
Effects of normal stress variation on the strength and

stability of creeping faults

M. S. Boettcher
Marine Geology and Geophysics, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint
Program, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

C. Marone
Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA

Received 2 October 2003; revised 30 December 2003; accepted 6 January 2004; published 11 March 2004.

[1] A central problem in studies of fault interaction and earthquake triggering is that of
quantifying changes in frictional strength and the constitutive response caused by dynamic
stressing. We imposed normal stress vibrations on creeping laboratory shear zones to
investigate the process of dynamic weakening and the conditions under which resonant
frictional behavior occurs. Layers of quartz powder were sheared at room temperature in a
double-direct shear geometry at normal stress �sn = 25–200 MPa, vibration amplitude A =
0.1–10 MPa, period T = 0.1–200 s, and loading rate V = 1–1000 mm/s. Frictional
response varied systematically with A, T, and V. Small-amplitude, short-period vibrations
had no effect on frictional strength, but large-amplitude, short-period vibrations reduced
shear zone strength by about 1%. Intermediate periods caused phase lags between shear
strength and imposed vibrations. During long-period vibrations, frictional strength
varied sinusoidally, in phase with vibrations and with an amplitude consistent with a
constant coefficient of friction. Our data show that friction exhibits a critical vibration
period, as predicted by theory. At long periods, the Dieterich (aging) friction law, with the
Linker and Dieterich modification to describe step changes in normal stress, provides a
good fit to our experimental results for all A and V. At short periods, however, theory
predicts more dynamic weakening than we observed experimentally, suggesting that
existing rate and state friction laws do not account for the full physics of our laboratory
experiments. Our data show that normal-force vibrations can weaken and potentially
destabilize steadily creeping fault zones. INDEX TERMS: 7209 Seismology: Earthquake dynamics

and mechanics; 8123 Tectonophysics: Dynamics, seismotectonics; 8168 Tectonophysics: Stresses—general;
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1. Introduction

[2] Natural fault zones are continuously subject to varia-
tions in normal stress, affecting both their strength and
stability. Earthquakes alter the static stress field surrounding
their rupture and send transient and potentially destabilizing
seismic waves thousands of kilometers into the distance. For
example, dynamic stress changes from the 1992 MW 7.3
Landers, California earthquake are known to have increased
the seismicity rates both near [Gomberg et al., 1997; Wyss
and Wiemer, 2000; Kilb et al., 2000, 2002] and far from the
fault rupture [Hill et al., 1993; Gomberg and Bodin, 1994;
Spudich et al., 1995; Gomberg, 1996; Gomberg and Davis,
1996; Gomberg et al., 1997; Harris, 1998], with the most
aftershocks in the direction of rupture propagation where
the dynamic stresses were largest [Hill et al., 1993; Kilb et

al., 2000, 2002]. The strength of the Landers fault zone
itself increased continuously from 1992 to 1999 until
shaking from the nearby MW 7.1 Hector Mine earthquake
disrupted the healing process [Vidale and Li, 2003]. Peri-
odic stressing from ocean and Earth tides also alter stress on
faults [Brodsky et al., 2003; Scholz, 2003]. Small-amplitude
tidal stressing of the solid Earth did not effect seismicity
rates in Southern California [Vidale et al., 1998], but both
Wilcock [2001] and Tolstoy et al. [2002] observed correla-
tions between the larger-amplitude ocean tidal cycles and
microseismicity rates on the Juan de Fuca Ridge.
[3] Much insight into the process of dynamic earthquake

triggering has come from previous laboratory experiments
and numerical simulations. Laboratory work of Lockner and
Beeler [1999] and Beeler and Lockner [2003] showed that
triggering of stick-slip events is both amplitude- and fre-
quency-dependent. A threshold nucleation time was ob-
served, and it was found that only large-amplitude stress
perturbations triggered seismicity when the period of the
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perturbations was shorter than the nucleation time [Beeler
and Lockner, 2003]. Furthermore, the results of Lockner
and Beeler [1999] and Beeler and Lockner [2003] are
consistent with observed earthquake rates in Southern
California: higher-frequency, moderate- to large-amplitude
shaking from the Landers earthquake triggered seismicity,
and long-period, low-amplitude, tidal stressing did not.
[4] Tworzydlo and Hamzeh [1997] note that the inclusion

of normal-force vibrations in models of rock friction can
cause stably sliding simulations to go unstable. The work of
Voisin [2001, 2002] shows that dynamic stressing of finite
fault models, which obey either linear or nonlinear slip-
dependent friction laws, can result in a stability/instability
transition and may trigger earthquakes. Normal-force vibra-
tions increased the healing rate of Richardson and Marone’s
[1999] laboratory shear zones, which when combined with
the observations of Vidale and Li [2003] indicate that stress
changes can both increase and decrease the rate of fault
zone strengthening. Theoretical work of Perfettini et al.
[2001] suggest a resonant response of shear zone strength,
involving strong amplification of the shear stress and
velocity response for a small range of friction parameters
and a critical loading stiffness.
[5] Normal stress variation may also play an important

role in rupture propagation. On the basis of early thoughts

on acoustic fluidization by Melosh [1979], Heaton [1990]
suggested intense compressional waves could locally de-
crease the confining pressure ahead of a slip pulse. In the
laboratory experiments of Bodin et al. [1998] a dynamic
reduction in normal stress was observed during stick-slip
events. Because normal stress should couple to slip anytime
a fault has nonplanar geometry or nonhomogeneous materi-
als, changes in normal stress are likely to be integral to both
earthquake nucleation and rupture propagation.
[6] Rate and state friction laws, which have successfully

modeled frictional sliding and earthquake phenomena for
over two decades, were originally developed for constant
normal stress conditions. In one formulation, termed the
Dieterich or aging law, friction evolves during stationary
contact [Dieterich, 1978, 1979], while in another, the Ruina
or slip law, friction will only change with slip [Ruina,
1983]. These micromechanically distinct constitutive laws
show macroscopically similar behavior under constant nor-
mal stress, but predict significantly different shear strength
behavior when the steady state conditions are perturbed.
Thus Perfettini et al. [2001] suggested laboratory experi-
ments subject to normal stress vibrations to probe various
formulations of the friction law.
[7] In this paper we report on laboratory experiments

designed to investigate the effect of normal stress vibrations

Figure 1. Imposed normal stress (sn) and resultant frictional strength (t) of quartz powder during a full
experimental run. The inset shows double-direct shear geometry. The central block was driven at a rate
(V) of 10 mm/s, under a mean normal load (�sn) of 100 MPa, to a shear strain of 15. Sinusoidal sn
vibrations, with an amplitude (A) of 1 MPa and a range of periods (T), were preceded by two load cycles
and six velocity steps (10–20 mm/s). The number in the bottom right (shown here and in the figures to
follow) refers to the experiment number (Table 1). Dashed boxes indicate data shown in Figure 2.
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on the strength and stability of steadily creeping shear
zones. We show that shear zone strength varies systemati-
cally with vibration period, amplitude, and loading rate, in
some cases resulting in dynamic fault weakening. We
investigate the ability of the Dieterich and Ruina rate/state
friction laws to model our laboratory observations and find
that the Dieterich law provides the best fit.

