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ABSTRACT

Part one of this thesis discusses the structure of the thermocline and the
current pattern within a two-layer model. The corresponding flow field is
explored as the amount of water in the upper layer is gradually reduced (or as
the wind stress is gradually increased).

In the model, when the amount of water in the upper layer is less than a
first critical value, the Tower layer outcrops near the middlie of the western
boundary. A dynamically consistent picture includes a whole loop of boundary
currents, which surround the outcropping zone completely and have quite
different structures. In addition to the boundary currents found in previous
models, there is an jsolated western boundary current (i.e. bounded on one
side by the wall and on the other by a streamline along which the upper layer
thickness vanishes), an internal boundary current and possibly isolated
northern/southern boundary currents. Within the limitations of the two-layer

model, the isolated western boundary current appears to represent the Labrador

.



Current while the internal boundary current may represent the North Atlantic
Current. A first baroclinic mode of water mass exchange occurs across the ZWCL
(zero-wind-curl-1ine).

When the amount of water in the upper layer is less than a second critical
value, the upper layer separates from the éastern wall and becomes a warm
water pool in the south-west corner of the basin. Under this warm water pool
is the ventilated lower layer.

| The sea surface density distribution is not specified; it is determined
from a consistent dynamical and mass balance. Implicit in this model is the
assumption that advection dominates in the mixed layer.

The subtropical gyre and the subpolar gyre combine asymmetrically with
respect to the ZWCL.

Chapter I discusses the case when the lower layer depth is infinite.
Chapter II discusses the case when the lower layer depth is finite. In the
Addendum the climatological meaning of this two-layer model is discussed.

Part two of this thesis concerns the use of a continuously stratifled
model to represent the thermocline and current structures in
subtropical/subpolar basins. The‘?degj fluid thermocline equation system is a
nonlinear, non-strict hyperbolic systéﬁ. In an Addendum to Chapter III the
mathematical properties of this equation system are studied and a proper way
of formulating boundary value problems is discussed. Although the egquations
are not of standard type, so that no firm conclusions about the existence and
uniqueness of solutions have been drawn, some possible approaches to properly
posed boundary vaiue problem are suggested. Chapter III presents some simple

numerical solutions of the ideal fluid thermocline equation for a subtroplcal
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gyre and a subtropical/subpolar basin using one of these approaches. Our model
predicts the continuous three dimensional thermocline and current structures
in a continuously stratified wind-driven ocean. The upper surface density and
Ekman pumping ve]ocity are specified as input data; in addition, the
functional form of the potential vorticity is specified.

The present model emphasizes the idea that the ideal fluid thermocline
model is incomplete. The potential vorticity distribution can not be
determined within this idealized model. This suggests that the diffusion and
upwelling/downwelling within the western boundary current and the outcropping
zone in the north-west corner are important parts of the entire circulation

system.
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Chapter I
A Two-layer Model for the Thermocline and Current Structure
in Subtropical/Subpolar Basins

I. Lower Layer with Infinite Depth

Abstract

A study is made of the thermociine and current structures of a subpolar
gyre and a double gyre basin. A simple two-layer model is used, and its
behavior is explored as the amount of water in the upper layer is gradually
reduced (or as the wind stress is gradually increased). When the amount of
water in the upper layer is less than (or the wind stress is larger than) a
critical value, the lower layer outcrops near the middle of the western
boundary. A dynamically consistent picture includes a strong, "isolated"
western boundary current (i.e. bounded on one side by the wall and on the
other by a streamline along which the upper layer thickness vanishes) flowing
southward and an "internal" boundary current (i.e. a current that flows in the
interior of the ocean and separates these two layers) flowing northward. The
isolated western boundary current may represent the Labrador Current, and the
internal boundary current may represent the North Atlantic Current. For a
typical case there is some water mass exchange across the ZWCL
(zero-wind-curl-line).

The analysis in this chapter follows Parsons's (1969) idea; i.e., we

assume that the lower layer has an infinite depth, so that the flow pattern

can be found with relatively simple algebra.



1. Introduction

A fairly narrow vertical zone of large temperature and salinity gradients
exists in all of the worid's oceans. The thermocliine theory is concerned with
the structure of this region of rapid vertical variation. The ocean is driven
from above by wind-stress and differential heating. There is strong coupling
between density and velocity fields, which makes the thermocline problem
highly non-linear; moreover, the complicated boundary conditions of the ocean
basins make the problem even more difficult.

During the early stages of the development of thermocline theory, much
effort was devoted to trying to find similarity solutions. The similarity
solution approach s based on special balances of terms in the nonlinear
partial differential equation. Though some similarity solutions give a good
qualitative description for the ocean thermocline, there is no reason why
these speciallterm balances should hold. In addition, a very serious
difficulty with similarity solutions is that they cannot satisfy the full
boundary conditions required for a three-dimensional basin.

Recently, there has been some renewal of interest in finding
non-similarity solutions for the thermocline probiem. Rhines and Young (1982)
propose an unventilated model with the potential vorticity being homogenized
below the directly wind-driven top layer. Their model rather successfuilly
describes the bowl-shaped subtropical gyre with its homogeneous potential
vorticity pool. Though they include weak dissipation for the interior flow,
their model cannot deal with the strong dissipation within the western

boundary current.



Luyten, Pedlosky and Stommel (1983, LPS hereafter), following the
classical thermocline theory more closely, use a ventilated model of the
ocean. By specifying the density distribution at the base of the mixed layer
within the downwelling region, their multi-layer model describes the large
departures of isopycnal depths on planetary scales. Their model gives a global
picture of the outcropping, ventilation and unventilated zones. However, it
has the same disadvantage as other models based on the ideal fluid thermocline
theory; it does not include a western boundary current or any kind of
dissipation. As a result, i1t cannot satisfy the western boundary condition and
it is not clear whether or how the fluxes of various water masses can be
balanced. There is another shortcoming: the surface density distribution
within the subtropical gyre is imposed a-priori from data averaging. Actually,
the density distribution on the base of the Ekman layer should be determined
by the interaction between the local, more or less one-dimensional mixed layer
dynamics, and the large-scale geostrophic fliow underneath. In their model the
IWCL is a constant density line and is treated as a real boundary between two
gyres. This assumption might be intuitive or simply convenient. However,
although the Sverdrup transport is zero on this line, there is no reason,
a-priori, why this line should be a real boundary between these two gyres. In
fact, a first baroclinic mode of water mass exchange across this line is found
in this paper; this baroclinic mode combines these two gyres into a united
body.

The ventilated thermocline model requires the density distribution on the
base of the mixed layer as a given upper boundary condition. Actually, the

thermal structure of the mixed layer depends on both the local air-sea



interaction and the advection. Suppose the surface heat flux due to air-sea
interaction is a simple linear Rayleigh type law Q = o(T* - T®); where 1/o
js the time scale for the water mass in the whole upper layer to be warmed up.
If T. is the advection time scale, then K = 1/T_.o is the ratio of these
two time scales. For the shallow Ekman layer K << 1, meaning that the local
air-sea interaction dominates the temperature distribution, while as for a
whole layer with depth of an order of a kilometer, K >> 1 meaning that the
advection dominates the temperature distribution. The ventilated thermocline
mode! discusses the case K << 1 for the Ekman layer. The other extreme case K
>> 1 represents another classic approach to the thermocline theory: the purely
wind-driven layer model with a finite amount of water in the upper layer.
Parsons (1969) first used this latter approach to discuss the Guif Stream
separation mechanism in a subtropical basin. Based on the assumption of a
finite amount of warm upper layer water, Parsons conciudes that reducing the
volume of warm upper layer water below a critical value causes the lower layer
to surface near the northwest corner of the basin. The western boundary
current of the upper Tayer leaves the western wall and becomes an internal jet
stream which separates the warm upper layer from the cold lower layer. For
simplicity Parsons assumes the lower layer is infinitely deep, so if is
motionless. By this assumption, the algebra has been made much easier.
However, this assumption needs modification. No matter how deep is the lower
layer and how small is the lower layer velocity, the vertically integrated
mass flux is a non-zero finite number. Thus Parsons's model has to be

improved. This problem will be discussed in Chapter II.



Veronis (1973) uses a similar approach for the world ocean circulation.
Instead of using a purely wind-driven circulation model, he specifies the
upper-layer thickness on the eastern wall from observational data. Thus his
model in a sense partly includes the heating effect. For the interior ocean,
Veronis extends Parsons's model to the two-gyre case. To balance the mass flux
within the whole basin, Veronis proposes isolated northern and western
boundary currents, but he gives no dynamical analysis for these boundary
currents. In his solution the proposed northern boundary currents are against
the local wind (westerly). However, having a northern boundary current going
against the local wind seems inconsistent with the lowest order dynamics.

Since the work of Stommel (1948), the subtropical gyre and its western
boundary current have become a classic problem. Although some difficult
questions for the subtropical gyre remain to'be answered, this gyre and its
western boundary current are topics which have been studied extensivély by
oceanographers; there are a lot of observational data and many theories which
work out nicely for them. However, there is no good model for the subpolar
gyre. Though there have been many chbservational papers, corresponding
dynamical modeiling efforts are rare (see, for example, Veronis, 1973;
Pedlosky and Young, 1983). In most numerical models for a two-gyre basin the
sybpolar gyre is treated simply as a mirror image of the subtropical gyre. Of
course, this is true only for quasi-geostrophic models. Physically, the
subpolar and subtropical gyres have quite different structures. The latter is
anticyclonic, so that all isopycnal depths increase westward, making the gyre

bowl-shaped. The subpolar gyre is cyclonic, so that the upper layer thickness



decreases westward. In a typical subpolar basin isopycnals outcrop, making an
open dome-shaped structure.

The analysis in this chapter considers the 1limited-volume upper-layer
cases in connection with two-layer models of a subpo¥ar gyre and a two-gyre
basin. Many factors of the solutions presented here are similar to those of
Veronis; the major differences are inclusion of the dynamics of the boundary
layers and discussion of evolution of the flow pattern as the external
parameters change. In our model a non-dimensional number X = TL/g'pod?
determines the basic flow pattern.

When X is small (weak wind forcing or a large amount of upper layer water)
there is the subcritical state. The upper layer covers the whole basin
resulting in the classical picture: an anticyclonic subtropical gyre with its
western boundary current flowing northward and a cyclonic subpolar gyre with
its western boundary current flowing southward.

When X\ is moderate (normal wind forcing and normal amount of upper layer
water) there is the supercritical state (I). Starting from the subcritical
state, the wind-driven circulation evolves as pafameter A increases.
Physically, as the amount of light water in the upper layer is gradually
reduced {or as the wind stress is increased), at some critical point the
upper-layer thickness in the middle of the western boundary becomes zero. What
does the flow pattern look like if the amount of 1ight water is reduced (or if
the wind forcing is increased) further? The only logical solution we find is a
peculiar lToop of boundary currents near the middle of the western boundary of
the subpolar basin. Within this loop the lower layer surfaces. On the western
wall, there is an isolated western boundary current which moves southward to

balance the northward Sverdrup transport within the interior ocean.



For a two-gyre basin the ocutcropping first appears in the subpolar gyre;
when the amount of 1ight water is small (or if the wind stress is large) the
outcropping zone expands into the southern half of the basin. In a sense,
Parsons's model forms a part of our model, cut off along the ZWCL. In our
model the surfacing line is ¥ = ¥, < O, but in Parsons's model the
surfacing line corresponds to ¥ = 0, a condition which, as will be shown, is
not necessarily met in a two-gyre basin.

For a two-gyre basin, a typical flow pattern has an outcropping zone
occupying a large part of the subpolar basin and extending into the
subtropical gyre. There is a whole loop of strong boundary currents around the
outcropping zone: an internal jet flowing northeastward transporting warm
water into the subpolar basin, an isolated northern boundary current flowing
westward and an isolated western boundary current flowing southward
transporting all the upper-layer water around to make a balanced pattern.
Southward of the ZWCL the Gulf Stream separates from the coast and joins with
the Labrador Current (the isclated western boundary current) to form a strong,
warm internal jet. The mass flux of the Gulf Stream after its separation is
the sum of the interior Sverdrup transports in both the subtropical and the
subpolar basins. The water mass exchange across the ZWCL might be an important
part of the poleward heat flux mechanism.

One notices, however, that the Sverdrup relation is not satisfied in the
middle of the ZWCL where the internal jet crosses the ZWCL. This problem will
be discussed in the following analysis.

When X is big (very strong wind forcing or small amount of upper layer

water), the upper layer water becomes a warm water pool near the southwest

corner of the basin.



2. Basic Equations

In this section we consider the steady wind-driven circulation within a
square subpolar basin. The origin of a Cartesian coordinate system is at the
southwest corner of the‘basin with the x-axis directed eastward and the y-axis
northward. The continuous stratification in the real ocean is modeiled here as
two immiscible layers, the upper layer and the lower layer with uniform
density po and p,, respectively. In order to make the model more
realistic, the interface is placed at about the depth of the thermocline, so
that the upper layer is essentially the light water above the thermocline and
the lower layer is the water beneath the thermocline.

For simpiicity we assume that:

1) The pressure is hydrostatic.

2) The lower layer has infinite depth.

3) The effect of friction is an interfacial drag proportional to the

velocity .

4) The flow can be represented by the vertically integrated average

velocity.

The momentum and continuity equations for the upper layer can be written as

D{uu,+ vuy) -fDv = -g'DD.+t™/pe -Ku 2.1
DCuv,+ vvy) +fDu = -g'DD +t¥/pe -kv (2.2)
(Du), + (Dv)y, = O (2.3

where (u, v) is the horizontal velocity vector, (t*,t¥) is the
wind-stress vector, f = the Coriolis parameter of the earth, ¢' = g(l

-pafp1} is the reduced gravity, D is the upper layer thickness, and k is

the drag coefficient.



Within the B-plane approximation we write

f="fo + By
Note that the B-plane approximation is not really valid for a planetary scale.
Veronis uses a spherical coordinates in his study. Nevertheless, the f-plane
approximation gives a qualitatively correct picture even for a planetary
scale. Thus the B-plane approximation is used in our simple model.

