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[1] Four seafloor benchmarks were deployed with ROV Jason2 at frequently visited areas along the
northern East Pacific Rise (NEPR) ridge crest near 9°50'N, within the Ridge2000 EPR integrated study site
(ISS) bull’s eye. When used in concert with established deep-ocean acoustic positioning techniques, these
benchmarks provide navigational infrastructure to facilitate the integration of near-bottom data at this site
by allowing efficient and quantitative coregistration of data and observations collected on multiple dives
and over multiple cruises. High-resolution, near-bottom multibeam bathymetric surveys also were
conducted along and across the ridge crest to provide a morphological and geological context for the
benchmark areas. We describe the navigation and data processing techniques used to constrain the
benchmark positions and outline operational details to effectively use benchmarks at this and other deep-
ocean sites where multidisciplinary time series studies are conducted. The well-constrained positions of the
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benchmarks provide a consistent geospatial framework that can be used to limit navigational uncertainties
during seafloor sampling and mapping programs and enable accurate spatial coregistration and integration
of observations. These data are important to test a range of multidisciplinary hypotheses that seek to link
geological, chemical, and biological processes associated with crustal accretion and energy transfer from

the mantle to the hydrosphere at mid-ocean ridges.
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1. Introduction

[2] Over the past 25 years, regional-scale inves-
tigations of ridge-crest characteristics at sites such
as the fast spreading northern East Pacific Rise
(NEPR) have provided an important framework for
understanding the structure and evolution of mid-
ocean ridges (MORs) [e.g., Macdonald et al.,
1984, 1992; Lonsdale, 1983; Fornari et al.,
1984; Crane, 1985; Edwards et al., 1991; White
et al., 2006]. With advances in deep submergence
technology over the last decade, near-bottom stud-
ies of geological, biological, and hydrothermal
features along the ridge crest have been effective
at characterizing the interconnected fine-scale ac-
tive processes operating at the plate boundary [e.g.,
Haymon et al., 1993; Shank et al., 1998; Fornari et
al., 1998, 2004; Von Damm and Lilley, 2004;
Tolstoy et al., 2008; Lowell et al., 2008]. Success-
ful integration of these diverse sets of multiscalar
data requires well-constrained navigation to ensure
precise spatial coregistration of interdisciplinary
scientific observations collected over multiyear
periods. For example, biologists studying vent fauna
succession at hydrothermal sites need sufficient
positional accuracy to relate their observations to
changes in fluid chemistry measured by geochem-
ists on multiyear cruises to the same site. As large-
scale database efforts (e.g., www.marine-geo.org)
[Carbotte et al., 2004] have begun to compile
seafloor data and observations, the need for precise
navigational data has become increasingly impor-

tant to ensure that ongoing studies can successfully
and quantitatively build upon previous work.

[3] We report on the deployment of a set of
physical benchmarks accompanied by localized
high-resolution bathymetric surveys within the
integrated study site (ISS) of the Ridge2000 pro-
gram at 9°50'N on the NEPR (Figure 1). In concert
with established deep-ocean acoustic navigational
techniques, these benchmarks and bathymetric maps
provide the navigational infrastructure to ensure
adequate positional accuracy to support long-term
and multidisciplinary time series observations. The
benchmarks are easily identifiable physical markers
within a known geologic context and can provide
real-time guidance to frequently visited sites. The
well-constrained seafloor positions of the bench-
marks provide a geospatial baseline that can be used
to constrain navigational uncertainties by locating
seafloor sampling, observations, and mapping within
a consistent navigational framework.

[4] The use of benchmarks for real-time guidance
builds upon the success of the bio-geo transect
[Shank et al., 1998], a series of markers placed
along the floor and margin of the axial summit
trough (AST) that were used as navigational aids
after the 1991-1992 eruptions at the NEPR [e.g.,
Haymon et al., 1993; Rubin et al., 1994; Gregg et
al., 1996] until their destruction during the 2005—
2006 eruption [e.g., Tolstoy et al., 2006; Cowen et
al., 2007; Soule et al., 2007]. The dynamic nature
of the AST floor, which has been modified by at
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Figure 1. EM300 multibeam bathymetry [White et al.,

2006] of the northern East Pacific Rise (NEPR) crest
where numerous deployed experiments and near bottom
studies are facilitated by the Ridge2000 program. The
black line shows areas covered by the recent volcanic
eruption in 2005-2006. White diamonds mark high-
temperature vents. A blue line shows the position of the
axial summit trough. An array of six bottom-moored
acoustic transponders (and transmit frequency) positioned
along the ridge crest are shown by black dots (Table 1).

least two major eruptive events since 1991, as well
as the collapse and expansion of hydrothermal vent
structures over short timescales, prescribes the
need for physical markers and guided our selection
of deployment sites for the new benchmarks.

