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ABSTRACT 

This thesis presents the theoretical and computational 
underpinninqs of a novel approach to the determination of the 
acoustic parameters of the ocean bottom using a monochromatic 
source. The problem is shown to be eouivalent to that of the 
reconstruction of the potential in a Schr~dinger equation 
from the knowledqe of the plane-wave reflection coefficient 
as a funct i on o~ vertical wavenu~ber , r(k z) .for ~ll real 
positive k z ' Flrst , the reflectlon coeff1c1ent 1S shown t o 
decay asymototica lly at least as fast as (l/k~2) for large k z 
and is therefore inteqrable. The Ge lfand-Lev1tan inversion 
procedure is extended to include the case of basement 
velocity hiqher than the velocity of sound in water . The 
neglect of bound states is shown to be justified in both 
clayey silt and silty clay at the 220 Hz frequency of 
ope ration. 

Three methods for the numeri ca l solution of the integral 
eauation are investigated. The first one is an "Improved 
Born approximation" wherein the solution is given as a series 
expansion the first term of which is the Born approximation 
while the second term represents a s ubstantial and yet easy 
to impl ement improvement over Born. 

The two o ther methods are based on a discretization of 
the Ge l fand -Levi tan inteqral equation, and both avoid a 
matrix inversion: one by employing a recursive procedure, 
and the other by couplinq the Ge lfand-Lev itan equation with a 
pa rtial differential equation. Bounds are obtai ned on errors 
in the so lution due either to discret ization o r t o data inac
curacy. These methods are tested on synthetic data obtained 
from known qeoacoustic models of the ocean bottom. Results 
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are found to be very accurate particularly at the top of the 
sediment laver with resoluti on of less than the wavelength of 
the acoustic source in the water. Severa l effects are inves
tiaated, such as samplin g , attenuation, and noise . Also 
examined is the gradual restriction of the reflection coeffi
cient to a finite ranqe of vertica l wave numbers a nd the con
sequent progressive deterioration of the reconstruction . 

The analysis shows how to reconstruct velocity profiles 
in the presence of density variation when the experiment is 
conducted at two frequencies. 

Our results prov ide a qood understandinq of the issues 
involved in conductinq a monochromatic deep ocean bottom 
experiment and constitute a promising technique for process
ina the exnerimental data whe n it becomes available . 
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1.1 Bac kq round 

CHAPTER I 

BACKGROUND 

It i s a r are person whose pulse i s 
not stirred by the dramat i c sight of 
the restless surface of the sea. 
The chaotic sea surface i s a 
limi t l ess source of inspiration to 
poe t, pai nter and musician alike . 
Rut what li es beneath this churning 
surface? How can we probe the 
depths of the sea? 

C . Clay & H. Medwin 

The sea floor begins at the water-sediment interface , 

ove rli es the sedime ntary layer, and be neath it, the o ceani c 

crust . The study of the ocea n bottom has bee n, until 

recently, the p r ov ince o f the marine aeoloqist seek ing t o 

probe t he oceanic c rust , and to unrave l the secrets of its 

structure and evo lutio n. The marine qeologist has now been 

joined by the underwater acoustician st udyi ng the transmis-

sion of l ow freauen cy sound through the ocea n; It has become 

c l ea r i n light of underwat e r sound p r opagat i o n expe riments 

carried o u t at t he va rious Oceanoqraphic Institutions(l) that 

lono range l ow frequency sound transmission i s affected by 

the nature o f the ocean bottom, a nd hence, that acoustic wave 

propaaation models - t o characte rize sonar performance , for 

instance - should include a de tail ed representation o f th e 
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bottom , the qeoacQustic model. In practice, one posits a 

"reasonable" ocea n bottom model , ann then one proceeds to 

so lve the propagation problem at hand, (the "Direct " 

problem) . Here , the opposite perspective is adopted: Since 

the ocean bottom affects acoustic wave propagation , would it 

not be possible to learn somethinq about the bottom from that 

interaction? (The " Inverse" problem . ) 

The answer to this question is beinq sought in the 

context of an original , single frequency , deep ocean bottom 

interaction experiment desiqned by G. Frisk and his 

colleagues of the Woods Hole Oceanographic Institution, and 

performed in the Hatteras Abyssal P!ain(2),(3) and at other 

l ocations( 4). The monochromatic character of the Frisk 

~ethod sets it apart from currently used techniques using 

explosive (or impulse - like) wide-band s ources . The Frisk 

experiment started off as a heuristic approach . 

This thesis presents the theoretical basis and numerical 

analysis of the monochromatic experiment based on a n exten 

sion of the Gelfand - Levitan theory of quantum scattering. We 

succeeded in applying a numerical solution to the exact 

inverse method which distinguishes this solution method from 

the currently used approximate or trial and error inverse 

methods. 
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1 . 2 The Expe~iment 

The geomet~y of the expe~iment is best explained with 

~eference to Piq. 1. In b~ief, a driftinq vessel tows a 

220 Hz pulsed CW sou~ce. Hyd~ophones moo~ed close to the 

bottom record the result ina pressure, both amplitude and 

phase (v i a coherent quadrature demodulation), as the ship 

opens ranqe . 

The pulsinq of the 220 Hz source, turning it on for 

4 sec every 14 sec , allows for steady state conditions to be 

attained before any reflections from the ocea n surface can 

reach the receivers . Note that a 14 second duty cycle 

siqnifies that the acoustic field is sampled spatially once 

every half wavelenqth. 

The source aperture is small enough compared to the 

wavelength (7 m) to be considered an omnidirectional point 

source. The recorded complex p r essu re is therefore the field 

due to the ref lections of a spherical wave off the bottom . 

The information is translated via a Hankel transform , into 

the plane wave reflection coefficient at a sinqle fre q uency 

(220 Hz) for all angles of incidence, both real and 

complex(5). The cr itical point to observe is that for a 

monochromatic plane wave incident on a flat layered bottom , 

the reflection coefficient is a function of the angle of 

incidence . At a given angle of incidence, the magnitude and 

phase o f the reflection coefficient depend on the acoustic 
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properties of the bottom sediments . That naturally leads to 

the ocea n bottom inverse problem: Can the sed imen t acoustic 

parameters, ve l oci t y and de nsity , be reconstructed from the 

nlane wave reflection data at a sinql e frequency for all 

a noles of incidence? The thesis aims to elucidate that 

Questions. 

1 . 3 Experime ntal Data 

The relationship between the experimental data and the 

plane wave reflection coefficient has been studied numerical 

ly by Frisk et a1(3) and Maok(6). Before beginning our 

ana l ysis, it is useful here t o take a Quick l ook at the 

underlying theory relating the reflections of spherical waves 

from a point source , as in the Frisk exper iment , to the plane 

wave r eflection as in our model. 

The measurements yield the pressure field due to a point 

source above the bottom half space. Because of the cylindri-

cal symmetry of the problem, the reflected pressure field can 

be written as a superposition of plane waves 

where kr is the horizontal wavenumber, and r(k r } is the 

corresponding reflection coefficient . 

-11-
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This Sommerfeld integral is a Hankel transform which ca n 

be inverted to obtain the reflection coefficient 

= - ilk 2_k 2 
. 0 r 

(1. 2) 

Note that r(k r ) is a function of horizontal wavenumber while 

the required input to the inverse procedure is the reflection 

coefficient as a function of the vertica l wavenumber r(kz ). 

The two are of course related by the dispersion relation 

_ k 2 
r 

(1. 3) 

Given r(kr) for real kr , one can readily generate r(kz ) for 

o < kz < kO• It is more difficult to obtain r(kz ) for the 

full range 0 < kz < ~ since kO < kz < ~ correspond to r (k r ) 

for imaginary k r • One approach has been suggested by 

Stickler(7) and involves the use of a theorem by Van Winter 

to generate r(k z ) on a ray in the complex plane give n its 

value on the real axis segment 0 < kz < kO• The effect of 

limiting r(kz ) to real angles (0 < kz < kO) on the inversion 

for the unknown potenti a l V(z) will be discussed in 

Chapter VI . 
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1 . 4 The Model 

A numbe~ of assumptions a~e implicit in the "exact" 

inve~se p~ocedu~e detailed in the following chapte~s. 

(a) The ocean is assumed homogeneous, and acoustically 

transparent. In particular, the depth variation of the 

velocity of sound propagation is neglected. That is a 

reasonable assumption at the great depth (5 km) in which the 

experiment is conducted . 

(b) The ocean bottom is assumed to have no horizontal 

structure, the velocity variation is therefore solely a 

function of depth. That is a severe restriction imposed by 

all "exact" inversion formalisms developed to date. 

Surprisingly , horizontal stratification describes adequately 

vast areas of the deep ocean floor known as Abyssal plains: 

These a~e widespread in the Atlantic and Indian Oceans and in 

the marginal seas. 

The early deep ocean bottom interaction experiments were 

conducted in the Hatteras Abyssal Plain. This nearly level 

plain lies at the base of the East Coast Continental rise, 

and is 1000 km long by 150-300 km wide . Its thick (> 1 km) 

sediments were formed by the smooth accumulation of 

turbidites over the rough basement resulting in one of the 

flattest areas on earth with slopes of less than 1 m/km. 
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(c) The ocean bottom has been trad i t i o nally treated as 

a fluid i n pr oblems invo lv inQ bottom reflect i o n . In the deep 

ocea n bottom inte r act i on experiments , the acoustic source 

Qe ne r ates comn ressional (P) waves in the water , which upon 

nropagatio n in the hottom , a vertically heteroQeneous medium , 

may be converted t o shear (SV) waves. The conversio n to 

shear waves will occur disc retely at l ayer interfaces and 

con t i nuously , where velocity g r adients occur . Fryer had 

show n in one of hi s papers(8) that coupli ng for continuously 

varyinq elastic pa rameters is neQliqihle at freQuencies above 

20 Hz . Vidmar and Foreman(9) est imated that gradient- induced 

couplinq should be expec t ed in marine sedime nt at frequencies 

up to 3 Hz . Anothe r paper by Fryer(IO) established that this 

coupli nq i s extreme l y sma l l above I HZ, rega rdless o f 

sediment thickness . The most important effec t of coupling 

appears to be the co nvers ion of shear t o comp ress i o nal motio n 

at the sediment basement interface. Note , that althoug h 

thes e results are based o n a co ntinUOUSly varyinq structure 

(approx imated by homoge neous l aye r s ) , they do provide for the 

s harp discon tinuity in elastic parameters a t the sed i ment 

baseme nt i nterface. These results do j ust ify the neg lect of 

shear wave effec t s at the 220 Hz fr eque ncy se lec ted for the 

expe riments that have already been condu cted , a nd at the 

l ower frequencies envisaqed hV the Fri s k q rou p for future 

experi~e nts . 
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1.5 Overview of the Thesis 

In Chapter II, we begin with a mathematical statement of 

the inverse problem and represent it as a scatterinq problem 

for the Schrodinqer equation. We conclude the chapter with a 

review of the relevant literature. 

The input to the inverse procedure, the plane-wave re

flection coefficient, and particularly its asymptotic 

hehavior for lar~e vertical wave numbers are the subject of 

Chapter III. 

Chapter IV presents an extension of the Gelfand-Levitan 

inversion method to the case of non-zero terminal potential. 

It is this formulation that permits us an exact solution of 

the inverse problem so that what remains is the numerical 

solution of the inteqral equation characterizing the 

solution. 

The derivation presented in Chapter IV is followed in 

Chapter V by a discussion of three numerical methods to solve 

the Gelfand-Levitan inteqral equation: An improved Born 

approximation and two finite-difference methods. 

The numerical methods outlined in Chapter V were tested 

on various postulated acoustic profiles using synthetically 

generated reflection coefficients. The representative numer

ical results, the impact of sampling, finite angle aperture, 

density, loss and noise are discussed in Chapter VI. 

Chapter VII comprises the conclusion and suggestions for 

future work. 
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CHA.PTER II 

PROBLEH FORMULATION AND REVIEW OF PAST WORK 

The determination of the acoustic properties of the 

ocean bottom from the monochromatic plane wave reflection 

coefficient at all anqles of incidence is now shown to be 

related to a class of inverse problems in quantum scatterinq 

theory where an unknown potential in Schrodinqer's equation 

is sought from scatterinq data . The first part of the 

chapter casts the problem into mathematical form based on the 

assumptions set forth in Chapter I . This is followed by a 

review of the relevant inverse problem literature . 

2.1 Problem Formulation 

(a) Acoustic Wave Equation 

In acoustics , the pressure qradient gives rise to an 

acceleration of mass density p accordinQ to 

+ 

a v = _ "p 
P IT v 

( 2 .1 ) 

+ 
where p is acoustic pressure and v is particle velocity. 

Mass conservation , together with a constitutive relation 

(Hooke's law), yields; 

2 + 
=-pCV·v ( 2 . 2) 

in which c is sound velocity in the medium . 
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Fourier transforminq the time dependence in the funda-

mental equations (2.1) and (2 . 2) , rtf -+- - iw], and 

combininq the resultinq time-independent equations leads to 

the acoustic wave equation: 

1 
p(z)V . [PTZT Vp(x,z)) + p(x,z) = 0 ( 2 . 3) 

and index of refraction n(z) = In the 

derivation eauation (2.3), the acoustic medium has been 

assumed to be vertically inhomogeneous (or horizontally 

stratified). In other worns, the material properties are a 

function of depth (z) only . 

The neglect of density variations reduces equation (2.3) 

to the Helmholtz equation for the pressure , 

( 2 .4 ) 

The equation (2.4) constitutes the starting point of this 

study. 

Note: In the presence of smooth density variations, the 

acoustic equation (2.3) can also be reduced to the 

Helmholtz equation through the change of variable(!l) 
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with 

P = pllp 

, 2 2 -2 
n = n + ko 

It follows that, 

1 2 

C 2" • p 

312 
- 4" Cil'!» ) 

(b) ~1appinQ the Seabed Below a Homoqeneous Ocean 

( 2 . 5) 

The specific problem of interest is mapping the seabed 

below a homogenous ocean . The startinq point is again the 

acoustic wave equation (2.4) : 

for the configuration shown in Fig . 2. Let 

2 
n (z) 1 

2 
= + ~ (z) 

Since the medium is homoqeneous in x , the spatial 

variables can be separated by assuming that : 

p(x,z,k) = u(z , k) 

Note that ko sine _ k
x

' the horiz o ntal wavenumber (cf . 

Fiq . 3) . 
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k = ~ ; \l(eter wevenumber 
o 

/ 
9 "r(9) 

" / 

z 

" 

Fig.2 Schemotic Illustrotion of the Scottering Problem 
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Fly_ 3 W8venumber Decomposition 
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Substitutinq from (2 . 7) for p(x,z) into wave equation 

(2.6), one ohta ins an equation f or the z variation of 

pressure , u(z): 

or 

+ (k 2 _ 
o 

k 2 
o 

k 2 
o 

k 2 
o 

( 2 .8) 

( 2 .9 ) 

this is sim i lar to the time - independent SchrOdi nger equation . 

Equation (2 . 9) can be written in the fami l iar f o rm: 

(z , E ) + [E - V{z)1 u(z , E) = 0 (2 . 10) 

with the identifications: 

kz = kocose , t he vertical wavenumber is "momentum " . 