To obtain the non-dimensional equations, we introduce non-dimensional
quantities by the following relations:

(x,y) = L{x',y")

T=T7T
D = dD' (2.4
(u,v) = g'd/L3BCu',v")
f = LBF"

where
f' = fo +y' -0.5 (2.5)
fo = (RIL)tan@Q (2.6)

T is the wind stress scale
d is the mean depth of the upper layer

If the total volume of the upper layer water is V, then the following

relation holds

V = dL? (2.7

Dropping the primes for dimensionless variables, the momentum equations

and continuity equation become



RoDCuuy+vuy,) - fDOv = -DD+ At™ - eu (2.8)
RoDCuv.+vv,) + fDu = -DDy+ At¥ - ev (2.9
(D .+ (Dv)y, = 0 (2.10

where the three non-dimensional parameters are

Ro = 9'd/L*B%, e = k/BLd, X\ = TL/g'pod? (2.11)
For typical cases, both Ry, and ¢ are very small and the nonlinear advection
terms are neglected in the following discussion in order to derive simple
analytical solutions. The fact that € is a small number is used to follow a
standard boundary layer perturbation approach to the basic equations.

Introduce a streamfunction

Du=-¥%, ,Dv=t¥, (2.12)

Then the basic equations become

-f¥, = -DD, +e/De¥, + At™ (213
-f¥, = -00,-c/De¥, + A1Y (2.14)
¥=0atx=0, 1landy =20, 1 (2.15)

The solutions are subjected to the following constraint:

TafaDdxdy = 1 (2.16)
which comes from equation (2.7).

For simplicity in the following discussion the wind stress is assumed to
be in x-direction only, T = (t, 0). We begin with a subpolar basin model

and_exp]ore the evolution of the flow pattern as X\ increases gradually.
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3. The Subcritical State

When there is a large amount of upper-layer water (or if the wind forcing
is very weak) the upper layer covers the whole subpolar basin, and the |
solution is the classical subpolar cyclonic gyre with a strong western
boundary current flowing southward. The structure of this boundary current is
discussed in the following section. In the interior, there is the interior
Sverdrup solution

¥i0 = AM1-X)1y (3.1

2o = DI + 22(1-0)(fry-v) (3.2)
where D. is the upper-layer thickness along the eastern boundary. For the
assumed pure zonal wind stress, De is a constant. In a subpolar gyre
is always negative; and simple differentiation shows that D,, attains its
minimum value at (0, yo) where t,, = 0, and ¥,, also attains its
minimum value at the same point. As the volume of the Tight water in the upper
layer is gradually reduced (or if the wind stress is gradually increased), A
increases and D. increases almost linearly with X (Fig. 1-1). This relation
can be calcutated by (2.16) and (3.2)

oo (Da+20(1-x)(fry~1)) ' “*dxdy = 1 (3.3
At a critical value A., the upper-layer thickness becomes zero at point
(0, yo). For a wind stress pattern t = cosmy, A, = 0.123, D, = 1.244,
and D,, = 0 appears at point (0, 0.5). Above the critical value A., there
is no solution possible in which the upper layer covers the whole subpolar
basin. This is the supercritical state which will be discussed next and the

corresponding A - D. relation is calculated by (4.5) in the next section.
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o | Ae 1.0 2.0 3.0

Fig. 1-1. The relation between J\ and De (the layer thickness
on the eastern wall) for a subpolar basin, = 0.123,

Dee=1,244,
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4. The Supercritical State (I)

Suppose the lower layer surfaces within a small area around point (0,y.).
From equation (3.2), the line Dy, = 0 is

(1-x)(ft, - ©) = -Di/2x | | (4.1
along which the streamfunction of the interior Sverdrup solution is

¥e = -Dit,/2(fr,-1) (4.2)
By simple differentiation, one finds the total derivative

d¥s/dy = Ditr,,/2(fry—1)? (4.3
thus y = yo is a stationary point. Away from y = y,, d¥./dy is
non-zero; therefore, ¥, is not constant along the D;, = 0 line. However,
the surfacing line should be a streamline ¥ = ¥,. Since the line Di. =
0 dées not satisfy this dynamic requirement, the current should move around
and search out a position where the consistent dynamical balance holds. Here
we are only interested in the steady circulation case, so that we do not
discuss this adjustment process. The shape of this outcropping line, X = X(y),
will be discussed in the next section. At the same time, to transport the
northward interior Sverdrup mass flux back southward, there should be an
isolated western boundary current. (For our purely zonal wind forcing case, an
eastern boundary current is dynamically impossible. Unlike the traditional
boundary currents in layer models, here we are dealing with boundary currents
that are separated from the interior domain of the upper layer by the
outcropped lower layer. Thus they are isolated from the main body of the upper
layer.) On northern/southern parts of the western boundary, if the upper Tayer

is not separated from the wall, there are classic western boundary currents

12



(See Section 6, Fig. 1-4a). The interpal free surfacing line is a "western"
boundary for the upper layer flow, so there is an intense internal boundary
current along this surfacing line. When the surfacing line meets the
northern/southern boundaries, there are isolated northern/southern boundary
currents as well. All these boundary currents will be discussed in the next
section.

In the supercritical cases the integration condition (2.16) should be
written as

ffa D dQ = 1 (4.4)
where @ is the area that the upper layer fluid actually occupies and D is
the upper layer thickness. Because the boundary layers are very narrow, their
contributions to the integral (4.4) are order e. Furthermore, the contribution
of the interior boundary current is a small negative correction term to the
integration; the contributions from the isolated western boundary current or
the isolated northern/southern boundary currents are small pogitive terms.
Thus these terms tend to compensate each other. Within the lowest order
approximation one thus can simply use the region on the right-hand-side of the
outcropping 1ine as @ and Dy, as D in calculation. For the case we are
discussing, T = (t, 0) and t is independent of x, the double integration

in (4.4) can be changed into a simple 1-D integration

dﬂ =

j] {1420/D2e L 1-X(y) 1 (Fry-1)} > 21
0 WD (oD D. (4.5)

After finding out the surfacing line X = X(y), this integration condition

gives the relationship between A and D, as the right part of the curve in

Fig. 1-1.
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5. Boundary Layer Structures

1) Semi-geostrophy condition

For an arbitrary boundary current it is convenient to use a new coordinate
system (r, s) with the outcropping lower layer water occupying the region r <
0 (Fig. 1-2). Assume that the boundary layer thickness is much smaller than
the curvature radius of the surfacing Tine, we can neglect the curvature terms
in the momentum equations and treat the (r, s) coordinates as local Cartesfan
coordinates. After introducing the stretched boundary layer coordinate

n=rle (5.1
(2.13) and (2.14) become

- f¥, = -DDq+e?¥:/D +ent” | (5.2)

- f¥, = -DD¢-¥,/D + At® (5.3)
To the lowest order, (5.2) represents the semi-geostrophy condition across the
narrow boundary layer; meanwhile (5.3) is the ageostrophic downstream balance
which is typical of all kinds of boundary currents.

Integrating (5.2) across the boundary current gives the semi-geostrophy

condition

¥ - D*/2f = g(s)+ O(e) (5.4)
where g(s) can be determined for specific boundary currents from the
corresponding boundary conditions.

By cross-differentiating and subtracting (5.2) and (5.3), we obtain the

potential vorticity equation

3/3ne(D""3¥/3n)+F,0¥/3n = -e[N(VXT) +f ¥.1-c23/35¢(D" ' 3¥/3s) (5.5)

14



Fig. 1-2. The local coordinate system (r,s).



where

f. = df/ds, f. = df/dr.

To the lowest order this equation is simply

(¥ /D)y + fs ¥, = 0 (5.6)
which we can integrate to get

v,/D + o ¥ = h(s) (5.7)
Using semi-geostrophy, this equation becomes

Dy + fs D2/2 = hy (s) (5.8)
However, for most cases it is more direct to put the semi-geostrophy condition
into the ageostrophic momentum equation and find the boundary Tayer solutions.

In the following analysis we will use this semi-geostrophy condition to
find the shape of the outcropping iine. Then we will discuss the interior
boundary current, the classical western boundary current, the isolated western

boundary current, the isolated northern boundary current, and the isolated

southern boundary current.

2) The Qutcropping Line

Applying the boundary condition for the unknown free boundary

¥=%,,0=0 atn=20 (5.9
the semi-geostrophy condition becomes

¥ -D2/2f = ¥, (5.1
where ¥, < 0 is an unknown constant. Note that (5.10) applies to the

entire width of the boundary layer. By using (3.1) and (3.2) the above

condition can be written as

¥o = -D2/2f + A(O-x)/f (5.1

15



To determine the surfacing line for a given %, we need two more conditions.

Assume that the surfacing line meets the western wall at y = y. so that

¥ = - DI/2F. + Ntc/f. (5.12)
where

fe = Fa+ ¥y - 0.5 (5.13)

Te = tl{ye)

Then the equation for surfacing line can be written as

1-X = [D3(F-F)/2:xfFr 1/ \xf, (5.14)

Since the surfacing line is allowed to cross the zero-wind-line, the
numerator on the right-hand side of equation (5.14) should be zero at y = y.
where ={(y,) = 0, giving

DI = At fo/(Fu-fe) | (5.15)
The final form for the surfacing T1ine is therefore

X(y)= 1 - t /ey /1 (ye-ye) -~ {5.16)
As y + y, , the Timit is finite

Xi= 1+ te/(Yemyedty(ys) (5.17)

Now putting equations (5.15) and (5.16) into (3.2) gives an eduation for
the upper layer thickness along this surfacing line:

2 = T FL(F =Pt /1l /(y -y ) (5.18)

It is obvious that D., > 0 as y » y.. To guarantee that D3, » O
gverywhere along the surfacing line, the following condition should be
satisfied

(yo=-¥)ty/t 3 -1 (5.19)

which means
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2y, - it when © > 0, y <y,

t -y - ¥y |1, when © < 0, ¥y > v, (5.20)
or, if tyy, exists,

Tyy» 0 for Yy > Y

Tyy§ O ¥y <Y (5.21)
If v,y 1s continuous at y., the condition (5.21) means

tyy= 0 at y =y, where t = 0 (5.22)
This condition guarantees that as A passes over A, the lower layer ohtcrops
near (0,yo) where v = 0, thus assurming a continucus transition between
the subcritical case and the supercritical case. (If this condition is not
satisfied, the surfacing line meets the eastern wall below the
zero-wind-stress line. For the wind stress being used an eastern boundary
current is not possible and the procedure above cannot be used to find the
steady solution to satisfy all the necessary boundary conditions..As yet, we
have not been able to find a solution for more general wind stress patterns.)

This constraint can be explained from the basic force balance. Putting the
semi-geostrophy condition (5.10) into (5.3), we get

f(¥-¥,) = -¥,/D +\° (5.23)
Because ¥ ~ ¥, near the outcropping line, it follows that

~¥,/0 +xt = 0 (5.24)
which means, under our assumption (neglecting the nonlinear advection term and
the pressure gradients in the lower layer), that the basic downstream momentum
batance is between the friction force and the local wind. Therefore

dX/dyet > 0 (5.25)
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and

dX/dy=0 only if Tt =0 (5.26)
However, from (4.1) by differentiation and noting that generally fr, - <
is nonzero where t,, is zero, we have

dX/dy=0 appears where t,,=0 o (5.27)
This relation can be explained from the Sverdrup mass transport relation (3.1)
because the streamfuction attains its extreme value at the stationary point
where =,, = 0. Combining (5.26) and (5.27), we find the same constraint
(5.22).

Veronis uses a relation similar to (5.14) to determine the outcropping
line. Because D, and t are specified from data and there is no easterly
near the northern boundary in his model, there is no singular latitude and
(5.14) works well in his model. To build up a mass balance he proposes the
existence of the isolated northern and western boundary currents. However, as
is shown in Appendix A, the only possible momentum balance (within the
dynamics being used here) for an isolated northern boundary current is a
balance between the local wind stress and the friction force. To have a
continuous mass transport within the whole basin, the northern boundary
current should flow westward. However, the friction force would then be
eastward. Thus it is still not clear how a westward isolated northern boundary
current is formed within a westerly zone.

One can see from the analysis above that including the nonlinear advection
terms or the pressure gradients in the lower layer might release this
constraint on the wind profile. This is left for further numerical

investigation.
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As the volume of 1ight water is further reduced (or if the wind stress is
further increased), the surfacing Tine may not meet the western wall. Instead,
it may meet the southern wall at x = Xs . By arguments l1ike those above the
surfacing line equation is

X(y) = 1= 2Q0-x)(ye=y) /xly) (5.28)
Fig. 1-3 shows the typical surfacing 1iﬁes.

3) The Structure of the Interior Boundary Current

We apply the following boundary conditions

D=0 at n=0 (5.29)

D=Dia, Dh=0 atn=- (5.30)

to equation (5.8). The result is a simple first-order ordinary differential

equation -
d0fdn + f.(D*-D3,) = 0 (5.3
DO =0 (5.3

whose solution is

D = Din(l-exp(~FDy o2/ (Teexp(-FsDinn)) (5.33
where D;, is the layer thickness for the interior solution at the
outcropping line. The corresponding streamfunction ¥ can be calculated from
the semi-geostrophy condition (5.10). From this equation the boundary layer
thickness is inversely proportional to df/ds so that in the southern end of
the interior boundary, the boundary current becomes more and more spread out.
Obviously, the boundary layer strength is zero at point (x.,y.) where the

interior solution satisfies the outcropping line condition exactly.
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Fig. 1-3. Typical outcropping lines for a subpolar basin model.

lambda= 0.1385 (a2); 0.2027 (b); 0.3927 (c); 0.841 (d); 1.642 (e).

19~



4) The Structure of the Classical Western Boundary Current
Using boundary layer coordinates
n=-X/e, s =-y
the corresponding boundary layer domain is
n={Nw0l, ne<0.
The corresponding equations (5.4) and (5.8) become

¥ - D*/2f

-D5/2f (5.348)

D, + D*/2 .12 (5.3%
with the following boundary condition
D%(0) = DZ = D%, - 2f¥,, (5.36)

Integrating equation (5.35) with the boundary condition (5.36), the solution

is

D = Dyn(1-Bexp(Di n2)/(1+Bexp(D, ,n)) (5.37)
where |

B = {(D:.~-D.,2/(D,.+D)) _ (5.38)

The corresponding streamfunction ¥ can be calculated from (5.34).

