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ABSTRACT 

 

 We measured U in sediments (both pore waters and solid phase) from three 

locations on the middle Atlantic Bight (MAB) from the eastern margin of the United 

States: a northern location on the continental shelf off Massachusetts (OC426, 75 m water 

depth), and two southern locations off North Carolina (EN433-1, 647 m water depth and 

EN433-2, 2648 m water depth).  These sediments underlie high oxygen bottom waters 

(250-270 M), but become reducing below the sediment-water interface due to the 

relatively high organic carbon oxidation rates in sediments (EN433-1: 212 mol C/cm2/y; 

OC426: 12010 mol C/cm2/y; EN433-2: 33mol C/cm2/y).  Pore water oxygen goes to 

zero by 1.4-1.5 cm at EN433-1 and OC426 and slightly deeper oxygen penetration depths 

were measured at EN433-2 (~4 cm).  

 All of the pore water profiles show removal of U from pore waters.  Calculated 

pore water fluxes are greatest at EN433-1 (0.660.08 nmol/cm2/y) and less at EN433-2 

and OC426 (0.240.05 and 0.130.05 nmol/cm2/y, respectively).  Solid phase profiles 

show authigenic U enrichment in sediments from all three locations.  The average 

authigenic U concentrations are greater at EN433-1 and OC426 (5.80.7 nmol/g and 

5.40.2 nmol/g, respectively) relative to EN433-2 (4.10.8 nmol/g).  This progression is 

consistent with their relative ordering of ‘reduction intensity’, with greatest reducing 

conditions in sediments from EN433-1, less at OC426 and least at EN433-2.  The 

authigenic U accumulation rate is largest at EN433-1 (0.470.05 nmol/cm2/y), but the 

average among the three sites on the MAB is ~0.2 nmol/cm2/y.  Pore water profiles 

suggest diffusive fluxes across the sediment-water interface that are 1.4-1.7 times greater 

than authigenic accumulation rates at EN433-1 and EN433-2.  These differences are 

consistent with oxidation and loss of U from the solid phase via irrigation and/or 

bioturbation, which may compromise the sequestration of U in continental margin 

sediments that underlie bottom waters with high oxygen concentrations.  

 Previous literature compilations that include data exclusively from locations 

where [O2]bw < 150 M suggest compelling correlations between authigenic U 

accumulation and organic carbon flux to sediments or organic carbon burial rate.  
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Sediments that underlie waters with high [O2]bw have lower authigenic U accumulation 

rates than would be predicted from relationships developed from results that include 

locations where [O2]bw < 150 M.  
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1. INTRODUCTION 

 

Uranium (U) in marine sediments is of particular interest due to its potential use 

as a paleoproxy to discern changes in reducing conditions in sediments over time.  The 

effectiveness of U as a paleoproxy hinges on our understanding of its geochemical 

cycling in modern sediments, as defined by the analysis of U in sediments from a range 

of oceanographic conditions.  U is found in the ocean as a stable U(VI) carbonate 

complex and is conservative in ocean waters at a concentration of 14 nmol/kg (Ku et al., 

1977).  The primary source of U accumulated in sediments is diffusion across the 

sediment-water interface into reducing sediments (e.g., Barnes and Cochran, 1990, 1993; 

Klinkhammer and Palmer, 1991).  Removal of U from pore waters has been attributed to 

microbially-mediated U(VI) reduction to a less soluble U(IV) form (e.g., Lovely et al., 

1991; Francis et al., 1994; Tucker et al., 1996; Senko et al., 2002; Sani et al., 2004).  U 

co-precipitation with and adsorption to iron oxide minerals has been seen experimentally 

(e.g., Hsi and Langmuir, 1985; Duff et al., 2002; Sherman et al., 2008), and U association 

and cycling with Fe oxides and oxyhydroxides have been observed in marine sediments 

(e.g., McKee et al., 1987; Barnes and Cochran, 1993; Morford et al., 2007).  The net 

effect of nondiffusive transport (irrigation) on sediment U accumulation is less well 

understood.  Previously accumulated solid phase U can be released to bottom waters or 

pore waters via the oxidation of reduced U solid phases (Shaw et al., 1994), which has 

been shown experimentally to be a fast process (Cochran et al., 1986; Anderson et al., 

1989).  Authigenic U accumulation appears to be compromised when previously 

accumulated solid phase U is oxidized via irrigation that transports oxygen into anoxic 

sediments (Morford et al., submitted), and/or when bioturbating organisms mix reducing 

sediments up into the oxic zone (Zheng et al., 2002b).  The result is loss of previously 

accumulated solid phase U to bottom waters.   

U is also delivered to sediments as particulate non-lithogenic uranium (PNU) that 

forms in surface ocean waters in conjunction with marine particulate matter and provides 

a small and variable flux of U to sediments (Anderson, 1982; Klinkhammer and Palmer, 

1991; Zheng et al., 2002b).  PNU is preserved under low bottom water oxygen 

concentrations ([O2]bw < 25 M; Anderson, 1982; Zheng et al., 2002b), which suggests 
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that down-core records of authigenic U might record changes in organic carbon flux over 

time (Anderson et al., 1998; Chase et al., 2001; Zheng et al., 2002b; McManus et al., 

2006).  Highly correlated relationships have been observed between authigenic U and the 

flux of organic carbon to the sea floor (Anderson et al., 1998; Zheng et al., 2002b; 

McManus et al., 2005) and carbon burial (McManus et al., 2006).  These relationships 

have been limited, however, by exclusively considering data from locations where [O2]bw 

< 150 M (Zheng et al., 2002a; McManus et al., 2005, 2006).  

Insight on the controls of U removal from the aqueous phase, accumulation in the 

solid phase, and the potential for U remobilization from sediments would provide the 

necessary context for properly interpreting changes in U accumulation over time.  This 

work includes pore water and solid phase results from several locations with high bottom 

water oxygen concentrations from the middle Atlantic Bight (MAB).  These results, in 

conjunction with results from other high bottom water oxygen locations, are integrated 

with earlier compilations to obtain a more complete understanding of U geochemical 

cycling. 

 

1.1. Study Sites 

 

 The middle Atlantic Bight (MAB) includes the continental shelf and slope of the 

northwestern Atlantic Ocean between Cape Cod, Massachusetts (~42oN) and Cape 

Hatteras, North Carolina (~34oN, Figure 1, Table 1).  A weak oxygen minimum zone 

extends from ~600-1200 m water depth and results in bottom water oxygen 

concentrations reaching ~140 M at ~800 m water depth (Zheng et al., 2002a and 

references therein).  Less intense near-bottom currents over the ~500-1000 m depth range 

result in the transport of particles to mid-slope depocenters, which are characterized by 

high organic matter deposition rates (Biscaye et al., 1988; Biscaye and Anderson, 1994) 

that support high rates of organic carbon remineralization (Jahnke and Jahnke, 2000; 

Martin and Sayles, 2004).  

 The ‘mud patch’ (Bothner et al., 1981) or the ‘mud hole’ (Santschi et al., 1980) on 

the northern end of the MAB off Martha’s Vineyard is an area noted for its accumulation 

of fine-grained sediments in the midst of generally sandy sediments along the continental 
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shelf off the eastern United States.  This area and the area extending to the southwest 

have been the focus of previous research (Santschi et al., 1980; Bothner et al., 1981; 

Rowe et al., 1988; Martin and Sayles, 2004).  Our sampling location (Figure 1, OC426, 

40o27.6’ N, 70o32.7’ W, 75 m water depth) is in the deeper portion of the mud patch.  

The surface ~2.5 cm of sediments are rapidly mixed on 234Th timescales and overlay a 

layer of less rapidly mixed sediments that extends tens of centimeters deeper (Santschi et 

al., 1980).  Mixing coefficients calculated from 210Pb profiles (0.6-7x10-7 cm2/s; Bothner 

et al., 1981; Santschi et al., 1980) are at least an order of magnitude greater than those 

found in the deep sea but lower than those calculated for estuarine sediments (Bothner et 

al., 1981).  Solid phase organic carbon concentrations range from 0.5-1.7% across the 

mud patch (Bothner et al., 1981; Rowe et al., 1988).  The mass accumulation rate is 247 

mg/cm2/y (Bothner et al., 1981). 