2. National Deep Submergence Facility
Vehicle Navigation

[s] National Deep Submergence Facility (NDSF)
vehicles (Alvin, Jason2, Sentry; www.whoi.edu/

ndsf) are navigated through the integration of
Doppler Velocity Log (DVL) sonars, pressure
depth sensors, north-seeking fiber-optic gyro-
scopes, and long baseline (LBL) acoustic naviga-
tion systems [Kinsey and Whitcomb, 2004]. Errors
on the order of submeter to tens of meters that
commonly occur in DVL-based vehicle position
estimates due to a variety of error sources (e.g.,
loss of DVL bottom-lock; cumulative drift) [Kinsey
et al. 2006a], can be removed by postprocessing of
DVL navigation data resulting in improved vehicle
navigation accuracy [Ferrini et al., 2005, 2007;
Kinsey and Whitcomb, 2004]. Improvement in
accuracy is variable within a dive and can be as
large as 20 m.

[¢] Geospatially referenced Doppler positions are
obtained through integration with LBL acoustic
navigation in which the vehicle position is com-
puted from acoustic ranges within a network of
moored transponders. When depth measurements
are available, only two ranges are required to
compute the XY position using triangulation. If
additional ranges are available a least squares
solution can be employed to improve the accuracy
of the position estimate. LBL navigation provides
position measurement at intervals of 10—30 s with
a range-dependent precision of 0.2—-20 m [Hunt et
al., 1974; Milne, 1983]. LBL navigation requires
careful placement of transponders (e.g., trans-
ponders deployed in high-relief terrain may suffer
from acoustic shadowing and/or possible reception
of reflected acoustic pings) and accurate surveying
of transponder positions [Lerner et al., 1999;
Kinsey et al. 2006a]. Errors in transponder posi-
tions may also arise from watch circle drift on the
order of 1-10 m over 1-10 h timescales (with a
tether length of 150 m) due to ocean currents.

3. Navigational Infrastructure at NEPR

[7] Six Benthos XT6001 acoustic transponders
were permanently deployed at the NEPR in 2006
(AT15-06; Chief Scientist: Von Damm) and 2007
(AT15-27; Chief Scientist: Klein) to provide a
consistent LBL acoustic network for interdisciplin-
ary studies (Figure 1) and obviate the need to
deploy, survey, and recover transponders. The
transponders cover the area between 9°51'N (Bio-
vent) and 9°46—47'N (A and L vents) where high-
and low-temperature (high-T, low-T) hydrothermal
vents and biological communities are being studied
[e.g., Shank et al., 1998; Von Damm and Lilley,
2004]. Each transponder is on a 152 m tether to
minimize acoustic shadowing within the primary
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Table 1. Transponder Locations at the 9°50'N East Pacific Rise Integrated Study Site Used for Long Baseline

Position Estimates®

Transponder X Position Y Position Depth Latitude Longitude
C 4113.0 78369.0 2343.0 9°50.514'N 104°17.755'W
D 4972.0 78283.0 2344.0 9°50.467'N 104°17.286'W
G 5369.0 76952.0 2354.0 9°49.745'N 104°17.069'W

#See Figure 1 for map location.

working area of the ISS. Operations reported here
occurred near 9°50'N, within acoustic range of the
three northernmost transponders listed in Table 1; the
positions of all NEPR transponders are listed in
the Ridge 2000 Data Portal (http://www.marine-
geo.org/link/station_groups.php?feature_id=EPR&
subset=current).