E = k 2cos 2a 0 is the "enerqy " . 

V(z) = k0
2• 2 (z) is the "potential ". 

A few remarks are in order : 

• The vertical wavenumber , kz , becomes i magi nary 
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• As k z ranqes on [ko , ~J , kx becomes pure 

i maq i na ry. 

• 
real, E is positive. 

• The potential V(z) = '<o~(l - n 2 (z» is in 

Qeneral positive except , possibly , for a low 

velocity l ayer at the ocean bottom i n terface . 

By a naloqy with quantum mechanics , one can draw a "potentia l 

well" diagram (cf . Piq . 4) . 

The SchrOdinqer equation (ea . 2.10) has associated with 

it two asymptot i c boundary conditions : 

ik z - ik z 
u ( z ) 

e z r(p)e z - + z • -Ih ;""2; 

(2.11) 

u(z) t(p) 
eikz z 

- z • ~ 

12; 

where r(k z ) and t(k z ) are i dentified as reflection and trans

mission coefficients respectively . 

The problem that was proposed in the int r oduct i o n has 

now been cast into an eouivalent q u antum mec hanica l problem: 
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Fig.4 Scattering Potentilll- Energy Diogram 
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Given r(k z ) ' the reflection coefficient, as a function 

of vertical wavenumber k z , obtain the scatterinq potential 

V(z) in equation (2.10). 

2 . 2 Survey of Inverse Methods 

2 . 2 . 1 Introduction 

Much of the background methodology r e levant to our 

problem is found in t he qeophysical literature . An excellen t 

revi e w of the f.ield is provided by Newton(12 , 13) . 

The seismic inverse problem for horizontal layered media 

of infinite depth consists in determining the vertical 

structure of the acoustic medium (specified usual l y by 

impedance, or , in more detail, by dens i ty and ve l ocity) from 

reflection measurements . But f o r a few exceptions , mos t of 

the previous analyses have been confined t o excitation with 

an impulsive pressure signal (6 - function) and probinq at 

normal incidence . The Fourier transform of a 6-fu nc t ion is 

essentially flat in freq uency doma i n . What is observed with 

such an excitation i s , therefore , the time trace of the 

resulting medium response or its Fourie r transform . Because 

of the assumed horizontal l y l ayered st r uc t ure of the medium , 

a nd the vertical direction of the siqnal , acoustic propert i es 

of the medium chanqe o nly with dep th and thus the problem is 

o ne - dimensional . 
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In what follows, we present a review of that past 

inverse problem work that is relevant in several different 

respects . First , the discussion of the Gelfand-Levitan ap

proach is narticularly relevant because this is our hasic 

approach in this thesis adapted to the Frisk exoeriment. 

Next, the discussion of prior work on sinqle frequency 

excitation , launched at non- normal incidence presents the 

state of the problem before we addressed it. 

The Deift and Trubowitz method is described because 

Stickler, havin9 been briefed on our work, adapted the Deift 

and Trubowitz method to the Frisk experiment and was able to 

devise an alternate approach to its analysis . 

The discussion of the Schur algorithm reviews the 

analysis by Yaqle and Levy of probing with an impulsive 

excitation also at non- normal incidence. We comment on why 

Ya91e and Levy dismissed the Gelfand-Levitan approach as 

inferior to the Schur algorithm although we have in fact , 

successfully adapted Gelfand-Levitan to the solution of the 

monochromatic, non-normal incidence problem . 

The Riccati equation methoo is discussed althouqh it was 

not used. hie considered this approach and believe it to be 

promisinq, but this method was not fully explored. 
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2 . 2.2 The Gelfand - Levitan Approach 

The problem that was proposed at the end o f Section 

(2.1), the reconstruction of the potential of a Schrnctinger 

equation from the reflection coefficient, is related to a 

classic problem of Quantum scatter ina theory: How to 

re construct a Sturm- Liouville differential equation from its 

spectral function. The ~roblem was solved in a celebrated 

paper by Gelfand and Levitan (14) who , since they were 

discussinq the radial wave eauation, were interested only in 

a solution on the half - line 0 < r < ~ (standing-wave 

problem) . Subsequent developments (e.q., (15)) led to 

formulations on the full line -_ < z < _ in terms of such 

readily measured quantities as the phase shift or reflection 

coefficient (traveling-wave problem). An excellent distil

lation of these ideas is to be found in the papers of 

Faddeyev(l6), while a more general survey of the field of 

inverse scatterinq has been carried out more recently by 

Chadan and sabatier(l7). The interrelation between the dif

ferent approaches and their time-domain interpretation has 

been presented by Burridge(S) . A detailed theoretical 

presentation and extension of the Gelfand-Levitan theory and 

its application t o our problem will be taken up in 

Chapte r IV. 

The exploitation of the Gelfand-Levitan formalism out

side of quantum mechanics was first taken up bV Kay(19) and 

Moses and deRidder(20) to solve problems in e!ectromaqnetics 
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such as the cha~acte~ization of t~ansmission lines and 

dielectrics f~om scatte~inq data. The possibility of mono

ch~omatic p~obin9 is mentioned b~iefly but not pu~sued. An 

inte~estinQ by - nroduct of this ~esearch is the theo~etical 

const~uction of die l ect~ics which are reflection less at all 

f~eau encies. 

The Gelfand -Levitan app~oach was int~oduced into the 

field of seismic explo~ation by Ware and Aki(21) . They 

presented an analytic approach to the inve~se scatteri ng 

p~oblem fo~ elastic wave p~opaQation in a stratified medium 

when the medium is p~obed with impulsive plane waves at 

normal incidence. The analytic solut i on was obtained by 

t~ansforming the equation of motion in a stratified elastic 

medium for plane waves at no~mal incidence into a one - dimen

sional Schrodinger equation . The potential of the ~esulting 

Schrodinqe~ equation depends only on the impedance of the 

medium as a function of t~avel time. No ambiguity arises 

owing to the bound state solutions of the Schrndi nQer equa

tion. Ware and Aki went on to establish a discrete analoqy 

of the continuous solution showinQ aqain that the impedance 

of the medium could be recovered as a result of probi ng at 

normal incidence when the medium cons i sts of a homogeneous 

half-space of impedance Poco in contact with a seque nce of 

n homoqeneous lave~s of impedance Plcl ' P2c2"" ' Pncn and 

te~minates with a homogeneous half - space of impedance 

Pn+lcn+l " The sequence of n homogeneous layers which have 
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thickness A~i and which are chosen such that travel time 

throuqh each laver is a constant, 

An./c. = At = constant 
1 1 

constitutes what is known as a Goupillaud layered medium. 

An eleqant solution of the inversion of a Goupillaud 

medium hos been given by Claerbout(22) using z-transforms. 

Ware and Aki showed the equivalence of the Goupillaud solu-

tion and of the discretized version of their continuous 

solution. Thev had promised a second paper dealinq with the 

inverse scatterinq problem for plane waves at non - normal 

incidence. Such a paper was, however, never published. 

Although Ware had obtained in his thesis some partial results 

at non-normal incidence prior to the publication of the Ware 

and Aki paper , the approach in the thesis was too cumbersome 

and in fact had hit an unsurmountable wall at and above khe 

critical angle: the reflection coefficient tends to one as 

w + ~ and therefore tails to meet an integrability criterion 

required in the application of the Gelfand-Levitan algorithm . 

The question arises as to how our approach , a monochro-

matic experiment at all angles of incidence, relates to the 

Ware and Aki experiment of an impulsive broadband source at 

one angle of incidence? The vertical wavenumbers generated 

in Ware and Aki (normal incidence) k z = ~ (for a < w < ~). 
Co 

Cover the ranqe from a to ~ as the freauency is swept. One 
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can see from Fig. 5 that in our exoeriment k z = kocosa (for 

o < cose < -) formally covers t he same ranqe of values of k z 

althouah the experiment is monochromatic. There is , however, 

a fundamental difference between the two approaches in that , 

as we prove in Chapter III, the reflection respo nse in our 

monochro~atic experiment is inteQrable and in fact qoes to 

zero as k z qoes to infinity at least as fast as (l/kz
2 ). It 

should be noted that Ware and Aki did not run any computer 

simu lations of their algorithm , and were therefore unaware of 

its numerical performance (in fact , the Gelfand-Levitan 

approach was widely held at the time to be numerically 

unstable). 

Inspired by the Ware and Aki approach, a number of 

researchers particular l y Ah n, Jordan , and Kritikos{23 , 24(25) 

applied the Gelfand - Levitan algorithm to the analytical 

problem of the reconstruction of dielectric functions and 

electron density profiles. Their wo rk is an analytical 

attempt to solve the problem when a dielectric medium is 

probed with impulses at normal incidence. Most of their 

effort was applied to the closed-form solution of the 

Gelfand-Levitan equation. Such a solution is possib le when 

the reflection coefficient can be represented as a rational 

funct i on of wavenumber . Although the approximation of the 

reflecti on coeffic i ent by rational functio ns has not yet 

rece i ved any practical application, the availabi lity of such 

closed-forM solutions provided us with valuable canon ical 

examples against which to check numerical inversion results. 
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,Frisle Experiment 
kz = ';; case ( 811 e 's) 

a 

Ware and Alei 

kz = ';; (811 w 's) 
a 

Fig. 5 Generation of Vertical Wavenumbers in the 

Ware and Alei Method and in the Frisle Experiment 
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More recently, Berryman and Greene(26) have addressed 

some l o nq - standinq auestions reqardinq the general applica

bility of the Goupillaud method . They demonstrated the 

equ ivalence of the Goupillaud method of inversion and of the 

Marchenko method(l5) for the Schrodinqer eauation for models 

with arbitrary layer thicknesses (i.e., continuous impedance 

variation) . Hhen the reflection coefficients are correctly 

interpreted, in the continuum limit , both methods will 

reconstruct the same impedance except , possibly, for the 

values at a finite numher of jump points in any fi n ite span 

of travel time . As part of this work , Berryman and Greene 

presented a fast (O(N 2» recursive alqorithm analogous to the 

Levinson procedure for the inversion of a Toeplitz matrix . 

We were able to adapt this algorithm and use it in our numer

ical computations. 

During our research, we became aware of an unpublished 

report by Jacobs and Stolt(27) which demonstrates four 

different coordinate transformations which convert the 

laterally homogeneous acoustic wave equation of the 

Schrodinger form . One of the transformations takes freq uency 

w to be a fixed parameter which infers our monochromatic 

condition . However, Jacobs and Stolt use a slightly 

different potential function than the one chosen in this 

thesis. Their effort to verify the Gelfand - Levitan algorithm 

is similar to the one presented earlier by Moses and 

deRidder(20) . In discussing the Gelfand-Levitan algorithm , 
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they make the important assertion that the algorithm holds 

even for the case of dissimilar end potentials . We have 

presented , independently , a riqorous proof of that assertion 

in Chanter IV . 

The method of Carroll and Santosa(28) was used by 

Santosa( 29) to solve the inverse proble~ for an impulsive 

source at normal incidence . Although the method is similar 

to the Gelfand-Levitan approach , it is not based on the 

Schrodinger equation but rather on the equation 

. 
q{y)v ' (2.12) 

where v is the Fourier transform of the shear disp l aceme n t 

and q(y) is related to the chanqe in the impedance A(y) by 

q(y) = 
A I (y) 

A(y) (2 . 13) 

The measured response g(t) = 6(t, x : 0) is transformed 

into the spectral density G(~) 

G(.) 
- 2~ ... = • 6 g(t)exp(i.t)dt (2.14) 
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The Gelfand-Levitan type equation that is to be solved is 

then 

T(y,z) + K(y , z) -

where T(y , z) is qiven by 

T(y,z) = j sin wZ 
o w 

y 
f K(Y ,n )T (n,z)dn = 

o " 

2 coswy[G(w) - -]dw • 

o , z < y 

(2 .1 5) 

(2.16) 

and the impedance profile is recovered from K(y , x) through 

a (y) = 2[K(y , y) ]' 
[1 - K(y , y)) 

(2.17) 

The major difference from the standard Gelfand- Levitan 

procedure is that in (2.15) the kernel T is differentiated 

with respect to n . 

Santosa(30) refined the method to give it a time-domain 

meaninq by applyinq it to prohlems in which the response data 

are g iven for a finite time. The representation obtained is 

similar to that in the Gopinath-Sondhi eauation(31). Santosa 

demonstrated the method t o be stable both theoretically and 

numeri ca lly o n a wind ow type profile . Reconstruction errors 

-33-



at depth are attributed to errors in the reflection data and 

to the first order discretization errors committed in the 

approximation of an integral by a sum. 

Caen has extended in one of his papers(32) the work of 

Ware and Aki so as to recover both the density and compressi -

bility profiles of a layered fluid from the plane wave 

reflection coefficient at two precritical angles of 

incidence , ann at all frequencies . 

In another paper(33), Caen applied the Ware and Aki 

method to recover the three elastic profiles of a layered 

half - space from three reflection coefficients . First the 

shear modulus and density profiles are determined from 

reflection coefficient data for oblique incidence SH p l ane 

waves qiven at two a nq l es of inc i dence and for al l 

frequencies. Once the density and shear modulus have been 

ohtainen, a further experiment using the reflection coeffi -

cient due to an impulsive normally incident P-wave permits 

the retrieval of the P-wave ve l ocity and hence of the Lama 

profile. The limitation in Coen's work, as in Ware and 

Aki ' s , is that the potential V(~) satisfy the integrability 

condition. 

~ 

6 II + 1~IIIVI~lld~ < ~ 12.1BI 
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which would be very restri c tive in practice . One result we 

demonstrate in o ur work is that the Gelfand -Le vitan alQorithm 

s till applies to the fundamental case whe n V( t) tends to a 

no n-zero finite value at in f i nity in v i olation of the above 

inte9cability condition. 

In a third paper(34), Coen addresses the problem of 

common source point surface data wh erei n a source is placed 

on the free surface of a plane stratif ied half-space and the 

vertical component of velocity or of acceleration is measured 

on the free surface . After solvinq the impulsive source 

problem , Coen discusses the monochromatic source p roblem. 

Hi s approach is deceptively similar to the one we present in 

this thesis as both approaches transform the o rig inal problem 

into a o ne-dime nsiona l Schrodi nger equat i o n and then proceed 

to use the Gelfand - Levitan inteqral equation to solve the 

inverse problem . However, the problem in the two approaches 

is nosed in a different way and the steps towards the solu

tion are dissimilar. 

It is useful here to run through eoen ' s method so as to 

point out the difficulty he encounters and which does not 

arise in our approach (a constant density is assumed) . 
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The Hankel t~ansform of the Qressure field 

satisfies the Schrodinqer equation 

where o(z ,oo) is the potential 

o(z , oo) 
2 

, · 2(1 
Co 

and k is re lated to the horizontal wavenumber t throuqh 
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The SchrOdinqer equation is accompanied by two initial 

conditions 

1 
= - qT~ (2.23) 

where 

q(~ , w) = 1 (2 .24) 

and d(~,w) is the Rankel transform of the vertical component 

of particle acceleration at the surface z = o. 

