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Abstract. We quantify how well column-integrated GO over the ocean using glint-mode data, but are degraded even
measurements from the Orbiting Carbon Observatory (OCO)more by the systematic errors. Our ability to identify and
should be able to constrain surface £fluxes, given the remove systematic errors in both the column retrievals and
presence of various error sources. We use variational datatmospheric assimilations will thus be critical for maximiz-
assimilation to optimize weekly fluxes at 825° resolution  ing the usefulness of the OCO data.
(lat/lon) using simulated data averaged across each model
grid box overflight (typically every-33 s). Grid-scale simu-
lations of this sort have been carried out before for OCO us-;
ing simplified assumptions for the measurement error. Here,
we more accurately describe the OCO measurements in tWee global carbon cycle plays a key role in the climatic re-
ways. First, we use new estimates of the single-sounding response to anthropogenic forcing, yet our understanding of
trieval uncertainty and averaging kernel, both computed as &s dominant processes is still too weak to make accurate
function of surface type, solar zenith angle, aerosol opticaligng-term predictions (IPCC, 2007). Atmospheric OBea-
depth, and pointing mode (nadir vs. glint). Second, we col-syrements have revealed much of what we know about the
lapse the information content of all valid retrievals from each fnctioning of the global carbon cycle. As our data coverage
grid box crossing into an equivalent multi-sounding measureas increased, inverse methods have been used to optimize
ment uncertainty, factoring in both time/space error corre-gioha| sources and sinks of G@nd the process models that
lations and data rejection due to clouds and thick aerosolsgompute them (Enting et al., 1995; Bousquet et al., 2000;
Finally, we examine the impact of three types of systematicragenbeck et al., 2003; Baker et al., 2006a; Rayner et al.,
errors: measurement biases due to aerosols, transport errokg ).
and mistuning errors caused by assuming incorrect statistics. g far, the “top-down” atmospheric inverse approach to
When only random measurement errors are consideredyalidating carbon models has been only marginally success-
both nadir- and glint-mode data give error reductions overfy|: where the data are most dense, fluxes may be estimated
the land of~45% for the weekly fluxes, ant65% for sea-  at continental scales (Baker et al., 2006a), but not at the re-
sonal fluxes. Systematic errors reduce both the magnitudgional scales where they would be most useful for identify-
and spatial extent of these improvements by about a factoing flaws in the carbon models. Part of the problem is that
of two, however. Improvements nearly as large are achieveghe transport models have systematic mixing errors, notably
in the vertical. The models also have great difficulty repre-
senting point measurements, particularly over the continents,
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situ measurement network is insufficient to correct the sur-clarify the diurnal cycle of flux, it can shed light on flux vari-
face fluxes at regional scales. For the continental Unitedability due to synoptic-scale weather systems when they are
States, for example, solving for fluxes at a 500 km reso-modeled well by the transport model. Previous globahbCO
lution would require at least 7 500 000 k500 km¥ ~30 flux inversions using data from the global in situ measure-
sites, each sampling air high enough in the column to have anent network have most often used the “Bayesian synthesis”
footprint at least 500 km wide, with a frequency dictated by inversion approach (Enting et al., 1995). This method has
the cross-continental advection time scale. also been used to determine the information on surfacg CO
Space-based measurements provide the most realistic offluxes provided by satellite data (Rayner and O’Brien, 2001;
portunity to achieve global coverage at such regional scalesdouweling et al., 2004; Miller et al., 2007), although only for
Recently, two satellites have been designed specificallymonthly fluxes from fairly large emission regionsZ000 km
to measure the column-averaged dry air mole fraction ofon a side) since the number of fluxes solved for was limited
CO, (Xco,): Japan's Greenhouse Gases Observing Satelby the inversion method. The density of OCO’s data should
lite (GOSAT) and NASAs Orbiting Carbon Observatory permit fluxes to be estimated at a finer resolution than this,
(OCO). Their instruments measure g@bsorption in the but a more computationally-efficient inversion method is re-
near infra-red (IR) portion of the reflected solar beam andquired.
thus have sensitivity down to the surface, including the vari- We use a state-of-the-art variational data assimilation
able near-surface CQOconcentrations most affected by the scheme (Baker et al., 2006b) to solve for the (JfDxes at
fluxes (Olsen & Randerson, 2004); previous instrumentsthe horizontal resolution of our transport model; optimized
measuring in thermal IR bands sensed,CGfoncentrations time-varying 3-D CQ concentration fields are also produced
mostly in the mid- to upper-troposphere, with little infor- as a by-product. The fluxes are solved at a weekly resolu-
mation about the surface fluxes (Chevallier et al., 2005a, b)tion, though the measurements are modeled at the time step
Both missions also try to identify cloud-free scenes for their of the transport model (1 h). Our data assimilation approach
retrievals, since radiative transfer modeling problems associis used to perform observing system simulation experiments
ated with clouds can cause large errors in the retrieved CO(OSSESs) in which simulated data and measurement errors are
concentrations. Both use sun-synchronous orbits with earlynput to produce statistics on the flux estimation errors and
afternoon sun-lit equator crossing times and orbital inclina-the improvement in the initial guess of the fluxes. Both Baker
tions near 98 (though, since their ascending nodes are°180 et al. (2006b) and Chevallier et al. (2007a) have done prelim-
off, their paths cross only at the equator); subsequent orbiténary OSSEs for OCO using this approach before. For mea-
are separated by25° in longitude,~99 min apart. In addi- surements, they assumed a single measurement per model
tion to nominal near-nadir pointing, both missions can alsogrid box with a 1 or 2 ppm uncertainty valueo(l, respec-
point at the sun glint spot, greatly increasing the signal ovettively, and with a flat weighting versus pressure in the verti-
the oceans, which do not otherwise provide much reflectioncal. Here, we improve upon their assumptions in two ways.
in the near IR (Miller et al., 2007). GOSAT was launched in First, for each individual retrieval, we use new OQQo, re-
January 2009, OCO in February 2009; GOSAT successfullytrieval uncertainties and averaging kernels (AKs) calculated
reached its operational orbit, OCO did not. While GOSAT as a function of surface type, solar zenith angle, aerosol op-
the measurements should greatly expand our knowledge dical depth (OD), and pointing mode (nadir vs. glint) using
the global carbon cycle, the OCO design had certain stronghe OCO Level 2Xco, retrieval scheme forced with radi-
points that have led to a push for a relaunch, possibly as earlgnces simulated by the OCO “full-physics” radiative transfer
as 2012. OCO would measure more frequently than GOSATscheme, taken from &ch, et al .(2010). Second, instead
(180 vs. 13.4 cross-scans per minute) with a smaller FOVof assuming only a single valid retrieval per crossing of each
(~2km? vs. ~100 kn?) and thus ought to find more cloud- model grid box (which takes33 s for our 2 x 5° boxes), we
free scenes (Crisp et al., 2004) with Id¥¢o, retrieval er-  collapse the information content of all valid retrievals across
rors. each grid box crossing into an equivalent multi-sounding
In this study, we use an atmospheric inverse method taneasurement uncertainty, which is then used in the assimila-
quantify how well Xco, measurements from OCO would tion. Valid Xco, retrievals are only attempted for cloud-free
help estimate sources and sinks of £& the surface. A conditions in which the aerosol OD is less than 0.30, in or-
tracer transport model relates simulated atmospherig COder to reduce associated radiative transfer modeling errors.
concentrations to the surface gfuxes at earlier times that We compute the number of valid retrievals for each grid box
determined them. Progressively higher layers in the atmo<crossing based on the probability that such cloud-free and
spheric column reflect the influence of fluxes from increas-low-aerosol conditions exist for each retrieval; these prob-
ing broad areas at the surface, due to atmospheric mixingabilities are computed using climatological statistics from
The transport model allows thi€co, measurement infor- MODIS data. We attempt to account for along-track correla-
mation, weighted properly in the vertical column, to be dis- tions in theXco, measurements when specifying the equiva-
tributed appropriately to fill in the 25gaps between subse- lent measurement uncertainty for each model grid box cross-
quent OCO passes on any given day. Though OCO canndhg. Finally, we examine more types of systematic errors than
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Fig. 1. (2) An example of the field-of-view (FOV) ground tracks for OCO for 21 March: 100 min of measurements for nadir pointing mode
(asterisks) and glint (circles). Black lines connect nadir and glint FOVs at same time. The maximum SZA is take8d@5nadir/glint.

