compared to other

two groups. This was more pronounced in the high BPA group

compared to the low BPA group (Fig. 2). There was no mortality

observed in any of the treatments up until hatching. Between

hatching and first feeding, 10% and 30% mortality rates were

observed in the low and high BPA groups, respectively (Fig. 3A).

There after, no mortalities were observed in any of the treatments.

The body mass was significantly lower in the high dose group at all

the time points compared to the control group (Fig. 3B). At the

end of the experiment (400-dpf), the mean body masses of both

high and low BPA treatment groups were significantly lower than

that of the control group (Fig. 3C).

Growth hormone (GH)
Whole embryo GH levels showed no significant differences

between different treatments at time 0, 13- and 21-dpf (Fig. 4A). At

44-dpf, there was a significant difference in embryo GH levels

between the control and the BPA treatment groups, with

significantly elevated GH levels in the treated groups compared

Figure 1. Bisphenol A (BPA) content and vitellogenin (VTG)
expression in trout embryos. Temporal changes in BPA concentra-
tions (A) and VTG mRNA abundance (B) and protein expression (C) in
rainbow trout embryos after 3 h acute exposure of oocytes to low
(30 mg. ml21) and high (100 mg.ml21) dose of BPA. BPA was dissolved in
ethanol and added to the ovarian fluid and after 3 h exposure oocytes
were fertilized with untreated sperm, water hardened and maintained
at 8.5uC. BPA was quantified in embryos collected soon after exposure
(3 h) and at 13-, 21- and 35-dpf using LC-MS/MS method. The minimum
detection limit of BPA was 75–80 ng.g21 wet weight of tissue (n = 3;
each replicate is a pool of 6 embryos). nd denotes non-detectable levels
of BPA. VTG mRNA levels in embryos at 13- and 140-dpf (B) were
determined by quantitative real-time PCR (qPCR). Liver VTG protein
expression (C) was determined in the juveniles at 140-dpf by Western
blotting. VTG protein content was detected using anti-trout VTG
antibody raised in rabbit. VTG protein was non-detectable (nd) in the
control group; values represent mean + SEM (n = 6–8 fish); bars with
different letters are statistically significant (ANOVA, p,0.05).
doi:10.1371/journal.pone.0010741.g001

Effect of Bisphenol A in Trout
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to the controls; there was no significant difference in the levels

observed between the two BPA treatment groups (Fig. 4A). At 65-

dpf, there was a significant dose-dependent increase in embryo

GH content, whereas in the 89-dpf juveniles, the values for the

animals in the higher BPA treatment group had significantly

higher GH levels compared to those of the lower BPA treatment

group and the controls (Fig. 4A). This difference was also

maintained at 400-dpf, where plasma GH levels in the high

BPA group were significantly elevated compared to the low BPA

and control groups (Fig. 4B).

GH-1 and GH-2 mRNA abundances also showed a temporal

increase during development (Figs. 4C and 4D). No effect of BPA on

GH transcript levels was observed at any of the time points; however,

GH-receptor transcripts were impacted by the high BPA treatment

(Fig. 5A and 5B). Both GH-1 (Fig. 5A) and GH-2 receptor (Fig. 5B)

levels were lower in the higher BPA treatment group at 44-, 65- and

89-dpf compared to control and low BPA group.

Insulin-like growth factors (IGFs)
There was a time-dependent increase in the transcript levels of

both IGF-1 and IGF-2 mRNA throughout development (Fig. 6A and

B). In the higher BPA treatment group IGF-1 mRNA levels were

lower than controls at all time points except at 13-dpf, whereas in the

lower BPA treatment group significantly lower IGF-1 mRNA levels

relative to the controls, were only apparent at 89-dpf (Fig. 6A).