Coen ' s scheme proceeds from an input fu nction r(k , w) 

r(k,w) 1 - kq(k , (0) 
= '1-:i+:--1k"qo-(nkr-, w"'+) (2.25) 

given for all real positive k values and requires the compu-

tat ion of R(z,w) where 

r(k,w) -kz = 6 R(z , w)e dz (2.26) 
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The Gelfand-Levitan equation 

z 
A(z ,y,w) 3 R(z+y,w) + r A(z ,x,w)R(y+x)dy Iv l ( z 

-z 

(2 . 27) 

is then solved for A(z , y) which in turn yields the potential 

O(z) = 2 ~z A(z,z) z > a . (2.28) 

The difficulty with the whol e procedure stems from the 

second step , namely the computation of R(z) from r(k). That 

involves an inverse Laplace transform which is numerically 

inherently unstable . Our method , o n the other hand, starts 

off from the Schrodinge r equation for the field (rather than 

for its Hankel transform) with the associated plane wave 

reflection coefficient as a function of vertical wavenumber . 

The Laplace transform of Coen ' s approach is replaced by a 

Fourier transform which does not present any numerical diffi -

culties. It is to be noted that the known numerical 

instability o f the LaQlace transform has led some 

researchers , notably Santosa and Symes(42) to dismiss the 

Gelfand-Levitan approach to the solution of the inverse 

problem . toJ'e believe that o ur approach to the inverse problem 

could lead to a positive reassessment of the Gelfand - Levitan 

inverse method. 
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2.2 . 3 Single Freguency, No n-No rmal Incidence 

Very few researchers other than Coen have considered the 

si ngle frequency non - normal incidence case . One exception is 

Mittra and Schaube rt(3S) who used a method different fr om 

o urs. The ir appr.oach is a spectral domain method of probing 

stratified , lossless, dielectric media using an a lternative 

to the Marchenko formulation and res ulting in a Fredholm 

equation of the second kind which is solved through the use 

of rational basis functio n s . They noted that accu r ate 

inversions can be obtained if data is provided for kz » ko ' 

The Mittra and Schaubert examples al l have zero termina l 

potentials, and although the results are good in gene r.al, the 

inaccuracies are interestingly larger near the orig in with 

higher frequencies "seeming to give be tter resolution."(3~) 

Another example of the prior sing l e frequency , non

normal incidence analysis is provided by the work of 

Roger(36) . Roger sought to determi ne the index profile of a 

dielectr i c plate backed by a perfectly conducting p lane. 

That last fact complicates the problem , since the potential 

is always negative and bound states due to surface waves 

might exist . Roger starts from a nonlinear i ntegra l equation 

which he linearizes to obtai n a Fredholm equation of the 

fi rst k ind whose solution constitutes an ill-posed prob l em 

(in the sense of Hadamard). Roger solves this eq uation by 

using the Tikhonov regularization method . The method fails 

when the permittivi t y £(z) exceeds a constant by more than 

20% and also when the layer is thicker than 1. SA. 
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2.2.4 The Deift and Trubowitz Method 

Deift a nd Trubowitz(37) introduced the trace method for 

dete r~ini ng the potential in o ne - dimensio nal scattering 

problems for the SchrOdinger eq uat ion . The trace method 

r equires as data the reflect i o n coeffic i ent , while the method 

we adopted r equi res the Fourier tra ns form of the reflection 

coeff i cie nt . Furthermore , t he trace method requires the 

solution of a nonlinear differential equa tio n while the 

Ge l f and-Lev itan (o r Marchenkol equat i o n that we use is a 

linear integ ra l equation. 

Stickler visited us in vlood s Hole and became interested 

in adapti ng the Deift and Trubowitz trace method to our 

problem. He took the same input , i .e ., the measurement of 

the pressure field as a function of range , where both the 

real and imag inary parts o f the press ure field are needed . 

After the r eflection coefficient R(k) is derived by using the 

same approach as ours , he then introd uces an auxiliary 

potential, q(z ) , which is de termine d by using the trace 

fo rmula methods of Deift and Trubowitz. Sti ck ler(7) defines 

th e auxiliary potential , q(z) by 

<i(z) = q ( z ) - I. 
""2 

, 
(p ) 
~ 

(2 . 29) 

where p rimes denote derivatives wi t h r espec t to z . The auxi -

liary potential, q(z) , can be determined from the Deift and 

Trubowi tz trace formula 
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q (z) = 4 • 6 klm[R(k)u/Cz . -k)]dk (2.30) 

The Jost function u2(z,k) in (2.30) is determined by solving 

(2.31) 

with the boundary condition 

-ikz e • z + • (2 . 32) 

Deift and Trubowitz have shown that the usual iteration 

scheme for solving two coupled no nlinear integral equations 

such as (2.13) and (2 . 14) converges. In our case , instead of 

(2.13) and (2.14), we solve for q(z) using a Gelfand-Levitan 

linear integral equation . 

Stickler presented two nu me rical examples(7) of applying 

the De i ft and Trubowitz algorithm on a twice continuous 

function (in Chapter VI we apply our method to one of his 

examples and refer to it as the "Stickler's Profile") . Since 

Stickler generated the reflect i on coefficient from the soIu-

tiDn of a Riccat i equatio n, he had control over the local 

tolerance for the determination of the reflection coeffi-

cient . As in the Gelfand - Levitan method, the results are 

excellent for z/L « 1 , but deteriorate gradually with depth 

(z/L> 1). St ickler attributes the degradation of his method 
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to the lack of accuracy of the local reflection coefficients 

generated via the Riccati equation. 

When we compare Stickler ' s numerical results to ours , we 

observe the general similarity of his results to the ones 

described in this thesis. This similarity should not be too 

surprising in view of the close relationship between the two 

methods (see further discussion in Chapter IV) . We have no 

data to assess the computational efficiency of Stickler's 

method versus ours. 

2.2 . 5 Schur Algorithm 

Yagle and Levy(38 , 39) have adopted an algorithm which 

reco nstructs the unknown acoustic medium layer by layer 

(layer stripping procedure). The method is analogous to the 

downward continuation method, in that successive up and down

going waves are measured at the surface. The first 

reflection of the impulse yields information about the medium 

immediately beneath the surface (at depth A) . This informa

tion is used to update the waves at depth A which then 

becomes the new reference surface. The procedure is succes 

sively repeated until the depth of interest is reached . The 

Schur algorithm applies to the study of the two component 

system of coupled differential equations 

qlx(x , t) + qlt(x,tl = - rex) Q2(x , t) 

Q2x(x , t) - Q2t(x,t) = - rex) Ql(x,t) 
(2 . 33) 
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where the subscripts x and t denote derivatives with respect 

to x and t , and r(x) , the reflectivity f unction , provides a 

coupling between the downgoing wave ql(x,t) and the upgoing 

wave Q2(x , t) (unit velocity) . 

Yagle and Levy begin the ir derivation with the set of 

equations arising after an initial impulse excitation 6{t), 

50 that ql{x,t) and Q2(x , t) can he written as 

(2.34) 

in which causality has been used (no waves exist for t < ul. 

From (2.33) and (2 . 34) Yagle and Levy derive 

r(xl = 2Q2(u,x) (2.35) 

The equations (2 . 33) and (2.35) const itute the con tinuous 

parameter fast Cho lesky recursion where ql(x , t) and Q2(x,t) 

are updated t o yield rex) from equation (2.35) . 

At this point , the application of the Schur method 

entai l s taking the Fourier transforms of the system in 

• 
(2 . 33). Denoting the transform of q by q , we get : 

. . 
= - iwql (x , w) - r (x) q2 (x , w) 

(2 . 36) . 
q2x = - r(x) ql(x , w) + iwQ2(x , w) 

Yagle and Levy thus f ind a reflection coefficient 
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• 
R(x,w) = (2.37) 

which obeys a Riccati equation 

• • 2 = 2iwR(x , w) + r(x) (R(x , w) - 1) (2.38) 

with 

rex) = lim (2iw R(x,w)] • (2 . 39) 
w + 00 

Equations (2.36) , (2.37) , and (2.38) constitute the Schur 

algorithm, while (2.38) and (2.39) represent a continuous 

parameter dynamic deconvolution algorithm. It is to be noted 

that the discretized Schur algorithm is similar to the fast 

recursion procedure of Berryman and Greene . 

Yagle and Levy assert in the concluding section of the i r 

paper that their Schur algorithm is computationally super i or 

to the Gelfand - Levitan algorithm as used by Coen . This 

observation may be true of the Gelfand - Levitan procedure for 

impulsive sources at no n-normal incidence as presented by 

Ware and Aki(21) and by Coen(33) , but it certainly does not 

apply to our approach. Yagle and Levy ' s main objection to 

Gelfand - Levitan is that the boundedness of the potential 
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00 

b (1 + ITlllVhlldT < 00 
(2.40l 

may not be satisfied at non -normal incidence. However, we 

show in Chapter IV, that the Gelfand - Levitan algorithm can in 

fact be applied even for a non-zero end potential which would 

render the integral in (2.40) infinite. Moreover, the Frisk 

experiment studied here is performed at a single frequency 

and not with an impulsive excitation. We have shown that the 

monochromatic reflection coefficient as a function of vert i-

cal wave number is integrable so that the negative comment of 

Yagle and Levy does not apply to our work. 

Although not stated in their paper, the application of 

the Schur algorithm to the inverse problem in a layered 

acoustic medium involves implicitly approximations similar to 

those inherent in the Claerbout's migration method. Although 

the Schur algorithm constitutes an improvement over migration 

in so far as the downgoing wave strength is modified by the 

upgoing wave strength it is still an approximation . Indeed, 

in some of our earlier unpublished work, we succeeded in 

improving the Claerbout migration method precisely by 

introducing the coupling between the reflected and the down -

going wave. By contrast , our Gelfand- Levitan approach is not 

an approximation and except for numerical computation 

represents an exact formulation of the problem. 
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2.2.6 Riccati Equation Method 

One method which we consideced upon Sticklec ' s sugges -

tion and which appeacs to have considerable pote ntial is 

based on the Riccati equation . Reflectivity as a function of 

travel time T obeys the Riccati equation(l2) 

dr 
dT 

with boundary condition r(w , ~) = 0 in which 

y (Ti = 1 dZ 
z"'O'T 

whece the acoustic impedance has been defined by 

Zh) 

(2 . 41) 

(2 . 42) 

(2 . 43) 

The inverse problem is here that of reconstructing Z(z) 

from surface observations of r. To get Z(zl from Z(T) 

involves further assumptions. We can formulate the problem 

equivalently by writing 

~ 

r (w,d = J dT ' y(T')e[2iw(-r '-T)](l _r 2 (w , l"» 
T 

while at the surface, the reflection amplitude is 

~ 

r(w , o) = 6 dl"y(-rle(iWl"l(l - r 2 (w , 'r) 
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-

The last two equations can be regarded as a nonlinear 

mapping of dOl l O) , given as a function of 01 , into yh) . The 

aim of such an approach would be to reconstruct Y (T) from 

r(Ol , O). Although the existence of a complete solution to the 

above problem has not yet been demonstrated , an approximation 

can be derived . An inverse Fourier trans form of (2 . 28) 

yields 

1 
r (t) = • 

-f d~e-(2i~T)r(~ , O) --
1 

+ f d~ -b dT ' a(T ' )r 2 (0l , T ' ) xe[2iw(T ' -T)). --
(2.46 ) 

The first approximation to the solution is the Born series 

term, namely 

) -2iOlT f dOl r( Ol ,O e 

--

which resembles the first term of our own result . The 

(2 . 47) 

convergence of the iteratio n series solution has not yet been 

established, but the approach as formulated by Nilsen and 

Gjevik( 40) appears promising. 
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It is useful here to note that a Riccati equation still 

applies in the presence of density discontinuities . The 

equation obeyed by the pressure p is 

(2.48) 

where V is the potential. 

The reflection coefficient may be obtained at the 

surface from the continuity of pressure and vertical velo-

city. 

R(k)lz=o= 
-1 • p P - ikp 

-ik (2.49) 

The ratio of vertical velocity to pressure, i.e., the admit-

tance, 

u = 
-1 P pI 

P 
(2.50) 

is continuous even in the presence of material discontinu-

ities, as it is the ratio of two continuous quantities. The 

admittance u obeys a Riccati equation, 
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U I = _ Q _ pu 2 

in which Q 

Note that u(z=O) 'kll - R) = 1 -r+"R 

Let u(z) = 'k(l - Wlz)) 
1 1 + W( z l 

(2 . 51) 

It follows that \'1(0) = R(k)lz=o ' and W(z) itself obeys a 

Riccati equation 

2 (Q - pk ) 

(2 . 52) 

which can be used to generate the reflection coefficient in 

the direct problem or to use an iterative procedure for the 

inverse problem. We did not pursue t his approach further but 

it merits further study . 

We have covered here those papers that were most 

relevant to the work that follows . It shou l d be noted, how-
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ever, that there are a number of other interesting inverse 

methods that have not been included in this review . 

Particularly noteworthy are the papers by Moses(41) , Gopinath 

and Sandhi(3l), Santosa and Symes(42) and others(43 ,44). 

Also of interest is additional literature on the approximate 

inverse methods(55- 57). Special mention should be made of 

methods based on the Born approximation which originated with 

the seminal work of Cohen and Bl eistein(45-54) . 
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CHAPTER III 

THE REFLECTION COEFFICIENT 

3 . 1 Introduction 

The plane-wave reflection coefficient as a function of 

vertical wavenumber r(k ) is central to the inversion procez 
dure we adopted to solve the inverse problem . Its symmetry 

property is shown to follow from the integral equation repre -

sentation of the field. We then der i ve its asymptotic behavior 

for large k z by induction and show that r(kz ) is integrable, 

and hence is an acceptable input to t he inverse method presented 

in Chapter IV . 

3 . 2 Definition and Properties of the Reflection Coefficient 

Consider the problem of a plane wave 

= e 
ik z z 

incident from z = -~ onto a h a lf-space extending from z = a 

to z = +~. The half space is characterized by a potential 

V(z). V (z ) is all that is needed t o describe the scattering 

of the incident wave Wi{z) by the acous tic half space: 

1/1 (z) = e 
ik z z 

_. 

+ r G ( z ,z') V(z '} W(z') dz ' _ 00 <z < 00 

_ 00 
(3 . 1 ) 
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where the Green ' s function G(z ,z') is determined by 

eikz l z - z ' l 

2ik z 

It follows that as z ~ -~ , 

~ (z I = e 
ik z z + e 

- ik z z 

and the coefficient of e 
ik z z 

reflection coefficient. 

1 
2ik z _ 00 

(3. 2) 

r ik "z' 
e z V(z ') 

2ik 
tp (z')dz ' 

_ 00 z (3 . 3) 

can be identified as the 

V(ZI) !lJ (z ')dz' 

(3 .4) 

The integral representation of the reflection coefficient 

allows a simple derivation of the symmetry properties of 

r(kzl in the complex plane . 