Green asterisks indicate positions where nadir SBB° and glint SZA<80°. (b) One-,(c) four-, and(d) seven-day coverage for nadir (red)

and glint (blue) beginning 21 March.

these previous studies: measurement biases due to aerosadmod coverage over our transport model grid boxesyitle
transport errors, and errors caused by “mistuning” the inverdn longitude. The latitudinal resolution of the model is cho-
sion (i.e., assuming incorrect a priori flux and measuremensen at 2 to match that of our meteorological products to give
error statistics). Feng et al. (2009) used th&séh et al., maximum resolution in the predominantly north/south (N/S)
OCO retrieval errors in an OCO OSSE study similar to this direction of the OCO ground tracks. Because the OCO data,
one, but with an ensemble Kalman filter approach. Cheval-sampled only once per day locally, provide little information
lier et al. (2009) have recently performed a similar OSSE toon the diurnal cycle oKco,, some assumption for the diur-
evaluate the flux constraint provided by GOSAT, using vari- nal cycle of the surface Cfluxes must also be made (see
able measurement uncertainties appropriate for that satellitéSect. 2.4 below); this then allows multi-day flux blocks to be
estimated in a reasonable way from the data.

2 Method 2.2 Transport model

2.1 OCO orbit and resolution choices ) )

An off-line atmospheric transport model (“PCTM”": see
The OCO satellite measuré&o,, the column-averaged dry Kawa et al., 2004) is used to relate surface;d{Dxes to
air fraction of CQ, in the near-infrared (reflected solar) COz concentrations. It is driven by pre-calculated meteo-
band with sensitivity down to the surface, but with a vertical rological fields (horizontal winds, surface pressure, vertical
weighting that varies with surface type, aerosol amount, andliffusion coefficient, and cloud-convective mass flux) from
solar zenith angle (SZA) as described iag8h et al. It sam- the GEOS4-DAS reanalysis (Bloom et al., 2005) for the
ples eight fields of view (FOV), each with an area.8 kn?, year 1987, interpolated from the resolution normally input
every 333 milliseconds across an FOV ground track up toto PCTM (2.0 x 2.5° in lat/lon; 55 vertical layers) to the
10 km wide (Crisp et al., 2004), of which only four are down- resolution of the model version used heré ¥25° lat/lon;
linked. Itis in a sun-synchronous orbit taking a single sun-lit 25 vertical layers). The model uses a vertically-Lagrangian
pass of data per day every 240N |0ngitude; we asume a finite volume advection scheme (Lin, 2004) and has simple
13:18 local ascending node time here. Examples of the sunlinear schemes for both dry and convective vertical mixing.
lit portion of the OCO FOV ground track are given in Fig. 1.  The modeled 3-D concentration fields are sampled in as
The OCO ground track repeats precisely after 16 days, @imilar a manner to the true OC®co, measurements as
fact that is useful for calibrating the measurements at fixedthe transport model permits: vertically, using the averaging
ground sites. However, as shown in Fig. 1, the ground trackkernels computed by @&ch et al., as a function of surface
also achieve a somewhat uniform spatial coveragedt’ type, SZA, aerosol OD, and nadir or glint viewing mode;
in longitude after only 7 days: we use this 7-day period ashorizontally, at the transport model's 2 5° resolution; and
the discretization step for our solved-for fluxes, since it givestemporally, at the model’s integration time step (1 h).
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The adjoint of the transport model is needed in the assimiem (Peters et al., 2005; Zupanski et al., 2007; Feng et al.,
ilation scheme to move model-data misfit information back-2009). Both the ensemble and variational methods achieve
wards in time to compute the cost function gradient. The ad-their computational savings in a similar fashion: by solving
joint of the forward model has been computed in an efficientfor only an approximate, low-rank version of the full a poste-
manner by running a linear version of the forward advectionriori covariance matrix. The ensemble filters have the advan-
scheme backwards, and by computing the exact adjoint ofage of not requiring an adjoint and are easier to implement,
the vertical mixing schemes’ column mixing matrices. The but they also introduce approximations that may degrade the
adjoint is accurate to within-0.05% across a two-week run estimate. We have chosen to go with the proven computa-
(as computed using the definition of the adjoint, i.e., compar-tional savings of the variational methods for this study.
ing M x))"M(x) to xTMT (M (x)), for point perturbations The variational method works in an iterative fashion, run-
in the initial concentration field, whereM represents the ning an estimate of the surface fluxes forward in time through
forward transport operator and” the adjoint). As shown the transport model to derive modeled measurements, com-
in Baker et al. (2006b), this adjoint allows the true fluxes to paring these to the true measurements, and running these
be recovered to within 0.2% after 60 iterations in a perfect-measurement residuals (weighted using assumed measure-

model simulation with no measurement errors added. ment error statistics) backwards in time through the adjoint
of the transport model to obtain flux corrections, then repeat-
2.3 Data assimilation scheme ing. The flux inversion is posed mathematically as a mini-

mization problem, with the adjoint run providing the gradient
We solve for weekly surface COluxes at 2 x 5° in lat/lon,  to the measurement portion of the cost function. We use the

using simulatedXco, measurements across a data spanBroyden-Fletcher-Goldfarb-Shanno (BFGS) method to solve
of 1 year. Both the number of fluxes to be solved for it

(90x 72x52=~35000) and the number of data values used
(365x1500=~50000) are at least an order of magnitude 2.4 Simulation approach
larger than that used in typical past time-dependen DO
versions of in situ data (e.g.,d8enbeck et al., 2003; Peylin The assimilation seeks to drive an initial (a priori) guess of
et al., 2005b; Patra et al., 2005; Baker et al., 2006a; Raynethe fluxes towards the real-world (“true”) fluxes, using the
et al., 2008). Most of these previous inversions used themeasurements. In our simulations here, we generate mea-
“Bayesian synthesis method”, a batch least squares techniqusirements with different error sources added on that attempt
in which transport basis functions were constructed in sepato describe the real errors OCO will encounter when it actu-
rate model runs, either one for each solved-for flux or (back-ally flies, then process the measurements with the assimila-
wards in time using the adjoint) one for each measurement, téion method in the same way that we would do with the real
fill a Jacobian matrix relating fluxes to concentrations. Thedata. Since we know the fluxes used in generating the data,
resulting system of linear equations was solved directly towe can compare the estimated fluxes to these “true” values to
give both the optimal estimate and the accompanying covariget actual estimation errors. If only random estimation errors
ance matrix describing the estimation errors. For problemsare added to the data (see Experiments 1 and 2, Sect. 2.6), the
of the size addressed here, this sort of direct (non-iterativeptatistics of these estimation errors should be consistent with
method is not computationally feasible and a more efficientwhat would be given by the full-rank covariance matrix, if
approach is needed. one were computed. To approximate the uncertainties that
We have chosen to use a variational data assimilation apwould be given by the covariance matrix, we accumulate our
proach to overcome these hurdles. It is similar to the “4-random estimation error statistics over seasons (13 weekly
D Var’ methods used in numerical weather prediction, ex-flux values) and over a full year (52 values).
cept that instead of optimizing an initial condition (the at- Our simulation approach has the added benefit of allow-
mospheric state) at the start of a relatively short assimilatioring us to quantify the impact of systematic errors, such as
window, we optimize time-varying boundary values (surface measurement biases or errors in the transport model, with
CO, fluxes) over a longer span. Baker et al. (2006b) out-the same statistics as for the random error experiments. In
line the mathematical details and give some test results usinthe first case, the biases are added when simulating the true
simulated data. Bdenbeck (2005) has used a similar ap- measurements; in the second case, different winds and verti-
proach to estimate daily CGluxes from 20+ years of in situ  cal mixing parameters are used in the optimization than are
CO, measurements, and Meirink et al. (2008) have recentlyused to generate the truth.
used this method to estimate surfaceGldxes on a fine grid For our true fluxes, we use monthly land biospheric fluxes
from SCIAMACHY data. Rayner et al. (2005) have used a from the LPJ model (Sitch et al., 2003) and monthly ocean
variational approach for solving directly for parameters in fluxes from a biospheric run of the NCAR ocean model
land biosphere carbon models, bypassing the surface fluxe¢Doney et al., 2006; Najjar et al., 2007); both are interpo-
Over the past several years, a new class of ensembile filterinkqited to daily values. For our a priori fluxes, we use similar
methods have also been applied to the tracer transport prolfluxes from the CASA land biosphere model (Randerson et
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Fig. 2. January (left) and July (right) mean values (aj the “true” surface C@ fluxes (LPJ land + NCAR ocean{b) the a priori CQ
fluxes (CASA land + Takahashi oceafg) the prior-truth flux difference; angl) |prior-truthj. The values ir(d) are used in the assumed a
priori flux error covariance matrix for all experiments except Experiment 3, the mistuning experiment, which used the ejudslim
[108kgCO,m2s71).
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al., 1997) and the Takahashi et al. (1999) ocean @ax tion of surface type, SZA, aerosol OD, and pointing mode
product. Figure 2a—c gives snapshots of both sets of fluxe¢nadir vs. glint) (Fig. 3). They used a detailed radiative trans-
for January and July, as well as their difference. While bothfer scheme to simulate the radiances seen in the measured
sets of fluxes show similar features (e.g., the seasonal cycl®CO spectral bands, then fed these through the OCO “full-
of net photosynthesis minus respiration in both the northerrphysics” Xco, retrieval scheme, testing sensitivities to var-
and tropical land vegetation, uptake of €0y the extra- ious error sources. We use these error and AK estimates,
tropical oceans versus outgassing by the tropical oceansilong with surface FOV locations and SZAs taken from an
their timing and spatial details vary enough that the prior-accurate OCO orbit generator for both nadir and glint point-
truth difference (Fig. 2c) is often as large as the fluxes froming modes, to calculate realistic values single-soundipg,
either model: there is much room for improvement, even if retrieval errors and AKs around the orbit.
the models appear to be doing a fair job, superficially. There are potentially hundreds of separate measurements

