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Abstract. We quantify how well column-integrated CO2
measurements from the Orbiting Carbon Observatory (OCO)
should be able to constrain surface CO2 fluxes, given the
presence of various error sources. We use variational data
assimilation to optimize weekly fluxes at a 2◦

×5◦ resolution
(lat/lon) using simulated data averaged across each model
grid box overflight (typically every∼33 s). Grid-scale simu-
lations of this sort have been carried out before for OCO us-
ing simplified assumptions for the measurement error. Here,
we more accurately describe the OCO measurements in two
ways. First, we use new estimates of the single-sounding re-
trieval uncertainty and averaging kernel, both computed as a
function of surface type, solar zenith angle, aerosol optical
depth, and pointing mode (nadir vs. glint). Second, we col-
lapse the information content of all valid retrievals from each
grid box crossing into an equivalent multi-sounding measure-
ment uncertainty, factoring in both time/space error corre-
lations and data rejection due to clouds and thick aerosols.
Finally, we examine the impact of three types of systematic
errors: measurement biases due to aerosols, transport errors,
and mistuning errors caused by assuming incorrect statistics.

When only random measurement errors are considered,
both nadir- and glint-mode data give error reductions over
the land of∼45% for the weekly fluxes, and∼65% for sea-
sonal fluxes. Systematic errors reduce both the magnitude
and spatial extent of these improvements by about a factor
of two, however. Improvements nearly as large are achieved
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over the ocean using glint-mode data, but are degraded even
more by the systematic errors. Our ability to identify and
remove systematic errors in both the column retrievals and
atmospheric assimilations will thus be critical for maximiz-
ing the usefulness of the OCO data.

1 Introduction

The global carbon cycle plays a key role in the climatic re-
sponse to anthropogenic forcing, yet our understanding of
its dominant processes is still too weak to make accurate
long-term predictions (IPCC, 2007). Atmospheric CO2 mea-
surements have revealed much of what we know about the
functioning of the global carbon cycle. As our data coverage
has increased, inverse methods have been used to optimize
global sources and sinks of CO2 and the process models that
compute them (Enting et al., 1995; Bousquet et al., 2000;
Rödenbeck et al., 2003; Baker et al., 2006a; Rayner et al.,
2005).

So far, the “top-down” atmospheric inverse approach to
validating carbon models has been only marginally success-
ful: where the data are most dense, fluxes may be estimated
at continental scales (Baker et al., 2006a), but not at the re-
gional scales where they would be most useful for identify-
ing flaws in the carbon models. Part of the problem is that
the transport models have systematic mixing errors, notably
in the vertical. The models also have great difficulty repre-
senting point measurements, particularly over the continents,
using grid boxes 100s of km wide. The largest problem,
however, is that the spatio-temporal density of the current in
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situ measurement network is insufficient to correct the sur-
face fluxes at regional scales. For the continental United
States, for example, solving for fluxes at a 500 km reso-
lution would require at least 7 500 000 km2/(500 km)2 ≈30
sites, each sampling air high enough in the column to have a
footprint at least 500 km wide, with a frequency dictated by
the cross-continental advection time scale.

Space-based measurements provide the most realistic op-
portunity to achieve global coverage at such regional scales.
Recently, two satellites have been designed specifically
to measure the column-averaged dry air mole fraction of
CO2 (XCO2): Japan’s Greenhouse Gases Observing Satel-
lite (GOSAT) and NASA’s Orbiting Carbon Observatory
(OCO). Their instruments measure CO2 absorption in the
near infra-red (IR) portion of the reflected solar beam and
thus have sensitivity down to the surface, including the vari-
able near-surface CO2 concentrations most affected by the
fluxes (Olsen & Randerson, 2004); previous instruments
measuring in thermal IR bands sensed CO2 concentrations
mostly in the mid- to upper-troposphere, with little infor-
mation about the surface fluxes (Chevallier et al., 2005a, b).
Both missions also try to identify cloud-free scenes for their
retrievals, since radiative transfer modeling problems associ-
ated with clouds can cause large errors in the retrieved CO2
concentrations. Both use sun-synchronous orbits with early
afternoon sun-lit equator crossing times and orbital inclina-
tions near 98◦ (though, since their ascending nodes are 180◦

off, their paths cross only at the equator); subsequent orbits
are separated by∼25◦ in longitude,∼99 min apart. In addi-
tion to nominal near-nadir pointing, both missions can also
point at the sun glint spot, greatly increasing the signal over
the oceans, which do not otherwise provide much reflection
in the near IR (Miller et al., 2007). GOSAT was launched in
January 2009, OCO in February 2009; GOSAT successfully
reached its operational orbit, OCO did not. While GOSAT
the measurements should greatly expand our knowledge of
the global carbon cycle, the OCO design had certain strong
points that have led to a push for a relaunch, possibly as early
as 2012. OCO would measure more frequently than GOSAT
(180 vs. 13.4 cross-scans per minute) with a smaller FOV
(∼2 km2 vs. ∼100 km2) and thus ought to find more cloud-
free scenes (Crisp et al., 2004) with lowXCO2 retrieval er-
rors.

In this study, we use an atmospheric inverse method to
quantify how wellXCO2 measurements from OCO would
help estimate sources and sinks of CO2 at the surface. A
tracer transport model relates simulated atmospheric CO2
concentrations to the surface CO2 fluxes at earlier times that
determined them. Progressively higher layers in the atmo-
spheric column reflect the influence of fluxes from increas-
ing broad areas at the surface, due to atmospheric mixing.
The transport model allows thisXCO2 measurement infor-
mation, weighted properly in the vertical column, to be dis-
tributed appropriately to fill in the 25◦ gaps between subse-
quent OCO passes on any given day. Though OCO cannot

clarify the diurnal cycle of flux, it can shed light on flux vari-
ability due to synoptic-scale weather systems when they are
modeled well by the transport model. Previous global CO2
flux inversions using data from the global in situ measure-
ment network have most often used the “Bayesian synthesis”
inversion approach (Enting et al., 1995). This method has
also been used to determine the information on surface CO2
fluxes provided by satellite data (Rayner and O’Brien, 2001;
Houweling et al., 2004; Miller et al., 2007), although only for
monthly fluxes from fairly large emission regions (∼2000 km
on a side) since the number of fluxes solved for was limited
by the inversion method. The density of OCO’s data should
permit fluxes to be estimated at a finer resolution than this,
but a more computationally-efficient inversion method is re-
quired.

We use a state-of-the-art variational data assimilation
scheme (Baker et al., 2006b) to solve for the CO2 fluxes at
the horizontal resolution of our transport model; optimized
time-varying 3-D CO2 concentration fields are also produced
as a by-product. The fluxes are solved at a weekly resolu-
tion, though the measurements are modeled at the time step
of the transport model (1 h). Our data assimilation approach
is used to perform observing system simulation experiments
(OSSEs) in which simulated data and measurement errors are
input to produce statistics on the flux estimation errors and
the improvement in the initial guess of the fluxes. Both Baker
et al. (2006b) and Chevallier et al. (2007a) have done prelim-
inary OSSEs for OCO using this approach before. For mea-
surements, they assumed a single measurement per model
grid box with a 1 or 2 ppm uncertainty value (1σ), respec-
tively, and with a flat weighting versus pressure in the verti-
cal. Here, we improve upon their assumptions in two ways.
First, for each individual retrieval, we use new OCOXCO2 re-
trieval uncertainties and averaging kernels (AKs) calculated
as a function of surface type, solar zenith angle, aerosol op-
tical depth (OD), and pointing mode (nadir vs. glint) using
the OCO Level 2XCO2 retrieval scheme forced with radi-
ances simulated by the OCO “full-physics” radiative transfer
scheme, taken from B̈osch, et al .(2010). Second, instead
of assuming only a single valid retrieval per crossing of each
model grid box (which takes∼33 s for our 2◦×5◦ boxes), we
collapse the information content of all valid retrievals across
each grid box crossing into an equivalent multi-sounding
measurement uncertainty, which is then used in the assimila-
tion. Valid XCO2 retrievals are only attempted for cloud-free
conditions in which the aerosol OD is less than 0.30, in or-
der to reduce associated radiative transfer modeling errors.
We compute the number of valid retrievals for each grid box
crossing based on the probability that such cloud-free and
low-aerosol conditions exist for each retrieval; these prob-
abilities are computed using climatological statistics from
MODIS data. We attempt to account for along-track correla-
tions in theXCO2 measurements when specifying the equiva-
lent measurement uncertainty for each model grid box cross-
ing. Finally, we examine more types of systematic errors than
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Fig. 1. (a)An example of the field-of-view (FOV) ground tracks for OCO for 21 March: 100 min of measurements for nadir pointing mode
(asterisks) and glint (circles). Black lines connect nadir and glint FOVs at same time. The maximum SZA is taken as 85◦/80◦ for nadir/glint.
Green asterisks indicate positions where nadir SZA≥85◦ and glint SZA≤80◦. (b) One-,(c) four-, and(d) seven-day coverage for nadir (red)
and glint (blue) beginning 21 March.

these previous studies: measurement biases due to aerosols,
transport errors, and errors caused by “mistuning” the inver-
sion (i.e., assuming incorrect a priori flux and measurement
error statistics). Feng et al. (2009) used the Bösch et al.,
OCO retrieval errors in an OCO OSSE study similar to this
one, but with an ensemble Kalman filter approach. Cheval-
lier et al. (2009) have recently performed a similar OSSE to
evaluate the flux constraint provided by GOSAT, using vari-
able measurement uncertainties appropriate for that satellite.