 The station locations on the southern portion of the MAB (Figure 1, EN433-1: 

35o50.927’ N, 74o49.462’ W, 647 m water depth; EN433-2: 36o09.184’ N, 74o03.343’ W, 

2648 m water depth) are also near sites of extensive analysis (Biscaye and Anderson, 

1994; Anderson et al., 1994; Jahnke and Jahnke, 2000; Thomas et al., 2002; Alperin et 

al., 2002; Zheng et al., 2002a, b).  Average particulate fluxes are greater along the 

southern MAB relative to the northern MAB (Biscaye and Anderson, 1994).  Similar 

differences have been found in organic matter oxidation rates with the southern 

depocenter oxidation rates 3-6 times larger than rates measured in northern MAB areas 

(Martin and Sayles, 2004).  Organic matter oxidation rates determined using benthic 

chambers at nearby locations suggest greater oxidation rates in sediments at EN433-1 

relative to EN433-2 (260-340 mol/cm2/y versus 94 mol/cm2/y; Jahnke and Jahnke, 

2000).  The organic carbon flux measured using sediment traps during SEEP II near 

~37oN suggested a carbon flux of 200mol C/cm2/y at 1000 m water depth (Biscaye and 

Anderson, 1994), whereas during SYNOP at ~35.5oN the carbon flux was 60-180mol 

C/cm2/y at 2340-3110 m water depth (Zheng et al., 2002b and references therein).  

 

2. METHODS AND ANALYTICAL PROCEDURES 
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2.1. Sampling Methods 

 

 Sediment cores with clearly defined sediment-water interfaces and overlying 

waters that were clear of resuspended sediment upon recovery were collected using a 

multicorer during cruises OC426 (June 2006) and EN433 (April 2007).  Cores were 

immediately transferred to a 4oC room.  All core processing occurred at 4oC in a 

refrigerated van while at sea.  The overlying waters were sampled and the cores were 

then sectioned in nitrogen-filled glove bags.  The resolution for the first 16 (EN433) or 24 

(OC426) samples was determined by filling scintillation and centrifuge vials.  By 

knowing the volume of the vials and the diameter of the core, the depth sampled was 

calculated.  The first four samples were from intervals of 0.18 cm, and samples 5 to 16 

(EN433) or 5 to 24 (OC426) were from depth intervals of 0.31 cm.  This sampling 

method required sampling across the entire surface including the sediment against the 

core liner; however, sharp metal profiles in these samples suggest minimal profile 

smearing (see later section).  For the sediment cores from EN433, sediment sampling 

continued for samples 17 to 24 at 0.5 cm or 1 cm intervals to the bottom of the core. 

 Sediments were centrifuged.  Pore waters were filtered in a nitrogen-filled glove 

bag using nitrogen-flushed syringes and 0.45-m filters and sampled for trace metals and 

nutrients.  Nutrient samples were transferred to vials that had previously been rinsed with 

18 M MilliQ water (MQ) and dried in a laminar flow bench.  Trace metal samples were 

transferred to 4-mL acid-cleaned HDPE bottles that were pre-spiked with 40 L of 

concentrated Optima-grade nitric acid (Fisher).  Prior to the cruise, syringes and filters 

for trace metal sampling were cleaned with 2 M HCl, rinsed with MQ water, and dried in 

a laminar flow bench.  Sample storage 4-mL HDPE bottles were filled with 2 M HCl, 

heated for four days at 60oC, rinsed with MQ, and dried in a laminar flow bench prior to 

the cruise. 

 Additional cores were retrieved for porosity (EN433-1, EN433-2, OC426) and 

resistivity (OC426 only).  Porosity and resistivity are used to constrain sedimentary 

diffusion coefficients (McDuff and Ellis, 1979) as described in Martin et al. (1991).  To 

obtain high-resolution pore water oxygen and nutrient profiles, an additional core 

underwent whole-core squeezing at each location.   
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2.2. Analytical Procedures 

 

 Precision was determined by analyzing triplicate bottom water samples.  Pore 

water nutrients were determined with a precision of ≤ 4% by autoanalyzer using methods 

adapted from Glibert and Loder (1977).  Pore water O2 profiles were determined by the 

method of Martin et al., 1991. The O2 electrode used for the measurements was calibrated 

at each site with small-volume Winkler titrations (precision ± 3%). 

 All pore water and solid phase U samples were analyzed using a Finnigan 

ELEMENT II high-resolution inductively coupled plasma-mass spectrometer (ICP-MS) 

at the Woods Hole Oceanographic Institution.  Separate aliquots of the pore water and 

solid phase digest samples were analyzed for Al, Fe and Mn using a Spectro Ciros CCD 

ICP-optical emission spectrometer (ICP-OES) at Franklin & Marshall College.  The ICP-

OES wavelengths for quantification were 396.152 nm, 275.573 nm, 239.562 nm and 

260.569 nm for Al, solid phase Fe, pore water Fe, and Mn, respectively.  To determine 

accuracy and precision for the pore water U samples, replicate measurements were made 

of overlying water samples and CASS-4 (Nearshore Seawater Reference Material for 

Trace Metals, National Research Council Canada).  Spiked CASS-4 samples were 

analyzed to determine the precision and accuracy of Fe and Mn at the expected 

concentration levels.  Replicate measurements of PACS-2 (Marine Sediment Reference 

Materials for Trace Metals and other Constituents, National Research Council Canada) 

were used to assess accuracy and precision of the solid phase digest samples.  Replicate 

measurements of dissolved solid phase samples provided a further assessment of 

precision.   

 U concentrations were measured using isotope dilution (236U).  Average bottom 

water concentrations (Table 2, EN433-1: 13.2  0.2 nmol/kg; EN433-2: 13.07  0.05 

nmol/kg; OC426: 12.3 nmol/kg) are 6% lower than the expected seawater concentration 

of 14 nmol/kg (Ku et al., 1977) after adjusting for slight differences in salinity (this work: 

EN433-1, 34.98; EN433-2, 34.91; Bacon et al. (1994): OC426, 33.4).  Although the 

CASS-4 standard is not certified for U, the information value of 12 nmol/kg is similar to 

the average measured concentration (11.8  0.6 nmol/kg; n=8), with a precision of  5%.  
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Mn and Fe were quantified by external calibration curve and an internal standard of 

scandium was added to each sample to correct for instrument deviations during analysis.  

Since the CASS-4 standard has extremely low Mn and Fe concentrations, an aliquot of 

this standard was spiked with additional Fe and Mn to ~40 mol/kg and analyzed.  The 

measured concentrations of the spiked CASS-4 standard were within 8% of the expected 

concentration and the precision was  5% for both Mn and Fe (n=5).  Due to the larger 

sample requirements for ICP-OES, replicate pore water samples were not analyzed for 

Mn and Fe. 

 The solid sample remaining after centrifugation was freeze-dried and ground for 

solid phase analyses.  Dried solid phase samples were completely dissolved using a 

modification of the method of Murray and Leinen (1993) as described in Morford and 

Emerson (1999), which included concentrated HF, HCl, HNO3 and 30% H2O2.  All of 

the acids for solid phase dissolution were trace-metal grade and the peroxide was A.C.S. 

grade, except for the acid used for the final dilution (Fisher, OmniTrace Ultra High Purity 

nitric acid).  The average measured concentrations of the PACS-2 standard were within 

the 95% confidence level for Al and Mn, and ~6% low for Fe (Table 3).  The average U 

concentration was lower than the value given for PACS-2, although this value is not 

certified.  However, the average measured U concentration is consistent with previous 

determinations (Table 3).  The precision for replicate analyses of PACS-2 was  4% for 

U, Al, Fe and Mn (n=6), which was consistent with the reproducibility of duplicate 

measurements of solid phase digests (U, 5 sets of duplicates; Al, Fe and Mn, 6 sets of 

duplicates; Table 4).   

 Excess 234Th and 210Pb were analyzed by direct counting on Canberra LeGe 

detectors (Sayles et al., 2001). Porosity and resistivity were determined by the methods of 

Manheim et al. (1974) and Andrews and Bennett (1981), respectively, using procedures 

described previously (Martin and Sayles, 2004).  Solid phase organic carbon content was 

determined using a Carlo Erba Elemental Analyzer (Model 1108). 

 

3. RESULTS 

 

3.1. Sedimentary conditions at the EN433 and OC426 sites 
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 It is necessary to characterize the sedimentary conditions in order to properly 

interpret the pore water and solid phase U profiles and to adequately compare U 

diagenesis among locations.  Sedimentary conditions that appear to exert control over 

trace metal mobility include bottom water oxygen concentration, oxygen penetration 

depth, sedimentary Mn and Fe cycling, depth of bioturbation and the rate of organic 

matter oxidation (e.g., Aller 1990, 1994; Barnes and Cochran, 1993; Canfield et al., 1993; 

Crusius et al., 1996; Zheng et al., 2000, 2002b; McManus et al., 2005; Morford et al., 

2007).  Therefore, in order to provide the necessary context for our discussion of U 

diagenesis, we will first discuss and compare the conditions among these MAB locations.   