The prior-truth flux differences (Fig. 2c) show systematic (with FOV areas<2.8kn?) along the FOV ground track
spatial and temporal correlations. The spatial correlations arewath for any single crossing of our 25° atmospheric
often at fine scales, many times associated with deserts anmodel grid boxes. Since these measurements are taken over
mountain ranges: thin lines af values running parallel to an often heterogeneous surface with different reflective prop-
the Canadian Rockies, for example. Because of the physicarties and C@ emissions, with varying cloud and aerosol
basis of these differences, we have some hope that the diimounts interfering with the retrieval, the measurement er-
ferences between our two sets of models will bear some rerors along the swath could be quite variable. When averaged
semblance to the difference between any one model and thacross the grid box, the uncorrelated portion of these errors
real-world fluxes. The Bayesian prior in our cost function could be expected to cancel out significantly. We make an
performs the useful function of damping out spurious noiseattempt here to estimate what portion of this error cancels
in the estimate due to noise in the measurements (or, moreut and what does not, to quantify the effective measure-
accurately, in the model-measurement mismatches). Howment error of all the valid retrievals inside each model grid
ever, inaccuracies in our knowledge of the a priori flux er- box. In computing this effective error, we consider the prob-
ror covarianceP,, including both correlations and the over- ability of obtaining cloud-free retrievals with aerosol ODs
all magnitude of the variances, will degrade the final assim-lower than a 0.30 cutoff, and we model correlations along
ilated estimate. We use a diagoria) with variances set the orbit as a function of SZA. The along-orbit computation
equal to the square of the actual weekly prior-truth flux dif- of the AKs and single- and multi-sounding retrieval uncer-
ference (Fig. 2d) in most of our assimilation experiments (sedainties are done first at & % 1° resolution, then translated
Sect. 2.6), but also use an less precise estimate (Fig. 2e, bastglthe 2 x 5° model grid box resolution used in the assim-
on the magnitude and variability of the prior fluxes) in a sen-ilation based on the time spent in eachx11° area inside
sitivity experiment to examine the impact of realistic errors the 2 x 5° box. We show annual mean plots here for the
in the assumedP,. It is possible that we could have con- uncertainties and quantities used to compute them, but they
structed aP, with off-diagonal elements (correlations) that vary monthly in the simulations (see the Supplementary Ma-
would better represent our prior-truth flux difference; sinceterial for seasonal plotshttp://www.atmos-chem-phys.net/
this would presumably lead to better-converged results, wel0/4145/2010/acp-10-4145-2010-supplemenj.pdf
should obtain conservative results using our diagéyal

We have not included fossil fuel fluxes in these simula-2.5.1 Single-soundingX co, errors and supporting
tions: errors in our best estimate of the fossil fuel source are fields
thought to be small at our 5° resolution. The net flux un-
certainties we obtain over land should thus be thought of ad he calculation of the SZA and the FOV location on the sur-
applying to the sum of the fossil and land biospheric fluxes.face, required for the&(co, error and AK calculations, both
Similarly, the diurnal cycle of flux is not modeled here, since depend on an accurate orbit propagation. For nadir mode,
the OCO data, taken at a single local time per day, cannothe FOV is located at the sub-satellite point. For glint mode,
resolve it. Insofar as the OCO data are biased with respedhe surface normal at the glint spot is computed by itera-
to daily meanXco,, the resulting C@flux estimates will be tion until the surface normal is the same angle from the sun

biased as well; this error term is not quantified here. and the satellite position vectors, in the plane they define.
In both pointing modes, the surface normal is computed as-
2.5 Xco, measurement errors and averaging kernels suming the Earth is an oblate spheroid. The orbit is taken as

sun synchronous, with a 13:18 local time of ascending node,
The assimilation requires a statistical description of the er-«=7083.45km¢=0.0012,i=98.2. The anomaly is chosen
rors in individual Xco, measurement retrievals, as well as arbitrarily to have the spacecraft crossing north across the
knowledge of the averaging kernel (AK— how strongly each equator at 00:00:00 on 1 January.
vertical layer contributes to the column averagepséh et Figure 4a gives the distribution of the five surface types
al. have obtained new estimates of both quantities as a funaised to calculate th&co, errors and AKs: ocean/water,
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Fig. 3. A summary of(a) the single-sounding OCQ'co, uncertainties [ppm] anb) and (c) normalized averaging kernels (AKs) for

nadir (top) and glint (bottom), from @sch et al., for five surface types (conifer, green; desert, red; sparse vegetation, magenta; snow, cyan;
and ocean, blue) and for four 760 nm aerosol ODs (0.00, dotted; 0.10, dot-dash; 0.20, solid; and 0.30, dashed). The AKs in (b) have been
averaged over SZAs of 26-50°; those in (c) over 60— 75° for glint and 60 — 80° for nadir.

snowl/ice, desert, conifer (representing all types of dense veger aerosols) across the full length of the 10 km-wide FOV
etation), and sparse vegetation/exposed soil. Figure 4b giveground track, there will still be a difference between this per-
median total aerosol ODs derived from Aqua/MODIS data.fect ground track average and the avera@s, across the
The aerosol OD histograms used to compute these mediarfsll grid box. Second, the perfedico, measurements may
are described in more detail indBch et al. Computed solar not even get the ground track average correct, because of
zenith angles as a function of latitude for four seasons argon-uniform coverage (data gaps) due to clouds and aerosols.
given in Fig. 5a. Finally, the OCO single-soundifigo, re- And, third, theXco, measurements are obviously not per-
trieval uncertainties calculated from these fields are given infect, but are subject to the measurement errors discussed
Fig. 6a for both nadir and glint pointing modes. The most no-above. When all th&lco, measurements inside a grid box
ticeable feature of Fig. 6a is how much lower the uncertain-are averaged together, their errors may cancel out to some
ties are over the oceans in glint mode as compared to nadiextent in the average, but there will still be a remaining error
mode. Note also, however, that they are somewhat lower ovebetween the average measurement and theXegus value

the land in nadir mode compared to glint. for the measured portion of the ground track. All three of
these errors — track-to-box representation error, along-track
2.5.2 Computing effective multi-soundingX co, errors representation error, and average effective measurement er-

ror — must be combined to get the model-measurement mis-

Our ability to represent the OCQco retrievals is lim-  match error that should be fed into the flux error simulations.
ited by the fairly coarse spatial resolution of our transport
model: our~220km wide grid boxes cannot represent the The first two of these error sources have been examined by
Xco, variability occurring in the real world at shorter spatial Corbin et al. (2008). They did detailed simulationsXio,
scales. However, for the purposes of estimating €Cahcen-  variability inside domains of 2x 1° and £ x 4° using a
trations and fluxes at scales of 100s to 1000s of km, there isnesoscale atmospheric transport model, comparing geg
no need to model every2 kn? X co, retrieval correctly. The  averages along an OCO-like FOV ground track to the aver-
real question is: how close does the average of allthe, age values across the full domain to obtain estimates of the
measurements taken inside a model-scale grid box come ttrack-to-box representation errors. They also simulated the
the average of all tru& co, values across the full area of that effect of clouds on the availability of OCO retrievals, coming
grid box (not just inside the-10 km-wide OCO FOV track)? up with realistic estimates of the along-track representation
We model the latter quantity. errors. For the two sites they examined, they concluded that

