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THESIS ABSTRACT 
 

Halogenated 1’-methyl-1,2’-bipyrroles (MBPs) are a distinctive class of 
marine organic compounds.  They are naturally produced, they have a unique 
carbon structure, they are highly halogenated, and they bioaccumulate in upper 
trophic levels.  MBPs share many characteristics with persistent organic 
pollutants (POPs), and may prove to be useful natural analogues for these 
anthropogenic compounds.  Further, their unique structure suggests that their 
biosynthetic organism(s) may have new genes to add to current knowledge of 
biosynthetic chemistry.  The objectives of this dissertation were to further clarify 
the environmental distribution of MBPs, to examine whether MBPs biomagnify, 
and to investigate possible origins of these compounds through their stable 
nitrogen isotopic signatures. 

Results from these investigations have shown that over 40 highly 
brominated MBP congeners are present in marine mammals, fish, and squid 
from the Northwestern Atlantic Ocean.  The most abundant MBPs do appear to 
biomagnify through the food web to reach the concentrations observed in marine 
mammals.  This additional evidence affords greater confidence in the use of 
MBPs as natural analogues for POPs.  However, differences in the environmental 
chemistry of MBPs and anthropogenic compounds are also evident, and may be 
due to these compounds’ different origins, or to the capacity of degradative 
enzymes to act upon them.  Finally, compound-specific nitrogen isotope analyses 
on MBPs isolated from dolphin blubber show that these compounds are 
dramatically enriched in 15N relative to other biosynthetic organic compounds.  
This enrichment is likely a signal imparted during biosynthesis, and may assist 
in elucidating the organism(s) and mechanism(s) responsible for the biosynthesis 
of MBPs. 
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CHAPTER 1 

 

An introduction to halogenated 1’-methyl-1,2’-bipyrroles (MBPs) 

 

History 

  Ten years ago, Environmental Science & Technology published a research 

article suggesting that a highly halogenated contaminant isolated from seabird 

eggs, tetrabromodichloro-1,1’-dimethyl-2,2’-bipyrrole, was naturally produced 

[1].  The natural origin of this compound was confirmed in 2004 [2], and 

provided the first evidence that halogenated natural products (HNPs) 

bioaccumulate in upper trophic levels in the same manner as anthropogenic 

contaminants.  Since then, a few other classes of HNPs have been shown to 

bioaccumulate in these higher trophic level organisms.  One such class is the 

halogenated 1’-methyl-1,2’-bipyrroles (MBPs) [3, 4]. 

 Investigations into MBPs began in 1999 when an unknown contaminant 

with the molecular formula C9H3Cl7N2, initially called Q1, was detected in 

marine samples [3].  Shortly thereafter it was determined that Q1 was identical to 

compounds detected but unidentified in samples dating back to the 1980s [5].  

When the structure was determined in 2002, as an N,C1-linked bipyrrole with 

chlorine atoms occupying all ring carbons (Figure 1) [6], it had been detected in a 

variety of samples worldwide, including seabird eggs, marine mammal blubber, 
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human breast milk (from women with diets rich in blubber) and Antarctic air [3, 

7-10].  No compounds with this structure had ever been commercially produced, 

and it was only found in marine samples; thus, MBPs were believed to be 

naturally produced in marine ecosystems.  The organism (or organisms) 

responsible for MBP biosynthesis has yet to be identified. 

 Although the perchlorinated MBP congener was detected in 1999, 

brominated congeners were not detected until 2006 [4].  The highly brominated 

heptabromo-, hexabromochloro-, hexabromo-, and pentabromochloro-1’-methyl-

1,2’-bipyrroles (MBP-Br7, MBP-Br6Cl, MBP-Br6, and MBP-Br5Cl, respectively) 

were found to be more abundant than the perchlorinated congener, Q1, in the 

blubber of marine mammals from the Northwestern Atlantic [4, 11].  The lag 

between the detection of Q1 and the brominated congeners likely resulted from a 

combination of the geographic distribution and the chemical stability of the 

different congeners.  The procedure for the initial isolation of Q1 used sulfuric 

acid to remove the lipid matrix [3], conditions under which the highly 

brominated congeners were unstable [4].  Further, much of the work on Q1 was 

accomplished in the Pacific and Southern Oceans, locations where highly 

chlorinated MBPs dominate the MBP distribution [12].  With the detection of the 

brominated congeners in the Atlantic, it became clear that MBPs consist of a 

family of compounds that have the same carbon backbone but different 

halogenation patterns; it was not yet proven that they were produced naturally. 
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 As of 2006, the evidence for MBPs as natural products consisted of a 

number of observations [4, 5].  MBPs had no known industrial source, either 

intended or inadvertent (e.g., dioxins are an unintended byproduct of industrial 

processes [13]).  MBPs have only been found in marine samples; a critical point, 

since all anthropogenic compounds ultimately have terrestrial sources. MBPs 

shared structural similarities to other marine HNPs, specifically the bipyrrole 

structure.  As mentioned previously, the natural product found to bioaccumulate 

in higher trophic level organisms was a halogenated bipyrrole [1].  A marine 

bacteria, Pseudoalteromonas luteoviolacea (originally classified as a 

Chromobacterium), is known to produce a perbrominated bipyrrole [14, 15].  A 

natural source for MBPs was confirmed through their detection in whale oil 

archived prior to the onset of industrial halogenation [16]. 

 

Structure and Properties 

 MBP structure consists of two nitrogen-containing, aromatic, five-

membered rings, with up to seven halogens (either bromine or chlorine) on the 

ring carbons (Figure 1).  This structure results in two properties of MBPs that 

make them environmentally relevant: persistence and lipophilicity.  MBPs have 

high octanol-water partition coefficients (Kow), as estimated from their molecular 

structure (log Kow = 6.6-8.3 [16]).  Kow values use octanol as a representative of 

organic matrices to predict the partitioning of chemicals between an organic 
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phase and water.  MBPs are aromatic, and relatively non-polar and non-volatile, 

characteristics that result in MBPs concentrating in organic matrices, like 

blubber, rather than aqueous reservoirs or air.  The persistence of these 

molecules partially stems from their high Kow values.  When partitioned into 

storage tissues, such as blubber, there is limited opportunity for metabolism [17].  

Their persistence is also due to their high degree of halogenation.  Halogens form 

strong bonds with carbon because of their high electronegativity.  Additionally, 

the lipophilicity of organic molecules tend to increase with the number of 

halogens.  This is due to halogens’ large size and their low affinity for forming 

hydrogen bonds with water [18].   Thus MBPs, which are concentrated in blubber 

and highly halogenated, have little opportunity for degradation and are likely 

difficult to metabolize. 

 

Relevance 

 When initially discovered, MBPs were considered remarkable for two 

reasons: their high degree of halogenation and the unusual N,C1-linkage of the 

pyrrole moieties.  They remain unusual in these characteristics among known 

natural products today.  These characteristics are particularly relevant to 

researchers studying the cycling and fate of persistent organic pollutants and 

those developing new pharmaceutical therapeutics. 
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Relevance: Natural Analogues to POPs 

 Persistent organic pollutants (POPs) are a group of chemicals defined (and 

regulated) under the United Nations Environment Program’s Stockholm 

Convention on Persistent Organic Pollutants (2001) as compounds that 

“…possess toxic properties, resist degradation, bioaccumulate and are 

transported, through air, water and migratory species, across international 

boundaries and deposited far from their place of release, where they accumulate 

in terrestrial and aquatic ecosystems…” [13]  Two chemical characteristics that 

define POPs, halogenation and lipophilicity, are shared by MBPs.  These 

similarities are potentially useful when considering the long term cycling of 

halogenated compounds.  As natural products, MBPs likely evolved with their 

ecosystem, and have presumably been ‘in production’ for a very long time.  

Anthropogenic POPs have only been produced and emitted into the 

environment in recent decades, and thus their long-term fate is unclear. By using 

MBPs and other HNPs as model compounds, we can more clearly understand 

the routes and reservoirs important to the fate of POPs in the environment.  For 

example, by recognizing which structural moieties are enzymatically degraded 

in natural products, and which are removed through abiotic processes (such as 

photodegradation or surface-mediated catalysis), we can better predict the fate of 

pollutants containing the same or similar structures.  Additionally, HNPs that 

only have a marine source may help gauge the seafood-based contribution to 
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human uptake of POPs.  This pathway is a concern, but its relative contribution 

is difficult to assess, as POPs are present in both terrestrial and marine food 

sources.  Transfers of marine HNPs into human tissues have previously been 

demonstrated [9] and may offer a method for disentangling the two POP vectors. 

The utility of MBPs to act as natural analogues for POPs depends on a 

thorough understanding of the environmental distribution of MBPs and the 

controls on their cycling and fate.  An important difference between these types 

of compound is their geographic origin.  Although POPs have only been 

produced on land, POPs are ubiquitous pollutants and are now present in both 

terrestrial and marine ecosystems [13].  Thus, they have multiple inputs to the 

marine ecosystem, e.g., rivers, dust, aerosols, and freely diffusible gasses.  MBPs 

are natural products that have only been detected in marine samples or samples 

closely tied to the marine food web [5, 12, 19].  It is likely that they are made by a 

specific organism or group of organisms, and thus their source is much more 

geographically limited than that of the POPs.  From this source difference, it is 

likely that MBPs and POPs enter the marine food web differently.  This may 

impact the availability of the compounds for bioaccumulation, biomagnification, 

and biotic and/or abiotic degradation.  Therefore, their sources may ultimately 

result in different distributions in marine biota. 

For use as natural analogues to POPs, it is also necessary that the 

mechanisms known to be important in POP cycling are also relevant to MBPs.  
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An important control on POP cycling is biomagnfication, which is the increase of 

the lipid-normalized concentration of a contaminant with trophic level [20]. 

Previous work has established that biomagnification can occur for hydrophobic 

compounds with octanol/water partition coefficients exceeding 104 [21].  

Additionally, biomagnfiying compounds must be persistent to avoid any 

appreciable abiotic or enzymatic degradation.  Contaminant concentrations 

increase in each trophic level (Figure 2) because persistent compounds are not 

significantly metabolized during digestion and contaminant fugacities increase 

as prey is digested [22].  This increase in fugacity during digestion explains how 

contaminants are transferred against the apparent thermodynamic fugacity 

gradient. 

It is important to note that biomagnification and bioaccumulation are 

different concepts and are not interchangeable.  Bioaccumulation is equilibrium 

partitioning between biota and the surrounding environment, and can occur 

through inhalation, ingestion, and/or absorption [18].  Biomagnification acts 

through ingestion and results in top predators with contaminant concentrations 

that are much higher than what would be expected based on equilibrium 

partitioning between the surrounding environment (i.e., water, soil, or sediment) 

and biotic tissues [18]. 

 Biomagnification is a concern for POPs.  Indeed, the high concentrations 

of POPs in top predators are partially responsible for the concerns and strict 
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regulation of these compounds [13].  As of 2006, when this study began, it was 

unclear whether the high concentrations of MBPs found in marine mammal 

blubber resulted from biomagnification.  Based on the concentrations observed, 

the chemical properties of MBPs, and the detection of MBPs in one sample of a 

marine mammal prey species [16], biomagnfication was suspected.  In order to 

show that biomagnification occurs, however, the lipid-normalized concentration 

increase with trophic level must be demonstrated. 

 

Relevance: Pharmaceutical Therapeutics 

 The development of pharmaceutical agents began with the isolation of 

bioactive compounds from environmental samples.  For example, quinine was 

‘discovered’ by western medicine by noting that indigenous populations of 

South America used cinchona bark (a source of quinine) to treat fevers [23].  

Although drug development turned away from natural products in recent 

decades, there is a renewed interest in naturally produced compounds for novel 

therapeutic agents [24].  This interest has focused significant attention on marine 

sources.  Marine sources were, until recently, largely ignored, and in this brief 

period of renewed interest they have already proven a rich source of novel 

bioactive compounds [25].  One route of recent drug development is the use of 

biosynthetic pathways to produce or to assist in the production of complex 

chemical structures [26].  The novel pyrrole linkage and the highly halogenated 
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nature of MBPs suggest that the organism(s) responsible for their biosynthesis 

may contribute new mechanisms to our growing ‘library’ of biosynthetic 

chemistry.  Additionally, many organisms that produce secondary metabolites 

(compounds not required for primary metabolism, but which benefit the 

producing organism) synthesize more than one type of compound [27, 28]; for 

example, the marine bacterium that produces 3,3’,4,4’,5,5’-hexabromo-2,2’-

bipyrrole also produces other brominated pyrrole structures and 

biosynthetically-unrelated polysaccharides [14, 29].  Identification of the 

producing organisms of MBPs may result in the discovery of yet more novel 

bioactive compounds.  In order to fully realize the therapeutic potential of MBPs, 

we must identify their biosynthetic origins. 

Although the producer(s) of MBPs has yet to be identified, there are 

organisms known to produce structurally similar compounds.  The N,C1-linkage 

in MBPs has not been previously observed linking two pyrrole rings.  However, 

there are a few biosynthetic examples of the N,C1-linkage between other five-

membered, nitrogen-containing, bicyclic ring systems (Figure 3).  Two lily 

species are known to produce bicyclic systems with this linkage, Lilium hasnonii 

[30] and Lilium candidum [31]; Wasabi japonica produces a bi-indole system linked 

through its 5-membered rings [32].  In a broader search of all chemical literature, 

the motif is also present in N-fused porphyrins [33], azofullerenes [34], 
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pyrrolodiazines [35], compounds for drug development [36], and pyrrollic 

sensors [37]. 

Two additional bipyrrole types have been described in the literature that 

have C1,C1- and N,C2-linkages (Figure 3).  The C1,C1-linked bipyrroles include 

another class of biomagnifying marine natural products, halogenated 1,1’-

dimethyl-2,2’-bipyrroles [38].  Although their origin is unknown, a halogenated 

bipyrrole of similar structure (the aforementioned 3,3’,4,4’,5,5’-hexabromo-2,2’-

bipyrrole) has been isolated from a marine bacterium [14] now identified as 

Pseudoalteromonas luteoviolacea [15].  A group of gram-positive bacteria commonly 

known as actinomycetes also produce bipyrroles: the C1,C1-linked prodigiosin 

series of natural products are produced by Streptomyces species [39, 40],  and 

marine actinomycete strain CNQ-418 produces the N,C2-linked marinopyrroles 

[41]. 

In addition to the unusual carbon backbone, MBPs are halogenated, and 

their halogenation appears geographically dependent: chlorinated congeners 

dominate the MBP distributions in the Pacific and Southern Oceans {Vetter, 2007 

#422}, while highly brominated congeners dominate in the Northwestern 

Atlantic {Teuten, 2006 #35;Pangallo, 2008 #454}.  (Thus far no iodinated MBPs 

have been reported in any environmental samples.)  This halide-specificity 

suggests that the halogenases involved in MBP biosynthesis may also have 

specific geographic distributions.  Of the three classes of known halogenases that 
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target aromatic rings, vanadium-dependent haloperoxidases have shown the 

greatest halide specificity {Blasiak, 2009 #873}.  However, both heme-dependent 

haloperoxidases and flavin-dependent halogenases are also capable of both 

brominating and chlorinating aromatic rings, and many questions remain 

regarding the halide specificity of the halogenase enzymes {Blasiak, 2009 #873}. 

 

Summary 

 When the research for this dissertation was initiated, in the summer of 

2006, we knew of 7 MBP congeners that were present in the blubber of marine 

mammals [5, 16]: the perchlorinated Q1, the perbrominated MBP-Br7, one 

congener of MBP-Br6Cl, one congener of MBP-Br6, and three congeners of MBP-

Br5Cl.  We knew that these compounds were natural by virtue of their presence 

in whale oil archived prior to the onset of industrial halogenation [16].  Q1 was 

the most abundant MBP detected in samples from Australia and the Southern 

Ocean, while the highly brominated congeners dominated the MBP distribution 

in samples from the Northwestern Atlantic [4, 11, 16].  MBPs had also been 

identified in squid [4] and the breast milk of women who had diets rich in 

blubber [9], suggesting that MBPs could undergo trophic transfer.  However, it 

was not yet certain whether they biomagnified. 

To facilitate discussion of the MBPs, Vetter et al. [12, 42] suggested a 

numbering system for the MBPs based on the system developed for the 
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anthropogenic polychlorinated biphenyls (PCBs) [43].  In this system the 

perchlorinated Q1 is given the acronym MBP-79, and the perbrominated MBP-

Br7 is termed Br7-MBP-79.  This is the nomenclature that will be used for these 

two compounds for Chapters 4-6.  Chapters 2 and 3 are already published [19, 

44], and use MBP-Cl7 and MBP-Br7 for MBP-79 and Br7-MBP-79, respectively.  

For further details on nomenclature please see Chapter 3. 

 

Objectives 

The objectives of this dissertation were to further clarify the 

environmental distribution of MBPs, to determine whether MBPs biomagnify, 

and to investigate possible origins of these compounds through their stable 

nitrogen isotopic signatures.  The following four chapters each delve into one or 

more of these areas.  Chapter 2 dramatically expands the number of MBPs 

present in blubber, most of which were detected at trace abundances.  A 

comparison of analytical techniques for MBP analysis (gas 

chromatography/electron capture negative ion mass spectrometry and 

comprehensive two-dimensional gas chromatography/time of flight mass 

spectrometry) is also presented in this chapter.  To further explore the 

environmental distribution of MBPs, Chapter 3 describes the MBP content of 

blubber and liver from a wide variety of marine mammals.  (Additional 

information regarding the lipid content of the samples from this chapter is 
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included in the Appendix to the thesis.) This chapter presents strong evidence for 

MBP biomagnification by comparing MBP distribution patterns with those of a 

PCB known to biomagnify.  The comparisons also illustrate differences in the 

cycling of the natural MBPs and anthropogenic PCB.  These themes are further 

explored in Chapter 4, which demonstrates that lipid-normalized MBP 

concentrations do indeed increase with trophic level.  Finally, Chapter 5 presents 

the measurement of compound-specific nitrogen isotope ratios for four 

individual MBPs and discusses the implications of the remarkable enrichment 

that was found.  Chapter 6 summarizes the results and suggests future directions 

for research on MBPs. 
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Figure 1. The general structure of MBPs, where X 
represents Br, Cl or H. 

 

 

 

Figure 2. A visual representation of biomagnification of MBPs.  The concentration of MBPs in 
each trophic level is represented in red.  (E. Paul Oberlander, WHOI) 
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Figure 3. Structures of compounds similar to the MBPs: (a) 1-(2,5-dihydro-4-methyl-5-oxo-1H-
pyrrol-2-yl)-4-methyl-5-oxo-proline isolated from Lilium hansonii [30]; (b) 1,5-dihydro-5-hydroxy-
3,4'-dimethyl-[1,2'-Bi-2H-pyrrole]-2,5'(1'H)-dione isolated from Lilium candidum [31]; (c) [1,2'-bi-
1H-indole]-3'-carboxaldehyde isolated from Wasabi japonica [32]; (d) X = Br or Cl, R = CH3: 
halogenated 2,2’-dimethyl-1,1’-bipyrrole [45]; X = Br, R = H: 3,3’,4,4’,5,5’-hexabromo-1,1’-
bipyrrole [14]; (e) Prodigiosin [40]; (f) (-)-marinopyrrole B [41]. 
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Expanding the range of halogenated 1’-methyl-1,2’-bipyrroles 

(MBPs) using GC/ECNI-MS and GC×GC/TOF-MS 

 

Kristin Pangallo, Robert K. Nelson, Emma L. Teuten, 

Byron E. Pedler and Christopher M. Reddy 

Abstract 

Halogenated 1’methyl-1,2’-bipyrroles (MBPs) have been identified 

worldwide in marine mammals.  Here we present the tentative identification of 

previously undetected MBP congeners in Delpinus delphis blubber using gas 

chromatography/electron capture negative ion mass spectrometry (GC/ECNI-

MS) and comprehensive two-dimensional gas chromatography/time-of-flight 

mass spectrometry (GC×GC/TOF-MS).  This is the first report of 26 isomers, only 

two of which are perhalogenated, one with bromine and one with chlorine. The 

presence of numerous partially halogenated congeners suggests that they are 

either biosynthesized concomitantly with their perhalogenated counterparts or 

that their dehalogenation products can also bioaccumulate.  The newly found 

compounds fit the geographic trend that has been previously noted.  That is, 
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samples from the Atlantic Ocean are dominated by the more brominated 

congeners while those from the Pacific are dominated by the more chlorinated 

congeners. 

 

1.  Introduction 

Halogenated natural products (HNPs) are a class of secondary metabolites 

found in environmental matrices [1].  Most of the HNPs currently known have 

been identified in organisms that produce high quantities of secondary 

metabolites or that concentrate the bioactive compounds of their prey in their 

own tissues [2].  However, a select subset of HNPs bioaccumulates in the tissues 

of higher trophic-level organisms at trace concentrations in similar patterns to 

persistent organic pollutants (POPs).  Several lines of evidence support the 

classification of these compounds as natural products, for example, radiocarbon 

dating [3, 4] and their presence in pre-industrial, archived whale oil [5].  Classes 

of HNPs shown to bioaccumulate include the polybrominated phenoxyanisoles 

[4, 6], polybrominated dibenzo-p-dioxins [7], 1,1’-dimethyl-2,2’-bipyrroles 

(DMBPs) [8] and halogenated 1’-methyl-1,2’-bipyrroles (MBPs) [9-11].  These 

compounds have been thoroughly reviewed in recent publications by Covaci et 

al. [12] and Vetter [1].  Like the POPs, bioaccumulating HNPs are available for 

human uptake [13-15] and at least one such compound is present in human 

breast milk [16]. 
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Organisms responsible for synthesizing most of these compounds have 

not been identified.  Nevertheless, these HNPs are of great interest to 

environmental chemists and toxicologists since they have similar physical and 

chemical properties to POPs [17].  In fact, it may be that the degradative 

mechanisms used in POP remediation originally evolved to degrade HNPs [18].  