[8] A least squares estimate of transponder 3-D
positions is computed from ~100 range measure-
ments (between a ship-mounted transducer and the
transponder on the seafloor) and the ship’s GPS
position. Thus, the quality of transponder position
estimates depends in part on the precision of the
ship’s GPS system. The NEPR transponder surveys
were all conducted from the R/V Atlantis, which is
equipped with a Furuno GP-90 GPS system (nom-
inal accuracy: 5 m). The precision (i.e., 1-sigma) of
this GPS system, based on data obtained while the
vessel was docked is £2.29 m and £2.44 m for X
and Y, respectively. The RMS positioning error of

each transponder survey (duration less than 1 h) is
less than 0.5 m (Table 1).

4. Benchmark Deployments and
Positions

[s] Four benchmarks were deployed outside of the
AST along the NEPR during Jason2 lowering 268
in April 2007. Although the seafloor mapped
during benchmark surveys was clearly covered
by new lava during the 2005-2006 eruption, the
benchmarks should remain undisturbed if volcanic
activity is limited to within the AST as was inferred
for the 1991-1992 NEPR eruption [e.g., Haymon
et al., 1993; Gregg et al., 1996]. The benchmarks
were designed to provide accurate and unique
identification in both horizontal and vertical inci-
dence imaging (Figure 2). After deploying a bench-
mark and ballasting it with rocks, the ROV faced
north and rested on the seafloor with the bench-
mark immediately in front of the retracted tool

Figure 2.

(a) Seafloor benchmarks used in this study were constructed from milk crates, in which rock ballast was

placed upon deployment. Labels are cut out of a hinged polyvinyl nameplate (20.5 x 30.5 cm) attached to a
stanchion. Cutouts help minimize biofouling of labels. The total height of each benchmark is ~1 m. The nameplate is
made of two identical placards, the free portion of which is able to float, allowing the nameplates to be identified from
above and from the side. (b—d) Digital photographs taken from Jason2 of the four installed EPR integrated study site
(ISS) benchmarks from above (benchmarks 1, 2, and 4) and obliquely (benchmark 3) illustrate the visibility of the
benchmarks and the substrate on which they were placed.
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Table 2. Computed Positions of the Benchmarks®

Solution Number of X Position Mean Y Position Mean
Benchmark Method LBL Cycles Transponders (2-sigma) (m) (2-sigma) (m)

1 least squares 88 C, D,G 4273.65 (2.69) 79220.65 (2.50)
1 2 range 114 C,D 4274.14 (2.37) 79222.91 (0.92)
1 2 range 138 C G 4275.95 (1.23) 79222.64 (0.65)
1 2 range 85 D, G 4270.42 (7.69) 79219.86 (3.88)
2 least squares 89 C, D, G 4623.60 (0.23) 78171.91 (0.25)
2 2 range 89 C,D 4623.44 (0.22) 78168.73 (0.56)
2 2 range 89 C G 4625.06 (0.41) 78172.93 (0.42)
2 2 range 89 D, G 4622.57 (0.29) 78171.41 (0.23)
3 least squares 93 C, D, G 4643.82 (0.27) 77995.33 (0.30)
3 2 range 96 C,D 4643.29 (0.25) 77990.71 (0.25)
3 2 range 96 C G 4650.78 (0.81) 78001.44 (0.83)
3 2 range 96 D, G 4640.25 (0.27) 77994.16 (0.26)
4 least squares 195 C, D, G 4732.06 (0.57) 77649.92 (0.28)
4 2 range 195 C,D 4731.91 (0.58) 77647.55 (0.23)
4 2 range 195 C G N/A N/A
4 2 range 196 D, G 4728.80 (0.90) 77648.73 (0.18)

#Bold positions represent the highest precision estimates. Here LBL is long baseline.

basket. LBL position measurements were collected
once every 15 s for approximately 15 min.

[10] Benchmark positions were recomputed after
the dive using ranges from the three transponders
located in the vicinity (transponders C, D, and G;
Table 2). Since the transponders and the vehicle
were deeply submerged, acoustic refraction was
considered negligible. Acoustic travel times from
all three transponders enabled us to compute con-
ventional two-transponder LBL solutions using
each of the transponder pairs (CD, CG, and DG;
Table 2) and a least squares solution using ranges
from all three transponders [e.g., Milne, 1983;
Hunt et al., 1974]. At each benchmark, four
position estimates were computed for each LBL
cycle, and the mean of the estimates over the 15-
min survey period was computed to determine the
final position for each method. Mean positions are
listed in Table 2, with the standard deviations of
each technique’s estimate listed in parentheses.