2 Method

2.1 OCO orbit and resolution choices

The OCO satellite measuresXCO2, the column-averaged dry
air fraction of CO2, in the near-infrared (reflected solar)
band with sensitivity down to the surface, but with a vertical
weighting that varies with surface type, aerosol amount, and
solar zenith angle (SZA) as described in Bösch et al. It sam-
ples eight fields of view (FOV), each with an area≤2.8 km2,
every 333 milliseconds across an FOV ground track up to
10 km wide (Crisp et al., 2004), of which only four are down-
linked. It is in a sun-synchronous orbit taking a single sun-lit
pass of data per day every 24.7◦ in longitude; we asume a
13:18 local ascending node time here. Examples of the sun-
lit portion of the OCO FOV ground track are given in Fig. 1.
The OCO ground track repeats precisely after 16 days, a
fact that is useful for calibrating the measurements at fixed
ground sites. However, as shown in Fig. 1, the ground tracks
also achieve a somewhat uniform spatial coverage of∼3.5◦

in longitude after only 7 days: we use this 7-day period as
the discretization step for our solved-for fluxes, since it gives

good coverage over our transport model grid boxes, 5◦ wide
in longitude. The latitudinal resolution of the model is cho-
sen at 2◦ to match that of our meteorological products to give
maximum resolution in the predominantly north/south (N/S)
direction of the OCO ground tracks. Because the OCO data,
sampled only once per day locally, provide little information
on the diurnal cycle ofXCO2, some assumption for the diur-
nal cycle of the surface CO2 fluxes must also be made (see
Sect. 2.4 below); this then allows multi-day flux blocks to be
estimated in a reasonable way from the data.

2.2 Transport model

An off-line atmospheric transport model (“PCTM”: see
Kawa et al., 2004) is used to relate surface CO2 fluxes to
CO2 concentrations. It is driven by pre-calculated meteo-
rological fields (horizontal winds, surface pressure, vertical
diffusion coefficient, and cloud-convective mass flux) from
the GEOS4-DAS reanalysis (Bloom et al., 2005) for the
year 1987, interpolated from the resolution normally input
to PCTM (2.0◦ × 2.5◦ in lat/lon; 55 vertical layers) to the
resolution of the model version used here (2◦

× 5◦ lat/lon;
25 vertical layers). The model uses a vertically-Lagrangian
finite volume advection scheme (Lin, 2004) and has simple
linear schemes for both dry and convective vertical mixing.

The modeled 3-D concentration fields are sampled in as
similar a manner to the true OCOXCO2 measurements as
the transport model permits: vertically, using the averaging
kernels computed by B̈osch et al., as a function of surface
type, SZA, aerosol OD, and nadir or glint viewing mode;
horizontally, at the transport model’s 2◦

×5◦ resolution; and
temporally, at the model’s integration time step (1 h).

www.atmos-chem-phys.net/10/4145/2010/ Atmos. Chem. Phys., 10, 4145–4165, 2010
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The adjoint of the transport model is needed in the assim-
ilation scheme to move model-data misfit information back-
wards in time to compute the cost function gradient. The ad-
joint of the forward model has been computed in an efficient
manner by running a linear version of the forward advection
scheme backwards, and by computing the exact adjoint of
the vertical mixing schemes’ column mixing matrices. The
adjoint is accurate to within∼0.05% across a two-week run
(as computed using the definition of the adjoint, i.e., compar-
ing (M(x))T M(x) to xT MT (M(x)), for point perturbations
in the initial concentration fieldx, whereM represents the
forward transport operator andMT the adjoint). As shown
in Baker et al. (2006b), this adjoint allows the true fluxes to
be recovered to within 0.2% after 60 iterations in a perfect-
model simulation with no measurement errors added.

2.3 Data assimilation scheme

We solve for weekly surface CO2 fluxes at 2◦ ×5◦ in lat/lon,
using simulatedXCO2 measurements across a data span
of 1 year. Both the number of fluxes to be solved for
(90×72×52=∼35 000) and the number of data values used
(365×1500=∼50 000) are at least an order of magnitude
larger than that used in typical past time-dependent CO2 in-
versions of in situ data (e.g., Rödenbeck et al., 2003; Peylin
et al., 2005b; Patra et al., 2005; Baker et al., 2006a; Rayner
et al., 2008). Most of these previous inversions used the
“Bayesian synthesis method”, a batch least squares technique
in which transport basis functions were constructed in sepa-
rate model runs, either one for each solved-for flux or (back-
wards in time using the adjoint) one for each measurement, to
fill a Jacobian matrix relating fluxes to concentrations. The
resulting system of linear equations was solved directly to
give both the optimal estimate and the accompanying covari-
ance matrix describing the estimation errors. For problems
of the size addressed here, this sort of direct (non-iterative)
method is not computationally feasible and a more efficient
approach is needed.

We have chosen to use a variational data assimilation ap-
proach to overcome these hurdles. It is similar to the “4-
D Var” methods used in numerical weather prediction, ex-
cept that instead of optimizing an initial condition (the at-
mospheric state) at the start of a relatively short assimilation
window, we optimize time-varying boundary values (surface
CO2 fluxes) over a longer span. Baker et al. (2006b) out-
line the mathematical details and give some test results using
simulated data. R̈odenbeck (2005) has used a similar ap-
proach to estimate daily CO2 fluxes from 20+ years of in situ
CO2 measurements, and Meirink et al. (2008) have recently
used this method to estimate surface CH4 fluxes on a fine grid
from SCIAMACHY data. Rayner et al. (2005) have used a
variational approach for solving directly for parameters in
land biosphere carbon models, bypassing the surface fluxes.
Over the past several years, a new class of ensemble filtering
methods have also been applied to the tracer transport prob-

lem (Peters et al., 2005; Zupanski et al., 2007; Feng et al.,
2009). Both the ensemble and variational methods achieve
their computational savings in a similar fashion: by solving
for only an approximate, low-rank version of the full a poste-
riori covariance matrix. The ensemble filters have the advan-
tage of not requiring an adjoint and are easier to implement,
but they also introduce approximations that may degrade the
estimate. We have chosen to go with the proven computa-
tional savings of the variational methods for this study.

The variational method works in an iterative fashion, run-
ning an estimate of the surface fluxes forward in time through
the transport model to derive modeled measurements, com-
paring these to the true measurements, and running these
measurement residuals (weighted using assumed measure-
ment error statistics) backwards in time through the adjoint
of the transport model to obtain flux corrections, then repeat-
ing. The flux inversion is posed mathematically as a mini-
mization problem, with the adjoint run providing the gradient
to the measurement portion of the cost function. We use the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to solve
it.

2.4 Simulation approach

The assimilation seeks to drive an initial (a priori) guess of
the fluxes towards the real-world (“true”) fluxes, using the
measurements. In our simulations here, we generate mea-
surements with different error sources added on that attempt
to describe the real errors OCO will encounter when it actu-
ally flies, then process the measurements with the assimila-
tion method in the same way that we would do with the real
data. Since we know the fluxes used in generating the data,
we can compare the estimated fluxes to these “true” values to
get actual estimation errors. If only random estimation errors
are added to the data (see Experiments 1 and 2, Sect. 2.6), the
statistics of these estimation errors should be consistent with
what would be given by the full-rank covariance matrix, if
one were computed. To approximate the uncertainties that
would be given by the covariance matrix, we accumulate our
random estimation error statistics over seasons (13 weekly
flux values) and over a full year (52 values).

Our simulation approach has the added benefit of allow-
ing us to quantify the impact of systematic errors, such as
measurement biases or errors in the transport model, with
the same statistics as for the random error experiments. In
the first case, the biases are added when simulating the true
measurements; in the second case, different winds and verti-
cal mixing parameters are used in the optimization than are
used to generate the truth.