Hence, they can be used as models to help understand the cycling and 

environmental fate of POPs [3, 19]. 

Recently published research has shown that bioaccumulative MBPs 

(Figure 1) include more than 20 congeners of mixed halogenation (containing 

bromine and chlorine) in addition to the perchlorinated and perbrominated 

MBPs [10, 11].  Unlike POPs, these compounds appear to have a specific 

geographic distribution: the more highly-chlorinated derivatives tend to 

dominate in the South Pacific [11] and the more highly-brominated derivatives 

tend to dominate in the North Atlantic [10, 20].  Of the more than 20 MBPs 

described, most are perhalogenated (i.e., 7 halogens).  Four hexahalogenated 

MBP derivatives of mixed halogenation have been measured in blubber from 

animals stranded along the North American coast [10], as well as in archived 

whale oil from the 1920s [5].  Six hexachlorinated MBPs have been detected as 

photolytic transformation products of MBP-Cl7 (formerly referred to as Q1) [21], 

of which 5 were detected in marine biota samples that contain large amounts of 

MBP-Cl7 [21, 22]. 
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Here we report the presence of additional MBP congeners in the blubber 

of a common dolphin (Delphinus delphis) stranded along the east coast of North 

America.  Out of 43 MBP congeners that we report here, 26 have not been 

detected previously.  Possible implications of these compounds are also 

discussed. 

 

2.  Methods 

2.1 Samples 

 The blubber of a D. delphis fatally stranded in January 2006 in Orleans, MA 

was obtained from the Cape Cod Stranding Network (identification number: 

CCSN06-013Dd). 

2.2 Sample extraction and purification 

The blubber was homogenized in a blender and the lipids were obtained 

by filtration through a glass fiber filter with a nominal pore size of 0.7 µm.  To 

quantify the MBPs, the cetacean oil was spiked with an internal standard, 

3,3’,4,4’,5,5’-hexachloro-1,1’-dimethyl-2,2’-bipyrrole (DMBP-Cl6), which is not 

found in environmental samples and was synthesized for us by Drs. David Blake 

and Gordon Gribble of Dartmouth College [23].  The majority of lipids were 

removed by gel permeation chromatography (GPC) on an OI Analytical GPC 

Autoprep 2000.  The 700-mm glass column was packed with 60 g of Envirobeads 

SX-3 in 1:1 hexane:dichloromethane.  One gram of lipid was solvated to 10 mL 
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with 1:1 hexane:dichloromethane, and 5 mL of this solution was injected into the 

GPC.   The column was eluted with 1:1 hexane:dichloromethane at 5 mL min-1, 

and MBPs were collected between 16 and 55 minutes.  Column chromatography 

was then used to isolate MBPs from other organic molecules and remove any 

residual lipids.  Fully-activated, 100-200 mesh, Fisher silica gel (8 g) was packed 

in hexane and topped with fully-activated, 20-325 mesh, Fisher neutral alumnia 

(5 g) in a 1-cm i.d. column.  The column was eluted with 100 mL hexane and then 

100 mL of 95:5 hexane:dichloromethane.  The MBPs were collected between 50-

200 mL of the total eluent.  For reference, polychlorobiphenyls (PCBs) were 

collected in the first 50 mL. 

2.3 Production of an MBP standard solution 

Due to the lack of synthetic standards, we isolated the four previously 

identified [10] MBP isomers from D. delphis blubber to use as reference and 

calibration standards.  They were purified by preparative capillary gas 

chromatography (PCGC) [24].  Briefly, after ~70 injections onto a PCGC using a 

CP-Sil 5CM column (60 m × 0.25 mm i.d. 0.25 µm film thickness), the individual 

MBPs were rinsed from their respective U-tubes with dichloromethane.  The 

solvent was removed and the mass of each collected MBP was determined.  The 

purity of the isolated compounds was verified by gas chromatography coupled 

to a flame ionization detector (>99%).  These compounds were analyzed by gas 

chromatography high-resolution mass spectrometry (GC-HRMS) [5, 10] and 
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nuclear magnetic resonance (NMR) spectroscopy [20].  The mass of the collected 

compounds was determined, and a solution was prepared containing 6 ng µL-1 of 

each MBP and 4 ng µL-1 of the synthetic standard, DMBP-Cl6. 

2.4 GC/ECNI-MS procedures 

Compounds were tentatively identified by gas chromatography mass 

spectrometry using electron capture negative ion mass spectrometry (GC/ECNI-

MS) with an Agilent 6890N series GC interfaced to an Agilent 5973 network mass 

selective detector.  Extracts were injected in splitless mode and separated by a J & 

W Scientific DB-XLB column (60 m × 0.25 mm i.d., 0.25 µm film thickness) using 

He as a carrier gas at a constant flow rate of 1.1 mL min-1.  The oven program 

was: initial temperature of 50 ºC, followed by a temperature increase at 20 ºC 

min-1 to 115 ºC and held for 10 minutes, then a 2 ºC min-1 increase to 320 ºC, 

which was held for 15 minutes.  Methane was used as a reagent gas, and the 

source and transfer lines were maintained at 150 ºC.  Spectra were acquired in 

full scan mode, and the data was analyzed for the mass-to-charge (m/z) ratios 

representative of the possible MBP congeners.  The molecular ions, 

fragmentation patterns, and relative retention times were used in tandem to 

detect MBPs congeners.  The tentative identification was verified by comparison 

of the isotope ratios in the molecular ion clusters to theoretical ratios.  Due to 

differences in response factors [21], only the MBPs present in the standard 

solution (described previously) were quantified.  We used two methods to report 
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the amount of each MBP not quantified.  For isomers of the MBPs in the standard 

solution, we used the response factors of the quantified MBPs to estimate the 

concentrations of their isomers in the blubber extract.  Response factors have 

been shown to vary within an order of magnitude for the hexachlorinated MBPs 

[21], and thus only one significant figure is reported.  For the remaining MBPs, 

their abundance was reported relative to that of MBP-Br7.  As a method blank, 

vegetable oil was extracted and analyzed for MBPs; none were detected. 

2.5. GC×GC/TOF-MS procedures 

Each extract was analyzed on a GC×GC/TOF-MS system that employed a 

dual stage cryogenic modulator (Leco, Saint Joseph, Michigan) installed in an 

Agilent 6890N gas chromatograph configured with a 7683B series split/splitless 

auto-injector, two capillary gas chromatography columns, and a time of flight 

mass spectrometeric detection system.  Each extract was injected in splitless 

mode and the purge vent was opened at 0.5 minutes.  The inlet temperature was 

300 °C.  The first-dimension column and the dual stage cryogenic modulator 

reside in the main oven of the GC.  The second-dimension column is housed in a 

separate oven installed within the main GC oven.  The first-dimension column 

was a nonpolar Restek Rtx-5 Crossbond, (10 m × 0.18 mm i.d., 0.2 µm film 

thickness) that was programmed to remain isothermal at 95 °C for 5 minutes and 

then ramped from 95 to 250 °C at 1.25 °C min-1.  Compounds eluting from the 

first dimension column were cryogenically modulated on deactivated fused silica 
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(0.5 m × 0.11 mm i.d.).  The modulator cold-jet gas was dry N2 that was chilled 

with liquid N2.  The thermal modulator hot-jet air was set to be 75 °C above the 

temperature of the main GC oven. The hot jet was pulsed for 1.5 seconds every 

15 seconds with a 6-second cooling period between stages.  Second-dimension 

separations were performed on a 50% phenyl polysilphenylene-siloxane column 

(SGE BPX50, 0.70 m × 0.10 mm i.d., 0.1 µm film thickness) that was programmed 

to remain isothermal at 120 °C for 5 minutes and then ramped from 120 to 275 °C 

at 1.25 °C min-1.  The carrier gas was He at a constant flow rate of 1.1 mL min-1.  

The TOF-MS detector signal was sampled at 50 spectra sec-1.  The transfer line 

from the second oven to the TOF-MS was deactivated fused silica (0.5 m length, 

0.18 mm i.d.), which was held at a constant temperature of 295 °C.  The TOF-MS 

source temperature was 230 °C and the detector voltage was 1575 V.    

 

3.  Results and Discussion 

3.1 Tentative identification of halogenated 1’-methyl-1,2’-bipyrroles by GC/ECNI-

MS 

 A variety of compounds derived from the 1’-methyl-1,2’-bipyrrole 

backbone (Figure 1) have been measured at trace concentrations in the tissues of 

marine mammals [10, 11, 20, 25].  These compounds have been analyzed by GC-

HRMS [10], NMR spectroscopy [20, 21], and, for the perchlorinated congener, 

comparison with a synthetic standard [26].  These congeners span the full range 
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of possible halogenation patterns, from perchlorinated [26] to perbrominated 

[10].  Previous to this effort, ten partially halogenated congeners have been 

tentatively identified: three isomers of pentabromochloro-1’-methyl-1,2’-

bipyrrole (MBP-HBr5Cl) and one isomer of hexabromo-1’-methyl-1,2’-bipyrrole 

(MBP-HBr6) [5, 10], and six isomers of hexachloro-1’-methyl-1,2’-bipyrrole (MBP-

HCl6) [21, 22].1   

We hypothesized that there were additional partially halogenated MBPs 

present in D. delphis blubber.  To guide us in searching for these compounds, we 

used the MBP standard solution that was isolated by PCGC.  The latter was first 

injected on our GC/ECNI-MS.  Briefly, the four MBP congeners in our standard 

solution elute in the order expected based on their masses; the smaller, partially 

halogenated compounds elute first and are followed by the more massive 

perhalogenated MBPs (Figure 2a, Table 1).  Also, the MBPs containing chlorine 

elute prior to MBPs that have the same degree of halogenation, but contain solely 

bromine.  The mass spectrum of every MBP is dominated in the higher mass 

range (>350 m/z) by the sequential loss of either a bromine or chlorine atom. In 

our standard solution, the mass spectra of the two hexahalogenated isomers are 

very similar to the perhalogenated MBP standards (example: Figure 3a and 3b); 

                                                
1 Saint-Louis and Pelletier (2005) published evidence for partially halogenated 1’-methyl-
1,2’-bipyrroles in marine mammal liver tissue, but identified them as halogenated 
naphthols.  More recently, Teuten et al. (2006c) presented evidence in collaboration with 
Saint-Louis and Pelletier that these compounds had been misidentified and were 
tentatively identified MBPs. 
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they have the same fragmentation patterns, but their molecular ions are lower 

corresponding to their decreased molecular weight.  In this way, predicting the 

molecular ions and the fragmentation patterns of partially halogenated 

derivatives is straightforward. 

Employing the knowledge gained from analyzing the MBP standard 

solution, we found 43 MBP isomers within the blubber of this D. delphis, 28 of 

which were partially halogenated isomers (Figure 2b, Table 1).  In addition to 

using mass spectral evidence, we had the added confidence that all of these 

compounds eluted in our expected silica gel fraction (and not with less polar 

compounds like PCBs). 

This is the first report of MBP-HBr4Cl2, MBP-HBr3Cl3, MBP-H2Br5, MBP-

H2Br4Cl, MBP-H2Br3Cl2, MBP-H3Br4 and MBP-H3Br3Cl isomers (Table 1).  It is 

also the first finding of polychlorinated MBP congeners in samples from the 

North Atlantic, which may be amongst those previously identified by Vetter et 

al. (2007).  Additionally, this is the first detection of two more isomers of MBP-

Br6Cl, previously only one isomer had been detected [10, 11].  The partially 

halogenated compounds display the same fragmentation pattern as the MBPs in 

the standard solution (Figure 3) and have the correct molecular ions for the 

proposed molecular formulas. The molecular and fragment ions in the mass 

spectra also display the distinct halogen isotope pattern expected for their 

molecular formula.  For example, Figure 3 a-c shows the isotopic patterns for the 
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molecular ions of MBP-Br7, MBP-HBr6 and MBP-H2Br5.  Finally, these 

compounds follow the elution order established by previously identified MBPs; 

the less halogenated and more chlorinated derivatives elute earlier (Figure 2, 

Table 1). 

Using calibration solutions of the MBP standards (MBP-Br7, MBP-Br6Cl, 

MBP-HBr6 and MBP-HBr5Cl), the concentrations of these four isomers within the 

blubber extract were quantified (Table 1).  Due to the lack of quantification 

standards, the other MBPs were not quantified but were estimated (section 2.4).  

The previously characterized isomer of MBP-Br6Cl is the most abundant 

congener.  However, the sum of the MBP-HBr5Cl isomers exceeds that of the 

MBP-Br6Cl isomers.  The novel MBPs that we detected were all present at low 

abundances relative to the previously characterized congeners.  The MBP 

concentrations reported here are similar to those observed in other samples of D. 

delphis blubber from Cape Cod [10]. 

3.2 Further evidence of partially halogenated congeners of the halogenated 1’-methyl-

1,2’-bipyrroles by GC×GC/TOF-MS 

GC×GC is an analytical technique that separates complex mixtures based 

on both their volatility and, most often, their polarity.  Hence, GC×GC has often 

been used to resolve compounds that co-elute in one-dimensional gas 

chromatography (in which elution is based primarily on a compound’s 

volatility).  However, we drew upon a different property of GC×GC for the 
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tentative identification of MBP isomers, that structurally similar compounds tend 

to elute along lines in GC×GC space.  This pattern has been observed for many 

chemical classes, such as long chain ketones [27] and PCBs [28].  Moreover, this 

empirical observation is corroborated by established chemical concepts: a 

theoretical analysis shows that a compound family (i.e., a set of compounds that 

have a common parent structure, but which have varying numbers/patterns of a 

certain substituent group) exhibits a linear free energy relationship in the 

GC×GC two-dimensional retention index space [29].  Consequently, a compound 

family will also elute along a line or a monotonic curve in the GC×GC retention 

time space.   This tendency has been exploited to find previously unidentified 

compounds of the same class in complex mixtures.  For example, Xu et al. (2001) 

showed that long chain ketones (C35-39) eluted along two distinct lines in GC×GC 

space due solely to the position of the carbonyl group; methyl ketones aligned on 

one diagonal and ethyl ketones aligned on a parallel line just below the methyl 

ketones.  Additionally, by following the elution lines of the known long chain 

ketones, previously unknown ketones were identified [27].  Consequently we 

expected MBPs to elute in a line in GC×GC space.  If an unidentified peak falls on 

the elution line of the set of known MBP standards, this constitutes important 

corroborative evidence that the unidentified peak is also an MBP. 

To expand our search for MBPs, we analyzed the MBP standard solution 

and the dolphin extract via GCxGC/TOF-MS. Before introducing any GCxGC 
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data, it is important to understand how to interpret these chromatograms.  

Briefly, elution along the x-axis is volatility-based, mimicking retention patterns 

of one-dimensional gas chromatography. Elution along the y-axis is polarity-

based, with the more highly polar components eluting later in the 

chromatogram.  We first analyzed the standard solution in order to determine 

where the MBPs elute in GC×GC space (Table 1, Figure 4a).  Clearly, the four 

MBPs of the calibration solution exhibit a diagonal trend, with the more 

halogenated compounds eluting later along both axes. 

Using a similar approach to that which we employed with GC/ECNI-MS, 

we also detected numerous MBPs by GC×GC/TOF-MS in the blubber extract 

(Figures 3d-f and 4b, Table 1).  MBPs were recognized by the fragmentation 

patterns and isotope ratios in their mass spectra, and that they aligned in GC×GC 

space with the MBPs in the standard solution (with the exception of two isomers, 

described below).  A comparison of mass spectra for the sample compounds with 

ECNI-MS and TOF-MS is shown (Figure 3); as expected, the electron impact of 

TOF-MS (Figure 3d-f) displays greater fragmentation than the softer chemical 

ionization of ECNI-MS (Figure 3a-c).  The molecular ion clusters and the major 

fragment ions are otherwise unchanged. 

The diagonal elution pattern in GC×GC space that was established by the 

standard solution extends to the newly found derivatives.  Importantly, MBP-Br7 

and its brominated congeners align on one diagonal, and MBP-Br6Cl and 
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congeners containing one chlorine align along a second, lower, parallel diagonal.  

This provides strong supporting evidence for the tentative identification of these 

new compounds as MBPs [27, 29].  There are two exceptions to the diagonal 

alignment; one isomer each of MBP-HBr5Cl and MBP-H2Br4Cl elute later (higher) 

in the second dimension than would be expected from the general trend.  In 

GC×GC analysis of PCBs, it has been noted that non-ortho and mono-ortho PCBs 

elute later in the second dimension than PCBs fully halogenated in the ortho 

position [28].  Upon applying the observations of PCB elution in GC×GC space, it 

is likely that these two outlying MBPs are partially halogenated MBP congeners 

with at least one hydrogen atom in position 2, 3’, 5 or 5’. 

The presence of partially halogenated MBPs that do not contain a halogen 

in the ortho position is important because they may be more toxic then other 

MBPs containing ortho-halogens.  Previous research has shown that the 

perchlorinated congener binds the aryl hydrocarbon receptor and induces 

cytochrome P450 activity [30].  This receptor has been shown to bond effectively 

with planar molecules, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [31].  

Thus, understanding the non- and mono-ortho MBP congeners, which can 

approach a more planar configuration, is critical in evaluating MBP toxicity. 

Many of the congeners detected in this sample by GC/ECNI-MS were not 

detected with GC×GC/TOF-MS (Table 1).  These congeners were present at 

extremely low abundances when detected by GC/ECNI-MS.  The selectivity of 
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ECNI-MS may allow for a higher signal-to-noise ratio, thus facilitating 

identification of minute quantities of these compounds.  However, GC×GC is 

superior to one-dimensional GC with respect to resolving co-eluting compounds 

and providing structural evidence.  Thus, combining GC×GC-TOF/MS with GC-

ECNI/MS allows for detecting novel congeners and quantifying known 

compounds for many types of compounds classes. 

 

4. Conclusions 

By using GC/ECNI-MS in tandem with GC×GC/TOF-MS, we have 

tentatively identified 26 new partially halogenated MBP congeners. The novel 

MBP congeners were highly brominated and detected in the blubber of a D. 

delphis fatally stranded on Cape Cod, MA, USA.  The concentration of many of 

the less halogenated isomers is very small, which may explain why these 

compounds have been previously overlooked.  GC×GC/TOF-MS analysis 

proved very useful in providing support for our tentative identification of the 

new congeners by GC/ECNI-MS.  In two-dimensional space it is clear that newly 

characterized compounds elute along the same set of lines as previously 

identified MBPs.  Although this identification is still tentative, the presence of 

such a large number of isomers is notable.  Structural confirmation of the 

tentatively identified compounds will require isolation of the individual 
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compounds, full structural elucidation by NMR spectroscopy and/or x-ray 

crystallography, and, ideally, comparison with a synthetic standard. 

Although the task is challenging, full identification of the MBP congeners 

present in environmental matrices will be important in attempts to understand 

their toxicity, their biosynthetic pathway, and their cycling in the environment.  

As of yet we do not know the identity of the producing organism or why we do 

not detect the many other possible MBP isomers.  For example, although there 

are 24 possible MBP-HBr5Cl isomers, only six have been reported to date.  

Putting constraints on the factors that determine which MBPs are present in the 

environment can provide insight into the production, transport, and fate of all 

halogenated organic compounds in marine ecosystems.  For example, the 

presence of such a large number of diverse isomers may be evidence for 

dehalogenation as a degradative mechanism for these bioaccumulating natural 

products.  Further work must be accomplished to confirm this theory, but the 

data presented herein is compelling. 
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Table 1. MBPs identified in 0.5 g of lipid from the blubber of a common dolphin (D. delphis).  
Congeners in bold are previously detected MBPs and were components of the standard solution.  
The listed ion  (±0.5) was used in finding the MBPs and for quantification.  Only MBPs that were 
part of the standard solution (in bold) were quantified, concentrations of their isomers were 
estimated.  For MBPs identified but for which no isomer was quantified the abundance relative to 
that of MBP-Br7 is presented: (+++) for a relative abundance of >10%, (++) for <10% and (+) for 
<1%. Congeners not detected by GC×GC/TOF-MS are indicated by a (-). 