IGF-2 mRNA levels were significantly higher than IGF-1 levels

at all developmental stages (Fig. 6B). IGF-2 transcript levels were

significantly higher in the 13-dpf embryos compared to time 0

zygotes. Between 13- and 21-dpf, there was a significant decrease

in IGF-2 mRNA levels; thereafter, IGF-2 mRNA levels increased

over time up to 65-dpf, before decreasing significantly at 89-dpf

(Fig. 6B). IGF-2 mRNA levels were significantly lower in embryos

Figure 2. Impact of bisphenol A (BPA) on embryo development.
Phenotypic changes post-hatch in trout embryos (65 dpf) treated with
BPA. Rainbow trout oocytes were acutely exposed to either low
(30 mg. ml21) or high (100 mg.ml21) BPA for 3 h, fertilized with untreated
sperm, water hardened and maintained at 8.5uC. Image clearly shows
morphological differences, including smaller size and the presence of
yolk (arrow shown) in the BPA groups compared to the control.
doi:10.1371/journal.pone.0010741.g002

Figure 3. Impact of bisphenol A (BPA) on survival and growth.
(A) Percent survival of trout embryos was calculated at the end of the
experimental period (400-dpf). (B) Temporal changes in average body
mass (g), measured every two weeks after the time of first feed (65 dpf),
in the control and BPA exposed groups during development, and (C) in
juveniles at 400 dpf. Oocytes were exposed to either control (vehicle
alone) or BPA at 30 mg.ml21 (low) or 100 mg.ml21 (high) for 3 h and
fertilized with untreated sperm. Fertilized eggs were incubated at 8.5uC
and were sampled at various time points during development; values
represent mean + SEM (n = 6); bars with different letters are statistically
significant (two-way ANOVA for temporal changes and one-way ANOVA
for single time point; p,0.05).
doi:10.1371/journal.pone.0010741.g003
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reared from oocytes treated with the higher BPA treatment

relative to the controls at all time points examined except at 89-dpf

where no significant difference was observed among the three

treatments. Overall, IGF-2 transcript levels were lower in the BPA

groups at 13-, 44- and 65-dpf, with dose dependent effects evident

at 13- and 44-dpf (Fig. 6B).

IGF-1Ra and IGF-1Rb mRNA levels showed a gradual

increase during early development, reaching maximum levels at

65- and 89-dpf (Figs. 6C and 6D). BPA exposure significantly

impacted IGF-1Ra transcript levels with significant down-

regulation observed in embryos reared from oocytes exposed to

the higher BPA treatment for all the time points except 13-dpf

(Fig. 6C). A dose-dependent effect of BPA was observed at 44- and

89-dpf, with the lower BPA treatment significantly down-

regulating IGF-1Ra mRNA levels compared to the control group

(Fig. 6C). Similarly, IGF-1Rb mRNA levels were also affected in

the BPA treatment groups at 21-, 44- and 89-dpf, with dose-

dependent effects at 21- and 44-dpf; no effect of BPA treatment

was observed at 13- and 89-dpf (Fig. 6D).

Stress Performance
Juvenile trout raised from oocytes exposed to high BPA had

significantly higher basal plasma cortisol level compared to control

group (Fig. 7A). No difference in basal cortisol levels was observed

between control and low BPA groups. In the control group, as

expected acute stressor significantly increased plasma cortisol

levels at 1 h and the levels dropped significantly to pre-stress levels

by 4 h and this was maintained over a 24 h period post-stressor

exposure. In contrast to the control group, plasma cortisol

response to stressor exposure was muted in the low BPA group

and the levels were significantly lower than the control at 1 h post-

stressor exposure but not at other time points (Fig. 7A). In the high

BPA group, acute stressor significantly elevated plasma cortisol

levels compared to the pre-stress levels as well as above those of the

control and low BPA groups at 1, 4 and 24 h post-stressor

exposure (Fig. 7A). Handling stressor significantly elevated plasma

glucose levels at 4 h post-stressor compared to all the other time

points in the control group. However, this stressor-induced plasma

glucose elevation was not observed in fish reared from BPA

exposed eggs (Fig. 7B).