5) The Structure of the Isolated Western Boundary Current

Using the same boundary layer coordinates as above, the semi-geostrophy
gives one equation

¥ - D?/2f = - D2 /2f | (5.39)
D, can be determined by

DZ = -2f¢, (5.40)
where ¥, comes from the interior boundary layer solution. The other
equation can be derived either from

¥ (2f¥+DE) "2 4 ¥ = ¥ (5.41)

20



with the boundary condition

¥(0) = ¥, (5.42)
or from the equation

dD/dn + D*/2 = 0 (5.43)
with the boundary condition

D(0) = D, (5.44)
The solution is

¥

DZ(1-Dyn/2)7%- 1 1 (5.45)
D

(1/Dy—n/2>"! (5.46)

One peculiarity is that this isolated western boundary current is rather
wide; its thickness tends to zero only at n = x/e » =, It is easy to prove
that the total volume of this isclated western boundary current is order e.

Actually, n need not go to -». This is so because our upper layer
includes the mixed layer so that when the layer thickness is Jess than the
mixed Tayer thickness, the solution is no longer valid. On the other hand,
even within Parsons's model other terms in the equations should be considered
when D is less than e. Physically, we expect that the boundary layer has a
slightly different structure near the outcropping edge.

6) The Structure of the Northern Boundary Current

A classical scaling for the northern boundary current is § ~ ¢'”2.
However, for an isolated northern/southern boundary current, the appropriate
scaling is & ~ ¢ (see Appendix A for details). For the northern boundary
current here the proper boundary layer coordinates are

n = (y-yadfe, s = =X
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where y = y, is the outcropping line. We have the same semi-geostrophy
condition as for the isolated western boundary current.

¥ - D*/2f = ¥n (5.47)
However, now df/ds = 0, so that the potential vorticity equation is

(¥,/D)yy = 0C(&) (5.48)
or

¥,/D = fD, = g(s) (5.49)
This means that the layer thickness is a linear function of n. To determine
the two unknown constants we have to include at least the 0(e) term. Using
semi-geostrophy, the equation for the across-stream velocity (the s-momentum
equation) becomes

Dn + Mfz =0 at y =1 (5.50)

As discussed in relation to (5.24), this equation means that the
downstream momentum balance is between the local wind and the friction force.
Because (1) = -1, the solution for (5.50) is

D = Afaun (5.51)

¥ = ¥ 2%faun?/2 (5.52)

and the northern boundary layer width is

Non = Dw/Afan (5.53)
where

fan = f0+0.5 (5.54)

Dy = (-2fap¥w)'”? (5.55)

are, respectively, the Coriolis parameter and the layer thickness along the
northern wall required for transporting the mass of water ¥, (compare

(5.40) and (5.60)).
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7 The Structure of the Southern Boundary Current
Following the same argument as before, the corresponding boundary layer
solution is

D

A sun (5.56)
¥ = ¥, 4700?72 (5.57)

and the southern boundary layer width is

nos = Du/Af<y (5.58)
where

.o = F0-0.5 (5.59)

Dy, = (-2F;u¥a)'7? (5.60)

are the Coriolis parameter and the layer thickness on the southern wall.
REMARK. MWhen a boundary current joins with another boundary current or

the interior flow, the flow pattern is much more complicated. Here we do not

discuss the details of these matching flows. All figures in the following

discussion are plotted by a computer subroutine that smooths out the matching

region automatically.
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6. Flow Patterns in a Subpolar Basin

Because the wind stress has been assumed to be

T = COSwY 0syel (6.1)
it follows that

Tyy =1 =0 at y. = 0.5 (6.2)
This wind stress pattern satisfies (5.22). Using the condition

D=0 at (x,, y, = 0.5 (6.3)
and equations (3.2) and (5.7), we find the following relation

ADE = (0.5-y.)/2fq1. (6.4)
Putting relations (6.4) and (5.16) into integration relation (4.5) gives us an
equation between y. and D,, or X and D.. Fig. 1-1 shows the numerical
result for the above wind stress pattern. When the upper layer contains large
amount of light water, A is almost zero and D, = 1. As the amount of light
water decreases, A increases and D, increases aimost linearly with x. After
A becomes bigger than A., the lower layer outcrops and a loop of boundary
currents appears.

Fig. 1-4 shows the typical flow patterns for a subpolar basin. An isolated
western boundary current flows southward returning the northward interior
Sverdrup mass flux. An internal boundary current separates the light water of
the upper layer from the heavy water of the lower layer. At y = 0.5 this
boundary current has a zero width and zero mass flux because the interior
solution itself satisfies the surfacing line condition exactly. Northward or
southward from this point, more and more streamlines join the internal

boundary current, making it a stronger and stronger internal jet.
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Fig. 1-4. Flow patterns for a subpolar basin.
lambda= 0.138 (a); 0,220 (b); 0.840 (c).

De = 1.28
Yec = 0.3

{(a); 1.45
(a); 0.1

(b); 2.24 (c).
(b); Xe=.25(c).
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In Parsons's model for the subtropical basin, the outcropping appears on
the northwest corner at first and there are no isolated western or northern
boundary currents. In a subpolar basin, an isolated western boundary current
is necessary for a dynamically consistent model. This boundary current is
strong and narrow and contains relatively warm water. In the North Atlantic

Ocean, the Labrador Current is one example of this kind of isolated boundary

current.
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7. Flow Patterns in a Subtropical/Subpolar Basin

It is easy to apply the argument for a subpolar basin to a
subtropical-subpolar basin. All the formulae are basically the same, except
0 <y <1 means the whole basin, and 0 £ y € 0.5 is the subtropical part of
the basin, while 0.5 €y € 1 is the corresponding subpolar part of the basin.
Choosing a typical wind-stress pattern

T = -COos2my 0<ye<ld, (7.1
we can use almost the same formulae as before, with some minor changes
(y, » 0.75, fq » f'y et.).

Fig. 1-5 shows the relations between A and D., A and -y, for a
two-gyre basin. It is easy to see that as )\ increases, starting from A = O,
D. increases almost linearly with . Above X\ = A, is the supercritical
state (I) with the internal boundary current forming within the subpolar
basin. As X increases further, D, increases, the outcropping area enlarges,
and the surfacing line moves outward into the interior of the basin. Finally,
when X > A4 the outcropping area extends across the ZWCL. The isolated
western boundary current moves into the subtropical basin and joins the
northward western boundary current there, forming the strong internal jet
which flows northeastward. As the internal jet moves into the interior of the
basin, its intensity decreases gradually as it loses its mass to the interior
Sverdrup flow. However, there is a finite amount of water, -y,., in this
internal jet as it crosses the ZWCL. The value of this mass flux is exactly
the value needed to balance the maximum internal Sverdrup mass flux in the

middle of the subpolar gyre.
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In Fig. 1-5 the curve for -y, starts from A = A; because -y, is
meaningless for the subcritical state. For the first supercritical state
~Ym is the total mass flux of the upper layer in the subpolar basin. As
shown in Fig. 1-5, both D, and -y, increase with X\ when X < \,. At A =
Am both D. and -y, attain their maximum value (Dem = 1.422, -yon
= 0.449). As X increases further, both D. and -y, decrease tifl X\ = A,
when both D, and -y, become zero. This figure shows an important feature
of the generalized Parsons's model that both the layer thickness on the
eastern wall and the cross-ZWCL mass transport increase with A first, and
decrease with A after attaining local maximum. This feature might have
important meaning for ¢limate modelling (see Addendum).

Fig. 1-6 shows typical outcropping lines for a two-gyre basin; three
curves with A = 0.11, 0.246, 1.09 correspond to the first supercritical state.
(Cases for A = 7.12 and 19.5 belong to the second supercritical state which
will be discussed in the next section).

One notices that the Sverdrup relation is not satisfied on part of the
ZWCL. When the internal jet crosses the ZWCL, there is a strong interfacial
friction. Thus if we consider the upper layer alone, the mass flux is non-zero
on the ZWCL. Both Veronis's model and the present model have the same
shortcoming. Actually, the interfacial friction drives water in the Tower
Tayer. No matter how deep the lower layer is, there is a finite amount of
water mass transport within it. In the case of a deep lower layer, the bottom
friction is much smaller than the interfacial friction. Thus the total mass
flux of these two layers should satisfy the Sverdrup relation wherever the

bottom friction is not strong. (The western boundary current region is a place
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Fig. 1-6. Typical outcropping lines for a subtropical-~-subpolar
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basin, for both the first supercritical state and the
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where this relation breaks down.) In the second chapter we will solve this
problem by using a model with a finitely deep lower layer.

Fig. 1-7 shows some examples of the two-gyre basin flow pattern. These
examples show that as the surfacing line moves into the subtropical basin, it
gradually acquires a west-east orientation. The boundary layer becomes wider
along this part of the surfacing line and the streamlines spread over a fairly
wide region.

Compared with the commonly accepted quasi-geostrophic model, the present
model gives a quite different picture of the flow in a subtropical-subpolar
basin. Traditional quasi-geostrophic models retain the nonlinear advection
term, but by assuming quasi-geostrophy these models ignore the nonlinear
interaction between the wind-driven circulation and the basic density
stratification. Typical flow patterns for a two-gyre basin are always
symmetric with the ZWCL. Our model! ignores the nonlinear advection term but
retains the nonlinearity connected with the change in layer thickness. By
allowing the layer thickness to go to zero, our model includes a very strong
nonlinearity. Now that the flow pattern is asymmetric with the ZWCL, the two
gyres combine into a united body through the strong interior jet and the water
mass exchénge across the ZWCL.

It is easy to see that putting ¥, = 0 into formula ¢(5.11) gives the
surfacing line for Parsons's model. As we can see from the argument in Section
8, setting ¥, = 0 does not work for the subpolar basin. (The surfacing
line would meet the eastern wall below y = y., making a consistent solution
impossible.) Using the solution for a two-gyre basin, it is easy to prove that

the outcropping line intrudes into the subtropical basin before the interior
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contour, =-.1985 to .2191, int. .0522 contour. -.2798 to .3366, int. .0685
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contour. -.36 to .B8577, int. .1353
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Fig., 1-7. Flow patterns for a subtropical-subpolar basin,
epsilon= 0.02,

lambda = 0.047 (a); 0.070 (b); 0,153 (c); 0.610 (d),

De = 1,065 (a); 1.130 (b); 1.270 (c); 1.420 (d),

Ye = 0.6 (a); 0.5 (b); 0.403 (c); 0.303 (d).
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solution has a zero layer thickness there. In this sense, Parsons's model is a
degenerate case only for a single subtropical basin.

Fig. 1-8 shows the north-south and east-west sections of a two-gyre basin
thermocline structure. Our two-Tayer model gives a simplified picture for the

bowl-shaped subtropical gyre and the dome-shaped subpolar gyre.
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Fig. 1-8, Schematic diagrams for the thermocline structure in
a subtropical-subpolar basin. (a) A longitudinal section
in the subpolar basin; (b) a meridional section. There are
the bowl-shaped thermocline in the subtropical gyre and
the dome=-shaped thermocline with outcropping in the subpolar

gyre.
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8. Supercritical State (II)

From Fig. 1-6 one can see that as A increases, the surfacing line
approaches the eastern wall and the line y = .25. Finally, when X = %\ (=
2.627 for the wind stress pattern we used), the second critical value, the
layer thickness along the eastern wall is zero and the surfacing line is y =
.25 where © = 0. If X increases further, the warm upper layer separates from
the eastern wall and the lower layer outcrops in the southeast corner of the
basin. Here the line between the upper layer and the lower layer is a free
eastern boundary for the upper layer. In the following discussion an analysis
of this free eastern boundary is presented and the whole upper-layer flow
pattern is discussed.

1) The free eastern boundary condition

Because this surfacing line is an "eastern boundary" for the upper layer,
there is no boundary current connected with it. It is a free boundary. To
determine the shape of this free boundary, one has to use additional dynamical
retations. It turns out that the dynamical structure of the upper mixed layer
is important for determining this free boundary.

For more general purposes, the following discussion includes fhe case when
the lower layer is in motion. After introducing the vertically integrated
streamfunctions ¥, and ¥,, the momentum equations for a two-layer

model can be written as

V¥ = -qVn +(T+Tp)/D (8.1)
-f7¥, = gV(8pD/po- n ) +(Tu-To)/h, (8.2)
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where

n is the free surface elevation

< is the sea-surface wind stress

To is the interfacial friction

T, is the bottom friction (neglected in the following analysis).
Eliminating n from (8.1) and (8.2) yields

V¥, = -FU¥,-g'VD + To/h + (T+Tp)/D (8.3)
By definition

Uo = -¥oy, Vo = ¥ox - (8.4)

Ui = %1y, Vy = B,
Using the fact that this surfacing line‘is a streamline for the upper layer,
one introduces

v = Vo/Uo as the slope for the surfacing line.

By assuming that (8.3) is valid on this surfacing line, (8.3) can be written as

£V, 4" Dy=*/D=1ox(1/D+1/h) 8.5
= fU,-g' Dy+7¥ /D+1o, (1/D+1/h)

Note that
Dy = = Du/(8Y/8X)peconss. = =Duly (8.6)

Thus (8.5) can be simplified

v -fDV, +1o(1+D/h) (8.7)

- e

t¥+F0U  +toy (14D/0)
From (8.7) it is obvious that to determine the free boundary one needs to
know the specific friction force terms and the Tower layer velocity field. The

latter can be easily calculated from simple Sverdrup dynamics,_integrating

from the eastern wall.
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The simplest mixed layer model is a slab model. Ac¢cording to the
assumption of slab model, the whole mixed layer moves with a vertically
uniform horizontal velocity. The frictional force between the mixed layer and
the layer below is much smaller than the sea-surface wind stress. Thus the
o terms in (8.7) are negligible.

Within our assumption in this chapter, the lower layer has an infinite
depth and is motioniess. We can eliminate the U,, V, terms in (8.7) so
that the free boundary condition (8.7) becomes

y = -t /1Y (8.8)
which means the free boundary is perpendicular to the local wind-stress
vector. Physically, it is easy to understand that since the Ekman flux is
perpendicular to the local surface wind stress so must be the free boundary
which separates these two immiscible layers.