 

3.1.1. Oxygen, nutrient, manganese and iron profiles 

 

 Bottom waters contain high concentrations of oxygen (247 M at EN433-1; 270 

M at EN433-2 and OC426).  Pore water oxygen concentrations decrease smoothly with 

depth below the sediment-water interface reaching near-zero concentrations at 1.4-1.5 cm 

at EN433-1 and OC426 and ~4 cm at EN433-2, as determined by the apparent inflection 

in the nitrate profile and the assumption that the start of denitrification coincides with 

oxygen going to zero in the sediments (Figure 2).  Following the expected sequence of 

oxidant depletion during organic carbon oxidation (Froelich et al., 1979), nitrate and 

nitrite consumption in pore waters begins by ~1 cm at EN433-1 and OC426.  At the 

EN433-2 site, where the oxygen penetration depth is deepest, nitrification is apparent in 

the oxic zone followed by denitrification and consumption of nitrate by ~ 4 cm.  Pore 

water ammonium, which is indicative of anaerobic organic carbon degradation via iron 

and sulfate reduction (Reimers et al., 1992), increases at all sites with depth.  Pore water 

ammonium increases linearly to ~550 M and ~80 M at EN433-1 and OC426, 

respectively.  At EN433-2, pore water ammonium concentrations start increasing below 

the denitrification zone and increase to ~25 M by 8 cm.  The ammonium maximum near 

the sediment-water interface at EN433-2 is most likely an artifact of shipboard core 

sectioning and centrifugation and has been previously discussed (Martin and Sayles, 

2004).  
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 Pore water and solid phase Mn and Fe profiles also suggest clear differences in 

sedimentary reducing conditions.  The peak pore water Mn concentration appears at ~1 

cm at EN433-1 and progressively deeper at OC426 and EN433-2 (Figure 2).  The deeper 

appearance of pore water Mn at EN433-2, coupled with the deeper oxygen penetration, 

allows for the oxidation of upwards diffusing Mn2+ and the precipitation of Mn oxides in 

surface sediments extending ~5 cm below the sediment-water interface (Figure 3).  There 

are ~60% and ~20% solid phase Mn enrichments at the sediment-water interface at 

EN433-1 and OC426, respectively, suggesting the formation of much smaller Mn oxide 

caps in surface sediments from these locations and probable diffusion of Mn2+ from 

sediments to overlying water.   

 Consistent with the expected ordering of oxidants, the Fe pore water profiles have 

peak concentrations at deeper depths relative to the Mn pore water peaks.  The peak in Fe 

concentration is found at 1.7-2.9 cm at EN433-1, and increasingly deeper at OC426 and 

EN433-2, respectively.  The decrease in pore water Fe concentrations to below detection 

limits (DL = 2 M) at 7 to 9 cm in profiles from EN433-1 and OC426 suggest Fe2+ 

removal via precipitation of FeS phases in sediments.  This is consistent with the 

relatively greater pore water ammonium concentrations and the greater importance of 

anaerobic organic carbon degradation via sulfate reduction at these sites (see next 

section).  The solid phase Fe concentrations are relatively constant, and there is no 

discernable solid phase Fe enrichment in surface sediments relative to deeper sediments.  

This observation is expected due to the relatively high detrital Fe concentration in the 

solid phase relative to the upwards Fe flux calculated from the pore water profiles, which 

would make Fe enrichments in surface sediments difficult to measure (see next section).  

 

3.1.2. Fluxes for determining total organic carbon oxidation, burial and rain rates 

 

 To determine the organic carbon oxidation rates in sediments at each location, the 

pore water data is modeled with linear (NO3+NO2, Mn2+ and Fe2+ profiles; NH4
+ at 

EN433-2, OC426) or exponential (O2 profiles; NH4
+ at EN433-1) fits.  Linear gradients 

are typically taken between two or three data points and represent the steepest portion of 



 12

the pore water profile (Figure 2).  The exponential fit for the pore water oxygen and 

NH4
+ (EN433-1 only) profiles extend over the top 1 to 2 cm of sediments.  Nutrient and 

oxygen fluxes are calculated as: 

    Flux  Dsed
dC

dx
 

The porosity () was determined at each location (Figure 4) and the depth interval over 

which the gradient is determined (dC/dx) is identified in Figure 2.  Each solute’s 

diffusion coefficient (Dsw) is calculated at the in situ temperature and corrected for 

dynamic viscosity (Li and Gregory, 1974; Boudreau, 1997).  The effect of sediment 

tortuosity (2) on the diffusion coefficient for seawater (Dsw) is experimentally 

determined at OC426 where both resistivity and porosity were measured (Figure 4).  The 

ratio of sediment resistivity to pore water resistivity is equivalent to the formation factor, 

F (McDuff and Ellis, 1979), and is used to calculate the diffusion coefficient in sediments 

(Dsed): 

    Dsed 
Dsw

2


Dsw

F
 Dsw

1 

At sites EN433-1 and EN433-2, where resistivity measurements are not available, the 

tortuosity is approximated from the porosity data as described in Boudreau (1997): 

    2 1 ln 2  
 The total amount of organic matter oxidized in sediments was calculated as the 

sum of the individual oxidant fluxes, accounting for their relative stoichiometries 

(Reimers et al., 1992).  Sulfate reduction rates were estimated by modeling the 

ammonium profiles.  Oxygen and sulfate were quantitatively the most important oxidants 

at EN433-2 and EN433-1, respectively, whereas and oxygen and sulfate reduction were 

of similar importance at OC426 (Table 5).  Denitrification accounted for ~7-8% of 

organic matter oxidation at these sites, while manganese and iron reduction accounted for 

1.5%. The sum of these processes suggests that the rate of organic carbon oxidation in 

sediments was greatest at EN433-1, ~40% less at OC426 and ~84% less at EN433-2.  

Our measured organic carbon oxidation rates at the EN433 sites, 33-212 mol/cm2/y, are 
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~20-60% lower than those measured previously in this area (94-260 mol/cm2/y, Jahnke 

and Janhke, 2000).   

 Solid phase organic carbon concentrations ([Corg]) are greatest at EN433-1 

(2.70.2 %, Figure 3), less at OC426 (~1.5%, Bothner et al., 1981) and least at EN433-2 

(0.890.09 %, Figure 3).  The average measured [Corg] at EN433-1 is similar to 

measurements made at nearby locations from similar water depths (750 m, 2.4-3.1%, 

Alperin et al., 1999, 2002; 600-630 m, 2.2-2.7%, Thomas et al., 2002).  The organic 

carbon burial rates are calculated from the solid phase organic carbon concentrations and 

mass accumulation rate (MAR) as:  

    Cburial  Corg MAR  

The organic matter rain rates are calculated as the sum of the organic carbon burial rate 

and the organic carbon oxidation rate and were 410, 160 and 58 mol/cm2/y at EN433-1, 

OC426 and EN433-2, respectively.  The organic carbon flux at EN433-2 is similar to that 

measured with sediment traps during SYNOP (60-180 mol C/cm2/y, Zheng et al., 2002a 

and references therein).  The carbon fluxes to sediments measured at the SEEP-II sites 

using sediment traps at similar water depths (200 mol C/cm2/y; Biscaye and Anderson, 

1994) are less than either the calculated organic carbon rain rate or the measured carbon 

oxidation rate in sediments closer to the EN433-1 site.  The carbon flux to sediments at 

EN433-1 should be at least greater than the measured organic carbon oxidation rates 

(260-340 mol C/cm2/y; Jahnke and Jahnke, 2000), which would be more consistent with 

our calculated organic matter rain rate of 410 mol/cm2/y. 

 

3.1.3. Bioturbation 

 

 Both 234Th and 210Pb are useful for determining the extent of bioturbation in these 

sediments, and their different half-lives (24 d vs. 22 y, respectively) provide some 

indication regarding the timeframe of mixing.  Profiles of excess 234Th suggest that 

surface sediments are rapidly mixed at both EN433-1 and EN433-2 (Figure 5).  Therefore 

a sedimentary constituent with a mean lifetime of ~1 month can be transported ~1-2 cm 
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by bioturbation.  At the EN433-1 site, the solid phase 210Pb profile shows a well-defined 

mixed layer extending ~8 cm, and excess 210Pb is present to ~12 cm.  Excess 210Pb is 

present down to ~11 cm at EN433-2, although the amount is not constant.  Mixing over 

the top 10-15 cm has been previously observed in sediments from the MAB along the 

SEEP-I transect (~71oW; Anderson et al., 1988).  A subsurface peak in 210Pb from 10-12 

cm is also apparent at EN433-2 and is not uncommon in sediments from the MAB 

(Anderson et al., 1988).  This subsurface peak may suggest transport of material from the 

surface to this depth horizon.  Therefore in addition to bioturbation, we expect non-local 

mixing of solid phase material from the surface to the deeper portion of the mixed layer 

at EN433-2. 

