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ABSTRACT 
 

Mechanisms for the tidal component of salt flux in the Hudson River estuary are 
investigated using a 3D numerical model.  Variations with river discharge, fortnightly 
tidal forcing, and along channel variability are explored.  Four river discharge conditions 
were considered:  1200 m3 s-1, 600 m3 s-1, 300 m3 s-1, 150 m3 s-1.  Tide-induced residual 
salt flux was found to be variable along the channel, with locations of counter-gradient 
flux during both neap and spring tide.  The magnitude of tidal salt flux scales with the 
river flow and has no clear dependence on the spring-neap tidal forcing.  The diffusive 
fraction, ν, has a value of -0.25 to 0.46 in the lower estuary, increasing to -0.23 to 1 near 
the head of salt.  The phase lag between tidal salinity and velocity is analyzed at three 
cross-sections with: large positive, negative, and weak tidal salt flux.  The composite 
Froude number, G2, is calculated along the channel and indicates nearly ubiquitous 
supercritical flow for maximum flood and ebb during both neap and spring tides.  
Subcritical flow occurs during slack water and at geographically locked locations during 
neap floods.  Application of two-layer, frictional hydraulic theory reveals how variations 
in channel width and depth generate tidal asymmetries in cross-sectional salinity, the key 
ingredient of tidal salt flux. 
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1 Introduction 

Water quality in estuaries is often affected by the waste from nearby cities and 

industries.   The environmental quality of coastal, urban environments depends on the 

dispersion of pollutants.  Pollutants are transported by many of the same processes that 

transport salt.  Thus it is important to understand salt transport.   

In an estuary, the integrated content of salt is conserved at long averaging 

timescales.  As the salt is expelled by the river flow, a collection of up-estuary fluxes 

replenishes it.  The two main upstream fluxes are the estuarine salt flux and the tide-

induced residual salt flux.  The estuarine salt flux is due to the correlation of the spatial 

deviations of salinity and velocity.  The estuarine exchange flow generates an upstream 

salt flux, as high salinity water flows into the estuary at depth and low salinity returns 

outward at the surface.  The tide-induced residual salt flux, which from now on will be 

referred to as the tidal salt flux, is due to the correlations of temporal deviations of the 

salinity and velocity.  Hansen and Rattray [1965] introduced a measure of the relative 

importance of tidal salt flux:  the diffusive fraction, ν, a ratio of the diffusive upstream 

salt flux to the total salt flux.   

 A number of observations and estimates of tidal and estuarine salt fluxes have 

been made.  Hughes and Rattray [1980] observed a dominance of tidal salt flux in the 

Columbia river, with ν = 0.64 and 0.76 (for low and high discharge), and calculated 

analytic solutions of ν = 0.59 and 0.67, respectively.  Hunkins [1981] observed counter-

gradient tidal salt flux (i.e., in the direction of increasing salinity) in three cross sections 

of the lower Hudson, with ν ranging from -0.36 to -0.17.  Geyer and Nepf [1996] also 

made cross-sectional observations in the lower Hudson, finding that tidal salt flux 
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generally dominated the upstream flux under high flow conditions, but became 

insignificant or counter-gradient at low flow.  Dronkers and van de Kreeke [1986] 

noticed variations in magnitude along the channel associated with changes in the cross-

sectional shape of the Volkerak.  Bowen and Geyer [2003] observed the time dependence 

of tidal salt flux and estuarine salt flux (in the Hudson) and estimated typical values of ν 

≈ 0.30.  Lerczak and Geyer [2006] extended the work of Bowen and Geyer [2003] to 

obtain field measurements for lateral structure, and observed fluxes corresponding to ν ≈ 

0.12.  To summarize, observations and modeling estimates of tidal salt flux vary in 

magnitude and direction, with river flow, fortnightly tidal forcing, and at different 

locations along the channel.  There is little consensus as to if and under what conditions 

the tidal salt flux dominates transport processes. 

 Various mechanisms for tidal salt flux have been proposed, including:  shear 

dispersion, tidal trapping, eddies, and hydraulic response to bathymetry. 

 The first mechanism, shear dispersion, is the interaction of vertical or transverse 

velocity shears with diffusion or turbulent mixing.  Shear dispersion generated by 

oscillatory flows was developed and explored by Bowden [1965], Okubo [1967], Smith 

[1982], and Zimmerman [1986].  Fisher [1972] and Smith [1976] investigated 

longitudinal dispersion due to lateral shears between deep channels and shallow side 

embayments.  Ralston and Stacy [2005] discuss the importance of lateral circulation to 

salt flux and observed that dispersion due to vertical shear was a maximum during 

stratified ebbs.  Larsen [1977] and Ou et al [2000] show the cross-sectional structure of 

shear dispersion, associating localized up-gradient tidal fluxes with bottom or side 

boundary layers in which the current phase leads the rest of the channel.  Bowen and 
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Geyer [2003] found shear dispersion responsible for three quarters of the tidal salt flux in 

a section of their modeled Hudson that had little along channel variation in bathymetry. 