2) The interior Sverdrup flow

In the present case the upper layer occupies the region Q.:{0 ¢ x &

Xe, 0 & y £ .25}. Because x = x, is the eastern boundary, the interior
Sverdrup solution is

T"ln

AMXe- X)T, (8.9)

D}, = 2A(Xe- X){(fr,-T) (8.10)
One can compare these two retations with (3.1) and (3.2). Putting (8.10) into
(4.4) yields the relation between X\ and x. for the supercritical state (II).
Fig. 1-6 shows some typical surfacing lines for such cases.

Near the western wall there is a western boundary current which has the
classical-structure discussed above. However, on the northern houndary of the

upper layer there is a boundary current which needs special analysis.
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3) The structure of the interior northern boundary current

Now the northern boundary for the upper layer water is the line y = .25
where © = 0, but t, # 0. For the wind stress being used the Sverdrup
relation gives a non-zero interior southward velocity on this northern
boundary; therefore to satisfy the surfacing line condition D = 0, ¥ = 0 on
y = .25, there must be a northern boundary current.

Using D = 0, ¥ = O on this northern boundary, the semi-geostrophy

condition is

¥ = D?/2f,, (8.11)
where
fos = fo= 0.25 (8.12)

The only appropriate boundary layer coordinate turns out to be (see Appendix A)

n = (0.25-y)/e'"? | (8.13)
and the main balance for the potential vorticity equation, (A.8), is

(¥n/D)n+¥, = ATy (8.14)
Now t, = 2w at y = .25, thus (8.14) can be written as

(2F ) " E ) g + FTTEETRY, = - (8.15)
This nonlinear partial differentiation equation can be solved by numerical
schemes with appropriate boundary conditions. However, if one is interested
only in obtaining the global structure, this equation can be solved easily
after lTinearization. The following analysis is basically an Oseen
approximation. Instead of solving the nonlinear equation (8.15), one uses the
following linearized equation

2F, )77 )+ (B )RR = emr (8.16)
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where

¥in = 20A{Xe= X)

is the interior solution on the northern boundary (from (8.9)).

new independent variable
t = (2(Xe=x)/m\)' 72
yields a new equation
(F )77 E Py + A = (B17R),
Defining a new dependent variable
¢(n,t) = (72 - mt,
one obtains a simple equation and the new boundary conditions:
b = (2F0 )7 2hay
$(0,t) = - mxt
g(=,t) = 0
for which the solution is
A
$ = mAt[Q2F . /v®) ' %Y exp(-(2f,,) ""2u?/4)du - 1]
Thus
l{(«k/Z(x.-x))"“n

¥ o= (8F . ) AN xe=0) Jo exp{-(f.,/8)'"*u?)du

gives the streamfunction within this northern boundary current.

(8.17)

Introducing a

(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)

For the most

part the Oseen approximation gives a good description of this boundary

current. However, it is not valid near the surfacing line y = .25. The Qseen

approximation is valid only for the far field, whereas near the "body" the

linearization is no longer applicable. For our purposes, an Oseen

approximation gives the global structure. Near the surfacing line, D is much

less than the mixed layer thickness and our model is no longer valid.
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Fig. 1-9 shows the typical streamline patterns for the supercritical state
(II). The upper layer appears as a warm water pool in the south-west corner.
This can be seen as a very crude two-layer model of the warm surface water

pool in the subtropical ocean.
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9. Conclusions

The present model gives the compiete scenario for a two-gyre basin
thermocline and current structures. The state is assumed to be
quasi-stationary. The process of increasing paramefer A can be interpreted
either as: 1) A slow spin-up of a wind-driven two-gyre basin with a given
amount of water in the upper layer and an infinitely deep lTower layer; as the
wind stress builds up gradually, the basin circulation evolves following the
scenario. 2) A wind-driven two-gyre basin with fixed wind stress distribution;
as the climatological atmospheric temperature distribution changes, the amount
of upper layer water changes gradually. There are three basic states: the
subcritical state, the supercritical state (I), and the supercritical state

(ID.

SUBCRITICAL STATE: For weak wind forcing and a large amount of upper layer

water, the upper layer covers the whole basin. This is the classical flow-
pattern: an anticyclonic subtropical gyre with its western boundary current
flowing northward and a cycionic¢ subpolar gyre with its western boundary

current flowing southward.

SUPERCRITICAL STATE (I): For moderate wind forcing and a normal amount of

upper-layer water, the lower layer outcrops within the subpolar basin. As X
increases the outcropping zone enlarges. Eventually, the outcropping zone
extends into the subtropical basin, the subpolar gyre and the subtropical gyre
unite into a single body. There is a continuous Toop of boundary currents
around the outcropping zone.

Fig. 1-10 shows the overall structure of a two-gyre basin for both
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supercritical states (I) and (II), including ail the boundary current
structures.

The present model combines all these boundary currents into a dynamicaily
consistent united body. The flow patterns we found have many features similar
to the North Atlantic Ocean (or the North Pacific Ocean). The present model,
in a sense, reproduces some features of the basin scale flow pattern that have
been known for long time (see, for example, McCartney and Talley, 1984; Talley
and McCartney, 1982).

1) The Guif Stream is modelled as the strong internal jet which transports
a large amount of warm water into the middie/high latitude interior ocean.

2) The North Atlantic Current moving northeastward as a continuation of
the Gulf Stream System is represented by the internal boundary current within
the subpolar basin. It consists of warm Gulf Stream water flowing all the way
to the British Isles and into the Arctic Sea.

3) The eastern/western Greenland currents are seen as the isolated
northern boundary current. It is a continuation of the North Atlantic Current.
Actually, the Aleutian Current in the North Pacific Ocean is a better example
of this kind of isolated northern boundary curvent. |

4) The Labrador Current is seen as the isolated western boundary current
that moves southward along the western coastline. Though the cold polar air
reduces its temperature, and the run-off and precipitation modify its water
mass property, the Labrador Current is still relatively warm (3-4 C) and
saline (34.88-34.92) (Lazier,1982).

5) There is a water mass exchange across the ZWCL. Though the net

north-south mass flux is zero across the entire longitude section, there is a
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strong internal jet that goes across this line, bringing the warm water of the
Gulf Stream into the subpolar gyre. In this model the Sverdrup relation is not
satisfied where the internal jet crosses the ZWCL. However, it is consistent
within our dynamical assumption. Because here the interfacial friction is very
strong, the mass flux in the upper layer does not follow the same law as it
does in the interior ocean.

6) If we make a hydrographic section across the Gulf Stream, the total
mass flux should equal the interior Sverdrup transports, taking both the
subtropical gyre and subpolar gyre into account. The increase in the mass flux
of the Gulf Stream after its separation from Cape Hatteras is at least
partially due to the joining of the Labrador Current from the north. The total
mass transport of the Labrador Current is about 40x10°M3/sec. (Leetmaa and
Bunker, 1978; Ivers, 1975). Suppose that in a two-layer mode!l two thirds of
this mass flux is within the narrow isolated western boundary current. This
current then will join with the Gulf Stream and increase the surface current
mass transport. The most reliable estimation of the Guif Stream mass flux is
about 60-70x10°M*/sec near Cape Hatteras; this volume flux increases to
about 150x10%M*/sec south of Nova Scotia (Northingtdn, 1976). According to
our model one third of this increase comes from the subpoiar gyre, and the
rest, about 50x10°M*/sec, comes from the compact recirculation gyre within
the subtropical basin.

7) The subtropical gyre is bowl-shaped, while the subpolar gyre is shaped
1ike an open dome with outcropping in the center of the gyre. During the Tate
winter, the strong cyclonic circulation in the subpolar basin builds into a

pre-conditioned phase for the deep water formation in the center of the gyre.
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Most importantly, our model emphasizes the importance of the nonlinear
interaction between the wind-driven circulation and the basic stratification
within a subtropical-subpolar basin. The Gulf Stream is not only a result of
the nonlinear advection terms, but also comes from the nonlinearity connected
with the isopycnal outcropping.-The Gulf Stream separation is not due to the
Jocal wind stress curl but is the result of the entire basin circulation
balance. The ZWCL is no longer a boundary between two gyres, and the whole
basin circulation becomes a united body.

SUPERCRITICAL STATE (II): For strong wind forcing or for a small amount of

warm upper layer water, there is a warm water pool near the southwest corner
of the basin. The eastern boundary of this warm water pool is a free boundary
determined by the interaction hetween the local mixed layer dynamics and the -
large-scale geostrophic flow underneath.

Our model is highly idealized. Especially, all isolated boundary currents
in the model strongly depend on the assumption of including the mixed layer.
Therefore, the corresponding boundary current structures might be very
sensitive to our assumptions and they are only meant to be a skeleton for the
real oceans. Nevertheless, these boundary currents and the corresponding basin

scale flow patterns are very interesting and important phenomena for further

study.

39



Appendix A. The scaling of different kinds of northern

boundary currents

For a general wind stress T = (t*,t¥), after introducing the
streamfunction the momentum equations for a two-layer model with an infinitely
deep lower layer can be written as

-f¥,

~DDy+e¥,/D + At™ (AL

-f¥, = -DD,~-e¥,./D + At¥ (A.2)
where a simple Stommel friction has been used; other kinds of friction can be
used without changing the essential part of the following analysis. Assuming
that near the northern boundary y = y, there is a narrow northern boundary
current with the length scale ¢ (k > 0), i.e., the boundary layer
coordinate is

n = (ya-y)/ef A
(A.2) becomes

3/In(-f¥+D?/2) = 0(e") | (A.8)
Integrating (A.4) across the boundary current yields

-f¥ + D?/2 = g(x) + e“h{x,m) (A.5)
where

g(x) = 0(1) 1is the integration constant

h(x,n) = 0(1).
Putting (A.5) into (A.1) gives

g'(x) = -e'7*D7'3¥/3n + AT* (A.6)
From (A.1) and (A.2), by cross-differentiating, one obtains the potential

vorticity equation
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(e¥,/D) +(e¥, /D) y+ BY¥, = -A(ty-1¥) (A.7)
For a northern boundary current 3/3x << 38/3y, so that (A.7) can be written
as

£ 7243/3ne (D" '3/ IN) +BY, = A(zy-T¥) (A.8)
From (A.6) and (A.8) it is clear that the possible boundary layer scales are

k=1, 1/2 (A.9)
However, the appropriate scale depends on the matching boundary conditions
that the boundary layer solution has to satisfy.

1) The classical northern boundary current (a non-isolated boundary
current which exists when the wind-curl is non-zero near the northern wall)
k = 1/2. The main balance for the potential vorticity equation is

3/8ne(D" ' 8%/ 3n)+B¥, = -A(T}-T¥) (A.10)
a three-term balance between the relative vorticity, the planetary vorticity
and the wind-curl.

For such a northern boundary layer, the integration constant g(x) is a
real function of x and the x-momentum balance is

g'(x) = At”. (A.11)
Thus the friction term is unimbortant for this kind of boundary currents. The
potential vorticity equation (A.10) describes a diffusion-like behavior and
‘guarantees the smooth matching between the boundary current and the interior
flow.

2) The interior northern boundary current k = 1/2. This is a degenerate
case of the more general interior boundary current. The conventional scaling

k = 1 for the ordinary interior boundary current is no longer valid because
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now D =0, ¥=0o0onn =0, so g{x) = 0. However, ©* = 0 for this
boundary current, so that the momentum balance equation (A.6) is

¢“dh/3x = -¢' D™ '3¥/dn (A.12)
Obviously, the only possible choice is k = 1/2 and the main balance for the
potential vorticity equation is the same as (A.10).

For the above two cases, the n = (y.-y)/e'”? coordinate gives a form
of exponential solution that can match the interior solution smoothly and the
boundary layers do not have any definite boundary.

3) The isolated northern boundary current k = 1. This case is different
from the above cases, because now the wind stress is non-zerc near the
northern wall, and at the edge of this isolated current D = 0 and ¥ =
¥., a constant. Therefore, from (A.5) g'(x) = 0 and (A.11) becomes
inconsistent. This means it is no longer possible to.balance the wiﬁd stress
with the downstream pressure gradient force within the classical scaling.
Actually, from (A.6) it is easy to see that k = 1 is the only possible scaling
and the momentum balance is between the wind stress and the friction term

0 = -D7'3¥/3n + A1) (A.13)
The potential vorticity equation is

3/9ne(D”'3¥/3n) = el -B¥. - A1y - )] (A.14)
This equation appears not to show a balance within the lowest order
approximation, but one can notice that the wind-cur! is order of & here, and
(A.14) shows an x-independent structure which makes the planetary vorticity
term ineffective. The isolated northern boundary currents do not show the

conventional boundary iayer form, because there is no interior geostrophic
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flow matching requirement, so that the linear profile (A.11) works and the
boundary current has a clear outer edge.

4) The isolated northern boundary current within a westerly.

For this case, to discuss all possible scaling for the boundary current
structure we write (A.4) in details

3/3n[-f¥+ D*/2] = €' **¥, /D ~ e*B¥- Ae ¥ (A.15)

By our assumption t¥

1]

0, so that integrating (A.15) across the boundary

current gives

-f¥+ D*/2 = g(x) + e'**J(¥,/D) dn - €*BS¥ dn (A.16)
or

-f¥+ D%/2 = g(x) + " "*P(X,y) - e“Qix,y) (A7)
where

P{x,y), Q(x,y} ~ 0(1).
Putting (A.16) into (A.1)

g ) + €'t 3P/AX-c*0Q/x = -¢' "D ¥/ An+nT™ (A.18)
However, for an isolated boundary current g'(x) = 0. Now At™ is non-zero.
Thus the only possible balances are k = 0, 1. Case k = 1 is impossible,
because in (A.18) the friction term -3¥/8n and the wind forcing term At*™
are both positive. Therefore, the only possible choice is k = 0. This means
the current is not really a narrow current and the frictional term is
unimportant. According to this analysis, the interior solution should be valid
upon this outcropping 1ine. Unfortunately, the interior solution cannot
satisfy the kinematic condition: ¥ = ¥, on line D = Q. This
contradiction implies that there should be a special domain where there is

some new force balance. In other words, it is not clear how the mass is
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balanced when the northern boundary is within a westerly. No simple solution

is available.
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Chapter II

A Two Layer Model For the Thermocline and Current Structure

in Subtropical/Subpolar Basins
II. Lower Layer with Finite Depth

Abstract

A two-layer model with a finitely deep lower layer is studied for a
two-gyre basin. When the amount of upper-layer water is less than a critica]
ya]ue, the lower layer outcrops. A continuous loop of boundary currents
completely surrounds the outcropping zone. These currents have quite different
dynamical structures, particularly the isclated boundary currents along the
northern and western walls. A first baroclinic mode of water mass exchange
exists across the zero-wind-curl-line (ZWCL). This baroclinic¢ mode would be
important for a heat flux calculation. When the amount of upper water is less
than a second critical value, the upper layer water separates from the eastern
wall and becomes a warm water pool in the southwest corner and within this
region both layers are in motion.