Compound 
(x-1’-methyl-1,2’-

bipyrrole) 
x = 

Ion   
(m/z) 

GC-
ECNI/MS 
Retention 

Time 
(minutes) 

Lipid 
Conc.   
(ng/g 
lipid) 

GCxGC  
Retention 

Time 1 
(seconds) 

GCxGC  
Retention 

Time 2 
(seconds) 

MBP-Br7 heptabromo- 697.7 97.643 2550 5795 9.99 
MBP-Br6Cl hexabromochloro- 653.7 93.426 40 - - 
MBP-Br6Cl hexabromochloro- 653.7 93.648 40 - - 
MBP-Br6Cl hexabromochloro- 653.7 93.849 3480 5495 9.09 
MBP-HBr6 hexabromo- 619.7 85.945 80 - - 
MBP-HBr6 
d 

hexabromo- 619.7 86.554 1260 4820 8.58 

MBP-HBr6 hexabromo- 619.7 91.118 90 - - 
MBP-HBr6 hexabromo- 619.7 94.044 200 - - 
MBP-
HBr5Cl c pentabromochloro- 575.7 81.860 400 4430 7.60 

MBP-
HBr5Cl pentabromochloro- 575.7 82.085 70 4505 7.88 

MBP-
HBr5Cl pentabromochloro- 575.7 82.370 30 - - 

MBP-
HBr5Cl a 

pentabromochloro- 575.7 82.668 2360 4490 7.94 

MBP-
HBr5Cl b pentabromochloro- 575.7 87.174 500 4850 9.51 

MBP-
HBr5Cl pentabromochloro- 575.7 90.378 500 5120 8.90 

MBP-Br5Cl2 pentabromodichloro- 609.8 89.321 + - - 
MBP-Br5Cl2 pentabromodichloro- 609.8 89.550 ++ - - 
MBP-Br5Cl2 pentabromodichloro- 609.8 89.776 ++ - - 
MBP-Br4Cl3 tetrabromotrichloro- 565.6 85.368 ++ - - 
MBP-Br4Cl3 tetrabromotrichloro- 565.6 85.621 + - - 
MBP-H2Br5 pentabromo- 539.8 73.870 +++ 3695 7.12 
MBP-H2Br5 pentabromo- 539.8 78.844 ++ - - 
MBP-H2Br5 pentabromo- 539.8 79.331 ++ - - 
MBP-H2Br5 pentabromo- 539.8 81.157 +++ 4310 8.00 
MBP-
HBr4Cl2 

tetrabromodichloro- 531.8 77.785 + - - 

MBP-
HBr4Cl2 

tetrabromodichloro- 531.8 78.100 +++ - - 

MBP-
HBr4Cl2 

tetrabromodichloro- 531.8 78.394 ++ - - 

MBP- tetrabromochloro- 495.8 69.623 ++ 3365 6.39 
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HBr4Cl 
MBP-
HBr4Cl tetrabromochloro- 495.8 69.750 +++ - - 

MBP-
HBr4Cl tetrabromochloro- 495.8 74.705 ++ - - 

MBP-
HBr4Cl tetrabromochloro- 495.8 75.232 +++ 3815 8.17 

MBP-
HBr4Cl tetrabromochloro- 495.8 77.174 +++ 4010 7.17 

MBP-
HBr4Cl tetrabromochloro- 495.8 78.021 + - - 

MBP-
HBr3Cl3 

tribromotrichloro- 485.7 73.751 ++ - - 

MBP-Br2Cl5 dibromopentachloro- 475.7 72.158 + - - 
MBP-Br2Cl5 dibromopentachloro- 475.7 76.770 + - - 
MBP-H3Br4 tetrabromo- 461.7 68.025 + - - 
MBP-
H2Br3Cl2 

tribromodichloro- 451.9 64.790 + - - 

MBP-
H2Br3Cl2 

tribromodichloro- 451.9 65.519 + - - 

MBP-BrCl6 bromohexachloro- 431.8 72.371 + - - 
MBP-BrCl6 bromohexachloro- 431.8 72.959 + - - 
MBP-BrCl6 bromohexachloro- 431.8 73.078 + - - 
MBP-
H3Br3Cl 

tribromochloro- 417.7 63.793 + - - 

MBP-Cl7 heptachloro- 385.9 68.420 +++ - - 
a  Previously identified as MBP-HBr5Cl Isomer A, Teuten and Reddy (2007). 
b  Previously identified as MBP-HBr5Cl Isomer B, Teuten and Reddy (2007). 
c  Previously identified as MBP-HBr5Cl Isomer C, Teuten and Reddy (2007). 
d  Previously identified isomer of MBP-HBr6, Teuten and Reddy (2007). 
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Figure 1. The structure of the halogenated 1’-methyl-1,2’-
bipyrroles is shown with the carbon atoms numbered.  The 
atoms labeled X can be H, Br or Cl.  The nomenclature 
system used in this paper will indicate the number of H, 
Br and Cl on the ring system by subscripts.  For example, 
the heptachlorinated congener is referred to as MBP-Cl7, 
and the congener containing a hydrogen, five bromines 
and a chlorine on the ring system is called MBP-HBr5Cl. 
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Figure 2. The summed ion chromatograms of the (a) MBP standard solution 
and the (b) blubber extract from CCSN06-013Dd are presented.  Peaks that 
are visible at this scale are identified.  The summed chromatograms result 
from summation of the following ions (±0.5): 697.7, 653.7, 619.7 and 575.7 
(MBP standard solution); 697.7, 653.7, 619.7, 609.8, 575.7, 565.6, 539.8, 531.8, 
495.8, 485.7, 461.7, 451.7, 431.8, 417.7 and 385.9 (blubber extract). 
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Figure 3. The mass spectra of MBP-Br7, MBP-HBr6 and MBP-H2Br5 from both ECNI-MS 
(a, b and c, respectively) and TOF-MS (d, e and f, respectively) are shown.  Inset in panels 
(a), (b) and (c) are enlargements of the molecular ion cluster.  The isotope pattern of the 
molecular ion cluster for MBP-Br7: m/z 698 (100%), 700 (95.9%), 696 (63.4%), 702 (55.5%), 
694 (22.5%), and 704 (18.1%); for MBP-HBr6: m/z 620 (100%), 618 (79.1%), 622 (73.1%), 
616 (33.2%), 624 (28.9%), and 614 (5.8%); for MBP-H2Br5: m/z  536 (10.3%), 538 (51.5%), 
540 (100%), 542 (98.6%), 544 (47.7%), and 546 (9.8%). 
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Figure 4. Partial GC×GC chromatogram of (a) the total ion chromatogram of the MBP standard 
solution and (b) the MBPs in the D. delphis blubber extract resulting from the summation of the 
following ions (±0.5): 496, 540, 575, 620, 654 and 698.  Visible peaks that correspond to MBPs are 
circled in yellow, white or orange, and the internal standard, DMBP-Cl6 is circled in red.  We 
have drawn lines representing the MBPs containing only bromine (top, yellow) and MBPs 
containing one chlorine (bottom, white).  The MBPs that elute above these lines, and are 
proposed to be non- or mono-ortho, are circled in orange.  PCBs and chlorinated pesticides elute 
earlier than the MBPs in the second dimension, and can be seen beneath the MBPs in the lower 
left corner in the GC×GC chromatogram of the blubber extract in (b). 
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methyl-1,2’-bipyrroles (MBPs) 
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Abstract 

 The halogenated 1’-methyl-1,2’-bipyrroles (MBPs) are a suite of marine 

natural products that have been detected in marine mammals worldwide.  

Although their concentrations are similar to persistent organic pollutants that 

biomagnify, such as 2,2’,4,4’,5,5’-hexachlorobiphenyl (CB-153), it is not yet clear 

that these natural products also biomagnify.  Here we analyze MBPs and CB-153 

isolated from the blubber and liver of marine mammals stranded on the eastern 

coast of Massachusetts.  Four odontocete species (Delphinus delphis, 

Lagenorhynchus acutus, Phocoena phocoena and Globicephala melas) and two 

pinniped species (Halichoerus grypus and Phoca groenlandica) were sampled.  

MBPs were present in all odontocetes, but not detected in pinnipeds; CB-153 was 

detected in every species.   MBP patterns indicative of biomagnification were 
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found, including age-dependent concentration increases and reduced 

concentrations in adult females.  Also explored are the similarities and 

differences with CB-153, the effects of nutritional state on contaminant 

distribution, and the maternal transfer of blubber-based organic contaminants. 

1. Introduction 

The halogenated 1’-methyl-1,2’-bipyrroles (MBPs) are a suite of 

chlorinated and/or brominated congeners (Figure S1) and there is overwhelming 

evidence that they are natural products (1).  The organism or organisms that 

produces them has yet to be identified, but is likely marine, as these compounds 

have been found solely in marine samples (2).  The first congener found, the 

perchlorinated congener (MBP-Cl7), was detected in marine mammals in 1999 (3), 

and its structure was confirmed in 2002 (4).  Thus far, 29 primarily chlorinated 

congeners have been detected in samples from the Pacific (5) and 43 primarily 

brominated congeners in samples from the Atlantic (6).  MBPs have been found 

in a variety of trophic levels from marine food webs (5-7), as well as in human 

breast milk (8) and products for human consumption (9,10).  Despite their 

presence in these reservoirs, it is uncertain whether MBPs biomagnify. 

Biomagnification is a major concern for many anthropogenic compounds 

that are classified as persistent organic pollutants (POPs) (11), as well as for some 

halogenated natural products (HNPs), such as the halogenated 1,1’-dimethyl-

2,2’-bipyrroles (DMBPs) (12).  Man-made halogenated organic compounds 
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(HOCs) that biomagnify have been shown to have negative impacts on both 

human and environmental health (13,14).  Some of these health affects can occur 

at the concentrations detected in environmental samples (15).  Despite strict 

environmental controls that have been placed on the production, use and release 

of POPs (11), these compounds continue to be measured in an enormous variety 

of samples from all over the globe and in almost every ecosystem (15).  Due to 

their longevity, the ultimate fate of these compounds has yet to be determined.  

However, by studying HNPs that share many of the same physical and chemical 

properties as POPs, we can start to understand and predict their transport and 

metabolism.  Prior to this use, the similarities and differences between individual 

HNPs and their anthropogenic counterparts must be determined.  Ideally, 

biomagnification should occur in HNPs in order for them to prove useful in 

elucidating mechanisms that control the environmental concentrations of POPs. 

HNPs that have only a marine source, like the MBPs, may also prove 

useful in tracing the flux of HOCs from marine to terrestrial ecosystems.  This 

pathway is potentially a concern for human consumption of seafood.  Indeed, 

transfers of marine HNPs into human tissues has previously been demonstrated 

(8).  Therefore, marine HNPs may help gauge the seafood-based contribution to 

human uptake of POPs. 

Here we show the presence of MBPs in blubber and liver samples from 

North Atlantic marine mammals.  The MBP patterns are consistent with 
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biomagnification, which is not unexpected since MBPs are hydrophobic, as are 

the POPs, such as polychlorinated biphenyls (PCBs), that biomagnify.  For 

comparison, we also report on the abundance and distribution of the PCB 

2,2’,4,4’,5,5’-hexachlorobiphenyl (CB-153).  While the MBPs and CB-153 share 

some of the same patterns, there are intriguing differences in their distributions 

and this may be reflective of their different origins. 

2. Experimental 

2.1 Sampling 

The 25 animals analyzed in this study include both odontocetes (toothed 

whales) and pinnipeds (earless seals).  The odontocete samples consisted of liver 

and blubber tissue from thirteen common dolphins (Delphinus delphis), three 

Atlantic white-sided dolphins (Lagenorhynchus acutus), one harbor porpoise 

(Phocoena phocoena) and one long-finned pilot whale (Globicephala melas).  The 

pinniped samples consisted of liver and blubber tissue from two grey seals 

(Halichoerus grypus) and five harp seals (Phoca groenlandica).  The samples 

included males and females, adult and youth specimens, and spanned a range of 

nutritional states from robust to emaciated (Tables 1, S1).  All the samples were 

acquired through the Cape Cod Stranding Network, 23 were fatally stranded on 

Cape Cod from 2005-2007 and 2 were caught in fishing gear (the harbor porpoise 

and one grey seal) just south of New England. 

2.2 HOC extraction and purification 
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Blubber samples were extracted and HOCs purified following a 

previously published method (6).  Liver samples were kept frozen until ready for 

use.  Upon thawing, liver tissues were chopped into ~1 cm3 pieces and rinsed 

under cold water to remove excess blood.  The samples were freeze-dried, 

homogenized with mortar and pestle, and extracted using a Dionex ASE200 

Accelerated Solvent Extractor (ASE).  An ASE cell was packed with 2.5 g of 

homogenized, dry tissue and spiked with 25 µL of our internal standard, a 50.8 

ng µL-1 solution of 3,3’,4,4’,5,5’-hexachloro-1,1’-dimethyl-2,2’-bipyrrole (DMBP-

Cl6).  The ASE program extracted each cell three times at 100 °C and 1000 psi 

with a dichloromethane/methanol (90:10) solution.  The solvent was removed 

(Zymark TurboVap LV Evaporator) and the mass of the oily residue recorded as 

the total lipid extract (TLE).  Ten-mL of dichloromethane/hexane (50:50) was 

added to dissolve the TLE and the samples were then centrifuged at 2000 rpm for 

10 minutes.  The clear solution (10 mL) was decanted from the insoluble material.  

The lipids were removed using gel permeation chromatography and the HOCs 

were purified from the residual lipids with column chromatography as for 

blubber samples (6). 

2.3 Detection and quantification by GC/ECNI-MS 

Compounds were tentatively identified by gas chromatography mass 

spectrometry using electron capture negative ion mass spectrometry (GC/ECNI-

MS) in full scan mode with a previously published method (6).  Briefly, on an 
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Agilent 6890N series GC interfaced to an Agilent 5973 network mass selective 

detector, extracts were injected in splitless mode and separated by a J & W 

Scientific DB-XLB column (60 m × 0.25 mm i.d., 0.25 µm film thickness) using He 

as a carrier gas at a constant flow rate of 1.1 mL min-1.  The oven program was: 

initial temperature of 50 ºC, followed by a temperature increase at 20 ºC min-1 to 

115 ºC and held for 10 minutes, then a 2 ºC min-1 increase to 320 ºC, which was 

held for 15 minutes.  Methane was used as a reagent gas, and the source and 

transfer lines were maintained at 150 ºC.   

Each MBP was recognized by its relative retention time and congeners 

within a homolog series were designated by their halogen content plus a lower 

case letter (see Table 2 for nomenclature).  This nomenclature system is used 

because the full identification of these congeners has yet to be completed due to 

the lack of synthetic standards.  At this time we have a synthetic quantification 

standard for only the heptabrominated congener (MBP-Br7).  It was provided by 

Gordon Gribble (Dartmouth College) (16), along with our internal standard that 

was used to determine recovery percentages, DMBP-Cl6.  Congeners that are 

unavailable synthetically must be isolated in large quantity from an 

environmental matrix; we used this technique to isolate MBP-Br6Cl-b, MBP-

HBr6-b and MBP-HBr5Cl-d for use as quantification standards (6).  Recent work 

has established that the response factors of MBP homologs vary within an order 

of magnitude (17), which allows us to estimate concentrations (to one significant 
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figure) for homologs of the four MBPs for which we have standards.  The 

presence of MBPs not quantified is noted in Tables S4 and S6. 

In addition to the MBPs, we also analyzed our samples for the PCB CB-

153.  CB-153 was chosen because it has similar chemical and physical properties 

to the MBPs; importantly, both have large octanol-water partition coefficients, 

106.9 for CB-153 and a range of 107.2  to 108.3 for MBPs (1).  Additionally, CB-153 is 

known to biomagnify and is relatively abundant in environmental samples (18).  

It has been recommended for monitoring by various international organizations 

(19).  Thus, it has been very well studied in many environmental samples, and 

has been used previously for comparison with marine halogenated natural 

products (20).  Therefore, it is quite useful for comparison with our relatively 

newly-discovered MBPs. 

The extraction methods and quantification were tested by running blank 

samples, determining method detection limits for each MBP and CB-153, and by 

replicate analyses to determine the overall method errors.  Details on these 

protocols can be found in the Supplemental Information. 

3. Results and Discussion 

 This study examined six species of marine mammals stranded along the 

northeast coast of North America for the presence of halogenated MBPs in 

blubber and liver tissues.  To our knowledge, this is the first study to examine 

MBPs in G. melas and the first to analyze MBPs in liver samples from D. delphis, 
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P. phocoena, H. grypus and P. groenlandica.  MBPs have been previously detected 

in liver tissues from L. acutus (21,22).  Twenty-seven MBPs were detected, out of 

which four were quantified and concentrations were estimated for nine (Table 

S2).  From the MBPs measured, MBP-Br6Cl-b (Table 2) was chosen for direct 

comparison with CB-153 because it was the most abundant MBP measured in 

every sample, and it is representative of the MBP and ΣMBP (sum of MBPs for 

which concentrations were quantified or estimated, Table 2) patterns in our data 

set.  MBPs in odontocete tissues were present at concentrations similar to that of 

CB-153, suggesting that MBPs may biomagnify throughout the North Atlantic 

food web.  The abundance of MBPs in odontocete blubber relative to CB-153 is 

orders of magnitude greater than what has been observed for another suite of 

natural halogenated bipyrroles, the DMBPs (20). 

MBPs were present in all odontocetes, though concentrations between 

individuals varied widely (Tables S3-S6).  MBP-Br6Cl-b was always the most 

abundant MBP out of those for which concentrations were quantified or 

estimated; the other MBPs detected (Tables S4 and S6) had very small peaks and, 

presumably, abundances.  MBP individual congener profiles did show a 

consistent pattern, four congeners dominated the profiles of every sample: MBP-

Br7, MBP-Br6Cl-b, MBP-HBr6-b and MBP-HBr5Cl-d.  MBPs were present in 

similar concentrations (ΣMBP ~ 2.0 µg/g lipid) in the blubber of all odontocete 

species investigated (Table 2) and individual variation (Table S3) exceeded the 
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variation between species averages (Table 2).  There was more variation in the 

liver concentrations of MBPs (Table 2); the average dolphin ΣMBP concentration 

(~2.6 µg/g lipid) far exceeded that of the harbor porpoise and pilot whale (0.08 

µg/g lipid and 0.18 µg/g lipid, respectively).  The concentration of CB-153 varied 

between odontocete species, but was present at similar concentrations to MBP-

Br6Cl-b in blubber (~1.0 µg/g lipid) and liver (~2.5 µg/g lipid), with the 

exception of the liver of the harbor porpoise for which the concentration was 

below the detection limit (Table 2). 

The high concentrations of MBPs in all odontocete samples, and their 

similarities to the CB-153 concentrations, are consistent with biomagnification, 

which is the increase of the lipid-normalized concentration of a contaminant with 

trophic level (23).  Previous work has established that biomagnification can occur 

for hydrophobic compounds with octanol/water partition coefficients exceeding 

104 (24).  Additionally, these compounds must be persistent to avoid any 

appreciable abiotic or enzymatic degradation.  Contaminant concentrations 

increase in the tissues of each trophic level because the persistent compounds are 

not significantly metabolized with the rest of the prey and the fugacity of the 

contaminant increases in the stomach as the prey tissue is digested (25).  This 

increased fugacity during digestion explains how contaminants are transferred 

against the apparent thermodynamic fugacity gradient.   

3.1 Age dependence of contaminant concentrations 
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In addition to high concentrations, the processes that produce 

biomagnification also result in age-specific patterns within a marine mammal 

population.  (To avoid the complications of interspecies comparison, here we 

limit our data set to the 13 D. delphis samples.)  Due to constant exposure, 

concentrations of biomagnifying compounds increase with age in male 

mammals.  Although the exact age of the individuals was unknown, we are able 

to categorize them as juvenile or adult, and as male or female.   With this 

information, we can use length as a proxy for age among animals of the same 

category (juvenile/adult, male/female).  Among the D. delphis samples, blubber 

concentrations for both MBP-Br6Cl-b and CB-153 increase with length in adult 

males (Figure 1), implying that these concentrations increase with age. 

A different pattern is evident in younger juveniles, their concentrations 

decrease then increase with increasing length (Figure 1).  Due to their small size 

and milk-based diet, which places them at a higher trophic level, nursing calves 

tend to have relatively high body burdens of HOCs (26-28).  As they grow and 

switch to a non-milk diet, blubber volume increases and dietary concentrations 

of HOCs decrease.  These changes both result in a characteristic growth dilution 

pattern for this age group (29).  In older individuals, growth dilution is overcome 

as growth rate slows and blubber concentrations increase (29).  These patterns 

not only match experimental evidence on PCBs, but also show the same features 

as described by numerical biomagnification models (26-29). 
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There is an interesting difference between the MBPs and CB-153 in the age 

(length) at which the switch from growth dilution to adult accumulation patterns 

occurs.  The concentration of MBP-Br6Cl-b decreases with increasing length until 

just past 180 cm, at which point the concentrations in juvenile and adult male 

samples increase dramatically.  However, in CB-153 there is a sharp reduction in 

concentration after the smallest juvenile, but concentrations then generally 

increase with length from 160 cm through the rest of the juvenile and adult male 

samples.  This difference could be due to the limited number of samples, or it 

may be due to inherent differences between these two types of compounds.  

Such differences between natural and anthropogenic compounds may be 

explained by two different, but not necessarily mutually exclusive, causes.  These 

are their distinctive origins and differences in the ability of degradative enzymes 

to act upon them.  In the first case, we expect that the distribution of natural and 

anthropogenic compounds in the marine environment to be different.  CB-153 is 

a ubiquitous pollutant, and is present in both terrestrial and marine ecosystems 

(11); thus, it has multiple inputs to the marine ecosystem.  MBPs are natural 

products that have only been detected in marine samples or samples closely tied 

to the marine food web (2,5,6).  It is likely that they are made by a specific 

organism or group of organisms, and thus their source is much more limited 

than that of CB-153.  From this source difference, it is likely that MBPs and CB-

153 enter and move through the marine food web differently.  Unlike the 
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ubiquitous CB-153, MBPs may have a limited distribution among the species of 

the North Atlantic food web, though this has yet to be verified.  If this were the 

case it would not be surprising if MBP concentrations were more variable than 

those of CB-153 among prey species. 