 The second mechanism, tidal trapping, is the capture and delayed release of a high 

concentration in substance by shoreline irregularities [Schiff and Schonfield, 1953; 

Okubo, 1973].  The absence of side embayments in the Hudson indicates that this is not 

the major mechanism here.   

 The third mechanism, tidally trapped eddies, transports low salinity water 

downstream with an eddy propagating ahead of ebb tide, temporarily enhancing the phase 

shift of the cross-sectionally averaged salinity as the eddy passes [Fram et al, 2007].  

Dispersion due to transient eddies was also numerically modeled by Awaji et al [1980] 

and Imasato [1983].  Chant and Wilson [1997] observed the interaction of tidally driven 

eddies and stratification in the Hudson. 

 The forth mechanism, hydraulic response of tidal flows to constrictions and sills, 

alters the depths of isopycnals, contributing to a phase shift in the depth-averaged salinity 

that may result in a net salt flux.  Such a response was observed by Geyer and Nepf 

[1996] near a constriction in the Hudson.  Two-layer Froude number estimates were 

made by Chant and Wilson [2000] from observations, and the hydraulic response was 

modeled by Stenström [2004]. 

 This thesis work applies a high resolution numerical model to investigate tidal salt 

flux.  The model resolves the transverse channel structure, which has been shown to be 

essential for quantifying the tidal salt flux [Bowen and Geyer, 2003].  This analysis 

addresses the along-estuary variability, which has not been previously addressed but 

which earlier work [e.g., Geyer and Nepf, 1996; Dronkers and van de Kreeke, 1986] 
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suggests may be important due to the influence of topography on tidal salt flux.  This 

study also explores a range of river flow conditions, which are found to influence the 

magnitude of tidal salt flux.  Calculation methods are presented in Section 2.  Section 3.1 

describes the dependence of tidal salt flux on:  location along the channel, fortnightly 

tidal forcing, and river flow conditions.  Section 3.2 links the asymmetric phase lag of 

tidal salinity to elevated tidal salt flux.  Section 3.3 quantifies the hydraulic state of the 

flow responsible for generating asymmetries in the tidal salinity.  Section 4 discusses the 

important role of stratification in generating tidal salt flux and applies hydraulic theory to 

illustrate the impact of channel geometry on stratification. 
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2 Methods 

2.1 Model Description 

The Regional Ocean Modeling System (ROMS) model, as configured with 

realistic bathymetry for the Hudson River estuary [Warner et al., 2005], was used for a 

set of cases with idealized forcing, similar to Scully et al. [2009].  The model was run for 

45 days at constant river flows of Q= 150 m3 s-1, 300 m3 s-1, 600 m3 s-1, and 1200 m3 s-1.  

The system was forced with M2 and S2 tides at the mouth so as to produce a simple 

fortnightly oscillation in tidal amplitude.  Wind was not included.  The model has 20 

terrain-following, stretched sigma coordinates in the vertical and an orthogonal 

curvilinear 200x20 Arakawa “C” grid in the horizontal.   Transverse grid spacing is 

approximately 80-110 m.  Along channel grid spacing is roughly 300 m, from the Battery 

to 40 km, then increases linearly to the Federal Dam at Troy, NY (250 km north of the 

Battery).  The model was shown by Warner et al. [2005] to provide accurate simulations 

of the salinity and velocity variations in comparison with observations.  Here the model is 

used to examine the mechanisms of salt flux in the Hudson estuary. 

 

2.2 Description of Estuarine Structure 

 The length of the salt intrusion depends on river flow and fortnightly tidal forcing.  

Low river flows allow saline ocean water to extend far up the estuary.  High river flows 

shorten the intrusion.  In general, isopycnals extend further into the estuary on neap tide 

than on spring, however, the dependence differs for high and low flow conditions, as 

illustrated in Figure 2.  The extent of the 2 psu and 0.1 psu isopycnals are listed in Table 

1 for all river flow conditions at spring and neap tides.  These upper limits are used to 
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Figure 1.  (a) Map of the lower model domain measured from the Battery.  The boxed 
section is shown in (b) with the model grid.  Colors depict depths in meters.  A and B 
mark ends of the cross-section shown in (c). 
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define the head of salt region as the water mass between the 2 and 0.1 psu contours.  Salt 

flux mechanisms in this region differ from those in the lower and middle estuary, as will 

be demonstrated in this paper.  