Discussion

Acute exposure of oocytes to BPA, mimicking accumulation of

contaminants by maternal transfer, delayed development and

reduced growth in rainbow trout. While no study has actually

measured BPA levels in fish eggs, the dosage of this chemical in the

Figure 4. Impact of bisphenol A (BPA) on growth hormone (GH) content and gene expressions. Temporal changes in GH content in the
control and BPA treated groups during early development (A) and plasma GH levels at 400-dpf (B); Temporal changes in GH1 (C) and GH2 (D) mRNA
abundances in trout exposed to control and two different concentrations of BPA. Maternal transcript levels were measured in freshly fertilized eggs
and represented as 0-dpf (dark colored bar). GH was determined using trout specific anti-GH antibody as described in the materials and methods.
Two-way ANOVA was used to determine the effect of time, treatment and interaction effects on GH levels and transcript levels during development
(Bonferonni posthoc test; p,0.05). Different letters represent differences between treatments at each time point. Asterisk (*) represent effect of time
on GH content. One way ANOVA was used to determine the effect of BPA on plasma GH levels. All values represent mean + SEM (n = 7).
doi:10.1371/journal.pone.0010741.g004
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present study (especially the low exposure group) reached levels

similar to those reported recently for maternally transferred

xenobiotics in feral fish eggs [12]. Although BPA was cleared from

the embryos within 31 dpf, the growth suppression persisted even in

juvenile fish, implicating long-term changes associated with chemical

exposure at a critical period during early embryogenesis. This was

accompanied by suppression of genes encoding for GH, IGFs and

their receptors, underscoring the somatotropic axis as a key target

for BPA-mediated developmental and growth disruptions.

The functional importance of the somatotropic axis during

vertebrate development has been well demonstrated using gene

knockouts and morpholino oligonucleotides (MO) in mice and

zebrafish, respectively [16,17,18,19]. The GH and IGFs transcript

profiles associated with development growth trajectories in the

present study are consistent with those seen in salmonids [20,21].

However, to our knowledge, this is the first comprehensive study

reporting the developmental expression of GH, IGFs and their

receptors in a single study. The higher mRNA abundances of IGF-

2 compared to IGF-1 prior to hatch supports a key role for this

hormone in early embryogenesis, including embryonic cell cycle

progression and differentiation [9,20,21]. In contrast, IGF-1

appears to play a major role in somatic growth in the post-

hatched embryos [9] and this is in agreement with our observation

of progressive increase in IGF-1 transcripts over time reaching

maximum levels in hatched embryos (Fig. 5). The concurrent

elevation in IGF-1R (both a and b isoforms) transcripts over time

during development supports the concept that IGF signaling

pathways play a key role during development [17,18]. This may

Figure 5. Impact of bisphenol A (BPA) on growth hormone (GH) receptors gene expressions. Temporal changes in GH-1 receptor (GH-1R;
A) and -2 receptor (GH-2R; B) mRNA abundances during rainbow trout development. See Fig. 2 legend for experimental details. Maternal transcript
levels were measured in freshly fertilized eggs and represented as 0 dpf (dark colored bar). Two-way ANOVA was used to determine the effect of
time, treatment and interaction effects on the transcript levels during development (Bonferonni posthoc test; p,0.05). Different letters represent
differences between treatments at each time point. Asterisk (*) represent effect of time on the transcript levels. All values represent mean + SEM
(n = 7 fish).
doi:10.1371/journal.pone.0010741.g005
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involve IGF-1 regulation of metabolic processes during early

embryonic development as well as somatic growth in late stage

embryos [9].

While IGF-1 expression is shown to be primarily regulated by

GH in post-hatch embryonic stages [22], the role of GH in early

stage embryos is still unclear. Several studies have hypothesized

that GH acts as a mitogenic factor in early embryos [20,23,24,25];

however, GH-MO did not impact early embryogenesis in

zebrafish [19]. Consistent with this notion, although GH and

GH-R transcripts were seen at all embryonic stages in the present

study, significantly elevated levels were observed only in post-

hatched embryos. Between the two isoforms, GH-2 and GH-2R

transcript levels were comparatively higher than the GH-1 and

GH-1R levels and is in agreement with the pattern reported

previously in developing rainbow trout [20,21]. Indeed, the

increase in GH transcripts was reflected in elevated total embryo

GH content and this coincided with increased embryonic growth.

Also, the elevated GH content was associated with a significant

upregulation in IGF-1 and IGF-2 transcript levels, supporting a

role for somatotropic axis in growth regulation during later

developmental stages in fish [24,25].