 

3.2. Uranium 

 

3.2.1. U pore water profiles and fluxes 

 

All of the pore water profiles show removal of U from pore waters (Figure 2).  A 

steep gradient in pore water U is apparent in sediments from EN433-1 and is coincident 

with the peak in pore water Fe (Figure 2).  The pore water U gradients for OC426 and 

EN433-2 are less steep, although scatter in the OC426 pore water U profile makes it 

difficult to discern whether the gradient extends from 0 to 4 cm or for the entire length of 

the sediment core.  The pore water U concentrations continually decrease over the entire 

core length at the EN433-2 site.  The average minimum pore water U concentration 

deeper than 5 cm at EN433-1 is 2.90.5 nmol/kg, which is similar to the pore water U 

concentration reached at 20 cm at EN433-2 (2.6 nmol/kg; Table 2).  The minimum pore 

water U concentrations at the EN433 sites are similar to those measured in other cores 

recovered from the southern portion of the MAB (~2 nM; Zheng et al., 2002a).  The 

minimum pore water U concentration reached at the bottom of the OC426 sediment core 

is ~6 nmol/kg.  We don’t know if a lower pore water U concentration might have been 

reached if the core from OC426 had been longer than its recovered length of ~13 cm; 

however, U concentrations appear to still be decreasing with increasing depth in 

sediments. 
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 The pore water U concentrations ([U]x, Figure 2) are modeled with depth below 

the sediment-water interface, x, following McManus et al. (2005) as: 

U x  M1 1 e M2x   U bw e M2x  

Parameters solved as part of the model fit for U include M1 (nmol/kg), M2 (cm-1) and the 

bottom water U concentration ([U]bw, nmol/kg; Table 6).  To optimize the fit near the 

sediment-water interface, the model is fit to the top 8 cm, 4 cm and 13 cm at EN433-1, 

EN433-2 and OC426, respectively (Figure 2).  The U flux across the sediment-water 

interface (FluxU) is calculated as described in McManus et al. (2005): 

  FluxU  DsedM2 M1  U bw     

The diffusion coefficient in seawater for U is assumed to be equivalent to that of 

Mo, since the diffusion of an anionic U carbonate complex is expected to approximate 

that of anionic molybdate more closely than the Li and Gregory (1974) value for UO2
2+.  

The diffusion coefficient was then corrected for sediment tortuosity as described above.  

The uncertainty in the parameters M1, M2 and [U]bw are propagated to determine an 

uncertainty for the flux estimate; however, this calculated uncertainty does not include 

the uncertainty in the diffusion coefficient and therefore should be considered a minimum 

value (McManus et al., 2005). 

The calculated pore water U flux into sediments at EN433-1 is ~3 times larger 

than EN433-2 and ~5 times larger than OC426 (Table 6).  However, the relative 

uncertainty in the calculated flux for OC426 is larger than the relative uncertainties for 

the other two fluxes and reflects the additional difficulty in fitting the more scattered pore 

water data at this location.  

 

3.2.2. U solid phase profiles and fluxes 

 

 Measured solid phase U concentrations are presented as U/Al ratios, and at all 

three locations the U/Al ratios increase with depth (Figure 3).  Authigenic enrichment is 

evident when the profiles are compared to the estimated detrital U/Al ratio (2.8x10-6; 

Turekian and Wedepohl, 1961; Taylor and McLennan, 1985), and the authigenic 
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concentration is quantified from the average concentrations deeper than 9 cm (see notes 

in Table 7).  Considering the variability of the sediment concentrations, the authigenic 

concentrations at EN433-1 and OC426 are greater than the authigenic concentration 

calculated for EN433-2.  

 The authigenic U accumulation rate (UAcc) is calculated in a similar manner as the 

organic carbon burial rate.  The largest UAcc is measured at EN433-1 and equivalent solid 

phase accumulation rates are measured at EN433-2 and OC426.  The measured 

authigenic U accumulation rate at EN433-2 is similar to those previously measured from 

the southern MAB (0.084-0.29 nmol/cm2/y1; Zheng et al., 2002a).  The solid phase U 

accumulation rates are less than the calculated pore water U fluxes at the EN433 sites by 

a factor of 1.4-1.7, while the measured accumulation rates is identical to the calculated 

pore water flux at OC426. 

 

4. DISCUSSION 

 

4.1. Sedimentary conditions 

 

 Considering the oxygen penetration depths and pore water profiles for nitrate, 

ammonium, Fe and Mn, it is possible to determine a relative ordering of reducing 

conditions in the sediments, with greater ‘reduction intensity’ reflected by shallower 

oxygen penetration, shallower consumption of nitrate, greater ammonium concentrations 

at depth, and shallower first appearances of Mn and Fe in pore waters.  This comparison 

suggests that the ‘reduction intensity’ is greatest at EN433-1, less at OC426 and least at 

EN433-2.  This comparison can be further extended to include other sites with high 

bottom water oxygen concentrations, such as Hingham and Buzzards bays (Morford et 

al., 2007; Morford et al., submitted).  Both bays have high bottom water oxygen 

concentrations coupled with high carbon oxidation and burial rates (Table 8).  This 

combination results in oxygen penetration depths below the sediment-water interface that 

are less than one centimeter.  At Hingham Bay, pore water ammonium increases to ~2000 

M, and pore water sulfide is present below 7 cm (Morford et al., 2007).  However, at the 

Buzzards Bay site ammonium concentrations only increase to ~160 M and pore water 
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sulfide concentrations remain below the detection limit (~2 M) down to ~25 cm 

(Morford et al., submitted).  A composite ordering of ‘reduction intensity’ in sediments 

from greatest to least is: 

  Hingham Bay > EN433-1 > Buzzards Bay > OC426 > EN433-2  

 

4.2. U geochemical cycling in sediments underlying oxic bottom waters 

 

 The progression of authigenic U accumulation is similar to our expectations based 

on ‘reduction intensity’.  The largest U accumulation occurs at Hingham Bay, where 

sedimentary conditions are the most reducing (Table 7).  Benthic chamber fluxes in 

excess of diffusive fluxes across the sediment-water interface have suggested that 

irrigation augments the accumulation of U in sediments at the Hingham Bay site 

(Morford et al., 2007).  Authigenic U accumulation is less in sediments from EN433-1 

and Buzzards Bay, and least at OC426 and EN433-2.  The net effect of irrigation at these 

four locations may be to decrease the accumulation of U.  Previous research has shown 

that bioturbation (Zheng et al., 2002a) and/or irrigation (Morford et al., submitted) can 

compromise authigenic U accumulation in sediments by resulting in oxidative loss of U 

to overlying waters.  Earlier work on the MAB suggested variable remobilization of U 

from sediments; the observed variability may have been due to the low sampling 

resolution of the pore water U profiles (Zheng et al., 2002a).  Higher resolution pore 

water profiles from Buzzards Bay (Morford et al., submitted) and the southern MAB 

locations suggest diffusive U fluxes into sediments that are greater than the measured 

solid phase authigenic U accumulation rates.  The difference between the pore water 

fluxes and solid phase accumulation rates may be due to oxidation and loss of U from the 

solid phase.   

 There are several sources of evidence for irrigation and bioturbation at these sites 

that would be expected to enhance oxidative loss of U from sediments.  Significant rates 

of irrigation are inferred from the comparisons of calculated diffusive fluxes with 

measured benthic chamber fluxes near the southern MAB locations (Jahnke and Jahnke, 

2000).  Our solid phase 234Th and 210Pb profiles show that mixing is evident into the 

anoxic sediment zone at the EN433 sites.  Although the calculated pore water flux and 
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measured solid phase accumulation rate at OC426 are the same and imply little/no 

oxidative loss of U from the sediments, the greater uncertainty in the pore water flux due 

to the complexity of the pore water profile hampers this interpretation.  Bromide and 
222Rn tracers show that sediment irrigation and enhanced solute transport between 

seawater and sediments are important processes at locations in the northern MAB at < 

500 m water depth (Martin and Sayles, 2004).  Oxygen exposure of U-containing anoxic 

sediments is likely in sediments along the MAB.  This work emphasizes the importance 

of continental margin sediments as a sink for U; however, the extent of its importance to 

the global mass balance of U may be tempered by oxidative loss of previously 

accumulated solid phase U. 