 

Figure 2.  Thalweg salinity for low (a, b) and high (c, d) flow conditions at neap and 
spring tides.  Red arrows mark the location at which bottom, along channel velocity 
remains seaward throughout the tidal cycle. 

 
An alternative description of the edge of salt relies on the location at which the 

tidally averaged, along channel, bottom, thalweg velocity becomes negative (oceanward).  

However, the salinities at the locations of zero velocity are not consistent from spring to 

neap for the high river flow case.  This indicates that extent of the tidally averaged, 
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landward velocity is not a good indicator of the landward limit of salt.  This difference is 

related to the landward transport of salt due to tidal salt flux as discussed below. 

 
Table 1.  Landward limit of the estuary (km), based on different estimation methods for 
different discharge conditions. 
 

Q 1200 m3 s-1 600 m3 s-1 300 m3 s-1 150 m3 s-1 

 Spring Neap Spring Neap Spring Neap Spring Neap 

S=2 psu 35.9 47.2 50.9 52.2 58.4 56.4 79.0 75.0 

S=0.1psu 44.4 49.9 59.7 57.5 75.1 75.1 92.9 92.9 

V=0 m s-1 32.2 45.8 54.6 50.2 65.7 63.9 88.0 88.0 

  

 

2.3 Definition of Spring, Neap, Maximum Ebb and Flood 

 Spring and neap tides are defined as the times in the 45 day record at which the 

tidal (thalweg) velocity of a cross-section 21.4 km from the Battery is a maximum or a 

minimum.  The tidal velocity was calculated as 2  times the root mean square of the 

bottom velocity.  A parabolic fit of each deviation from the mean was used to determine 

an extrema in the presence of asymmetry. 

 Maximum ebb and flood are defined as the extrema of the cross-sectionally 

averaged along channel velocity at each cross-section.  This time varies by 2 hours 

between the mouth and 80 km.  Times of maximum flood and ebb agree with times of 

mean integrated thalweg salinity upstream of the cross-section in question.  However, the 

local cross-sectional averaged salinity may not be used to define maximum flood or ebb 

as it is modified by the processes leading to tidal salt flux. 
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2.4  Calculations  

 

2.4.1  Salt Flux Components 

 In this paper, the total salt flux is divided into three components in order to isolate 

physical mechanisms:  

 ++=
>=<

TEstBT  F  F  F
SVFTot         (1) 

The first term, FBT, is the steady, barotropic, component associated with the net 

contribution of river outflow, stokes drift, and the compensating Eulerian outflow 

required to preserve volume.  The second term, FEst, is the salt flux due to the residual 

estuarine circulation, calculated as the product of tidally averaged deviations of salinity 

and along channel velocity from their respective cross-sectional mean values.  The third 

term, FT, is the tidal salt flux component, calculated as the time-dependent product of the 

deviations of salinity and velocity from their respective temporal means.  This notation is 

consistent with that used by Lerczak [2006], and differs from that used by Bowen [2003] 

and Geyer and Nepf [1996] who decompose the last term into cross-sectionally averaged 

and varying components. 

 To calculate these three components of salt flux, the salinity and grid area, dA, are 

linearly interpolated to the grid location of along channel velocity.  Then, the along 

channel velocity and salinity (at the velocity grid location) are decomposed into three  
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components:  the cross-sectionally averaged and tidally filtered, Vo and So, the tidally 

filtered deviations from the cross-sectional mean, Vest and Sest, and the time dependent, 

Vtide and Stide: 

>< A
><

=
VAVo          (2) 

>< dA
estotide VVVV −−=

>−<
=

VVdAVest
)(         (3) 

        (4) 

><
><

=
A
SASo          (5) 

>< dA
estotide SSSS −−=

>−<
=

SSdASest
)(         (6) 

        (7)

Brackets, < >, represent tidal filtering, and overbars represents cross-sectional averaging, 

a sum weighted by the area of each grid cell, dA.   The barotropic flux is calculated as the 

filtered product of Vo and So, multiplied by the area of the cross-section: 
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The estuarine salt flux is calculated as the cross-sectional average of the product of the 

estuarine velocity and salinity, Vest and Sest :    

>><=< estestEst SVAF    (9) 

The tidal salt flux is calculated as the tidally filtered product of the cross-sectional area 

and the cross-sectional average of the time dependent salinity and velocity, Vtide and Stide : 

     >=< ASVF tidetideT     (10) 

 

 

 



2.4.2  Diffusive Fraction, ν 

 The diffusive fraction, ν, is based on Hansen and Rattray [1965, 1966], but is 

modified to allow for time-dependence in the salt balance.  The modified definition 

provides the ratio of the tidal salt flux to the sum of the magnitudes of estuarine and tidal 

fluxes:  

|||| EstT

T

FF
F
+

=ν     (11) 

This ν is modified from the original definition of Hansen and Rattray in order to allow for 

time-varying salt content in the estuary.  The sum of tidal salt flux and estuarine salt flux 

is not assumed to balance the barotropic outflow.  Instead, the sum of the magnitudes of 

estuarine and tidal salt flux is used as a measure of the total salt transport.  For steady-

state regimes, with zero or up-estuary tidal salt flux, the value of ν is the same as in 

Hansen and Rattray.  However, this modification provides a robust definition in a broader 

set of circumstances. 