For our true fluxes, we use monthly land biospheric fluxes
from the LPJ model (Sitch et al., 2003) and monthly ocean
fluxes from a biospheric run of the NCAR ocean model
(Doney et al., 2006; Najjar et al., 2007); both are interpo-
lated to daily values. For our a priori fluxes, we use similar
fluxes from the CASA land biosphere model (Randerson et
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Fig. 2. January (left) and July (right) mean values for(a) the “true” surface CO2 fluxes (LPJ land + NCAR ocean);(b) the a priori CO2
fluxes (CASA land + Takahashi ocean);(c) the prior-truth flux difference; and(d) |prior-truth|. The values in(d) are used in the assumed a
priori flux error covariance matrix for all experiments except Experiment 3, the mistuning experiment, which used the values in(e). All in
[10−8 kg CO2 m−2 s−1].
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al., 1997) and the Takahashi et al. (1999) ocean CO2 flux
product. Figure 2a–c gives snapshots of both sets of fluxes
for January and July, as well as their difference. While both
sets of fluxes show similar features (e.g., the seasonal cycle
of net photosynthesis minus respiration in both the northern
and tropical land vegetation, uptake of CO2 by the extra-
tropical oceans versus outgassing by the tropical oceans),
their timing and spatial details vary enough that the prior-
truth difference (Fig. 2c) is often as large as the fluxes from
either model: there is much room for improvement, even if
the models appear to be doing a fair job, superficially.

The prior-truth flux differences (Fig. 2c) show systematic
spatial and temporal correlations. The spatial correlations are
often at fine scales, many times associated with deserts and
mountain ranges: thin lines of± values running parallel to
the Canadian Rockies, for example. Because of the physical
basis of these differences, we have some hope that the dif-
ferences between our two sets of models will bear some re-
semblance to the difference between any one model and the
real-world fluxes. The Bayesian prior in our cost function
performs the useful function of damping out spurious noise
in the estimate due to noise in the measurements (or, more
accurately, in the model-measurement mismatches). How-
ever, inaccuracies in our knowledge of the a priori flux er-
ror covariance,Po, including both correlations and the over-
all magnitude of the variances, will degrade the final assim-
ilated estimate. We use a diagonalPo with variances set
equal to the square of the actual weekly prior-truth flux dif-
ference (Fig. 2d) in most of our assimilation experiments (see
Sect. 2.6), but also use an less precise estimate (Fig. 2e, based
on the magnitude and variability of the prior fluxes) in a sen-
sitivity experiment to examine the impact of realistic errors
in the assumedPo. It is possible that we could have con-
structed aPo with off-diagonal elements (correlations) that
would better represent our prior-truth flux difference; since
this would presumably lead to better-converged results, we
should obtain conservative results using our diagonalPo.

We have not included fossil fuel fluxes in these simula-
tions: errors in our best estimate of the fossil fuel source are
thought to be small at our 2◦

×5◦ resolution. The net flux un-
certainties we obtain over land should thus be thought of as
applying to the sum of the fossil and land biospheric fluxes.
Similarly, the diurnal cycle of flux is not modeled here, since
the OCO data, taken at a single local time per day, cannot
resolve it. Insofar as the OCO data are biased with respect
to daily meanXCO2, the resulting CO2 flux estimates will be
biased as well; this error term is not quantified here.

2.5 XCO2 measurement errors and averaging kernels

The assimilation requires a statistical description of the er-
rors in individualXCO2 measurement retrievals, as well as
knowledge of the averaging kernel (AK— how strongly each
vertical layer contributes to the column average). Bösch et
al. have obtained new estimates of both quantities as a func-

tion of surface type, SZA, aerosol OD, and pointing mode
(nadir vs. glint) (Fig. 3). They used a detailed radiative trans-
fer scheme to simulate the radiances seen in the measured
OCO spectral bands, then fed these through the OCO “full-
physics”XCO2 retrieval scheme, testing sensitivities to var-
ious error sources. We use these error and AK estimates,
along with surface FOV locations and SZAs taken from an
accurate OCO orbit generator for both nadir and glint point-
ing modes, to calculate realistic values single-soundingXCO2

retrieval errors and AKs around the orbit.
There are potentially hundreds of separate measurements

(with FOV areas≤2.8 km2) along the FOV ground track
swath for any single crossing of our 2◦

×5◦ atmospheric
model grid boxes. Since these measurements are taken over
an often heterogeneous surface with different reflective prop-
erties and CO2 emissions, with varying cloud and aerosol
amounts interfering with the retrieval, the measurement er-
rors along the swath could be quite variable. When averaged
across the grid box, the uncorrelated portion of these errors
could be expected to cancel out significantly. We make an
attempt here to estimate what portion of this error cancels
out and what does not, to quantify the effective measure-
ment error of all the valid retrievals inside each model grid
box. In computing this effective error, we consider the prob-
ability of obtaining cloud-free retrievals with aerosol ODs
lower than a 0.30 cutoff, and we model correlations along
the orbit as a function of SZA. The along-orbit computation
of the AKs and single- and multi-sounding retrieval uncer-
tainties are done first at a 1◦

×1◦ resolution, then translated
to the 2◦ ×5◦ model grid box resolution used in the assim-
ilation based on the time spent in each 1◦

× 1◦ area inside
the 2◦ × 5◦ box. We show annual mean plots here for the
uncertainties and quantities used to compute them, but they
vary monthly in the simulations (see the Supplementary Ma-
terial for seasonal plots;http://www.atmos-chem-phys.net/
10/4145/2010/acp-10-4145-2010-supplement.pdf).

2.5.1 Single-soundingXCO2 errors and supporting
fields

The calculation of the SZA and the FOV location on the sur-
face, required for theXCO2 error and AK calculations, both
depend on an accurate orbit propagation. For nadir mode,
the FOV is located at the sub-satellite point. For glint mode,
the surface normal at the glint spot is computed by itera-
tion until the surface normal is the same angle from the sun
and the satellite position vectors, in the plane they define.
In both pointing modes, the surface normal is computed as-
suming the Earth is an oblate spheroid. The orbit is taken as
sun synchronous, with a 13:18 local time of ascending node,
a=7083.45 km,e=0.0012,i=98.2◦. The anomaly is chosen
arbitrarily to have the spacecraft crossing north across the
equator at 00:00:00 on 1 January.

Figure 4a gives the distribution of the five surface types
used to calculate theXCO2 errors and AKs: ocean/water,
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Fig. 3. A summary of(a) the single-sounding OCOXCO2 uncertainties [ppm] and(b) and (c) normalized averaging kernels (AKs) for
nadir (top) and glint (bottom), from B̈osch et al., for five surface types (conifer, green; desert, red; sparse vegetation, magenta; snow, cyan;
and ocean, blue) and for four 760 nm aerosol ODs (0.00, dotted; 0.10, dot-dash; 0.20, solid; and 0.30, dashed). The AKs in (b) have been
averaged over SZAs of 20◦

−50◦; those in (c) over 60◦ −75◦ for glint and 60◦ −80◦ for nadir.

snow/ice, desert, conifer (representing all types of dense veg-
etation), and sparse vegetation/exposed soil. Figure 4b gives
median total aerosol ODs derived from Aqua/MODIS data.
The aerosol OD histograms used to compute these medians
are described in more detail in Bösch et al. Computed solar
zenith angles as a function of latitude for four seasons are
given in Fig. 5a. Finally, the OCO single-soundingXCO2 re-
trieval uncertainties calculated from these fields are given in
Fig. 6a for both nadir and glint pointing modes. The most no-
ticeable feature of Fig. 6a is how much lower the uncertain-
ties are over the oceans in glint mode as compared to nadir
mode. Note also, however, that they are somewhat lower over
the land in nadir mode compared to glint.

2.5.2 Computing effective multi-soundingXCO2 errors

Our ability to represent the OCOXCO2 retrievals is lim-
ited by the fairly coarse spatial resolution of our transport
model: our∼220 km wide grid boxes cannot represent the
XCO2 variability occurring in the real world at shorter spatial
scales. However, for the purposes of estimating CO2 concen-
trations and fluxes at scales of 100s to 1000s of km, there is
no need to model every∼2 km2 XCO2 retrieval correctly. The
real question is: how close does the average of all theXCO2

measurements taken inside a model-scale grid box come to
the average of all trueXCO2 values across the full area of that
grid box (not just inside the∼10 km-wide OCO FOV track)?
We model the latter quantity.