 

4.3. Relationships with organic carbon and oxygen penetration depth   

 

Compelling correlations have been observed between authigenic U accumulation 

and organic carbon flux to sediments (Zheng et al., 2002a; McManus et al., 2005, 2006) 

and organic carbon burial rate (McManus et al., 2005, 2006).  When sites off 

Washington/Oregon states (Morford et al., 2005; Table 8) are also included, similar 

relationships are observed (Figure 6).  These results have been used to suggest that the 

reactions that govern authigenic U accumulation are primarily sensitive to the delivery 

and burial of organic carbon (McManus et al., 2006).  However, these conclusions have 

been based on results from locations where bottom water oxygen concentrations do not 

exceed 150 M.  

 The incorporation of data from sediments that underlie high [O2]bw casts doubt on 

these relationships.  Results from sites with high [O2]bw from the Laurentian Trough on 

the eastern Canadian continental margin (Sundby et al., 2004), the MAB (Zheng et al., 

2002a; this work), Hingham Bay (Morford et al., 2007) and Buzzards Bay (Morford et 

al., submitted) show no universal relationship between authigenic U accumulation and 

organic carbon burial rate (Figure 6A).  Although some of these additional locations 

continue to fall on the linear relationship based on low [O2]bw sites, the locations with 

greater ‘reduction intensity’ (Hingham and Buzzards bays, EN433-1 and the most 
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reducing site from the Laurentian Trough) fall along a different trend.  This other trend 

shows lower authigenic U accumulation rates than would be predicted from the trend 

based on low [O2]bw sites.  

 Currently, there is no known direct mechanistic rationale for a linear relationship 

between organic carbon burial and authigenic accumulation of U.  The organic carbon 

buried in sediments is the remnant after the more labile fraction of organic carbon has 

been oxidized, with the oxidized portion dictating the extent of reducing conditions in 

sediments.  The organic carbon that remains would not be expected to control the extent 

of reducing conditions within the top 20 cm of sediments where authigenic U 

accumulation is measured.  Although we have plotted the authigenic U accumulation rate 

versus the organic carbon burial rate (McManus et al., 2006), we could have plotted the 

authigenic U concentration versus the organic carbon concentration since the mass 

accumulation rate is inherently the same for the two variables.  Correlations between U 

and organic carbon concentrations are more likely a result of common dilution by other 

detrital phases present in sediments.  Earlier research in Saanich Inlet showed a strong 

correlation between U and organic carbon concentrations in sediments (Kolodny and 

Kaplan, 1973).  Further investigation suggested that the variable supply of detrital 

particles controlled the organic carbon distribution in Saanich Inlet sediments (François, 

1988), so that the correlation between the U and organic carbon concentrations was more 

likely due to common dilution by detrital phases (Anderson et al., 1989).  In addition, 

Anderson et al. (1989) showed that U and organic carbon were weakly correlated in trap 

material, further suggesting that accumulation of U in sediments was not primarily due to 

its association with particulate organic matter.  Therefore, a linear relationship between 

authigenic U and organic carbon concentrations could be related to factors unassociated 

with the mechanism(s) of U accumulation.  

 The authigenic U accumulating in sediments is thought to be a direct result of the 

reducing conditions and the microbially mediated pathways that result in U(VI) reduction 

(e.g., Lovely et al., 1991; Francis et al., 1994; Tucker et al., 1996).  If the oxidation of 

labile organic matter in sediments is the prime mechanism dictating the sedimentary 

reducing conditions, then we might instead expect a universal relationship between the 

organic carbon oxidation rate and the authigenic U accumulation rate.  However, the 
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relationship between organic carbon oxidation rate and authigenic U accumulation is not 

universal (Figure 6B).  There appear to be two trends with organic carbon oxidation rate 

predicting higher and lower authigenic U accumulation rates.  The trend predicting lower 

authigenic U accumulation rates include results from California (Santa Monica and San 

Pedro; McManus et al., 2005, 2006), the Laurentian Trough, several MAB sites (EN433-

1 and OC426) and the two shallow bays (Hingham and Buzzards) (Figure 6B).  It might 

be possible that authigenic U accumulation rates could be used as a rough proxy for past 

changes in organic carbon oxidation rates, if an independent constraint on bottom water 

oxygen concentration could be supplied.  However, the lack of a global relationship 

further emphasizes the presence of additional mechanistic control(s) on authigenic U 

accumulation in sediments that could complicate the role of U as a paleo proxy for 

organic carbon oxidation. 

 The organic carbon rain rate is the sum of the organic carbon burial and oxidation 

rates. With additional locations from the MAB (Zheng et al., 2002a), a divergent 

relationship is also apparent for locations that underlie high [O2]bw (Figure 6C).  If PNU 

is not preserved at [O2]bw > 25 M (Zheng et al., 2002b), then it is likely that U 

accumulated in sediments is effectively decoupled from the organic carbon rain rate at 

locations with high bottom water oxygen.  Remobilization of U from sediments 

underlying oxygenated bottom waters may be enhanced due to bioturbation and/or 

irrigation exposing sediments containing authigenic U to oxygen-containing seawater 

(Zheng et al., 2002a; Morford et al., submitted).  If high bottom water oxygen promotes 

irrigation and/or bioturbation that extends centimeters (or tens of centimeters) into 

sediments, then the accumulation of U would not be expected to mimic U accumulation 

in sediments underlying low [O2]bw.  

 The oxygen penetration depth will be a function of both the [O2]bw and the carbon 

flux to sediments.  As pointed out by McManus et al. (2005), there exists strong curvature 

in the relationship between authigenic U accumulation and oxygen penetration depth 

(Figure 7).  At oxygen penetration depths less than one centimeter, the authigenic 

accumulation of U can vary by over a factor of forty.  However, oxygen penetration 
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depths greater than one centimeter suggest a consistent decrease in authigenic U 

accumulation.   

   

5. CONCLUSIONS 

 

 This work focused on three locations on the middle Atlantic Bight (MAB): a 

northern location on the continental shelf off Massachusetts (OC426, 75 m water depth), 

and two southern locations off North Carolina (EN433-1, 647 m water depth and EN433-

2, 2648 m water depth).  Even though the sediments at all three locations underlie bottom 

water with high oxygen concentrations (250-270 M), the sediments become reducing 

below the sediment-water interface due to the relatively high organic carbon oxidation 

rates (EN433-1: 212 mol C/cm2/y; OC426: 12010 mol C/cm2/y; EN433-2: 33mol 

C/cm2/y).  Pore water oxygen goes to zero by 1.4-1.5 cm at EN433-1 and OC426 and 

slightly deeper oxygen penetration depths were measured at EN433-2 (~4 cm).  

 All of the pore water profiles show removal of U from pore waters.  Calculated 

pore water fluxes are greatest at EN433-1 (0.66 nmol/cm2/y) and less at EN433-2 and 

OC426 (0.24 and 0.13 nmol/cm2/y, respectively).  The pore water profile from OC426 

was more scattered than the other profiles, so the pore water flux is not as well 

constrained at this location.  Solid phase profiles show authigenic U enrichment in 

sediments from all three locations.  The average authigenic concentrations are greater at 

EN433-1 and OC426 (5.80.7 nmol/g and 5.40.2 nmol/g, respectively) relative to 

EN433-2 (4.10.8 nmol/g) which is consistent with their relative ordering of ‘reduction 

intensity’, EN433-1 > OC426 > EN433-2.  The average authigenic U accumulation rate 

for sediments from the MAB (~0.2 nmol/cm2/y) is similar to the average rate of U 

accumulation measured along the California margin (McManus et al., 2005) and suggests 

a relatively consistent U accumulation rate along continental margins.  Measured U 

accumulation rates are either equivalent to (OC426) or less than (EN433-1, EN433-2) 

calculated pore water fluxes.   Pore water profiles suggest U fluxes into sediments that 

are 1.4-1.7 times greater than authigenic accumulation rates for EN433-1 and EN433-2.  

These differences are consistent with oxidation and loss of U from the solid phase via 
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irrigation and/or bioturbation. The accumulation of U at these locations emphasizes the 

importance of continental margin sediments underlying high bottom water oxygen as 

sinks for U.  However the extent of its importance to the global mass balance of U may 

be tempered by oxidative loss of previously accumulated solid phase U. 