 

2.4.3  Tidal Dispersion Coefficient, KH 

 The coefficient of dispersion for each component is calculated as the quotient of 

the flux and the local along channel salinity gradient: 

><
=

><
=

dy
ds

FK

dy
ds
FK Est

Est
T

T ,     (12) 

A coarse geometric average was employed to obtain a meaningful estimates of tidal and 

estuarine dispersion.  The geometric average divided the estuary into three regions: the 

lower estuary (y < 35 km), the upper estuary (35 km-2 psu limit), and the head of salt (2 
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psu-0.1 psu limits).   Spatial averages were taken before the quotient in order to avoid 

amplifying noise. 

 

2.4.4  Composite Froude number, G2 

In order to characterize the hydraulic state of the flow, two-layer, frictional theory 

is applied.  Each cross-section was divided into two layers.  The upper layer (i=1) is 

comprised of all grid cells in which the salinity was less than the mean of the minimum 

and maximum salinities in the thalweg water column.  The rest of the grid cells form the 

lower layer (i=2).  Layer salinities and velocities, si and vi, are calculated by means of a 

weighted average, in which the weighting is the cross-sectional area of the grid cell, dA: 

)(',, 12 ssgg
A

vdA
v

A

sdA
s

i

i
i

i

i
i −===

∫∫
β    (13) 

The reduced gravity, g’, is calculated from the layer salinities using the constants:  

β = 0.78 x 10-3 psu-1 (Eq. 13 ).  The upper layer thickness, h1, was defined as the depth of 

the deepest grid cell of layer 1 over the thalweg.  The lower layer thickness, h2, is the 

difference between the upper layer thickness and the total thalweg depth.  These 

instantaneous quantities are used to calculate the layer and composite Froude numbers, 

F1
2, F2

2, and G2, [Stommel and Farmer, 1952]: 

1

2
12

1 'hg
vF =      (14)  

2

2
22

2 'hg
vF =      (15) 

2
2

2
1

2 FFG +=     (16) 
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3 Results 

 
 
3.1 Calculated salt flux:  

 

3.1.1 Estuarine Salt Flux 

 The magnitudes of the calculated estuarine salt flux agree with those found in 

observations [Lerczak, 2006; Bowen and Geyer, 2003; Geyer and Nepf, 1996].  The 

estuarine salt flux is upstream everywhere along the channel, generally decreasing in 

magnitude with distance from the mouth (Fig. 3a,b).  Local geometry leads to variation 

from this trend.  The magnitude diminishes from high to low river flows, in agreement 

with field observations [Bowen and Geyer, 2003] and theoretical studies [Hansen and 

Rattray, 1966].  Spring estuarine salt fluxes are reduced from neap values by a factor of 3 

(calculated from the ratio of neap to spring means of fluxes oceanward of 45 km).  No 

consistent trend with river flow is apparent in this reduction factor.  Thus, the magnitude 

of model estuarine salt flux agrees with observed field values, decreases along the 

channel with localized variations, increases from spring to neap, scales with river flow, 

and always acts as a down-gradient flux. 

 

3.1.2 Tidal Salt Flux 

 Magnitudes of the spatially averaged calculated tidal salt flux are consistent with 

observations [Lerczak, 2006].  Tidal salt flux has a positive mean indicative of generally  
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Figure 3.  Along channel estuarine salt flux at neap (a) and spring (b).  Along channel 
tidal salt flux at neap (c) and spring (d).  Along channel diffusive fraction, ν, at neap (e) 
and spring (f). 

 

upstream flux throughout the whole estuary (Fig. 3c,d), with magnitudes that scale with 

river flow.  Although the spatially averaged tidal salt flux is down-gradient (landward), 

temporally persistent, localized, strongly counter-gradient fluxes are observed.  Such 

along channel variability has been seen in field observations of individual cross-sections 

by Hunkins [1981], Lewis and Lewis [1983], and Geyer and Nepf [1996]. 
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Tidal salt flux does not have a clear spring-neap dependence, consistent with the 

findings of Bowen and Geyer [2003] and Lerczak [2006].  However, the amplitude of 

localized variations of tidal salt fluxes appears enhanced at neap tide (Fig. 3c, d).    