From (3 . 4) 

1 
= - 2ik

z 
[

00 e-ik z ' 
z V (z' 1 I/I (z ', - k ) dz' z 

_ 00 

(3 • S) 

But, fo r a real potential V(z) and for real kz ' Schrodinger ' s 

equation shows that when I/I (z',kzl is a solution , so is 

tp (z ', - kzl . Moreover, I/I (z', - kzl = W*(z' ,kzl which 

implies 
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(3.6) 

The result can be extended to the complex plane through 

the use of the Schwartz reflection principle, 

(3 • 7 ) 

in any region of analyticity connected with the real k axis. z 
(Th is constitutes the analytic continuation of r(kz ))' 

NOW , the Gelfand-Levitan algorithm requires 

knowledge of r(kz ) for all real Kz ' However, the symmetry 

property expressed in (equation 3.6) demonstrates that 

knowledge of r(k z ) on the half-line of 0 < K
Z 

<00 is 

sufficient . 

Note that when the vertical wave number k z = kOcos0 

is real and l arger than the water wavenumber kO' the angle 

of incidence becomes imaginary. That can be verified by 

requiring that case = cos (0 'r + i 0i ) be real. And since 

it f o llows that Or = 0 and K
Z 

= kOcosh0 i for kO < k z < 00 . 

The mapping between the Kz-plane and the 0 -plane is drawn 

in Figure 6 . 
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Im(e) 

• L 
o • o >1 

2: Re(e) 

Fig.6 Mopping from the kz- Plone into the O-Plone 
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3 .3 Asymptot i c Behavior of the Plane Wave Reflection 

Coeff i c ient 

The input t o both the Gelfand-Levitan algorithm 

a nd t o the Born approximation is the Fourier transform of 

the re flection coefficient 

R ( z ) = r ik z 
z dk z 

The properties of r(k ) as k ~~ a re s tudied for two z z 

simple cases and then ge neralized . 

(a ) Half space 

The re f l ection coefficient is given by 

z - z 1 

where the impedance Z 

Therefore, 

-

= pc/cose o r 
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And since kx is continuous, 

k 2 = (k 2 
zl 1 

k 2) + k 2 o z 

and 

As k + 00 

z 

k - k (1 + 1 (k 2 _ k 2)) 
z z 2k7 1 0 

r(k z ) '" 
z 

k + k (1 + 1 (k 2 k 2) 
z z 2k2 1 0 

z 

l(k 2 k 0
2 )/kz 

2 
= 

4 1 

Hence, 

When density variations are considered, 

mcos0 - ncos 0 1 

mcos0 + ncos0 1 

- 56 -
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(3.12) 

(3 . 13) 

(3.15 ) 



m-l ) + (k 2 _ k 2)/2k 2 
m+l 1 0 z (3.17) 

which still decays as (1/k z
2), but tends to a finite 

limit m-l 
( m+l ) as k z ~ ~ 

Therefore , the Fourier transform of r(k z ) involves 

generalized functions, 

m-l 
= (m+l) 6 (z) + (analytic function) (3.18 ) 

(b) One Layer Case (cf . Figure 7) . 

The reflection coefficient at the (0 - 1) interface 

is 

e 2ik1z d 

1 + 

(3.19) 
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Fi g_ 7 One Loyer Case 

- 58 -



The analysis of the terms within par entheses is 

identical t o the analys is carried out in the previous section. 

One can conclude i mmediately that 

Note: 

-----+ 
k +00 

Z 

[ (k 2 
1 

(k 2 
2 

The de lta function potential 

VIz) = M (z) 

2ik d 
z J/4k 2 

z 

(3.20) 

(3.21) 

can be cons idered as a limiting case of the one -layer 

pr oblem . It has associated with it a reflection coeff icient(20 ) 

A r (k z ) = - i --;;"-=...,,, 2:k + iA z 
(3. 22 ) 

which goes to zero as kz~ ~ , but only as (l / k z ) in apparent 

violation o f the result j us t derived. The reason is that 

in a delta function po t e ntial, V(z) ~~ which implies 

(k 2 
o invalidating the binomial appr oximatio n to 

the squar e roo t used in section (a ). However, the formula

tion of the acoustic problem requires V(z) ~ k02 which is 

finite ( as l ong as the frequency Wo is finite ). Therefor e , 
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delta-like potentials do not arise and the binomial 

approximation is valid . 

(c) General Case 

The expression for r(kz ) given in the previous 

section can be rewritten in the general form 

(3.23) 

2 
-2ik1 .d 1 

1 [1 - (I/R01 ) 1 e Z 

~ + 
ROI (_1_) 

-2ikl :idl 
+ Rl2 

ROI 
e 

(3.24) 

The reflection coefficient can be readily generalized 

to include stratified media (58 

+ .... 

- i2k (d -d ) 
[1 _(I/R2 )Je nz n n-l 

+ 1 f 1 ____ -'(!!n_-=-I~) ni'-o;c--r;;--=--:.--,.---i 
R -i2k (d - d 

(n -l ) n [l/R e nz n n-l 
n -l ) n - J 

(3.25) 
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The continued fraction representation of (equation 3 . 25) 

indicates that the partial reflection coefficient R12 <kz ) 

in (equation 5 . 23) could represent the reflection 

coefficient due to a complicated medium rather than to a 

simple homogeneo us half space. 

The asymptotic behavior of rtkz } is deduced in a two 

step process . Assume the configuration of FigureS 

a (---) 
k 2 

z 

Adding a new interface to the set-up (Figure 9 ) 

and using equation (5.24), 

k 2 
z - a- + 

(1 -

k 2 -2ik d_ 
z - a- e z ~ + " k2 

Therefore, 

k 2 
z 

+ - a- + (_a_ 
k 2 

z 

k 2 
_z_) 
a 

r (k
z

) , 0 as (1/k z
2

) k + 00 
z 
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(1 -

02 2 
+ -"_u

k B 
z 

+ ... ) 

(3.26) 

(3.27 ) 



1 

2------------------

Fig. 6 StHck of lsovelocity LHyers 
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2-------------------

Fig.9 Adding a Top layer to the Stacie in Fig .B 
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The argument just presented is , in fact, the last step in 

a proof by induction of the proposition that r(k
z

) ~ 0 

as (l/kz
2 ) in the presence of a homogeneous ha l f space . 

The proposition was proved true for one or two interfaces 

was assumed true for an arbitrary number of interfaces and 

was shown to ho l d for one more interface. This result 

shoul d be contras t ed with the corresponding situation in 

the Wa-re and Aki experiment ; For angles of incidence 

greater than critical, they were con f ronted with the 

fact that r(w) ~l , as w + 00 , and CQuld not proceed with the 

Gelfand-Levitan inversion procedure . 
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CHAPTER I V 

THE ONE - DIMENSIONAL INVERSE PROBLEM 

This chapter presents the derivation of o ur approach to 

the one - dimensional inverse problem . The results yield the 

methodology underlying the numerical computations descr i bed 

in Chap te r v . The derivation exploits the equ i valence 

between the acoustic problem and the corresponding quantum 

scattering pro blem as presented in Chapter II. A maj or dif 

ference between the two is the boundary conditions. Whereas 

in quantum mechanics , the unknown slab is surrounded by 

isovelocity space (zero end potential) , in the acous ti cs 

problem , as app l ied to the ocean bottom , d i fferi ng ve l oc ities 

have to be accommodated above and below the slab (non - zero 

end potential) . The solution to the inverse prob lem detailed 

in this chapter consists of an extension of Faddeev ' s 

method( l6) for deriving the scattering matrix in the case of 

zero end potential (or integrable potentia l ) to the case of 

non - zero end potentia l whi ch is represen t ative of the refle c 

t i ons from the bottom of the ocea n. We are able t o solve the 

problem analytically , in part , because of its one-dime nsional 

modeli ng . Our technique is related t o that applied by 

Stickler to a simila r scatteri ng problem . 
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4.1 Intro duction 

The determination of the potent ial V(z) in the 

SchrOoinqer equation 

d2~ 2 
~ + [p - V(z)l~(z) = 0 
dz 

( 4 • 1 ) 

from scattering data such as the reflection coefficient 

constitutes the one - dimens i onal inverse problem . 

Two scatterinq solutions of the Schr~dinger equat i on are 

defined by their asymptotic behav i o r (p is the vertical wave-

nu~ber also referred to as k z ) : 

= 

= 

-ipz e as 

r e-ipz + s (p)e ipz as 
21 

s22 (p) e l -ipz 

The matrix o f coefficients 

-~ -

(

Sll(P) 

s21(p) 
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z + 

( 4 • 2 ) 

Z+ +(O 

( 4 .3) 
Z+ - (O. 



is known as the S matrix of the Schredinger equation . The 

element S12(P) corresponds to the plane wave reflection coef

ficient determined in the WHOI experiment. 

Faddeev(16B) has shown that 512(P) may determine all the 

elements of the S matrix and hence is sufficient to obtain 

the scatterinq potential V(z). However, these results have 

an important practical restriction, namely, that the end 

I"lotential tends to zero; Le., V(z) + 0 as z + ±"'>. They are 

reviewed in the first part of this chapter . 

In the second part of the chapter , we present an exten

sion of the theory to include the geophysically significant 

case of a finite end potential, V(z} + VI as z + - . Finally, 

an appropriate choice of source frequency is shown to elimi

nate trapped modes . 

4.2 Properties of the Solution of the Schr~dinqer 

Equation (V 1=O) 

Two fundamental solutions of the Schr~dinger equation 

are introduced, 

- ipz 
e 

as 

as z + - ... 
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The method of variation of parameters leads to a 

representation of uI(z ,k ) and u2(z ,k ) as solutions of 

Volterra eauations of the second kind(16) 

= 
ipz e -

-ipz 
= e + 

~ f sinp(z - z' 
p 

Z 

ZJ sinp(z-z ' ) 
p 

) V(z)u1(z' ,p )dz ' 

V(z)u
2

(z' , p)dz' 

But, since the SchrBdinqer equation is symmetrical in p, 

( 4 • 6 ) 

( 4 • 7 ) 

ul(z,-P) and u2(z,-P) are also solutions of (eq. 4.1). The 

solution pairs [ul(z,P) , ul(z,-p») and [u2(z,P), u2(z,-P)] 

are linearly indenendent since their Wronskians obtained from 

their asymptotic form (eqs. 4.4, 4.5) 

W(U1,U 1*) 

W(u 2 , u 2 *) = - 2ip 

= 2ip 

are non-zero for p * o. 

( 4 • 8 ) 

NOW , any solution of the SchrOdinger equation can be 

written as a linear combination of two independent solutions. 

In particular , 
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( 4 • 9 ) 

(4.10) 

The next section examines some properties of the coefficients 

Cij(k) which will later be shown to be closely related to the 

elements of the S matrix. 

4.2.1 Prope rties of the Coeff i cients Cjj(p) 

The coefficients Cij(P) can be expressed as Wronskians 

hy "taking Wronsk i ans" of both sides i n equations (4.9 and 

4.10). For instance, from (equation 4 . 9) 

W(U 1 (Z,P),U 2 (Z , P))= W[ u 1 ,u 1jc 11 (P) 

(4.11) 
+ w[u 1 (z , P) ,u 1 (z,-P)jc 12 (P) . 

We know, however , that in (4.11) 

(linearly depende nt functions) 

. -



and 

(ct., eq . 4.8) . (4 .1 2) 

It f.ollows that 

(4.13) 

One can show similarly that 

(4.14 ) 

( 4.1 5) 

Usinq the values of Cij expressed in this form , and substi 

tutinq eq . 4.9 into eq . 4.10, one gets the compat i bil ity 

re 1a t ions, 

(4 .16) 
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and, 

(4.17) 

The asymptotic form of u2(z,k) in (ea. 4.7) for z + GO 

00 

( ) e- ipZ [l_ 1 f u2 z , p = 2ip 
_00 

00 • , 

J e - 1PZ V(z')u 2 (z ' )dz ' 

(4.18) 

~ 

leads by comparison with (eq. 4.9) to the identifications : 

00 

1 f e ipz ' v(z ' lu 2 (z')dZ ' TIP _ 00 

1 - (4.19) 

00 

= 1 f e-ipz 'v(z' )u2(zl)dz l 
2ip 

_ 00 

(4 . 20) 
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Using the orevious estimates for u2 in eq . 4.5 and the 

Riemann-Lebesque theorem , it can be seen, that for large p , 

0(1;-) • * cl2(P) - l is o( l ip) and cll (p) is Moreover , cl2(P) is 

analytic in the upper half plane, does not vanish on the real 

p axis , and has on ly a finite number of simple zeros on the 

ima c;::linary axis. 

4.2 . 2 Properties of the S j j(k) Coefficients 

One is now ready to return to the oriqinal scatterinq 

problem and its associated S matrix . 

~l(z,P) , the solution of the scattering problem of 

interest , can be written in terms of the linearly independent 

solutions u2(z , P) and u2 (z ,-p) 

(4.21) 

(4.22) 

* The order symbol o( is defined as follows : 

f (d = o[g(d] as £ + 0 

if lim f ( £ ) = 0 
£ + 0 <iT&T 
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Writing out uI(z , P) in terms of u2(z ,± ~) as give n in eq. 

4 . 10 , one ohtains the compatibility relations 

s II (D) 
I = c

21 
(p) 

(4.23) 

sI2(D) 
c

22
(P) 

= c
21

(D) 

Carryin9 out the same operation o n ~2(z , k) , one obtains 

s22 (p) 
I = c I2 (P) 

(4 . 24 ) 

s2 1 (D) 
c ll (D) 

= c
I 2

(P) 

From the asymptotic behavior of the Jost funct i ons Ci j 

. * one can deduce the asyrnptotics of the 5 matrIx 

* 

Sl!(D) = S22(D) = 1+ O(I/D) 

s I 2(D) and s21(p) = O(I/D) 

The order symbo l O( ) is defined 

f ( £ ) = O [g(£) J as £ + 0 

if lim f ( £ ) A 0 < IA I < 00 
9 (£) = , 

£ + 0 
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It can be seen from eq. 4.24, eq. 4.16 and eq. 4.17 that the 

5 matrix is unitary, 

(4.26) 

implyin~ conservation of energy, and that since Sij(-p) : 

s*ij(P), 

(4.27 ) 

The coefficients Sij(P) are continuous for real 

P, sll(P) being analytic in the upper half plane except for 

poles on the imaginary axis (corresponding to the zeros of 

c12(P». Conditions (4.26) and (4.27) allow one to recon

struct the scatterinq matrix from a knowledge of the reflec-

tion coefficient sI2(P)' In what follows, s12(P) is 

identified with the plane wave reflection coefficient r(k z ) 

and sI1(P) with the transmission coefficient t(k z ) . Substi

tuting e21 by (lIt) and e22 by «It) in (eq. 4.10), it 

follows that 

(4.28) 

The above equation is the basis for the derivation of 

the Gelfand-Levitan inversion method that has been obtained 

for a potential V( z) + 0 as z + ±"". Such a potential arises 
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in the study of dielectric slabs by electromagnetic probing. 

In the earth, however, the velocity c(z) tends to a value cl 

larqer than the su~face velocity cO. Correspondingly, the 

potential V(z) tends to a ~ositive constant VI' 

= k 2 o 

Co ~- ~ --2 
c 1 

_ k 2 
1 

Therefo~e the Gelfand-Levitan inve~sion does not really 

(4 . 29) 

apply, and a scatte~inq solution is needed that allows a non-

zero end potential. In the next section, we present our 

approach to this pro blem. 