[11] Using the number of LBL cycles and the
standard deviations as criteria, we identify the most
accurate mean position estimate for each bench-
mark (shown in bold in Table 2). In cases where
the two-range solutions and the least squares pos-
sessed comparable LBL cycles and standard devi-
ations (e.g., the C—D, D-G, and least squares
solutions for benchmark 3), the least squares solu-
tion was preferred. The close proximity of bench-
mark 4 to the baseline between transponders C and
G precluded obtaining estimates using the CG two-
transponder solution.

[12] To illustrate our methodology, consider the
estimation of the XY position of benchmark 2

(Figure 3). During the 15-min survey between
2305 and 2320 on 20 April 2007, all 89 LBL ping
cycles contained returns from all three trans-
ponders. Figure 3a shows the X and Y position
estimates computed by each technique for bench-
mark 2 versus time. The right plot shows the
distribution of the position estimates for each of
the techniques. The least squares solution and the
DG transponder pair solution possess the lowest
standard deviations. The norm of the standard
deviations for the least squares solution is 0.34 m
(compared to 0.37 m for the DG transponder pair
solution), and thus the least squares solution was
used as the position of benchmark 2 (bold line in
Figure 3). Subsequent surveys of benchmarks 2
and 3 carried out ~12 h after the first survey are all
within 0.2 m of the calculated positions reported in
Table 2.

[13] Positions of several hydrothermal vent sites
within the study area that are frequently visited:
Bio9, P, Ty, and Io, were also evaluated using 2 and
3 transponder solutions. The vehicle sat on the
seafloor at the vent sites for periods of 5—20 min.
As these surveys were conducted during sampling
operations, vehicle heading was prescribed by the
position of active vents. Table 3 shows the most
accurate vent positions determined during the sur-
veys; each position has a precision of ~0.5 m.

5. Multibeam Bathymetry Surveys
[14] High-resolution bathymetry data were collected

during J2—-268 with a 200 kHz Simrad SM2000
multibeam sonar system mounted on Jason2. Sur-
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Figure 3. (a) Plots of the X and Y positions of benchmark 2 based on long baseline (LBL) acoustic navigation data

versus time of day (see Table 2 for details) during one of the benchmark surveys conducted during Jason2 Dive 268
on 20 April 2007. (b) Each of the four solution techniques show a Gaussian distribution of X and Y position errors
(position minus mean position over the 15 min time interval) about a mean of ~0. In this case, the least squares
method was selected as the best result (bold lines in Figure 3b) as it has the least variance over the duration of the
survey. The position estimates listed for benchmark 2 in Table 3 are the mean of the calculated position estimates

(Figure 3a); the standard deviations (1-sigma) correspond to the error histograms (Figure 3b).

veys were conducted across the AST at each
benchmark site and along the AST between all
benchmarks (Figure 4). The portions of the AST
imaged in these surveys hosted the eruptive vents
of both the 1991-1992 and 2005-2006 eruptions
and contain hydrothermal vents and vent structures
that remained active through the most recent vol-
canic cycle. Over the past 15 years, these sites have
been visited frequently and are likely to be visited
in the future. These surveys represent snapshots of
the morphologic character and arrangement of
hydrothermal, tectonic, and volcanic features of
the axial region that can serve as a baseline for
assessing small-scale changes resulting from fault
slip, lava deposition, mass wasting, and hydrother-
mal vent construction/destruction.