 

3.1.3 Diffusive Fraction, ν 

 The diffusive fraction, ν, has a positive spatial mean, localized negative zones, 

and a tendency to increase near the head of salt (Fig. 3e,f).  The along channel (mouth to 

the 0.1 psu limit) means of ν range 0.12-0.18 at neap and 0.30-0.35 at spring (Table 2).  

Two trends with river flow are apparent during spring tide.  In the lower estuary, ν is 

largest for smaller river flows.  In contrast, in the upper estuary, ν becomes greatest for 

larger river flows.  From neap to spring, ν increases by roughly a factor of 2.  This is 

mainly a result of the large decrease in magnitude of the estuarine salt flux from neap to 

spring; in fact, the tidal salt flux generally decreases during spring tides (Fig. 3), but not 

as much as the estuarine salt flux. 

 

 Table 2.  Along channel means of ν at neap and spring tide. 
 1200 m3 s-1 600 m3 s-1 300 m3 s-1 150 m3 s-1 

Neap 0.13 0.12 0.18 0.16 

Spring 0.30 0.35 0.31 0.33 
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3.1.4  Dispersion Coefficients 

          Because of the large amount of spatial variability of the tidal salt flux, a 

meaningful estimate of a dispersion coefficient required spatial averaging of the salt flux 

and salinity gradient.  Average values were computed for the lower (5-35 km) and upper 

(35 km – 2 psu) estuary, which differ both in their salinity structure and geometry.  

          In the lower estuary, estuarine dispersion coefficients ranged from 150-2500 m2 s-1, 

and tidal dispersion coefficients fell in the range of 30-280 m2 s-1.  Both coefficients were 

reduced in the upper estuary with respective ranges of 0-300 m2 s-1 and 15-100 m2 s-1 

(Fig. 4).  Both estuarine and tidal dispersion coefficients increase in magnitude under  

 

Figure 4.  Time series of regional averages of the estuarine dispersion 
coefficient, KEst, in the (a) lower estuary and (b) upper estuary.  Time series of 
regional averages of the tidal dispersion coefficient, KT, in the (c) lower estuary 
and (d) upper estuary.  Spring and neap are marked by S and N at the top. 

 

 24



higher river flow conditions.  Q=1200 m3 s-1 in the upper estuary is an exception to this 

as the estuarine salt flux disappears at spring tide when the head of salt reaches the 35 km 

averaging boundary (Table 1).  The estuarine dispersion coefficient maintains the same 

spring-neap variation in both regions (large during neap with a phase lag dependent on 

the magnitude of the river flow).  In contrast, the tidal dispersion coefficient variation 

with fortnightly forcing is different between the lower and upper estuary.  While there is 

a clear spring-neap cycle in the upper estuary (large during neap), there is only a hint of 

such in the lower channel, possibly the reverse for low river flows. 

 

3.2  A detailed look at Tidal Salt Flux at three locations 

In order to investigate the mechanisms of tidal salt flux, three cross-sections were 

studied.  These cross-sections were studied during neap tide, when the tidal salt flux is 

largest.  The Q = 600 m3 s-1 case was used as an intermediate flow condition for the 

Hudson.  The three locations studied are examples of locations with i) large, positive tidal 

salt flux (14.8 km), ii) large, negative tidal salt flux (17.1 km), and iii) weak tidal salt flux 

(32.7 km), shown in figure 5. 

   
Figure 5.  Locations of the three cross sections relative to neap, flood salinity and 
thalweg depth. 

 

 25



The time series through a single tidal cycle of cross-sectionally averaged along 

channel velocity and salinity reveal that asymmetric salinity anomalies are the key to 

generating tidal salt flux (Fig. 6a,b).  While nearly in quadrature at maximum ebb, the 

tidal deviations in salinity and velocity are out of quadrature at maximum flood.   At the 

location of positive tidal salt flux, the flood salinity reaches its mean value before the 

velocity reaches its maximum.  At the location of weak tidal salt flux, the flood salinity 

reaches its mean at the same time as the velocity peaks (i.e., it remains in quadrature), 

and at the location of negative tidal salt flux, the salinity is lagged relative to velocity 

(Fig. 6b).  Calculated phase differences are respectively 63.7, 91.0, and 109.0 degrees 

(M2 tidal component).  Thus, the tidal salinity cycle was found to lead quadrature with 

the velocity cycle at locations of positive tidal salt flux, match quadrature for weak tidal 

salt flux, and lag quadrature for negative tidal salt flux, at maximum flood, while 

remaining consistently in quadrature at maximum ebb. 