Qur model describes the thermocline structure for a two-gyre basin. The
surface teﬁperature is determined from the dynamical balance of the entire

basin. The subtropical and subpolar gyres appear as a united body.
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1. Introduction

The thermocline problem has been a classical and rather difficultt problem
in physical oceanography. In early theories of the thermocline, similarity
solutions were tried which, though elegant mathematically, could not satisfy
the boundary conditions for a three-dimensional basin. Recently there has been -
a renewal of enthusiasm about the thermocline problem. Among the new
approaches to the problem are the ventilated thermocline theory by Luyten,
Pedlosky and Stommel (1983) and the potenf1a1 vorticity homogenization
{(non-ventilated thefmocline) theory by Rhines and Young (1982). Both theories
yield good descriptions of some aspects of the subtropical gyre. However, the
subpolar gyre structure is not yet understood.

A third approach to the thermocline problem has been made by Parsons
(1969), Kamenkovich and Reznik (1972), and Veronis (1973). In their models the
ocean thermocline structure is represented by tﬁo immiscible Tayers and the
upper layer has a specified amount of water. When the amount of warm
upper-layer water is reduced below a critical value, the lower layer outcrops.
The surfacing line which separates these two layers runs northeastward in a
way similar to the Gulf Stream System. Parsons (1969) studies the simplest
model, which has an infinitely deep lower Tayer, for the subtropical gyre.
Parsons's model includes the basic ingredients for this kind of thermocline
model, namely: 1) Two layer are immiscible; 2) the mixed layer is included; 3)
the upper layer has a finite amount of water. Though Parsons's model has been

extended, these basic assumptions are still made in the later models.
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Veronis (1973) extends Parsons's model into a world ocean model. First, he
generalizes the outcropping line condition for a two-gyre basin, taking into
account of the interior Sverdrup flux in the subpolar gyre. Second, he tried
to run a more realistic model by using more observational data, such as the
climatological wind stress profile, the thermocline depth on the eastern wall,
and the latitude at which the Gulf Stream separates from the coastline. Third,
he improved Parsons's model by allowing the lower layer to be in motion when
it is directly driven by wind. Although his solution is more realistic
oceanically, its dynamical meaning is unclear. As shown in Chapter I, there is
difficulty in finding a dynamically consistent picture for the wind pattern he
used within our simple dynamics. Thére is also another inconsistency in his
model: the lower layer is in motion when driven by direct wind forcing;
however, it is motionless under the internal boundary current. Thus, the
Sverdrup relation breaks down on the ZWCL near its intersection poiht with the
internal jet. This inconsistency can be resolved wﬁth a model in which the
Tower layer has finite depth and dynamical consistency is required.

" Kamenkovich and Reznik (1972) extend Parsons's model to include the
pressure gradient in the lower Tayer. In their model the lower layer has a
finite depth, so that the lower layer can be driven either directly by the
wind stress when it outcrops or indirectly by the interfacial friction force
underneath the strong surface boundary current. There are some interesting
under currents in their model, such as those beneath the strong surface
western boundary current and the internal jet stream. Although including
pressure gradients in the lower layer should give a better picture of the Gulf

Stream System, their pictures unfortunately show flow patterns which are worse
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than Parsons's model: the Gulf Stream separates from the western wall too
early compared with observation; and has a northwest orientation near the
northern boundary for the case when the ratio of layer thicknesses is not too
large. The observed Gulf Stream has an northeast orientation at midlatitude.
It seems inconsistent with the lower-order dynamical balance to have an
internal boundary current going against the Tocal wind in this model. This
problem does not exist is our solution.

In the previous chapter we have analyzed a two-layer model with infinitely
deep Tower layer. Though that model gives an interesting description of the
gyre structure, it has some shortcomings. First, the real ocean has a finite
depth, so that direct wind forcing or interface friction can force significant
velocities in the lower layer. As a result, the pressure gradient in the lower
layer is not negligible and the whole flow pattern changes when we include the
pressure gradient in the lower layer. Second, we made the assumption that the
Tower layer is infinitely deep and has a zero mass flux. As a result, the
vertical integrated mass flux does not satisfy the Sverdrup relation on the
ZWCL. This is obviocusly not true. No matter how deep the lower layer is, when
it is being forced directly by winds or indirectly by interfacial friction,
the vertically integrated mass flux will be a finite number. Thus a model with
a finitely deep lower layer should give a better picture of the current
structure, especially near the ZWCL and in the outcropping zone.

In this chapter we shall extend the purely wind-driven model for a
two-gyre basin with an infinitely deep lower layer into the case with a
finité]y deep Tower layer and study the whole flow pattern including all

boundary currents. Qur approach is parallel to Kamenkovich and Reznik's

solution.
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Just as in Chapter I, we study the structure of the flow pattern in a
two-gyre basin as the non-dimensional number A = TL/g'pod? increases.

Here, again, the increasing of A\ can be a result of either the increasing of
wind stress or the reducing of warm water in the upper layer.

When %\ is smail (weak wind forcing or a large amount of upper layer water)
the system is in the subcritical state. The upper layer covers the whole
basin, resulting in the classic picture (Welander, 1966): an anticyclonic
subtropical gyre with its western boundary current flowing northward and a
cyclonic subpolar gyre with its western boundary current flowing southward.
There are narrow undercurrents along the western boundary in the lTower layer.

When X is moderate (normal wind forcing and normal amount of upper layer
water) there is the supercritical state (I). The Tower layer outcrops first
near the western boundary in the subpolar basin. As X increases further, the
outcropping zone extends and intrudes into the subtropical basin. In the
previous chapter the separation point of the internal boundary current can be
as south as near the zero-wind latitude in the subtropical basin. It seems a
poor simulation for the real Guif Stream. Including the pressure gradient in
the lower layer reshapes the outcropping line and moves it toward the ZWCL.
Except for this point, the flow patterns in the upper layer are very similar
to the patterns in Chapter I: two gyres with a continuous Toop of boundary
currents along the edge of the outcropping zone. The lower layer, however, is
in motion now. There is a cyclonic gyre in the subpoiar basin and a small
anticyclonic gyre in the northwest corner of the subtropical basin. There are
deep western boundary currents in the Tower layer. Furthermore, there 15 a

deep counter-current beneath the strong internal boundary current. Thus the
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internal jet is more like the real Gulf Stream with its deep counter-current.
The Sverdrup relation is now satisfied everywhere except near the western
boundary; however, there is a first baroclinic mode of water mass exchange
across the ZWCL. This is quite differen; behavior from the common
eddy-resolving numerical models, since they generally use the
quasi-geostrophic assumption. Such models aiways gives flow patterns which are
symmetric with the ZWCL. Our model with the first baroclinic mode describes an
asymmetric flow picture with a big outcropping zone in the subpolar basin and
a continuous loop of boundary currents around this outcropping zone.

When A is big (strong wind forcing or small amount of upper-layer water),
the upper-layer water separates from the eastern wall and becomes a warm water
pool in the southwest corner. Underneath the upper layer is the ventilated
lower layer. The boundary between these two layers is a free boundary which is
determined by the interaction between the local mixed layer and the

large-scale circulation underneath it.
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2. Basic Equations

In this section we consider the steady wind-driven circulation within a
rectangular basin. The origin of a Cartesian coordinate system is at the
southwest corner of the basin with the x-axis directed eastward and the y-axis
northward. The continuous stratification in the real ocean is represented here
by using two immiscible layers with uniform densities po and p,. The basin
is a parallelepiped with 0 € x € L, 0 £y ¢ b, -h €z £0. The wind stress is
assumed to be purely zonal: T = (z, 0, and © = -t,c05{2wy/b). The
wind stress therefore drives twd gyres within the basin. For simplicity, the
following assumptions are made:

1) The pfessure is hydrostatic.

2) Friction can be represented by a vertical diffusion term with a
constant frictional coefficient. This is used in an Ekman model to
derive stresses. The stresses now appear as body forces related to
the layer thickness and the free surface elevation.

3) The flow within each layer can be represented by the vertically
integrated velocity.

4) The Rossby number is very small, so that the non-linear momentum
advection terms can be neglected.

The momentum equations and the mass conservation equations for these two

Tayers are:
£ KXYy = -gVC+ A3%vo/32° 2.1
— oy -
f kxv, = gV(8pD/po-{)+ AB*v,/d2Z? (2.2)
— -
VeVo+dWa/8Z = 0, TeV,+3w,/32 = 0 2.3)
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where subscript "0" is for the upper layer, "1" is for the lower layer,
f = fo+ By is the Coriolis parameter, A is the vertical turbulent friction
coefficient, { is the free surface elevation, D is the upper layer

thickness,

and 8§p = p1~ po > 0. The corresponding boundary conditions are

at z =
AdUo/3Z = T, ABV/3Z = 0 (2.8
Wo = UedL/@X+VodL/3y (2.5
at z = -D+¢§
Wo = Wy = -Uad(D-0)/3x~vod(D-L)/dy (2.6)
Vo = Vi, 8vo/32 = 3v./d2 | 2.7
at z = -h
Uy =V, =0, W =0 (2.8

After integrating (2.1,2,3,4) over the corresponding layer depths, we

find the vertically integrated momentum equations

£D KxVe = -gDV{+T+ s (2.9
- —r — .
fCh-D+8)kxv, = g(h-D+{)V(8pD/pos-C) - 1tp + T (2.1

where To, To are the friction forces on the interface and the bottom.

If one treats D and { as known functions, then T, and T, can be

written in terms of D and { by using the matching conditions (2.4, 5, 7, 8).
In the following analysis we use complex numbers to represent two-dimensional
vectors, for example VeD = 3D/3x+i3D/3y, T = el Using the

fact that |expl-(h-D+L)(1+1)(2A/F)""7?]1| << 1, we can find the

following relations:

:%=13+it§=—te'“°+(I-e'zun)gﬁp/puO(Dx+iDy)IZp (2.1
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To = To+titd = -g[3(D8p/po-)/3x+13(D8p/po-C)/8y1/n (2.12)
where
w = (+id/he
he = (2A/F)'72 (2.13)

It is important to notice that formula (2.13) is valid even if D goes to zero,

and that T, + (-7,0) as D » 0.

The amount of warm water in the upper layer is assumed to have a specified

volume,i.e.
F8f6 Ddxdy = tbhe (2
Vertically integrating the continuity equations, one obtains
V(Duo) = 0 2
VICh-D+5)TU1 ] = 0 2

From the above relations, one can define the transport streamfunctions

‘PUx

Dve, -¥oy = Dug ' (2
¥ix = (h-D+Odv,, -¥,, = (h-D+L)u; - (2
Introducing the following non-dimensional variables
(x,y) = L (x',y"), D = hoD'
f = LBf', f'= fo+y'- 0.5, fo = Rtan®,/L
(Th To, ) = T (', To', T) 2
¢ = hal'8p/po
(¥o,¥:) = g8ph3/poBLe(¥'y,¥' )
and dropping the primes, the non-dimensional system of equation becomes

V¥, = -DV{+ T + Tp 2

-fYE, = (a-DIV(D-L) + Ty - Tp ’ | 2

]
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where

To=-hte TP e /2(141) 0 [1-7 2 05 1(D +1D,) (2.22)
o == e/ (1+1)«[3(D-L) /3x+13(D-7)/3y] (2.23)
and
g = hel/hg << 1
« = h/he >> (2.24)
A = TLpo/g8ph3 ~ OC1)

are the non-dimensional parameters. In the foliowing analysis we use a small
parameter

§ = T/a << 1 (2.2%)

The integration constraint (2.14) becomes

Jar§” Ddxdy = b/L (2.26)

In the following analysis, equations (2.20,21) with constraint (2.25) are
solved with the assumed wind stress

T = (-cos2my, O) (2.2
For convenience, we also assume L = b in the following analysis.

As we have discussed in Chapter I, when % < A. the upper layer covers

the whole basin. For the lowest order expansion in e, the interior flow is

Yo, = 20A(1-x)5in2my, ¥, = O (2.28)
Dg-Cg = O (2.29
D = DI+ 22(1-x) (2nfsin2wy + cos2wy) (2.30)
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3. The Subcritical State and the Supercritical State (I)

If the amount of warm water is reduced, the fiow will change in a similar
fashion as in the case of an infinitely deep lower layer. Thus, if there is
enough warm water, the upper layer covers the whole basin and the solution can
easily be found from (2.28, 30). This is the subcritical state discussed by
Welander (1966). Fig. 2-1 shows a schematic pattern for this state. In the
upper layer are the anticyclonic gyre and the cyclonic gyre with their western
boundary currents. The lower layer is stagnant for the large interior Sverdrup
domain, except near the western boundary where strong interfacial friction
drives two undercurrents in this layer.