4.3 Non Zero Final Potential 

To accommodate to a non-zero VI ' we now conside r the 

fundamental solution of the Schr~dinqer equation Ul(z,P) 

defined asymptotically as 

where 

ip'z 
u

l 
(z,p) ..... e z + ~ (4 . 30 ) 
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We assume Imp') 0, in order to satisfy the radiation condi-

tion at~. The Volterra integral equation representation of 

ul(Z'P) in eq. 4.6 is modified to 

u
1 

(z,p)=eip'z_j Sinp~!z-z' '[V(z)-v
1
]u

1
(z' ,p)dz' 

z 
(4.31) 

while the integral equation representation of u2(z,P) is 

unchanqed 

-inz Z u2 (z,p)=e + I 
-~ 

sin p(z-z') 
n 

4.3.1 Asymptotic Behavior 

V(z)u
2

(z' ,p)dz' (4.32) 

The key observations to be made relative to eq. 4.31 is 

that since u1(z,P) is the solution of a Volterra equation of 

the second kind with square integrable kernel, the method of 

successive approximation will converge. That observation has 

in fact been applied by D. Stickler(7 in connection with the 

Deift-Trubowitz inversion procedure; thus, we have 

[ 

V(Z)-V1~ ipz-
u1 (z,p)= 1- 2 e 

(2ip) 

~j (V( z' )-V
1 

)dz' 
<lP H 0 * z + •• T. 

(Imp ) 0) 

(4.33) 

* H.D.T. stands for higher order terms 
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from which the transmission coefficient t(p) can be deduced 

t(p)= ( l-

where Zo is arbitrary. 

Similarly, (Imp) 0) 

V(z) -ipz-
....:..o..::..c..,.) e 
(2ip)2 

4.3.2 Inversio n Procedure 

z 
rOv(z· )dz 1+

2
1 7 (V(ZI )-V1'dz' 

-CO> p z 

1 
2ip 

a +H.O.T. 

(4.34) 

z 
f V(ZI )dz' - + H.D.T. (4.35) 

We are now ready to present the inversion procedure f o r 

VI > O. Note that the basic relation (eq. 4.28) still holds 

for VI > 0, 

(4.36) 

Fo llowing Faddeev's(16) case of V = 0, for the case of 

VI > 0, a function h(z,p) = U2(z,p)e ipz is introduced. The 

expression for u2(z,P) (eq. 4.35) shows that h(z,p)-l is 

analytic in the upper half plane and Im(p) ) 0 and + 0 as 

Ipl +.... We thus ohtain (E + 0+) 
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h(z , pl-l = 1 
211' i 

~ 

f 
h(z , p' ) - 1 

p' - p- i< 

or usino (ea . 4 . 36) 

h(z,pl - l 
1 00 t(p ' )u

1
(z,p' )e - ip'z_ l 

= 2WT fdP I -------p~'7+=p~+'i~E--------
-~ . 

1 
- 2w i 

- ip ' z 
00 r(p')u (z , p')e 
f 2 dp ' - p ' +p+i£ 

The first inteq ral in (ea . 4 . 38) is zero since 

1 z 
TIPf V(z ' )dz ' 

- ipz t(plu
1

(z , ple - 1= - V( z 1 
( 2ip1 2 e - + H. D . T . 

thus 

h(z,p) - 1 1 = - 2'11' i 

• 0 

"" rep ' )u
2

(z , p ' )e-1p Z 

f d 0 p ' +p+i< p 

(4.371 

(4.381 

(4 . 391 

(4.38al 

Comparing eqs . (4 . 37) and (4.38a) , we can express u2(z , P ' ) in 

the Levin representation(l?) , 

u
2

(z , p) -ipz = e + 
z . 0 

f K(z , z ' )e 1PZ dz ' (4 . 401 -
in which the kernel of the integral does not depend on p; 

i . e. , 
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K(z , y) 1 
= - 2W 

-f r(p)u 2 (z , p)e - iPYdP --
InsertinC') (eq . 4 . 40 ) into (eo . 4 . 41 ) results 

Levitan tyoP. equation 

z 
K(z ,y ) + R(z+y) + f R(z '+y)K(z , z ' )dz ' - y 

where R(z) is the Fourier transform of r(p) 

1 R(z) • 2. --

(4 .4 1) 

in the Ge l fa nd-

• 0 ( 4.4 2) 
< z 

( 4.4 3) 

When (eq . 4 .41 ) i s substituted into the SchrDdi nger 

eauation, it is found that K(z , y) satisfies a partial differ-

ential equation 

2 2 
~ - V(z)K • 0 
3y 

subject t o the boundary c o nditions 

K(z , -CD ) = a 

V( z) • 2
dK (z,z) 
dz 
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The solution of R(z) in eq. 4.43 consists, in general , 

of both a continuous and a discrete part. The discrete part 

applies in the presence of trapped modes. In that case , 

additional information is required to construct R(z) 

1 
R( z) = 

where the Pi's are the poles of rep) on the positive 

imaginary axis. 

(4.47) 

The choice of the constant normalization coefficients mi 

is dictated by the requirement that V(z) = 0 for z < O. This 

can be seen by examininq the Gelfa nd -Levitan equation (4.42), 

z 
K(z , y) + R(z + y) + f R(z' + y) K(z,z' )dz ' = O. (4.48) 

y ( z 

\ve note that R(z) = 0 for z < 0 insures that K(z,y), and 

hence that v(z) = 2 ~ (z,z) are all zero for z < O. The 

choice of fii in (eq. 4.47) is therefore dictated by the 

requi r ement R(z) = 0 for z < O. Now, the integral in (eq. 

4.47) is for z < 0 , 

1 
h 

-p. z 
= i L bie 1 

i 
(4.49) 

where the bi ts are the residues at the poles Pi of rep). 

subst itutinq for the value of the integral in (eq. 4.47), and 

imposinq R(z) = a for z < 0 yields mi = -ibio 
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In principle, in orde r to solve for R(z), an additional 

measurement would be required to obtain the residues bi' 

However, the next section demonstrates that, in the presence 

of slow velocity layers in the sediment , the frequency can be 

selected low enough to eliminate the trapped modes (or bound 

states of the SchrOdinqer equation), and thus the continuous 

part of the solution for R(z) will suffice . 

4.4 Bound States 

The potential diagram (Fig . 3) indicates that bound 

states may occur due to the presence of a low velocity zone 

near the water sediment interface. Bound states are square 

integrable solutions of Schr~dinger's equation and , as will 

be shown later, present considerable difficulty in the 

inversion procedure . The number of bound states M was 

obtained by Bargmann(59) 

00 

M ( 6 zIV_(z)ldz ( M + 1 (4.50) 

where V_( z) is the negative portion of the potential for 

z > O. It is clear that the number of bound states is 

determined by the width of the low velocity zone (prescribed 

by the qeology) and hy the depth of the potential well which 

is a function of the frequency at which the experiment is 

conducted . 
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To eliminat e bound sta t es , we impose t he co nd ition : 

( 4. 5 1 ) 

Now, 

( 4. 52) 

where t is the width of the well and IV_ Czllmax it s maximum 

depth: 

( - (4.53) 

The conditi on expressed by eq . (4.12) i s satisfied whe n 

I n pa rticul a r, f or 

modes . This simplified 

lw < 1'1. , there will be no c min 
cond i tion i s a refinement of 

(4.54) 

trapped 

Stickler ' s result that (tW) shou ld be sufficiently small 
Co 

(4 . 50) . We have found that either of the two simplified 

conditions is too restrictive in p ractice and o ne should use 

o ur full equation (4.54) . Hami lton ha s studied the charac

teristics of s urface soun~ cha nne l s in marine sed ime nt s (60). 

The velocity rati o R = (cmin/cO) ranges from 0 . 984 for 

pe laQi c clay t o 0 .99 for terrigeneous sediments , while the 

height of the channe l depends o n the ve l oc ity gradi e nt a 
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(4.55) 

Therefore , for R - 1, the condi t i on of ze r o bo und states (eq. 

4. 5 4 ) can be written 

- 3/2 
w<a(l-R) 

A marked improvement in th e hound obtai ns if a linear 

velocity orofile 

c(z) = az + e min 

with 

(4.56 ) 

(4.57) 

is assumed in the condition of zero bound states (eq . 4.51). 

The corresponding potential is then 

v(z) for a < z < I. (4 . 58 ) 

Subst itutinq this V(z) into eq . 4.51 and integrating by parts 

yields 
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2 
w 

- 0 2 
[(l - R) + i ( I_R)2 + tn R] < 1 (4 . 59) 

For R ..... 1 , 

- tn R 1 , (l - R) + 2 (4 . 60) 

Therefore , 

w < 0'; (l_R)-3/2 (4 . 61) 

Table I presents the upper bound on the probing 

frequency with the condition of zero bound states for repre-

* sentative values of a and R in the abyssal plain 

environment (60) . The current frequency of operation(2) , 

220 Hz, is low enough to eliminate the bound states in clayey 

silt and silty clay . I t is assumed that for operations in 

clay sediments , an acoustic source will be available at about 

half the current frequency which would be sufficient to do 

away with the possible bound states . 

* The velocity gradient (a) can assume va lues over a wider 
rangy yhan shown in Table I. For instance , Frisk et 
a1 ., 4 have inferred from experimental data that (a) 
ranged for 0.5s- 1 to 2.99- 1 at three locations in the 
Icelandic Basin . 
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a 

• 

Table I: Upper bound on the probing frequency for 

the condition of zero bound states as a 

function of velocity ratio, R, and 

velocity qradient , a . 

---

R 

Clayey Silt Si lty Clay Clay 

0.999 0.99 0.984 

15- 1 8.7 kHz 275 Hz 136 Hz 

1. 25 - 1 10 . 4 kHz 330 Hz 162 Hz 

1 . 35- 1 11 . 3 kHz 358 kHz 176 Hz 
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CHAPTER V 

NUMERICAL SOLUTION OF THE GELFAND-LEVITAN EQUATION 

5. 1 Introduction 

The Gelfand-Levitan Equation 

+ j
z 

R(z+y) + K(z , y) K(z,z') R(y+z') dz' = 0 
_ 00 

(5 . 1) 

is a Fredholm equation of the second kind in the variable y 

with z regarded as a parameter. The object of this chapter is 

to present three methods of computing K(z,z) and hence to 

reconstruct the potential V{z) • 

5.2 Series Expansion 

A parameter A is introduced in the Gelfand-Levitan 

equation 

j
z 

R(z+y) + K(z , y) + A K(Z,Z') R(y+z')dz ' (5.2) 

-y 

and a solution is sought by a method of successive approxima-

tions. The solution is written as a power series in A 

K(z,y) 

(5.3) 
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Integrating term by term and equa ting coeffic i ents of equal 

power of A one gets 

KO(Z,y) = -R( Z+Y) (5 .4) 

K1 (z , y ) = - r R(y+z ' ) K (z z ' ) dz ' o ' (5.5) 

- y 

and in general 

Kn(Z,y) = - r R(y+z I ) K ( z z') dz ' n-l ' (5. 6) 

-y 

The theory of Vo l terra integr a l equations of the second 

kind demons t rates that the series is convergent for all A 

when the norm of R, 

(5.7) 

- z 

. (611 1 " II I I . eX1sts. "But, Parseva s i dent1ty indicates that R 1.S 

always finite since 

IIRII , 
_ ro 

Hence, b (p), given I b (p) I d and b (p) ...... (1 /p2 ), 
p~ro 

integrable . 
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The Kn(z,y) are bounded by 

.I (n-l) 
IK (z,y) I < IIRI1 2 l""AB=----

n (n-l) : 
(5. 9) 

where A = JZ 

-y 

2 R (y+z')dz' and B f
z fZ 2 = dy'dy"R (y'+ylt) 

-y -y 

5.2.1 The Potential 

The expansion of K(z,y) yields a corresponding expansion 

for the potential V(z) = 2 dK(Z,Z) 
dz 

VIz) = v(O) + v(l) + v(2) + .•• 

where, 

V (0) 
dK 

~~ (2z) 2 0 (z , z) -2 = = dz 

V(l) 2 
dK

l 4R2 12z) = ---az-(z,z) = 

(5.10) 

(5.11) 

(5.12) 

The computation of v(2) is more involved and is presented 

here for reference purposes 

= f
z fZ K

2
(Z,y) R(y+z') R(z'+z") R(z+z")dz"dz' 

-y -z' 
(5.13) 
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-

which can be written 

f
z 

K
2

(Z,y) = dz l $ (Z,ZI) (5.14) 

-Z' 

where 

'(z,z ') ~ fZ 

'V R(Z+Z') R(Z'+Z ") R(z+z") dz " (5.15) 

-z' 

Therefore, 

dK2 --(z,z) = 
dz 

$(z,z) + $(z ,-Z) + f
z 

dz' a ~ ( • ) az z,z 

But , 

and 

-z 

$(z,-z) = O· 

$(z,z) = R(2z) R2 (Z')dz' f
2Z 

H ( ') az z,z 

o 

z 

~ R(2.) R2 (Z+Z') + R(z+z') J 
-z' 
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(5.17) 

(5.18) 

a 
(R(z+z"» R (z 1 +z") dz" 3z 

(5.19) 



Finally, 

V(2) (z) = 4R(2z) R2 (z')dz' + J
2Z 

o 

+ 2 JZ JZ R(z+z ' ) R(z'+z") ~:(Z+Z ' )dZ"dZ' 
-z -z' (5.20) 

V(2) (z) displays the global character of the higher order 

terms (which become increasingly unwieldy). 

To summarize, the following approximation will be used 

V(z) 

5.2.2 Connection with Other Formulations 

To first order, 

v (z) 
dR 

=-2-(2z) 
dz 

(5.21) 

(5.22) 

which can be written in terms of the reflection coefficient 

b(p) 

2i 
V (z) = 

TI J

oo 

pb(p)e-i2pzdP. (5.23) 

Recall the expression for the reflection coefficient 
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b (p) = 1 
2ip r eipz'v(z') <I>(z')dz ' 

The Born approximation ~(Zl) ipz' 
~ e results in 

b (p) = 1 
Zip r v (z I) e 2ipz • dz ' 

_ 00 

Taking a Fourier transform of both sides leads to 

V(z) = 2i fPb(p)C. -2ip zdP - n 
_00 

(5.24) 

(5.25) 

(5.26) 

That is the result obtained by Cohen and .Bleistein (45) . 