 Previous literature compilations that include data exclusively from locations 

where [O2]bw < 150 M suggest compelling correlations between authigenic U 

accumulation and organic carbon flux to sediments and organic carbon burial rate.  When 

this compilation is extended to include locations where [O2]bw > 150 M, these 

relationships are not consistent among low and high [O2]bw sites.  Sediments that underlie 

waters with high [O2]bw have lower authigenic U accumulation rates than would be 

predicted from relationships developed from results that include [O2]bw < 150 M.  This 

may be due to increased bioturbation and/or irrigation in sediments underlying high 

[O2]bw which leads to preferential U loss from sediments to overlying waters.  
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Figure captions 

 

Figure 1. Middle Atlantic Bight stations from cruise OC426 and EN433 (stations 1 and 2).  Site 

OC426 is the same site as station 4722 (Bothner et al., 1981) and near station 1 of the 

SEEP-I transect (Biscaye et al., 1988).  Sites EN433-1 and EN433-2 along the more 

southern portion of the MAB are nearby station locations for sediment traps from SYNOP 

(Zheng et al., 2002a and references therein) and SEEP-II (Biscaye and Anderson, 1994). 

Figure 2. Bottom water and pore water results for oxygen, nitrate+nitrite, ammonium, 

Fe2+, Mn2+ and U from (A) OC426, (B) EN433-1, and (C) EN433-2.  Horizontal 

lines denote the sediment-water interface.  Filled symbols are for the whole-core 

squeezer samples, open symbols are for pore water samples from 

sliced/centrifuged sediments, and stars denote the bottom water concentrations.  

The bold lines denote the depth ranges over which the model profiles were fit to 

determine gradients for calculating fluxes.   

Figure 3. Solid phase profiles of metal/aluminum molar ratios and organic carbon from 

EN433-1, EN433-2, and OC426.   The dashed line denotes the detrital U/Al 

estimate, based on the average of the ratios for deep-sea clay (Turekian and 

Wedepohl, 1961) and upper continental crust (Taylor and McLennan, 1985).  Note 

that organic carbon concentrations were not determined for sediments from 

OC426. 

Figure 4. Porosity profiles for sediments from (A) EN433-1, EN433-2, and (B) OC426. A 

formation factor profile (C) is also presented for sediments from OC426.  The 

slope (1.95) of the log(1/F) versus log() in plot (D) defines  in the Winsauer 

relationship, F  c . 

Figure 5. Solid phase results for (A) EN433-1 and (B) EN433-2 for excess 210Pb and 

234Th. 

Figure 6. The authigenic U accumulation rates are plotted against (A) the organic carbon 

burial rates, (B) the organic carbon oxidation rates, and (C) the organic carbon rain 

rates. The data are fully described in Table 8.  Data from locations with low 

bottom water oxygen ([O2]bw < 150 M) are plotted with open symbols.  Locations 
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with [O2]bw > 150 M are plotted with closed symbols and include Hingham and 

Buzzards bays, the Laurentian Trough, and all of the MAB locations (Zheng et al., 

2002b; this work).  (Note that station 1 from the Laurentian Trough has a range in 

bottom water oxygen that is less than 150 M.)  Ranges are included when 

available. 

Figure 7. The authigenic U accumulation rate plotted against the oxygen penetration 

depths for locations described in Table 8. 
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Table 1. Comparison of sites from the southern (EN433-1 and EN433-2) and northern (OC426) areas 

of the middle Atlantic Bight (MAB).   

 

 EN433-1 EN433-2 OC426 

Location 35o50.927’ N, 

74o49.462’ W 

36o09.184’ N, 

74o03.343’ W 

40o27.6’ N, 

70o32.7’ W 

Water depth (m) 647 2648 75 

Bottom water [O2] (M) a 247 270 271 

O2 penetration (cm) a 1.4 4 1.5 

Mass accumulation rate (mg/cm2/y) 81 b 30  10 c 247 d 

Solid phase organic carbon content (%) 2.7  0.2 e 0.89  0.09 e 1.5-1.7 d,f 

Organic matter oxidation rate  

(mol C/cm2/y) a 

212 33 120  10 

a. This work.  

b. The accumulation rate for EN433-1 was determined from modeling excess 210Pb and fallout Pu 

(Alperin et al., 2002).   

c. The accumulation rate used for EN433-2 is from 14C analysis from gravity cores from adjacent 

locations that range from 22-45 g/cm2/kyr (Anderson et al., 1994).  

d. The accumulation rate used for OC426 is from 14C analysis of two sediment cores recovered from 

nearby locations at similar water depths (Bothner et al., 1981).  

e. The solid phase organic carbon concentrations are the average concentrations from deeper than 6 cm 

below the sediment-water interface (this work).  

f. Anderson et al. (1988). 
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Table 2. Pore water metal concentrations from EN433-1, EN433-2 and OC426.  The depth is in cm, U 

concentration is in nmol/kg, and the Mn and Fe concentrations are in M.  Note: <DL means that the 

measured concentration was less than the detection limit, which was 1 M and 2 M for Mn and Fe, 

respectively; ‘–’ denotes that the species was not measured.  

EN433-1 
Depth  [U] [Mn]  [Fe] 

EN433-2  
Depth  [U]  [Mn]  [Fe] 

OC426  
Depth  [U] [Mn] [Fe] 

bw
a
 13.1  – – bw

a
 13.1 – – ovw

b
 12.4 – – 

ovw
b
 13.3 – – ovw

b
 13.0 – – 0.18 13.0 <DL 3.88 

0.18 12.2 14.1 <DL 0.18 11.8 – – 0.53 12.1 1.19 <DL 
0.53 10.3 – – 0.53 12.0 <DL <DL 0.88 11.8 11.5 <DL 
0.88   9.65 24.2 19.8 0.88 11.2 – – 1.23 12.4 – – 
1.23 8.87 – – 1.23 10.9 <DL <DL 1.71 11.7 14.9 18.5 
1.71 7.29 19.6 61.0 1.71 10.7 – – 2.33 – 12.7 49.5 
2.95 4.83 6.42 60.3 2.33 – <DL <DL 2.95 7.70 – – 
4.18 3.21 4.57 40.9 2.95 9.96 – – 3.57 – 8.99 72.0 
5.42 2.56 2.74 15.4 3.57 – <DL <DL 4.18 9.35 – – 
6.65 3.02 1.76 <DL 4.18 9.21 – – 4.80 – 3.46 16.3 
7.89 3.10 <DL <DL 4.80 – 14.1 2.23 5.42 7.65 – – 
9.31 – 1.34 <DL 5.42 8.12 – – 6.04 – 1.82 20.5 

10.31 3.60 – – 6.04 – 28.7 <DL 7.27 – 1.15 11.7 
11.31 – <DL <DL 6.65 8.07 – – 8.51 6.98 <DL <DL

12.31 3.30 – – 7.27 – 28.0 4.62 9.43 – <DL <DL

13.81 – <DL <DL 7.89 7.85 – – 10.67 – <DL <DL

15.81 2.17 – – 8.51 – 37.0 5.53 11.90 7.13 <DL <DL

17.81 – <DL <DL 9.31 – 33.8 6.11 13.14 5.88 <DL <DL

19.81 2.56 – – 11.31 – 26.0 11.6     
    12.31 3.97 – –     
    13.81 – 20.6 20.5     
    15.81 2.93 – –     
    17.81 – 21.7 5.87     
    19.81 2.55 – –     

a. The bottom water samples (bw) were obtained from CTD casts that were ~95 m above the seafloor at 

EN433-1 and ~750 m above the seafloor at EN433-2.   

b. The overlying water samples (ovw) were obtained from immediately above the sediment-water interface 

prior to sectioning the core. 
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Table 3. Certified (Al, Fe, Mn) and recommended (U) concentrations for the standard sediment, 

PACS-2, are compared with average metal concentrations, standard deviations and relative 

standard deviations (n=6).  The Al, Fe and Mn analyses (mol/gsed) were completed using ICP-

OES, and the U analyses (nmol/gsed) were determined using ICP-MS.   

 

 [Al] [Fe] [Mn] [U] 

Ave  std dev 

(%RSD) 

2,330  20 

(0.9%) 

680  20 

(3%) 

7.9  0.2 

(2%) 

9.1  0.4 a 

(4%)  

Known conc. 2,400  100 730  10 8.0  0.4 13 b 

a. This concentration is consistent with previous measurements of U content in PACS-2, which 

have yielded 9.3  0.3 nmol/gsed (n=6; Morford et al., submitted) and 9.8  0.4 nmol/gsed (n=5; 

Morford et al., 2007).  The later average measurement was determined using a different total 

dissolution/ICP-MS method relative to the former measurement.  

b. Recommended concentration.   
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Table 4. Solid phase metal concentrations from EN433-1, EN433-2 and OC426. Note: ‘–’ 
denotes that the species was not measured. 