[15] Multibeam data were collected using a line
spacing of ~25 m, and vehicle altitude did not
exceed 30 m. Surveys were conducted in set-point
depth control, i.e., vehicle depth was constant
throughout and the seafloor was allowed to rise
and fall beneath it (Figure 4b). Data were pro-

cessed using the standard NDSF techniques for
postprocessing navigation [Ferrini et al., 2005,
2007; Kinsey et al., 2006b] and bathymetric data
[Ferrini et al., 2007, and references therein]. Spu-
rious LBL position data were manually removed
and the DVL velocity data reintegrated to obtain
improved vehicle position estimates. Edited LBL
data and reintegrated DVL data were merged using
a complementary filter, which low-pass filters less
precise LBL positions and high-pass filters the
more precise DVL data to create a more accurate
vehicle navigational track [Whitcomb et al., 1999;
Ferrini et al., 2008]. The resulting navigation data
were merged with sonar and attitude data to gen-
erate bathymetric soundings. Bathymetric data
were quality-controlled using the Fledermaus” 3-D
editor. Bathymetric data points and 1-m grids are
available through the Ridge 2000 Data Portal (http://
www.marine-geo.org/link/entry.php?id=AT15-17).
We present below a basic description of the seafloor
morphological and geological context at each
benchmark site, the latter constructed from near-
bottom observations (video and still imagery) col-

Table 3. Long Baseline Three-Transponder Solution Surveyed Positions of High-Temperature Vent Sites at the

9°50'N Area on the Northern East Pacific Rise Axis

Vent X Position (m) Y Position (m) Depth (m) Latitude Longitude

Bio9 4609.49 77992.78 2509 9°50.313'N 104°17.484'W
P 4623.29 78171.91 2501 9°50.279'N 104°17.473'W
Ty 4643.83 77995.36 2501 9°50.118'N 104°17.440'W
lo 4732.06 77649.91 2503 9°50.112'N 104°17.426'W
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Figure 4. (a) Tracklines for near-bottom multibeam bathymetry surveys along axis (blue) and at the benchmarks
(red) shown over the EM300 regional bathymetry [White et al., 2006]. Benchmark positions are shown as cyan dots.
An approximate line spacing of 25 m was maintained during benchmark surveys (see map inset). (b) Surveys were
conducted in a ““constant depth” mode, where vehicle depth was maintained and the seafloor allowed to rise and fall
beneath the vehicle (shown for the red track line in Figure 4a inset). (a) SM2000 multibeam bathymetry (gridded at 5-
m) for the along-axis survey between 9°49.5'N and 9°51'N, covering the area between the benchmarks (black dots).

lected on this and several other cruises to the sites
[e.g., Cowen et al., 2007; Soule et al., 2007].

5.1. Benchmark 1 Area

[16] Benchmark 1 was placed on a platform of
lobate lava west of the AST near BioVent, a high-
temperature vent that has been monitored and
sampled since it became active after the 1991
eruption [Von Damm, 2004; Scheirer et al., 2006]
(Figure 5). The benchmark is 50 m west of the
western AST wall, and 70 m north-northwest of
BioVent (bearing: 284°). Several local collapse
features [e.g., Engels et al., 2003] are evident
between the benchmark location and the AST wall.

The AST at this location contains several parallel
fissures (Figure 5) within a ~75 m wide trough, the
eastern margin of which is poorly defined. The
AST floor is covered with broken (i.e., collapsed)
lava crusts with patches of intact lobate and sheet
lava flows and scattered lava pillars. We interpret
pervasive collapse east of the AST rim based on the
slightly deeper and irregular nature of the seafloor
as displayed in the near-bottom multibeam data
relative to the uppermost lobate platform. An east-
west oriented depression that is imaged in the far
east of the survey contains lineated sheet flows that
are common in lava channels [Soule et al., 2005;
Garry et al., 2006].
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Figure 5. Benchmark 1 near-bottom SM2000 multi-
beam bathymetry survey and interpretation. (a) Bathy-
metry data are gridded at 1 m and shown with 1 m
contours. The white triangle shows the position of
benchmark 1 (Table 2) and the black cross shows the
position of Biovent (Table 3). The black line marks the
location of a photo transect conducted during Jason2—
268. (b) Interpretation based on near-bottom imagery
and bathymetry shows numerous fissures and collapse
within the AST and pervasive collapse east of the AST
rim. A lava channel is present at the east edge of the
survey. (c) Photo of Biovent taken from Alvin on dive
4374 in 2007.