The in-phase part of the velocity and salinity fluctuations (i.e., the shift out of 

quadrature) determines the magnitude of the tidal salt flux.  The advancing phase of 

salinity produces positive salt flux, and retarded phase leads to negative salt flux.  The 

product of cross-sectionally averaged tidal deviations (Fig. 6c) provides the majority of 

the tidal salt flux, though the contribution of the cross-sectionally varying component is 

non-negligible. 

Many processes influence the cross-sectional averaged salinity.  The 

redistribution of salt within a cross-section cannot, by itself, affect the cross-setional 

average salinity.  Instead, a process which moves salt into and out of the plane is 

required.  Geyer and Nepf [1996] proposed that a hydraulic response to channel geometry 
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distorts the salinity structure generating tidal salt flux.  The following section quantifies 

this hydraulic response. 

 

Figure 6.  Tidal time series of cross sectional (a) along channel velocity, (b) salinity, (c) 
VtideStide at locations of large, negative, and small tidal flux.  Mean salinities are indicated 
with dashed lines in b.  Vertical lines at hours 3 and 9.5 mark maximum flood and ebb. 

 

 

 
3.3 Temporal and Spatial Variations in Froude Number 

 The flow was found to be supercritical, G2 > 0, throughout much of the channel at 

both maximum flood and ebb during spring and neap tides.  During spring tide, the flow 
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was supercritical everywhere due to the weaker stratification (low reduced gravity) and 

high velocities which elevate Froude numbers.  During neap ebb tide, the flow was 

supercritical everywhere.  During neap flood tide, supercritical flow was prevalent under 

low river flow conditions, whereas subcritical flow was common for high river flow 

conditions.  In all cases, the flow was subcritical just preceding and following slack 

water.  Zones of exceptionally high and low Froude numbers were found to be 

geographically locked for several hours before and after maximum flood (Fig 7a).   

 

Figure 7.  (a) Composite, G2, and layer Froude numbers, F1
2 and F2

2, (b) thalweg 
salinity, and (c) channel width, for flood, neap, and Q=600 m3s-1. 
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The layer Froude number in the upper layer was found to be larger than that in the 

lower layer at all but a few locations through the second half of flood and during all of 

ebb tide.  This is due to the combination of higher upper layer velocities (during ebb) and 

consistently lower upper layer thickness (during both flood and ebb).  As a consequence, 

variations in width have a significant influence on the structure and hydraulic state of the 

flow (Fig. 7c).  In contrast, during early flood, the lower layer Froude numbers are larger 

than the upper, which indicates the importance of variations in channel depth.  This is of 

particular interest as tidal asymmetries in salinity are generated during early flood.  The 

influence of both width and depth variations are explored in section 4.2. 
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4  Discussion:  Mechanisms of Tidal Salt Flux 

 

4.1 Influence of Stratification 

 Tidal asymmetry in stratification is the basic variable responsible for the tidal salt 

flux.  Large tidal salt flux is associated with high stratification conditions:  high river 

flow, neap tide, and the lower estuary.  The tidal and estuarine salt fluxes are each highly 

correlated with stratification and thus with each other.  This suggests that the mechanism 

causing the tidal salt flux is related to the stratification.  One such mechanism is hydraulic 

response, which may lead to the observed tidal salt flux (as suggested by Geyer and Nepf 

[1996]).  

 

4.2 Hydraulic Adjustment of Stratification 

 A hydraulic response to channel geometry modifies the salinity structure, 

generating tidal salt flux.  Such a response is indicated by a thinning or thickening of 

salinity layers.  A thinning of the upper layer is visible as an elevated interface level, 

sometimes referred to as ‘heaving’ [Geyer and Nepf, 1996].  This increases the cross-

sectionally averaged salinity.  In contrast, a thickening of the upper layer appears as a 

deeper interface, with reduced cross-sectionally averaged salinity.  The tidal asymmetry 

of the cross-sectionally averaged salinity generates the tidal salt flux.  This asymmetry is 

generated by variations in Froude number, layer velocities, and the influence friction 

throughout the tidal cycle, as prescribed by two-layer hydraulic theory. 
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Derived in Appendix 1, stratification is modified by changes in bottom elevation, 

H, channel width, B, surface elevation, η, flow state, and velocity in the following way: 
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where ci is the interfacial drag and cD is the bottom drag.  In this case, surface elevation 

and interfacial drag are small and can be neglected, reducing the equation to: 
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The ‘+’ case is valid during flood, while the ‘−’ case is valid during ebb. 

