brought to you by CORE

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, B04299, doi:10.1029/2009JB006451, 2009

Correction to "Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate"

M. B. Helgerud, W. F. Waite, S. H. Kirby, and A. Nur

Received 10 March 2009; published 10 April 2009.

Citation: Helgerud, M. B., W. F. Waite, S. H. Kirby, and A. Nur (2009), Correction to 'Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate,' *J. Geophys. Res., 114*, B04299, doi:10.1029/2009JB006451.

[1] In the paper "Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methaneethane hydrate" by M. B. Helgerud, W. F. Waite, S. H. Kirby, and A. Nur (*Journal of Geophysical Research, 114*, B02212, doi:10.1029/2008JB006132, 2009), the mathematical formula listed in Tables 1-3, and A1 is incorrect. The correct headings are given here.

Table 1. Regressions of V_p and V_s , ν , and M, G, and K Versus Temperature and Piston Pressure for Compacted, Polycrystalline Ice Ih^a

		F(T,P) = aT + bP + c					
	a ^b	b ^b	c^{b}	Uncertainty ^c			
$V_p ({\rm m \ s}^{-1})$	-2.67 ± 0.05	0.2 ± 0.08	3864 ± 2	±1.5			
$V_{s} (m s^{-1})$	-1.244 ± 0.005	-0.198 ± 0.007	1942.4 ± 0.2	±1.5			
ν	$-(2.0 \pm 0.6) \times 10^{-5}$	$(6.8 \pm 0.9) \times 10^{-5}$	0.3310 ± 0.0002	±3			
M (GPa)	$-(2.15 \pm 0.04) \times 10^{-2}$	$(4.02 \pm 0.03) \times 10^{-3}$	13.69 ± 0.02	± 4			
G (GPa)	$-(5.03 \pm 0.02) \times 10^{-3}$	$-(3.0 \pm 0.2) \times 10^{-4}$	3.459 ± 0.0007	± 4			
K (GPa)	$-(1.48 \pm 0.04) \times 10^{-2}$	$(3.4 \pm 0.5) \times 10^{-3}$	9.07 ± 0.02	±6			

 ${}^{a}V_{p}$, compressional wave speeds; V_{s} , shear wave speeds; ν , Poisson's ratio; M, dynamic compressional wave; G, shear moduli; and K, bulk moduli; temperature of -20 to -5° C; and piston pressure of 22.4 to 32.8 MPa. Calculated density range was 0.920 to 0.923 g cm⁻³.

^bUnits for *a* are the units of the property being fit divided by $^{\circ}$ C. Units for *b* are those of the property being fit divided by MPa. Units for *c* are those of the property being fit.

^cUncertainty is given as a percentage of the property being fit.

		F(T,P) = aT + bP + c					
	a ^b	b^{b}	c^{b}	Uncertaintyc			
$V_p ({\rm m \ s}^{-1})$	-1.84 ± 0.03	0.31 ± 0.02	3766 ± 2	±1.5			
$V_{s} (m s^{-1})$	-0.892 ± 0.005	-0.100 ± 0.003	1957.0 ± 0.2	±1.5			
ν	$-(9 \pm 4) \times 10^{-5}$	$(6.6 \pm 0.3) \times 10^{-5}$	0.3151 ± 0.0002	± 3			
M (GPa)	$-(1.64 \pm 0.02) \times 10^{-2}$	$(4.02 \pm 0.03) \times 10^{-3}$	13.11 ± 0.01	± 4			
G (GPa)	$-(4.2 \pm 0.02) \times 10^{-3}$	$(9 \pm 1) \times 10^{-5}$	3.541 ± 0.0008	± 4			
K (GPa)	$-(1.09 \pm 0.02) \times 10^{-2}$	$(3.8 \pm 0.2) \times 10^{-3}$	8.39 ± 0.01	± 6			

Table 2. Regressions of V_p and V_s , ν , and M, G, and K Versus Temperature and Piston Pressure for Compacted, sI Methane Hydrate^a

^aSame as Table 1 except temperature of -20 to 15° C and piston pressure of 30.5 to 97.7 MPa. Calculated density range was 0.924 to 0.933 g cm⁻³. ^bUnits for *a* are the units of the property being fit divided by °C. Units for *b* are those of the property being fit divided by MPa. Units for *c* are those of the property being fit.

^cUncertainty is given as a percentage of the property being fit.

Table 3. Regressions of V_p and V_s , ν , and M, G, and K Versus Temperature and Piston Pressure for Compacted, Polycrystalline sII Methane-Ethane Hydrate^a

		F(T,P) = aT + bP + c				
	a ^b	b^{b}	c^{b}	Uncertainty ^c		
$V_{n} ({\rm m \ s}^{-1})$	-1.825 ± 0.008	$(3.10 \pm 0.05) \times 10^{-1}$	3821.8 ± 0.3	1.5		
$V_{s} (m s^{-1})$	-0.894 ± 0.002	$-(0.87 \pm 0.01) \times 10^{-1}$	2001.14 ± 0.08	1.5		
ν	$-(1.4 \pm 0.1) \times 10^{-5}$	$(6.29 \pm 0.07) \times 10^{-5}$	0.31119 ± 0.00004	3		
M (GPa)	$-(1.564 \pm 0.005) \times 10^{-2}$	$(4.02 \pm 0.03) \times 10^{-3}$	13.407 ± 0.002	4		
G (GPa)	$-(4.021 \pm 0.007) \times 10^{-3}$	$(1.66 \pm 0.04) \times 10^{-4}$	3.6764 ± 0.0003	4		
K (GPa)	$-(1.028 \pm 0.005) \times 10^{-2}$	$(3.80 \pm 0.03) \times 10^{-3}$	8.505 ± 0.002	6		

^aSame as Table 1 except temperature of -20 to 10°C and piston pressure of 30.5 to 91.6 MPa. Sample density calculated theoretically as a function of temperature and pressure with 94% cage occupancy, 79.25% methane, 20.75% ethane. Calculated density range was 0.917 to 0.931 g cm⁻³. ^bUnits for *a* are the units of the property being fit divided by °C. Units for *b* are those of the property being fit divided by MPa. Units for *c* are those of the

property being fit.

^cUncertainty is given as a percentage of the property being fit.

Table A1.	Regressions	of Density	Versus	Temperature	for Solid	Ice Ih,	sI Methane	Hydrate,	and sII	Methane-E	Ethane	Hydrate ^a

	$\rho(T,P) = aT + bP + c$						
Material	a ^b	b^{b}	c^{b}	Uncertainty			
Ice Ih	-1.5035×10^{-4}	1.0594×10^{-4}	0.91673	3			
sI methane hydrate	-2.3815×10^{-4}	1.1843×10^{-4}	0.92435	3			
sII methane-ethane hydrate	-1.7719×10^{-4}	1.2228×10^{-4}	0.91801	3			

^aBoth hydrate structures are assumed to have 94% cage occupancy. The ratio of methane to ethane in the sII hydrate is assumed to be 4:1. Temperature and pressure ranges are given in Tables 1-3.

^bUnits for a are the units of the property being fit divided by °C. Units for b are those of the property being fit divided by MPa. Units for c are those of the property being fit.

^cUncertainty is given as a percentage of the property being fit.