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Abstract 23 

Hartley et al. question whether reduction in Rmass, under experimental warming, arises because of 24 

the biomass method. We show the method they treat as independent yields the same result. We 25 

describe why the substrate-depletion hypothesis cannot alone explain observed responses, and 26 

urge caution in the interpretation of the seasonal data. 27 
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Hartley et al. (2009) make two important observations on our work (Bradford et al. 2008) and re-34 

analyse our seasonal data. We respond to each observation and then discuss the re-analysis. 35 

 The first observation is that we calculated Rmass as a ratio between two respiration-based 36 

measures. The positive relationship between these two variables, and importantly the negative 37 

intercept, means that as SIR biomass increases Rmass follows a positive hyperbolic function. 38 

Specifically, across higher biomass values (in the organic horizon) there is little change in Rmass 39 

but at lower biomass values (in the mineral horizon) Rmass co-varies markedly. Had the intercept 40 

between sucrose respiration and SIR biomass been zero then Rmass would have been constant; had 41 

it been positive then Rmass would have decreased as biomass increased. Hartley et al. (2009) 42 

present their seasonal re-analysis (see below) using CFE microbial biomass; they consider it a 43 

more independent measure. If we calculate Rmass using CFE then we observe that under 44 

experimental warming Rmass is reduced (Fig. 1). That is, our observation that prolonged 45 

experimental warming decreases Rmass is robust to the microbial biomass method employed. 46 

 The second observation is that if our method to calculate Rmass is appropriate, the lower 47 

Rmass is more likely due to a depletion in labile carbon, rather than thermal adaptation. From this 48 

Hartley et al. (2009) conclude that the substrate-depletion hypothesis most likely explains the 49 

ephemeral augmentation of respiration in warming experiments. We agree that substrate-50 

depletion likely contributes to this augmentation and present the first field evidence that labile 51 

carbon pools decline in response to experimental warming (see Bradford et al. 2008). However, 52 

the substrate-depletion hypothesis does not make explicit predictions about microbial biomass or 53 

Rmass (Kirschbaum 2004; Eliasson et al. 2005; Knorr et al. 2005); no change in microbial 54 

metabolism or carbon supply is invoked to explain respiration dynamics (see Kirschbaum 2004). 55 

This makes inferences from the hypothesis about microbial biomass and activity responses 56 
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speculative. For example, the depletion of labile carbon pools does not imply that microbial 57 

biomass should decline due to carbon limitation, since the substrate-depletion hypothesis 58 

assumes equal carbon supply in control and heated soils at equilibrium. This led us (Bradford et 59 

al. 2008) to speculate that decreased root-carbon supply could explain the microbial biomass 60 

decreases we observed under experimental warming. Decreases could also have arisen through 61 

reduced carbon-use efficiencies (Steinweg et al. 2008), altered growth rates (Bárcenas-Moreno et 62 

al. 2009), and/or shifts in microbial community composition in the plots (Frey et al. 2008). 63 

Whether depletion of labile carbon pools drives any of these changes is currently unclear. 64 

Nonetheless, the substrate-depletion hypothesis cannot solely explain observed responses of soil 65 

microbes and their respiration to warming; nor was it presented as a panacea (see Kirschbaum 66 

2004). The soil and global change communities need to focus more attention on microbial and 67 

plant responses when explaining soil respiration responses to warming. 68 

 In their re-analysis of our seasonal data, Hartley et al. (2009) suggest there is evidence 69 

for thermal adaptation enhancing the response of soil microbial respiration to warming. We 70 

acknowledge their conclusion but suggest that perhaps we and Hartley et al. (2009) over-stepped 71 

what could be concluded about Rmass responses to seasonal temperature change using the SIR and 72 

CFE methods, respectively. Although CFE and SIR share a common origin (Anderson & 73 

Domsch 1978; Vance et al. 1987; Jenkinson et al. 2004), and yield biomass estimates that are 74 

correlated (Wardle & Parkinson 1991; Anderson & Joergensen 1997), they both have limitations. 75 

First, they provide ‘estimates’ of biomass. We relied on SIR because it is more effective at 76 

resolving active biomass differences at plot-scales (Wardle & Ghani 1995); CFE is often poor for 77 

detecting fine-scale variation. After finding approximately equivalent experimental-warming 78 

responses using both methods (Fig. 1 and Bradford et al. 2008), we proceeded to the seasonal 79 