The first point to note is that even if theXCO2 measure-
ments are perfect and complete (no data gaps due to clouds

or aerosols) across the full length of the 10 km-wide FOV
ground track, there will still be a difference between this per-
fect ground track average and the averageXCO2 across the
full grid box. Second, the perfectXCO2 measurements may
not even get the ground track average correct, because of
non-uniform coverage (data gaps) due to clouds and aerosols.
And, third, theXCO2 measurements are obviously not per-
fect, but are subject to the measurement errors discussed
above. When all theXCO2 measurements inside a grid box
are averaged together, their errors may cancel out to some
extent in the average, but there will still be a remaining error
between the average measurement and the trueXCO2 value
for the measured portion of the ground track. All three of
these errors – track-to-box representation error, along-track
representation error, and average effective measurement er-
ror – must be combined to get the model-measurement mis-
match error that should be fed into the flux error simulations.

The first two of these error sources have been examined by
Corbin et al. (2008). They did detailed simulations ofXCO2

variability inside domains of 1◦ × 1◦ and 4◦ × 4◦ using a
mesoscale atmospheric transport model, comparing theXCO2

averages along an OCO-like FOV ground track to the aver-
age values across the full domain to obtain estimates of the
track-to-box representation errors. They also simulated the
effect of clouds on the availability of OCO retrievals, coming
up with realistic estimates of the along-track representation
errors. For the two sites they examined, they concluded that
the along-track representation error was small compared to
the track-to-box representation error. They also concluded
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Fig. 4. (a) The five surface cover types assumed: desert (red),
conifer (white), ocean/water (yellow), snow (blue), and soil/sparse
vegetation (black).(b) The median aerosol OD at 760 nm com-
puted from Aqua/MODIS data according to the procedure outlined
in Bösch et al. (annual mean of four seasonal medians).

that the track-to-box error was, in turn, largely random and
relatively small compared to the measurement errors. In our
study here, we neglect the along-track errors, and extrapo-
late the Corbin et al., track-to-box representation errors from
their two sites to the full globe using a fit proportional to
the absolute value of the net ocean or land biosphere flux
from our monthly-varying a priori flux model inside each
1◦

× 1◦ grid box (Fig. 6c, with a proportionality factor of
2.5·106 ppm/(kg CO2 m−2s−1)). These track-to-box repre-
sentation errors are taken to be unbiased and gaussian, and
are added in all the simulation cases presented here.

The third error source, the effective joint error of all the in-
dividualXCO2 measurements inside a grid box, is the largest
over almost all of the globe at all times of the year. To com-
pute it, one must factor in data gaps due to cloud coverage
or aerosol ODs greater than 0.30 (the level beyond which
the OCO retrievals will not be routinely performed). Fur-
thermore, one must estimate the error correlation along the
ground track of near-by measurements. Here we assume that
errors from aerosols and clouds will dominate the correlated
errors (both directly by causing single-sounding retrieval bi-
ases that are correlated along-track, and indirectly by intro-
ducing data gaps of finite extent that cause representation er-

Fig. 5. (a)The solar zenith angles (SZA) encountered in nadir (red)
and glint (blue) pointing modes for four times of the year, plot-
ted against FOV latitude. (The 1 October–12 March difference re-
flects the east/west shift in the Sun’s position in the analemma).(b)
The correlation lengthL beyond which measurement errors are as-
sumed to be independent, for nadir (red) and glint (blue), as given
by Eq. (1).

rors) and that their correlation lengths increase with SZA and
path in atmosphere. We represent this with a simple ad hoc
correlation lengthL (Fig. 5b):

L2
= (c2

w +(chP tan(SZA))2) (1)

wherecw is a fine-scale cloud width (taken here as 4 km),ch

is a typical average cloud height (taken here as 7 km), and
P is a path-length factor (taken as 1 for nadir pointing mode
and 2 for glint). The maximum number of possible indepen-
dent measurements inside a 1◦

× 1◦ grid box is then taken
to beNmax= l1×1/L, wherel1×1 is the OCO FOV ground
track path length inside the box. This maximum value is re-
duced by the availability of data due to clouds and aerosols,
giving Neff, the effective number of independentXCO2 mea-
surements inside the 1◦

×1◦ grid box, as

Neff = Pcloud−free(1−PHiAeroOD)l1×1/L (2)

wherePHiAeroOD is the probability of aerosol ODs exceeding
the 0.30 value beyond which OCOXCO2 retrievals are not
attempted, andPcloud−free is the probability of finding at least
one cloud-free scene in a swath of OCO FOV ground track
of lengthL. PHiAeroOD is computed from the same aerosol
OD histograms as the median aerosol ODs, from Bösch et al.
Pcloud−free is computed from climatologies of Aqua/MODIS
and Terra/MODIS data, sampled in 10 km-wide swaths, as
detailed in the Appendix.

Both aerosol and cloud coverage are calculated using data
from the MODIS instrument aboard NASA’s Aqua satellite,
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Fig. 6. (a) The single-sounding OCOXCO2 retrieval uncertaintiesσ1shot computed in B̈osch et al., for both nadir (left) and glint (right)
viewing modes.(b) The effective multi-sounding OCOXCO2 measurement uncertaintyσeff, computed asσeff = σ1shot/

√
Neff. using Neff

from Fig. 7a,(c) The assumed spatial representation error, extrapolated from Corbin et al. (2008).(d) The random measurement error added
to the data (in place ofσeff in Fig. 6b) in Experiment 3, the mistuning experiment. The extra measurement uncertainty assumed to account
for the impact of(e)aerosol biases and(f) transport errors.

which flies in the same “A-train” orbit as OCO will. MODIS
has a 1×1 km FOV that, being close to the∼2 km2 OCO
FOV area, should give realistic idea of cloud free areas and
aerosol amounts over most areas. Since the MODIS instru-
ment scans up to 45◦ off-nadir, the sensed radiation actu-
ally passes though a slightly longer path than that for OCO
in nadir mode, encountering if anything more clouds and
aerosols. For OCO in glint mode, however, the path length of
the radiation in the atmosphere can be quite a bit longer than
that sensed by MODIS. To account for the increased prob-

ability of encountering clouds and aerosols at SZAs greater
than 20◦ in glint mode, we use:

Pcloud−free= P
(2/(1+cos(SZA)/cos(20◦)))

cloud−free MODIS (3)

whilePHiAeroOD is recomputed by shifting the 0.30 OD cut-
off to a lower value of 0.30·(2/(1+cos(SZA)/cos(20◦))) and
summing aerosol OD histogram to the right of this new value.
OnceNeff is calculated, the effective measurement error ac-
counting for all XCO2 measurements inside each 1◦

× 1◦

grid box, is given as:σeff,1×1 = σ1shot/
√

Neff. The effective
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Fig. 7. (a) The effective number of independentXCO2 measurements Neff in each 1◦ latitude band for a single sun-lit pass of the OCO
orbit for both nadir (left) and glint (right), computed with Eq. (2).(b) The probabilityPcloud−free of finding at least one cloud-freeXCO2
measurement across an OCO FOV ground track of lengthL (Fig. 5b), calculated from MODIS data according to the procedure outlined in
the Appendix.(c) The probabilityPHiAeroOD of encountering 760 nm aerosol ODs greater than 0.30, from Aqua/MODIS data.

measurement uncertainties at 2◦
×5◦ resolution used in the

assimilation are then computed from these 1◦
× 1◦ values,

based on the distancel1×1 andl2×5 inside each 1◦ ×1◦ and
2◦

×5◦ box, as:

l2×5/σ
2
eff,2×5 =

∑
i

l1×1,i/σ
2
eff,1×1,i .

Figure 6b gives the distribution ofσeff,1×1 and Fig. 7,Neff,
along with thePcloud−free andPHiAeroOD values used to com-
pute them. Figure 7b, c shows that both persistent cloudiness
and areas of high aerosol contamination significantly reduce
the availability of OCO measurements in this approach. The
σeff,1×1 values in Fig. 6b are substantially higher than the
track-to-box representation errors given in Fig. 6c, by gen-
erally more than a factor of 5. The areas of low error in
Fig. 6b, c show where the measurements with the greatest
information content will occur; the assimilation convolutes
these with transport to determine where the flux constraints
will be the strongest.

2.6 Flux estimation simulations

The main objective of our study is to perform a series of
OSSEs meant to represent how well our data assimilation
system will estimate surface CO2 fluxes, given the presence
of various error sources. We somewhat arbitrarily divide
these errors into purely random ones (modeled as unbiased,
gaussian noise) and biases constant in space and time. In
reality, of course, there is a spectrum of errors that are corre-
lated in both space and time that fall between these extremes,
due to correlations in such error-causing factors as scattering
due to aerosols and undetected clouds, spectral effects, and
surface reflectance properties. We have attempted to account
for some of these terms above by transforming the correlated
errors into the corresponding purely random problem using
the idea of “effective independent measurements”. Since the
finest-resolution unit that the atmospheric transport model,
and thus the atmospheric flux assimilation, can deal with is
the transport model grid box at the model time step, both ran-
dom and systematic errors are quantified at that scale: what
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is the net bias or random error between the weighted average
of all measurements in a grid box (from a single crossing)
and the true concentration in that box?