As the volume of warm water is reduced to a critical value, the lower
layer sﬁrfaces near the middle of the western boundary of the subpolar gyre.
Around the edge of the outcropping zone is a loop of boundary currents. The
general dynamical structures of these boundary currents are discussed in the
Appendices. The shape of the surfacing line is determined by (B-62)

¥oq = Yut+t[D5/2-8D3/3+0(8%)1/F (3.1
where ¥s4, Dy constitute the interior solution for the upper layer,
equations (2.28) and (2.30). For the case of an infinitely deep lower layer (§
= 0), the surfacing line is symmetric with the zero-wind-line y = .75. Hence
it is reasonable to assume that for small § the surfacing line passes the line
y = .79, so that (3.1) holds for this line. Then ¥, can be eliminated and
the equation that determines the surfacing line follows

Yooa-(D2/2-8D3/3)/F=[¥04-(D2/2-8D2/3)/F1ycq 75+0(5) (3.2)
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Equations (2.28, 30, 31) can be solved by an iterative process under the
constraint

JJa Dg dxdy = 1 (2.26")
where Q is the region actually covered by the upper-layer water. From (2.24)
it is clear that ¢ and « are inversely proportional to hy, while X\ is
inversely proportional to h3. The non-dimensional upper layer thickness
D., as same as in Chapter I, increases initially as the volume of warm water
decreases. Fig. 2-2 shows surfacing lines for typical cases. From this figure
it can be seen that for a model with a finitely deep lower layer, in the
subtropical basin the surfacing line moves northward compared to the case of
an infinitely deep lower layer. This result differs from the result of
Kamenkovich and Reznik (1972, Fig. 5 in their paper) in which the surfacing
tines for §>0 move southward compared to the case §=0. We have run a model
similar to theirs for the subtropical gyre and could not reproduce fheir
result. For the solutions presented here, the boundary currents always flow
downwind. This fact saves us from the seemingly paradoxical situation shown
in Kamenkovich and Reznik's work, in which internal boundary currents may flow
counter to the local wind stress forcing.

On the eastern side of the surfacing 1ine and away from the internal
boundary current, the interior solutions also satisfy (2.28,29,30). On the

western side of the surfacing line D = 0 so that the equations describing the
Tower-layer flow are

—fa¥,/3x = -adC/AxX+At+e(3L/Ix+3C/3y) /2 (3.3)

-foy, /8y

-ad4 /3y - e(aL/3x+3g/ayr/2 (3.4)
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Fig, 2-2, Typical outcropping lines for a subtropical-subpolar

basin model with a finitely deep lower layer, lambda= 0.3.
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For the interior ocean, bottom friction is unimportant, so that by
cross—diffefentiating (3.3) and (3.4), one obtains

-9%,,/9x = -Xot/3y (3.5)
The total streamfunction ¥ = ¥, + ¥, is continuous across the
outcropping line because the bottom friction underneath the internal boundary
current is small and the boundary currents in both layers cancel each other
{as proved in Appendix B). Thus, to find ¥,,, &, one starts
integrating from the boundary values (B-35) and (B-36), and obtains the

following solution

¥,y = 2ma(l-x)sin2wy -¥, (3.6)
Clg

Notice that ¥,

(D3/2 + A(1-x)(2nfsin2wy + cos2ny)l/a (3.7

¥, within the outcropping zone, thus

¥o+¥, = ¥y = 2ma(1-x)sin2wy (3.8
on both sides of the surfacing line.

Fig. 2-3 shows the flow patterns for two typical cases. Figs. 2-3.a) and
c) are the flow patterns for the upper layer. Notice the boundary current loop
around the outcropping zone. Within the southern basin is the classical
subtropical gyre with its western boundary current. On the subpolar western
wall there is an isolated western boundary current whose position in the
middle basin corresponds to the Labrador Current in the North Atlantic Ocean.
As shown in Appendix D, this boundary current is quite wide taterally,
consistent with observations of the Labrador Current. The isolated western
boundary current in the subpolar gyre and the classical non-isolated western

boundary current in the subtropical gyre meet somewhere below the ZWCL and

form a strong internal jet flowing into the interior ocean. For the model with
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Fig. 2-3. Flow patterns for a subtropical~subpolar basin model
with a finitely deep lower layer: the upper layer (a,c);
the lower layer (b,d).
For case (a,b) delta= 0.l1; epsilon= 0.03; lambda= 0.3,
case (c,d) delta= .04; epsilon= 0.07; lambda= 0.35.
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an infinitely deep lower layer, this internal boundary current can extend
southward as far as the zero-wind-stress line y = .25. For a model with a
finitely deep lower layer, the lower layer pressure gradient pushes this
internal boundary current northward, so that the flow picture looks more like
the real Gulf Stream System and saves us the conceptual trouble of a strangely
shaped Gulf Stream which separates from the coastline too early. (In
Kamenkovich and Reznik, 1972, the internal boundary current can separate from
the coast as early as in the easterly zone and go against the local westerly
near the northern boundary).

Fig. 2-3.b) and d) show the flow pattern in the lower layer. There are two
gyres in this Tayer. Within most of the outcropping zone in the subpolar basin
there is a strong cyclonic gyre. Near the western wall the strong interfacial
friction drives a strong narrow western boundary current in the 1ower'1ayer.
Here the bottom friction is important. On the northern (southern) pdrt of the
outside edge of this boundary current the interfacial friction turns the
current slightly northward (southward) pefore it joins the main western
boundary current. Within the subtropical outcropping zone there is an
anticyclonic gyre. This gyre penetrates underneath the western boundary
current of the upper layer. The strong interfacial friction of the upper-layer
western boundary current drives an undercurrent in the lower layer. This
undercurrent is strong and narrow. Near the western wall the current flows in
the same direction as the surface current, but offshore there is a strong
counter-current which resembles the southward deep western boundary current
observed in the Gulf Stream. In our formulation this western boundary current

is very narrow, so that to show its detailed structure, the subtropical
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boundary current coordinate in Fig. 2-3 has been exaggerated four times. On
the eastern boundary of the outcropping zone, the interfacial friction drives
a deep counter current. Here the bottom friction is unimportant; thus the sum
of mass fluxes in both layers satisfies the Sverdrup relation. Due to the mass
transport in this undercurrent, the boundary between the cyclonic and the
anticyclonic gyres in the lower layer moves slightly northward from the ZWCL.
Of primary importance is the existence of a first baroclinic mode of water
mass exchange across the ZWCL. Though the vertically integrated meridional
mass flux is zero (from the Sverdrup relation), the warm Gulf Stream water
flows northward within the upper Tayer and the cold lower Tayer water flows
southward underneath the strong warm surface current. For most models examined
previously, this ZWCL has been assumed to be a real boundary separating the
subpolar gyre from the subtropical gyre. The existence of these baroclinic
modes of water mass exchange across the ZWCL strongly suggests that'the
subpolar gyre and the subtropical gyre form a united, complicated system. For
studies of the global ocean circulation and heat fluxes, a model which allows

this kind of water mass exchange should be the best choice.

59



4. The Supercritical State (II)

As the amount of warm water in the ubper tayer is reduced, ¢ and «
increase proportionately to 1/he, while X\ increases proportionately to
1/hi. When the amount of warm water decreases to a second critical value,
the upper tayer thickness at the eastern wall becomes zero. From that point
on, if the volume of the upper-layer water is reduced further, the upper layer
separates from the eastern wall (See Fig. 2-4.). |

The upper layer has a minimum thickness ¢ on this edge, so that the slope
of this free surfacing line is determined from the following relation
(equation (8.7), chapter I)

y = -O*-efV,)/(Ac¥+efU,) = 3y/ax 4.1
where the interior geostrophic flow in the lTower layer (U,, V,) can easily
be calculated by integrating from the eastern wall. Within domain If, by

assuming {.5, = 0 on the eastern wall, one then obtains

¥ig = 2mA{T-x)sin2my (4.2

Cig = Ma (1-x)(2nfsin2ry + cos2my ) (4.3)
Therefore

Ui = =F14y = =8 A(1-x)cOS2my (4.4)

Vi = ¥4« = 2mAsin2my.
Putting (4.4) into (4.1)

y = -(cos2wy-2nfesin2my) /4n*fe(1-x)cos2ry (4.5
which is independent of A.

Within domain I, the upper layer is driven directly by the wind stress and

the lower layer is in motion underneath the upper layer. This domain is the
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Fig. 2-4, Schematic diagram for the second supercritical state.
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ventilated zone discussed by Luyten et al. (1983). However, instead of
specifying the separating line X. = X.(Y.) in an ad-hoc fashion as in
the LPS model, here we find this free boundary from a model which includes an
advection-dominated interaction between the mixed layer and the large scale
geostrophic flow.

In this domain both interfacial friction and bottom friction are
unimportant, so that (2.20) and (2.21) become

V¥ = DV + XT (4.6)

-fv¥, = (a-DIV(D-7) (4.7)
Adding (4.6) to (4.7), it follows that

-FY(¥o+¥)) = VI alD-0)-D?/21 + »T (4.8)
- Writing (4.68) in x, y components and cross-differentiating gives

- 3(¥o+¥,)/3x = Adt/dy (4.9
Thus, from (4.6) it folilows that

3/0x[a(D-0) - D?/2]1 = Afdt/dy - Xt (4.10)
Using the boundary condition that on the "eastern boundary” X. = Xe(Y.),
D=0and T = Gy, One obtains

alD-) - D¥/2 = -A(1-x)(2wafsin2ry + cos2wy ) 4.171)
To determine D and {, we need one more equation. Since the lower layer is
sheltered from direct forcing, its potential vorticity is conserved

U 3(F/(a-D))/3x + v,3(f/(a-D))/3y = 0 (4.12)
Using (4.7), this conservation relation can be written as

f/(a-D) = G(D-L) (4.13)
where G is an arbitrary function which should be determined from the matching

boundary condition on the free eastern boundary. Along X, = X.(Y.),
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D-T = -L:, can be calculated from (4.3) and f/(a-D) = f(y)/a on this
line, so that the function G is completely determined. For a given A, D and
{ can be obtained from the nonlinear equations (4.11) and (4.13). Again, one
must apply the integration constraint

SJe D dxdy = 1 (4.14)
The simplest way to do this is starting with the free surfacing line (4.5)
which is not explicitly dependent on \. By specifying the intersection point
Xxs on the southern boundary, the whole free surfacing line is determined.
Afterward, an iterative process is used to find a value of X\ which satisfies
the constraint (4.14).

After calculating D and £, a simple integration gives the
streamfunctions ¥, and ¥,.

Near the western boundary are the western boundary currents. Within domain
II, there is the classical western boundary current for a homogeneods ocean.
Within domain I there are two western boundary currents. The detailed analysis
is given in Appendix E.

Fig. 2-5 shows a typical example for the second supercritical case.
Because h, might be very small for this case, ¢ is no longer much less than
1. Thus for a realistic hy, the above ¢ expansion is not strictly valid.
However, we can try to compare this case with the Infinitely deep lower layer
case and keep our arguments within a reasonable mathematical frame (we use the
assumption e << 1 explicitly) by choosing a very small Ekman layer depth
he that ensures ¢ remains small enough. In Fig. 2-5 shows the free eastern
bdundary which moves toward the southwest corner if the amount of upper layer

water is reduced further. The flow pattern in the upper layer looks like the
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picture for the case with an infinitely deep lower layer (Chapter I), except
that now the mass flux in the upper layer is only a small part of the total
Sverdrup transport. Most of the mass flux goes into the ventilated lower
layer. Underneath the upper layer, the lower layer has a relatively large
ventilation velocity within the northern region, whereas within the southeast
region the ventilation velocity is rather small. It can be seen that if the
amount of upper-layer water increases slightly, the free surfacing line
extends to the eastern wall, and this slowly ventilated region becomes the
unventilated zone in the Luyten et al.(1983) model. Within the western
boundary current region, as in the subpolar gyre, water particles turn
slightly southward before they join the strong northward motion. However, it
is within a very narrow region and is not an important feature. Thus, using a
rather coarse grid for contouring, this feature does not appear. Though Luyten
et al discuss the ventilated thermocline model, it is not clear how the water
mass transport can be balanced by the western boundary current for a general
case. Our model gives the first concrete examplie of a balanced two-gyre

thermocline model with the surface density distribution determined by the

intrinsic dynamics.
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5. Conclusions

In the real oceans both subtropical and subpolar gyres exist and interact
with each other. These two gyres have quite different structures. The
subtropical gyre is anticyclonic and its thermocline is bowl-shaped; the
subpolar gyre is cyclonic and its thermocline is dome-shaped. In the center of
this dome-shaped thermocline isopycnals outcrop. Traditional quasi-geostrophic
numerical models treat the thermociine structure as a perturbation to a basic
state that has a constant stratification within the entire basin. Thus it
cannot handle outcropping phénomena. The flow patterns from a
quasi-geostrophic model are always symmetric with the ZWCL. Therefore, a
simple tﬁo—layer model is used to investigation cutcropping and the connected
circulation pattern with a two-layer model, taking into account of the
pressure gradient in the lower layer.

Qur simple two-layer model easily includes the outcropping and gives an
asymmetric flow pattern that is very similar to the observed ocean:

1) The subtropical gyre and the subpolar gyre unite into a single body
which 1s asymmetric with respect to the ZWCL. After its separation the Gulf
Stream is modelled as a combination of two western boundary currents. The
separation takes place equatorward of the ZWCL. After separation the Gulf
Stream flows northeastward and becomes the North Atlantic Current after its
crossing the ZWCL. Our model extends the result of Kamenkovich and Reznik on
the counter current underneath the strong surface current,

2) The model solution includes water mass exchange across the ZWCL. Though

the Sverdrup mass flux is zero at this line, there is a baroclinic mode of
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water mass exchange (appears in a form of a narrow internal boundary current).
The warm upper layer water flows northward and the cold lTower layer water
flows southward across this line. This water mass exchange is very important
for the thermocline structure and the water mass formation theory. The water
mass exchange would, of course, also be important for a heat flux calculation.

3) Our model includes an isolated western boundary current bringing the
Sverdrup transport in the warm water on the eastern side of the subpolar gyre
southward past the ZWCL. This contributes to the Sverdrup flow when it joins
with the Gulf Stream. In the oceans the Labrador Current may play a similar
role.

4) The model can also be used to describe a warm water pool in the
southwest corner and its connected ventilated zone.

All these features are essential elements for a global ocean model.