The first point to note is that even if théco, measure-  the along-track representation error was small compared to
ments are perfect and complete (no data gaps due to cloudbke track-to-box representation error. They also concluded
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Fig. 5. (a) The solar zenith angles (SZA) encountered in nadir (red)

and glint (blue) pointing modes for four times of the year, plot-

I ted against FOV latitude. (The 1 October—12 March difference re-

L L L L L L L A B flects the east/west shift in the Sun’s position in the analem¢bp).

The correlation lengti. beyond which measurement errors are as-

005 0.1 0.15 02 025 0.3 035 04 045 05 055 0.6 0.65 0.7 sumed to be independent, for nadir (red) and glint (blue), as given
by Eq. (1).

Fig. 4. (a) The five surface cover types assumed: desert (red),

conifer (white), ocean/water (yellow), snow (blue), and soil/sparse

vegetation (black).(b) The median aerosol OD at 760nm com- rors) and that their correlation lengths increase with SZA and

puted from Aqua/MODIS data according to the procedure outlinedpath in atmosphere. We represent this with a simple ad hoc

in Bosch et al. (annual mean of four seasonal medians). correlation length. (Fig. 5b):

L?=(c2 + (cy Ptan(SZA)?) 1)

that the track-to-box error was, in turn, largely random andwherec,, is a fine-scale cloud width (taken here as 4 ki),
relatively small compared to the measurement errors. In oufs a typical average cloud height (taken here as 7 km), and
study here, we neglect the along-track errors, and extrapo® is a path-length factor (taken as 1 for nadir pointing mode
late the Corbin et al., track-to-box representation errors fromand 2 for glint). The maximum number of possible indepen-
their two sites to the full globe using a fit proportional to dent measurements inside &x1° grid box is then taken
the absolute value of the net ocean or land biosphere flux0 be Nmax=1I1x1/L, wherel1x; is the OCO FOV ground
from our monthly-varying a priori flux model inside each track path length inside the box. This maximum value is re-
1° x 1° grid box (Fig. 6¢, with a proportionality factor of duced by the availability of data due to clouds and aerosols,
2.510° ppm/(kg C@ m—2s71)). These track-to-box repre- giving Netr, the effective number of independeXi¢o, mea-
sentation errors are taken to be unbiased and gaussian, astdrements inside the’ k 1° grid box, as

are added in all the simulation cases presented here.

The third error source, the effective joint error of all the in-
dividual Xco, measurements inside a grid box, is the largestwhere Phiaeroop is the probability of aerosol ODs exceeding
over almost all of the globe at all times of the year. To com-the 0.30 value beyond which OC®co, retrievals are not
pute it, one must factor in data gaps due to cloud coveragattempted, an@®:oud—free IS the probability of finding at least
or aerosol ODs greater than 0.30 (the level beyond whichone cloud-free scene in a swath of OCO FOV ground track
the OCO retrievals will not be routinely performed). Fur- of lengthL. Puiaeroop iS computed from the same aerosol
thermore, one must estimate the error correlation along th€@D histograms as the median aerosol ODs, fraisdh et al.
ground track of near-by measurements. Here we assume thdtougd—free IS computed from climatologies of Aqua/MODIS
errors from aerosols and clouds will dominate the correlatecand Terra/MODIS data, sampled in 10 km-wide swaths, as
errors (both directly by causing single-sounding retrieval bi- detailed in the Appendix.
ases that are correlated along-track, and indirectly by intro- Both aerosol and cloud coverage are calculated using data
ducing data gaps of finite extent that cause representation efrom the MODIS instrument aboard NASA's Aqua satellite,

Neft = Peloud—free(1 — Priaeroop)/1x1/L 2
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Fig. 6. (a) The single-sounding OCQ o, retrieval uncertainties;shotcomputed in Bsch et al., for both nadir (left) and glint (right)
viewing modes.(b) The effective multi-sounding OCQcp, measurement uncertainiys, computed aseff = o1shot v/ Neff- USING Nt

from Fig. 7a,(c) The assumed spatial representation error, extrapolated from Corbin et al. (@)0O&)e random measurement error added

to the data (in place afqf in Fig. 6b) in Experiment 3, the mistuning experiment. The extra measurement uncertainty assumed to account
for the impact of(e) aerosol biases ar(f) transport errors.

which flies in the same “A-train” orbit as OCO will. MODIS ability of encountering clouds and aerosols at SZAs greater
has a &1km FOV that, being close to the2knm? OCO  than 20 in glint mode, we use:

FOV area, should give realistic idea of cloud free areas and

aerosol amounts over most areas. Since the MODIS instru£cloud-free = Péf{éﬁé’ﬁféﬁ{.&mm”) (3)
ment scans up to 45off-nadir, the sensed radiation actu- ) ] .

ally passes though a slightly longer path than that for OCOWNil€PHiaeroop is recomputed by shifting the 0.30 OD cut-
in nadir mode, encountering if anything more clouds and®ff to & lower value of 0.3@2/(1+cos(SZA)/cos(20)) and
aerosols. For OCO in glint mode, however, the path length ofSUMming aerosol OD histogram to the right of this new value.
the radiation in the atmosphere can be quite a bit longer thafP"'C€ Neft is calculated, the effective measurement error ac-

that sensed by MODIS. To account for the increased propounting for all Xco, measurements inside each »11°
grid box, is given asoeff, 1x1 = o1sho//Neff. The effective
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a) N_Effective per 1x1 deg box, NADIR N_Effective per 1x1 deg box, GLINT
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Fig. 7. (a) The effective number of independeXito, measurements & in each ¥ latitude band for a single sun-lit pass of the OCO
orbit for both nadir (left) and glint (right), computed with Eq. (Zp) The probability Pcjoud—free Of finding at least one cloud-freEco,
measurement across an OCO FOV ground track of lengtiig. 5b), calculated from MODIS data according to the procedure outlined in
the Appendix.(c) The probability Phiaeroop Of encountering 760 nm aerosol ODs greater than 0.30, from Aqua/MODIS data.

measurement uncertainties &t>25° resolution used in the 2.6 Flux estimation simulations
assimilation are then computed from thesex11° values,
based on the distancgc1 and/zys inside each 1x 1°and  The main objective of our study is to perform a series of

2° x 5° box, as: OSSEs meant to represent how well our data assimilation
9 9 system will estimate surface G@luxes, given the presence
12x5/Ueff,2X5=lexl,i/deff,lxl,i- of various error sources. We somewhat arbitrarily divide
i these errors into purely random ones (modeled as unbiased,
Figure 6b gives the distribution of.1.1 and Fig. 7 Nefr, gaussian noise) and biases constant in space and time. In

along with thePeioud_free aNd Prineroop Values used to com-  reality, of course, there is a spectrum of errors that are corre-
pute them. Figure 7b, ¢ shows that both persistent cloudinesiited in both space and time that fall between these extremes,
and areas of high aerosol contamination significantly reducélue to correlations in such error-causing factors as scattering

the availability of OCO measurements in this approach. Thedue to aerosols and undetected clouds, spectral effects, and
oeff.1x1 Values in Fig. 6b are substantially higher than the Surface reflectance properties. We have attempted to account

track-to-box representation errors given in Fig. 6c, by gen-for some of these terms above by transforming the correlated
erally more than a factor of 5. The areas of low error in €rfors into the corresponding purely random problem using
Fig. 6b, ¢ show where the measurements with the greatedpe idea of “effective independent measurements”. Since the
information content will occur; the assimilation convolutes finest-resolution unit that the atmospheric transport model,

these with transport to determine where the flux constraintind thus the atmospheric flux assimilation, can deal with is
will be the strongest. the transport model grid box at the model time step, both ran-

dom and systematic errors are quantified at that scale: what
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is the net bias or random error between the weighted averageovariance matrix were taken to be the square of the actual
of all measurements in a grid box (from a single crossing)prior-truth flux difference given in Fig. 2c.
and the true concentration in that box? The remainder of the tests were done only for glint view-