Bradford et al. 5

analysis using only SIR. Yet, Hartley et al.’s (2009) re-analysis highlights how this affects our 80 

interpretation of the seasonal data (Fig. 2). There is clearly a need for development of 81 

methodology to provide robust, fine-scale, independent measures of microbial biomass. In the 82 

absence of these, we emphasize the seasonal patterns that are independent of the biomass 83 

method, and even biomass correction. Particularly pronounced is the seasonal shift in the shape 84 

of the temperature response, suggesting the optimum is shifted to the right in the warm season 85 

(Fig. 2a-c). In addition, sucrose respiration rates for each season diverge markedly across the 86 

temperature range (Fig. 2), highlighting the importance of considering biomass changes. These 87 

patterns are obscured for soil respiration (Fig. 2). This may mean that soil respiration responses 88 

to warming can mask marked shifts in microbial biomass and temperature response of microbial 89 

respiration. We conclude that the relative roles and interactions of substrate-depletion versus 90 

microbial responses remain unresolved in warming soils. 91 
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Figure  1  Rates of soil microbial respiration of sucrose, expressed per unit CFE microbial 139 

biomass, in control and heated soils at three measurement temperatures. These plots are 140 

equivalent to Fig. S4 in Bradford et al. (2008) excepting that in the original figure rates of 141 

sucrose respiration are expressed per unit SIR microbial biomass. Field soils were sampled from 142 

control (closed circles) and heated (open circles) plots (n = 6) and then assayed to assess sucrose 143 

mineralization rates across a temperature range from 10 to 20C, and biomass using the CFE 144 

method (for details see Bradford et al. 2008). Shown are data from assays performed for the 145 

upper mineral soil horizon across early spring (April) to late fall (November). The observed 146 

pattern is that Rmass is generally lower, at a specific measurement temperature, following long-147 

term, experimental warming. Values are means  1 s.e.m., n = 6. Given that Rmass is essentially a 148 

ratio, note that standard errors were propagated from the errors in the microbial biomass and 149 

sucrose respiration data. This same pattern was observed with the SIR biomass corrected data 150 

(see Bradford et al. 2008). 151 

 152 

Figure  2  Respiration rates of soils sampled in the cool and warm seasons at three measurement 153 

temperatures, following the approach of Hartley et al. (2009). Note that this approach pools 154 

across the experimental treatments and soil horizons. Therefore the patterns observed in Fig. 1 do 155 

not relate to what is shown in this figure. In their re-analysis of our seasonal data using CFE 156 

microbial biomass, Hartley et al. (2009) conclude that the large increase in Rmass rates at 157 

measurement temperatures of 20C, for soils sampled in the warm season (a), implies that 158 

thermal adaptation will enhance the response of soil microbial respiration to persistent warming. 159 

A different interpretation is obtained if one uses SIR estimates of biomass to calculate Rmass rates 160 

(b). There are potentially issues with both of these approaches. Indeed, mean daily temperature 161 
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across the preceding 9 or 11 weeks explained 64 and 75% of the seasonal variation in Rmass 162 

(based on SIR) for the organic and mineral horizons, respectively (see Bradford et al. 2008). 163 

However, the same analysis using CFE biomass to calculate Rmass explained no significant 164 

variation (r2 values <0.01; showing less than 1% of variance explained). This may be because 165 

CFE biomass values are highly variable at fine-spatial scales compared to SIR biomass estimates 166 

(see text for additional discussion). However, the apparent seasonal shift in the thermal optimum 167 

for Rmass appears independent of the biomass method employed (a,b), and is also observed if 168 

sucrose respiration data are not corrected for biomass (c). That is, that rates in cool season soils 169 

increase markedly between measurement temperatures of 10 and 15C, and little between 15 and 170 

20C, whereas the opposite pattern is observed for warm season soils (a-c). That thermal optima 171 

for Rmass rates track seasonal temperature corresponds with similar tracking of other microbial 172 

activities involving carbon degradation (Fenner et al. 2005) and is a consistent pattern in our 173 

seasonal dataset. Notably, the pattern is not observed for soil respiration, expressed where 174 

substrate-limitation has not been alleviated, and without correction for biomass (d and see text). 175 
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Fig. 1 176 

177 
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Fig. 2 178 
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