Of course, our model is a very simple model, so that the new theoretical
features, such as the isolated western and northern boundary currents, and the
first baroclinic mode of water mass exchange across the ZWCL, are different in
detail from the real oceans. For example, the ZWCL in the North Atlantic Ocean
is not a latitudinal line, but goes northeastward. The pésition of the Gulf
Stream is strongly modified by nonlinear effects and also strong air-sea
interaction. The mixed layer dynamics must include both advection (including
the Ekman drift and the large scale geostrophic velocity below the mixed
layer) and atmospheric exchange, so that the outcropping lines are determined
by both dynamics and thermodyamics. To apply our model to the real ocean there

are many steps to go before we can really compare the modelling result with

the reail data.
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Appendix A. The Classical Western Boundary Current
D, T, ¥,, ¥, are O(1) within such a boundary current.
Introducing the boundary layer coordinate
E = x/e | | (A-1)
and expanding (2.20, 21, 22, 23) in power series of ¢, the lowest order

equations are

-fav, /3§ = -Day/ak (A-2)
-fa¥,/3y = -DAL/3y-1/4+3D/3¢E (A-3)
-fa¥,/38 = (a-D)3(D-0)/3E (A-4)
-fo¥, /3y = (a-D)3(D-L)/3y+1/43D/3E+1/23(D-)/0E (A-5)

The corresponding boundary conditions are
at £ =0, ¥ =% =0 (A-6)
at E» o, ¥o > ¥o,, ¥, 20, D> Dy, L 2, (A=)
where Dg = D,(0,y), Ty = 0g00,¥), ¥oq = ¥0q(0,y) are known
functions from (2.28, 29, 30). From (A-2) + (A-4) and (A-3) + (A-5), the total
streamfunction satisfies

—fa(Tu+T1)/8E

9la(D-¢)-D*/21/3¢E (A-8)
—fa(Tu+T1)/8y

3La(D-5)-D*/21/8y+1/2+3(D-L) /3¢ (A-9)
Using the relation (2.29), from (A-8) one finds the semi-geostrophic condition

f(¥o+¥,-¥4) = al{D-L)+(D3-D?)/2. (A-10)
By cross-differentiating (A-8) and (A-9) and integrating (using the assumption
that 9(D-%)/3% = 0 as § » =), we get another relation for the total
streamfunction

(¥o+¥1-¥oq) = 1/23(D-L)/3E ‘ (A-11)
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From (A-10) and (A-11), by eliminating the streamfunction, the following
relation is obtained
f/203(D-0)/3E+alD-E) = (D*-D3)/2 (A-12)
by cross-differentiating and subtracting from (A-2) and (A-3)
1/43%D/3E%+(D/f-3D/8y)3L/3E+3D/3E«3L /3y = O (A-13)
Equations (A-10, 11, 12, 13) are four equations in four unknowns ¥,,
¥,, T, D. The corresponding boundary conditions are (A-6) and (A-7).
Because o >> 1 (ffom equation (A-12)), one can see that it is a singular

perturbation problem. Alternatively, equation (A-12) can be written as

§f/23(D-L)/3E+(D-4) = §(D*-D3)/2 (A-14)
where
§ = 1/a << 1 (A-15)

js a small parameter. To solve this singular perturbation problem, we
introduce the inner boundary coordinate

@ =E/8 (A-16)
Now ¥o, ¥, G, D can be expanded in series of &§ . Considering
equation (A-4), the ¥, series should start from 1/§ order term, so that

the expansions are

FoCE,y) = ¥ool®,Y)+6%0:(0,y)+8°¥0,(0,y) +...

F(E,y) = 1/6e%, _1(0,y)+¥,0(0,y)+6¥11(8,y) +...

DCE,y) = Do(B,y)+80,(8,y)+8%D,(8,y) +... (A-17)
CCE,Y) = Ca(®,y)+80,(0,y)+8%0,(8,y) +...

Putting (A-17) into (A-10, 11, 12, 13}, one can find the lowest order balance,

the first order balance and so on.
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1) §° - order equations
-f¥, -1 = Do-Co
¥, 1 = 1/203(Dg-Lo) /30
f/23(Dg-C0)/3@+(Do~Ls) = 0
3°Do/30% = 0

From (A-21), applying reasonable boundary conditions: 3Do/3@ » O and

{Da] ¢ +» as @ » =, one finds
Do = Dg(0,y) is independent of @.
The general solution for (A-20) is
Do-Ca = Ag(yldexp(-20/f)
By (A-18), that means
¥, -1 = -Ag(ylexp(-20/f)/f.
However, from the boundary condition (A-6), Ay, = 0, so that
¥:,., =0

Do = o , both are independent of @ and y.

2) § - order equations
Fl¥go+¥19-Fag) = (D1-L1)+(D3-D3)/2
(Yoo+¥,0-¥oq) = 1/203(D,-F,)/30
£/203(D,-4,)/38 + (Dy-§,) = (D3-DY)/2
3%D,/38% = 0

To derive (A-30) one uses relations (A-22) and (A-26). Applying the same

argument as for Do, one finds

Dy = D,(0,y) is independent of ©
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(A-24)

(A-25)

(A-26)

(A-27)
(A-28)
(A-29)
(A-30)
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From (A-29) -

¢ = D1=(D3-D3)/2 -A,{y)exp(-28/f) (A-32)
From (A-2), (A-26) and boundary condition ¥, = 0 at @ = 0,

Yoo = 0 (A-33)
Using (A-28,32), one obtains

¥10 = Yoq-Arexp(-20/F)/f ' (A-34)

Applying the boundary condition ¥, = 0 at @ = 0, so that A, (y) =

¥y, and
¥ro = ¥og(l-exp(-20/F)) (A-35)
Dy = Dy (y) (A-36)
Ty = Dy (y)-(D2-D2)/2- f¥o,exp(-20/F) (A-37)

The first non-zero term for the §& -series of ?0 is ¥o1 which can
be found from (A-2, 32) and the condition ¥, = 0 at @ = O:

¥o1 = Do¥og(1-exp(-26/F)) O (A-38)

Now we go back to find the solution for the outer boundary layer. Using
the standard boundary layer matching technique, the boundary conditions for
the outer boundary layer solution are

at £ =0, ¥ =0, ¥, = ¥o,, D = ¢ = D(y (A-39)
where D(y) is an unknown matching function.

Again, we expand the outer boundary solution in §-power series

To(E,y) = ?;o(g,y)+5T;1(g,y) +...

¥ (E,Y) = ¥o(E,y)+8¥7 (E,y) +...
DCE,y) = Do(&,y)+8D7(E,y) +... (A-40)
CCE,Y) = UoCE,y)+807(E,y) +...
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From (A-12)
Do = Co

Substituting (A-41) into (A-13), one finds the equation for Ds
82D3/8£2+2/f-8032/8£.= 0

with the boundary conditions
Ds(0) = Do(y), Do(=) = Dy(y)

The solution is

Do

Do(1-Crexp(-C2£))/(14+C exp(-C,E))
where
Ci = (Dg=Do)/(DgtDo) , C, = 4Dy/f
From (A-2), the lowest order streamfunction for the upper layer is
Yoo = Yoga+(Dg?-D3)/2f
At £ = 0, ¥40 = 0, so that
Doly) = Dal0,y) = (D3-2f¥sq)' "2
Finally, from (A-11) one finds ¥7o0 = ¥¢4-%00.
Now we have found the entire solution:
1) When § ~ 0(8):
¥o = 8Do(y)¥e (1 exp(~28/F)) + 0(8®)
¥, = ¥o (T-exp(-20/f)) + 0(&)

D = Doly) + O(8)

§
2) When & ~ 0C(1):

Doly) + O(§)

¥o = ¥aga+(D*-D3)/2f+ 0(8)
¥ = Yoq-¥o + 0(8)

D
£

Dg(1-Ciexp(~C2E))/(1+Ciexp(-C,E)) + 0(8)
D + O(8&
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Appendix B. The Internal Boundary Current

The interior surfacing line is a western boundary for the upper layer, so
that there is a strong internal boundary current to the right of the surfacing
line. Here we discuss the boundary layer structure and the shape of the
surfacing line.

A new set of orthogonal coordinates (r,s) is introduced such that r = 0 is
the surfacing Tine and r > O to the right of the surfacing line. Assuming that
the curvatufe radius of the surfacing line is much larger than the boundary
layer width so that the curvature terms can be neglected, the basic equations

(20,21) can be written

-F3%,/8r = -DAL/3r+xm, [x"(1-e~“cosd)+t®e~*sindl+
g/de(1-27%%cos2d+e " ?%sin2d)aD/ar (B-1)

-fa¥,/3s = -D3L/Is+xmy Lt (1-e"%cosd)+t e “sind]l+
em,/4m,»(-1+e~?9(cos2d+sin2d)»aD/ar (B-2)

-fa¥,/9r = (a-D)3(D-L)/0r+xm e “(x"cosd+t sind)-
e/de(1-e"2%(¢c052d-5i1n2d))aD/3r-c/23(D-L) /ar (B-3)

~-fa¥,/3s = (a-D)3(D-L)/as+xme”“(z°cosd-t sind)+

em, /4m, (1-e"2%(cos2d+sin2d)>aD/dr+em,/2m, «3(D-L)/dr (B-4)
where

d = D/e

m = (€ax/ar)2+(3y/ar)?)' 72

m. = ((3x/3s)2+(3y/9s)*)'"?

t" = t/m,*3x/3r (B-5)

% = ©/mp*9dx/3s
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In the following discussion, we assume that the boundary layer is very

narrow and the new coordinates have the same length scale as the old
coordinates so that dr = ds = (dx®+dy*)'“?%; thus

M =mz =1

The boundary conditions on the surfacing line are

D=0, ¥ = ¥,, 3¥/3r is continuous at r = 0.
where ¥, is an unknown parameter which will be determined later by an
jterative process. The boundary layer is divided into two régions for
discussion.
A) Region D ~ ¢ and ¥, ~ 1, ¥, ~ 1.

Obviously, ©o ~ T so that

gdD/dr ~ e¥/r ~ 1
From the momentum equations for the upper and lower layers

9¥p/3r ~ 1, a¥,/ar ~ /e
Thus, the appropriate inner boundary layer coordinate is

n=rle*

and the unknown functions have the following ¢-power series expressions

Tu(r,S) = ?00(5) + S‘Fa](S) + Ezng(n,S) +...

¥.(r,s) = ¥,5(s) + e¢¥1,(n,s) +...
D (r,s) = eDi(n,s) + €202(n,s) +...
T (r,s) = Cols) + €01(n,s) +...

Using the boundary condition (B-7), we find ¥40(s) = ¥,, ¥g; =

0. Obviously, 3¥,/9r = 0C1) on the left side of the surfacing line, so

that the continuity condition for 3¥/3r now turns out to be

8‘1’1/871 = 5:28‘1'1/81' = 0(e?) at n =0
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so that
9% :/3n = 0 atn=20 (B-13)
Substituting the expansions (B-11) into equations (B-1,2,3,4), the lowest
order balances are
~f3%02/8n = =D, 30 /an+Alt +exp(-Dy){(x%sinD:-1") ]
+1/4+(1-exp(-2D,){(c0s2D,-5in2D,23D,/3n (B-14)
9D /9n = dA[t*(1-exp(-D,)cosD, )+t exp(-D,)sinD,1/

[T-exp(-2D;)(cos2D,+5in2D,)] (B-15)
—£3%,,/8n = ad(D,-L;)/dn (B-16)
~F¥0,/85 = adloe/dS+AT +1/2¢8(D,-L,)/dn (B-17)

From (B-17), a(D,-t,)/dn is independent of n. Thus, from (B-16)
3%,:/9n 15 also independent of n. Now the boundary condition (B-13) gives

¥, /an = 0, HD4-T,)/n =0 (B-18)
Using boundary condition Do(0,s) = 0, (B-15) can be solved numerically.
Asymptotically

D » 4xt®n as n* o (B-19)
Now (B-14) can be solved with D,, 3{./3n = 3D,/3n as knowh functions.
Asymptotically

¥oz ~ 8R2(At*)?/f, asna o (B-20)
Actually, the details of this inner boundary layer structure are unimportant
for the large scale structure of the whole basin. The crucial aspect of the
inner boundary analysis is the matching boundary condition for the outer
boundary layer solution in the next section.
B) Region D ~ 1, r ~ ¢.

We introduce the outer boundary Tayer coordinate

g=r/e (B-21)
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From (B-1,2,3,4), we find the lowest order balance in e-power

-f3¥,/30 = -DAL/30 (B-22)
—-fa¥e/3s = -DA3L/3s-1/43D/3o+A1® (B-23)
-fa¥,/30 = («-D)3(D-0) /30 (B-24)
~-fa¥,/3s = (a-D)3(D-{)/85+1/43D/30+1/2+3(D-¢) /30 (B-25)

By the standard boundary layer matching technique, one can use the inner
boundary layer solution in section A to find the matching boundary conditions
for the outer boundary layer at o = 0

D=0,0=0(s), 3D-0) =0 ato=0 (B-26)

Yo = ¥u, ¥ = ¥10(S) at ¢ =0 (B-27)
As ¢ » =, the boundary layer solution should match the interior solution, so
that there are additional boundary conditions

D+D4(0,8), T2L5(0,5), ¥o2¥,,4(0,5), ¥,20, as o (B-28)
By adding (B-22) to (B-24) and (B-23) to (B-25), we find the following

relations
~fa(¥o+¥:) /30 = ala(D-L)-D?*/21/80 (B-29)
~Fa(¥+¥,)/30 = 3[a(D-0)-D*/21/80+1/23(D-L)/3c+rt® (B-30)

Since the interior flow satisfies

Dy = &g, (B-31)
we have the following semi-geostrophic relation

~Fl¥+¥,-¥5,(0,5)] = a(D-§)-[D*-D3(0,s)1/2 (B-32)
Cross-differentiating (B-29, 30) and substituting gives

—Bs(¥e+¥, /30 = -1/23%(D-L)/3c® (B-33)
where 3 = 9f/3s. Applying the boundary condition 9(D-{)/3c = €3(D-{)/dc

=0 at ¢ + », we obtain the following equation
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Bs{¥o+¥,-¥04(0,5)] = 1/2¢3(D-3) /30 (B-34)
Leting ¢ » 0 in equation (B-32), we get

—F(¥nt¥i0-Faq) = ~al($)+D3/2
Obviously, within this e-order approximation the bottom friction is
unimportant, so that the sum of the streamfunctions in the two layers should
equal the Sverdrup transport thus

¥10(s) = ¥04€0,5)-¥, (B-35)

To{S) = D3(0,s)/2a (B-36)
After finding these matching functions, we discuss the outer boundary layer
structure. Eliminating streamfunctions from (B-32, 34), we obtain

f/2B5+3(D-)/3o+a(D-L) = (D*-D3)/2 (B-37)
Eliminating ¥, from (B-22, 23), we have

1/8¢32D/30%+(BD/f-3D/35)3L/30+3D/30+8L/3s = 0 (B-38)
Now equations (B-32, 34; 37, 38) are equivalent to the original sysfem (B-22,
23, 24, 25). Because « >> 1, from (B-37) it is obvious that this is a sinqular
perturbation problem. Again, we can introduce the stretched inner boundary
layer coordinate

k

of§, § = V/a << 1 (B-39)
and expand D, T in power series of §
D{o,s) = Dyck,s) + 8D7(k,s) +...

