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[1] Satellite remote sensing provides diverse and useful
ocean surface observations. It is of interest to determine if
such surface observations can be used to infer information
about the vertical structure of the ocean’s interior, like that of
temperature profiles. Earlier studies used either sea surface
temperature or dynamic height/sea surface height to infer the
subsurface temperature profiles. In this study we have used
neural network approach to estimate the temperature
structure from sea surface temperature, sea surface height,
wind stress, net radiation, and net heat flux, available from
an Arabian Sea mooring from October 1994 to October
1995, deployed by the Woods Hole Oceanographic
Institution. On the average, 50% of the estimations are
within an error of ±0.5�C and 90% within ±1.0�C. The
average RMS error between the estimated temperature
profiles and in situ observations is 0.584�C with a depth-
wise average correlation coefficient of 0.92. INDEX

TERMS: 0930 Exploration Geophysics: Oceanic structures; 4572

Oceanography: Physical: Upper ocean processes; 0903 Exploration

Geophysics: Computational methods, potential fields; 4263

Oceanography: General: Ocean prediction; 4594 Oceanography:

Physical: Instruments and techniques. Citation: Ali, M. M.,

D. Swain, and R. A. Weller (2004), Estimation of ocean subsurface

thermal structure from surface parameters: A neural network

approach, Geophys. Res. Lett., 31, L20308, doi:10.1029/

2004GL021192.

1. Introduction

[2] Satellite remote sensing provides diverse and useful
ocean surface observations. Therefore, it is of value to
determine the extent to which such surface observations
can be used to develop information about the ocean’s
interior. Electromagnetic radiation does not penetrate deeply
into the ocean waters because of which it is not possible to
directly retrieve the subsurface information such as the
vertical temperature profiles, one of the crucial parameters
in physical oceanography. However, considering its impor-
tance and need in various applications, attempts have been
made earlier to infer ocean subsurface thermal structure
(OSTS) from surface parameters. Strategies for deriving
subsurface information from surface parameters are based
on either the combination of dynamical models and in situ
observations [Kao, 1987; Wunsch and Gaposchkin, 1980]
or purely on statistical relationships between the surface and

the subsurface parameters. Khedouri and Szczechowski
[1983] and Fiedler [1988] used purely statistical relation-
ships between sea surface temperature (SST) and subsurface
temperature profiles. Chu et al. [1997a, 1997b, 1999]
developed a parametric model for analyzing observed
temperature profiles based on a layered structure (mixed
layer, thermocline, and deep layer). This model could
successfully reproduce the historical temperature profiles
of Yellow Sea and Beaufort/Chukchi Sea. Later Chu et al.
[2000] used this model for determining OSTS from satellite
SST observations, thus, establishing the inversion of the
OSTS from satellite SST as a relation between SST and
subsurface parameters such as mixed layer depth (MLD),
thermocline bottom depth and thermocline temperature
gradient. Altimeter derived sea surface height (SSH) is an
indicator of vertical temperature structure [Ali et al., 1998;
Cheney, 1982; Gopalan et al., 2000; Gopalakrishna et al.,
2003; Khedouri and Szczechowski, 1983]. deWitt [1987]
used an empirical orthogonal function (EOF) analysis of
OSTS and then developed relationships between dynamic
height and the amplitudes of the first two vertical modes.
These two modes could account for more than 95% of the
temperature variance in each of the monthly data sets.
Carnes et al. [1990] derived synthetic temperature profiles
from Geosat SSH observations.
[3] All the earlier statistical approaches used only one

parameter (e.g., SST, SSH or dynamic height) to synthesize
the OSTS. However, the temperature structure depends
upon many processes including surface heat exchange,
wind-driven mixing, and advection. Hence, we believe that
inclusion of surface parameters like wind speed, radiation/
heat balance at the surface, SST and SSH/dynamic height
that reflect these processes may prove to be more success-
ful. In this paper, we have used a neural network approach
to synthesize the OSTS using some of the surface param-
eters affecting the OSTS.

2. Data

[4] Woods Hole Oceanographic Institution had deployed
a well-instrumented surface mooring in the central Arabian
Sea during 16 October 1994–22 October 1995 in the
middle of an array of four moorings deployed by Scripps
Institution of Oceanography and the University of Wash-
ington [Rudnick et al., 1997]. In the present analysis, we
have used the observations from that mooring located at
15.5�N and 61.5�E. The surface element of this mooring
was a 3 m discus buoy with two redundant sets of
meteorological instruments, one vector-averaging wind re-
corder and one improved meteorological system. These
instruments measured wind speed and direction at a height
of about 3.2 m above the water level. They also measured
air temperature, relative humidity, barometric pressure at a
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height of 2.5 m above the water line, incoming short
wave and outgoing long wave radiation. The subsurface
instrumentation consisted of vector measuring current
meters, moored CT (conductivity, temperature sensors),
temperature sensors and vector measuring current meters
adapted to measure bio-optical parameters. The temperature
measurements were made down to a depth of 3025 m and
the salinity measurements down to 250 m.
[5] The net heat flux across the air-sea interface is