Table 1 outlines a series of assimilation experiments we
perform, with the error sources that have been added in each
case. Two of the sources of error described above – the
“track-to-box” representation errors and the random mea-
surement errors – have been added in all the experiments
as gaussian noise. Biases due the representation errors were
found to be small in Corbin et al. (2008) and are not added
here at all. Systematic errors in the measurements have been
added onto true measurements in Experiments 4–6 (Table 1)
as described below. Whenever these systematic errors are
added, we increase the uncertainties assumed in the mea-
surement error covariance matrix,R, in an attempt to ac-
count for them. Although it is not formally valid, statis-
tically, to represent systematic errors with random ones, it
is often done and is certainly better than not attempting to
account for the biases, since in that case the measurements
would be given too much weight vis-a-vis the prior and the
impact of the biases would be greater than if the measure-
ments had been de-weighted (Chevallier, 2007c). In all ex-
periments, both the measurement error and a priori flux er-
ror covariance matrices,R andPo, are diagonal: we account
for measurement correlations inside a grid box by comput-
ing the effective number of independent measurements and
adjusting the multi-sounding measurement uncertainties ac-
cordingly; measurement correlations between grid boxes are
neglected; both time and space correlations between the esti-
mated weekly fluxes are neglected, since using a 2◦

×5◦ grid
box already effectively imposes a fairly coarse correlation
length.

Our control experiments (1 and 2) examine the impact
of only random measurement errors in the nadir and glint
mode data. There is no transport error: the same model that
was used to generate the true data is used in the assimila-
tion. There are no measurement biases added, only random
measurement errors. And the assimilation is well “tuned”:
both the assumed measurement error covariance matrix and
the assumed a priori flux estimation error covariance matrix
are chosen to be consistent with the statistics of the added
measurement errors and of the prior-truth flux errors, respec-
tively. With these assumptions, the flux errors that result
from the assimilation should agree with the error statistics
that would be given by the a posteriori flux covariance ma-
trix of inverse methods that produce one (our assimilation
here does not produce a full rank covariance matrix, only
a low-rank approximation not useful for quantitative error
analyses at the fine scales examined here). Such a poste-
riori covariance matrices are often the end product of error
analyses and are useful for quantifying the precision of the
assimilation (the standard deviation of errors about the mean
estimate), though not the accuracy (the standard deviation of
errors about the truth) since they do not quantify the impact
of systematic errors. The variances in the a priori flux error

covariance matrix were taken to be the square of the actual
prior-truth flux difference given in Fig. 2c.

The remainder of the tests were done only for glint view-
ing mode; Experiments 3–5 differ from Experiment 2 in that
a different source of systematic error was added in each case.
In Experiment 3, we add more realism by “mistuning” the
assimilation, adding realistic errors to both the assumed a
priori flux error and measurement error covariance matrices.
Instead of making the a priori flux uncertainties proportional
to the actual prior-truth flux difference (Fig. 2d), we use un-
certainties based only on our a priori flux patterns (Fig. 2e)
since, in real world simulations, we have no knowledge of
the true fluxes. To mistune the assumed measurement er-
ror covariance matrix,R, we actually change the added mea-
surement uncertainties from the glint mode values in Fig. 6b
to those shown in Fig. 6d; we keep the assumed values the
same as in the other experiments to allow the cost function
values to be compared with the other experiments more read-
ily. To obtain the values in Fig. 6d, we simplified the SZA-
dependent glint modeXCO2 retrieval errors (Fig. 3a) as fol-
lows: for the conifer and sparse vegetation surface types, the
measurement errors were taken to be 0.60 and 0.50 ppm, re-
spectively, for SZAs under 55◦, and 0.70 and 0.90 ppm over
55◦; over deserts and snow, 0.40 and 1.10 ppm under 45◦,
and 0.75 and 3.00 ppm over 45◦; and over water, 0.40 ppm
for all SZAs.

Biases due to aerosols are expected to cause the main sys-
tematic errors in the OCOXCO2 retrievals (Connor et al.,
2008). In Experiment 4, we add a bias of+α·aeroOD
to all measurements over land and ice-covered areas, and a
bias of−α·aeroOD over the ocean, where aeroOD is the
seasonally-varying median aerosol OD (Fig. 4b) andα =

2 ppm/OD; the maximum bias is±0.6 ppm, since noXCO2

retrievals are attempted for aerosol ODs greater than 0.3. The
magnitude of these assumed aerosol biases is generally larger
than the (1σ) multi-sounding random measurement uncer-
tainties over land, especially over Africa and central/southern
Asia. To account for this extra error in the assimilation,
we add the aerosol bias uncertainties given in Fig. 6e to the
assumed multi-sounding random measurement uncertainties
(Fig. 6b and c) in quadrature. (The values added to the as-
sumed errors (Fig. 6e) are actually twice as high as the added
biases to account for two effects: a) the assumed errors at
1◦

×1◦ in Fig. 6e will drop by a factor of
√

2 when averaged
across the 2◦-wide grid boxes on which scale the biases are
added, and (b) 50% of the area under a gaussian curve falls
withing ±0.676σ , requiring a larger 1σ value when attempt-
ing to represent a bias;

√
2/0.676= 2.09≈ 2.)

Atmospheric transport models have a variety of inaccura-
cies, not only in their representation of the broad-scale gen-
eral circulation, but also in their smaller-scale mixing pro-
cesses (especially between the planetary boundary layer and
the free atmosphere) and in their ability to represent fine scale
in situ or satellite data, that impact the inverted flux esti-
mates. In Experiment 5 we add a simple approximation of
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Table 1. The errors added to the true measurements and the random error sources assumed in the assimilation for the various OSSEs. Figure
numbers are given for annual summary plots of the various added or assumed errors (e.g., “6b”). N=nadir, G=glint.

Experiment # Nadir/Glint Measurement Prior Flux Aerosol/Transport Extra Aerosol/
Noise Added Uncert. Assumed Biases Added? Transport Noise
and Assumed Assumed

Control, Nadir 1 N 6b, 6b 2d
Control, Glint 2 G 6b, 6b 2d
Mistuned 3 G 6d, 6b 2e
Aerosol bias 4 G 6b, 6b 2d ✓/✗ 6e/–
Transport error 5 G 6b, 6b 2d ✗/✓ –/6f
Mistuned+aerosols+transport 6 G 6d, 6b 2e ✓/✓ 6e/6f

Fig. 8. Fractional error reductions in 7-day CO2 fluxes, using full-year RMS errors, after 50 iterations of the optimization method, for
experiments:(a) #1, control case (random measurement errors and spatial representation errors only) using nadir data;(c) #2, control case
using glint data,(b) #3, mistuned case, glint,(d) #4, random errors + aerosol biases, glint,(e)#5, random + transport errors, glint, and(f) #6,
random errors + aerosol biases + transport errors + mistuning effects, glint.

these errors by shifting the meteorology products driving the
transport model forward by 18 h when generating the truth
as compared to those used in the assimilation. This cap-
tures errors in both the synoptic meteorology as well as in
the timing of the diurnal cycle of mixing. At the same time,

we add the transport uncertainties in Fig. 6f to the assumed
measurement uncertainties to account for the transport er-
rors; these are taken as the mean of the absolute values of
the true and prior fluxes (Fig. 2a, b), divided by a factor of
10−7 kg CO2 m−2 s−1 ppm−1. This ad hoc estimate is based
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on the idea that the largest transport errors occur where the
surface flux variability is the greatest, and that this occurs
where the fluxes themselves are the greatest.

Finally, Experiment 6 examines the combined effect of all
three systematic error sources: the mistuning effects, aerosol
biases, and transport errors of Experiments 3, 4, and 5, re-
spectively.