Table 1 outlines a series of assimilation experiments weing mode; Experiments 3-5 differ from Experiment 2 in that
perform, with the error sources that have been added in each different source of systematic error was added in each case.
case. Two of the sources of error described above — thén Experiment 3, we add more realism by “mistuning” the
“track-to-box” representation errors and the random mea-assimilation, adding realistic errors to both the assumed a
surement errors — have been added in all the experimentgriori flux error and measurement error covariance matrices.
as gaussian noise. Biases due the representation errors wdrestead of making the a priori flux uncertainties proportional
found to be small in Corbin et al. (2008) and are not addedto the actual prior-truth flux difference (Fig. 2d), we use un-
here at all. Systematic errors in the measurements have beaertainties based only on our a priori flux patterns (Fig. 2e)
added onto true measurements in Experiments 4—6 (Table 1§ince, in real world simulations, we have no knowledge of
as described below. Whenever these systematic errors atee true fluxes. To mistune the assumed measurement er-
added, we increase the uncertainties assumed in the measr covariance matrixR, we actually change the added mea-
surement error covariance matrik, in an attempt to ac- surement uncertainties from the glint mode values in Fig. 6b
count for them. Although it is not formally valid, statis- to those shown in Fig. 6d; we keep the assumed values the
tically, to represent systematic errors with random ones, itsame as in the other experiments to allow the cost function
is often done and is certainly better than not attempting tovalues to be compared with the other experiments more read-
account for the biases, since in that case the measuremeritg. To obtain the values in Fig. 6d, we simplified the SZA-
would be given too much weight vis-a-vis the prior and the dependent glint mod&co, retrieval errors (Fig. 3a) as fol-
impact of the biases would be greater than if the measurelows: for the conifer and sparse vegetation surface types, the
ments had been de-weighted (Chevallier, 2007c). In all ex-neasurement errors were taken to be 0.60 and 0.50 ppm, re-
periments, both the measurement error and a priori flux erspectively, for SZAs under 35and 0.70 and 0.90 ppm over
ror covariance matrice® andP,, are diagonal: we account 55°; over deserts and snow, 0.40 and 1.10 ppm undér 45
for measurement correlations inside a grid box by comput-and 0.75 and 3.00 ppm over 45and over water, 0.40 ppm
ing the effective number of independent measurements antbr all SZAs.
adjusting the multi-sounding measurement uncertainties ac- Biases due to aerosols are expected to cause the main sys-
cordingly; measurement correlations between grid boxes aréematic errors in the OCX{co, retrievals (Connor et al.,
neglected; both time and space correlations between the est2008). In Experiment 4, we add a bias ¢&x-aeraOD
mated weekly fluxes are neglected, since usinga® grid to all measurements over land and ice-covered areas, and a
box already effectively imposes a fairly coarse correlationbias of —«-aeraOD over the ocean, where ae@D is the
length. seasonally-varying median aerosol OD (Fig. 4b) ang

Our control experiments (1 and 2) examine the impact2 ppm/OD; the maximum bias 0.6 ppm, since nXco,
of only random measurement errors in the nadir and glintretrievals are attempted for aerosol ODs greater than 0.3. The
mode data. There is no transport error: the same model thahagnitude of these assumed aerosol biases is generally larger
was used to generate the true data is used in the assimildhan the (&) multi-sounding random measurement uncer-
tion. There are no measurement biases added, only randoiainties over land, especially over Africa and central/southern
measurement errors. And the assimilation is well “tuned”: Asia. To account for this extra error in the assimilation,
both the assumed measurement error covariance matrix ande add the aerosol bias uncertainties given in Fig. 6e to the
the assumed a priori flux estimation error covariance matrixassumed multi-sounding random measurement uncertainties
are chosen to be consistent with the statistics of the adde@Fig. 6b and c) in quadrature. (The values added to the as-
measurement errors and of the prior-truth flux errors, respecsumed errors (Fig. 6e) are actually twice as high as the added
tively. With these assumptions, the flux errors that resultbiases to account for two effects: a) the assumed errors at
from the assimilation should agree with the error statistics1°® x 1° in Fig. 6e will drop by a factor of/2 when averaged
that would be given by the a posteriori flux covariance ma-across the 2wide grid boxes on which scale the biases are
trix of inverse methods that produce one (our assimilationadded, and (b) 50% of the area under a gaussian curve falls
here does not produce a full rank covariance matrix, onlywithing +0.676, requiring a larger & value when attempt-
a low-rank approximation not useful for quantitative error ing to represent a biag/2/0.676=2.09~2.)
analyses at the fine scales examined here). Such a poste- Atmospheric transport models have a variety of inaccura-
riori covariance matrices are often the end product of errorcies, not only in their representation of the broad-scale gen-
analyses and are useful for quantifying the precision of theeral circulation, but also in their smaller-scale mixing pro-
assimilation (the standard deviation of errors about the mearesses (especially between the planetary boundary layer and
estimate), though not the accuracy (the standard deviation ahe free atmosphere) and in their ability to represent fine scale
errors about the truth) since they do not quantify the impactin situ or satellite data, that impact the inverted flux esti-
of systematic errors. The variances in the a priori flux errormates. In Experiment 5 we add a simple approximation of
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Table 1. The errors added to the true measurements and the random error sources assumed in the assimilation for the various OSSEs. Figur
numbers are given for annual summary plots of the various added or assumed errors (e.g., “6b”). N=nadir, G=glint.

Experiment # Nadir/Glint Measurement Prior Flux Aerosol/Transport  Extra Aerosol/
Noise Added  Uncert. Assumed Biases Added? Transport Noise
and Assumed Assumed

Control, Nadir 1 N 6b, 6b 2d

Control, Glint 2 G 6b, 6b 2d

Mistuned 3 G 6d, 6b 2e

Aerosol bias 4 G 6b, 6b 2d 0/a 6e/-

Transport error 5 G 6b, 6b 2d oo —/6f

Mistuned+aerosols+transport 6 G 6d, 6b 2e 0/0 6e/6f

a) INADIR, Ranldon} + ISpaltiallRepI Errors b) IGLHI\TT, Mistuned, Randoml+ SlpRelp

1 1 1 T 1 1 1 1 1 1 1 1 1 T 1 1 1 1 1 T
c) GLINT, Random + Spatial Rep Errors d) GLINT, Random + SpRep + Transport
_ L 1 1 1 1 T | 1 1 L 1

L L 1
e ——

1 1 1 1 1 T 1 1 1 1
GLINT, Random + SpRep + Aerosol
| 1 1 TR | 1 1

Fig. 8. Fractional error reductions in 7-day G@uxes, using full-year RMS errors, after 50 iterations of the optimization method, for
experiments{a) #1, control case (random measurement errors and spatial representation errors only) using nédj#@ateontrol case
using glint data(b) #3, mistuned case, glintd) #4, random errors + aerosol biases, gl{g)#5, random + transport errors, glint, afip#6,
random errors + aerosol biases + transport errors + mistuning effects, glint.