2. Experimental Procedure

[8] Experiments were conducted in a biaxial loading
apparatus at room temperature using double-direct shear
geometry (inset to Figure 1) [see Mair and Marone, 1999;
Karner and Marone, 2001; Frye and Marone, 2002]. In
each experiment two, 3-mm-thick layers of quartz powder
(U.S. Silica Co. F-110) were sandwiched between three
steel forcing blocks. The two outer blocks have dimensions
of 5.25 � 5.0 � 2.5 cm3 and the central block measures
7.5 � 5.25 � 3.75 cm3. The central block is longer than the
side blocks and thus the nominal area of contact is constant
during sliding. All blocks have grooves perpendicular to
shear that constrain sliding to within the gouge layer, rather
than along the gouge/steel interface.
[9] Vertical motion of the central forcing block was

servo-controlled by displacement feedback and horizontal
stress was maintained with constant load feedback. The

force applied to each block as well as its position was
measured and recorded by displacement transducers and
load cells mounted on the driving rams just above the
forcing blocks. Gouge layer thickness was calculated from
displacement of the horizontal ram using the calibrated
apparatus stiffness and elastic corrections. In some experi-
ments, three Belleville disc springs were inserted into the
standard load column to reduce the system stiffness from its
intrinsic value of k = 0.5 KN/mm. Together the springs are
rated to support 300 KN, which is the shear force necessary
for sliding at 57 MPa normal stress. The springs were
therefore most effective at low loads, reducing k to 0.041,
0.047, and 0.052 KN/mm at normal stresses of 25, 50, and
100 MPa, respectively.
[10] Significant shear strain is required to obtain steady

state frictional behavior in laboratory experiments [e.g.,
Beeler et al., 1996; Mair and Marone, 1999]. To reduce
the net displacement needed to establish steady state
shear zone fabric, and thus steady state frictional behavior
[Marone, 1998], we began each experiment with load cycles
and velocity steps following the procedure of Frye and
Marone [2002] (Figure 1).
[11] We ran experiments at a constant load point

velocity V in the range 1–1000 mm/s and a �sn between
25 and 200 MPa (Table 1). Sinusoidal oscillations of the
normal load were imposed on the sample by summing on

Figure 2. Frictional response (t) of quartz powder to imposed normal stress (sn) vibrations during
steady creep. t oscillations increased in amplitude with vibration period (T). The character of t
oscillations evolved from no response at the shortest periods tested, to small-amplitude, sawtooth-shaped
oscillations, to large-amplitude, symmetric sinusoids at the longest periods. The data are from the first
vibration set of Figure 1 (dashed boxes).
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external signal with a constant voltage reference that was
used to maintain the mean normal stress. Vibration periods
T ranged from 0.1 to 200 s and amplitudes A ranged from
0.1 to 10 MPa. Experiments were conducted at room
temperature (22�–25�C) and humidity (9–33%), with the
exception of m485, m489, m491, and m494, which were
saturated with water prior to shearing. The maximum
displacement, d, obtained during an experiment was
28 mm, a shear strain of about 19.

3. Results

[12] We evaluated the effect of normal stress vibrations by
comparing to periods of constant normal stress (Figures 1
and 2). Vibration period had the greatest effect of all tested
parameters, including vibration amplitude, loading rate, and
mean normal stress. At short periods (T = 0.1–0.75 s) the
effect of vibrations was negligible. Intermediate-period
vibrations (T = 1.0–5.0 s) weakened the shear zone, pro-
ducing an irregular (often sawtooth-shaped) response that
phase lagged the sn vibrations. At long periods (T � 5 s) the
frictional response was sinusoidal and in phase, such that the
coefficient of friction remained approximately constant.
Normal stress vibrations always began with an increase in
sn and the first peak in t was often larger than subsequent
strength oscillations (Figure 2).

[13] Figure 3 shows the technique used to quantify
observed frictional response for two cases with different
amplitude vibrations (� = Asn = 0.01 and 0.05). We
measured three quantities for each vibration interval:
(1) the steady state frictional strength variation during
vibrations, Dt; (2) the change in peak yield strength,
Dtyield, which is the difference between the shear strength
prior to vibrations, tss, and the steady state peak strength
during vibrations, tpeak; and (3) the phase delay, Df, which
is defined as the time difference between peaks in the sn
and t oscillations normalized by the vibration period.
Figures 4–6 illustrate the variation in Dt, Dtyield, and Df

Table 1. Experimental Parameters

Experimenta sn, MPa T, s A, MPa V, mm/s

m479 25 0.1–10 1,2,3 10
m480 25,35 0.1–10 2,3 10
m481 25,35 0.1–10 2,3 10
m484 25,100 0.1–10 4,10 10
m485 25,200 0.1–10 1,2 100
m489 100 0.1–10 5 100
m491 100 0.1–2 1.08 100
m494 100 0.1–2 1.10 100
m495 100 0.1–2 0.5 100
m520 100 0.1–4 1.0 100
m521 100 0.1–0.7 0.945 100
m522 100 0.1–0.75 0.95 100
m523 100 0.1–2 0.94 50
m526 100 0.1–2 1.0 10
p062 100 0.1–2 10.0 50
p063 100 0.1–2 10.0 50
p064 100 0.1–2 1.0 50
p065 100 0.1–2 1.0 50
p066 100 0.1–2 1.0 50
p067 50 0.1–2 0.5 50
p068 100 0.1–2 1.0 50
p069 25 0.1–2 0.25 50
p070 100 0.1–2 1.0 100
p071 100 0.1–20 1.0 10
p072 100 0.1–20 1.0 10
p081 100 0.1–20 0.25 10
p082 100 0.1–20 0.1 10
p083 100 0.1–4 1.0 100
p084 100 0.1–0.5 1.0 1000
p085 100 0.1–10 1.0 50
p086 100 0.1–20 2.0 10
p087 100 0.1–20 0.5 10
p088 100 0.1–200 1.0 1.0,50
p089 100 0.25–0.75 0.25–2.0 100
p090 100 0.1–20 5.0 10
p091 100 2,3 1.0 10
p092 150 0.1–2 1.5 50
aBelville disc springs were inserted into the load column for experiments

p066–p092.