This is the first study to indicate that the functioning of the

somatotropic axis is impacted by exposure of eggs to xenobiotics

prior to fertilization. Maternal transfer of contaminants from eggs

to offspring has been shown to reduce growth and survival in fish

[10,11,12], while the mechanisms involved are unclear. The

present results demonstrate that BPA in eggs suppresses temporal

mRNA abundances of IGFs and their receptors during embryo-

genesis, leading to delayed hatching and reduced growth. This

involved BPA-mediated reduction in transcript levels of IGF-2

during early stages of embryogenesis (pre-organogenesis), while

IGF-1 was affected in a dose-dependent manner post-hatching. In

addition to the IGF pathway, there was also disruption of whole

embryo GH content and GH-R transcript levels in the BPA

groups. These changes were more pronounced after the beginning

of exogenous feeding. The delayed hatching and the presence of

yolk deposits in the BPA group suggests reduced nutrient

absorption leading to growth defects during early life stages. Also

in juveniles, the lower body mass corresponded with high plasma

GH levels in the high BPA group, supporting a protein sparing

role for GH similar to a fasting response in salmonid fishes [26,27].

Taken together, these results suggest that BPA impact on the

somatotropic axis functioning during early embryogenesis as a

mechanism leading to developmental and growth impairment in

juveniles.

Studies in mammalian models have shown that regulation of

IGF system during embryogenesis is extremely sensitive to adverse

environmental conditions, including maternal undernutrition, fetal

hypoxia and infection [16]. It has also been hypothesized that any

alteration to IGF signaling during early development results in

permanent alterations to growth throughout life [28]. In fish,

suppression of growth in adults was observed after chronic

Figure 6. Impact of bisphenol A (BPA) on insulin-like growth factors (IGFs) and their receptors gene expressions. Temporal changes in
IGF-1 (A) and IGF-2 (B) and IGF-1 receptor a (IGF-1 Ra; C) and b (IGF-I Rb; D) mRNA abundances in rainbow trout embryos in response to BPA
treatment. See the Fig. 2 legend for experimental details. Maternal transcript levels were measured in freshly fertilized eggs and represented as 0-dpf
(dark colored bar). Two-way ANOVA was used to determine the effect of time, treatment and interaction effects on the transcript levels during
development (Bonferonni post hoc test; p,0.05). Different letters represent differences between treatments at each time point. Asterisk (*) represent
effect of time on mRNA abundances. All values represent mean + SEM (n = 7).
doi:10.1371/journal.pone.0010741.g006
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exposure (until 21-dpf) of embryonic rainbow trout to xenoestro-

gen [29]. This is consistent with our observation that acute BPA

exposure of oocytes reduced growth even in adult trout (400-dpf)

leading to the proposal that xenobiotic exposure during early

embryogenesis may lead to long-term growth defects by disrupting

the somatotropic axis. Although BPA was completely eliminated

from the embryos within 35-dpf, the suppression of growth seen

even in juveniles leads us to hypothesize that epigenetic

modification of genes involved in the somatotropic axis function

may be a mechanism resulting in long-term impact.

BPA is a weak xenoestrogen to fish and, therefore, some of the

changes seen in growth may be related to the action of estrogen

receptor signaling. For instance, there is great deal of information

available on the interaction between hypothalamus-pituitary-

gonadal axis and somatotropic axis in mammals, including

regulation of postnatal growth, sexual dimorphism, metabolism,

bone growth and nervous system development [30]. A similar level

of understanding is lacking in teleost fishes; however, there is some

evidence to suggest that there are potential sites of interaction

between the two systems. This includes characterization of

changes in ovarian GH-R binding sites throughout gametogenesis

in rainbow trout and localization of IGF-1 and IGF-1R mRNA in

rainbow trout testis [31,32]. However, there is no direct evidence

to suggest that E2 or xenoestrogens accumulation in oocytes

disrupt growth in an ER-dependent fashion.

We were unable to investigate E2-mediated effects in the

present study because exogenous E2 as well as ER antagonist

(ICI182780), unlike BPA, were cleared from the oocytes within

24–48 h after exposure and did not result in VTG induction (data

not shown). Previous studies have also shown that a one time

exposure of embryos to E2 is ineffective because trout embryos

were shown to metabolize exogenously-administered estrogens

and thus not feminized by short-term estrogen exposure [33,34].