these errors by shifting the meteorology products driving thewe add the transport uncertainties in Fig. 6f to the assumed
transport model forward by 18 h when generating the truthmeasurement uncertainties to account for the transport er-
as compared to those used in the assimilation. This caprors; these are taken as the mean of the absolute values of
tures errors in both the synoptic meteorology as well as inthe true and prior fluxes (Fig. 2a, b), divided by a factor of
the timing of the diurnal cycle of mixing. At the same time, 10~ kg CO, m~2s 1 ppm L. This ad hoc estimate is based
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on the idea that the largest transport errors occur where thever both land and ocean), we focus on glint mode in the
surface flux variability is the greatest, and that this occursremaining experiments.
where the fluxes themselves are the greatest. Improvements are less impressive in the areas with low
Finally, Experiment 6 examines the combined effect of all initial flux errors — the background flux estimation error
three systematic error sources: the mistuning effects, aeroselue to the measurement noise masks improvements there.
biases, and transport errors of Experiments 3, 4, and 5, refhe assimilation corrects the largest flux errors during initial
spectively. descent steps of the optimization, moving to progressively
finer-scale corrections later. While lack of improvement in
the low-flux areas could thus also be due to not running out
3 Results the optimization method for enough iterations, we have been
careful to converge adequately and feel that this is not the
We use the root mean square (RMS) difference, BMbe-  case here.
tween the estimated and true fluxes to assess the assimilation In Fig. 9, we plot the seasonal flux error reductions (com-
results. This is presented here in terms of the fractional erroputed from the RMS of four 13-week values) corresponding
reduction statistic, given by (RMsgor—RMSy0st /RMSprior, to the 7-day flux error reductions given in Fig. 8. For the con-
which puts areas of large and small flux variability on more trol experiments (Fig. 9a and c), the initial errors are reduced
equal footing (the RMS values themselves are given inby over 65% almost everywhere over land, as compared to
the Supplemental Materiahttp://www.atmos-chem-phys. only over 45% for the 7-day fluxes for similar areas. In glint
net/10/4145/2010/acp-10-4145-2010-supplement.pdf mode, the ocean improvements are also greater.
RMSyrior quantifies the initial difference between the  The a posteriori error statistics given by these control ex-
prior and true flux models; no attempt to incorporate periments correspond to those from a single draw from the a
the information provided by the current in situ measure- posteriori estimation error covariance matrix, if our method
ment network into RM§ior has been made, since Baker were to compute one. While they do not include system-
et al. (2006b) suggest that its constraint is weak at theatic errors, they provide a useful “best case” error estimate —
2°x5° resolution examined here. The RMS values for if the measurements are not precise enough to provide useful
the estimated 7-day fluxes given here are computed acroggformation in this view, they will never be when all the other
the full year (see Supplemental Material for a seasonalsystematic error sources are added in. We address these other
breakdowrhttp://www.atmos-chem-phys.net/10/4145/2010/ errors next.
acp-10-4145-2010-supplement.pdf RMS  statistics for
seasonal means Computed from the 7_day fluxes are a|S%2 Estimation errors with a “mistuned” assimilation

iven. . . .
¢ When the measurement noise and a priori flux error covari-

ance matrices assumed in the assimilatiep &ndP, ,) are
not equal to those corresponding to the true measurement

A posteriori RMS 7-day flux error reductions obtained using "0iS€ addedR;) and the true statistics of the prior-truth flux
data from nadir- and glint-mode OCO observations (Experi-1€1dS ®.1), then we call the a55|m|lat|onT“mlftuned”. Fora
ments 1 and 2) after 50 descent iterations of the assimilatioff@Sic BaTyesl|an cost function= (Hx —z)" R, *(Hx —2) +
algorithm are presented in Fig. 8a, c. The nadir observa!* =%¥o) Py (¥ —x,), wherex andx, represent the esti-
tions provide little improvement over the oceans (in agree-Matéd and a priori state vectarthe measurements, aikt
ment with the very high measurement errors there) but im_the_Imearlzed_m_easurement_ ma_ltrlx, the true a posteriori co-
pressive improvements over the land — 45% or more in mosY@/iance matrix in that case is given by

areas, especially where the initial flux errors (Fig. 2d) are
largest. The glint mode improvement over land is nearly as
good as that of nadir mode — surprisingly, given that the ef-
fective glint mode measurement uncertainties are larger ove[HTRale + p;i]*l (4)
land than the nadir ones (Fig. 6b). Apparently, enough land

flux information blows out over the ocean for the more pre-and no longer reduces to the simplified forf, =
cise glint mode measurements there to compensate for theH” R 1H + Po—é]‘1 =P, 4. To produce a posteriori error
less precise and/or less available glint mode measurementatistics corresponding to what would be given by a full-rank
over the adjacent land regions. As might be expected, the&ovariance matrix with our simulation setup (in the control
ocean flux improvement in glint mode is much better thanexperiments, 1 and 2), we had to Bgt= R, by adding mea-

in nadir; in fractional terms, it is as large as the improve- surement noise to the data using the statistics fRypand
ment over the land, over 45%, in the areas where the initialwe choseP, , to agree with the actual (known) prior-truth
errors are the largest. Since glint mode measurements giviux difference. However, in a real-world assimilation, one
lower flux errors over a broader area than nadir mode (i.ehas only an imprecise idea of wHat andP, ; should be, so

3.1 Control experiments

0,a

P, =[HTR;*H + P;}l]*l[HTR,le,R;lH + P*lPa,zP;j]
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a) NADIR, Random + Spatial Rep Errors b) GLINT, Mistuned, Random + SpRep
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Fig. 9. Fractional error reductions in seasonal £ftixes, computed from the RMS of the four seasonal values (JFM, AMJ, JAS, OND) for
experiments(a) #1, (b) #3, (c) #2, (d) #4, (e) #5, and(f) #6, as in Fig. 8.

R. #R; andP, , # P, and the covariance from Eqg. (4) ap- land where improvements over 65% remain, particularly in
plies; this is captured in our error statistics when we mistunethe interior of the continents.
Po.c andR,.
Mistuning bothP, , andR, (Experiment 3) degrades the 3.4 Impact of transport errors
flux estimate over most of the globe (compare Fig. 8b to c),
especially in areas with lower initial flux differences. Areas The 18 hour shift in winds added in Experiment 5 greatly
in the center of broad regions of initially-large flux errors are degrades the estimated fluxes over the extra-tropics (com-
affected the least by the mistuning. We have done a separafgare Fig. 8d to c), especially over North America and east
assimilation, not shown here, that verifies that most of thisAsia where the jets are the strongest, and has a somewhat
degradation is due to the mistuningfy ., rather tharR,,. lesser impact in the tropics. The near-surface winds in the
extra-tropics are predominantly horizontal, so transport er-
3.3 The impact of aerosol-related measurement biases  rors there lead to horizontal errors in where the flux correc-
tions are placed. Over the tropics, however, wind motions are
Adding a bias proportional to aerosol depth (Experiment 4)more vertical, due to the weak Coriolis force and the domi-
causes a significant degradation in the assimilated 7-daypance of convection; transport errors affect more where con-
fluxes over land (compare Fig. 8e to c), most noticeablycentrations are distributed in the column (having little impact
around the edges of the continents and around the higlon the column-integrated measurement) and less the horizon
aerosol regions of Africa, western Asia, and India. Overtal assignment of the fluxes. Interestingly, the degradation
the oceans, the impact is even larger, degrading the improven the estimates is weakest over the extratropical southern
ment by almost a factor of two in many places. The im- oceans, where horizontal winds are strong: transport here
pact of the biases is at least this important for the seasonahay be more predictable, or else the lower flux variability
fluxes (Fig. 9), but even so, there are still large areas ovehere may account for the difference.
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The degradation of the 7-day flux estimates due to transseasonal and annual mean flux errors across the 22 globe-
port error is much less than that due to the aerosol biasespanning regions from the Transcom3 (T3) flux inversion in-
over the oceans, and greater over the northern land (contercomparison project (see Fig. 1 from Baker et al., 2006a
pare Fig. 8d and e). The impact on the seasonal flux errofor a map). The RMS seasonal errors (plotted below the axis
reductions (Fig. 9), however, is different: the transport er-as negative values) for the 11 land regions drop from a pri-
rors generally have a smaller impact than the aerosol bias elri values of~0.5-2.0 PgClyear te-0.1-0.2 PgCl/year for
rors everywhere, except over North America, where they arghe control experiments. When the systematic errors in the
similar. Unlike the aerosol biases applied here, which varyproblem are added on, however, these land errors increase
slowly across the year, the transport errors are more variabléo ~0.3-0.6 PgClyear, still low enough to give a significant
and their effect on the inverted fluxes cancels out more wherimprovement over the a priori estimates, but much worse