3 Results

We use the root mean square (RMS) difference, RMSpost, be-
tween the estimated and true fluxes to assess the assimilation
results. This is presented here in terms of the fractional error
reduction statistic, given by (RMSprior−RMSpost)/RMSprior,
which puts areas of large and small flux variability on more
equal footing (the RMS values themselves are given in
the Supplemental Materialhttp://www.atmos-chem-phys.
net/10/4145/2010/acp-10-4145-2010-supplement.pdf).
RMSprior quantifies the initial difference between the
prior and true flux models; no attempt to incorporate
the information provided by the current in situ measure-
ment network into RMSprior has been made, since Baker
et al. (2006b) suggest that its constraint is weak at the
2◦

×5◦ resolution examined here. The RMS values for
the estimated 7-day fluxes given here are computed across
the full year (see Supplemental Material for a seasonal
breakdownhttp://www.atmos-chem-phys.net/10/4145/2010/
acp-10-4145-2010-supplement.pdf); RMS statistics for
seasonal means computed from the 7-day fluxes are also
given.

3.1 Control experiments

A posteriori RMS 7-day flux error reductions obtained using
data from nadir- and glint-mode OCO observations (Experi-
ments 1 and 2) after 50 descent iterations of the assimilation
algorithm are presented in Fig. 8a, c. The nadir observa-
tions provide little improvement over the oceans (in agree-
ment with the very high measurement errors there) but im-
pressive improvements over the land – 45% or more in most
areas, especially where the initial flux errors (Fig. 2d) are
largest. The glint mode improvement over land is nearly as
good as that of nadir mode – surprisingly, given that the ef-
fective glint mode measurement uncertainties are larger over
land than the nadir ones (Fig. 6b). Apparently, enough land
flux information blows out over the ocean for the more pre-
cise glint mode measurements there to compensate for the
less precise and/or less available glint mode measurements
over the adjacent land regions. As might be expected, the
ocean flux improvement in glint mode is much better than
in nadir; in fractional terms, it is as large as the improve-
ment over the land, over 45%, in the areas where the initial
errors are the largest. Since glint mode measurements give
lower flux errors over a broader area than nadir mode (i.e,

over both land and ocean), we focus on glint mode in the
remaining experiments.

Improvements are less impressive in the areas with low
initial flux errors – the background flux estimation error
due to the measurement noise masks improvements there.
The assimilation corrects the largest flux errors during initial
descent steps of the optimization, moving to progressively
finer-scale corrections later. While lack of improvement in
the low-flux areas could thus also be due to not running out
the optimization method for enough iterations, we have been
careful to converge adequately and feel that this is not the
case here.

In Fig. 9, we plot the seasonal flux error reductions (com-
puted from the RMS of four 13-week values) corresponding
to the 7-day flux error reductions given in Fig. 8. For the con-
trol experiments (Fig. 9a and c), the initial errors are reduced
by over 65% almost everywhere over land, as compared to
only over 45% for the 7-day fluxes for similar areas. In glint
mode, the ocean improvements are also greater.

The a posteriori error statistics given by these control ex-
periments correspond to those from a single draw from the a
posteriori estimation error covariance matrix, if our method
were to compute one. While they do not include system-
atic errors, they provide a useful “best case” error estimate –
if the measurements are not precise enough to provide useful
information in this view, they will never be when all the other
systematic error sources are added in. We address these other
errors next.

3.2 Estimation errors with a “mistuned” assimilation

When the measurement noise and a priori flux error covari-
ance matrices assumed in the assimilation (Ra andPo,a) are
not equal to those corresponding to the true measurement
noise added (Rt ) and the true statistics of the prior-truth flux
fields (Po,t ), then we call the assimilation “mistuned”. For a
basic Bayesian cost functionJ = (Hx −z)T R−1

a (Hx −z)+

(x −xo)
T P−1

o,a(x −xo), wherex andxo represent the esti-
mated and a priori state vector,z the measurements, andH
the linearized measurement matrix, the true a posteriori co-
variance matrix in that case is given by

Px = [HT R−1
a H +P−1

o,a]
−1

[
HT R−1

a RtR−1
a H +P−1

o,aPo,tP−1
o,a

]
[HT R−1

a H +P−1
o,a]

−1 (4)

and no longer reduces to the simplified formPx =

[HT R−1
a H + P−1

o,a]
−1

= Px,a . To produce a posteriori error
statistics corresponding to what would be given by a full-rank
covariance matrix with our simulation setup (in the control
experiments, 1 and 2), we had to setRt = Ra by adding mea-
surement noise to the data using the statistics fromRa , and
we chosePo,a to agree with the actual (known) prior-truth
flux difference. However, in a real-world assimilation, one
has only an imprecise idea of whatRt andPo,t should be, so
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Fig. 9. Fractional error reductions in seasonal CO2 fluxes, computed from the RMS of the four seasonal values (JFM, AMJ, JAS, OND) for
experiments:(a) #1, (b) #3, (c) #2, (d) #4, (e)#5, and(f) #6, as in Fig. 8.

Ra 6= Rt andPo.a 6= Po,t and the covariance from Eq. (4) ap-
plies; this is captured in our error statistics when we mistune
Po,a andRa .

Mistuning bothPo,a andRa (Experiment 3) degrades the
flux estimate over most of the globe (compare Fig. 8b to c),
especially in areas with lower initial flux differences. Areas
in the center of broad regions of initially-large flux errors are
affected the least by the mistuning. We have done a separate
assimilation, not shown here, that verifies that most of this
degradation is due to the mistuning ofPo,a , rather thanRa .

3.3 The impact of aerosol-related measurement biases

Adding a bias proportional to aerosol depth (Experiment 4)
causes a significant degradation in the assimilated 7-day
fluxes over land (compare Fig. 8e to c), most noticeably
around the edges of the continents and around the high
aerosol regions of Africa, western Asia, and India. Over
the oceans, the impact is even larger, degrading the improve-
ment by almost a factor of two in many places. The im-
pact of the biases is at least this important for the seasonal
fluxes (Fig. 9), but even so, there are still large areas over

land where improvements over 65% remain, particularly in
the interior of the continents.

3.4 Impact of transport errors

The 18 hour shift in winds added in Experiment 5 greatly
degrades the estimated fluxes over the extra-tropics (com-
pare Fig. 8d to c), especially over North America and east
Asia where the jets are the strongest, and has a somewhat
lesser impact in the tropics. The near-surface winds in the
extra-tropics are predominantly horizontal, so transport er-
rors there lead to horizontal errors in where the flux correc-
tions are placed. Over the tropics, however, wind motions are
more vertical, due to the weak Coriolis force and the domi-
nance of convection; transport errors affect more where con-
centrations are distributed in the column (having little impact
on the column-integrated measurement) and less the horizon-
tal assignment of the fluxes. Interestingly, the degradation
in the estimates is weakest over the extratropical southern
oceans, where horizontal winds are strong: transport here
may be more predictable, or else the lower flux variability
here may account for the difference.
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The degradation of the 7-day flux estimates due to trans-
port error is much less than that due to the aerosol biases
over the oceans, and greater over the northern land (com-
pare Fig. 8d and e). The impact on the seasonal flux error
reductions (Fig. 9), however, is different: the transport er-
rors generally have a smaller impact than the aerosol bias er-
rors everywhere, except over North America, where they are
similar. Unlike the aerosol biases applied here, which vary
slowly across the year, the transport errors are more variable
and their effect on the inverted fluxes cancels out more when
averaged over longer spans.

3.5 Impact of all three systematic error sources

When the effects of all three systematic error sources (mis-
tuning, transport error, and measurement biases) are consid-
ered together (Experiment 6), most of the flux improvements
are lost. In terms of the weekly flux error reductions (Fig. 8f),
there are still areas over land with improvements of 45% or
higher, though these are restricted geographically to some of
the areas with the largest initial errors, or to broad regions
of homogeneous flux (eastern Siberia). Error reductions over
the oceans are less encouraging, under 15% for most areas.
Improvements in the seasonal fluxes (Fig. 9f) are 10–20%
higher over the land than for the weekly fluxes but just as re-
stricted geographically, and are similarly low over the ocean.

3.6 Impact of systematic errors at coarser scales

For climate research, flux averages over annual scales (or
longer) are of more interest than the weekly and seasonal
fluxes discussed above. The annual mean fractional error re-
ductions we obtain are noisy – we simulated only a single
year of data here, so random errors do not cancel out – but
they tend to be at least as large the seasonal error reductions
in Fig. 9. This suggests that the more-statistically-significant
fractional reductions we obtain for the seasonal flux errors
(Fig. 9) may be a good proxy for the annual mean error re-
ductions across the full globe. It was not clear that this would
be the case before doing these tests: the magnitude of the a
priori errors in the seasonal fluxes is generally higher than
in the annual means, especially over land, and since these
magnitudes are in the denominator of the error reductions,
one might think that the seasonal error reductions would be
higher.