Secondly, the enzymes that degrade both types of compounds have 

evolved in the presence of HNPs (30).  Thus, it would not be surprising if these 

enzymes could more easily degrade MBPs than the newly introduced CB-153.  It 

is well established that the degree of chlorination and substitution patterns affect 

enzymatic degradation of PCBs. Dehalogenation studies performed using marine 

mammal hepatic cells suggest that HOCs can undergo cyctochrome P450 

metabolism, and congeners with ortho-meta unsubstituted sites are more 

available for metabolism (31).  CB-153 has both ortho- and meta- chlorine 

substituents, structural aspects that are consistent with its persistence and 

tendency to biomagnify.  It is likely that these degradation patterns will also 

apply to MBPs, since the same enzyme systems are likely involved in their 

dehalogenation and degradation. 

In the D. delphis samples, the difference observed between CB-153 and the 

MBPs may be explained by these differences between natural and anthropogenic 

compounds.  In milk, the dose of lipophilic compounds, such as CB-153 (26-28), 

is high relative to that of an adult food source, and it is likely that lipophilic 

MBPs are also relatively enriched in milk.  However, both a limited distribution 
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of MBPs and an enhanced susceptibility to degradation could lower the dose of 

MBPs relative to CB-153 for newly weaned dolphins.  From this lower dose, we 

would expect to see a longer transition for MBPs from the growth dilution phase 

to the age accumulation trend evident in older animals. 

3.2 Maternal transfer of contaminants 

Adult females of our D. delphis data set display significantly reduced MBP 

blubber concentrations relative to males or to juveniles of similar length (Figure 

1).  Although females experience similar exposure to males, they have an 

additional removal process for HOCs.  During gestation and lactation, blubber-

based contaminants can be mobilized and transferred to offspring (26-28,32).  

Thus, among adult mammals, females tend to have much lower contaminant 

body burdens than do males.  

Maternal transfer of contaminants can be examined more directly in our 

data set.  An adult female (CCSN06-264Dd) and a male calf (CCSN06-263Dd) D. 

delphis were found stranded together.  Based on observational evidence it is 

possible that the two are a cow-calf pair.  The calf was quite young, the female 

had three follicular scars – morphology consistent with pregnancy (33), no other 

dolphins were found in the vicinity, and the HOC concentrations in the female’s 

blubber and liver were indicative of gestational/lactational transfer.  Regardless 

of direct kinship, it is highly probably that these two individuals belonged to the 



 78 

same D. delphis population and are representative of young juveniles and adult 

females from that group.  

For our presumed cow-calf pair, the concentration of MBPs and CB-153 

were much lower in the adult female than in her presumed offspring, though the 

MBP congener profiles in the blubber of each animal were very similar (Figure 

2).  As compared to CB-153, the MBPs have a higher juvenile male/adult female 

ratio.  This is surprising since replacement of chlorine substituents with bromine 

results in higher Kows in HOCs (34), so highly brominated compounds would be 

more likely to remain in the blubber than be transferred to milk, and thus, 

offspring.  In fact, past studies have shown that the less lipophilic compounds 

are mobilized from maternal blubber and transferred to offspring, and the more 

lipophilic compounds were retained in the maternal blubber (26,28,35).  

However, there are a few studies that indicate selective mobilization of 

brominated compounds compared with chlorinated compounds into blood 

plasma (28) or milk (36).  If this is the case, then once mobilized the more 

brominated MBPs may partition more strongly into the blubber of the offspring 

than more chlorinated HOCs, such as PCBs.  Although this explains our results, 

it is dependent upon selective MBP mobilization from maternal blubber. 

3.3 Comparison of nutritionally-compromised and healthy individuals 

To further understand how the blubber mobilization affects these 

compound concentrations, we compared the blubber and liver concentrations of 
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MBPs in all odontocete samples.  The presence of MBPs in the liver of the 

odontocete samples was anticipated based on the relatively high lipid content of 

the liver relative to other body tissues and the presence of detectable levels of 

MBPs in the blubber of these individuals.  Concentrations in liver samples were 

generally about the same order of magnitude as for the blubber samples (on a 

lipid-normalized basis).  Sorting by body condition (Table 1) results in higher 

liver MBP concentrations relative to blubber in nutritionally compromised 

individuals (Table S1).  However upon averaging these values, the pattern is 

overwhelmed by large differences in the absolute concentrations of MBPs and 

CB-153 among these samples.  When this interference is removed (by 

normalizing the liver concentrations to the blubber concentrations), individuals 

with body conditions characterized as robust or good have significantly 

(Wilcoxon-Mann-Whitney rank sum test, p = 0.001) lower MBP-Br6Cl-b in their 

blubber as compared to their liver (Figure 3).  Interestingly, CB-153 is statistically 

the same in both groupings (p = 0.596), again showing differences between these 

two types of HOCs (Figure 3).  

This significant difference between liver and blubber samples may be 

explained by the roles of blubber and liver tissues, and their sensitivity to rapid 

changes in blood concentrations of contaminants.  Blubber is a dynamic 

reservoir, and in times of energetic need its lipids can be mobilized and its mass 

reduced (37-39).  Since blubber is the major reservoir for lipophilic HOCs, lipid 
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mobilization can intensely affect their blubber concentrations.  Contaminants can 

be mobilized into the bloodstream, where they are more susceptible to 

metabolism, but, potentially, they are also more available to cause toxicity (40).  

In studies of other animals, nutritional stress has been shown to redistribute 

HOCs from lipid-storage reservoirs into other tissues (41,42).  Liver is more 

vascularized than blubber and may better reflect changes on a short time-scale. 

The distributions of MBP-Br6Cl-b and CB-153 in nutritionally 

compromised animals suggests that either MBP-Br6Cl-b is more efficiently 

mobilized during times of nutritional stress, or that odontocetes are better able to 

rid their liver, and/or the bloodstream, of PCBs than of MBPs.  The first 

explanation is consistent with previous evidence presented regarding the 

maternal transfer of MBPs, other highly brominated organic compounds, and 

PCBs.  The second possibility is not consistent with other evidence presented 

here, but it cannot be excluded without further study. 

3.4 Interspecies differences 

Finally, there is also a major difference between CB-153 and MBPs in the 

seal samples. MBP concentrations fell below the detection limit for all pinniped 

samples (Table 2).  However, average concentrations of CB-153 in pinniped 

blubber (~0.11 µg/g lipid) were in the same range, though at the low end, as 

concentrations in odontocete blubber.  The average CB-153 concentration in 
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pinniped liver samples (~1.1 µg/g lipid) was higher than pinniped blubber 

samples, but that average reflects a very large range in values.  

These results are consistent with previous studies on other 

bioaccumulating HNPs.  Past work on a set of biomagnifying halogenated 

bipyrroles has shown that ringed seals (Phoca hispida) had lower blubber 

concentrations than would be expected based on their trophic position (12).  

Additionally, harbor seals (P. phocoena) were shown to have lower blubber 

concentrations of MBP-Cl7 than do harbor porpoises from the same geographic 

region, despite sharing comparable concentrations of the POP trans-nonachlor 

(43).  Either differences in diet or in metabolic capabilities could explain the low 

HNP load of seals as compared with the odontocetes.  The presence of CB-153 in 

the seal samples may indicate that seals share dietary exposure to HOCs but 

selectively degrade MBPs, or it could indicate different distributions between 

anthropogenic and natural HOCs in the food web.  In either case, there is a 

distinct difference between the natural MBPs and anthropogenic CB-153 in the 

seal samples. 

The results presented herein suggest that MBPs biomagnify in marine 

food webs.  Our results support previous evidence that there are subtle, but 

potentially important, differences between anthropogenic and naturally 

produced compounds that biomagnify in these ecosystems (12,43).  In order to 

prove the biomagnification of MBPs, a full trophic level analysis of these 
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compounds must be accomplished.  This would also serve to further elucidate 

the differences found between POPs and HNPs within food webs, particularly 

clarifying whether prey preference is responsible for the lack of HNPs within 

seals.  In conjunction with the results that we have presented here, future studies 

will help determine whether MBPs can be high-quality models for 

understanding the future of POPs. 
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Table 1.   Species, gender and maturity distributions for the 25 samples analyzed.  Age was 
determined as the average length at which that species becomes sexually mature.  The body 
condition of the animals was determined during necropsy as robust, good, thin or emaciated.  
Here we divide the animals into two groupings.  A robust classification includes animals stated 
as in robust and good condition.  A compromised classification includes animals in a thin or 
emaciated condition.  Species accompanied by asterisks (*) are pinnipeds (earless seals), the 
remaining species are odontocetes (toothed whales). 

 Gender Age Body Condition 

Species # male # female # mature # immature # robust # compromised 

D. delphis 9 4 9 4 6 7 

L. acutus 1 2 1 2 2 1 

H. grypus* 2 0 0 2 0 2 

P. groenlandica* 4 1 1 4 0 5* 

P. phocoena 1 0 0 1 1 0 

G. melas 1 0 0 1 0 1 
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Table 2.  Lipid-normalized concentrations (ng g-1 lipid) of individual MBP congeners and CB-153 in the 
blubber and liver of 6 marine mammal species.  Data is grouped by species for the odontocetes; due to 
similarities the two pinniped species (H. grypus and P. groenlandica) were grouped togther.  For each 
compound the mean and a range is given. In categories where n>1 the range reflects the variability within 
the group as the 90% Confidence Interval.  In categories for which n = 1, the compound-specific standard 
error is stated.  The method measurement error for each compound is lower than 10% for CB-153 and all 
MBPs in the blubber (except for MBP-HBr6-c and MBP-HBr6-d, which were 29% and 11%, respectively, 
likely due to their low concentrations).  The errors for all MBPs in the liver range from 19%-31%, and 
again are likely high due to the small samples.  Compounds for which we have quantification standards 
are reported to 2 significant figures and are in bold.  Concentrations for homologes are estimated to one 
significant figure. 

Congener 
Rel. 
RT* 

Detection 
Limit 

D. delphis 
n  = 13 

L. acutus 
n = 3 

P. phocoena 
n = 1 

G. melas 
n = 1 

Seals 
n = 7 

BLUBBER 
MBP-Br7 1.754 130 380±140 350±180 470±20 250±10 < d.l 

MBP-Br6Cl-a 1.682 0.7 9±6 5±2 7±0.4 4±0.2 < d.l 
MBP-Br6Cl-b 1.685 150 1000±300 1100±500 1100±100 490±40 < d.l 
MBP-HBr6-a 1.543 3 20±10 6±2 9±1 8±1 < d.l 
MBP-HBr6-b 1.554 59 350±130 250±100 280±20 170±10 < d.l 
MBP-HBr6-c 1.637 3 10±10 6±6 20±5 10±3 < d.l 
MBP-HBr6-d 1.690 2 60±40 30±10 60±6 80±9 < d.l 

MBP-HBr5Cl-a 1.469 8 80±30 50±20 70±3 40±2 < d.l 
MBP-HBr5Cl-b 1.473 2 100±200 5±2 6±0.4 4±0.3 < d.l 
MBP-HBr5Cl-c 1.478 1 9±6 2±1 2±0.2 2±0.1 < d.l 
MBP-HBr5Cl-d 1.483 73 520±180 560±180 650±40 310±20 < d.l 
MBP-HBr5Cl-e 1.565 40 70±50 60±50 100±40 80±20 < d.l 
MBP-HBr5Cl-f 1.625 10 100±100 30±10 90±5 200±10 < d.l 

ΣMBP   3000±1000 2000±1000 3000±200 2000±100 < d.l 
        

CB-153 1.380 62 1000±400 1400±500 1200±100 740±70 150±70 
(continued on next page)
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Table 2. (continued) 
LIVER 

MBP-Br7 1.754 100 260±210 570±610 < d.l. 140±30 < d.l. 
MBP-Br6Cl-b 1.685 1100 1500±1000 1600±1400 < d.l. < d.l. < d.l. 
MBP-HBr6-b 1.554 200 250±190 220±220 < d.l. < d.l. < d.l. 

MBP-HBr5Cl-d 1.483 800 <d.l. <d.l. < d.l. < d.l. < d.l. 
MBP-HBr5Cl-e 1.565 40 50±50 100±100 80±20 40±10 < d.l. 

ΣMBP   3000±2000 3000±3000 80±20 200±40 < d.l. 
        

CB-153 1.380 53 2400±1600 1500±500 < d.l. 1400±300 1100±1500 
* The relative retention times (Rel. RT) were determined under the conditions described in Experimental 
section 2.3, and were calculated relative to 2,2’,4,6-tetrachlorobiphenyl (CB-50). 
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Figure 1. Lipid-normalized concentrations of (a) MBP-Br6Cl-b and (b) CB-153 
in the blubber of 13 common dolphins (D. delphis).  Adult females are plotted 
with solid squares, adult males with open squares, and juveniles of both 
genders are plotted with open diamonds.  Length (cm) is plotted on the x-axis 
as a proxy for the age of the individuals.  Note that there is overlap between 
adult females and juvenile males on the x-axis.  This is a function of both 
sexual dimorphism (the average length of mature females is smaller than that 
of mature males) and that females attain sexual maturity at a younger age, and 
therefore shorter length. 
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Figure 2.  Lipid normalized concentrations of MBPs and CB-153 in the blubber of a 
pair of common dolphins (D. delphis) found stranded together.  MBPs are plotted with 
solid circles and CB-153 is plotted with an open circle.  Error bars are not visible as 
they are smaller than the circles.  Many MBPs were below the detection limit (< d.l.) in 
the adult female (the presumed cow).  However, the detection limits for these 
compounds fall along the line formed by the measured MBPs, and it is possible that 
the MBPs below the detection limit continue the trend established by the measured 
MBPs. 
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Figure 3. The mean (18 odontocetes) of liver concentrations relative to blubber 
concentrations (both lipid-normalized) of MBP-Br6Cl (shaded bar) and CB-153 (open 
bar).  Odontocetes are divided into two groups based on their state of health, those in a 
nutritionally-compromised state and those of robust health (Table 1). 
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BRIEF 

Halogenated 1’-methyl-1,2’-bipyrroles were analyzed in liver and blubber tissues 

of 25 marine mammals; the patterns exhibited are consistent with 

biomagnification. 
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Quality Controls: blanks, detection limit and error 

 Blanks were analyzed for both the blubber and liver methods, no MBPs or 

PCBs were detected in the blanks.  The blubber blank consisted of vegetable oil 

and the liver blank was made of an ASE cell packed with combusted sand.  Both 

types of blanks were spiked with the same internal standard in order to ensure 

full extraction. 

 The detection limit of the blubber and liver methods were determined 

separately.  Seven replicates of 10% of a normal sample (0.10 g blubber oil and 

0.25 g dried liver) were extracted and analyzed from a common dolphin (Cape 

Cod Stranding Network accession number: CCNS06-013Dd).  The detection limit 

was calculated as three times the standard deviation of these seven replicates (1), 

thus it was positively correlated with the abundance of each congener in this 

sample.  The detection limit had a range of 0.7-150 ng g-1 lipid for blubber 

samples and 40-1100 ng g-1 for liver samples (Table 1).  For compounds that were 

not quantified, the detection limit calculation was performed on the relative 

abundance of the compound compared to the recovery standard, 2,2’,4,6-

tetrachlorobiphenyl (CB-50). 

 The error associated with the analysis was determined by running 

replicate samples from five mammals.  For each individual mammal, three 

blubber replicates and two liver replicates were analyzed.  The standard error of 

the mean relative to the mean concentration was calculated for each compound 
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of interest in each set of replicates.  This relative standard error for each set of 

replicates was then averaged to give a generalized error for each compound of 

interest (Tables S3 and S5).  

 

(1) Glaser, J. A.; Foerst, D. L.; McKee, G. D.; Quave, S. A.; Budde, W. L. Trace 
analyses for wastewaters. Environ. Sci. Technol. 1981, 15, 1426-1435.
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Table S1. Descriptions of the individual mammals sampled in this study are presented.  “NA” indicates that a data point was 
not acquired. 

CCSN ID 
number Genus species Common name gender age 

length 
(cm) 

weight 
(kg) condition 

CCSN05-316Dd Delphinus delphis Common dolphin M NA 216.2 100 Robust 
CCSN06-013Dd Delphinus delphis Common dolphin M NA 195.5 NA Robust 

CCSN06-022La Lagenorhynchus acutus 
Atlantic white-
sided dolphin F Adult 205.0 135 Robust 

CCSN06-024Dd Delphinus delphis Common dolphin F Adult 216.8 110 NA 
CCSN06-029Dd Delphinus delphis Common dolphin F Adult 200.0 105 Robust 
CCSN06-096Dd Delphinus delphis Common dolphin M Subadult 184.0 60 Thin 

CCSN06-119La Lagenorhynchus acutus 
Atlantic white-
sided dolphin M Subadult 193.0 100 Good 

CCSN06-133Pg Phoca groenlandica Harp seal M Male 160.0 91 Thin 
CCSN06-137Dd Delphinus delphis Common dolphin M NA 196.0 90 Thin 
CCSN06-263Dd Delphinus delphis Common dolphin M Yearling 160.2 46 Robust 
CCSN06-264Dd Delphinus delphis Common dolphin F Adult 203.2 72 Emaciated 

CCSN07-022Gm Globicephala melas 
Long-finned pilot 
whale 

M Subadult 352.0 560 Thin 

CCSN07-023La Lagenorhynchus acutus 
Atlantic white-
sided dolphin F Subadult 182.5 64 Emaciated 

CCSN07-036Dd Delphinus delphis Common dolphin M Adult 214.0 135 Thin 
CCSN07-040Dd Delphinus delphis Common dolphin M NA 225.0 130 Robust 
CCSN07-041Dd Delphinus delphis Common dolphin M Adult 202.8 NA Thin 
CCSN07-063Pg Phoca groenlandica Harp seal F Yearling 101.2 25 Thin 
CCSN07-080Pg Phoca groenlandica Harp seal M Juvenille 101.5 29 Thin 
CCSN07-084Pg Phoca groenlandica Harp seal M Yearling 101.0 22 Thin 
CCSN07-109Dd Delphinus delphis Common dolphin M Subadult 172.0 55 Emaciated 
CCSN07-115Dd Delphinus delphis Common dolphin F Subadult 148.8 NA Emaciated 
CCSN07-116Pg Phoca groenlandica Harp seal M Yearling 98.5 25 Thin 
CCSN07-129Hg Halichoerus grypus Gray seal M Yearling 104.5 142 Thin 
D07041 Phocoena phocoena Harbor porpoise M Subadult 126.0 35.0 Robust 
D08742 Halichoerus grypus Gray seal M Juvenille 105.0 25.5 Thin 
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Table S2.  The GC/ECNI-MS relative retention times and quantification ions of 
the compounds that are discussed in this study.  These times are relative to CB-
50 under the conditions described in the methods section (section 2.3).  
Concentrations of compounds in the upper section were quantified or 
estimated (Tables S3 and S5), the detection of those in the lower section is 
noted in Tables S4 and S5. 
Compound Relative Retention Time Quantification Ion 

CB-50 1.000 257.0 

MBP-Br7 1.754 697.7 

MBP-Br6Cl-a 1.682 653.7 

MBP-Br6Cl-b 1.685 653.7 

MBP-HBr6-a 1.543 619.7 

MBP-HBr6-b 1.554 619.7 

MBP-HBr6-c 1.637 619.7 

MBP-HBr6-d 1.690 619.7 

MBP-HBr5Cl-a 1.469 575.7 

MBP-HBr5Cl-b 1.473 575.7 

MBP-HBr5Cl-c 1.478 575.7 

MBP-HBr5Cl-d 1.483 575.7 

MBP-HBr5Cl-e 1.565 575.7 

MBP-HBr5Cl-f 1.625 575.7 

CB-153 1.380 360.0 

   

MBP-Br5Cl2-a 1.608 609.8 

MBP-Br5Cl2-b 1.612 609.8 

MBP-H2Br5-a 1.324 539.8 

MBP-H2Br5-b 1.421 539.8 

MBP-H2Br5-c 1.424 539.8 

MBP-H2Br5-d 1.458 539.8 

MBP-HBr4Cl2-a 1.393 531.8 

MBP-HBr4Cl2-b 1.401 531.8 

MBP-HBr4Cl2-c 1.405 531.8 

MBP-H2Br4Cl-a 1.248 495.8 

MBP-H2Br4Cl-b 1.339 495.8 

MBP-H2Br4Cl-c 1.349 495.8 

MBP-H2Br4Cl-d 1.385 495.8 

MBP-Cl7 1.225 385.7 
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Table S3.  Individual concentrations (ng g-1 lipid) of CB-153 and the MBPs quantified or estimated from blubber are presented.  
Compounds for which a quantification standard is available were quantified and are given to 2 significant figures.  Homologes of 
these compounds were estimated to one significant figure, as described in section 2.3.  The method error for the measurement of 
each compound is given as ±X%, and the calculation is described on page S1. 