We also did not observe any sex differences, as revealed by

gonadal histology, between the treated and control groups (data

not shown), supporting that feminizing effects of xenoestrogens

are dependent on the mode and time of exposure [35]. However,

the higher VTG mRNA abundances in embryos and juveniles of

BPA exposed oocytes suggest activation of the ER signaling

pathway. This would lead to a shift in energy utilization from

somatic growth to vitellogenesis following BPA exposure.

Previous studies have shown similar shifts in energy metabolism

in males chronically exposed to E2 suggesting metabolic

reprogramming as yet another mechanism of action by

xenoestrogens to suppress growth [36]. However, the mechanism

leading to higher VTG transcript levels and VTG protein

expression at 140-dpf in the BPA groups, despite the absence of

this chemical in the embryos, remains to be determined. We

hypothesize that BPA exposure mimicking egg accumulation

and/or maternal transfer alters DNA methylation patterns during

early embryogenesis leading to persistent changes in the

expression of genes, including VTG and genes critical for

somatotropic axis functioning.

In addition to growth suppression, a key finding from this study

was the disturbed plasma cortisol and glucose profiles in response

to stressor exposure in adults developed from BPA exposed

oocytes. Specifically, the disturbed cortisol and glucose response to

a standardized physical stressor in BPA-exposed oocytes suggest

disruption of the hypothalamus-pituitary interrenal axis function-

ing in trout. Indeed several studies showed that the cortisol stress

axis is a target for xenobiotic impact leading to abnormal cortisol

secretion in fish [37]. This could involve either changes to the

steroid biosynthetic capacity, including disruption of genes

encoding key proteins involved in corticosteroidogenesis [13]

and/or changes to glucocorticoid receptor signaling, which is

involved in the negative feedback regulation of plasma cortisol

levels, as well as liver glucose regulation [38,39]. The differing

plasma cortisol response in the two BPA groups to a standardized

stressor exposure is intriguing and warrants further study. The

absence of a glucose response to stress in the BPA group also

implicates a metabolic dysfunction as this metabolite is a key fuel

for stress adaptation that is regulated by cortisol stimulation [40].

Overall, oocyte exposure to BPA leads to growth defects as well as

long-term disturbances in the evolutionarily conserved cortisol and

glucose response that is critical for acute stress adaptation in

vertebrates.

In conclusion, maternal transfer of BPA and its accumulation in

eggs affect offspring development, including growth suppression

and altered stress performance in juvenile fish. Our results suggest

that disruption of the somatotropic axis function during early

embryogenesis may be involved in the growth and performance

defects in juveniles. We hypothesize that epigenetic modification of

genes critical for somatotropic and stress axes functioning may be

a mechanism leading to long term growth suppression and

reduced stress performance. Whether these phenotypic changes

are transgenerational awaits further study. From a risk assessment

stand-point, it will be essential to establish the threshold BPA (or

other xenobiotics) dosage in eggs that will lead to long term growth

impairment and reproductive dysfunction.

Figure 7. Impact of bisphenol A (BPA) on the organismal stress
response. Effect of BPA exposure on stressor-induced plasma cortisol
(A) and glucose concentrations (B) in juvenile rainbow trout (400-dpf).
Plasma samples were collected at 0 (prior to stress), 1, 4 and 24 h after a
handling disturbance. See Fig. 2 legend for details. All values represent
mean 6 SEM (n = 8 fish); time points with different letters are
statistically significant (Two-way ANOVA; p,0.05).
doi:10.1371/journal.pone.0010741.g007
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Materials and Methods

Experimental Fish
Experiments were conducted at Alma Aquaculture Research

Station, Alma, Ontario, Canada, in accordance with the Animal

Care and Use Committee of the University of Guelph, Ontario.

Pooled oocytes from six female rainbow trout (3+ year class

brood stock) were used for all treatments. Approximately 500

oocytes were collected from each fish, and pooled together. The

ovarian fluid from each fish was separated from the oocytes and

stored prior to the experimental treatment. Pooled milt from six

male fish (3+ year class) was used to fertilize all the eggs.