EN433-1 Depth (cm) [Al] (mol/g) [Fe] (mol/g) [Mn] (mol/g) [U] (nmol/g) 
 0.18 1716 453.0 9.41 7.53 
 0.88 1794 474.5 6.55 7.76 
 0.88 1783 479.9 6.99 7.70 
 1.71 1887 481.7 6.26 8.24 
 1.71 1823 474.5 6.39 – 
 2.95 1885 462.8 5.95 8.89 
 4.18 1968 484.2 5.73 9.55 
 5.42 1918 476.0 5.88 10.44 
 7.27 1965 503.5 5.82 10.77 
 9.31 1941 486.4 5.93 11.50 
 11.31 1981 483.9 5.93 11.59 
 11.31 1902 457.8 6.02 11.71 
 13.81 1977 506.9 6.15 11.99 
 15.81 1951 500.5 6.25 11.33 
 19.81 2032 494.6 6.43 10.12 

EN433-2 Depth (cm) [Al] (mol/g) [Fe] (mol/g) [Mn] (mol/g) [U] (nmol/g) 
 0.18 1768 438.7 14.33 6.16 
 0.88 1822 444.1 13.94 6.10 
 1.71 1864 442.7 13.65 6.25 
 2.95 1816 465.6 18.89 6.39 
 2.95 1880 460.2 18.60 – 
 4.18 1805 453.0 12.27 6.49 
 5.42 1816 456.6 7.46 7.07 
 7.27 1890 440.6 6.08 9.83 
 7.27 1822 451.5 6.24 9.98 
 9.31 1877 434.6 6.06 9.98 
 11.31 1929 440.9 6.28 9.38 
 13.81 1877 474.3 5.82 – 
 13.81 1926 488.7 6.19 8.61 
 17.81 1898 460.1 6.27 8.69 
 19.81 1871 467.2 6.43 10.56 
 19.81 1827 438.7 6.12  

OC426 Depth (cm) [Al] (mol/g) [Fe] (mol/g) [Mn] (mol/g) [U] (nmol/g) 
 0.18 1537 337.6 6.08 8.11 
 0.88 1531 331.8 5.53 8.04 
 1.71 1523 330.1 5.07 8.18 
 1.71 1523 338.4 5.22 8.15 
 2.95 1522 326.9 5.23 8.44 
 4.18 1382 290.1 4.73 8.32 
 5.42 1423 302.6 4.85 9.13 
 7.27 1505 333.1 5.23 10.44 
 9.12 1449 331.3 4.64 9.75 
 9.12 1497 331.3 5.42 9.81 
 10.98 1497 334.8 5.24 9.32 
 12.21 1527 340.2 5.26 9.67 
 12.83 1508 334.8 4.82 9.85 
 13.45 1538 351.0 5.46 9.78 
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Table 5.  Organic carbon oxidation rates as determined from the reduction of oxygen, nitrate, sulfate (as 

determined from ammonium profiles), Mn, and Fe from the MAB sites EN433-1, EN433-2 and OC426.  

Negative fluxes indicate a flux out of sediments. 

Oxidant 
 

Location Gradient 
(mol/cm4)a 

Oxidant Flux 
(mol/cm2/y) 

Corg ox rateb 
(mol/cm2/y) 

Percent of total 
Corg ox rate (%) 

O2
c EN433-1 -0.263 86.9 63 30 

 EN433-2 -0.124 34.6 25 75 
 OC426 -0.269 to -0.368d 80.0 to 109.2 60 ± 10  49 

NO3
- EN433-1 -0.0496  12.7e 14.2     6.7 

 EN433-2 -0.0070    2.03f   2.3     6.9 
 OC426 -0.0105    8.70g 9.8     8.0 

NH4
+h EN433-1 0.0867 -19.8 130.2 61 

 EN433-2 0.0050    -0.88     5.8 17 
 OC426 0.0328    -7.91   51.6 42 
Mn2+ EN433-1 0.0800    -6.98     3.14     1.5 
 EN433-2 0.0116     -0.57    0.25     < 1 
 OC426 0.0295    -2.27    1.02     < 1 
Fe2+ EN433-1 0.0494    -3.74    0.94     < 1 
 EN433-2 0.0036    -0.17    0.04     < 1 
 OC426 0.0501    -3.16    0.79     < 1 
Sum  EN433-1   212  
 EN433-2     33  
 OC426   120 ± 10  

a. Lines on the pore water profiles show the depth ranges used to determine the gradients (Figure 2).   
b. Stoichiometries to convert oxidant fluxes to organic carbon oxidation rates are from Reimers et al. (1992).  
c. The benthic oxygen flux is the total flux across the sediment-water interface. To determine the aerobic organic 

carbon oxidation rates, we assumed that a portion of the benthic oxygen flux oxidizes reduced inorganic 
species in addition to oxidizing organic matter. The benthic O2 flux is decreased according to the NH4

+, Mn2+, 
Fe2+production rates and their respective stoichiometries (Reimers et al., 1992; Hartnett and Devol, 2003).  
The consumption of oxygen via sulfide oxidation was not included; the correction would be trivial for EN433-
2 where NH4

+ production is small suggesting that sulfide production is minimal.  The correction would be 
larger at OC426 yielding an aerobic carbon oxidation rate of 30±20 mol/cm2/y and a total organic carbon 
oxidation rate in sediments of 80±10mol/cm2/y.  The amount of sulfide produced at EN433-1 (66 
mol/cm2/y based on NH4

+ production rate) would require more oxygen than is available to effectively oxidize 
all of the sulfide produced.  The decreasing Fe2+ pore water profiles at OC426 and EN433-1 suggest some 
precipitation of iron sulfide at depth, so oxidation of sulfide has been omitted from the benthic oxygen flux 
correction.   

d. The range in gradients at OC426 is due to modeling the data from 0-1 cm and 0-1.4 cm. 
e. We assume that the NH4

+ production rate is equivalent to its benthic flux so that NH4
+ oxidation in sediments 

is negligible and no additional NO3
- is produced to augment denitrification (Hartnett and Devol, 2003).   

f. The total NO3
-flux includes NO3

- produced during NH4
+ oxidation, which is assumed to occur completely 

within the sediments.  
g. The benthic NH4

+ flux to overlying waters (1.53 mol/cm2/y) was subtracted from the NH4
+ production rate 

(7.91 mol/cm2/y) to determine the amount of NO3
- generated in sediments due to NH4

+ oxidation (6.38 
mol/cm2/y).  This was added to the NO3

- flux to calculate the total amount of denitrification. 
h. The NH4

+ production rates are determined from the steepest gradient in the profile, except at EN433-1 where 
an exponential fit to the data is applied from 0-1.7 cm to constrain the gradient across the sediment-water 
interface.  The contribution of NH4

+ from Fe reduction has been subtracted to determine the organic carbon 
oxidation rate due to sulfate reduction (Reimers et al., 1992). 
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Table 6. Pore water U model results for fittable parameters.   

Location M1 
(nmol/kg) 

M2 
(cm-1) 

([U]bw)model 
(nmol/kg) 

([U]bw)measured 
(nmol/kg) 

FluxU 
(nmol/cm2/y)

EN433-1 2.3 ± 0.4 0.48 ± 0.05 13.1 ± 0.3 13.2 ± 0.2 0.66 ± 0.08 

EN433-2 9.0 ± 0.3 0.6 ± 0.1 13.0 ± 0.2 13.07 ± 0.05 0.24 ± 0.05a 

OC426 6.0 ± 0.9 0.23 ± 0.09 13.1 ± 0.5 12.6 ± 0.3 0.13 ± 0.05 

a. For comparison, linear fits were also used to model the pore water profile from EN433-2.  A linear fit 
from 0-0.18 cm resulted in a FluxU of 0.76 nmol/cm2/y, whereas a linear fit from 0-1.71 cm resulted in 
a FluxU of 0.109 nmol/cm2/y.  The linear fits result in variable fluxes that depend on the modeled depth 
range.  The large difference between the fluxes calculated with the linear models is due to the 
curvature inherent in the pore water profile, which is adequately captured by the exponential model 
(see exponential fit on Figure 2).  
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Table 7. Authigenic U concentrations and accumulation rates for locations with high bottom water 

oxygen concentrations based on solid phase results.  Mass accumulation rates for the MAB sites are 

on Table 1. 