Figure 3. Quantification of the friction response to sn
vibrations. (a) T = 5 s and A = 1 MPa. (b) T = 5 s and A =
5 MPa. The change in peak yield strength (Dtyield) is the
difference between the steady state peak t and the initial
level prior to vibrations. Note that Dtyield can be positive or
negative, indicating induced strengthening (Figure 3a) or
weakening (Figure 3b), respectively. Dt is the peak-to-peak
amplitude frictional strength response to sn vibrations.
Phase lag (Df) is the time difference between the peaks
of the sn and t oscillations converted to angular units.
Figures 3a and 3b show 1.0 and 1.65 s time shifts,
corresponding to Df = (2/5)p and (2/3)p, respectively.
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with normalized amplitude �, loading rate V, mean normal
stress �sn, and vibration period T.

3.1. Reproducibility and Noise

[14] Experimental noise, such as small stick-slip events
caused by grain breakage, can obscure systematic fric-
tional strength variation. To minimize these effects we
removed noise from our data before reporting Dt and
Dtyield measurements. The full amplitude of the noise
was typically between 0.05–0.5 MPa, with a median of
0.25 MPa (Figure 2). We measured the noise level prior
to each vibration set and subtracted it from the full range
of yield strength values to get Dt. Background stick-slip
events have little affect on peak strength levels, thus we
subtracted half of the measured noise level to obtain
Dtyield.
[15] The uncertainty in determining Dt was tested

using a nonlinear least squares technique. For each
experiment we fit the sinusoidal function t = Â sin(2p
(t + Df̂)/T) to an observed time series of t. We chose
long-period time series because of their sinusoidal shape.
Estimates of Â and Df̂ and the corresponding 95%
confidence intervals were obtained from a nonlinear least
squares regression. The amplitude estimate Â was then
transformed into a noise estimate by subtracting Â from
the measured peak-to-peak amplitude of the shear stress
oscillations, i.e., the peak-to-trough distance including
excursions due to noise. The 95% confidence interval
included our measured noise values for the long-period
vibrations. This simple test could not be successfully
applied to shorter-period vibrations, because a sine wave
is not a good approximation to the shape of the
frictional response. The good agreement between the
estimated and measured values of t at long periods
indicates that our method of removing experimental
noise is effective.
[16] Bars at the lower right of each panel of Figures 4–

6 show the span of experimental results obtained for
vibration sets conducted with the range of slip rates,
normal stresses, and vibration periods listed in Table 1.
These bars represent the experimental reproducibility, and
thus are considered the experimental uncertainty for our
data.

3.2. Effect of Vibration Period, T

3.2.1. Variation of Frictional Strength, #T
0

[17] A normalized frictional strength variation of Dt0 =
Dt/(2Amss) = 1 represents the expected t response to sn
vibrations, assuming a constant coefficient of friction.
Figures 4a, 5a, and 6a show that for all tested vibration
amplitudes, loading rates, and normal stresses, the frictional
response was not able to ‘‘keep up’’ with short-period
vibrations, resulting in values of Dt0 near zero. In contrast,
the coefficient of friction remained nearly constant for long-
period vibrations, i.e., Dt0 approached 1.0.
3.2.2. Dynamic Weakening/Strengthening, #T

0
yield

[18] Figures 4b, 5b, and 6b show the effect of T on the
degree of dynamic weakening or strengthening, i.e., the
normalized change in peak yield strength, Dt0yield = Dtyield/
(Amss). Short-period vibrations either did not affect the peak
strength or caused dynamic weakening (Dt0yield � 0). In
contrast, long-period vibrations always increased the peak

Figure 4. Effect of vibration amplitude and period on
frictional strength. (a) A critical period (T*c), defined at Dt

0 =
0.2 (shaded bar), increased with normalized vibration
amplitude (�). Near T*c, frictional strength transitioned from
a constant level (Dt0 = 0) to having large-amplitude
oscillations (Dt0 = 1). (b) Note that dynamic weakening
(Dt0yield < 0) resulted from large-amplitude, short-period
vibrations. (c) The largest phase lags (Df) were observed
near T*c, and in-phase responses were seen at both long and
short periods. For some vibration sets, Df was incoherent
and could not be measured. The bars in the lower right of
each panel (here and in figures to follow) show experi-
mental reproducibility. Note that � = 0.001 data are at the
limit of our measurement resolution and are only plotted in
Figure 4a. All data are from experiments run at V = 10 mm/s
and �sn = 100 MPa, with d = 6.5–10 mm (strains of
4.3–6.7).
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yield strength (Dt0yield > 0). At the longest periods t
oscillated around tss without causing an alteration in the
time-averaged strength of the shear zone.
3.2.3. Phase Lag, #F

[19] Phase lag Df, shown in Figures 4c, 5c, and 6c,
corresponds to a time or displacement scale needed to
change frictional strength. When Df = 0, the time or slip
needed to effect a change in friction is short compared to
the vibration period for a given loading rate. We find a
peak in Df near the minimum Dt0yield. At short periods,
Df could not always be obtained because either t
oscillated with a period that was a multiple or fraction
of sn, or no systematic Df was observable. The few
short-period oscillations for which Df was measured
suggest a tendency toward an in-phase response at short
periods.
3.2.4. Critical Period, T**c
[20] A transition in Dt0, Dt0yield, and Df occurs at a

critical period T*c dependent on experimental parameters
(shaded bar in Figure 4). We define T*c as the period at
which Dt0 = 0.2. This corresponds to the minimum Dt0yield
and the maximum Df. T*c is minimally affected by
vibration amplitude and normal stress, but varies system-
atically with loading rate (see inset of Figure 5).