 Changes in bottom elevation in the presence of supercritical flows influence the 

upper layer thickness in the following ways:  A shallowing of the channel ( 0>
∂
∂

x
H ) 

contributes to a thinning of the upper layer, resulting in isopycnal heaving.  In contrast, a 

deepening of the channel ( 0<
∂
∂

x
H ) contributes to upper layer thickening, thus the 

depression of isopycnals.  The opposite is true in the presence of subcritical flows. 

 The influence of changes in channel width on salinity structure is sensitive to the 

relative magnitudes of layer velocities.  When the magnitude of the upper layer velocity 

is larger than that of the lower layer, a widening of the channel ( 0>
∂
∂

x
B ) tends to thin the 

upper layer for supercritical flows and thicken it for subcritical flows.  In contrast, a 

narrowing of the channel ( 0<
∂
∂

x
B ) contributes to supercritical upper layer thickening and 

subcritical upper layer thinning.  When the lower layer velocity becomes larger than the 

upper layer velocity during part of the flood tide, the upper layer thins when either 

supercritical flow passes through a region of expansion or subcritical flow passes through 
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a region of narrowing.  The upper layer is depressed (thickens) if supercritical flow 

passes through a region of channel narrowing or subcritical flow passes through a region 

of expansion. 

 The influence of friction on the salinity structure changes throughout the tidal 

cycle.  In the presence of supercritical flow, friction acts to thin the upper layer during 

flood tide and thicken the upper layer during ebb.  The opposite is true for subcritical 

flows.  Thus, friction always contributes to positive tidal salt flux in the presence of 

supercritical flows, and negative tidal salt flux for subcritical flows. 

 The response of the salinity structure, to the triple influence of varying channel 

depth, changes in width, and friction, depends on the relative magnitude of each term in 

Equation 18.  These magnitudes depend on the location within the channel (for variations 

in depth and width) and the time dependence of Froude numbers and layer velocities at 

those locations.  The relative magnitudes of each term are described at two locations:  the 

locations of large, positive tidal salt flux and large, negative tidal salt flux referred to in 

Section 3.2. 

 At the location of large, positive tidal salt flux, though all three terms influence 

the upper layer response, variations in channel depth dominate during flood and 

variations in channel width dominate during ebb.  At maximum flood, supercritical flow 

over a shallowing bottom ( 0>
∂
∂

x
H ) thins the upper layer ( 01 <

∂
∂

x
h ).  At maximum ebb, 

supercritical flow and high upper layer velocities through a widening channel ( 0>
∂
∂

x
B ) 

also thin the upper layer.  Thinning during both flood and ebb is consistent with the 

modeled interface behavior at maximum flood and ebb (Fig. 8a). 
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Figure 8.  (a) The 13 psu isopycnal during flood and ebb, neap tide for Q=600 m3 

s-1.  Locations of interest are marked.  (b) Channel width for comparison. 
 

 At the location of large, negative tidal salt flux all three terms are again important.  

The influence of variations in bottom elevation dominate during flood and both bottom 

elevation and channel width contribute strongly during ebb.  At maximum flood, the 

barely supercritical flow through the deepening channel ( 0<
∂
∂

x
H ) leads to upper layer 

thickening (Fig. 8a).  At maximum ebb, highly supercritical flow through the deepening, 

narrowing channel ( 0<
∂
∂

x
B ) continues to thicken the upper layer.  However, the ebb 
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response is weak due to the large composite Froude numbers at maximum ebb.  This is 

consistent with the slope of the modeled 13 psu contour shown in Figure 8a. 

 These instantaneous hydraulic responses during maximum flood and maximum 

ebb are useful in demonstrating the applicability of the theory.  However, the hydraulic 

response during late ebb and early flood is more relevant to the generation of asymmetry 

in tidal salinity, and thus tidal salt flux.  Isohaline adjustment is largest during early flood 

and late ebb, when the composite Froude number is nearly critical.  The lower layer 

Froude number, F2
2, is largest during early flood, which enhances the impact of 

variations in depth and friction.  During ebb, F2
2, is reduced and the difference in layer 

velocities is maximal, which boosts the impact of channel width variations.  The near 

critical composite Froude number between late flood and early ebb contributes little as 

both the difference in layer velocities and the magnitude of the lower layer Froude 

number are small.  Thus, the net hydraulic influence at a cross-section can be 

approximated from its bottom slope during early flood and its variation in width during 

late ebb. 

 This steady, hydraulic theory does well to predict the instantaneous slope of the 

interface based on the triple influences of bottom elevation, channel width, and friction.  