CCSN ID 
number 

MBP-Br7 
±4% 

MBP-Br6Cl-a 
±6% 

MBP-Br6Cl-b 
±9% 

MBP-HBr6-a 
±6% 

MBP-HBr6-b 

±5% 
MBP-HBr6-c 

±29% 
MBP-HBr6-d 

±11% 
CCSN05-316Dd 200 2 790 3 200 5 10 
CCSN06-013Dd 520 9 1100 10 390 10 50 
CCSN06-022La 550 7 1700 8 360 10 40 
CCSN06-024Dd <d.l. 1 360 <d.l. 82 <d.l. 9 
CCSN06-029Dd <d.l. <d.l. 170 <d.l. <d.l. <d.l. 3 
CCSN06-096Dd 130 2 540 5 190 3 20 
CCSN06-119La 330 4 1000 6 230 4 30 
CCSN06-133Pg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
CCSN06-137Dd 250 5 790 10 290 <d.l. 30 
CCSN06-263Dd 700 8 1100 40 520 40 70 
CCSN06-264Dd <d.l. 1 420 <d.l. <d.l. <d.l. 9 
CCSN07-022Gm 250 4 490 8 170 10 80 
CCSN07-023La 170 2 650 3 150 <d.l. 20 
CCSN07-036Dd 690 10 1300 20 520 <d.l. 40 
CCSN07-040Dd 560 50 2700 100 1000 60 50 
CCSN07-041Dd 690 10 1300 10 450 4 50 
CCSN07-063Pg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
CCSN07-080Pg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
CCSN07-084Pg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
CCSN07-109Dd 260 4 970 10 250 5 70 
CCSN07-115Dd 900 20 1800 40 570 40 300 
CCSN07-116Pg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
CCSN07-129Hg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
D07041 470 7 1100 9 280 20 60 
D08742 <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
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Table S3. (continued) 
CCSN ID 
number 

MBP-HBr5Cl-a 
±4% 

MBP-HBr5Cl-b 
±7% 

MBP-HBr5Cl-c 
±7% 

MBP-HBr5Cl-d 
±6% 

MBP-HBr5Cl-e 
±24% 

MBP-HBr5Cl-f 
±6% 

CB-153 

±10% 
CCSN05-316Dd 20 5 2 370 40 20 170 
CCSN06-013Dd 90 10 4 710 70 70 870 
CCSN06-022La 60 7 2 760 100 40 1100 
CCSN06-024Dd 10 3 <d.l. 190 <d.l. 10 210 
CCSN06-029Dd <d.l. <d.l. <d.l. 70 <d.l. <d.l. 100 
CCSN06-096Dd 30 5 2 390 <d.l. 50 980 
CCSN06-119La 50 5 2 560 70 40 1100 
CCSN06-133Pg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 100 
CCSN06-137Dd 60 10 40 62 <d.l. 60 1400 
CCSN06-263Dd 90 20 8 830 300 300 300 
CCSN06-264Dd 10 <d.l. <d.l. 140 <d.l. 20 240 
CCSN07-022Gm 40 4 2 310 80 200 740 
CCSN07-023La 30 3 <d.l. 380 <d.l. 20 2100 
CCSN07-036Dd 100 20 6 930 40 60 2900 
CCSN07-040Dd 200 1000 40 340 50 400 650 
CCSN07-041Dd 90 10 4 810 50 70 1600 
CCSN07-063Pg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 250 
CCSN07-080Pg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
CCSN07-084Pg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 130 
CCSN07-109Dd 80 9 4 700 80 200 670 
CCSN07-115Dd 200 30 10 1300 400 600 1500 
CCSN07-116Pg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
CCSN07-129Hg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 270 
D07041 70 6 2 650 100 90 1200 
D08742 <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
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Table S4.  The detection of compounds in blubber for which concentrations were not quantified or estimated.  Compounds above the 
detection limit (as described in page S1) are indicated with a (+), compounds below the detection limit are unmarked. 

CCSN ID 
number MBP-Br5Cl2-a MBP-Br5Cl2-b MBP-H2Br5-a MBP-H2Br5-b MBP-H2Br5-c MBP-H2Br5-d 
CCSN05-316Dd + + +  + + 
CCSN06-013Dd + + + + + + 
CCSN06-022La + + + + + + 
CCSN06-024Dd +  + + + + 
CCSN06-029Dd   +  +  
CCSN06-096Dd + + + + + + 
CCSN06-119La + + + + + + 
CCSN06-133Pg       
CCSN06-137Dd + + + + + + 
CCSN06-263Dd + + + + + + 
CCSN06-264Dd +  +  +  
CCSN07-022Gm + + + + + + 
CCSN07-023La + + +  + + 
CCSN07-036Dd + + + + + + 
CCSN07-040Dd + + + + + + 
CCSN07-041Dd + + + + + + 
CCSN07-063Pg       
CCSN07-080Pg       
CCSN07-084Pg       
CCSN07-109Dd + + + + + + 
CCSN07-115Dd + + + + + + 
CCSN07-116Pg       
CCSN07-129Hg       
D07041 + + + + + + 
D08742       
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Table S4. (continued) 
CCSN ID number MBP-HBr4Cl2-a MBP-HBr4Cl2-b MBP-HBr4Cl2-c 
CCSN05-316Dd  + + 
CCSN06-013Dd + + + 
CCSN06-022La + + + 
CCSN06-024Dd + + + 
CCSN06-029Dd    
CCSN06-096Dd + + + 
CCSN06-119La + + + 
CCSN06-133Pg    
CCSN06-137Dd + + + 
CCSN06-263Dd  + + 
CCSN06-264Dd  + + 
CCSN07-022Gm + + + 
CCSN07-023La + + + 
CCSN07-036Dd + + + 
CCSN07-040Dd + + + 
CCSN07-041Dd + + + 
CCSN07-063Pg    
CCSN07-080Pg    
CCSN07-084Pg    
CCSN07-109Dd + + + 
CCSN07-115Dd + + + 
CCSN07-116Pg    
CCSN07-129Hg    
D07041 + + + 
D08742    
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Table S4. (continued) 
CCSN ID number MBP-H2Br4Cl-a MBP-H2Br4Cl-b MBP-H2Br4Cl-c MBP-H2Br4Cl-d MBP-Cl7 
CCSN05-316Dd +  + + + 
CCSN06-013Dd + + + + + 
CCSN06-022La + + + + + 
CCSN06-024Dd + + + + + 
CCSN06-029Dd   +   
CCSN06-096Dd + + + + + 
CCSN06-119La + + + + + 
CCSN06-133Pg      
CCSN06-137Dd + + + + + 
CCSN06-263Dd + + + + + 
CCSN06-264Dd +  + + + 
CCSN07-022Gm + + + + + 
CCSN07-023La + + + + + 
CCSN07-036Dd + + + + + 
CCSN07-040Dd + + + + + 
CCSN07-041Dd + + + + + 
CCSN07-063Pg      
CCSN07-080Pg      
CCSN07-084Pg      
CCSN07-109Dd + + + + + 
CCSN07-115Dd + + + + + 
CCSN07-116Pg      
CCSN07-129Hg      
D07041 + + + + + 
D08742      
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Table S5.  Individual concentrations (ng g-1 lipid) of CB-153 and the MBPs quantified or estimated from liver are presented.  Compounds 
for which a quantification standard is available were quantified and are given to 2 significant figures.  Homologes of these compounds 
were estimated to one significant figure, as described in section 2.3.  The method error for the measurement of each compound is given as 
±X%, and the calculation is described on page S1. 

CCSN ID 
number 

MBP-Br7 
±21% 

MBP-Br6Cl-b 
±22% 

MBP-HBr6-b 
±22% 

MBP-HBr5Cl-d 
±31% 

MBP-HBr5Cl-e 
±19% 

CB-153 
±10% 

CCSN05-316Dd <d.l. <d.l. <d.l. <d.l. <d.l. 630 
CCSN06-013Dd 180 1300 210 <d.l. <d.l. 1800 
CCSN06-022La 100 <d.l. <d.l. <d.l. <d.l. 1000 
CCSN06-024Dd <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
CCSN06-029Dd <d.l. <d.l. <d.l. <d.l. <d.l. 93 
CCSN06-096Dd <d.l. <d.l. <d.l. <d.l. 40 820 
CCSN06-119La 300 1700 210 <d.l. 80 1500 
CCSN06-133Pg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
CCSN06-137Dd 550 3600 640 2000 100 820 
CCSN06-263Dd <d.l. <d.l. <d.l. <d.l. <d.l. 2600 
CCSN06-264Dd <d.l. <d.l. <d.l. <d.l. <d.l. 920 
CCSN07-022Gm 140 <d.l. <d.l. <d.l. 40 1400 
CCSN07-023La 1300 3000 460 940 300 2000 
CCSN07-036Dd 860 3600 750 1700 40 13000 
CCSN07-040Dd <d.l. <d.l. <d.l. <d.l. <d.l. 4200 
CCSN07-041Dd 310 2100 360 930 40 4400 
CCSN07-063Pg <d.l. <d.l. <d.l. <d.l. <d.l. 6500 
CCSN07-080Pg <d.l. <d.l. <d.l. <d.l. <d.l. 130 
CCSN07-084Pg <d.l. <d.l. <d.l. <d.l. <d.l. 890 
CCSN07-109Dd <d.l. 1100 <d.l. <d.l. 40 660 
CCSN07-115Dd 1500 7300 1300 3700 400 1500 
CCSN07-116Pg <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
CCSN07-129Hg <d.l. <d.l. <d.l. <d.l. <d.l. 270 
D07041 <d.l. <d.l. <d.l. <d.l. 80 <d.l. 
D08742 <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 
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Table S6. The detection of compounds in liver for which concentrations were not quantified or estimated.  Compounds above the 
detection limit (as described in page S1) are indicated with a (+), compounds below the detection limit are unmarked. 

CCSN ID number MBP-H2Br5-a MBP-H2Br4Cl-a MBP-H2Br4Cl-c MBP-H2Br4Cl-d MBP-Cl7 
CCSN05-316Dd + + + + + 
CCSN06-013Dd + + + + + 
CCSN06-022La + + + + + 
CCSN06-024Dd + + + + + 
CCSN06-029Dd      
CCSN06-096Dd + + + + + 
CCSN06-119La + + + + + 
CCSN06-133Pg      
CCSN06-137Dd + + + + + 
CCSN06-263Dd +  +  + 
CCSN06-264Dd      
CCSN07-022Gm + +    
CCSN07-023La + + + + + 
CCSN07-036Dd + + + + + 
CCSN07-040Dd +  + + + 
CCSN07-041Dd + + + + + 
CCSN07-063Pg      
CCSN07-080Pg      
CCSN07-084Pg      
CCSN07-109Dd + + + + + 
CCSN07-115Dd + + + + + 
CCSN07-116Pg      
CCSN07-129Hg      
D07041 + + + + + 
D08742      
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Figure S1.  The general structure of the halogenated 1’-
methyl-1,2’-bipyrroles.  Here, the X substituent represents 
Br, Cl or H atoms. 
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CHAPTER 4 

 

Marine natural products, the halogenated 1’-methyl-1,2’-bipyrroles (MBPs), 

appear to biomagnify in a Northwestern Atlantic food web 

 

Abstract 

Halogenated 1’-methyl-1,2’-bipyrroles (MBPs) are putative marine natural 

products that accumulate in marine mammal blubber in similar concentrations 

and patterns to biomagnifying pollutants.  Here we measure concentrations of 

MBPs and 2,2’,4,4’,5,5’-hexachlorobiphenyl (CB-153) in forty samples 

compromised of eight fish species, two squid species, and six species of marine 

mammals.  To determine their trophic positions, and to further investigate 

influence of prey preference, we also measured the stable carbon and nitrogen 

isotopic compositions of all samples.  Our results show that lipid-normalized 

MBP concentrations increase with increasing trophic level, which provides 

strong evidence that MBPs are another class of biomagnifying marine natural 

products. The presence of MBPs in pinniped prey and absence in pinniped 

blubber suggests that these mammals share dietary exposure to MBPs with 

odontocetes, but have an enhanced ability to metabolize these natural products.  

Finally, although both MBPs and CB-153 biomagnify in this food web, MBPs do 
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not display the same coupling to δ13C as CB-153, further showing their natural 

origins. 

1. Introduction  

 Halogenated 1’-methyl-1,2’-bipyrroles (MBPs) are marine natural 

products present in the tissues of marine mammals and other species occupying 

the highest trophic levels of marine food webs [1-3].  They are unusual among 

the halogenated natural products (HNPs) in their degree of halogenation, they 

contain up to seven bromines and/or chlorines on the bipyrrole backbone, and 

their N,C1-linkage, which is not found in other naturally-produced bipyrroles.  

The MBPs that are the most abundant in environmental samples contain six or 

seven halogens [2, 3].  Due to the number of halogens and their structure, MBPs 

have high estimated octanol-water partition coefficients (Kow = 107.2-108.3) [4] and 

preferentially partition into lipid-rich reservoirs, such as blubber.  These 

characteristics make them very similar to the persistent organic pollutants 

(POPs), and in this respect they are an untapped resource. By studying the 

pathways and fate of these HNPs through the environment, we can better 

understand the ultimate fate of the POPs in the marine environment. 

POPs are now highly regulated in most countries due to their negative 

impacts on human and environmental health [5, 6].  However, due to their 

recalcitrance, concentrations remain elevated in some reservoirs, especially soil 

and sediment [7, 8].  Thus, these compounds continue to circulate within food 
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webs and concentrations remain high in top predators [9].  These high 

concentrations result from biomagnification, which is an increase in their lipid-

normalized contaminant concentrations with increasing trophic level that results 

from a trophic transfer process [10].  Thus, predators have contaminant 

concentrations that are higher than what would be expected based on 

equilibrium partitioning between the surrounding environment (i.e., water, soil, 

or sediment) and biotic tissues [10]. The mechanisms and time-scales for removal 

of these contaminants from the biosphere are not yet clear [11]. 

Due to their structural similarities to POPs, it was suspected that some 

HNPs biomagnify; this has been confirmed for halogenated 1,1’-dimethyl-2,2’-

bipyrroles (DMBPs) [12] and methoxylated polybrominated diphenyl ethers 

(MeO-PBDEs) [13].  Biomagnifying HNPs have evolved with their ecosystem 

and, presumably, have established routes of entry (biosynthesis) and exit 

(degradation and/or physical removal – e.g., burial).  In fact, the enzymes found 

responsible for POP degradation may have evolved to degrade HNPs [14]. 

There is strong evidence suggesting that MBPs are another type of 

biomagnifying natural product.  MBPs are present in marine mammal blubber in 

similar concentrations and in similar patterns to POPs known to biomagnify [3].  

Additionally, MBPs have been detected in marine mammal prey (squid) [15, 16], 

fish oil [17], and human breast milk [18], suggesting that these compounds are 

transferred through food.  Here we demonstrate that the lipid-normalized 
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concentration of MBPs increase with trophic level in the Northwestern Atlantic 

Ocean.  In doing so, we have identified MBPs in nine additional species, many of 

which are commonly consumed by humans. 

2. Methods 

2.1 Sampling 

The 20 marine mammals analyzed in this study consist of both odontocete 

cetaceans (toothed whales) and pinnipeds (earless seals).  The odontocete 

samples include seven common dolphins (Delphinus delphis), four Atlantic white-

sided dolphins (Lagenorhynchus acutus), one harbor porpoise (Phocoena phocoena) 

and one long-finned pilot whale (Globicephala melas).  The pinniped samples are 

two gray seals (Halichoerus grypus) and five harp seals (Phoca groenlandica).  These 

samples include males and females, and adult and youth specimens (Table 1 and 

[3]).  All the samples were acquired through the Cape Cod Stranding Network, 

18 were fatally stranded on Cape Cod from 2004-2007 and 2 were caught in 

fishing gear (the harbor porpoise and one grey seal) just south of New England.  

For additional details on the individual marine mammals, including weight, 

length, age, and nutritional status, see [3]. 

The 20 fish and squid analyzed in this study were obtained from the 2007 

Fall Bottom Trawl Survey conducted by the National Marine Fisheries 

Ecosystems Survey Branch (Woods Hole, MA).  Species were selected based on 

their role as marine mammal prey: longfin inshore squid (Loligo pealeii), northern 
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shortfin squid (Illex illecebrosus), Atlantic herring (Clupea harengus), Atlantic 

mackerel (Scomber scombrus), white hake (Urophycis tenuis), red hake (Urophycis 

chuss), silver hake (Merluccius bilinearis), Acadian redfish (Sebastes fasciatus), 

Atlantic cod (Gadus morhua), and haddock (Melanogrammus aeglefinus). The 

samples were collected opportunistically during the survey, and approximately 1 

kg (wet weight) of whole fish was collected per species per tow. Two tows were 

selected per species for analysis, the tow number is listed after the species name 

in Table 2.  Information regarding the date, location, duration, and depth of each 

tow is available as a Resource Survey Report [19]. 

Calanus spp. was collected by a vertical tow from the R/V Tioga in Cape 

Cod Bay on March 30, 2007.  The sample was collected in the vicinity of North 

American Right Whales (Eubalaena glacialis), which feed on Calanus finmarchicus.  

C. finmarcicus is abundant in this region [20] and it is probable that it made up 

the majority of our sample.  A 0.150 µm mesh net was used, and the tow lasted 

2.5 minutes (water depth of 30 ft). 

All samples were received and stored frozen.  Prior to sub-sampling or 

initial homogenization they were thawed at room temperature and/or under 

lukewarm running tap water. 

2.2 HOC extraction and purification 

Blubber samples were extracted and HOCs purified following a 

previously published method [21].  Fish and squid samples consisted of 1 to >20 
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individual animals; all individuals from a sample were homogenized together 

(whole bodies) to provide sufficient biomass to acquire the ~10 g of total lipid 

extract (TLE) necessary to detect MBPs at these trophic levels.  The whole bodies 

were homogenized with a manual, stainless-steel meat-grinder, freeze-dried, and 

then further homogenized with a mortar and pestle.   The dried, homogenized 

biomass was packed into GreenChem extraction vessels, spiked with 635 ng of 

2,2’,3,4,4’,5,5’-heptabromo-1’-methyl-1,3’-bipyrrole (1,3’-MBP-Br7), then solvent 

extracted by a CEM MARS Xtraction (with Fiber Optic temperature and pressure 

control). The microwave program ramped to 100°C over 30 minutes, the power 

was set to 100% of 1600 W with a maximum pressure of 200 psi.  The 

temperature was held at 100°C for 20 minutes, then the vessels were allowed to 

cool to approximately 35°C before they were vented.  The contents of the vessels 

were filtered, 0.5% of filtrate was removed for gravimetric analysis to determine 

the total mass of the extract, and solvent was removed from the remaining 

extract by rotary evaporation.  The masses of the fish sampled (wet and dry 

weight) and the lipid extracts are presented in the Appendix to this Chapter. 

Lipids were removed by gel permeation chromatography (GPC).  Our 

3cm (o.d.) GPC columns were packed with 100g of SX-8 BioBeads (~45cm, 

uncompressed).  We used a mobile phase of 1:1 dichloromethane:hexane and 

collected two fractions.  The first fraction (0-150mL) that contained ~70% of the 

lipids was discarded; the second fraction (150-400mL), containing the remaining 
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lipids and the molecules of interest, was reduced in volume by rotary 

evaporation.  The GPC procedure was repeated until < 0.5g lipids remained in 

the second fraction.  The extract was further purified by silica/alumina column 

chromatography, as described in previous publications (Pangallo 2008, 2009).  All 

samples were spiked with 13C-labelled 1,1-bis-(4-chlorophenyl)-2,2-

dichloroethene (DDE), and analyzed by gas chromatography/electron capture 

negative ion mass spectrometry (GC/ECNI-MS). 

2.3 Detection and quantification by GC/ECNI-MS 

Compounds were identified by gas chromatography mass spectrometry 

using electron capture negative ion mass spectrometry (GC/ECNI-MS) in full 

scan mode with a previously published method [21].  Briefly, extracts were 

injected in splitless mode and separated by a J & W Scientific DB-XLB column (60 

m × 0.25 mm i.d., 0.25 µm film thickness) on an Agilent 6890N series GC 

interfaced to an Agilent 5973 network mass selective detector operated in full 

scan mode. 

The position of halogens with an MBP homolog series has yet to be 

determined.  Thus, congeners within a homolog series were designated by their 

halogen content plus a lower case letter.  Details on our nomenclature system are 

available in our prior publications [3, 21], and consistency between the 

publications allows results to be easily compared.  One exception is 

2,3,3’,4,4’,5,5’-heptabromo-1’-methyl-1,2’-bipyrrole, which will be referred to as 
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Br7-MBP-79.   This is consistent with the nomenclature system suggested by 

Vetter et al. [2, 22] for MBPs with known structures. 

In addition to the brominated and chlorinated congeners, the presence of 

iodinated congeners was also investigated.  No iodinated MBPs were identified. 

However, the mass spectrometer scanned between m/z 50-750, thus the 

molecular ions of any congeners with greater than 4 iodine atoms would not be 

detected in our analysis.  The method was not tested for the stability of iodinated 

congeners, so the absence from our samples is not conclusive evidence against 

their presence in this food web. 

Four MBPs in our samples were identified and quantified by comparison 

with a synthetic standard (Br7-MBP-79) or with MBPs isolated from marine 

mammal blubber and characterized by high resolution mass spectrometry and 

nuclear magnetic resonance spectroscopy (MBP-Br6Cl-b, MBP-Br6-b, and MBP-

Br5Cl-d).  Recent work has established that the response factors of MBP homologs 

vary within an order of magnitude [23], which allows us to estimate 

concentrations (to one significant figure) for homologs of the four MBPs for 

which we have standards.  These homologs of these congeners were tentatively 

identified by their relative retention times and mass spectra.  For comparison 

with the MBPs, 2,2’,4,4’,5,5’-hexachlorobiphenyl (CB-153) was quantified in our 

samples by comparison with a synthetic standard.  A majority of the blubber 

concentration data has been published previously [3]; MBP and CB-153 
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concentrations in the six additional blubber samples (Table 3) and in the fish and 

squid samples (Table 2) are presented here. 