3.3. Effect of Epsilon, ��

[21] We studied the effect of vibration amplitudes � =
A/�sn between 0.001 and 0.05 (Figure 4). The total shear
strength variation, Dt, increased linearly with � (compare
amplitudes shown in Figure 3). In Figure 4 we plot
normalized quantities, which remove the first-order effect
of amplitude. The normalization enables direct compari-
son of the � tests at the same scale. T*c was near 2 s for
all �, with a slight, systematic increase in T*c with �.
Short-period, large-amplitude vibrations significantly af-
fected Dt0yield, producing the weakening shown in
Figure 4b. All experiments shown in Figure 4 were
loaded at V = 10 mm/s under a mean normal stress of
�sn = 100 MPa. The effect of very small � vibrations
(<0.0025) was below our detection limit (e.g., � = 0.001
in Figure 4a). Therefore only runs with � � 0.0025 were
included in our analysis and in Figures 4b and 4c.
Owing to the normalization of Dt0 and Dt0yield by �,
the two smallest-amplitude experiments shown in Figure 4
(� < 0.01) have larger uncertainties than those shown
with the bars, and the large-amplitude tests (� > 0.01)
have smaller uncertainties.

3.4. Effect of Sliding Rate, V

[22] We studied the effect of loading rate V between
1–1000 mm/s and found that T*c decreases systematically
with V (Figure 5). More subtle effects of V on Dt0 and
Dt0yield were also observed. Long-period vibrations at
the faster loading rates (V = 100, 1000 mm/s) resulted
in Dt0 > 1 and Dt0yield � 1.0 and short periods caused
slightly negative Dt0yield values, suggestive of dynamic
weakening. At the slower loading rates (V = 1, 10 mm/s),
neither Dt0 nor Dt0yield reached 1.0, indicating that the
coefficient of friction varied even during long-period
vibrations. The inset in Figure 5 displays the linear
variation in T *c with V. Measurements are from the four
experiments shown in Figures 5a–5c as well as additional

Figure 5. Effect of loading rate and vibration period on
frictional strength. Dt0, Dt0yield, and Df behaved system-
atically for all loading rates: Near T*c, strength oscillations
increased in amplitude and phase lag reached a maximum.
T*c decreased linearly with V, as shown in the inset. (a) Note
that Dt0 > 1 was observed for long-period tests with V �
100 mm/s. (b) Also note that only the fastest runs showed
dynamic weakening (Dt0yield < 0). (c) Only the V = 10 mm/s
test showed coherent short-period Df data. All experiments
were conducted with �sn = 100 MPa, � = 0.01, and d = 6–
20 mm (strains of 4–13.5).
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vibration tests at the same conditions. Performing a least
squares regression, we found T*c = 16.6/V.

3.5. Effect of Normal Stress, ��Sn

[23] We explored the effect of the stiffness ratio k/kc by
conducting experiments with and without springs in the
load column (Table 1) and using mean normal stress of �sn =
50, 100, and 150 MPa (Figure 6). The springs reduce k, the

stiffness of our testing apparatus, by approximately an order
of magnitude, and k increases with sn (as described in the
experimental procedure). kc, the critical stiffness, is given by

kc ¼
sn b� að Þ

Dc

1þ mV 2

asnDc

� �
; ð1Þ

[Rice and Ruina, 1983], where a, b, and Dc are empirical
friction parameters (and are discussed further below), and m
is the mass of the system. A change in �sn produces a greater
effect on kc than on k. Thus an increase in �sn decreases k/kc,
bringing the system closer to the critical state, k = kc.
[24] Figure 6 shows that the highest-normal stress (lowest

k/kc) resulted in the least systematic frictional behavior. The
response to T = 0.5 s vibrations with �sn = 150 MPa is
suggestive of the resonance seen in the numerical simula-
tions of Perfettini et al. [2001]. The frictional strength
oscillations, at vibration periods near T*c and the lowest
k/kc, were fully out of phase with sn. Both the large phase
lags and the amplified shear strength response, indicate that

Figure 6. Effect of normal load and vibration period on
frictional strength. The period at which Dt0 = 0.2 (T*c)
decreased slightly with �sn. (a) Note the peak in Dt0 at T =
0.5 s for �sn = 150 MPa. (b) The relative amplitude of
Dt0yield for the three tests shows the decrease in T*c with �sn.
(c) At the highest �sn the shear stress response was fully out
of phase with the sn vibrations. All experiments were
conducted with V = 50 mm/s, � = 0.01, and d = 7–14 mm
(strains of 4.7–9.3).

Figure 7. Effect of net shear strain on frictional strength.
(a) Time series from d = 9 mm and d = 15 mm vary slightly
in amplitude of both the frictional response and experi-
mental noise. (b) Dt0, Dt0yield, and Df are plotted as a
function of load point displacement (e.g., Figures 4–6).
Note that both Dt0 and Dt0yield changed very little after d �
10 mm (shear strain of about 6.6). Phase lag was the least
stable quantity, but it remained high (near p/2) for
all displacements. All data are from a single experiment
with parameters �sn = 100 MPa, � = 0.01, V = 10 mm/s,
and T = 2 s.
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the system was closer to a critical state during low k/kc
experiments. The use of the Belleville disc springs and
elevated sn conditions both helped to reduce the difference
between the actual system stiffness and the theoretical
critical stiffness, however our apparatus remained intrinsi-
cally too stiff to observe strong resonant behavior.

3.6. Effect of Displacement, d

[25] One limitation of these experiments was the small
range of displacement available for study. In larger-dis-
placement experiments [e.g., Beeler et al., 1994; Mair and
Marone, 1999] significant evolution of the shear zone was
observed during initial slip, depending on sn. We attempted
to minimize the displacement needed to obtain a steady state
shear zone fabric by imposing load cycles and velocity steps
at the start of each run. While the preconditioning helped,
our shear zones continued to evolve at a reduced rate
throughout the experiment.
[26] Data obtained from vibration sets at equal displace-

ments were compared whenever possible. In Figures 4 and
6, where V = 10 and 50 mm/s, respectively, we have
displayed results from the first set of sn vibrations. How-
ever, in order to compare experiments conducted at different
loading rates (Figure 5), it was necessary to use measure-
ments from the entire range of displacement. The second
and third vibration sets (see Figure 1, d > 11 mm) show the
same systematics as the first set, however the increased
frequency and amplitude of stick-slip events, which occur
both during vibrations and under constant normal load,
made obtaining precise measurements more difficult.
[27] In Figure 7a we show two shear stress time series