computed from the surface buoy measurements. The details
of these flux estimations and the accuracy of the measure-
ments are described by Weller et al. [1998] and Fischer
[1997]. The surface parameters used in this analysis are the
net surface heat flux, net radiation, wind stress, SST, and the
dynamic height. The dynamic height is estimated using
the observations of temperature and salinity. At a few depths
the salinity observations are not available all the time due to
biofouling. In order to have uniformity in the computations
of dynamic height, only those depths where the observa-
tions are available all the time were considered. Similarly,
we have considered only those depths, where temperature
observations were available throughout the study period.
Thus, in total, we have considered 30 depths. We have
discarded a few of the hourly observations for which
some measurements were not available. Thus, out of the
8858 hourly observations we have considered 8306 mea-
surements for the analysis. Though the temperature values
are available down to 3025 m, we have considered only
down to 300 m because the observations beyond 300 m
are not regularly available. This is the only data set of both
meteorological and oceanographic observations in the Indian
Ocean with continuous time series of hourly frequency.
Hence, we have selected this data set for the analyses, even
though the observations are during 1994–1995.

3. Network Analysis

[6] Performing an artificial neural network (ANN)
analysis requires three sets of data under the categories:
Training, Verification (validation), and Prediction (testing).
The data set marked for training is used to train the neural
network. Verification cases are used to validate the model
during training so that the model does not over-fit. The
ANN stores the trained model and uses this model for
predicting the outputs using the input parameters. The most
popular algorithm for multi-layered networks is the back-

propagation technique [Miller and Emery, 1997]. We have
used the multi-layer perceptron model with a single hidden
layer consisting of 14 hidden units, employing the back
propagation algorithm for training [Haykin, 2002]. The
independent parameters (inputs) for the network analysis
are SST, dynamic height, wind stress, net radiation, and net
heat flux. The dependent parameters are the temperatures at
30 depths. We have divided the entire data into even and
odd dates. About 50% of the data with even dates are used
for training and the remaining even dates data for verifica-
tion. We have used all the data with odd dates (50% of the
entire data set) for predicting the temperature profiles. Out
of the total 8306 number of valid observations, we have
used 2159 observations for training, 2080 for verification
and 4067 for prediction. We have divided the data into odd
and even dates so that the oceanographic conditions for
training/verification and prediction remain same with the
assumption that these conditions do not change significantly
within a day. Among the five independent parameters
dynamic height has the first rank followed by SST, net
radiation, heat flux, and wind stress. The predicted values
were compared with the in situ measurements and all the
discussions and results in the subsequent sections refer to
the comparison between the in situ and predicted values.

4. Results

[7] The data standard deviation (SD) (Figure 1) is max-
imum (�2.5�C) near 100 m depth and minimum (0.4�C) at
deeper layers. Near the thermocline region, around 100 m,
the temperature variations are large due to the changes in
the MLD. Similarly, the SST variations are also large near
the surface due to the variations in the radiation and fluxes
and diurnal variability in near-surface stratification in light
winds. Since the variation of temperature at deeper layers is
negligible, the SD is also less. The absolute error mean and
the SD of the error are very small in the surface layers
indicating that temperatures closer to the surface can be
estimated very accurately. Absolute errors are large near the
thermocline region where seasonal variations are quite
significant. The maximum absolute error mean and the
SD error are of the order of 0.75�C and 1�C respectively.
These errors are less in the deeper layers. Similarly, the SD
ratio (the ratio between SD error and the data SD) is also
less near the surface and in the deeper layers.
[8] Out of the 30 depths, where temperatures have been

predicted, we have selected six depths for further analysis.
All these depths are within the 50–125 m depth, where all
the five statistical parameters described in Figure 1 show
significant variations. Histograms of the errors in the model
predicted temperatures are also prepared (figures not
shown). At all these depths, the temperature could be
estimated with an error limit of ±0.5�C in 50% of the cases,
where as 95% of the estimations lie within ±1�C. 1–2�C
errors account for only 5% of the total data set.
[9] We have computed the monthly RMS differences

between the estimations and the actual observations at
different depths (Figure 2). The monthly RMS differences
down to 20 m and beyond 200 m depth are less than 0.5�C.
Since the temperature profiles are estimated from the
surface parameters, the errors are very less at the top 20 m
layer. Similarly, the errors in the 200 m to 300 m range are