2.4 Quality Control of MBP quantification 

The extraction methods and quantification were monitored by running 

blank samples, determining method detection limits (MDLs) for each MBP and 

CB-153, and by replicate analyses to determine the overall method errors.  No 

MBPs were detected in blanks and recoveries of 1,3’-MBP-Br7 were 99±19%.  

MDLs were calculated by analyzing seven replicate samples at 10% of its original 

concentration; the MDL is defined as three times the standard deviation of this 

set of measurements [24].  For details on error calculations, see [3]. 

2.5 Stable isotope analysis 

 Homogenized Calanus, homogenized whole body tissue (fish and squid), 

and muscle tissue (marine mammals) were each freeze-dried and ground to a 

fine powder.  Nitrogen isotope analyses were performed on unextracted tissue, 

but extracted tissue was used for the carbon isotope measurements since our 

samples included lipid-rich tissues.  Lipids are depleted relative to cellular 

biomass [25], and variability in lipid content can obscure the δ13C value of lipid-

rich tissues [26].  Samples were analyzed in duplicate by isotope ratio mass 

spectrometry (IRMS) at the Stable Isotope Facility at the University of California 

at Davis.  The stable isotope abundances are expressed in δ notation, which 
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measures the deviation of the sample from a standard reference material in parts 

per thousand (‰) according to the equation: 

€ 

δ15N or δ13C =
Rsample

Rstandard

 

 
 

 

 
 −1

 

 
 

 

 
 ×1000  

where R is the ratio of the more rare isotope (15N or 13C) to the more abundant 

isotope (14N or 12C, respectively).  The standard reference materials measured for 

Rstandard were atmospheric N2 and PeeDee Belemnite for nitrogen and carbon, 

respectively.  

 

3. Results and Discussion 

3.1 MBP concentrations 

 MBPs were present in far lower concentrations in fish and squid (up to 47 

ng g-1 lipid, Table 2) than odontocetes (up to 3700 ng g-1 lipid; Table 3, and [3]).  

This is consistent with previous research that found concentrations of 2-7 ng g-1 

lipid in the squid species L. pealeii [4].  MBPs were consistently below the MDL in 

the pinniped samples, with only one exception (MBP-Br5Cl-f was just above the 

MDL for one Harp seal).  Among the non-mammalian samples, the squid, 

herring, and mackerel contained detectable levels of MBPs, though orders of 

magnitude below the concentrations observed in odontocetes.  For the most part, 

MBPs were below the MDL for Acadian redfish, cod and haddock.  There was a 

large amount of variability in MBP content of hake samples, but red hake had 
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lower MBP content than white and silver hake.  In contrast, the abundance of CB-

153 was highest in Acadian redfish, cod, haddock, and the hake species, and 

lowest in the squid, herring, and mackerel species.  CB-153 was also present in 

the odontocete and most pinniped samples, again at abundances far exceeding 

those of the fish and squid samples. 

 The non-mammals did display characteristics that were unique from the 

marine mammals.  Three MBP-Br6Cl isomers (MBP-Br6Cl-c, -d, and –e) were 

present in the fish and squid that have not previously been identified in 

mammals from this region (Figure 1). These isomers were present at extremely 

small, but consistent, abundances; and they elute after MBP-Br6Cl-b and prior to 

Br7-MBP-79. Because these congeners were not included in our MDL 

calculations, we can only report their presence in non-mammals and absence 

from mammalian blubber samples.  It is also noteworthy that fewer MBP 

congeners were detected in the non-mammalian samples.  This is likely because 

many of the MBP congeners detected in marine mammal blubber were found at 

very low levels.  Thus, even if present in the environment, congeners at trace 

levels in higher trophic level samples would be well below the detection limits 

for the less contaminated lower trophic level samples. 

3.2 MBP distributions in non-mammalian samples 

 The distribution of MBP congeners in non-mammals is similar to that in 

marine mammals.  The most abundant MBP in a majority of the samples was 
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MBP-Br6Cl-b (Figure 2), which is consistent with previous studies of MBPs in 

animals from this region [15, 27, 28].  In five of the fish and squid samples MBP-

Br5Cl-d was the most abundant congener.  Aside from the dominance of these 

congeners, there is a large degree of variability in the abundances of MBPs 

congeners between species, but within species the patterns are similar.  There is 

no separation geographically or vertically between species with and without 

MBPs (Table 2 and [29-38]).  Therefore, MBPs absence from some species implies 

that these have a better ability to metabolize or otherwise excrete MBPs, or that 

MBPs are not present in their diets. This is in contrast to CB-153, which is present 

in every species, reflecting the ubiquity and persistence of POPs in the 

environment [39].   

3.3 Stable isotope results 

Both carbon and nitrogen stable isotope ratios were measured for every 

sample and there was excellent agreement between duplicates (Table 4).  The 

δ15N varied from +8.01‰ for Calanus sp. to 10.4±0.9‰ for squid, 12.6±0.9 for fish, 

and 14.2±1.2‰ for mammals.  There was more overlap and a smaller range for 

the δ13C values (-20.4‰ to -17.5‰). 

3.4 Trophic level assessment by δ15N 

In order to provide evidence that MBPs biomagnify, the trophic position 

of each sampled organism must be accurately assigned.  Photosynthetic 

organisms occupy TL1, obligate herbivores are at TL2, and carnivores inhabit 
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≥TL3.  However, many consumers are omnivores, preying upon more than one 

trophic level, and trophic positions are rarely delineated easily.  Trophic level has 

traditionally been assessed by observation of foraging behavior, and/or 

examination of stomach and scat contents of the organisms of interest.  These 

methods are problematic in that they only give a snapshot of possible predator-

prey relationships, and are inconvenient for examining a marine food web due to 

difficulties in sampling [40].  More recently, stable nitrogen isotopic 

compositions have been used to examine the bioaccumulation of POPs [40, 41] 

and HNPs [12] within marine food webs. This method takes advantage of 

nitrogen isotope fractionation during heterotrophy and respiration.  For every 

step up in trophic level, the nitrogen isotopic composition (δ15N) increases.  

Unlike identifying stomach contents, it integrates over the many different prey 

consumed, as well as over time [42].  Additionally, this method can account for 

dimorphism within a species, be it gender or age related. 

We used a calculation modified from Hobson et al. (1995) to determine the 

trophic levels of our samples: 

€ 

TLsample = 2 +
δ15Nsample −δ

15NCalanus

3.6‰

 

 
 

 

 
  

where TLsample is the trophic level of the sample organism, δ15NCalanus is the 

nitrogen isotope value of the Calanus sample collected (8.01‰), and 3.6‰ is the 

trophic enrichment factor (Fry, 1988).  C. finmarchicus species are opportunistic 
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omnivores, but their trophic level is generally around 2 [43].  Thus, our TLsample is 

an estimate with uncertainty introduced by both the trophic enrichment factor 

(3.6‰) and the baseline value for TL2 (δ15N = 8.01‰).  This uncertainty does not 

affect our determination of biomagnification, which is based on a relative, not 

absolute, determination of trophic level.  The trophic level calculated for fish, 

squid and mammal samples ranged from 2.4-4.4 (Table 4); thus, we analyzed 

animals from 3 different trophic levels. 

3.5 Evidence for biomagnification of MBPs 

In general, MBP concentrations were found to increase with trophic level 

(Figure 3), which suggests that MBPs may biomagnify in this food web (samples 

<MDL were not included).  At the 95% significance level, the slope of the linear 

regression was significantly larger than zero for Br7-MBP-79, MBP-Br6Cl-b, MBP-

Br6-b, MBP-Br5Cl-d, and MBP-Br5Cl-e (Table 5).  Biomagnification cannot be 

confirmed until it is clear this concentration increase results from a trophic 

transfer process. Our measurements show that CB-153 also appears to 

biomagnify in this food web.   

Food web magnification factors (FWMFs) are used to compare the 

magnitude of biomagnification and are calculated using the slope of the linear 

regression of the natural log of the concentration versus trophic level [41]: 

€ 

FWMF = eslope 
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(Only samples above the detection limit were used in the calculation of the 

slope.)  The FWMFs calculated for the MBPs are quite high (Table 5), ranging 

from 15 to 82, while CB-153 has the lowest calculated FMWF (9.0). For 

comparison, FWMFs for DMBPs in the Arctic vary from 5.2 to 14.6 [12], and 

POPs also tend to have FWMFs in this range [41, 44, 45].  Polybrominated 

diphenyl ethers (PBDEs) containing 3-7 bromines have FWMFs that are much 

lower (~1.5) [46].  However, PBDE biomagnification factors (concentration in 

organism relative to the concentration in diet, equivalent to the FWMF but for 

only two trophic levels) have been shown to extend up to 76 [47]; these values 

are consistent with our findings.  Numerical modeling investigations of POPs in 

food webs that include mammals demonstrate biomagnification factors of up to 

49 [48].  Additionally, the value calculated for CB-153 agrees well with a previous 

FWMF calculation of this compound in a marine food web (9.8) [41].  It is 

important to note that because of the exponential relationship between slope and 

the FWMF, small variations in the slope result in large changes in the FWMF 

value [44].  For our compounds, high FWMFs are associated with fewer data 

points and greater uncertainty (Table 5).  Regardless, it is clear that MBPs have 

FWMFs greater than 1, which supports the hypothesis that MBPs biomagnify in 

this marine food web. 
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3.6 Pinniped anomaly 

 Although MBPs and CB-153 are both present in odontocetes and non-

mammals, there are distinct differences in their abundances in pinnipeds.  

Pinnipeds have much lower body burdens of MBPs than would be expected for 

their trophic level, yet levels of CB-153 are comparable to those of odontocetes 

(Tables 3 and 4, and [3]).  Previous studies have seen this same discrepancy 

between POPs and naturally produced compounds in pinnipeds [1, 12, 13]. The 

cause may be in pinniped diets, and/or in their ability to metabolize HNPs.  To 

examine if foraging preference is responsible for the difference in MBP body 

burdens, we targeted prey species of the mammals included in this study for 

inclusion in our analyses.   

The marine mammals consume a wide variety of prey [49] and their diets 

likely contain a similar spectrum of the local prey species.  However, studies also 

indicate that they have distinct prey preferences, as observed from foraging 

behavior, and stomach and scat contents.  The dolphins, L. acutus and D. delphis, 

are known to focus their feeding on squid, mackerel, silver hake, and herring [49, 

50].  Harbor porpoises, P. phocoena, have similar preferences, targeting squid, 

herring, silver hake, and red/white hake [51, 52].  Squid make up a large portion 

of pilot whales’ diets (~75%, [49]), with the remaining 25% from pelagic fish such 

as mackerel and, to a lesser extent, cod and hake [53].  In contrast to the 

odontocetes, both pinniped species in our study consume relatively small 
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amounts of squid (5%, [49]).  Harp seals (P. groenlandica) preferentially target 

polar cod, capelin, amphipods, halibut and herring [54-56].  Gray seals (H. 

grypus) focus on red/white hake, winter flounder, skate, cusk eel, and sand lance 

[57]. 

Although we were unable to analyze all prey species of interest, it is 

noteworthy that mammals with high MBP body burdens preferentially consume 

large quantities of the prey species that have high MBP concentrations: squid, 

mackerel and herring.  Pinnipeds also consume herring and squid, and therefore 

do consume MBP-rich prey, yet MBPs are generally far below detection limits in 

pinniped blubber. Thus, prey preference is not sufficient to explain the dramatic 

differences between odontocete and pinniped MBP concentrations. 

Differences between odontocetes and pinnipeds in the blubber structure 

may also play a role.  Odontocetes have more highly stratified blubber, resulting 

in outer layers being much colder and less metabolically active.  Pinniped 

blubber, however, is far less stratified, and thus the depth of the blubber is 

metabolically active.  Thus, contaminants in pinniped blubber may be more 

available for metabolism and removal from the body, while contaminants in 

odontocete blubber would likely have longer lifetimes. 

The presence of CB-153 in blubber of both groups of marine mammals, 

however, suggests that blubber morphology alone cannot explain the differences 

between MBPs and CB-153. This is consistent with previous research showing 
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that pinnipeds with low body burdens of HNPs still contain high concentrations 

of POPs [1, 3, 12, 13]. As a result, the data presented here strengthens the 

hypothesis originally put forward by Tittlemier et al. [12], that pinnipeds have an 

enhanced capability to degrade HNPs relative to odontocetes.  If this is the case, 

then pinniped enzymes used in HNP metabolism cannot adapt, or have not yet 

adapted, to degrade CB-153 as efficiently as MBPs.  Previous investigations into 

metabolism of PCB congeners have identified that differences in cytochrome 

P450 enzymes in cetaceans and phocid seals can help explain differences in the 

metabolism of different types of PCB congeners between these mammalian 

orders [58].  Phocid seals have a greater ability to metabolize PCB congeners with 

vicinal H atoms (H atoms adjacent to each other on an aromatic ring system) in 

the ortho- and meta-positions, but cetaceans have a greater ability to metabolize 

PCB congeners with vicinal hydrogens in the meta- and para- positions [58].  

However, since these differences relate to the position of vicinal H atoms, and 

the MBPs investigated here do not contain vicinal hydrogen atoms, the difference 

in P450 enzymes between cetaceans and phocid seals cannot explain our results.  

Thus, investigating differences between the enzymes responsible for MBP 

metabolism in both groups of marine mammals would provide valuable 

information on the metabolism of perhalogenated compounds and/or 

compounds with no vicinal H atoms. 

3.7 Differences between MBPs and CB-153 
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The concentrations of both MBPs and CB-153 both increase with 

increasing trophic level.  On closer examination, however, differences between 

the PCB and the natural products are apparent. MBPs strongly correlate (ρ>0.9) 

with each other; the correlation of MBPs with CB-153, while still statistically 

significant, is weaker (Figure 4, Table 6).  (Please note, although the data appear 

to fall within two groupings, all of the assumptions to statistically test for 

correlation are met within this data set.)  This is consistent with a previous study 

by Stapleton et al. [59] that showed significant correlations between HNPs, but 

not between HNPs and POPs.  The exception is MBP-Br5Cl-e, which is not as well 

correlated with either the MBPs or CB-153.  This is likely caused by the large 

error term for in the quantification of this compound (24%), which is much larger 

than those for the other MBP congeners and CB-153 (Tables 2 and 3, and [3]).  For 

these analyses, both compounds are required to be above the MDL, therefore the 

pinniped samples were excluded and cannot explain this variation.  In fact, the 

pattern is present in both marine mammals and in fish and squid. 

In the non-mammalian samples the difference in correlation strength can 

be partially explained by examining the stable carbon isotope ratios. A well-

established relationship exists between stable carbon isotope ratios and carbon 

source: the pelagic food web is depleted (-22‰) relative to that of the 

inshore/benthic food web (-17‰) [60-63].  CB-153 is highest in non-mammalian 

samples that are the most enriched in 13C and lowest in those that are most 13C 
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depleted (Figure 5). This pattern is consistent with a terrestrial source of the 

anthropogenic PCB.  In the non-mammalians samples there are two data points 

for CB-153 that are much higher than those of the other fish, these are for the cod 

samples.  These data points may have disproportionate influence on this trend, 

but are valid data points in themselves.  Thus, we include these points for 

analysis, but the limitations of this data should be noted.  There is no similar 

relationship between δ13C and the MBPs, which is not surprising since they have 

no terrestrial source.  The relationship between δ13C and CB-153 is absent in the 

mammal samples (Figure 5), which reflects mammals diets of both pelagic and 

benthic prey [49].  Their mixed diets are also evident in their δ13C values, which 

span a more narrow range (relative to non-mammalian samples) from -19.1‰ to 

-17.5‰ (Table 4). 

 By measuring an increase in the lipid-normalized MBP concentrations 

with increasing trophic level, we present strong evidence for the 

biomagnification of another class of marine natural products.  Thus, there is 

greater confidence in the use of MBPs as natural analogues for POPs in marine 

ecosystems.  MBPs are present in various fish and squid species, though at much 

lower concentrations than those found in odontocete blubber.  The presence of 

MBPs in pinniped prey and absence in pinniped blubber suggests that these 

mammals share dietary exposure to MBPs with odontocetes, but have an 

enhanced ability to metabolize these natural products.  Finally, although both 
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MBPs and CB-153 biomagnify in this food web, MBPs do not display the same 

coupling to δ13C as CB-153, which is a further indication of their natural origins. 
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Figure 1. The partial summed ion chromatogram (ions ±0.5: 575.7, 619.7, 653.7, and 697.7) of the 
Silver Hake 165 extract.  The break in the y-axis highlights the newly identified 
hexabromochloro-MBP congeners, MBP-Br6Cl-c, MBP-Br6Cl-d, and MBP-Br6Cl-e.  Also identified 
are MBP-Br6Cl-b, which is the most abundant MBP in this sample, MBP-Br7, and our internal 
standard, 1,3’-MBP-Br7. 
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Figure 2. The distribution of MBPs and CB-153 in select non-mammalian samples 
analyzed in this study (species for which no MBPs were detected – cod and Acadian 
redfish – are excluded).  MBPs are plotted on the left hand axis, and CB-153 
concentrations are plotted on the right hand axis.  Note the consistent presence of 
either MBP-Br6Cl-b and MBP-Br5Cl-d in each sample.  
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Figure 3. Biomagnification of MBPs and CB-153 is evident by the increase in (lipid-normalized) 
concentration with increasing trophic level.  Here we present the compounds that biomagnify 
(slopes significantly greater than 0) (a) CB-153, (b) Br7-MBP-79, (c) MBP-Br6Cl-b, (d) MBP-Br6-b, 
(e) MBP-Br5Cl-d, and (f) MBP-Br5Cl-e.  Regression equations and statistical significance are 
presented in Table 5. 
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Figure  4.  A stronger correlation was found 
between MBP congeners (top panel) than was 
found between the MBPs and CB-153 (lower 
panel). 
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Figure 5. CB-153 and MBP-Br6Cl-b vs. δ13C in (a) 
non-mammals and (b) mammals.  More enriched 
(more positive) stable carbon isotope ratios are 
indicative of a benthic origin (-17‰), and less 
enriched (more negative) values are indicative of 
pelagic origin (-22‰) [63] 
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Table 1. Description of mammals at stranding for the six mammals included in this study 
and not published previously.  For the other mammals in this study, please see [3]. 

CCSN ID number gender age length  (cm) weight  (kg) condition 
CCSN06-019La male adult 280 116 robust 
CCSN04-218Dd male calf 139.2 32 robust 
CCSN06-144Dd male not recorded 187 not recorded robust 
CCSN07-074Dd female adult 201.1 99.8 robust 
CCSN07-066Pg female juvenile 108 25 thin 
CCSN07-076Pg female adult 104 63.5 thin 
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Table 2. Lipid-normalized whole body concentrations (ng g-1 lipid) of quantifiable MBPs and CB-153 in non-mammilian samples.  1 
The three-digit number in the sample ID is the tow from which the sample was collected; <d.l. indicates that a compound was 2 
lower than the detection limit in a sample. 3 

Sample ID Br7-MBP-79 
±4% 

MBP-Br6Cl-b 
±9% 

MBP-Br6-b 
±5% 

MBP-Br5Cl-d 
±6% 

MBP-Br5Cl-e 
±24% 

MBP-Br5Cl-f 
±6% 

CB-153 
±10% 

MDL (ng µL-1) 2.0 2.2 .87 1.1 0.6 0.2 0.26 
Loligo 121 <d.l. 12 <d.l. <d.l. <d.l. 8 46 
Loligo 89 <d.l. 37 <d.l. 9.7 2 10 150 
Illex 87 8.9 40 13 47 20 40 40 
Illex 178 <d.l. 23 13 41 6 30 31 
Herring 228 8.9 30 3.8 15 8 6 44 
Herring 219 11 36 6.7 26 20 20 37 
Mackerel 244 3.7 16 6.3 13 2 2 15 
Mackerel 268 7.5 21 15 17 4 4 22 
White Hake 275 6.5 26 4.8 21 <d.l. <d.l. 78 
White Hake 299 3.0 13 4.1 11 .9 1 47 
Red Hake 168 <d.l. <d.l. <d.l. 9.6 <d.l. <d.l. 110 
Red Hake 169 <d.l. <d.l. <d.l. 17 <d.l. <d.l. 130 
Silver Hake 176 <d.l. 8.8 5.1 11 <d.l. 8 82 
Silver Hake 165 <d.l. 44 <d.l. 16 <d.l. 20 170 
Acadian Redfish 258 <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 90 
Acadian Redfish 257 <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 64 
Cod 326 <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 480 
Cod 324 <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 430 
Haddock 214 <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 43 
Haddock 205 <d.l. 4.3 <d.l. <d.l. <d.l. 2 20 
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Table 3. MBP and CB-153 concentrations (ng g-1 lipid) in the blubber of mammals in this study not previously reported. For the other 6 
mammals in this study, please see [3].  7 

  8 

Table 3. (continued) 9 

10 

ID number Species 
Br7-MBP-79 

±4% 
MBP-Br6Cl-a 

±6% 
MBP-Br6Cl-b 

±9% 
MBP-Br6-a 

±6% 
MBP-Br6-b 

±5% 
MBP-Br6-c 

±29% 
MBP-Br6-d 

±11% 
MDL (ng g-1 lipid) 130 0.7 150 3 59 3 2 

CCSN06-019La L. acutus 940 13 1000 30 390 40 40 
CCSN04-218Dd D. delphis 68 <d.l. 350 <d.l. 88 <d.l. 5 
CCSN06-144Dd D. delphis 470 4 1100 30 430 20 4 
CCSN07-074Dd D. delphis <d.l. <d.l. <d.l. <d.l. <d.l. <d.l <d.l. 