taken from a single experiment with V = 10 mm/s, � = 0.01,
sn = 100 MPa, and T = 2 s. The first is from 9 mm of
displacement, and the second, with large-amplitude oscilla-
tions and an elevated noise level, is from 15 mm of
displacement. Figure 7b illustrates measurements from the
entire range of obtainable displacements. Very little change
occurs in either Dt0 or Dt0yield past d = 9 mm. The Df
measurements are less stable than those of shear strength.
The period shown in Figure 7, T = 2 s, is near T*c for the
displacement rate V = 10 mm/s (see Figure 5d). Phase lag
measurements in all experiments are observed to fluctuate
most strongly near T*c. The variation in Df shown in
Figure 7b is not large when compared with variation in Df
observed for different vibration periods. Thus although
displacement does have an effect on the values we report,
it is minimal when compared to the effects of T, V, and �.

3.7. Effect of Humidity

[28] Water content is known to affect frictional behavior
[Frye and Marone, 2002]. We conducted four experiments
under saturated conditions with V = 100 mm/s and �sn =
100 MPa. Stable sliding at constant frictional strength was
observed during short-period vibrations and sinusoidal
oscillations resulted from long periods. Between the simple
behaviors observed at short and long periods, the response
at intermediate periods (0.25 � T � 0.75 s) was complex.
Large drops in frictional strength, which approached a
magnitude equal to A, occurred regularly with periods both
above and below the vibration period. These large-ampli-
tude instabilities are consistent with a more evolved shear
zone and intrinsically more unstable frictional behavior.

Although much can be learned from experiments in which
the sample is near a critical stability transition, for this initial
study we chose to focus on the systematic behavior of the
more stable, low-water-content conditions.

4. Discussion

[29] The effects of normal stress vibrations on creeping
shear zones are systematic and can be modeled through
numerical simulations with a single set of friction parame-
ters. We use rate and state constitutive friction laws of the
standard form [e.g., Ruina, 1983; Marone, 1998]:

m ¼ m0 þ a ln
V

V0

� �
þ b ln

V0q
Dc

� �
; ð2Þ

where m0 is the coefficient of friction during steady sliding
at velocity V0, V is the slip rate, q is a state variable that
evolves with either time or slip, a and b are empirical
constants that respectively correspond to a direct effect and
the state evolution following a change of velocity or normal
stress, and Dc is the critical slip distance needed for m
to evolve to a new steady state following a change in
loading conditions. In the following numerical simulations
(Figures 8–15), we used values of a= 0.0015, b=0.0065, and
Dc = 60 mm, which were chosen from the range of behaviors
found from modeled velocity steps in our experiments. We

Figure 8. Time series of frictional strength for both
laboratory data (black line) and Dieterich and Ruina rate/
state friction models (gray lines). Note the discrepancy at
T = 0.25 s between the predicted weakening in the models
(greatest for the Ruina law) and the constant strength
observed in the experimental data. The Ruina law also
predicted weakening at T = 2.0 s. The parameters used in
both models (as well as the simulations shown in the
following figures) are V = 10 mm/s, � = 0.01, �sn = 100 MPa,
k/kc = 4, a = 0.0015, b = 0.0065, Dc = 60 mm, and a = 0.3.
The laboratory experiment was run at V = 10 mm/s, � = 0.01,
and �sn = 100 MPa.
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compare laboratory data directly to our model results and
discuss the numerical simulations of Perfettini et al. [2001],
whose work predicts much of the systematic behavior we
observe.

4.1. Evolution of the State Variable

[30] The two most often cited formulations for the friction
state evolution are indistinguishable when linearized around
steady state, but predict different behavior when subject to
normal stress perturbations [Linker and Dieterich, 1992;
Richardson and Marone, 1999; Bureau et al., 2000;
Perfettini et al., 2001]. The Dieterich law,

dq
dt

¼ 1� V q
Dc

� a
q _s
bs

; ð3Þ

in which the state evolves with time as well as slip
[Dieterich, 1979; Ruina, 1983], predicts stable behavior for
all cases of k > kc, while the Ruina law,

dq
dt

¼ �V q
Dc

ln
Vq
Dc

� �
� a

q _s
bs

; ð4Þ

in which the state changes only with slip [Ruina, 1983],
predicts conditional stability for k > kc. The above
formulations include an extension of the standard rate and
state equations to include changes in normal stress [Linker
and Dieterich, 1992; Richardson and Marone, 1999;
Perfettini et al., 2001]. The term a describes the evolution
of state and friction following a normal stress change from s
to s0. Increasing a results in a decreased instantaneous
response of the system. Linker and Dieterich [1992]
observed a significant step in t immediately following a
sudden change in sn. Richardson and Marone [1999] also
observed a step change in t with a step in sn and found a =
0.3 best fit their experimental data. We adopt a = 0.3 for our
numerical modeling and are able to model our data
reasonably well with this value (Figures 8–15).
[31] We compare our experimental results to both for-

mulations of the state evolution. Equation (3) or (4) is
coupled with equation (2) and with a description of elastic
interaction with our testing machine:

dm
dt

¼ k 0 Vlp � V
� �

; ð5Þ

where k0 is defined in terms of friction per displacement as
k0 = k/(snAsample), Asample is the sample area, Vlp is the load
point velocity, and V is the shearing velocity along the fault
surface.

4.2. Theory and Observations

[32] Figure 8 shows comparisons between experimental
and theoretical time series from three sets of vibrations with
periods of T = 0.25, 2.0, 20.0 s, loaded at V = 10 mm/s,
under a mean normal stress of �sn = 100 MPa. Both the
Dieterich and Ruina laws fit the data well at long and
intermediate periods, but neither law correctly predicts the
shortest period response. Both laws overpredict the magni-
tude of vibration-induced weakening, however the Dieterich
law is much closer to the observed values.