The first order approximation to V(z) in the Gelfand-Levitan 

formulation is therefore the Born approximation. 

stickler's inverse procedure entails the solution 

of the coupled equations 

_u" 
z '" - q(z)u = 

2 

'" q (z) = 
n 
2i I'" 

J pb (p) 
_ 00 

2 
U z (z ,p) dp (5.27) 

'" ·The auxiliary potential q(z) is identical to V(z) and 

u
2

(z,p) is the solution that -ipz satisfies u
2

(z,p) = e , Z""",-oo • 

To first order assume -izp uZ(z,p) = e and obtain once again, 
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tv 2i q (z) = f
ro 

Pb(pie-2ipZdP (5 . 28) -n 

5 . 2 . 3 Algorithm 

The first step is, uf course, the computation of the 

Fourier transform of the data, 

R(z) 1 = 

followed by a straightforward computation of 

V(z) =-2 dR (2z) + 4R2 (2z) 
dz 

(5.29) 

(5.30) 

Observe that determining the potential at depth z requires 

data at depth 2z . The truncation of the series leads to 

a deterioration of the estimate of V(z} with depth . In 

particular, since b(p) is integrable, R(z) tends to zero 

as z~~ (Riemann-Lebesgue theorem) and it follows that 
, 
V(i) · ~O at depth even when the potential V(z) tends to a non-

zero final potential Vf · 
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5.3 Uniqueness of the Solution 

Suppose there were two solutions of the Gelfand-Levitan 

equat ion, K(z,y) and K' (z,y) 

K(Z,y) + R(z+y) + JZ K(z,z') R(y +z') dz' = a 
-y 

+ f
z 

K' (z,y) + R(z+y) K' (z,z') R(y+z') dz ' = a 
- y (5.31) 

Then K(z,y) = K(z,y) - K' (z,y) satisfies a homogeneous 

volterra equation of the second kind 

K(z,y) = f
z A 

K(z,z') R(y+z') dz' ( 5 .32) 

-y 

Since R(z) is square integrable (cf. Ch.III), it fo llows (61) 

that this equation has only the trivial solution K(z,y) = 0 

and therefore the solution of the Gelfand-Levitan equation 

is unique. 

5 ."4 Finite Difference Methods 

The natural way to solve the Gelfand-Levitan 

equation i s to discretize it by converting the integral into 

a sum 

K(n,m) + R(n+m) + h 
n 
E 

i=-m 
\1.K (n,i) R(m+i) = 0 

1 
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where wi are the weights in an appropriate quadrat ure 

formula. For the trape zoidal rule, wi is ~ at the end points 

and 1 in between 

n 
K(n,m) + R(n+m) + h E 

i=-m 
Kln,i) R(i+m) 

- ~h(R(O)K + R(n+m) K(n,n)) ~ 0 

and since R(O) = 0 

Kln,m) + h 
n 
E 

i=l-m 
K(n,i) R(i+m} + R(n+m) [1 -

(5.34) 

(5.35) 

To solve for K(n,n), one has to solve the Ware and Aki (21 ) 

type matrix equation, 

(I + hR) K ~ I> (5.36) 

II + hR) can be inverted by Gauss elimination. A more 

efficient algorithm has been presented by Berryman and 

Greene ( 26) who put the equation in the form: 
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I + h 

where k(n,m) = 

R1 

R1R2 

R1 R2 ···R2n 

K(n,m) 
h 12K(n,n) 

hk(n, -n+1) 

hk(n,n-l) 

l+hk(n , n) 

To obtain the potential at depth n - ~, 

2 
qn-~ = h[K(n,n) - K(n-1, n-1)J 

0 

= 
0 

1 

(5.37) 

(5.38) 

(5.39) 

one needs to invert a (2n- 2 ) x (2n-2) matrix for K(n-l,n-l) 

followed by the inversion of a (2n) x ( 2n ) matrix for 

K(n , n). In fact, since the object is to reconstruct the 

potential down t o depth nh, a succession of matrices of 

increasing size have to be inverted. The Berryman and Greene 

algorithm is similar to the Levinson algorithm for the 

inversion of Toeplitz matrices (22 ). The method proceeds 

by recursion; given the solution of the (2n-1) x (2n-1) 

system, the solution o f the (2n) x ( 2n) system is generated 

by using the recursion formulae: 
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[

fi (2n)] 

gi (2n) 

= [ fi (2n-1~ 
gi (2n-1j 

The vectors f(2n-1) and 9(2n-1) are defined by 

h 

and 

f 2n- 1 (2n- 1 ) 

f1 (2n-1) 

f O(2n-1) 

g2n -1 (2n-1) 

= 

= 

f
2n

_
1 

(2n-1) 

g1 (2n-1 ) 

go (2n-1) 

f 2n_1 (2n-1) 

(5.40) 

(5.41) 

h 

go (2n-1) 

f
1

(2n-1 ) 

f O(2n-1)-Q2n_1 

where Q2n 

and 

2 = 02n-1 (1-rn ) 

= h 
2n-1 

E 
i =O 

f . (2n-1) R2 +1 . /°2 1 1 n -1 n-

The recursion starts with fO(O) = 1 and 90 (0 ) = 6R1 

The solution is then, 

- 96 -

(5.42) 



K(n , n) (5 . 43) 

Berryman and Greene have s uggested smoothing R(z) to obtain 

R(n) (26) . 

R(n) 1 
= h I

n 
R (z) dz ( 5 . 44) 

n-l 

which would allow for delta functions in R(z} . 

5 . 5 Coupled Equations Method 

A method to bypass the matrix inversion has bee n 

suggested by Kritikos , Jaggard and Ge who were interested 

in determining the dielectric permittivity of a s l ab from 

reflection measurements at norma l incidence. The algorithm 

was tested numerically on reflection coefficients that 

could be represented by two and three pole Butterworth 

filters . The scheme uses in conjunction with the Gelfand-

Levitan equation , the hyperbolic partial differential 

equation satisfied by K(z,y) (cf . Eq. (4.4 4 » . 

( z,y) - (z,y) - 2K ( z , y ) 
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dz 

( 5.45) 



For simplicity , a change o r coordinates is introduced 

and the equations are discretized: 

Gelfand-Levitan: K m, n 
+ 2h 

m- 1 
E 

i=2 
K. 1 'lR2'l ~+n- , m- ~+ ~-

(5.46) 

(5.47) 

K =K +K +2h[(K -K )-11K m+l ,n+l m,n+l m+l , n m+l ,l m, l m, n 

(5.48) 

The potential is obtained through 

(5.49) 

The point of the method is that K 1 can be computed m, 

directly from the Gelfand- Levitan equation without a 

matrix inversion since the terms within the sum can be 

generated via the POE. 

5.5.1 Analysis of Stability 

Although it has not been possible to study the 

stability of the coupled system of equations, a simplified 
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analysis of the POE may be of interest. 

Let K = wroe ikn be a Fourier component and m,n 

assume that 

is known. The POE becomes 

The amplificati on factor is therefore 

w"'+l 
I- I 
w'" 

~ 11 + 
ik 1 e -

(5.50) 

(5 . 51 ) 

(5.52) 

which is larger than 1 for arbitrari l y small step size h or 

potential Vrn as k ~ O. 

5.6 Error Estimates 

5 . 6.1 Discretizat i on Errors 

The discretization of the Gelfand Levitan equation 

i s accompanied by an error E , n,m 

n 
~ 0 K(n ,m ) + R(n+m) + h t 

i=-m 
w .K (n,i) R (m+i ) + E 
~ n,m 

(5.5 3 ) 
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For the trapezoidal rule, 
h 2 I z 

£ = -12 (KR) I 
- y 

The equation that is actually solved is 

A 

K(n,m) + R(n+m) + h 
n 
E 

i=-m 
w.K(n,i) R(m+i) = 0 

1 

Or , in matrix notation (s ee equation 5. 37 ). 

(I + hR) K = b 

rather than 

(I + hR)K = b - £ 

It follows that 

(I + hR) (K - K) = £ 

For a nons ingular matrix (I + hR), 

A 

= (I + hR)-l £ K - K 

Taking norms, 
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Assuming that 1 l hR l 1 < 1, where the norm is such that 

1 
( 5 .60) 

1 - h I I RII 

Therefore, 

, 
11 K -K II < (5.61) 

2n 
Using the ~ norm, I IEII~ = max IEi l and II RI I~ = E IR (i) I 

i=l 
(which also equals 1 l Rl 11' the absolute column sum of column 

(2n)) • 

, 
11 K - KII < 

maxlEI 
2n 

1 - h E 
i=l 

(5.62) 

I R (i) I 

Since lEI is O(h 2 ) for the trapezoidal rule, the approximate 

solution K converges to the exact solution K as h + O. Note 

that the denominator in (equation 5.62) decreases with 
, 

increasing depth, hence raising the bound on J l K - KJ J. 

5.6.2 Data Errors 

Errors in the plane wave reflection coefficient 

r(kz) and in its Fourie r transform R(z), mean that one is 

solving for K(n,m) in the Gelfand-Levitan equation: 
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n , 
K(n,m) + R(n+m) + h L W . K(n , i) R(m+i} = 0 

1 i =-m 

(5.63) 

Or in matrix notation , 

(I + hR) K ~ b ( 5 . 64) 

which can be written, 

(I + hR + h6R) (K + oK) = (b + ob) (5.65) 

where R = R + oR, and K = K + oK . 

It follows that 

He nce, 

or , 

oK = (I + (I + hR)-l h6R)-1 (I + hR)-l (ob - Kh6R) 

(5.66) 

IloK11 ~ II (I + hr)-1 11 . 11 (I + (I + hR)-l h6R)-1 11 

. II lob I I + h 116R II . II K II ) 
( 5 .67) 

116KII < 1 _ h(IIRII + IloR11I (1l obl l + hIIKII . 116RI I) 

(5.6B) 
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As the errors in R(z) increase, the bound on I 16K] I 
also increases. Moreover, it is clear that as depth 

2n 
increases I ] RI 100 = E IR(i) I also increases raising the 

i=l 
bound on the relative error I I oK 11/ II K II . 

5.6.3 Errors in the Potential 

The discrete vers i on of the potential yields: 

lov(n) 1 
2 

< -- h ( lo K(n,n) I + lo K(n-l, n-l) I) 

In the absence of data error 6R, 16V(n) 1 + 0 as the 

(5.69) 

sampling interval h + 0 since the quadrature error E is 

O(h2 ) (see equation 5-62). 
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CHAPTER VI 

NUMERICAL RESULTS 

The derivation of the plane-wave reflection coefficie nt 

from pressure measurements for the setup of the Frisk experi

ment was the subject of r1ook's thesis(64). Unfortunately , 

the attem~t by Mook to apply his technique to one set of 

experimental data yielded reflection coefficients higher than 

one~ such a result is not consistent with physical require -

ments (IRI ( 1) . It is not yet clear whether Mook ' s problem 

lay with improper modeling of the experimental setup, with 

the imprecision of the data , or with the numerical techniques 

used to extract the reflection coefficient from the data. It 

should be noted, however , that the experimental data have 

yielded, via trial and error methods, excel l ent mode ls for 

the acoustic parameters of the seabed(4) . This was done by 

assuming a seabed model , computing the pressure field a nd 

matching it up to the observations . 

The starting point in our analysis is a layered model of 

the acoustic profile to be recovered. From this exactly 

known model . a plane- wave reflection coefficient is 

generated. The reflection coefficient is what would have 

been computed from Mook ' s method, or subseque nt improvements 

to i t , for the Frisk experiment on this part icular layered 

seabed. The reflection coefficient is then Four ier trans-
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formed via an FFT to provide the input to the Gelfand - Levitan 

integral equation in accordance with the theory developed in 

Chapter IV. The particular case of two half-spaces in 

contact (step discontinuity) yields a reflection coefficient 

which can be Fourier transformed analytically. Closed- form 

solutions for the Born and Improved Born approximations to 

the inverse solution are also obta ined for that case. 

More generally , the Gelfand-Levitan equation is solved 

numerically to yield the potential and velocity profiles . 

We have concentrated our efforts on the study of the 

Gelfand - Levitan inverse method using synthetic data for which 

the correct answer is known . The comparison of the recon

structed profile with the known origi nal profile allows us to 

assess the impacts of limited aperture , frequency , profile , 

noise , density and path loss o n the accuracy o f the numerical 

schemes described in Chapter V. 

6.1 Generation of the Reflection Coefficient 

The first step in the evaluation of our approach is the 

generation of the reflecti o n coefficient. With the exception 

of the simplest cases , the plane- wave reflection coeff i cient 

must be generated numerically . The method used is based on 

the Thomson - Haskell propagator matrix approach used by 

Mook(64), with one modification. The plane - wave reflection 

coefficient is obtained as a functi on of the vertical wave-
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numbe~ (R(kz » ~athe~ than as a f un ction of the ho~izontal 

wavenumber (R(k x » ' There are two essential elements of the 

p r opagator matrix approach: (a) dividing the acoustic 

p rofile into homogeneous layers , and (b) selecting variables 

that are continuous across interfaces . The latter is acco m-

plished by choos ing the pressure P(z) and vertical component 

o f veloc ity U(z ). Within a n isovelocity layer , the field can 

be decompose d into up and down going waves , 

p (z ) + P e 
-i k z z (6 • 1 ) 

where kz deno tes the verti c al wavenumber within the homogene-

ous layer. Unlike P(z) , P+ and P_ are discontinuous at an 

interface. The norma l c omponent of velocity U(z) is related 

t o P( z) th~ough o ne of the time-harmonic "telegraph " 

equations: 

~= az illlpU ( 6 • 2 ) 

which yields , 

u (z ) - p 
-ik z 

e z 1 • ( 6 • 3 ) 

Whe re Yn = k
Zn

/IlI Pn is the admitta nce of the homogeneous 

layer n. In matrix form , equati o ns (6.2) and (6.3) become: 
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ikzz -ik Z 
p (z ) z 

p+ e e 
= ( 6 • 4 ) 

ik ZZ -ik z 
u(z) y 

ne - y e Z P n 

When P(z) and U(z) ace known at point z1 of the layer , 

one can deduce the up and down going components P+ and P_ by 

inverting the matrix in (6 . 4) 

ik z 1 -ik z -I 

p+ e Z e z 1 p( zl) 

= ( 6 • 5 ) 
-ik z - ik zZI 

P - y e Z 1 - y e u( zl) n n 

(Within a homogeneous layer P+ and P_ are , of course , 

constants . ) One can then determine P(z) and U(z) at another 

point , say z2 , within the layer by substituting (6.5) into 

the right-hand side of (6.4): 

u(z) 

(6 • 6 ) 

- 107-



or , introducing the propagator matrix 41 

= ( 6 • 7 ) 

One can now proceed from one layer to another by integration, 

= ( 6 • 8 ) 

Where the tits depend on the parameters of the material 

making up the respective layers. Mook(64) has found that the 

computations can be improved by modifying (6 . 8) to 

in which 

n 
n 

i=l 

n 
n 

i=l 

= 

-1 08 -

( 6 • 9 ) 

(6 . 9.) 



and where 

= 

a i = 

b i = 

hi = 

kz i = 

y 
n-l 

- y
n 

is a normalized admittance 

cos k h. z . 1 
1 

- i sin k h. z. 1 
1 

thickness of 
.th layer 1 

Ik
2 - (k~ - k

2 
) n zo 

This has the effect of giving the two components P(z) and 

YU(z) similar scales of magnitude. 