averaged over longer spans. than the control experiment statistics would indicate. For the
annual mean errors (absolute values plotted above the axis)
3.5 Impact of all three systematic error sources over land, a priori errors in the range 0.1-0.5 PgCl/year

are reduced to generally below 0.1 PgClyear in the control
When the effects of all three systematic error sources (misexperiments, but rise back up t€0.1-0.3 PgC/yr when the
tuning, transport error, and measurement biases) are considystematic errors are considered. For those T3 regions with
ered together (Experiment 6), most of the flux improvementsthe largest initial errors, the errors are halved at least, while
are lost. In terms of the weekly flux error reductions (Fig. 8f), those with the smallest initial errors see little to no improve-
there are still areas over land with improvements of 45% orment. Over the oceans, where the seasonal cycles are less
higher, though these are restricted geographically to some gfronounced, error reductions of up to 50% are obtained for
the areas with the largest initial errors, or to broad regionsboth seasonal and annual mean errors in the control experi-
of homogeneous flux (eastern Siberia). Error reductions ovement with glint mode data, but little improvement is obtained
the oceans are less encouraging, under 15% for most areashen the systematic errors are also considered.
Improvements in the seasonal fluxes (Fig. 9f) are 10-20%
higher over the land than for the weekly fluxes but just as re-
stricted geographically, and are similarly low over the ocean4 Summary and discussion

3.6 Impact of systematic errors at coarser scales We have simulated how weXco, measurements from the
OCO satellite could constrain the surface sources and sinks
For climate research, flux averages over annual scales (avf CO,, using a variational data assimilation technique that
longer) are of more interest than the weekly and seasondreats the measurements at the time and place they occur,
fluxes discussed above. The annual mean fractional error reaveraged only over the time step and grid resolution of the
ductions we obtain are noisy — we simulated only a singletransport model. The fluxes are solved at a coarser time
year of data here, so random errors do not cancel out — butesolution — weekly — to get adequate measurement density
they tend to be at least as large the seasonal error reductiorsg our 2 x 5° spatial resolution. We have used improved
in Fig. 9. This suggests that the more-statistically-significantmeasurement information: new estimates of single-retrieval
fractional reductions we obtain for the seasonal flux errorserror uncertainties and averaging kernels calculated as a
(Fig. 9) may be a good proxy for the annual mean error re-function of surface type, aerosol OD, and viewing geometry.
ductions across the full globe. It was not clear that this wouldAnd we combine the information from all valid retrievals for
be the case before doing these tests: the magnitude of theeach~33 second grid box crossing to get the measurement
priori errors in the seasonal fluxes is generally higher thanuncertainty used in the assimilation, accounting for measure-
in the annual means, especially over land, and since thesment correlations as well as data dropout from both clouds
magnitudes are in the denominator of the error reductionsand aerosol.
one might think that the seasonal error reductions would be We first computed best case flux error estimates in our
higher. control experiments usingco, measurements affected only
The seasonal errors from the control experiments (sedy random errors. These error statistics correspond to those
Supplemental Material;http://www.atmos-chem-phys.net/ that would be given by a full-rank a posteriori covariance
10/4145/2010/acp-10-4145-2010-supplemenj.pdé char-  matrix, were one to be calculated. Nadir- and glint-mode
acterized by alternating regions of counterbalancing errorsmeasurements give similar flux improvements over the land:
over the global land areas, on scales~af000-2000km. generally over 45/65% for weekly/seasonal fluxes. The
The ocean errors vary across longer scales but are weakereekly flux error reductions are larger than those obtained
For the experiments with systematic errors added, the errorby Chevallier et al. (2007a) by almost a factor of two, despite
grow and take on coarser scale patterns over the land regionthe fluxes being solved for at a similar resolution: this is to
Much of the alternating: errors over land cancel out when be expected, since our measurement uncertainties (Fig. 6b)
integrated over larger regions. In Fig. 10, we integrate theare several times lower than the 2 ppm values they assumed.
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Fig. 10. Annual mean flux errors and RMS seasonal flux errors [PgClyear] integrated over the areas of the 22 Transcom3 emission regions.
The absolute values of the annual mean errors are plotted above the axis as positive values, while the RMS of four 13-week seasonal value
are plotted below it as negative values. A posteriori errors from three glint mode experiments are given: #2 (black bars), in which only
random measurement errors are added, #4 (green) in which aerosol biases are also added, and #6 (red) in which random errors, aerosol bie
and transport errors are all added, as well as mistuning effects. Also given: the a priori flux errors (light blue) and the a posteriori errors
given by assimilating only data from the in situ g@ontoring network of the 1990s (dark blue), computed as the root sum square of the
“Post. Error” and “Model Error” columns from Table 4 of the Transcom3,Gl0x interannual variability study (Baker et al., 2006a).

Also, we do not solve for both day and night fluxes for eachocean contain much information on the land fluxes, enough
span as they do, resulting in fewer degrees of freedom and & make up the difference. Feng et al. (2009) found a sim-
somewhat tighter flux constraint. It is more difficult to com- ilar compensation, using an entirely different approach for
pare our results with those of Miller et al. (2007) becauseassessing data availability and aggregated measurement er-
they both used higher measurement uncertainties (1 ppmijor. The difference between glint and nadir results over land
and solved for larger flux regions (effectively adding strongis more noticeable here than in Feng et al., however, per-
spatial correlations): our flux uncertainties are larger over thehaps because we decrease the probability of finding clear and
land (except over Australia where they use smaller regionsjow-aerosol scenes at high SZAs (using the factor in Eq. 3)
and smaller over the oceans (in both nadir and glint modes)more than they do. Over the oceans, the more precise glint
Our results, like those of Baker et al., 2006b and Miller et measurements lead to much larger flux error reductions than
al., 2007, indicate that the OCO data should provide a muchhe nadir data: over 45% across broad swaths of the tropi-
better constraint on the GOluxes than the current in situ cal and southern oceans, versus under 15% in nadir. Because
network, in this random-errors-only view. On the scale of the glint data provide more of an overall constraint on the
the 22 global Transcom3 regions, our seasonal error reducsurface fluxes (both land and ocean), in this random-errors-
tions are generally similar to the 32-day values of Feng etonly view OCO would collect more information on the global
al. (2009); like them, we see a tendency towards lower im-carbon cycle overall by remaining in glint mode at all times
provements at high latitudes in the winter hemisphere, wherrather than by switching between glint and nadir modes (but
few glint-mode measurements are available. see discussion below).