Bisphenol A exposure
The pooled oocytes were distributed among three treatment

groups, and duplicate groups were immersed in ovarian fluid

containing either ethanol alone (0.01%; control group) or BPA-

supplemented ovarian fluid containing final concentration of 30

and 100 mg.ml21 for 3 h at 4uC. We used ovarian fluid as the

medium in which to incubate the oocytes, because this is the fluid

in which oocytes are retained post-ovulation in the peritoneal

cavity for up to several days prior to release [41]. Previous studies

have shown that thyroid hormone and even large molecules such

as horseradish peroxidase can enter through the pore channels in

the oocyte [42]. During the exposure period, the containers were

gently shaken intermittently to ensure uniform exposure of all the

oocytes. At the end of the treatment period, ovarian fluid with

BPA was replaced with fresh ovarian fluid and oocytes were

fertilized by the addition of approximately 1–2 ml of milt. One

minute later, fertilization was stopped by the addition of water.

Water hardened eggs were rinsed with fresh water several times

before incubation. The fertilized eggs were incubated at 8uC in

Heath chamber with a water flow rate of 10 liters/minute.

Samples of embryos and juvenile fish were collected at time 0

(zygotes, immediately after fertilization and water hardening), 13-

(organogenesis), 21- (eyed egg stage), 44- (hatching), 65- (first

feeding) and 89- days post-fertilization (dpf) for transcript analyses.

Body mass measurements for embryos were carried out every two

weeks after the first feeding (65 dpf). Fish were maintained in

continuous running water at 8uC and 12L: 12D photoperiod

throughout the experimental period (until 400-dpf) and fed every

hour using mechanical feeders. Sampling protocol involved

euthanizing the embryos and juveniles in MS222 (Sigma) buffered

with sodium bicarbonate and flash freezing them on dry ice.

Samples were stored at 280uC until further analysis.

Stress performance
Groups of 80 fish (400-dpf) each from different treatments (one

sham and two BPA treated eggs) were distributed equally into 4

tanks (20 fish/200 L) and acclimated for one month prior to the

experiment exactly as mentioned above. During this period, all

groups (4 tanks per treatment 63 treatments) were fed ad libitum

with commercial feed every hour (5 point feed, Martin mills Inc,

Elmira, Ontario). The stress protocol involved a handling

disturbance that was described previously [13]. Briefly, at the

beginning of the experiment, 8 fish from each treatment (2 fish

from each tank) were sampled quickly and euthanized with an

overdose of 2-phenoxyethanol (1:1000) and these were the

unstressed (0 h) control fish. The remaining fish were subjected

to a handling disturbance for 5 min and were allowed to recover

and sampled at 1, 4 and 24 h post-stressor exposure. Sampling

consisted of quickly netting all fish from each tank and euthanizing

the fish with a lethal dose of 2-phenoxyethanol (1:1000). Fish were

bled by caudal puncture into heparinized tubes and the plasma,

collected after centrifugation (60006g for 10 min), was stored

frozen at 270uC for later determination of plasma cortisol and

glucose levels.

BPA levels in eggs
Tissue extraction and quantification of BPA analysis was carried

out following the procedure described by Pedersen and Lindholst

[43] with minor modifications. Briefly, fertilized eggs and

developing embryos (pooled samples of 5 frozen individuals) were

pulverized using mortar and pestle on dry ice and dissolved in a

20 ml mixture of dichloromethane: methanol (2:1). The mixture

was filtered through a Whatmann filter paper to remove any tissue

debris, and 0.9% KCl solution was added to the final volume and

centrifuged for 15 min at 10006g. After centrifugation, the

dichloromethane phase (organic) was removed and evaporated

to dryness. The organic phase was redissolved in 1 ml of a mixture

of methanol:hexane (1:20) and applied to a Sep-Pak NH2 500 mg

cartridge pre-conditioned with 5 ml of methanol and 5 ml of

methanol:hexane (1:20). The extraction cartridges were subse-

quently washed with 7.5 ml of hexane, dried for 3 min and eluted

in 4 ml of methanol. After evaporation to dryness, each sample

was re-dissolved in 300 ml methanol and used for BPA analysis.

Quantification of BPA was carried out using LC-MS/MS

Method. Agilent 1200 was used for LC and Applied biosystems

MDS Sciex API 3200 Qtrap was used for MS analysis.

Chromatography was performed using Agilent Eclipse XDB-

C18 (5 mm, 4.66150 mm) column following established protocols.