[33] The steady frictional strength observed experimen-
tally for short-period vibrations (e.g., the response to T =
0.25 s vibrations in Figure 8) implies that vibrations may
not always result in an immediate step change in t, as we
have assumed with a = 0.3. A higher value of a, i.e., a =
0.6, is consistent with a smooth evolution to a new steady
state frictional strength, rather than an immediate change in
t. However, a > 0.3 underpredicts the amplitude of the
frictional response at all vibration periods and overpredicts
the phase lag for long-period vibrations. Additionally, the
Dieterich law with a > 0.4 predicts an overall strengthening
of the shear zone with high-frequency vibrations, not the
weakening that is experimentally observed.
[34] Prakash [1998] observed a continuous evolution of

frictional strength following a step change in normal stress
in his high-velocity (1 � V � 30 m/s) friction experiments.
His experiments, conducted on metals and without gouge,
could not be described using equations (3) and (4), and
instead Prakash proposed a system with two state variables.
While we did not observe an immediate change in t with all
normal stress vibrations, those at large amplitudes and short
periods did produce an immediate effect. We proceed here
with equations (3) and (4), the formulations derived from
rock friction experiments, to probe the usefulness of the
Linker and Dieterich [1992] modification to the standard
rate and state equations.
[35] In Figure 9 we compare laboratory measurements

and predicted values of Dt0, Dt0yield, and Df. Both the
Dieterich and Ruina laws provide a good fit to the Dt0 data
and the long-period response Dt0 = 1 is indeed predicted
when long-enough-period vibrations are imposed. The Diet-
erich law approximates the Dt0yield measurements, but the
Ruina law dramatically underpredicts the observed values.
Neither the Dieterich nor the Ruina law fits the few short-
period phase lag measurements shown in Figure 9c. Both
laws predict a plateau of large phase lag at short periods,
while our limited Df data suggest an in-phase response at
short periods. The analytical solutions of Perfettini et al.
[2001] predict the same behavior as our numerical simu-
lations for a system with k/kc = 4 and a = mss/2. They show
that at long periods, Df ! 0 and at short periods, Df ramps
up to p/2. Phase lag measurements at T < T*c are difficult to
obtain and additional, well-resolved measurements are nec-
essary to verify our short-period observations.
[36] While neither friction evolution law predicts all

details of our observations, the Dieterich law provides a
close fit. Additionally, the amplitude of the frictional
response increases continuously with vibration amplitude,
following the predictions of the Dieterich law [Perfettini et
al., 2001, Figure 4]. This continuous increase can be seen
when the Dt0 values shown in Figure 4a are multiplied by
the vibration amplitude of the test. Thus our data suggest
that friction evolves with time as opposed to slip.

4.3. Dynamic Weakening

[37] Certain experimental conditions (e.g., V � 50 mm/s,
T < T*c, � > 0.01) reduce the peak yield strength of the shear
zone. We refer to the lowered strength as dynamic weak-
ening, where the maximum strength reached during vibra-
tions was reduced below the level for steady frictional
sliding (Dt0yield < 0). This weakening effect is most
pronounced with large � vibrations at high frequencies
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and the weakening is well modeled with the Dieterich law
(Figure 10).
[38] Using a numerical model with rate-dependent and

state-dependent friction, Perfettini et al. [2003] found
dynamic earthquake triggering to be most effective when
the faults experienced high-frequency, large-amplitude

stress transients. Bureau et al. [2000] found similar results
in their laboratory experiments of a sliding interface subject
to high-frequency ( f = 120 Hz) sn vibrations. The strength
reduction in their experiments was enhanced with increased
vibration amplitude, providing as much as a 20% decrease
in the average coefficient of friction for � = 0.5. The largest
normal stress perturbations imposed in our experiments
were an order of magnitude smaller than those of Bureau
et al. [2000] and yielded a reduction in peak yield strength
of about 1% (Figure 11).
[39] In our experiments, dynamic weakening was ob-

served only when a large stress drop occurred during the
initial decrease in normal stress. Figure 11 shows the
effect of large-amplitude sn vibrations on the slip rate,
shear strength, and layer thickness of our sample. Close to
a 45-fold increase in shear zone slip rate occurs simulta-
neously with the 2.7 MPa stress drop during the first sn
cycle. This stress drop was a 4.5% decrease in the shear
zone strength, but over the full vibration set, the peak
strength drop was only about 1%, which corresponds to
Dt0yield = �0.24.
[40] Four stages of frictional behavior can be observed in

Figure 11. In stage I the shear zone looses strength during a
fast slip event accompanied by dilation of the shear zone.
Stage I may be thought of as a seismic event that resets the
state of the shear zone, i.e., q = q0. During stage II the shear
zone’s strength is partially recovered. Figure 11c shows that
strength increases over three normal stress oscillations
following the initial stress drop. During the recovery period,
the slipping speed remains near the background loading rate
and the frictional state evolves toward a more mature level.
The layer compacts following the slip event (Figure 11d)
and then dilates and again compacts as sn cycles during
stage II. While the vibrations continue the shear zone
remains thinned compared to its original thickness under
constant sn. Stage III begins where the shear strength is no
longer climbing steadily and each drop in sn induces a small
slip event (at approximately 5 s for the example shown in

Figure 9. Effect of vibration period on frictional strength
observed in laboratory data (circles) and predicted by the
Dieterich (solid black line) and Ruina (dashed gray line)
rate/state friction models. (a) Dt0 increased with T for both
data and models. (b) T*c (indicated by arrows) corresponds
to the period at which Dtyield = 0 for both experimental data
and the Dieterich law. The extreme weakening predicted by
the Ruina law was not observed in the data. (c) Note that at
short periods the data showed t in phase with sn, while both
models predicted large Df. The model parameters are given
in Figure 8 and the experiments were run at V = 10 mm/s,
�sn = 100 MPa, and � = 0.01.