The seasonal errors from the control experiments (see
Supplemental Material;http://www.atmos-chem-phys.net/
10/4145/2010/acp-10-4145-2010-supplement.pdf) are char-
acterized by alternating regions of counterbalancing errors
over the global land areas, on scales of∼1000–2000 km.
The ocean errors vary across longer scales but are weaker.
For the experiments with systematic errors added, the errors
grow and take on coarser scale patterns over the land regions.
Much of the alternating± errors over land cancel out when
integrated over larger regions. In Fig. 10, we integrate the

seasonal and annual mean flux errors across the 22 globe-
spanning regions from the Transcom3 (T3) flux inversion in-
tercomparison project (see Fig. 1 from Baker et al., 2006a
for a map). The RMS seasonal errors (plotted below the axis
as negative values) for the 11 land regions drop from a pri-
ori values of∼0.5–2.0 PgC/year to∼0.1–0.2 PgC/year for
the control experiments. When the systematic errors in the
problem are added on, however, these land errors increase
to ∼0.3–0.6 PgC/year, still low enough to give a significant
improvement over the a priori estimates, but much worse
than the control experiment statistics would indicate. For the
annual mean errors (absolute values plotted above the axis)
over land, a priori errors in the range of∼0.1–0.5 PgC/year
are reduced to generally below 0.1 PgC/year in the control
experiments, but rise back up to∼0.1–0.3 PgC/yr when the
systematic errors are considered. For those T3 regions with
the largest initial errors, the errors are halved at least, while
those with the smallest initial errors see little to no improve-
ment. Over the oceans, where the seasonal cycles are less
pronounced, error reductions of up to 50% are obtained for
both seasonal and annual mean errors in the control experi-
ment with glint mode data, but little improvement is obtained
when the systematic errors are also considered.

4 Summary and discussion

We have simulated how wellXCO2 measurements from the
OCO satellite could constrain the surface sources and sinks
of CO2, using a variational data assimilation technique that
treats the measurements at the time and place they occur,
averaged only over the time step and grid resolution of the
transport model. The fluxes are solved at a coarser time
resolution – weekly – to get adequate measurement density
at our 2◦ × 5◦ spatial resolution. We have used improved
measurement information: new estimates of single-retrieval
error uncertainties and averaging kernels calculated as a
function of surface type, aerosol OD, and viewing geometry.
And we combine the information from all valid retrievals for
each∼33 second grid box crossing to get the measurement
uncertainty used in the assimilation, accounting for measure-
ment correlations as well as data dropout from both clouds
and aerosol.

We first computed best case flux error estimates in our
control experiments usingXCO2 measurements affected only
by random errors. These error statistics correspond to those
that would be given by a full-rank a posteriori covariance
matrix, were one to be calculated. Nadir- and glint-mode
measurements give similar flux improvements over the land:
generally over 45/65% for weekly/seasonal fluxes. The
weekly flux error reductions are larger than those obtained
by Chevallier et al. (2007a) by almost a factor of two, despite
the fluxes being solved for at a similar resolution: this is to
be expected, since our measurement uncertainties (Fig. 6b)
are several times lower than the 2 ppm values they assumed.
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Fig. 10. Annual mean flux errors and RMS seasonal flux errors [PgC/year] integrated over the areas of the 22 Transcom3 emission regions.
The absolute values of the annual mean errors are plotted above the axis as positive values, while the RMS of four 13-week seasonal values
are plotted below it as negative values. A posteriori errors from three glint mode experiments are given: #2 (black bars), in which only
random measurement errors are added, #4 (green) in which aerosol biases are also added, and #6 (red) in which random errors, aerosol bias,
and transport errors are all added, as well as mistuning effects. Also given: the a priori flux errors (light blue) and the a posteriori errors
given by assimilating only data from the in situ CO2 montoring network of the 1990s (dark blue), computed as the root sum square of the
“Post. Error” and “Model Error” columns from Table 4 of the Transcom3 CO2 flux interannual variability study (Baker et al., 2006a).

Also, we do not solve for both day and night fluxes for each
span as they do, resulting in fewer degrees of freedom and a
somewhat tighter flux constraint. It is more difficult to com-
pare our results with those of Miller et al. (2007) because
they both used higher measurement uncertainties (1 ppm)
and solved for larger flux regions (effectively adding strong
spatial correlations): our flux uncertainties are larger over the
land (except over Australia where they use smaller regions)
and smaller over the oceans (in both nadir and glint modes).
Our results, like those of Baker et al., 2006b and Miller et
al., 2007, indicate that the OCO data should provide a much
better constraint on the CO2 fluxes than the current in situ
network, in this random-errors-only view. On the scale of
the 22 global Transcom3 regions, our seasonal error reduc-
tions are generally similar to the 32-day values of Feng et
al. (2009); like them, we see a tendency towards lower im-
provements at high latitudes in the winter hemisphere, when
few glint-mode measurements are available.

In our simulations, glint mode data give land flux error re-
ductions that are nearly as great as with nadir data, despite
the larger glint measurement uncertainties over land, appar-
ently because the more precise glint measurements over the

ocean contain much information on the land fluxes, enough
to make up the difference. Feng et al. (2009) found a sim-
ilar compensation, using an entirely different approach for
assessing data availability and aggregated measurement er-
ror. The difference between glint and nadir results over land
is more noticeable here than in Feng et al., however, per-
haps because we decrease the probability of finding clear and
low-aerosol scenes at high SZAs (using the factor in Eq. 3)
more than they do. Over the oceans, the more precise glint
measurements lead to much larger flux error reductions than
the nadir data: over 45% across broad swaths of the tropi-
cal and southern oceans, versus under 15% in nadir. Because
the glint data provide more of an overall constraint on the
surface fluxes (both land and ocean), in this random-errors-
only view OCO would collect more information on the global
carbon cycle overall by remaining in glint mode at all times
rather than by switching between glint and nadir modes (but
see discussion below).

While the control experiment error analyses provide a use-
ful metric for comparing different sets of observations, they
provide an overly-optimistic view of how well the OCO data
actually will improve our flux estimates. On one hand, the
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actual random retrieval errors are likely to be higher than
those assumed here, since the analysis of Bösch et al., does
not capture all possible radiative transfer errors (e.g. those
due to the vertical distribution, size, and shape of scatterers,
the absorption line shape, line mixing, etc.). Probably more
importantly, though, a variety of systematic errors will pre-
vent the improvement from being this large. It is difficult to
know beforehand which systematic errors will be most im-
portant for a mission; the crude representations added here
give only a rough idea of what may actually occur.

First of all, we found that mistuning the assimilation (as-
suming incorrect patterns for the a priori flux error covari-
ance and measurement error covariance matrices) by a real-
istic amount degrades the error reductions significantly, es-
pecially in areas where the initial flux differences are lower.
This error source is unavoidable: the assimilation must be
constrained by a realistic prior to damp out the worst effects
of the random measurement errors (Baker et al., 2006b), and
yet there is little chance of modeling the details of the a pri-
ori uncertainties correctly to avoid the mistuning (Chevallier
et al., 2006); the same modeling challenges apply to the as-
sumed measurement error covariance, as well.

Second, we added measurement biases proportional to
aerosol OD, since aerosol-related radiative transfer model-
ing errors are expected to be an important source of model-
measurement mismatches. With these biases added, the flux
error reductions over the oceans are degraded by about a fac-
tor of two compared with the unbiased values; over land,
flux improvements as high as in the unbiased case are still
often achieved, but the spatial extent of such improvements
are degraded by about a factor of two. Weekly flux error
reductions as high as 65% are still achieved in a few areas,
especially eastern Siberia. We obtain aerosol-related annual
mean flux biases on the scale of the 22 Transcom3 regions
that are generally smaller than Chevallier et al. (2007a) ob-
tain: they are never greater than 0.2 PgC/year (look at the
difference between the green and black bars on the top of
Fig. 10). The two largest biases from Chevallier et al. (0.73
and 0.57 PgC/year for Temp. Eurasia and Europe, respec-
tively; see their Fig. 4) seem to be due to the use of aerosol
biases as high as 1.0 ppm or higher over those regions; the
largest biases we applied were only 0.6 ppm (this, too, is
likely to be over-optimistic).

Finally, we examined the impact of transport model errors
in the assimilation with the ad hoc approach of shifting the
winds used to generate the truth by 18 h. These degraded
the 7-day flux improvements more strongly over land than
the aerosol bias experiment, especially in the extra-tropical
north, but had a much smaller impact over the oceans. The
impact on the seasonal flux error reductions was much less:
apparently, the transport errors that we added largely average
out in time, something that may not occur with more realistic
transport errors.

When all three systematic error sources (mistuning, trans-
port, and aerosol biases) are added at the same time, most of

the improvement seen in the control experiments is lost: the
OCO data improve the weekly flux estimates by more than
45% in only a few restricted areas over the land (roughly
corresponding to those areas where our a priori uncertainty
is the largest) and generally under 15% over the oceans.