Now, the reflection coefficient R(kz ) at the top inter

face is defined as 

Therefore by introducing (6.5) into (6.9) one obta ins 

::: ] = 
1 
"2 

1 

1 

1 

-1 
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To compute the ratio in (6 .10 ), a relation (boundary condi -

tion) is needed between P(zn) and U(zn) . That relation is 

obtained by noticing that in the (n + l)st layer, one has 

only down going waves. Therefore, 

and, since Pn+l = P(zn)' one has 

} [::: ::: : ::: ] [,":,] '"H 

which yields the reflection coeffic ient 

~11- ~21+ ~N+1(~12- ~22) 
~11+ ~21+ ~N+1[.12+ .22) 

(6.12) 

(6.13) 

(6.14) 

Mook(64) has also found it advantageous to scale the 

layer propagation matrices so that the largest element value 

in a given layer matrix is 1. 

The values of admittance for three terminations are 

readily identified: hard bottom (Yn+l = 0), soft bottom 

-110-



(Yn+l = -), and isovelocity termination (Y n+ l = Yn ). 

Although of. theoretical interest , and of possible applicabil 

ity to other situations , the soft bottom case has no appli

cation in the ocean bottom problem discussed here. 

The division of the acoustic profile into homogeneous 

layers is done in a way akin to quadrature formulae in 

numerical integration using thinner , closely-spaced, layers 

in regions of rapid change in the acoustic parameters and 

thicker, wider- spaced layers in regions of slow change. We 

have found that the common rule of thumb , ten layers per 

wavelength , although satisfactory in general , is probably too 

conservative . We have found that for complicated profiles , 

where the reflection coefficient was required for a large 

number of values of kz ' the computation of the plane - wave 

reflection coefficient constituted the most time - consuming 

step in modeling the whole inversion procedure. Clearly , 

this step, is inherent only in our analytical evaluation of 

the inversion problem; when reflection coefficients are being 

processed from measurements , this step will be eliminated . 

In order to test our inverse procedure , we selected a 

few representative profiles which are defined as follows: 
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(a) Hal f - Space 

The half-space profile is defined by a velocity profile 

c (z ) , 

z < 0 

z , 0 

The reflection coefficient for this profile and its 

Fou rier transform were obtained analytically in Section 

(6 . 2) . 

(b) Window Profile 

Although of no direct application in ocean bottom 

acoustics , the window profile defined by 

c(z)=co 

= cl ' 

= Co 

z < 0 

o ( Z ( L 

z > L 

is a standard example used to test inverse procedures . The 

window profile is of particular interest in electromagnetics 

(dielectric slabs). 
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(cl Stickler Profile 

Stickler(?) chose a twice continuous function to test 

the Deift- Trubowitz inverse method, 

C (z ) = Co 

= Co + 

= cl 

2 
(cl-cO) (3(~) - 2( ~) 

3 
) , 

Z < 0 

o ( Z ( L 

L < z 

This profile does not support a trapped mode at any 

frequency . 

Stickler generated the associated reflection coefficient 

via the Riccati equation, while we used the Thomas-Haskell 

procedure outlined earlier in this section. An example of 

the Stickler profile is shown in Fig. 10 . 

Cd) Frisk Profile 

This velocity profile is based on the results obtained 

by Frisk in his deep ocean bottom experiments(4) 

c(z) = Co z < 0 

= Co - (CO-Cj)z 0 ( z z 1 

= Cj + yz 1 ( z ( L , 

= C2 z > L 
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Typical parameters used are : Co = 1540 mis , c1 = 

1515 mis , c2 = 1655 mis , y = .97 , and L = 145 m (see 

F i g . 11) . 

In spite of the low velocity zone near the ocean- bottom 

interface , this profile does not s upport trapped modes at the 

freq ue ncy used for the examples (25 Hz) . 

Examples of reflection coefficients are shown in the 

amplitude and phase diagrams of Fig. 18 . Note that as we 

have s hown in Chapter III fo r the uniform density case , the 

amplitude goes asymptotically to zero as t h e vertical wave 

number goes to infi n ity . 

6 . 2 Case of a Step Disconti nuity in Pote n tia l 

We have been able to obtai n analytically the Fou rier 

transform of the reflection coefficient in the case of a step 

~iscontinuity in potential, that is, in the case where the 

ocean bottom is a homogeneous ha l f - space . 

z > 0) . 

(V(z) = Vo for 

The reflection coefficient at a step discont i nuity in 

potential i s 
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k - I-vo + k
2 

r( kz ) z z = 
+ I-vo+ 2 

k k z z 

(6.15) 

[k z - I-vO+ k 2
J2 

z = 
Va 

The Fourier transform of r( kz ) is 

1 
~ -ik z 

R( z ) = 7;;- f r( kz ) e z dk z 
-~ 

(6 .1 6) 

i~ (5 - {V O+ 52) 2 
i eszds = T,;T f 

- i ... Va 

which i n this form can be i dentified as a known inverse 

Laplace transform(65), 

R (z) = (6.17) 

Thus, in this particular case , one can proceed to the 

Gelfand - Levitan procedure with an input which is as accurate 

as the computation of the Bessel function, and therefore, 

this approach removes any inaccuracies which may be 
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introduced either in the computation of the reflection 

coefficient or in that of its Fou~ier transform. 

Figs. l2a,b,c represent the reflection coeff icient of 

eq . 6 .1 5 and its Fourie~ t~ansform for a half-space 

(eq . 6 . 17) . 

As a matter of fact, we have illustrated in Figs. 13 and 

14b reconstructions of the step discontinuity using the exact 

analytical expression (eq. 6 . 17) for the Fourier transform of 

the reflection coefficient and the numerically devised 

transform in accordance with the method discussed in Section 

6 .1. It can be seen that our reflection coefficient method 

yields results as accurate as the Bessel funct i on expression. 

6.2 .1 Approx imate Solution of the Gelfand - Levitan Equation 

for a Step Discontinuity 

Continuing with the case of a homogenous half - space, or 

step discontinuity , the "Improved Born" approximation 

presented in Chapter V can be now readily obtained in terms 

of Bessel functions 
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VIz) = - 2~ (2z) + 4R 2 (2z) 

(6 .1 8) 

4 
- ~ 

Born Correction Term 

Improved Born 

From the asymptotic behavior of the Bessel functions , we know 

that, 

J 1 (t ) • £ cos (t - ~) 
t -to ... Wi'; 

and (6 . 19) 

J 2 (t ) • F- cos(t - .p.) 
t ... .. 1ft; 

Hence , we can deduce the asymptotic behavior of the recon

structed potential, 

• 
VIz) • 0 as(z - 3/ 2) (6.20) 

z • _ 

which recalls the limitation of the Improved Born approxi -
• 

mati o n , already mentioned in Chapter V, that V(z) ... 0 , even 
z • -

in the case of a finite terminal potent i al. 
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On the other hand, the asymptotic behavior of the Bessel 

functions near the origin is 

1 2 
1S ' 

and therefore , substituting i n (6 . 18) the reconstructed 

(6 . 21) 

pote n tial V(~) tends to the exact potential near t he origin, 

• 
VIz) • Vo 

z • 0 
(6 . 22) 

At the orig in, the "Improved Born " correction term is zero , 

but its contr i bution to the accuracy of the results becomes 

progressively more important as z increases. 

We illustrate the Improved Born approximat i on in 

Fig . l2d along with the Standard Born approximation and the 

Correction Term . The s ubsta n tial improvement due to the 

Correction Term in (6.18) over the standard Born approxi -

mation is clearly vis i ble in the ha l f-space case . Moreover , 

our Improved Born approx i mation results i n a more accurate 

reconstruction of the acoustic velocity profile to further 

dep th. The other features of t h e approximation are also 

v i sible, i . e ., excellent reconstruction near the origi n a nd 
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deterioration of the reconstructed velocity with depth (the 

potential V ... a as z + <» means that c(z) + cO' the 

water acoustic velocity as z + 00). The Improved Born is 

also illustrated in the case of a Stickler profile in Figs. 

28 and 29. 

6.3 Fourier Transform of Ute Reflection Coefficient 

The Gelfand - Levitan algorithm requires as an input the 

Fourier transform, R(z), of the reflection coefficient r(kz )' 

R( z) 
I = 2. 

which requires a knowledge of r(kz ) over the whole line 

-". < kz < w. But the symmetry property demonstrated in 

Chapter III (eq. 3.6), 

r ( -k ) = r*(k ) z z 

(6.23) 

(6.24 ) 

reduces the requirement to a knowlege of r(kzl over the half-

line a < kz < 00. 

I R(z) = 

It follows that 

complex conjugate (6.25) 

is real, and therefore all the quantities involved in the 

Gelfand-Lev itan algorithm are also real. 

-119-



Theoretically, r(kz ) can be calculated for a given 

acoustic model over the range 0 < kz < ~. In practice, 

samples of r(kz ) are given over a finite range a < kz < b , 

and pres uma bly this range is restricted to real angles 

o < kz < ka , where kz = a corresponds to grazing incidence 

and k z = kO (the water wavenumber) corresponds to vertical 

incidence. It is useful to study the behavior of the Fourier 

transform under different restrictions imposed upon the 

knowledge of the reflection coefficient such as limited 

angular aperture and different sampling densities . 

6.3.1 Fast Fourier Transform 

The computation of the FFT for reflection coefficients 

r(kz ) computed over 0 < kz < a , including the case where 

a > ka (corresponding to complex angles of incidence), does 

not present d i fficulties . The adopted algorithm uses time 

decomposition with input bit reversal(66). In fact , for the 

acoustic profiles tested, a = 2 or 3 ka was sufficient as the 

asymptotic decay of the reflection coefficient with 

increasing kz was even more rapid than the (l/kz
2 ) derived in 

Chapter III . The errors in the imaginary part of the FFT, 

which are of the order of 10- 8 (single precision) , are 

neglig ible, and therefore the real part of the FFT and its 

amplitude are interchangeable o n the plotted results. 
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6.3.2 Limited Angular Aperture 

Since it is not practical to have the sampling process 

cover the entire non-zero portion of c(k z )' it is useful to 

study the effect of limited angular aperture, i.e., r(kz ) 

given over the finite range a < kz < b , on R(z), the Fourier 

transform of r(k z )' The fourier transform is affected by the 

nature of c(kz ) and by the degree of truncation . 

For N sampling points spaced Akz apart , the total 

sampling interval T covered is NoAkz • This corresponds to an 
Nok 

angular aperture of a = 5in- 1 (~), when kz = 0 is within 
o 

the known aperture (Le ., 90° ) a > cos- 1(NAkz/kO'))' Note 

that for T > kO' cos(T/kO»l, and the aperture includes all 

real angles plus complex angles. Now , the Fourier transform 

of r(kz ) can be written 

1 
R (z) = 1 

4" 

(6 . 26) 

R1 (z) is the part of R(z) that is approximated by the 

discrete Fourier transform (N samples) . 

R2 (z) represents the error incurred due to the limited 

angular aperture. The energy lost in the process, 
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~ 

E = f IR 2 (Z)1 2dZ (6.27) 
T 

can be computed on synthetic examples. Due to the precipi-

tous deOD in r(kz ) beyond ke , the wavenumber corresponding to 

. -1 Co 
the critical angle e = Sin ( --) , and due to the asymptotic 

C c f 
behavior of r(kz ) for large kz , it is readily sho~n on 

computer simulations that a knowledge of r(k z ) over real 

angles is adequate for most cases. In fact, there is little 

change in the reconstructed profile as more angles are 

included beyond the rea l ones . On the other hand, as the 

angular aperture is restricted, the profile reconstruction, 

via the Gelfand-Levitan method, produces a smoothed out 

version of the original profile. This low-pass filtering 

phenomenon is best understood by interpreting the effect of a 

finite aperture as a low-pass filtering of the original 

velocity profile. Th is may be seen from the Born approxi-

mation eq. (5.26), 

" 2i V(z) = • 
-2ik z 

f kz r (kz ) e z dkz 
-~ 

. 
where V(z) and kzr(k z ) form a Fourier transform pair; 

windowing r(k z ) signifies l ow-pass filter ing V(z) and 

therefore yields a smoothed out velocity profile. The 

Gelfand-Levitan reconstruction ca n then be interpreted as an 

unfiltered, faithful reconstruction of the smoothed out 

origi nal. Severe degradation of the reconstruction is 
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observed when the angle of incidence is restricted to 

90° > (3 > Bc (angular aperture a < (90 0 - e c »' This is easily 

understood , as the critical angle region contributes 

substantially to the reflection coefficient. A cursory 

examination of reflection profiles wi ll demonstrate this 

point. 

A series of figures displays the progressive deteriora-

tion in profile reconstruction as the angular range is 

restricted . The evolution from Fig . 19 (kz = . 512, com-
max 

plex angle of incidence) to Fig. 20 (kz max 
= 0 . 128) , and Fig . 

21 (kz = 0 . 064, e = 51.13°) where k > k 
max zmax zcritical 

= 

0.0373 (e c = 68.5°) shows that only small changes take place 

and that these changes are confined for the most part to the 

velocity drop region near the ocean bottom interface. 

However, as the angles are further restricted to beyond the 

critical angle (kz < kz . . ) major changes do occur as 
max crltlcal 

seen in Fig. 22 (k z = . 032 , e = 71°) and Fig . 23 (k z = 
max max 

0 . 016, e = 80.9°) . The examination of the impact of limited 

angular aperture in this case leads us to expect, in 

practice , a good reconstruction of acoustic velocity profiles 

from reflection data restricted to real angles (0 < 8 < 90 ° ) . 
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6.3.3 Sampling 

The sampling rate to be chosen is governed by three 

competing considerations: 

(a) Adequate sampling in the kz-domain to avoid aliasing in 

the Fourier transform of r(kz )' 

(b) Adequate sampling in the z-domain to obtain a stable and 

accurate Gelfand - Levitan numerical reconstruction . 

(c) Adequate sampling in the z-domain to obtain the 

necessary resolution in the reconstructed profile . 

Each of these points is discussed next. 

(al Aliasing 

Since the Fourier transform of the reflection coeffi 

cient , as is the rule with spectra of transients, tends to be 

smooth and approaches zero asymptotically as kz increases to 

infinity, the sampling interval Ak z is chosen so that 

essentially all, rather than all , the spectral content of the 

waveform is contained below l/(2Akz )' For a box- like 

reflection coefficient of width 2.kcritical where kcritical 

corresponds to 6cr it' the bandwidth is proportional to 

1/(2 kcritical) which indicates that an appropriate sampling 

interval should be a fraction of kcritical' One should note 
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however , that in the context of an actual experiment, the 

choice of 6kz is not as straightforward . The reflection 

coefficient r(k z } is obtained from r(k r ), the reflection 

coefficient as a function of horizontal wavenumber k r , 

(6.28) 

The sampling interval in kr is determined by the maximum 

distance , D, between source and rece i ver during the 

experiment 

= • D (6 . 29) 

It is clear that a uniform sampling in kr does not lead 

to a uniform sampling in kz , 

(6 . 30) 

which also shows that the problem is part i cularly severe near 

Sinc = w/2 (grazing) . On the other hand r(k z ) near grazing 

is well known, r(kz } ~ -1. A useful way to look at the 

problem is to represent the dispersion relation in the 

(k r - kz ) plane which clearly shows the increase i n 6kz as kr 

goes from 0 to kO' 
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(b),(c) Sampling in the z-domain 

The sampling interval in wavenumber space, 6kz , is not 

chosen through aliasing considerations alone. The other 

consideration is the resulting resolution in the z-domain 

imposed by the total sampling interval T, 

l!.z = 
2. 
T 

where T = N 6kz 

A decrease in 6z can be effected either by a decrease in 

the sampling interval in the wavenumber domain 6kz or by an 

increase in the number of points N. It is easier to resort to 

the latter method as the reflection coefficient due to its 

rap id decrease for large vertical wave numbers can be 

conveniently padded with zeros. Moreover, the size of 6kz , 

which can be varied in a synthetic experiment , is usually 

fixed in an actual experiment. 