Figure 10. Effect of vibration amplitude and period on
level of frictional strength observed in laboratory data
(symbols) and predicted by the Dieterich rate/state friction
model (lines). Large-amplitude vibrations (� > 0.01) caused
dynamic weakening in both experimental and numerical
tests. Model parameters are listed in Figure 8 with � =
0.0025 and 0.05.
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Figure 11). We suspect that each slip event disrupts the
particle packing, and thus reduces the frictional state of the
system, such that the shear strength remains lower than
the nonvibrated tss. The compacted layer, however, is not
in steady state, but instead continues to expand slowly

toward its original thickness. Finally, after the vibrations
stop, a full recovery takes place during stage IV. The shear
strength evolves to tss, the layer dilates to it’s original value
(when corrected for compaction due to geometric loss of
gouge), and the slip rate returns to the background forcing
rate of 10 mm/s.
[41] The difference between vibration sets that result in

dynamic weakening and those that do not lies in the
occurrence of the slip events. When we do not observe
stage I, i.e., a large stress drop accompanied by a period
of fast slip, then no dynamic weakening takes place (e.g.,
Figure 8). Strain delocalization, similar to that described
by Sleep et al. [2000], accompanies these slip events.
Smaller slips that occur during the continued sn vibra-
tions of stage III also appear to be important in the
weakening process. Thus we suspect that the earthquake-
like slip events, which may reset the state variable to a
less developed state, play a significant role in accommo-
dating shear zone weakening.
[42] We note that the strength of the sample during

stage III remained approximately constant, independent of
the duration of vibrations (e.g., Figure 11c). This observa-
tion supports the theory presented by Sleep et al. [2000]
that the observed healing during vibrated slide-hold-slide
tests is due to a time-dependent process, rather than through
mechanical consolidation, as was suggested by Nakatani
[2001].
[43] Dynamic weakening appears to depend primarily

on the amplitude and frequency of vibrations, rather than
the number of vibrations or background creep rate of the
shear zone. Figure 12 shows that a small amount of
dynamic weakening is predicted at short periods for all
loading rates (1 � V � 1000 mm/s). The model param-
eters are fixed to the values used in the previous
numerical simulations, and again the Dieterich formula-
tion of the rate and state theory systematically predicts
the experimental data. The period at which the peak yield
strength becomes positive is inversely proportional to V.

Figure 11. Time series of slip rate, normal stress, frictional
strength, and layer thickness changes (Dd) for large
amplitude (� = 0.05) vibrations near T*c (T = 1.5 s). Note
(a) the large slip rate events, (c) the stress drops and
dynamic weakening, and (d) compaction observed during
vibrations. (b) Imposed vibrations started at time 0 and
continued for 24 s through the four stages of frictional
behavior described in the text. Figure 12. Effect of loading rate and vibration period on

frictional strength observed in laboratory data (symbols) and
predicted by the Dieterich rate/state friction model (lines).
Note that while the theory matched the experimental data at
long periods and the systematic variation with velocity, the
predicted weakening at short periods was not observed.
Model parameters are given in Figure 8 with loading rates
of 1–1000 mm/s.
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The data scatter more at short periods than at long
periods. The main discrepancy between data and theory
is that the predicted dynamic weakening at short periods
is not observed in our experiments. This may be due to
inadequacies in the rate and state theory, such as the
immediate response to a sudden change in normal stress.
[44] In this study we mainly focus on the destabilizing

and weakening effects of vibrations, however, we see
from Figure 12 that a common result of vibrations is to
strengthen our samples. For most cases, the peak yield
strength Dt0yield is positive, indicating that a dynamic
strengthening processes is in affect. This is consistent
with the laboratory results of Richardson and Marone
[1999], which focused on the healing process. They
found that sn vibrations caused increased strengthening
during interseismic intervals. We emphasize that under
certain conditions sn vibrations increase the absolute
strength of a creeping shear zone while others result in
dynamic weakening. In particular, high-frequency sn
perturbations of sufficiently large amplitude will tempo-

rarily reduce the strength of the shear zone, potentially
bringing it closer to failure.

4.4. Resonant Conditions

[45] The stability of our experimental shear zones is
dependent on three parameters: (1) the critical period, Tc,
which was shown by Rice and Ruina [1983] to be

Tc ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a= b� að Þ

p
Dc=Vð Þ; ð6Þ

(2) the critical vibration amplitude to destabilize slip, ec, that
is approximately [Perfettini et al., 2001]

�c �
b� a

mss

1� k=kcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1� a=mssð Þ2 b� að Þ=a

q ; ð7Þ

and (3) the critical stiffness, kc (see equation (1)). In order
for our stiffness-stabilized system (k > kc) to become
unstable, T/Tc and k/kc must both be very close to 1.0, and �
must exceed �c [Perfettini et al., 2001].
[46] Figure 13 illustrates the meaning of Tc in terms of the

time necessary for shear strength to evolve to a new steady
state level following a single step in normal stress. As
expressed in equation (6), Tc scales as Dc/V. Thus for a given
loading rate, Tc scales directly with Dc, and both quantities
describe a critical length scale necessary to obtain a new
shear strength level. When a system is subject to periodic
normal stress perturbations, rather than a simple normal
stress step, we see that the vibration period strongly controls
the response of the system. At vibration periods of Tc or
longer, frictional strength is able to adjust continuously,
allowing the layer thickness and the coefficient of friction
to remain constant. Periods below Tc result in large-ampli-
tude layer thickness changes that phase lag normal stress
oscillations. The layer rapidly dilates and compacts in an
attempt to compensate the imposed sn changes. At periods
less than Tc/10, layer thickness fluctuations allow the shear
strength to remain constant while sn rapidly changes. Var-
iations in the layer thickness indicate that interparticle
friction can not keep pace with the changes in normal stress.
Thus periods less than Tc, in particular, T < Tc/10, are
susceptible to instabilities such as the earthquake-like stress
drops described above.
[47] Experimentally, T = Tc can easily be achieved with

the loading rates we used. The critical vibration amplitude
�c = 0.0022, obtained by inserting the friction parameters
used in Figures 8–15 into in equation (7), was exceeded in
nearly all of our experiments. However, to achieve unstable
resonant behavior, k/kc must be reduced to near 1.0, and as
shown in Figure 14 this is currently unachievable with our
testing apparatus.
[48] Figure 14a, a reproduction of Figure 6 in Perfettini et

al. [2001], shows the effect of changing k/kc for a set of
estimated friction parameters. Figure 14b is the same plot
calculated using our laboratory measurements as the model
parameters with our experimental data (open circles) plotted
over the curves. The experimental data follow the lower-
most curve, k/kc = 5. We therefore conclude that the
stiffness of our testing apparatus is well above the critical
stiffness, and we are unable to attain resonant conditions.
Additionally, the calculated frictional response for our

Figure 13. Critical length scales necessary to obtain a
steady state frictional strength following a step in V or sn.
(a) Under constant normal stress conditions, Dc is the
critical slip distance needed to obtain a new steady state
shear strength with a step in V. (b) Analogous to Dc, Tc is a
critical time over which the frictional strength will evolve to
a new steady state following a step in sn, assuming a
constant loading rate. Tc is thus a critical period, below
which the shear zone is continuously evolving as it attempts
to respond to changes in sn.
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laboratory conditions are minimal compared with the
expectations for the conditions given in Figure 14a.
[49] While we do not observe resonance, Figure 15 shows

that the theoretical critical period, below which the shear
strength response is not sufficient to maintain a constant
coefficient of friction, is consistent with our observed
critical period, below which the shear strength response
is completely unable to follow sn vibrations. We find that
Tc � 10T*c, which allows us to extrapolate Tc through T*c,
and thus predict Tc for potentially more critical systems
(i.e., k/kc � 1).