Figure 1. Neural network model summary statistics.
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also less as the temperatures at the deeper layers do not
change significantly. Most of the errors are in the 35 m–
150 m range where MLD has significant variations. The data
SD is also high in this layer (Figure 1). Carnes et al. [1990]
also observed large temperature error between the actual and
synthetic temperatures near the core of the permanent
thermocline. Largest RMS errors are present around March
at 100 m depth. MLD, defined as the depth where the
temperature gradient is more than 0.08�C/m [Ali et al.,
1987], has large variations at this depth. Other large RMS
errors are observed during November 1994 and August/
September 1995 at around 50 m. Incidentally, MLDs during
these months are of the same range. Most of these errors are
around 1�C with small patches of highest errors of the order
of 1.8�C. However, the frequency of these high errors is
quite less compared to the RMS errors of 0.5�C.
[10] Prediction of OSTS in the Arabian Sea is at some

times of the year particularly challenging, and the prediction
experiment has covered regimes characterized by different
dynamics and upper ocean variability. The intermonsoon
period of October and early November is characterized by
light winds, net heat gain at the surface, and resulting
diurnal variability in MLD [Weller et al., 2002]. Strong
diurnal variability, with MLDs ranging at times from close
to 10 m during the day to close to 90 m at night, was
observed at the Woods Hole Oceanographic Institution
mooring during the northeast monsoon period of roughly
mid-November through February. Weller et al. [2002]
pointed to the mixed layer dynamics of this period being
dominated by the surface buoyancy flux, with convective
deepening of the mixed layer at night. The March–April
intermonsoon showed MLD variability associated with
short-lived changes in the sign of the surface heat flux
and wind forcing events. Wind forcing dominated the
dynamics in the southwest monsoon, and during that period
the MLD showed little diurnal variability.
[11] The model is valid only if its RMS error is small and

error SD is less than the in situ data SD. The SD ratio in the
present study is less than 0.7 throughout indicating that
the error SD is less than data SD, thus, validating the model
used. The correlation coefficient (R) between model
estimated and observed (in situ) profiles at all depths
represents the second criterion for the model validity. The

RMS error of all the estimated temperatures for all the
depths is 0.584�C with a R value of 0.99. This reduces to
0.92 when we computed the R values first at each depth and
then averaged over the 30 depths shown in Figure 1. Chu et
al. [2000] used the inverse model in the South China Sea
and estimated the temperature profiles with an average RMS
error of 0.72�C and a R value of 0.79. However, they have
estimated the temperature profiles over a larger area using
the Master Observational Oceanographic Data Set
(MOODS) for the South China Sea during May 1932–94.
[12] We have plotted the estimated temperature profiles

along with the in situ observations for alternate months (for
want of space) starting from November 1994 to September
1995 (Figure 3). Data of 0100 hrs (UTC) on 16th of every
month have been used for this analysis. The vertical
distribution of the estimated temperature agrees quite well
with the in situ profiles. We have also analyzed the scatter
plots for these twelve data sets (figures not shown). The
regression equations and the corresponding coefficients of
determination (R2) values obtained from the scatter plots are
also presented on each figure. In all the cases, the R2 values
are more than 0.97 with a slope of �45�.

5. Summary and Conclusions

[13] The capability of the ANN approach to synthesize
the OSTS from surface parameters like net surface heat flux,
net radiation, SST, wind stress, and dynamic height is
demonstrated in this paper. The observations of the Arabian
Sea mooring located at 15.5�N and 61.5�E deployed by the
Woods Hole Oceanographic Institution during October
1994 to October 1995 have been used for this analysis.
The model estimated profiles were compared with the actual

Figure 2. Monthly root mean square errors at different
depths (x-axis is not to the scale).

Figure 3. Comparison of in situ and predicted temperature
profiles at different depths. Solid lines represent the in situ
temperatures and dashed lines represent the estimated
temperatures.
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in situ profiles. They agreed quite well with the
corresponding observed (in situ) profiles. About 50% of
the estimated profiles lie within an error limit of ±0.5�C and
95% of the estimations, within ±1�C. 1–2�C errors account
for only 5% of the total data set. The average RMS error of
the model estimated profiles is 0.584�C, with a depth-wise
average R value of 0.92.
[14] Thus, the ANN approach was found to be successful

in estimating OSTS from surface parameters. To further
strengthen and apply this model globally, it is necessary to
test the validity of such an approach with widely varied sets
of data from different regions and with better networks
(models with more/optimum number of hidden layers and
better training algorithms). This method may also be used in
the estimation of salinity/density profiles, provided, more in
situ measurements are available. Once accurate predictions
of OSTS have been made, over a larger area, the estimated
profiles can be used for the practical applications of acoustic
propagation and MLD estimations.
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