Calibration curve for BPA was established using BPA-d16 as a

standard. The ratios of the peak areas of standard and the samples

were calculated using Agilent chemstation software. The detection

limit was determined at a signal to noise ratio .3 and the limit of

quantification for BPA in the embryos were 75–80 ng.g21 wet

weight. The values were calculated and expressed as ng.embryo21.

Cortisol, growth hormone and glucose levels
Plasma cortisol levels were determined by radioimmunoassay

following established protocol [13]. Growth hormone (GH)

content in embryo and juvenile, as well as plasma GH levels were

determined by enzyme linked immunosorbent assay (ELISA)

following established protocol [44]. GH was extracted from

embryo and juvenile samples (pools of 5 embryos or juveniles)

prior to ELISA as described previously [45]. Plasma glucose levels

were measured spectrophotometrically using a commercially

available kit (modified Trinder method; Raichem, San Diego,

CA).

Quantitative real-time PCR (qPCR)
RNA isolation, cDNA synthesis and construction of

plasmid stocks. Total RNA isolation from individual

embryos and larvae was carried out using Qiagen RNeasy

isolation kit (Qiagen, Ontario), and the RNA was quantified

spectrophotometrically at 260 nm using Nanodrop. RNA was

DNase treated to avoid genomic contamination, following

manufacturer’s instructions. RNA quality was determined by

running 1 mg of total RNA on ethidium bromide stained 1%

agarose gel electrophoresis. The first strand cDNA was synthesized

from 1 mg of total RNA using First Strand cDNA synthesis kit

(MBI Fermentas). Briefly, total RNA was heat denatured (70uC)

and cooled on ice. The sample was used in a 20 ml reverse

transcriptase reaction using 0.5 mg of oligo d(T) primers and

1 mM each of dNTP, 20 U ribonuclease inhibitors, and 40 U M-

MuLV reverse transcriptase. The reaction was incubated at 37uC
for 1 h and stopped by heating at 70uC for 10 min.
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Primers for qPCR were designed based on the deduced rainbow

trout cDNA sequences using Primer 3 software (see Table 1). PCR

was performed to amplify the predicted products under the

following conditions: initial denaturation for 3 min at 94uC, 40

cycles of 30 s at 94uC, 30 s at 60uC and 30 s at 72uC, followed by

elongation for 7 min at 72uC. The resultant PCR products were

subjected to 1.2% agarose gel electrophoresis and a single

amplicon was detected. The PCR product was gel extracted,

ligated into a pGEM-Teasy cloning vector (Promega,Valencia,

CA, USA) and cloned into DH5a Escherichia coli cells. After LB-

ampicillin selection, transformed cells were cultured and plasmids

isolated using plasmid preparation kit (Sigma, ON). The isolated

plasmid was sequenced at York University Molecular Core facility

to confirm the presence of the amplicon, prior to its use for

generating qPCR standard curves.

Standard curve. Plasmids with target sequence inserts were

used for establishing standard curves. Standard curves were

generated using a serial dilution of the plasmids to attain varying

copy number of insert sequences (108–101 copies). Each standard

reaction mix contained 1 ml of cDNA, 4 pM of each primer and

SYBR green super mix (50 U.ml21 of iTaq DNA polymerase,

40 mM of Tris-HCl (pH 8.4), 100 mM of KCl, 6 mM of MgCl2,

0.4 mM of each dNTP component (dATP, dGTP, dCTP and

dTTP), SYB Green I, 20 mM of flouresein, and stabilizers) in a

total volume of 25 ml. PCR was performed using iCycler iQTM

(BioRad) under the following conditions: 2 min at 94uC followed

by 40 cycles of 15 s at 95uC and 30 s at respective annealing

temperature. PCR products were subjected to melt curve analysis

to confirm the presence of a single amplicon. Control reactions

were conducted with no cDNA template and with RNA to

determine the level of background or genomic contamination.

Master mixes, to reduce pipetting errors, were prepared at every

stage for triplicate reactions (3625 ml) for each standard.

Background subtracted threshold cycles (CT) values were plotted

against log of standard copy numbers to obtain standard curves.