CCSN07-066Pg P. 
groenlandica <d.l. <d.l. <d.l.  <d.l.  <d.l.  <d.l.  <d.l. 

CCSN07-076Pg P. 
groenlandica <d.l. <d.l. <d.l.  <d.l.  <d.l.  <d.l.  <d.l. 

CCSN ID number MBP-Br5Cl-a 
±4% 

MBP-Br5Cl-b 
±7% 

MBP-Br5Cl-c 
±7% 

MBP-Br5Cl-d 
±6% 

MBP-Br5Cl-e 
±24% 

MBP-Br5Cl-f 
±6% 

CB-153 
±10% 

MDL (ng g-1 lipid) 8 2 1 73 40 10 62 
CCSN06-019La 51 7 9 550 200 200 not recorded 
CCSN04-218Dd 20 3 1 320 60 100 750 
CCSN06-144Dd 70 10 10 810 200 300 not recorded 
CCSN07-074Dd <d.l. <d.l. <d.l. <d.l. <d.l. <d.l. 83 
CCSN07-066Pg <d.l. <d.l. <d.l.  <d.l.  <d.l.  <d.l.  not recorded 
CCSN07-076Pg <d.l. <d.l. <d.l.  <d.l.  <d.l.  26 not recorded 
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Table 4. The stable isotopic ratios (the average of duplicate analyses) and the calculated trophic 10 
levels are shown for all samples.  *We assume that our Calanus sample occupies TL2. 11 

Sample ID Species (Common name) δ15N (‰) δ13C (‰) TL 
Calanus sp. Zooplankton 8.01 -19.8   2.0* 
Loligo 121 Longfin inshore squid 11.6 -18.6 3.0 
Loligo 89 Longfin inshore squid 9.53 -19.4 2.4 
Illex 87 Northern shortfin squid 10.3 -19.4 2.6 
Illex 178 Northern shortfin squid 10.0 -19.2 2.6 
Herring 228 Atlantic herring 11.7 -19.8 3.0 
Herring 219 Atlantic herring 12.0 -20.0 3.1 
Mackerel 244 Atlantic mackerel 11.9 -19.4 3.1 
Mackerel 268 Atlantic mackerel 12.1 -19.6 3.1 
White Hake 275 White Hake 14.0 -19.3 3.7 
White Hake 299 White Hake  12.7 -18.5 3.3 
Red Hake 168 Red Hake  12.9 -17.7 3.4 
Red Hake 169 Red Hake  12.3 -18.3 3.2 
Silver Hake 176 Silver Hake  13.1 -18.9 3.4 
Silver Hake 165 Silver Hake  13.3 -18.7 3.5 
Acadian Redfish 258 Acadian Redfish  12.0 -20.4 3.1 
Acadian Redfish 257 Acadian Redfish 12.2 -19.9 3.2 
Cod 326 Cod  13.4 -17.7 3.5 
Cod 324 Cod  14.6 -17.4 3.8 
Haddock 214 Haddock  11.5 -18.4 3.0 
Haddock 205 Haddock  12.0 -18.2 3.1 
CCSN07-023La Atlantic white-sided dolphin 14.5 -17.8 3.8 
CCSN06-019La Atlantic white-sided dolphin 14.2 -18.5 3.7 
CCSN04-218Dd Common dolphin 14.3 -19.1 3.8 
CCSN07-115Dd Common dolphin  13.4 -18.3 3.5 
CCSN07-109Dd Common dolphin  12.8 -18.5 3.3 
CCSN06-119La Atlantic white-sided dolphin 14.2 -18.6 3.7 
CCSN06-144Dd Common dolphin  13.5 -18.0 3.5 
CCSN06-263Dd Common dolphin  12.7 -17.6 3.3 
CCSN06-022La Atlantic white-sided dolphin 14.0 -18.6 3.7 
CCSN07-040Dd Common dolphin  13.2 -18.1 3.4 
CCSN07-074Dd Common dolphin  13.5 -18.3 3.5 
DO7041 Harbor porpoise 13.5 -18.3 3.5 
CCSN07-022Gm Pilot whale 13.4 -17.5 3.5 
CCSN07-116Pg Harp seal 15.6 -18.5 4.1 
CCSN07-066Pg Harp seal 13.6 -18.4 3.6 
CCSN07-129Hg Gray seal 16.6 -17.9 4.4 
DO8742 Gray seal 16.7 -17.8 4.4 
CCSN07-080Pg Harp seal 15.1 -19.1 4.0 
CCSN07-084Pg Harp seal 14.0 -18.3 3.7 
CCSN07-076Pg Harp seal 15.4 -18.3 4.1 
  12 

13 
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Table 5. The number of data points (n), regression equation, significance level (p-value), 13 
food web magnification factor (FWMF) and log Kows are given for each compound in 14 
Figure 1. 15 

Compound n Regression Equation 
y  = p-value FWMF Log Kow

b 

Br7-MBP-79 18 4.4x – 11 .006 82 8.3 
MBP-Br6Cl-b 25 3.2x – 5.7 .003 25 8.1 
MBP-Br6-b 21 3.1x – 6.2 .014 22 7.4 
MBP-Br5Cl-d 25 2.7x – 4.4 .005 15 7.2 
MBP-Br5Cl-e 20 2.9x – 6.3 .002 18 7.2 
CB-153 33 2.2x – 2.1 <.001 9.0 6.9 

aFrom [4]. 16 
 17 

 18 

  19 
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Table 6. Correlation matrix for the compounds in Table 3, calculated with SPSS, PASW® Statistics.  The Pearson correlation 20 
coefficient (ρ), significance level (p-value) and number of data points (n) are presented. 21 

 MBP-Br7 MBP-Br6Cl-b MBP-Br6-b MBP-Br5Cl-d MBP-Br5Cl-e CB-153 

ρ  .987 1     

p-value (1-tailed) .000      

MBP-Br6Cl-b 

n 18 25     

ρ  .977 .978 1    

p-value (1-tailed) .000 .000     

MBP-Br6-b 

n 18 21 21    

ρ  .977 .963 .963 1   

p-value (1-tailed) .000 .000 .000    

MBP-Br5Cl-d 

n 18 23 21 25   

ρ  .945 .910 .895 .954 1  

p-value (1-tailed) .000 .000 .000 .000   

MBP-Br5Cl-e 

n 17 20 19 20 20  

ρ  .918 .908 .869 .843 .788 1 

p-value (1-tailed) .000 .000 .000 .000 .000  

CB-153 

n 16 23 19 23 18 33 

22 
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CHAPTER 4 APPENDIX  22 

 23 
 24 
Mass of the total lipid extract (TLE), dry mass, and 25 
wet mass for all non-mammalian samples.  26 

27 
Mass extracted (g) Sample ID 

TLE dry mass wet mass 
Loligo 121 12.6 139.3 594.3 
Loligo 89 12.8 164.9 761.8 
Illex 87 14.2 119.4 not recorded 

Illex 178 7.98 69.7 263.4 
Herring 228 19.7 69.7 283.9 
Herring 219 30.5 139.3 453.9 

Mackerel 244 23.1 109.5 428.3 
Mackerel 268 19.2 129.4 907.6 

White Hake 275 13.9 69.7 291.6 
White Hake 299 40.7 199.0 not recorded 
Red Hake 168 8.16 89.6 376.5 
Red Hake 169 2.67 80.6 not recorded 

Silver Hake 176 11.2 not recorded 162.4 
Silver Hake 165 4.65 not recorded 91.9 

Acadian Redfish 258 29.5 179.4 690.5 
Acadian Redfish 257 33.5 207.9 794.0 

Cod 326 6.16 181.2 not recorded 
Cod 324 10.3 184.6 886.1 

Haddock 214 11.3 199.0 990.9 
Haddock 205 22.2 139.3 679.0 
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CHAPTER 5 

 

δ15N enrichment suggests possible source for halogenated 1’-methyl-1,2’-

bipyrroles (MBPs) 

 

Abstract 

Highly halogenated 1’-methyl-1,2’-bipyrroles are natural products that 

bioaccumulate in upper trophic levels of the marine food web.  Here we 

demonstrate that they are dramatically enriched in δ15N (+20-30‰).  This 15N-

enrichment is greater than that seen for other biosynthetic organic compounds 

measured to date.  We argue that this enrichment likely stems from enriched 

precursors and/or fractionation during biosynthesis, and is not the product of 

MBP degradation.  We also consider possible sources of MBPs in light of these 

results. 

 

1. Introduction 

 Halogenated 1’-methyl-1,2’-bipyrroles (MBPs) are a class of marine 

natural products.  As their name describes, they are made from two pyrrole rings 

linked by an N,C1-bond, and they have up to seven halogens (bromine or 

chlorine) on the ring carbons (Figure 1). Originally identified in marine mammal 

blubber [1-3], they appear to biomagnify through marine food webs to reach the 
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concentrations observed in blubber samples [4]. Although recent research has 

elucidated their geographic and trophic distributions [3-12], the origins and 

physiological role of MBPs remain a mystery.    

MBP structure is especially notable in the N,C1-linkage of the pyrrole 

rings; this bipyrrole structure has not been previously seen in naturally produced 

compounds.  The novel pyrrole linkage and the highly halogenated nature of 

MBPs suggest that the biosynthetic organism(s) may have new genes to add to 

current knowledge of biosynthetic chemistry. With recent advances in genomic 

sequencing, the genes involved in biosynthesis can be identified and catalogued 

in ‘libraries’ [13]. One route of recent drug development is the use of these 

biosynthetic pathways to replace or assist in the production of complex chemical 

structures with specific biological activities [14].  Additionally, many organisms 

that produce secondary metabolites (compounds not required for primary 

metabolism, but that benefit the producing organism) synthesize more than one 

type of compound [15].  For example, the marine bacterium that produces 

hexabromo-2,2’-bipyrrole also generates other brominated pyrrole structures and 

biosynthetically-unrelated polysaccharides [16, 17].  Thus, identification of MBPs’ 

producer(s) may result in the discovery of more novel bioactive compounds.  To 

fully realize this potential benefit of MBPs, however, their source must be 

identified. 
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One method to infer the origins of a compound is by measuring its 

isotopic signature, which is imprinted during biosynthesis.  This signature is a 

combination of the isotopic values of the precursors and the fractionation that 

occurs during the biosynthetic process.  Once released into the environment, a 

compound’s isotope signature can be altered if portions of the original inventory 

undergo reactions with associated isotopic fractionations.  However, compounds 

that biomagnify should not undergo significant metabolism [18], and, 

theoretically, there is very little opportunity for isotope fractionation to occur.  

Hence, the isotopic signal of production should remain unchanged within the 

tissues of the higher trophic level organisms [19].  By isolating compounds from 

these higher trophic levels, we can determine the isotopic signature resulting 

from their biosynthesis.  Although the process to isolate sufficient quantities of 

individual compounds is time and labor intensive, it can be performed without 

altering the isotopic signature of the targeted molecules [20].  Here we employ 

compound-specific nitrogen isotope analysis to examine the origin of MBPs 

isolated from the blubber of three common dolphins (Delphinus delphis).  To the 

best of our knowledge, these are the first compound-specific 15N isotope analyses 

of biomagnified compounds. 

 

2. Methods 

2.1 Samples 
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 Blubber samples from three D. delphis (CCSN04-218Dd, CCSN06-013Dd 

and CCSN07-074Dd) were acquired through the Cape Cod Stranding Network 

from dolphins stranded on Cape Cod in 2004-2007.  CCSN04-218Dd was a 

maternally-dependent male calf of normal health who stranded with an adult 

female; the calf was in poor health due to the stress of stranding and was 

euthanized.  CCSN06-013Dd was a male (195.5 cm length) in robust health, but 

was euthanized at the site of stranding due to deteriorating condition.  CCSN07-

074Dd was an adult female in robust health, was lactating at the time of 

stranding, and died at the stranding site.   

2.2 MBP isolation from blubber 

The blubber was received and was stored as frozen slabs, and thawed 

prior to processing.  It was homogenized with hexane and filtered to a clear, 

yellow total lipid extract (TLE).  The solvent was removed and the oil was stored 

at -20 °C. 

To isolate large enough quantities of the molecules of interest for 

compound-specific nitrogen isotope analysis, 250 g of oil was used for each 

sample.  We employed gel permeation chromatography (GPC) to isolate the 

small organic compounds and remove the lipids from the samples. Briefly, 10 g  

aliquots of each sample was applied to the top of a 3cm (o.d.) column, which was 

packed with 100g of SX-8 BioBeads (~45cm, uncompressed). We used a mobile 

phase of 1:1 dichloromethane:hexane and collected two fractions.  The first 



  151 

fraction (0-150mL) that contained ~70% of the lipids was discarded; the second 

fraction (150-400mL), containing the remaining lipids and the molecules of 

interest, was reduced in volume by rotary evaporation. This procedure was 

repeated with the remaining oil from the initial 250 g sample, then the second 

fractions were combined and re-applied to the GPC column in 10 g aliquots.  

This was repeated until < 0.5g lipids remained in the combined second fraction.  

The extract was further purified by silica/alumina column chromatography, as 

described in a previous publication [10].  

Although we measured δ15N by gas chromatography isotope-ratio mass 

spectrometry with a combustion interface (GC-C-IRMS), we chose to first isolate 

individual MBPs from the concentrated extract by preparative capillary gas 

chromatography (PCGC) [20].  This choice was determined by MBP structure, 

where nitrogen is only ~4-5% percent (by mass) of each compound.  To produce 

the required signal strength in the IRMS (see section 2.5.1), the GC column was 

overloaded.  By isolating the individual compounds prior to GC-C-IRMS, the 

quality of the chromatography did not limit our ability to make accurate 

measurements.  The quantity of compound isolated was estimated by 

comparison to a synthetic standard of 2,2’,3,4,4’,5,5’-heptabromo-1’-methyl-1,3’-

bipyrrole using gas chromatography coupled to a flame ionization detector 

(GC/FID).  The identities of the isolated compounds were confirmed with gas 

chromatography/electron capture negative ion mass spectrometry (GC/ECNI-
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MS).  The details of the GC/ECNI-MS method and compound identification have 

been previously published [10]. 

2.3 Bulk stable nitrogen isotope analyses 

 The δ15Nbulk of the dolphins was determined by measuring the stable 

nitrogen isotope ratios of their muscle tissue.  Sampling details are provided in a 

companion study (Chapter 4, [4]).  Analyses were conducted at the Stable Isotope 

Facility at the University of California at Davis. 

2.4 Compound-specific nitrogen isotope analyses 

 Compound-specific nitrogen isotope analysis of MBPs was performed 

following a modified procedure of N isotope analysis in organic contaminants 

using GC-C-IRMS [21].  GC-C-IRMS was chosen for the compounds-specific 

nitrogen isotope analyses because it requires far smaller quantities of each 

compound per measurement (~3 nmoles N, equivalent to ~2 µg, see section 2.5.1) 

than does an elemental analyzer interfaced to an isotope-ratio mass spectrometer 

(EA/IRMS) (20-150 µg N [22]). 

2.5 Quality controls 

2.5.1 GC-C-IRMS 

 Due to the high molecular weight (580-700 amu), large number of 

halogens (6-7), and low nitrogen content (2 nitrogen atoms per compound) of the 

analytes, we anticipated difficulties in MBP combustion and the reduction of the 

subsequent N-containing fragments to N2 in the GC/IRMS interface.  Indeed, 
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such effects were previously reported for the δ13C, δ2H, and δ15N analysis of 

triazine herbicides with a similar experimental setup [23].  Due to MBPs’ high 

molecular weight, the amount required to achieve the recommended signal 

intensity of 500 mV [24] is too large to reasonably introduce onto a GC column.  

Therefore, injections were limited to 3-6 nmoles of each MBP, which produced 

smaller currents.  As shown in Figure 2, accurate and precise δ15N measurements 

of halogenated bipyrroles are possible at low signal intensities, that is, peak 

amplitudes between 50 and 500 mV.  Excellent agreement between the δ15N 

measured by EA/IRMS (-3.9±0.2‰, UC Davis Stable Isotope Facility) and our 

results (-4.5±1.1‰) was observed during this test. 

 The δ15N values of the synthetic standard DMBP-Cl6 were monitored after 

every 3-6 MBP measurements to ensure accuracy.  The low abundances used for 

these measurements resulted in an average of -2.9±1.4‰, which is 2‰ removed 

from the EA/IRMS measurement.  To be conservative, we use an error of ±2‰ to 

account for this variation.  To clarify, this error accounts for the entire method; 

the instrumental error for low signal strengths is ±1.1‰, as described above. 

2.5.2 Extraction and purification procedure 

The purification process to isolate MBPs was lengthy and involved 

multiple steps.  Although no isotopic fractionation would be expected during 

column chromatography, previous work has shown that PCGC is capable of 

substantially altering the isotopic signature (up to 9.4‰ for 13C) of isolated 
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compounds if a peak is not captured in its entirety due to cross-peak 

inhomogeneities [20].  To be cautious, the entire extraction method was assessed 

to determine if fractionation occurred during the isolation of MBPs from blubber.  

A 10 g sample of vegetable oil was spiked with DMBP-Cl6 and subjected to the 

isolation procedure (GPC – silica/alumina chromatography – PCGC).  The 

spiked DMBP-Cl6 recovered from the vegetable oil was analyzed alongside a 

stock solution of DMBP-Cl6.  The samples had the same δ15N within the error of 

the measurement (±2‰), which indicates that our procedure can be used to 

determine the compound-specific isotope ratios of halogenated bipyrroles. 

2.6 Nomenclature 

 Details on our nomenclature system are available in our prior publications 

[10, 12], and consistency between the publications allows results to be easily 

compared.  The two compounds discussed here are 2,3,3’,4,4’,5,5’-heptabromo-1’-

methyl-1,2’-bipyrrole (Br7-MBP-79) and the most abundant hexabromochloro- 

MBP congener (MBP-Br6Cl-b).  The acronym for the perbrominated congener is 

consistent with the nomenclature system developed by Vetter et al. [25] for MBPs 

of known structure. 

3. Results and Discussion 

3.1 MBPs enriched in 15N 

 The stable nitrogen isotopic ratios of the MBPs measured ranged from 

+19-28‰ (Table 1).  Four individual compounds were analyzed (in triplicate): 
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Br7-MBP-79 in all three blubber samples, and MBP-Br6Cl-b in CCSN07-074Dd.  

The Br7-MBP-79 isolated from the female dolphin was enriched relative to MBP-

Br6Cl-b also isolated from the same blubber (+28‰ and +22‰, respectively). The 

MBPs are enriched relative to δ15Nbulk of the dolphins from which they were 

isolated (Table 1).  To our knowledge, the extent of this enrichment, even with 

our conservative consideration of error (±2‰), is unusual in comparison to other 

naturally produced compounds.   

A thorough literature review of stable nitrogen isotope measurements of 

organic components in environmental or biological samples (commercially 

available standards were excluded) shows that most naturally occurring 

compounds have δ15N values that typically fall from -10‰ to +10‰ (Figure 3).  

The amino acids are the most analyzed compound class, and the measurements 

come from a large range of sources: bacteria [26], plankton [27-30], soil [31], 

plants [32, 33], collagen [34, 35], and human blood plasma [36]. Perhaps not 

surprisingly, amino acids also span the largest range of isotope ratios. DNA 

shows the most limited range, but is from only one study measuring soil extracts 

[37]. The pigment measurements are for chlorophyll and other porphyrins, and 

they have been measured in multiple studies, including plants [38], 

phytoplankton [39, 40], lake and marine sediments [41-43], and a saline 

meromictic lake [44].  Many are tetrapyrroles and thus may share biosynthetic 

precursors with MBPs.  Secondary metabolites show a similar distribution to the 
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pigments, which both tend to be depleted in 15N relative to the cellular inventory 

of nitrogen [45].   

MBPs have much higher δ15N values compared with these other 

biosynthetic organic compounds (Figure 3).  When making this comparison it is 

important to note that compound-specific δ15N measurements are far less 

common than those made for δ13C, which limits our ability to make comparisons.  

Nevertheless, the δ15N enrichment seen for MBPs is a distinct isotopic signal.  

MBPs are putative secondary metabolites made of two pyrrole rings.  Thus, their 

enrichment is especially notable compared with the much lower δ15N values 

measured for secondary metabolites (Figure 3: heroin, morphine, cocaine, 

nicotine, caffeine and methyl-N-methyl-anthranilate, all isolated from various 

terrestrial plants [45]) and the tetrapyrrolic pigments.  

3.2 Origin of enrichment 

 There are at least three possible explanations for the enrichment we 

observe in the MBP congeners: enriched precursors, biosynthetic fractionation, 

and degradative pathways that introduce isotopic fractionation.  These three 

explanations are not mutually exclusive; in fact, all may contribute.  MBPs are 

relatively newly discovered, and details about their synthesis and degradation 

are still uncertain.  Thus, we will examine potential biosynthetic routes of MBPs, 

including precursors, but first we will discuss the possibility of nitrogen isotope 

fractionation during degradation of MBPs. 
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3.2.1 Fractionation during degradation 

 Although MBPs biomagnify, which indicates that they are resistant to 

degradation, they are not necessarily immune to degradation.  In fact, enzymes 

involved in the degradation of halogenated organic compounds are ubiquitous, 

and likely evolved to process HNPs [46, 47].  Such capabilities exist not only in 

microbes [48], but also in larger organisms, including fish [49] and mammals [50, 

51].  In these larger organisms, biotransformation of halogenated organic 

compounds can proceed via both oxidative pathways and reductive 

dehalogenation [49, 52].  Thus, it is reasonable to consider that some fraction of 

any biomagnifying compound may be metabolized during trophic transfer.  