4.5. Relevance to Natural Faults

[50] Making simple assumptions about the friction
parameters of natural faults (Dc = 0.1 m and b � 2a), we
can interpret our laboratory results in the context of earth-

quake processes. Equation (6) predicts that a critical vibra-
tion period of T = 1 s, which is near the microseism peak,
will excite a resonant response on a stable fault, slipping at a
rate of about a m/s. Our findings remain the same when the
range of assumed values for a, b, and Dc is broadened to
include 1.1a � b � 3a and 0.01 m � Dc � 1.0 m.
Microseismic energy will only excite a resonant response
on stable faults sliding at speeds between a few cm/s and
tens of m/s, much more rapidly than is typically observed in
the Earth.
[51] On a fault creeping at V = 10 mm/yr, resonance should

occur during vibrations with a period of between a few years
and a few thousands of years for the range of parameters
given above. Stable slip at the rates of rupture propagation
may therefore be affected by coseismic vibrations, but
tectonic loading rates are too slow to be influenced by
high-frequency seismic shaking. Earth tides, which oscillate
at a period of 12 hours, may destabilize a fault slipping
between 1 mm/s and 0.5 mm/s; rates intermediate between
tectonic loading and coseismic slip. Roy and Marone [1996]
estimated that similar slip rates (1–100 mm/s) are necessary
for a static stress perturbation to trigger inertia-driven motion
and nucleate earthquakes. Thus we find that the resonant
response to normal stress vibrations does not appear to
trigger earthquakes on creeping faults.
[52] Normal-force perturbations appear to have a greater

effect on fault strength than stability. Our results show that
a fault subject to large-amplitude, short-period vibrations, at
T < 0.1Tc, will exhibit dynamic weakening. Therefore
transient stressing from tidal forcing, seismic waves,
or other periodic normal stress fluctuations of sufficient
amplitude (� > 0.01) with periods less than a few years (for
faults creeping at V = 10 mm/yr with the friction parameters
given above) may all result in fault zone weakening.

Figure 14. Analytical solutions for the effect of stiffness
on frictional strength. (a) Critical parameter values that
resulted in a peak response at T = Tc [after Perfettini et al.,
2001, Figure 6]. (b) Parameters appropriate for our
laboratory conditions. Note the reduced amplitude of the
resonant peak at T = Tc for the laboratory parameters.
Superimposed on the calculated strength curves in
Figure 14b are the experimental data (circles), which
approximately follow the K/Kc = 5 curve. Equation (24)
of Perfettini et al. [2001] was used to compute the predicted
strength values.

Figure 15. Theoretical definitions of critical period using
the friction parameters given in Figure 8 compared with
our laboratory-derived values of T*c. The relationship, Tc �
10 T*c, enabled us to convert T*c to Tc.
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[53] Some differences are observed between the dynamic
weakening process seen in our experiments and the docu-
mented cases of dynamic triggering observed in nature. We
do not observe a delay in the weakening of our laboratory
shear zone, as is suggested by observations of dynamic
triggering following the Landers earthquake [Hill et al.,
1993]. Gomberg et al. [1997] and Kilb et al. [2002] discuss
the possibility of permanent weakening or creation of new
fractures due to dynamic stressing. They suggest that
‘‘extra’’ seismicity occurs on new fault surfaces and it
may be delayed significantly from the onset of dynamic
stressing. No permanent damage from the imposed normal
stress vibrations is evident in our experiments, yet our shear
zone is not lithified rock and fractures do not form. Sleep et
al. [2000] suggest that the observed healing in the slide-
hold-slide experiments of Richardson and Marone [1999]
may be due to the disruption of smooth, sliding surfaces
during the imposed vibrations. It is important to note that
our experiments are conducted on short timescales and
cannot be expected to see long-term, time-dependent weak-
ening or strengthening.
[54] Once the systematics of sn vibrations on creeping

shear zones are well determined, it will be advisable to
investigate the effect of fluids within the stressed shear
zone. Fluid-filled regions such as volcanic and hydrother-
mal systems are most often affected by dynamic stresses
[e.g., Hill et al., 1993; Gomberg and Davis, 1996]. In
laboratory experiments conducted by Frye and Marone
[2002] enhanced healing is observed in samples with higher
water content and the theoretical work of Segall and Rice
[1994] shows that the effect of dilatancy on slip instability is
strongly influenced by fault zone porosity. It is likely that
shaking would cause changes in fluid levels, altering the
pore pressure and creating a more critical system.

5. Summary and Conclusion

[55] Laboratory experiments testing the effect of normal
stress vibrations on steadily creeping shear zones show
systematic variation with vibration period, amplitude, and
loading rate. Large-amplitude, short-period vibrations result
in a small (�1%) dynamic weakening of the shear zone that
persists throughout the vibrations, with stress drops of
�4.5% during the onset of vibrations. The weakening is
accompanied by dilation and a sharp increase in shear zone
slip rate. At periods longer than the critical period, which
is a well-defined quantity for each set of experimental
conditions, vibrations produce sinusoidal shear strength
oscillations that are in phase with the periodic forcing.
Small-amplitude vibrations have a negligible effect on mean
shear zone strength at all periods. While a resonant response
was not observed in our experiments and we do not expect
that resonance causes instabilities on many natural faults,
we do predict that periodic vibrations will temporarily
weaken fault zones.
[56] The Dieterich (aging) friction evolution law repro-

duces the experimental data more closely than does the
Ruina (slip) law. At intermediate and long periods, the
Linker and Dieterich formulation for the effect of a step
change in normal stress successfully predicts the shear
strength behavior, but at short periods no immediate re-
sponse is observed. It appears that while the Dieterich law

together with the Linker and Dieterich parameter predict
much of our observed shear strength behavior, they do not
adequately account for the effect of high-frequency normal
stress vibrations.
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