However, it is the upper layer thickness itself, i.e. the depth of the interface, rather than 

the slope, which determines the cross-sectionally averaged salinity, and thus the tidal salt 

flux.  The layer thickness at a particular location is strongly influenced by the slope of the 

upper layer just oceanward of it during flood, and just riverward during ebb.  At the 

location of large, positive tidal salt flux, the thinning of the upper layer at cross-sections 

oceanward during flood and riverward during ebb contribute to the elevated interface 
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during flood and depressed interface during ebb, the exact combination required for 

enhanced positive tidal salt flux.  At the location of large, negative salt flux, the 

thickening of the upper layer, at oceanward cross-sections during flood and riverward 

during ebb, sets up a depressed interface during flood and an elevated interface during 

ebb, consistent with conditions required to generate negative tidal salt flux.   

Hydraulic theory predicts most locations of positive and negative tidal salt flux 

based on the following specifications for channel geometry.  A region of positive tidal 

salt flux is bounded on the ocean-side by a cross-section in which bottom elevation 

increases and the channel widens.  On its river side, this region is bounded by a section of 

the channel which narrows as it deepens (Fig. 9).  Combined with barely supercritical 

early-mid flood and subcritical late ebb flows, this geometry generates an elevated 

interface during flood and a depressed interface during ebb at all locations in the region 

with those geometrical characteristics.  At these locations, the tidal cross-sectional 

salinity is high during flood and low during ebb, resulting in positive tidal salt flux. 

A region of negative tidal salt flux, in contrast, is bounded by a cross-section of 

deepening, narrowing channel (ocean-side) and a cross-section of shallowing, widening 

channel (river-side).  This results in the depression of the interface during flood and 

heaving during ebb, which generates the low salinity during flood and high salinity 

during ebb responsible for a negative tidal salt flux. 
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Figure 9.  (a) Tidal salt flux at neap tide for Q = 150 m3s-1 (red), 300 m3s-1 (blue), 
600 m3s-1 (green), and 1200 m3s-1 (black).  (b) Depth and width variations along 
the channel. 
 

 This two layer approach has several important limitations.  It assumes a 

rectangular cross-section, uniform layer velocities, and ignores time dependence.  To 

correct the first two limitations, future work may use the following formula, developed 

by Pratt [2008] for 2+ layer flows in which both the velocity and layer thicknesses vary in 

the transverse direction: 
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In the formula, BI is the interface width bounded on the left and right by xL and xR, and B 

is the width at the surface.  However, while this formulation reduces the errors due to 

assuming a rectangular cross-section, it assumes a rigid lid, flat interface, neglects 
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friction and ignores time dependence.   Alternatively, the Taylor-Goldstein equation may 

be used to find limits on the wave speed, and thus determine the hydraulic state of the 

flow based on comparison with the current speed.  However, this has its own limitations.   

In addition, this hydraulic understanding can not be applied to the head of salt 

region, where layer differences blur and time dependence becomes a major influence, i.e., 

regions in which the salt completely leaves at any point during the tidal cycle.  Here the 

tidal salt flux is always positive due to the frictional phase lead of the bottom velocity 

which increases the cross-sectional salinity before quadrature with the cross sectional 

velocity.  Regardless of topography, the salt increases with the inflowing tide and 

decreases on the ebb.  
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4.3 Summary and Conclusions 

 
The dependence of tidal salt flux on river flow, spring-neap tidal forcing, and 

bathymetric variations along the channel were explored using a 3D numerical model for 

the Hudson River estuary.  Four river discharge conditions were used:  1200 m3 s-1, 600 

m3 s-1, 300 m3 s-1, and 150 m3 s-1. Tidal salt flux was found to be generally down-gradient 

and scale in magnitude with the river flow.  Variability appears larger during neap tide, 

however, the magnitude has no clear spring-neap dependence.  The diffusive fraction, ν, 

indicates significant tidal salt flux relative to estuarine salt flux throughout the channel 

with dominance near the head of salt.  High along channel variability of tidal salt flux 

included locations of strongly counter-gradient flux linked to topographic features.   

The composite Froude number, G2, was calculated along the channel and 

indicated nearly ubiquitous supercritical flow for maximum flood and ebb during both 

neap and spring tides.  Subcritical flow occurred during slack tides and at geographically 

locked locations during neap floods.  Two-layer, frictional hydraulic theory was shown to 

predict the response of salinity structure to the combined flow state and channel 

geometry.  The largest contributors to changes in layer thickness were caused by depth 

variations during flood and width variations during ebb.  A general rule was given to 

determine along channel variability of tidal salt flux based on channel geometry, 

supporting the conclusion that tidal salt flux is generated by tidally asymmetric hydraulic 

distortions of the salinity field.  Thus, modified by tides, river flow, and hydraulics, 

stratification is the key ingredient in tidal salt flux. 
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Subtracting the lower layer momentum equation from the upper and using the continuity 
equations gives: 
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Using the definition of layer Froude numbers, 
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