5.2. Benchmark 2-3 Area

[17] Benchmarks 2 and 3 were placed on lobate
lava crust at the eastern margin of the AST near
three vent sites (Tica, Bio9, and P) that have been

studied extensively over the past 10 years [e.g.,
Shank et al., 1998; Von Damm and Lilley, 2004;
Scheirer et al., 2006] (Figure 6). Benchmark 2 is
located ~30 m east of the currently low-T diffuse
venting site Tica (bearing: 80°); benchmark 3 is
located near two high-T hydrothermal vents, ~20 m
east of Bio9 (bearing: 80°) and ~50 m north-
northeast of P (bearing: 12°). Although the seafloor
in the benchmark 2 and 3 survey area is covered
with lava from the 2005—2006 eruption, the sites
of active venting at Bio9 and P-vent were not
significantly altered.

[18] The new bathymetry reveals a well-developed
AST ~50 m wide and ~12 m deep. The AST walls
are steep, and in many places the margins have
overhanging lava crusts supported by lava pillars
[e.g., Chadwick, 2003]. The terrain at the crest of
the AST is composed of lobate lava flows and
contains areas of localized collapse (0.5 to ~1.0 m
deep). A bench, located ~2 m below the primary
ridge crest surface is present along the western wall
of the AST. In the southern part of the survey area
it comprises a narrow bench along the AST wall. In
the north, a lava channel is present across a more
extensive secondary platform (Figure 6). The AST
floor in this area is a complex terrain of broken
lava crusts along with lobate and sheet lava flows.
The 2—5 m-deep troughs that extend west of the
AST and connect to the AST floor represent older
lava channels and were present before the 2005—
2006 eruption [e.g., Soule et al., 2005]. They are
currently floored by lobate lava emplaced during
the 2005—-2006 eruption. A primary eruptive fis-
sure, less than 15 m wide and 2—4 m deep, is
evident at the center of the AST. The fissure tapers
and reemerges toward the southern part of the
survey area [Ferrini et al., 2007], illustrating the
fine-scale segmentation visible in the new high-
resolution bathymetry data.

[19] Two high-T hydrothermal vent sites (Bio9, P)
are resolved in the bathymetry, appearing as
mounds 5—10 m across and 2—5 m high, morpho-
logically similar to nearby lava pillar complexes.
The vent sites occur within the AST floor and are
composed of multiple narrow sulfide chimneys,
only 1 or 2 of which may be active at any given
time. The individual chimneys are 2—8 m high and
commonly only a meter in diameter. The vent areas
contain sulfide debris from fallen chimneys, but in
many places the basalt substrate can also be seen
(Figure 6¢). The Bio9 vent site is ~10 m inside the
eastern AST wall; P-vent is adjacent to the eastern
AST wall. Diffuse vent sites in each area are not
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Figure 6. Benchmark 2—3 near-bottom SM2000 multibeam bathymetry survey and interpretation. (a) Bathymetry
data are gridded at 1 m and shown with 1 m contours. The white triangles show position of benchmark 2 (north) and
3 (south) (Table 2) and black crosses show the position of Bio9 (north) and P (south) vents (Table 3). The black line
marks the location of a photo transect conducted during Jason2—268. (b) Interpretation of bathymetry data indicates a
well-defined AST ~40—60 m wide that contains the vent areas. Vent sites comprise numerous small sulfide chimneys

covering ~5 m x 10 m areas that are elongate in the north-south direction along the trace of the primary fissure in the

AST floor. Alvin photographs collected on Dive 4381 in 2007 of (c) Bio9 and (d) P vent show the character of the
sulfide chimneys.

expressed in the bathymetry data, although are  expression of the vents by ~10 m. This naviga-
commonly located at breaks in slope, such as at  tional discrepancy is not unexpected as navigation
the edge of the AST or fissures within the AST  for the bathymetric survey, as produced onboard,
(Figure 6d). The location of the vent sites, as

determined solely from LBL transponder ranges

reflects merged LBL and DVL positional data.
(see section 5), are offset from the bathymetric

Refinement of the positional data is the subject of
a separate study.
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Figure 7. Benchmark 4 near-bottom SM2000 multibeam bathymetry survey and interpretation. (a) Bathymetry data
are gridded at 1 m and shown with 1 m contours. The white triangle shows the position of benchmark 4 (Table 2) and
black crosses show the position of Ty (east) and Io (west) vent sites (Table 3). (b) Interpretation of bathymetry
indicates the AST has poorly defined walls and contains numerous lava pillars supporting remnant lava crusts created
when the trough was filled with lava. Sheet flows emanate from the trough to the east and west, in places lacking a
direct connection to the AST. o vent site is characterized by a ~2 m x 5 m mound that is resolved by the detailed
bathymetry and is elongate in the north-south direction. Alvin photographs taken on Dive 4381 in 2007 show (c) the
small chimneys of the Ty site (note smoke at left edge of photograph) and (d) the larger, now inactive sulfide

chimneys of the o vent site.