Our simulations suggest that the precision of OCO’sXCO2

measurements is more than adequate for estimating weekly
grid-scale CO2 fluxes at scientifically-useful levels. Know-
ing annual mean CO2 fluxes to within 0.1 PgC/yr for most of
the 22 Transcom3 regions (Fig. 10) would constrain the key
sources and sinks of CO2 well on a global scale. The real
challenge, however, appears to be in identifying and remov-
ing systematic errors, both in deriving theXCO2 values and
in processing these values with an atmospheric assimilation
method. For the level of systematic errors considered here,
annual mean flux errors rise as high as 0.2–0.3 PgC/year for
many of the Transcom3 regions, a level which, while bet-
ter than that given by the current in situ network, still would
leave much uncertainty in the global carbon budget. Since
the value of theXCO2 data fall off rapidly if systematic er-
rors are much higher than this, more effort must devoted to
quantifying them. We have addressed the systematic errors
only in a very rough fashion here. The OCOXCO2 retrievals
will likely be corrupted by a variety of measurement error
sources, spectrographic and radiative transfer modeling er-
rors, and other errors besides the aerosol scattering effects
considered approximately here. Simulation studies might be
able to help characterize the impact of these error sources,
once they are identified. These are not simply of academic
interest, to be forgotten once the spacecraft begins return-
ing real data; rather, they will be critical for interpreting the
data once it arrives. A more detailed assessment of transport
errors must also be performed. The transport errors could
be quantified by running the identical fluxes (including fos-
sil fuel input at fine spatial scales and diurnally-varying land
biospheric fluxes) through multiple transport models, sam-
pling the resulting concentration fields with realistic averag-
ing kernels along realistic OCO orbits, and then comparing
the resultingXCO2 values in an approach similar to what the
Transcom group has done for continuous in situ and aircraft
profile data (Law et al., 2008; Patra et al., 2008; Pickett-
Heaps et al., 2010) and is currently doing for satellite mea-
surements (S. Maksyutov, lead). Finally, our mistuning ex-
periment illustrates the importance of having a good a priori
flux model to help partition the flux corrections properly: we
must continue to improve our flux process models, just as we
must improve our transport models.

If the systematic errors in the problem can be beaten down
to below the levels used here, then the OCO measurements
should provide much useful new carbon cycle science. Im-
provements in seasonal fluxes of∼50% or more over the
tropical and northern forests, when viewed over the course of
multiple years, will begin to resolve the processes driving the
global interannual variability of CO2. Similar improvements
in weekly fluxes will help clarify the response of ecosystems
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Fig. A1. Computation of climatological cloud-free pixel availability from Terra/MODIS and Aqua/MODIS data. The ratio of the probability
of finding at least one cloud-free sounding across a ground track swath of lengthL (Fig. 5b) over the same probability for a swath only
5 km long, calculated by sampling 10 km-wide Terra/MODIS Level 2 data swaths in the along-track direction, usingL for a) nadir- and(b)
glint. (c) The cloud-free probability at 1 km×1 km resolution, taken from the Aqua/MODIS Level 3 cloud-mask product.(d) and(e): the
probability of finding at least one cloud free sounding in an OCO ground track swath of lengthL (nadir and glint) found by multiplying (c)
by (a) and (b).(f) The glint-mode cloud-free probability from (e) corrected for the greater atmospheric path length at high SZAs according
to Eq. (3). Note that the probabilities in (e) are higher than in (d) becauseL is about two times longer in glint than nadir (Fig. 5b); because
they are divided byL in Eq. (2), however, the resultingNeff values are lower in glint than nadir, even without the glint path correction.

to fast disturbances (like fire) and variability in the weather-
related drivers. Improvements over the ocean may be as great
as over land, depending on the nature of the aerosol biases,
especially. Perhaps the greatest impact will come where our
current observations are the worst, such as over the tropi-
cal forests, which are thought to play in driving global CO2
variability (Baker et al., 2006a). Further, the global distribu-
tion of the improvements should help clarify the partitioning
of the global sink between the tropics and extra-tropics, and
help pin down the longitudinal distribution of the northern
CO2 sink.

Appendix A

Cloud coverage calculations

Figure 7b shows the probability of finding at least one cloud-
free scene inside an OCO ground track swath of lengthL,
the cloud influence length defined by Eq. (1) and plotted in
Fig. 5b. This appendix describes how climatological values
for this probability are derived from MODIS observations.

The cloud fraction parameter from the Aqua/MODIS
Level 3 MYD08 M3 product gives the monthly average
probability that any single MODIS scene will be clear of
detectable clouds, at 1◦

× 1◦ resolution. This is computed
from data at 1 km×1 km resolution, close to the OCO FOV
size, and is available for the same orbit as OCO. This should
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give a very good idea of the probability that any single OCO
sounding will see cloud-free conditions. Because of along-
track spatio-temporal correlations, however, it is not clear
how to compute the probability of finding at least one cloud-
free scene in an OCO ground track swath of lengthL from
these single-sounding probabilities. Obtaining that informa-
tion requires examining the Level 2 MODIS data from which
the Level 3 monthly averages were computed.

The Level 2 MODIS data come packaged in the form of
“granules”, approximately 5 min of measurements spanning
roughly 2000 km in the along-track direction and 2330 km
across-track (as swept out by a±55◦ scan on either side of
nadir). Rather than process this massive archive of data our-
selves, we used a “climatology” of Level 2 MODIS cloud
and cloud mask products (MOD06L2 and MOD35L2) that
was compiled by Chang and Li (2005), albeit from the Terra
satellite which has a somewhat different orbit than Aqua and
OCO. To reduce the volume of data to process, Chang and Li
processed 8 full days of data in each of the months of January,
April, July, and October, spaced 4 days apart from each other.
Among other cloud-related quantities, they saved a cloud
mask value at 5 km×5 km resolution indicating whether the
scene was “cloudy”, “possibly cloudy”, “probably clear”,
or “confident clear”. For the “cloudy” boxes, an additional
value was saved indicating the number of 1 km×1 km pixels
inside the 5 km×5 km box (0–25) with measurable cloud op-
tical depths (MODIS can generally detect clouds with ODs
as thin as 0.10). This second quantity is valuable because it
provides the frequency of occasional cloud gaps in areas with
the cloudiest conditions, where OCO will have the most dif-
ficulty obtaining data, at a 1 km×1 km resolution that is close
to that seen by OCO (nominally 2.8 km2 when the sensor slit
is oriented perpendicular to the direction of motion, less than
that when the satellite “pirouettes” towards the sun to main-
tain its pointing in the sun/ground/satellite plane; overall, the
average FOV size is∼2 km2).

We have sampled the Chang and Li data in 10 km-wide
swaths of differing lengths (5, 10, 20, 40, 100, and 200 km) in
the along-track direction, accumulating statistics on the prob-
ability of finding at least one cloud-free scene at 1 km×1 km
resolution inside the swaths of differing lengths for each
month. The probabilities increase with increasing swath
length. We normalize the probabilities at each swath length
by those at the 5 km length. This normalized multiple rep-
resents how many more time likely it is to find at least one
1 km×1 km cloud-free scene in a swath of lengthL than it is
inside a box of 5 km×10 km, accounting for realistic correla-
tions in cloud amount along the track, or cloud “clumpiness”.
Figure A1a, b gives maps of this multiple interpolated to the
actual swath lengths for nadir and glint modes (Fig. 5b) cor-
responding to the true solar zenith angles around the orbit. At
high solar zenith angles, including the near-polar areas where
it will be the most difficult to penetrate through the clouds,
this multiple is generally over 2.

In the final step of this process, we interpolate these mul-
tiples across the full year from the four months examined
by Chang and Li, and multiply them by the single-sounding
cloud-free probabilities of the Level 3 Aqua/MODIS product
(Fig. A1c) to obtain the probability of a cloud-free sound-
ing per cloud correlation lengthL shown in Fig. 5b for the
nadir case. For glint mode, these cloud-free probabilities are
further reduced to account for the greater path-length in the
atmosphere according to Eq. (3).

Our approach here is actually somewhat conservative,
since the probability of finding a cloud-free sounding inside
a box of 5 km×10 km (the value we normalize our Level
2 multiple by) should be higher than the single-sounding
cloud-free probability. Another factor to consider is that our
Level 2 MODIS multiples are computed using data from the
Terra satellite, which has a 10:30 a.m. local ascending node
time and thus may not exactly capture the cloud properties
that OCO will see in the early afternoon.
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