The PCR efficiency (E) was determined using the formula, E =

[102(1/slope)*100] and it ranged from 96–100%.

Quantification. One ml of cDNA sample was used as a

template for every 25 ml reaction. For every test sample, qPCR

was performed for both the gene of interest and the housekeeping

gene (elongation factor 1alpha: eF1a). The reaction components,

PCR conditions and melt curve analysis were exactly same as the

previous section. Background subtracted threshold cycle (CT)

values were used to determine the absolute quantity of the mRNA

based on the standard curve. Elongation factor-1a (eF1a) mRNA

levels showed little change with age or experimental treatment and

these were used for the normalization of transcript abundance.

SDS-PAGE and Western blotting for vitellogenin (VTG)
Protein concentrations in the liver were determined using the

bicinchoninic acid method with bovine serum albumin as the

standard. The procedure for SDS-PAGE and western blotting

were according to established protocols [40]. Briefly, samples

(40 mg protein/sample) were separated on 6% polyacrylamide gels

using a discontinuous buffer system [46]. The proteins were

transferred onto a nitrocellulose membrane (20 V for 20 min) with

a semidry transfer unit (BioRad) using transfer buffer (25 mM Tris

pH 8.3, 192 mM glycine, and 20% (v/v) methanol). The

membrane was blocked with 5% skimmed milk in TBS-t

(20 mM Tris pH 7.5, 300 mM NaCl and 0.1% (v/v) Tween 20

with 0.02% sodium azide) for 60 min. The rabbit polyclonal anti-

trout VTG primary antibody (1:5000; generated in-house) and

alkaline phosphatase-conjugated goat anti-rabbit secondary anti-

body (1:1000; BioRad) were diluted in the blocking solution. The

membranes were incubated in primary antibody for 60 min at

room temperature, washed with TBS-t (265 min), incubated with

secondary antibody for 60 min, washed with TBS-t (265 min),

and finally washed with TBS (1615 min). Visualization of bands

was carried out with NBT (0.033% w/v) and BCIP (0.017% w/v)

and the molecular mass was confirmed using prestained low

molecular weight marker (BioRad). Quantification of bands was

carried out with Chemi imagerTM using the AlphaEase software

(Alpha Innotech, CA).

Statistical analysis
All statistical analyses were performed with SPSS version 14.0.1

(SPSS Inc., Chicago, IL, USA) and data are shown as mean 6

standard error of mean (SEM). The data were log-transformed,

wherever necessary, for homogeneity of variance, but non-

transformed values are shown in the figures. The tests used were

either one-way or two-way analysis of variance (ANOVA) and a

Bonferonni post-hoc test was used to determine statistical signifi-

cance between groups. A probability level of p#0.05 was

considered significant.

Table 1. Oligonucleotide primers of the genes used in quantitative real-time PCR along with their NCBI accession numbers,
annealing temperature (Tm) and the size of the amplicon.

Gene name Accession number Forward Primer Sequence (59-39) Reverse Primer Sequence (59-39)

Annealing
Temperature
(Tm; uC)

Amplicon size
(base pairs; bp)

eF1a AF498320.1 cattgacaagagaaccattga ccttcagcttgtccagcac 56 95

IGF-1 EF450071 tggacacgctgcagtttgtgtgt cactcgtccacaataccacggtt 68 120

IGF-2 EF450072 cggcagaaacgctatgtgga tgctggttggcctactgaaa 58 79

IGFRIa AF062499 agagatagacgacgcctccta caccaaatagatccctacgt 58 104

IGFRIb AF062500 cctaaatctgtaggagacctggag gttagccacgccaaatagatcc 58 139

GH-1 AF005923 ttcaagaaggacatgcacaaggtc ctccagcccacgtctacaga 66 97

GH-2 DQ294400 cccacgtttacagagtgcagttg gcttcaagaaggacatgcataaggtt 66 93

GH-R1 AY861675.1 tgaacgtttttggttgtggtcta cgctcgtctcggctgaag 60 61

GH-R2 AY751531.1 catggcaacttcccacattct gctcctgcgacacaactgttag 60 65

VTG AJ011695 caagatcgatcggaagggta ccacaggtctgtcccttcat 60 121

doi:10.1371/journal.pone.0010741.t001
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