Any metabolism that occurs can have an associated isotopic fractionation, 

deriving from a kinetic isotope effect.  Bond strength is slightly mass dependent, 

and heavy isotopes form stronger bonds than do light isotopes.  Thus, bonds 

containing the light isotope break more quickly, leading to a faster reaction rate 

for these compounds.  This difference in reaction rates results in enrichment of 

the heavy isotope in the remaining parent compound.  Therefore, if degradation 

occurs during trophic transfer, we expect to see this enrichment in the remaining 

compounds, i.e., those that accumulate in the next trophic level.  Every link in the 

food web allows an additional opportunity for fractionation, thus, compounds in 

the highest trophic levels should show the largest isotopic enrichment.  This 

effect has been observed for 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT); 
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DDT isolated from the blubber of a grey seal was enriched in 37Cl relative to 

commercially produced DDT [53]. 

 If MBPs are subject to dehalogenation during trophic transfer, the nitrogen 

isotopic enrichment would likely be very small.  As there are no halogen-

nitrogen bonds in MBPs, dehalogenation is a secondary isotope effect with 

respect to nitrogen. (I.e., the bond involved in the reaction center is adjacent to 

nitrogen atom, thus, the nitrogen atom is not directly involved in the reaction.)  

Since they are not directly involved in the reaction, secondary isotope effects are 

generally quite small relative to primary isotope effects [54].  This is apparent in 

the minute secondary isotope effects documented for chlorine in dehalogenation 

(0.3‰), relative to the primary isotope effects in carbon (7.2‰ and 8.5‰ for 

vinyl chloride and cis-1,2-dichloroethane, respectively) [55]; and nitrogen in 

enzymatic nitrobenzene oxidation (0.75‰), again relative to carbon (3.9‰) [56].  

Thus, any fractionation in nitrogen isotopes during MBP dehalogenation is likely 

to be minor.   

 The potential for oxidative degradation is more difficult to assess as the 

degradative pathways of MBPs are as of yet unknown.  However, the 

degradation of halogenated bicyclic ring compounds and nitrogen-containing 

aromatic compounds have been scrutinized. Oxidative metabolism of 

polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) 

produces hydroxylated metabolites [50, 52, 57], and PBDE metabolites also 
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include brominated phenols [52].  Like dehalogenation, hydroxylation would 

result in a secondary isotope effect with respect to nitrogen.  The production of 

brominated phenols, however, requires separation of the two aromatic rings in 

each PBDE at the ether linkage.  MBPs have no ether linkage, but are joined 

through a C-N bond.  It is not clear whether the enzymes that produced 

brominated phenols from PBDEs would similarly act upon the C-N bond in 

MBPs.  Two oxidative paths are suggested by the metabolism of chlorotoluenes: 

hydroxylation on the aromatic ring (as described for the PBDEs) and at the 

methyl carbon [58].  The latter results in the formation of a benzyl alcohol, which 

would produce a secondary isotope effect for the nitrogen atom in position 1’. 

Overall, the most probable metabolic pathways for MBPs, dehalogenation 

and hydroxylation, would result in secondary isotope effects with respect to 

nitrogen.  Keeping in mind the extent of δ15N enrichment in MBPs, it seems 

unlikely that secondary isotope effects could contribute significantly to their 

isotopic signature.  If we assume that MBPs are initially introduced into the food 

chain with a δ15N of nitrate (~5‰) [59] and that secondary isotope effects are 

responsible for degradation (ε ~ 1‰, a conservative estimate), we can calculate 

the fraction of MBPs remaining (f = fraction remaining) by Rayleigh distillation 

of kinetically fractionated isotopes (Eq. 1). 

€ 

δMBP blubber = δMBP initial −ε ln f( )         (Eq. 1)  
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Here, δMBP blubber is the δ15N of MBPs isolated from blubber (here we use 20‰), 

and δMBP initial is the δ15N of MBPs when they enter the food web (5‰, as 

described above).  Under these assumptions, this calculation yields f = 0.0000003, 

or less than 0.000001% of the original MBP remaining.  Using a more 

conservative estimation of δMBP initial = 10‰ results in an estimate of f = 0.00005.  

This seems unreasonable, as a similar calculation for DDT results in ~10% of the 

original DDT remaining [53], and DDT is transformed in the environment 

relatively quickly to dechlorinated metabolites.  Thus, the δ15N enrichment of 

MBPs isolated from whale blubber is unlikely to be due to degradation. 

3.2.2 Enriched precursors and biosynthesis 

During biosynthesis the isotopic composition of a compound is set and 

reflects the source of nutrients, the uptake fractionation, and the internal 

fractionation between the target compound and the cellular biomass [60].  Most 

important to our investigation are the two pyrrole rings in each MBP, as they 

contain the nitrogen atoms of interest. Pyrrole biosynthesis is an active area of 

study, as many secondary metabolites contain pyrroles or pyrrole-derived 

moieties [61], and a number of pyrrole biosynthetic pathways have been 

determined (Figure 4).  Although there are a few routes to pyrrole synthesis, all 

derive nitrogen from amino acids [61-65].  Amino acids are synthesized during 

proteinogenesis, a fraction of which can be drawn off to natural product 
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pathways [61].  Amino acids shown to be pyrrole precursors are glycine, proline, 

alanine, ornithine, serine, and methionine [61-65]. 

Compound-specific nitrogen isotope analyses have been performed on 

over 17 amino acids from a variety of sources, for a total of over 360 

measurements (Figure 3).  Amino acids δ15N values tend to vary from -10‰ to 

+10‰, but individual amino acids show distinct patterns.  Of those shown to 

contribute to pyrrole biosynthesis (see above), alanine, ornithine and proline are 

more enriched, and glycine and methionine are more depleted, relative to the 

amino acid mean δ15N (Figure 5).  For amino acids that are polynitrogeneous, 

intramolecular isotopic evidence shows that the side-chain nitrogen is 

consistently enriched relative to the peptide nitrogen [66].  Similarly, nitrogen 

atoms involved in heteroaromatic binding (such as the nitrogen in pyrroles) are 

enriched relative to amino acids’ peptide nitrogen [45]. Thus, it is possible that 

part of the enrichment observed in MBPs is due to the incorporation of relatively 

enriched amino acids (such as alanine, ornithine, and proline) or nitrogen from 

the side chains of polynitrogeneous amino acids. 

Reactions during biosynthesis may also impart associated frationations.   

The observed enrichment could occur through pyrrole halogenation or during 

the linkage of the two pyrrole rings.  Halogenation of the pyrrole ring would 

occur by electrophilic aromatic substitution, which would disrupt the aromaticity 

of the pyrrole.  This change in the molecular electronic structure could thus result 
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in fractionation for nitrogen atoms.  Reaction at the nitrogen atom is a primary 

isotope effect, and is thus most likely to impart a strong isotopic signature. It 

seems reasonable that the mechanism linking the two pyrrole rings may be 

responsible for the enriched nitrogen isotope values we observe.   

An alternative possibility for precursor enrichment is δ15N enrichment in 

the available nitrogen pools.  One source of enriched nitrogen is from higher 

trophic levels.  Predators are enriched relative to their prey by ~3‰ [67].  Thus, 

top predators are enriched in 15N, such as the dolphins in this study (δ15N~14‰).  

By acquiring nitrogen from top predators by parasitic activity, recycling of 

carcasses, etc., a very enriched source of nitrogen could be tapped. 

Another source of enriched N could be nitrate.  Nitrate is the most 

abundant source of nitrogen in the oceans, which typically has δ15N values ~5‰ 

[59].  However, this value can vary widely, especially in regions where 

denitrification has depleted the pool of nitrate.  Denitrification is strongly 

fractionating, leaving the remaining pool of bioavailable nitrogen enriched in 

δ15N (e.g., δ15Nnitrate=12.5‰ North Pacific Subtropical Gyre) [68].  Thus, MBP 15N 

enrichment may derive from biosynthesis in areas of denitrification, or other 

areas of 15N-enriched nitrate. 

3.3 A hypothesis for MBPs origins 

Actinomycetes and Pseudoalteromonas species are prolific producers of 

secondary metabolites [69, 70], and are already known to produce halogenated 
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bipyrroles [63, 69, 71, 72].  Interestingly, some actinomycete species and 

Pseudoalteromonas denitrificans are capable of denitrification [67-69] and thus can 

access nitrogen pools enriched in δ15N.  Thus, actinomycetes and/or 

Pseudoalteromonas seem a likely source of MBPs.  Although these bacterial orders 

have been extensively examined for natural product production, MBPs have 

never been identified [69, 70].  This is unsurprising, as only a small fraction of 

existing species have been cultured and examined for secondary metabolite 

production, and most of these are soil-dwelling species [73].  Future research on 

the origins of MBPs may want to focus on new strains of marine actinomycetes 

and Pseudoalteromonas, particularly those isolated from regions where nitrate has 

high δ15N values.  

 MBPs are a remarkable class of environmental contaminants.  They are 

highly halogenated, bioaccumulative, natural products, and the research 

presented here demonstrates that they are dramatically enriched in δ15N (+20-

30‰).  This 15N-enrichment is greater than that seen for other terrestrially 

produced organic compounds that have been measured.  The enrichment likely 

stems from enriched precursors and/or fractionation during biosynthesis.  One 

source of enriched nitrogen in the oceans is the residual nitrate in areas of 

denitrification and two bacterial species known to produce halogenated 

bipyrroles are from genera with denitrifying capabilities.  Thus, we hypothesize 

that marine actinomycetes and/or Pseudoalteromonas produce MBPs. 
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Figure 1.  The general structure of MBPs, where X 
represents Br, Cl or H. 

 

 
Figure 2. Linearity test of the GC-C-IRMS system for measuring low abundances of halogenated 
bipyrroles.  Each circle represents one measurement on the GC-C-IRMS system (average of -
4.5±1.1‰) and the dotted line represents the EA/IRMS measured δ15N value of the standard 
DMBP-Cl6 (-3,9±0.2‰). 
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Figure 3. Box plots of selected δ15N ranges from a literature review of compound-
specific nitrogen isotope analyses compared with the MBPs presented in this study.  
Data from: amino acids [26-31, 33-36, 66, 74], DNA [37], pigments [38-44], secondary 
metabolites [45]. 
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Figure 4. Selected pathways of pyrrole biosynthesis.  The pyrrole moiety in the oroidin family 
of bromopyrrole alkaloids (produced in a number of marine sponge genera) is generated from 
proline and ornithine [75].  Proline is also the basis for one of the three pyrrole rings (in red) in 
Prodigiosin biosynthesis, the other nitrogens derive from serine (in blue) and an additional 
(unidentified) amino acid (in purple) [63]. 
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Figure 5. Box plots of the δ15N ranges of selected amino acids (amino acids with only 
one reported value were not included).  The horizontal bar represents the average 
value of all amino acids from this literature review (+3.4‰).  Data from [26-31, 33-36, 
66, 74]. 
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Table 1. The δ15N of four MBPs isolated from the blubber of three common dolphins, and the 
gender, age, and δ15Nbulk of the dolphins.  Measurements were made in triplicate, all three 
measurements are presented in italics and the average in bold. 

δ15N (‰) (±2‰) 

Sample ID gender age δ15Nbulk
 Br7-MBP-79 MBP-Br6Cl-b 

CCSN04-218Dd male calf 14.3 +19.3  
replicate 1 +21.6  
replicate 2 +20.0  
replicate 3 +16.2  

CCSN06-013Dd male adult  13.2* +21.0  
replicate 1 +21.6  
replicate 2 +20.3  
replicate 3 +21.0  

CCSN07-074Dd female adult 13.5 +28.1 +22.2 
replicate 1 +28.3 +25.5 
replicate 2 +30.4 +19.7 
replicate 3 +25.6 +21.3 

*Muscle was not sampled, and no bulk δ15N was measured.  The value was estimated based 
on the values of other adult male common dolphins in a companion study (Chapter 4 [4]). 
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CHAPTER 6 

 

Conclusions and Future Directions 

 

 Halogenated 1’-methyl-1,2’-bipyrroles (MBPs) are a distinctive class of 

marine organic compounds.  They are naturally produced, have a unique carbon 

structure, are highly halogenated (with bromine and/or chlorine), appear to 

biomagnify, and are considerably enriched in 15N relative to other terrestrial and 

marine naturally produced organic molecules. 

 When these compounds were initially detected in blubber samples, only a 

few of the most abundant MBP congeners were identified [1-3].  Specifically, only 

one MBP-Br6Cl congener was detected (out of a possible five), prompting 

researchers to speculate that the halogenation process during biosynthesis was 

regioselective and that congeners with fewer than seven halogens were the 

dehalogenation products of biosynthetic perhalogenated congeners [3].  

However, over twenty perhalogenated MBPs have now been detected [4-6], 

which diminishes the theory that MBP halogenation is regioselective.  The 

origins of MBPs with fewer than seven halogens are not yet clear.  They may be 

synthesized concomitantly with their perhalogenated counterparts, they may be 

products of dehalogenation, or both processes may contribute to their presence 

in environmental samples. 
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 One line of evidence for MBPs as marine natural products is their 

detection only in marine samples. Even the carbon structure (N.C1-linked 

bipyrrole) had never been reported prior to the identification of MBP-79 [7].  

However, it should be noted that a thorough search for MBPs in terrestrial 

environments has not yet been performed.  Since pyrroles are relatively common, 

as are opportunities for halogenation, a more thorough screening of terrestrial 

samples would be beneficial supporting evidence.  Further, the abiotic 

condensation of pyrroles in the presence of halogenating agents or enzymes 

should also be investigated.  Unintentional abiotic generation of MBPs may be 

unlikely (lab-based chemical synthesis of these molecules suffers from very low 

yields [2, 8]), but still requires investigation to rule out. 

 The evidence for MBPs biomagnification is extremely strong.  As 

demonstrated in this dissertation, lipid-normalized MBPs concentrations increase 

with increasing trophic level.  Additionally, MBPs display the biomagnification 

patterns seen in the environment for persistent organic pollutants (POPs) and 

that have been demonstrated mathematically by numerical models.  In adult 

males, MBP concentrations increase with age; in juveniles there is a growth 

dilution pattern; and adult females have much lower body burdens than males, 

likely due to MBP transfers during lactation and gestation.  All of our data is 

consistent with biomagnification as the process responsible for the 

environmental distribution of MBPs.  Since biomagnification is a critical feature 
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of the environmental chemistry of POPs, the data presented here affords greater 

confidence in the use of MBPs as natural analogues for these anthropogenic 

contaminants. 

 It remains to be determined why MBPs and other similar naturally 

produced compounds are persistent in the environment.  Although halogenated 

natural products are commonly hypothesized to be defensive compounds [9], 

further hypotheses have also been proposed, such as forms of chemical 

communication, settling deterrents/anti-fouling agents, and protection from UV 

radiation [9, 10].  Persistence is not an obviously desirable attribute for chemicals 

involved in communication or that might be toxic.    However, as proposed by 

Prof. William Fenical (personal communication) the lipophilicity of many of 

these persistent chemicals may be the mechanism that prevents them from over-

accumulating in the ecosystem in which they are produced. 

 However, the similarities to POPs are inevitably limited, as demonstrated 

in this dissertation by the comparison of MBPs and a POP, 2,2’,4,4’,5,5’-

hexachlorobiphenyl (CB-153).  POPs and marine halogenated natural products 

(HNPs), such as MBPs, have very different sources, and this can lead to 

differences in their distributions.  POPs are now ubiquitous [11], but they are 

produced terrestrially, and their inputs to the ocean are thus tied to their 

terrestrial sources.  MBPs, however, have only a marine source, and have no 

association with terrestrial inputs.  Further, it is likely that just one species or an 
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assemblage of species produces them, thus their source is far more limited than 

POP sources.  The differences in the geography and magnitude of sources 

between MBPs and POPs may lead to variations in the ways that they enter and 

transit through the food webs.  Thus, it takes longer for concentrations to 

accumulate in blubber because MBPs have a more limited magnitude and 

distribution relative to PCBs and exposure to MBPs is reduced.  This theory is 

strengthened by the consistent presence of CB-153, and its relative abundance, 

compared to the more variable, but consistently less abundant, distribution of 

MBPs in marine species. 

The differences between MBPs and POPs are not limited to their sources 

and geographic distributions.  This dissertation presents evidence suggesting 

that marine mammals process these compounds differently.  MBPs appear to be 

more easily mobilized from blubber during times of nutritional stress, and this 

may include periods of gestation and lactation in adult females.  Further, the 

pinniped species analyzed in this dissertation (P. groenlandica and H. grypus) 

have far lower MBP blubber concentrations than would be expected for their 

trophic positions, yet they still have the expected high levels of CB-153.  Such 

differences between HNPs and POPs were noted in previous studies of 

pinnipeds [12-14], which suggested that these pinnipeds had enhanced metabolic 

capabilities to process HNPs.  By determining that pinnipeds are exposed to 

MBPs through their diets, the data presented in Chapter 4 considerably 
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strengthens this argument.  Investigating the enzymatic mechanisms of HNP and 

POP metabolism may elucidate which structural features facilitate MBP 

metabolism. 

Finally, MBPs have high δ15N values, enriched relative to other naturally 

produced organic compounds and to the bulk tissue of the dolphins from which 

they were isolated.  This enrichment appears to be a signature of biosynthesis, 

and it is unlikely to have been introduced by metabolism or abiotic degradation.  

Thus, their enrichment is tied to biosynthetic fractionation and/or enriched 

precursors.  Two potential sources of biosynthetic enrichment can be tested 

rather easily. The isotope effects of halogenation of pyrrole rings can be 

examined through the abiotic process to determine if changes in aromaticity 

result in an associated fractionation.  The fractionation associated with linking 

the pyrrole rings could be examined by comparing the δ15N of MBPs and 

marinopyrroles with that of DMBPs.  MBPs and marinopyrroles are both linked 

through a nitrogen atom from one of the pyrrole rings, while DMBPs are only 

linked through carbon atoms.  Thus, if the enrichment we observe in MBPs is due 

to formation of the C1,N bond, than similar enrichment should be observed in 

the marinopyrroles and no such enrichment would be present in the DMBPs. 

The biosynthetic mechanism of MBPs is, of course, unknown, but 

structurally similar compounds are produced by other marine bacteria, 

specifically the marinopyrroles from an actinomycete strain (CNQ-418) [15] and 
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3,3’,4,4’,5,5’-hexabromo-2,2’-bipyrrole from Pseudoalteromonas luteoviolacea [16, 

17].  A source of enriched nitrogen is common to both groups.  Species from both 

groups are involved in denitrification, a process that strongly fractionates 

nitrogen isotopes, leaving the residual nitrate enriched in 15N.  Consequently, 

MBP’s δ15N signatures suggest that species from the Actinomycetes or 

Pseudoalteromonas may be responsible for MBP biosynthesis.  Future searches for 

MBP producers may find it most productive to focus on these species. 

Much remains to be learned about the controls on MBP cycling and fate, 

as well as about MBP biosynthesis and chemical ecology. Ultimately, the 

questions that drive my interest in MBPs have not yet been answered: who make 

these compounds, how are they made, what function do they serve, and why are 

they required to be environmentally persistent?  The dissertation provides the 

foundation necessary to find these answers by expanding our understanding of 

environmental distributions and providing initial constraints on MBP 

biosynthesis. 
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APPENDIX 

The lipid content of mammalian samples.  Blubber percentages are given on a 
wet weight basis, liver percentages are given on a dry weight basis.  The 
abbreviations are: ‘n.r.’ – not recorded; ‘n/a’ – not applicable because no liver 
samples were available. 

% lipid CCSN number blubber liver 
CCSN07-023La 83.3 13.4 
CCSN06-119La 77.6 12.5 
CCSN06-022La 75.5 19.8 
CCSN06-264Dd 69.3 10.5 
CCSN07-109Dd 57.3 10.0 
CCSN07-115Dd 56.7 11.0 
CCSN05-316Dd n.r. 12.6 
CCSN06-013Dd n.r. 13.6 
CCSN06-029Dd 80.5 8.73 
CCSN06-263Dd 85.2 7.23 
CCSN07-040Dd 71.5 6.00 
CCSN06-024Dd 79.0 23.1 
CCSN06-096Dd 83.8 19.6 
CCSN06-137Dd 63.6 12.1 
CCSN07-036Dd n.r. 7.35 
CCSN07-041Dd 53.8 11.1 

D08742 n.r. 9.94 
CCSN07-129Hg 78.0 11.0 

D07041 63.1 15.7 
CCSN07-063Pg 81.4 22.8 
CCSN07-080Pg 84.3 5.66 
CCSN07-084Pg 79.5 16.3 
CCSN07-116Pg 85.5 5.34 
CCSN06-133Pg 67.3 15.2 
CCSN07-022Gm n.r. 9.48 
CCSN06-019La 80.0 n/a 
CCSN04-218Dd 59.9 n/a 
CCSN06-144Dd 72.9 n/a 
CCSN07-074Dd n.r. n/a 
CCSN07-066Pg 77.5 n/a 
CCSN07-076Pg 76.3 n/a 

 