In our simulations, glint mode data give land flux error re-  While the control experiment error analyses provide a use-
ductions that are nearly as great as with nadir data, despiteul metric for comparing different sets of observations, they
the larger glint measurement uncertainties over land, apparprovide an overly-optimistic view of how well the OCO data
ently because the more precise glint measurements over thectually will improve our flux estimates. On one hand, the
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actual random retrieval errors are likely to be higher thanthe improvement seen in the control experiments is lost: the
those assumed here, since the analysisasfcB et al., does OCO data improve the weekly flux estimates by more than
not capture all possible radiative transfer errors (e.g. thosé5% in only a few restricted areas over the land (roughly
due to the vertical distribution, size, and shape of scatterers;orresponding to those areas where our a priori uncertainty
the absorption line shape, line mixing, etc.). Probably moreis the largest) and generally under 15% over the oceans.
importantly, though, a variety of systematic errors will pre-  Our simulations suggest that the precision of OCK¢,
vent the improvement from being this large. It is difficult to measurements is more than adequate for estimating weekly
know beforehand which systematic errors will be most im- grid-scale CQ fluxes at scientifically-useful levels. Know-
portant for a mission; the crude representations added herag annual mean Cg&Xluxes to within 0.1 PgC/yr for most of
give only a rough idea of what may actually occur. the 22 Transcom3 regions (Fig. 10) would constrain the key
First of all, we found that mistuning the assimilation (as- sources and sinks of GQwell on a global scale. The real
suming incorrect patterns for the a priori flux error covari- challenge, however, appears to be in identifying and remov-
ance and measurement error covariance matrices) by a realhg systematic errors, both in deriving th&-o, values and
istic amount degrades the error reductions significantly, esin processing these values with an atmospheric assimilation
pecially in areas where the initial flux differences are lower. method. For the level of systematic errors considered here,
This error source is unavoidable: the assimilation must beannual mean flux errors rise as high as 0.2—0.3 PgCl/year for
constrained by a realistic prior to damp out the worst effectsmany of the Transcom3 regions, a level which, while bet-
of the random measurement errors (Baker et al., 2006b), antkr than that given by the current in situ network, still would
yet there is little chance of modeling the details of the a pri-leave much uncertainty in the global carbon budget. Since
ori uncertainties correctly to avoid the mistuning (Chevallier the value of theXco, data fall off rapidly if systematic er-
et al., 2006); the same modeling challenges apply to the asrors are much higher than this, more effort must devoted to
sumed measurement error covariance, as well. quantifying them. We have addressed the systematic errors
Second, we added measurement biases proportional tonly in a very rough fashion here. The OCQo, retrievals
aerosol OD, since aerosol-related radiative transfer modelwill likely be corrupted by a variety of measurement error
ing errors are expected to be an important source of modelsources, spectrographic and radiative transfer modeling er-
measurement mismatches. With these biases added, the flugrs, and other errors besides the aerosol scattering effects
error reductions over the oceans are degraded by about a facensidered approximately here. Simulation studies might be
tor of two compared with the unbiased values; over land,able to help characterize the impact of these error sources,
flux improvements as high as in the unbiased case are stilbnce they are identified. These are not simply of academic
often achieved, but the spatial extent of such improvementsnterest, to be forgotten once the spacecraft begins return-
are degraded by about a factor of two. Weekly flux erroring real data; rather, they will be critical for interpreting the
reductions as high as 65% are still achieved in a few areagjata once it arrives. A more detailed assessment of transport
especially eastern Siberia. We obtain aerosol-related annuarrors must also be performed. The transport errors could
mean flux biases on the scale of the 22 Transcom3 regionbe quantified by running the identical fluxes (including fos-
that are generally smaller than Chevallier et al. (2007a) ob-sil fuel input at fine spatial scales and diurnally-varying land
tain: they are never greater than 0.2 PgCl/year (look at théviospheric fluxes) through multiple transport models, sam-
difference between the green and black bars on the top opling the resulting concentration fields with realistic averag-
Fig. 10). The two largest biases from Chevallier et al. (0.73ing kernels along realistic OCO orbits, and then comparing
and 0.57 PgClyear for Temp. Eurasia and Europe, respecahe resultingXco, values in an approach similar to what the
tively; see their Fig. 4) seem to be due to the use of aerosol'ranscom group has done for continuous in situ and aircraft
biases as high as 1.0 ppm or higher over those regions; thprofile data (Law et al., 2008; Patra et al., 2008; Pickett-
largest biases we applied were only 0.6 ppm (this, too, isHeaps et al., 2010) and is currently doing for satellite mea-
likely to be over-optimistic). surements (S. Maksyutov, lead). Finally, our mistuning ex-
Finally, we examined the impact of transport model errorsperiment illustrates the importance of having a good a priori
in the assimilation with the ad hoc approach of shifting the flux model to help partition the flux corrections properly: we
winds used to generate the truth by 18 h. These degradechust continue to improve our flux process models, just as we
the 7-day flux improvements more strongly over land thanmust improve our transport models.
the aerosol bias experiment, especially in the extra-tropical If the systematic errors in the problem can be beaten down
north, but had a much smaller impact over the oceans. The¢o below the levels used here, then the OCO measurements
impact on the seasonal flux error reductions was much lessshould provide much useful new carbon cycle science. Im-
apparently, the transport errors that we added largely averaggrovements in seasonal fluxes ©60% or more over the
out in time, something that may not occur with more realistic tropical and northern forests, when viewed over the course of
transport errors. multiple years, will begin to resolve the processes driving the
When all three systematic error sources (mistuning, transglobal interannual variability of C& Similar improvements
port, and aerosol biases) are added at the same time, most of weekly fluxes will help clarify the response of ecosystems
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a) Prob of a cloud-free pixel over cloud corr L vs. 5km x 10km, NADIR  b) Prob of a cloud-free pixel over cloud corr L vs. 5km x 10km, GLINT

0 005 0.1 0.15 02 025 03 035 04 045 05 055 08 0.65 0.7 0.75 0.8 0.85 09 095 1

Fig. A1l. Computation of climatological cloud-free pixel availability from Terra/MODIS and Aqua/MODIS data. The ratio of the probability
of finding at least one cloud-free sounding across a ground track swath of IEr(ily. 5b) over the same probability for a swath only
5km long, calculated by sampling 10 km-wide Terra/MODIS Level 2 data swaths in the along-track directiort, mire) nadir- andb)

glint. (c) The cloud-free probability at 1 kil km resolution, taken from the Aqua/MODIS Level 3 cloud-mask prod(ditand(e): the
probability of finding at least one cloud free sounding in an OCO ground track swath of [er{gtdir and glint) found by multiplying (c)

by (a) and (b).(f) The glint-mode cloud-free probability from (e) corrected for the greater atmospheric path length at high SZAs according
to Eq. (3). Note that the probabilities in (e) are higher than in (d) becaus@bout two times longer in glint than nadir (Fig. 5b); because
they are divided by_ in Eq. (2), however, the resultinef values are lower in glint than nadir, even without the glint path correction.

to fast disturbances (like fire) and variability in the weather- Appendix A

related drivers. Improvements over the ocean may be as great

as over land, depending on the nature of the aerosol biasgSloud coverage calculations

especially. Perhaps the greatest impact will come where our

current observations are the worst, such as over the tropigjgure 7b shows the probability of finding at least one cloud-

cal forests, which are thought to play in driving global £0 free scene inside an OCO ground track swath of lerigth

Varlablllty (Baker et al., 2006a) Further, the glObal distribu- the cloud influence |ength defined by Eq (1) and p|0tted in

tion of the improvements should help clarify the partitioning Fig. 5b. This appendix describes how climatological values

of the global sink between the tropics and extra-tropics, andor this probability are derived from MODIS observations.

help pin down the longitudinal distribution of the northern - 1oud fraction parameter from the Aqua/MODIS

COz sink. Level 3 MYD08M3 product gives the monthly average
probability that any single MODIS scene will be clear of
detectable clouds, at°k 1° resolution. This is computed
from data at 1 knx1 km resolution, close to the OCO FOV
size, and is available for the same orbit as OCO. This should
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give a very good idea of the probability that any single OCO In the final step of this process, we interpolate these mul-
sounding will see cloud-free conditions. Because of along-tiples across the full year from the four months examined
track spatio-temporal correlations, however, it is not clearby Chang and Li, and multiply them by the single-sounding
how to compute the probability of finding at least one cloud- cloud-free probabilities of the Level 3 AQqua/MODIS product
free scene in an OCO ground track swath of lengtfrom (Fig. Alc) to obtain the probability of a cloud-free sound-
these single-sounding probabilities. Obtaining that informa-ing per cloud correlation length shown in Fig. 5b for the
tion requires examining the Level 2 MODIS data from which nadir case. For glint mode, these cloud-free probabilities are
the Level 3 monthly averages were computed. further reduced to account for the greater path-length in the
The Level 2 MODIS data come packaged in the form of atmosphere according to Eq. (3).
“granules”, approximately 5 min of measurements spanning Our approach here is actually somewhat conservative,
roughly 2000 km in the along-track direction and 2330 km since the probability of finding a cloud-free sounding inside
across-track (as swept out byt#5° scan on either side of a box of 5kmx10km (the value we normalize our Level
nadir). Rather than process this massive archive of data our2 multiple by) should be higher than the single-sounding
selves, we used a “climatology” of Level 2 MODIS cloud cloud-free probability. Another factor to consider is that our
and cloud mask products (MODQ& and MOD35L 2) that Level 2 MODIS multiples are computed using data from the
was compiled by Chang and Li (2005), albeit from the TerraTerra satellite, which has a 10:30 a.m. local ascending node
satellite which has a somewhat different orbit than Aqua andiime and thus may not exactly capture the cloud properties
OCO. To reduce the volume of data to process, Chang and Lihat OCO will see in the early afternoon.
processed 8 full days of data in each of the months of January,
April, July, and October, spaced 4 days apart from each othercknowledgementsife wish to express our great appreciation
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