An examination of the reconstructions of a half-space of 

profi le, Figs. 14-17, reveals that excellent reconstructions 

can be achieved for appropriate choices of Nand 6z. A 

window reconstruction is shown in Fig. 24 . The main effect 

of a decrease in 6Z is that adequate reconstruction of the 

acoustic profile is possible to a greater depth. It is also 

true that for g iven sampling intervals 6kz and 6Z, an 

increase in the height of the velocity jump at the seafloor 
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results in a deterioration of the reconstruction with 

depth. That is evident for a half-space by comparing Fig . 

14b and Fig. 17 and for the Improved Born approximation by 

ana lyzing eq. (6.18) . 

6.4 Frequency Scaling of the Reflection Coeffic ient 

Although the experiment we are analyzing is mono-

chromatic , it is important, for a proper choice of operating 

frequency, to study the behavior of the plane - wave reflectio n 

coefficient with frequency. For the simplest acoustic 

medium, a homogeneous half-space, the reflection coefficient 

is independent of frequency. As soon as a spatial scale is 

introduced in the acoustic medium, by inserting a layer for 

instance , the reflection coefficient becomes frequency 

dependent . Th i s dependence, which can be expressed through 

the cont i nued fract ion express ion of eq. (3.25), is at the 

heart of the Ware and Aki inverse method . In this section we 

show that the solution of a high frequency problem is 

equivalent to the solution of a scaled problem at a lower 

frequency. 

The one- dimensional Schrodinger equation , 

gives rise to the reflection coefficient 

ik z' 
- e z 

R(kzl = f "2nik;--- V(z')~ (z ' )dz ' 
- - z 
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At a different angular frequency III I = aWa, with 

corresponding water wavenumber k' = aka, the Schrndinger 

equation becomes 

d 2 2 2 
( - 2 + a kz )o '( z) = V ' (z)~ ' (z) 

dz 

where V i represents the potential at the new frequency 

Now, the potential is frequency dependent , 

(6 •. 33) 

, • • 

(6.34) 

in which n, the index of refraction is a function of depth z . 

Therefore , 

(6.35) 

yields the Schrodinger equation 

(6 . 36) 

The change of variable z · = aZ restores the original 

Schrodinger equation (6.31) albeit with a "stretched" version 

of the or ig inal potential, 

d 2 2 ( + kz)~ ' (z ' ) = 
~ 

Va (z ' /a); I (z ' ) (6.37) 
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The corresponding reflection coefficient is now 

ik z' 
00 e Z 

= f 2ik v 0 (z ' I a ) 41 I (z I ) dz I (6.38) 
-00 Z 

The reflection coefficients at the experimental 

frequencies wand ware therefore identical for a given 

wavenumber kz if 

(6.39) 

One can therefore conclude that a high frequency experi-

ment (Wi > w) is equivalent to a low frequency experiment 

with a stretched profile (a > 1). One can therefore compare 

the reconstruction of a given profile at two frequencies, say 

wand W i = aw, by comparing the reconstruction at a single 

frequency w of the given profile with its stretched version 

(stretch factor a) . Now , it is a numerical fact , as seen in 

previous examples , that profile reconstruction via the 

Gelfand-Levitan algorithm deteriorates with depth. It is 

therefore clear, at least for simple profiles , such as a step 

(half - space) or a window (layer), that a lower experimental 

frequency entails deeper reconstruction as shown in Fig . 30. 

That holds for more complicated profiles, and we therefore 

conclude from a frequency scaling point of view that the 

lowering of the experimental frequency allows for deeper 

profile reconstruction without noticeable effects on the 

reconstruction of the detailed variations of the profile. 
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6.5 Profile Reconstruction in the Presence of Density 

variations 

Although the focus of this thesis has been on the 

reconstruction of the acoustic profile in the presence of 

velocity variations at a single frequency , it is useful here 

to show how one can extend t he method to the retrieval of the 

velocity in the presence of density variations and also to 

recover the density profile. 

We have shown in Chapter II (eq. (2.5)) that in the 

presence of smooth density variations, a change of variables 

retained the governing Helmholtz and SchrOdinger equations 

with an attending redefinition of the index of refraction to 

accou n t for variations in the density p , 

The density dependent potential to be reconstructed is now, 

(6.41) 

A single frequency experiment can only hope to reconstruct 

n l (z) . To recover n(z) (and therefore the velocity , c(z)) 

and p(z) one needs to carry out the experiment at two 

frequencies WI and W2 with water wavenumbers kO and kl ' 

respectively. The associated potentials are then 
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and (6 . 42) 

These potentials can be reconstructed by the application of 

the Gelfand-Levitan algorithm to the corresponding reflection 

coefficients . One can then obtain the difference of the 

potentials, 

(6 . 43) 

and therefore retrieve the velocity dependent index of 

refraction o(z) , 

n (z) (6.44) 

and subsequently r econstruct the acoustic velocity profile , 

c(z) (6 . 45) 

One of our numerical computations , was to conduct the 

two- frequency procedure on the profile of Figure 10 . The 

reconstruction of c(z) is shown in Figure 30i . The recon-

struction features in th i s case of c(z) are similar to the 
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constant density case . The density as function of z could in 

turn be recovered by solving the differential equation (6 . 40) 

for p(z) given n(z) . 

Density discontinuities invalidate the asymptotic 

behavior of the reflection coefficient presented in Chapter 

III. In fact, the reflection coefficient is generally not 

integrable, and one has to introduce generalized functions in 

its Fourier transform. The attending difficulties and their 

resolution in the Gelfand-Levitan algorithm have not been 

studied here . 

6.6 Acoustic Attenuation 

The study of the attenuation of acoustic waves in marine 

sediments has been studied recently by Rajan and Frisk(67) 

who proposed a perturbative inverse method for the recovery 

of the attenuation data from reflection data. Rajan has suc

cessfully inverted for the acoustic attenuation profile given 

the reconstructed velocity profile we had obtai ned through 

the Gelfand- Levitan algorithm(68). Here , we shall look at 

the effects of intrinsic attenuation on the reconstructed 

acoustic profile . 

Although our formulation of the model of a Frisk experi

ment does not include attenuation, it is possible to posit a 

lossy acoustic profile, generate the corresponding reflection 

coefficient and then run it through the Gelfand - Levitan 
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algorithm. As expected , for small loss (a - 0,001-0,005 

dB/m) , the reflection coefficient, its Fourier transform , and 

the reconstructed profile are little affected by the per

turbation (see Figs. 25a , 25b , 26, 27). As loss increases 

(a - 0 . 01 dB/m), the reconstructed profile deteriorates 

rapidly . It should be pointed out that the lower values of 

intrinsic attenuation prevail in the sediments in the abyssal 

plain at the frequencies of interest (220 Hz) . Incidentally , 

one of the advantages of a monochromatic experiment is that 

the frequency dispersion law of the intrinsic attenuation , 

which is difficult to establish experimentally, particularly 

at low frequencies « I kHz) , does not enter into 

consideration. 

6 . 7 Noise 

As demonstrated in Chapter V, the Gelfand-Levitan 

algorithm is stable , with small errors in the reflection 

coefficient resu l ting in small errors i n t he reco ns t ructed 

ve l ocity . The numer i cal experiments we have cond~c ted by 

adding zero- mean Gaussian stationary noise to the reflection 

coefficient input support our previous conclusion . 

Gaussian noise was added to both the real and imaginary 

part of the reflection coefficient generated by the me t hod of 

Section 6 . 1 . The resulting reflection coefficient was 

submitted to the usual steps involved in the inversion 

procedure, namely the Fourier transform step followed by the 

application of the Gelfa nd-Levitan algorithm . 
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The signal to noise ratio (SNR) is defined as 

I 
SNR = 10 log10(~) 

n 

where the signal and noise powers for N discrete points are 

and 

2 an ' the variance of the noise . 

As shown in Fig. 31 for a window profile , the perturbat-

ion of the reflection coefficient by the addition of zero-

mean Gaussian noise (0 = 0 . 1) results in a roughly propor-

tional degradation of the reconstructed potential. 

The preliminary assessment of the effect of noise leads 

us to conclude that the Gelfand-Levitan inverse method is 

stable in the presence of noise. This analysis can be 

refined in the future by including a more pertinent model for 

the noise based on Mook ' s results(64); Mook has shown that 

the addition of zero -mean stationary white Gaussian noise to 

the point source pressure field resulted in a non-stationary 

variance with the noise power concentrated near the vertical 

(k z = ka, the water wavenumber). One should also note that 

the measured reflection coefficient itself can be regarded 
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as a non-stationary process with a mean that varies between 

one near graz ing incidence and zero at:. infinity . That 

consideration may lead to a more appr<:)priate measure of 

performance than that of SNR presented here . 
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CHAPTER VII 

CONCLUSION 

In this thesis we have examined the theoretical and 

computational underpinnings of a ~ovel approach to the 

determination of the acoustic parameters of the oceanic 

sediment layer. Traditional marine seismic methods, acoustic 

reflection and refraction measurements, "yield no velocity 

information in the top of the first sediment layer which is 

of critical interest for modeling the sea floor for under

water acoustics" (34 ). That is precisely where the method 

we have analyzed in the thesis is most accurate. Interval 

velocity calculations are restricted to layer thicknesses 

larger than one twelfth the water depth {34 }, and subsequently 

the velocity at the sediment interface cannot be determined 

accurately. In the absence of in situ core measurements 

of surface velocity vO' the velocity gradient at the top 

of the sediment column is also uncertain. The direct 

inverse method presented here requires only the a priori 

knowledge of the speed of sound in the water above the 

sediment layer. 

By operating at a single frequency, the effects of 

dispersion are separated from the propagation process. 

Moreover, the dispersive characteristics of the medium can 

be studied by performing the experiment at various frequencies. 
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A single frequency, steady-state experiment also means 

that the measurement relies on amplitudes rather than on 

arrival times (exp losive methods). While it is true that 

time is measured more accurately than acoustic pressure, 

arrival times can not always be interpreted correctly due 

to multiple reflections. Amplitude, in turn, may be affected 

by a host of factors to which arrival time is insensitive 

such as los s and diffraction; it is not yet possible to j ud9 ~ 

the relative merits of the two methods in the absence of appro-

priate experitmental data . 

Contributions 

The determination of the acoustic properties of the 

ocean bottom was shown to be equivalent to the reconstruction 

of an unknown potential in a Schrodinger equation from the 

plane-wave reflection coefficient given at all angles of 

incidence (Chapter II). 

The pivotal role of the reflection coefficient lead 

us to a detailed examination of its properties in Chapter III. 

In particular, we showed, by induction, that the reflection 

coefficient decays at least as rapidly as (l/kz
2

) and is 

therefore integrable. 

The derivation of our approach to the direct inversion 

method was presented in Chapter IV. The Gelfand-Levitan 

method was extended to the case where the acoustic velocities 

on e ither side of a slab are different. That is, of course, 

the case in the ocean bottom p roblem where the acoustic velocity 
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in the basement is larger than the acoustic velocity in the 

water. We also showed that the neglect of bound states is 

justified at the current operating frequency in both clayey 

silt and in silty clay. 

Three methods for the numerical solution of the 

Gelfand-Levitan integral equation were investigated (Chapter 

V). The first method we developed is a series expansion of 

the solution obtained by successive approximations. The 

first two terms of this expansion represent a substantial 

improvement over the well known Born approximation. 

The other two numerical methods presented in Chapter V 

are based on the discretization of the Gelfand-Levitan 

integral equation. They represent two ways to bypass the 

matrix inversion inherent in a straightforward solution of 

the discretized equation. We then obtained estimates for 

the bound o n the error in the integral of the potential due 

to discretization errors and due to errors in the reflection 

coefficient. 

In Chapter VI, we discussed the numerical results 

obtained from the inversion of synthetic data. By dealing 

with synthetic data, we insured that the bottom profile was 

known exactly and that the effectiveness of the method could 

be studied without any fear of experimental imperfections. 

We concluded that the Gelfand-Levitan method appears to be 

very accurate at the top of a sediment column, just where 

the more usual methods are least accurate. The resolution 
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obtained is less than the wavelength of the acoustic source 

in the water. The degradation of the reconstructed velocity 

profile becomes, however, pronounced if the reflection data 

is restricted to real angles above critical. Perturbations 

of data were also studied. Perturbations such as intrinsic 

loss in the acoustic medLlm c....: noise in the data produce 

perturbations in the reconstructed profile. The inclusion 

of density variations requires the use of two frequencies 

and two separate inversions of the Gelfand-Levitan equation. 

We were able to gauge the performance of the 

numerical schemes through the study of the inversion of the 

acoustic profile for two half-spaces (constant velocity) , 

for which we derived the Fourier transform of the reflection 

coefficient analytically. The improvements wrought by 

the improved Born method are clear, as are the effects of 

sampling on the reconstructed profile. The improved Born 

method represents a fast and easy to implement method of 

recovering the velocity at the top of the sediment column. 

The two finite difference methods are more time-consuming 

but yield an accurate reconstruction of the acoustic profile 

over greater depth. 

Future Work 

On the theoretical front, we suggest a thorough 

investigation of the Gelfand-Levitan method in the presence 
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of density variations. It may also be useful to incorporate 

loss directly into the original formulation. One should a lso 

seek efficient numerical implementations of the Gelfand

Levitan algorithm that could increase the penetration depth 

of the reconstruction. In this r espect, we think that the 

combination of the Gelfand-Levitan algorithm with a priori 

information such as the acoustic properties of the basement 

might constitute a promising approach. 

On the experimenta l front, the testing of the Gelfand

Levitan inverse method on field data should be given priority 

to determine its ultimate value . If an actual ocean-based 

experiment were precluded at the moment, we would suggest 

carrying out a similar e lectromagnetic experiment on dielectrics 

at microwave frequencies. 

On the numerical front, one would want to test the 

whole experimental scheme, starting from pressure measurements 

due to a point source and ending with the Gelfand-Levitan 

inversion. Special attention should be paid to the effect 

of noise in the recording of pressure on the plane- wave 

reflection coefficient and ultimately on the reconstructed 

acoustic parameters. 
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It is remarkable that the Frisk experiment which was 

conceived on purely intuitive grounds , when modelled 

theoretically , bears out the expectation that accurate results 

are achievable. To date, experimental data has been inter

preted by time - consuming trial and error procedures. Our 

mathematical and numerical approach suggests t hat a more direct 

inverse method for processing experimental data, requiring 

no a priori information about the acoustic parameters of 

the bottom is feasible. 
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