5.3. Benchmark 4 Area

[20] Benchmark 4 was placed outside the AST, east
of the Ty and lo vent sites, where biological
experiments have been deployed [Shank et al.,
2006]. Benchmark 4 is ~50 m east-northeast of
Io (bearing: 65°) and ~15 m northeast of Ty
(bearing: 75°). The AST in this area is 40—60 m
wide and 3—5 m deep and is less well defined than
in the benchmark 2-3 area (Figure 7). In the
northern part of the survey it is characterized by
two parallel troughs, each containing a fissure,

separated by a ridge of lobate lava crust remnants
partially supported by lava pillars. The walls of the
AST are extensively collapsed, leaving remnants of
a volcanic carapace or platform. The platform is
dominantly lobate lava, but this area is also char-
acterized by abundant lineated sheet flows that
drain the AST both to the west and east. The sheet
flows mark the location of drained lava channels,
the floors of which are 1 -2 m lower than the lobate
platform. Many of the lava channels are separated
from the AST, where they were likely sourced, by
lobate lava indicating either that late stage lobate
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lava covered the proximal portions of the channels
or that the channels were fed from underneath the
lobate crust.

[21] The Io hydrothermal vent site is imaged in the
bathymetry as a 5—10 m wide, 2—3 m high mound.
The vent complex, which is extinct as of December
2007, was active at the time of our survey. It is
comprised of a collection of narrow (<1 m diam-
eter) sulfide chimneys with sulfide debris at their
base (Figure 7c). The high-T vent Ty is located
within a broad area of diffuse venting along the
edge of the eastern fissure and is comprised of
small (<1 m high) sulfide chimneys that are not
resolved in the bathymetry data (Figure 7d).

6. Summary

[22] During a 3-day Jason2 ROV dive, we placed
four benchmarks along the NEPR ridge crest to
serve as navigational controls to aid subsequent
research programs conducting integrated time se-
ries measurements. We also conducted near-bottom
multibeam bathymetry surveys in the vicinity of
each benchmark and between benchmarks to pro-
vide geological context with respect to fine-scale
volcanic, tectonic, and hydrothermal features on
the ridge crest. The bathymetry data serve as a
baseline for resolving future change in this portion
of the ridge crest at spatial scales (<1 m vertically
and <10 m? areally) relevant to active geological
and hydrothermal processes.

[23] The benchmarks identify physical locations on
the seafloor with known geographic positions and
provide the infrastructure within which vehicle
navigation can be better constrained. To effectively
use benchmarks during seafloor operations, it is
recommended that the submersible or ROV sit on
the seafloor at the benchmark with a heading of 0°
(see section 4). Remaining stationary at the bench-
mark site for ~15 min will provide sufficient data
to compute the vehicle position and establish the
quality of the navigation and quantify offsets
between dives. At the conclusion of 15 min of
navigation data collection, the benchmark position
(Table 2) should be entered into the navigational
software to reference the vehicle position within
the established geospatial framework. When pos-
sible, revisiting the benchmark at the conclusion of
on-bottom operations will provide the data neces-
sary to quantify navigational offsets within each
dive.

[24] Owing to the complexities of underwater ve-
hicle navigation, spatial coregistration of time

series observations can be challenging. The place-
ment of benchmarks along the NEPR crest near
frequently visited hydrothermal vent sites is
intended to provide navigational infrastructure that
can be utilized by the broad community of
researchers actively studying the site. Utilizing
benchmarks during multiple field programs will
provide the data necessary to quantitatively cor-
egister seafloor observations at a range of spatial
and temporal scales.
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