 [U]Auth
b 

(nmol/gsed) 
UAuth accumulation ratec 

(nmol/cm2/y) 

Hingham Baya 5     2 1.3    0.05 

Buzzards Baya 4.2  0.1 0.4  0.1 

S. MAB – EN433-1 5.8  0.7 b 0.47  0.05  

              – EN433-2 4.1  0.8 b 0.14  0.04  

N. MAB – OC426 5.4  0.2 b 0.13  0.04  

a. Data from Morford et al., 2007; Morford et al., submitted.   

b. The authigenic U concentration ([U]Auth) is determined as: U Auth  U m 
U

Al








d

x Al m








.  The 

measured U and Al concentrations ([U]m, [Al] m) are the calculated averages below 9 cm in each 

solid phase profile.  The detrital U/Al ratio, 
U

Al









d

, is 2.8 x 10-6 mol/mol, which is the average 

U/Al ratio calculated from deep-sea clay (Turekian and Wedepohl, 1961) and upper continental 

crust (Taylor and McLennan, 1985).  

c. The authigenic U accumulation rate is calculated as: UAuthAcc  U Auth
x MAR .  The mass 

accumulation rates (MAR) are from adjacent locations (Tables 1 and 8). 
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Table 8. Compilation of results from the literature (see references below), Hingham and Buzzards bays 

(Morford et al., 2007; Morford et al., submitted), and northern and southern locations from the MAB (this 

work).  

Site Depth  [O2]bw O2,pen MAR [Corg] Cox Cburial Crain U 
 (m) (M) (cm) (mg/cm2/y) (%)             (mmol/m2/d) (nmol/m2/d) 
Pacific margin off California and Mexico (McManus et al., 2005, 2006) 
Santa Monica 905 4-10 0.3 16 4 ± 1 1.9 ± 0.2 1.5 ± 0.4 3.4 ± 0.6 9 ± 3 
San Pedro 896 3-8 0.2 29 3.9 ± 0.9 1.8 ± 0.4 2.6 ± 0.6 4 ± 1 11 ± 2 
Catalina 1300 19 0.6 14 4 ± 1 1.3 ± 0.1 1.2 ± 0.3 2.5 ± 0.4 9 ± 2 
Tanner 1514 27 0.4 12 6.4 ± 0.6 1.0 ± 0.3 1.8 ± 0.2 2.8 ± 0.5 11 ± 2 
San Clemente 2053 65 1.3 15 3.2±0.3 1.0 ± 0.1 0.9 1.9 6 ± 1 
Patton Escarp. 3707 132 2.9   3 1.1±0.2 0.4 ± 0.1 0.08 0.5 0.4 
Mazatlan 442 0.2  9  1.1 1.7 ± 0.1 2.8 11 ± 4 
San Blass 430 0  21  >1.3 3.2 ± 0.2 4.5 21 ± 9 
Soledad 542 0  50  >1.8 8.4 ± 0.3 10.2 51 ± 8 
Basins and MAB locations (Zheng et al., 2002b) 
San Clemente 1585 57  5.5    1.8 2.3 
Santa Barbara B. 340-590 3-23  65-242    6.4 17-35 
Framvaren  0 0 9    5 14.5 
Black Sea 2094-2218 0 0 9±5    2 10 ± 5 
Cariaco B.  0 0 13    2 9.0 
MAB BC4 512 200  26    5.4 1.8 
MAB BC5 1045 190  26    5.4 2.8 
MAB BC9 1165 220  41    5.4 7.4 
MAB BC6 2000 270  26    5.0 2.2 
Saanich Inlet, Pacific margin off of California, Western Arabian Sea (Anderson et al., 1998) 

Saanich Inlet
a
 200-240 0 0 100 ± 20 2 - 5  5 - 11 13 ± 4 40 

N. CA Margin- 

Midway
b
  

3111 110  4.2 1.18 ± 0.06 0.3 ± 0.1
c
 0.11± 0.01 0.4 ± 0.1 0.62 

N. CA Margin- 

Nearshore
b
  

2712 100  9.3 1.7 ± 0.3 0.6 ± 0.2
c
 0.36± 0.06 1.0 ± 0.2 3.1 

W. Arabian Sea
d
  3212 130  7 0.7 ± 0.2 0.7

c
 0.11± 0.03 0.8 3.2 

NE Pacific margin off Washington/Oregon (Morford et al., 2005; Stump and Emerson, 2001)
e
 

  Stn 2  434 40 0.3   9 1.2  0.8 0.3 1.1 0.58 
  Stn 4 1961 55 0.5   5  2.3  0.8 0.3 1.1 0.62 
  Stn 6 2807 81 1.5   0.6  1  0.4 0.01 0.36 0 
  Stn 8 3866 124 5   2  1  0.1 0.04 0.18 0 
Laurentian Trough, eastern Canadian continental margin  

   Stn 1
f
 190-250 75-105  0.5  300-500 1.6   1.9  10-20 12-22  21 

   Stn 2
g
  150-250 0.9   30-100  1.5-1.9    2   1-3   3-5   9.3 

   Stn 4
g
 190-350 180-200 1   30  1.9   2    1   3   4.7 

Hingham Bay
h
    5 310± 70 0.4± 0.3 270 ± 50 3.2 ± 0.2 24 20 ± 4 44 ± 4 36 ± 1 

Buzzards Bay
j
   15 265± 35 0.55±0.05 100 ± 30 1.5 11 ± 1   4 ± 1 15 ± 1 12 ± 4 

S.MAB EN433-1
k
  647 247 1.4   81 2.7 ± 0.2   5.8   5.5 11.3 13 ± 1 

            EN433-2
m

 2648 270 4   30 ± 10 0.89 ± 0.09   0.9   0.7 ± 0.2   1.6 ± 0.2   4 ± 1 

N. MAB OC426
n
 75 271 1.5   24 ± 7 1.5-1.7    3.3 ± 0.3   0.82-1.2    4.3 ± 0.4   4 ± 1 

a. Data from Anderson et al. (1989; mass accumulation rate, organic carbon flux) and Kolodny and Kaplan (1973; stations 

2, 4; authigenic U concentration, organic carbon concentration).   
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b. Data from Lyle et al. (1992) except for the bottom water oxygen concentrations (transect P17; Talley, 2007) and the U 

accumulation rate (Anderson et al., 1998). The average annual organic carbon rain rate was determined from sediment 

traps deployed for 2.5 years, and the standard deviation reflects the variability measured from year 1 to year 2.   

c. The organic carbon oxidation rate is the calculated difference between the organic carbon rain rate and the organic carbon 

burial rate.  

d. Data from Sirocko et al. (1993) except for the bottom water oxygen concentration (Farrenkopf et al., 1997) and the U 

accumulation rate (Anderson et al., 1998).  

e. Mass accumulation rates (MAR) for the NE Pacific margin off Washington/Oregon states used the sedimentation rates 

and organic carbon concentrations from Hedges et al. (1999) from nearby locations.   

f. Data from Silverberg et al. (1987) except for the depth and bottom water oxygen concentration (Gilbert et al., 2005), mass 

accumulation rate (Smith and Schafer, 1999) and the U accumulation rate (Sundby et al., 2004). Note that the sum of the 

organic carbon oxidation and burial rates results in the calculated organic carbon rain rate for station 1 from the 

Laurentian Trough (12–22 mmol/m2/d) that is consistent with the mean organic carbon flux measured from 32 sediment 

traps (16 mmol/m2/d; Silverberg et al., 1987).  

g. Data from Silverberg et al. (2000) except for depth and bottom water oxygen (Gilbert et al., 2005) and the U 

accumulation rate (Sundby et al., 2004).  The mass accumulation rate at station 4 is consistent between Smith and 

Schafer (1999) and Silverberg et al. (2000), but variable at station 2 where Silverberg et al. (2000) suggests a lower value 

relative to Smith and Schafer (1999).  

h. Data from Morford et al. (2007) except for the organic carbon concentration, which is based on the average concentration 

below 10 cm from four sediment cores collected in 2002 and 2003 (Kalnejais, 2005).  

j. Data from Morford et al. (submitted) except for the average organic carbon concentration (McNichol et al., 1988).  

k. The mass accumulation rate is from Alperin et al. (2002) and Thomas et al. (2002). The organic carbon rain rate is the 

sum of the carbon burial and oxidation rates.   

m. This work, except for the mass accumulation rate (Anderson et al., 1994).  

n. The mass accumulation rate and the organic carbon burial rate are from nearby locations at similar water depths (Bothner 

et al., 1981). The organic carbon concentration is based on the average concentration below 10 cm from sediment cores 

(Bothner et al., 1981; Anderson et al., 1988). 
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