[(c,5)

ToCk,s) + 8TTCK,S) +... (B-40)
Substituting (B-40Q) into (B-37), the lowest order relation is

3(Ds-La)/3k+28:(Dg-Lg)/f = 0 (B-41>
Applying the boundary condition (B-26), the solution for (B-41) is

Ds = L3 (B-42)
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The first order relation for the S-power series is

f/2B+3(DT-L7)/3k+(DT-LT)=(Dg*-D2)/2 (B3
Using boundary condition (B-26) the solution is

D1-CT = (Dg?-D3)/2 (B-44)
Similarly, we have

D3-C; = DaD7 (B-45)
Substituting (B-40) into (B-38), the lowest order relation is

32D3/3K? = 0 | (B-46)
Using the boundary condition that Dg should be finite as © » « and
Ds(0) = 0, the solution is

D; =3 =0 (B-47)
In (B-38) the first order balance for the &-power series is _

3%D7/3k? = 0 (B-48)
Applying the boundary condition that DY = 0, at k =0, aD7/3k = 0 at
k = », we find the solution

D} = 0, L1 = D3/2 (B-49)

Now we discuss the outer solution. Expanding D, { in power series of §

o
[}

Dolc,s) + 8D7(o,8) + .

uy
[}

Tolo,s) + 8L7(o,5) + ... (B-50)
Using the standard matching technique, the corresponding boundary condition at

o = 0 can be found. Substituting (B-50) into (B-37), the lowest order balance

Ds = L3 | (B-51)
Putting (B-50) into (B-38) and using (B-51), one obtains a single equation for
Da
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1/4¢3%Dg/30°+B,/f*DgdD5/30 = O

with the corresponding boundary conditions

1

Dy = 0, ato =0

Dsa = Dg€0,5), atog»

The solution is
Da = Dqg(0,s)tanh{ne), n = 2BD4(0,s)/f
Similarly, the first order relations are
Di-L; = (Dg*-D¥) /2
3/90(8D7/30+4B,/fe(DsDT-D3%/3)1 = O
with the boundary condition
D7(0,s) = Di(=,8) = 0
The solution is

DT =DZ[cosh{ng)-1-2Ln(cosh{ne))-sinh(2no)/2-nc1/3cosh{ng)

(B-52)

(B-53)

(B-54

(B-55)
(B-56)

(B-57)

(B-58)

After finding the solution for D and {, we can obtain the streamfunction

¥, by integrating (B-22)
Yo = ¥p= 1/fef3D3C /30 do
By a simpie manipulation, we have

¥o=¥,+[D5%/2-8(D5%/3-DaD1)+ 0(83)1/F

Using (B-51,55,58) and (B-32), the lower layer streamfunction is

¥, =¥ Yo+ 8D3/B.+3D5/30 + 0(82)

Letting ¢ » = in (B-60), we obtain the surfacing line condition

Yoy = ¥nt[D3/2-8D3/3+ O(8®) 1/
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Appendix C. The Isolated Northern Boundary Current

This boundary current is a special case for the more general discussion in
Appendix B. Assuming the surfacing line is yo = yo(x) and introducing the
new coordinates

r = Y-Yo, S = =X | (C-1
we find a similar dynamical balance within this boundary layer as within the
internal boundary layer. As in Appendix B , we divide the boundary layer into
two regions. Region D~e has exactly the same dynamical structure as the case
in Appendix B, and we can write t° = -t explicitly. From the same
argument, we obtain the matcﬁing condition for the outer boundary layer within
region D ~ 1 where we define the new stretched coordinate

n = (y-yo)e (C-2)

Substituting (C-2) into (B-1, 2, 3, 4) , the lowest order expansions in e are

-fo¥e/dn = -DAL/dn (C-3
-fa¥,/3s = -D3L/35-1/43D/n-Xe(1) (C-4>
-fa¥,:/9n = («-D)3(D-0)/3n (C-5)
-f3¥,/3s = (a~DY3(D-L)/35+1/28(D~L) /3n+1/4+3D/3n (C-6)

Following the same argument as in Appendix B, the corresponding matching
boundary conditions are
Yo = ¥, ¥ = ¥9g-¥n, D = 0, L=L,, at n=0 (C-7
Yo=¥% =0,D=0D,, 0 =2, at n = ny (C-8)
where ¥,4 ~ 0 if the boundary layer is really very narrow.
Adding (C-3) to (C-5) and (C-4) to (C-6), we obtain the following relations
-fa(¥,+¥,)/3n = 3lal(D-L)-D?/21/3n (C-9

—F3(¥o+¥,)/35=0[a(D-L)~D?/21/35+1/23(D-T) /3n-At( 1) (C-10
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Integrating (C-9) under the boundary condition (C-8), we find
F(¥e+¥,-¥,) = a(D-{)-D?/2-al., (C-11)
Substituting (C-11) into (C-10)

1/208(D-0) /an-At(1) = adlyo/8s|, e, (C-12)
From (36)
8C1g/3$|y=1 = —8C|g/8X|y=1 = 1/a (C-13

Noting that =(1) = -1 and { = {4, D =0 at n = 0, we have

D = {1g(s)= (C-14)
As for the northern boundary current in the case of a lower layer with
infinite depth, if we had a single first -order differential equation for D,
we could not determine two unknown constants. This problem can be solved if we
include higher order terms in the equation. Alternatively, we can use the
ageostrophic momentum equation directly. From (C-3,14), by integrating

¥o = ¥aeD?/2f O (C-18)
Puting (C-14,15) into (C-3)

aD/an+dDN/a = X (C-16

The solution is

D = a(l-exp(-4n\/a)) (C-17)
¥o = Tora’(1-exp(-4n\/a))?/2F (C-18)
¥ =0 (C-19)
Dy = (-2F.¥,)'"* (C-20)
Gw = CrgtDy (c-21»

The boundary layer width is

b = —ealn(1-(-2f¥a) "' */a) /4N (C-22)
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Appendix D. The Isolated Western Boundary Current

For this boundary current , the following coordinates are useful

As before, we divide the boundary layer into two regions. For region D ~ e,
the dynamics are almost the same as before and the analysis of this region'
gives the matching conditions for the region D ~ 1. Here we discuss the region
D ~ 1 only. For convenience, we redefine the coordinates as

3

From the basic equations (20, 21), the lowest order balances for e-power

xfe, s =y (D-1

series are
-fa¥,/38 = -DaL/3E (D-2)
-fo¥,/3y = -D3L/3y-1/43D/3¢ (D-3)
-fa¥, /38 = («-D)3(D-L) /3% (0-4)
—FO¥, /8y = (a-D)3(D-{)/ay+1/208(D-L)/9E+1/43D/3E (D=5

By the same matching technique as before, the corresponding boundary
conditions are
¥ =0,% =0,D0=0,, =0, at{ =0 (D-6)
Yo=¥n,¥ =¥ 4,0=0,0=0,,,3(D-7)/3E=0 atf=f, -7
Adding (D-2) to (D-4) and (D-3) to (D-5), we have
-F3(¥o+¥,)/8E = 3/8E=[a(D-7)-D?/2] (D-8)
—f3(¥o+¥,)/8y= 3/3ye[a(D-L)-D?/21+1/23(D-L)/3E (D-9)
Introducing (D-8) and using boundary condition (D-7), we obtain
F(Fo+¥ 1 -¥1 g-¥) = a(D-{)-D?/2-al:, (D-10)
Cross-differentiating (D-8,9), integrating over(g, £,), using the

boundary condition 3(D-T)/3f = 0 at § = £,, we have
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Vo+¥ =¥ g-¥, = 1/243(D-7)/3E (D-11)
From (D-10, 11), we obtain
f/243(D-L) /3E+a(D-L) = D?*/2-al, (D-12)
Eliminating ¥, from (D-2,3) gives
1/423°D/9E%+(D/f-3D/Ay) 3L /3E+3D/3E«3L/3y = 0 (D-13)
Again, equation (D-12) implies the same singular perturbation character of
this system. As in Appendix A, we introduce the inner boundary layer coordinate
0 =n/8, § =1/a (D-14)
and expand ¥,, ¥,, D, { in §-power series
Yo (E,¥)
¥.(E,y)
DCE,y)
C(E,y

Notice that af,4 is order OC1), so that substituting (D-15) into (D-12,13)

Tou(e,y) + 5?01(®,y) +...

]IS‘T1__1(®,y) + T]o(@,y) + 8T1|(®,y)

Da(e,y) + GDa(G,y) + ... {D-15)

Cu(@,y) + 6@1(@,y) + .

gives the Towest order relations
f/203(Do-L0)/30+(Do-Lo) = O (D-16>
3°De /0% = 0 -1N
Applying the boundary conditions: D, aD/3@ are finite as @ » =,we find
Do = D(O,y) (D-18)
Co

The lowest order balance of equation (D-11) gives

Do+Agexp(-208/f) (D-19)

¥, -1 = 1/23(Dy-Lo) /36 (D-20)
Using the boundary conditions (D-6), we find
¥,,.1 =0, Ap =0 (D-21)

The next order solutions are
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D,-C, = Da/2-al,g+A exp(-268/F) (D-22)
Integrating (D-2) and using the boundary condition ¥,= 0 at & = 0, we
obtain

Yoo = 0 (D-23)
Substituting (D-23) into (D-11) and using (D-22) , we have

¥ro = ¥ g+¥,—A,exp(-20/F)/f (D-24)

Using the boundary condition ¥, = 0 at @ = 0, we find

Ay = F(¥, 5+¥0) (D-25)
so that
T]o = (T|9+Tm)(1—e)(p("ze/f)) (0—26)

Now we discuss the outer solution. From the inner solution, using the same

matching technique, we find the boundary conditions for the outer Tayer

sglution
¥o= 0, ¥,= ¥1 g4¥m, Lo =Do =Do(y) at £ = 0 (=21
'I'Q=Tm, ?1=T1g, C0=C1g, D=0 at E= ECD (D—ZB)

As in Appendix A, we expand the outer solution in &§-power series

Fo = YoulE,y)+8¥%5:CE,y0+. ..

¥ o= VT, )88, (E, ). ..

D = Do(E,y)+8DT(E,¥+... (b-29)
C = ColE,y)+807(E,p+...

Substituting (D-29) into (D-12), we find

Ds = Co (D-30)
From (D-13) we get
3%Dg/9E2+2/F=3D3%/88 = 0 (D-31)

Using boundary condition (D-27) and (D-28), the solution of (D-31) is
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Do(E,y) = Do(0,y)/(1+2D5(0,y)E/) (D-32)

From (D-2) we obtain

Yoo = Fat+Da?/2f (D-33)
Thus

D3%(0,y) = -2f¥, (D-34)
From (D-11)

¥io = ¥ g+¥n-¥io (D-35)

Appendix E. The Western Boundary Current for the
Supercritical State (ID)
Within domain I of this case, the upper layer and the lower layer ire both
in motion. The purpose of the following analysis is to determine how the
western boundary current can match the known interior flow. The analysis here

basically parallels to the analysis in Appendix A, except here the matching
boundary conditions are

at & ; 0, Yo =¥ =0 (E-1>

£+, ¥ > ¥og, ¥ > ¥4, DDy, L2, (E-2)

where Dy, L4, Y04, ¥1, are known functions of y derived from the
nonlinear equation system in Section 4. The interior flow has Dy-T, 2 O,
but it is a known function. Hence the semi-geostrophic condition is
—F(Po+¥1 ¥ =¥ g )=alD-T)~a(Dg-4)+(D3-D?)/2 (E-3}

From (E-3) and (A-11) , by eliminating the streamfunctions, we get

£/23(D-0) /3E+a(D-0) = a(Dg—cg)+(Dz-D§)/2 (E-4)
which can be written as
§F/23(D-L)/3E+(D-0) = (Dg—cg)+8(D2-D§)/2 (E-%
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After introducing the inner boundary layer coordinate ® = £/8 and expanding
Yo, ¥1, D, T in power series of &, one finds the lowest order and
the first order balance.

1) &%°-order balance

~F¥, _, = (Dp-La)-(Dg-Lg) (E-6)

¥, .y = 1/208(Do-L0)/30 (E-7)
£1208(Dg-L0)/80+(Do=Co) = Dg-{q (E-8)
3%Do/90% = 0 (E-9)

Following the same argument as in Appendix A, the solutions are

¥,,.1 =0

Do-Co = Dg-GCgq for any @ and y

Do = De(0,¥) is independent of @ (E-10)
2) & -order balance |

—f(Too+T1o—Tog-qu) (D1—C1)+(D§—D§)/2

(Poo+¥10~Yog-F14) = 1/2+3(D,-T,)/36
f/243(Dy-L,)/36+(D,-C,) = (D3-D3)/2 (E-1D)
3°D,/38% = 0

The solutions are
%00 = 0

T;o (T09+T1g)(1—exp(-2®/f))

Dy = Di(y)

Tr = Dy (y)-(DE-D2)/2-F(¥og+¥: o) exp(-20/f)

Yo1 = Do(¥agq+¥,4) (1-exp(-20/f)) (E-12)
For the outer boundary layer, the mafching conditions are

at £ =0, ¥ = 0, ¥, = ¥oq+ti,

D = 0(y), T = (L4-Dy)+D(y) (E-13)
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at £so, ¥o= ¥o,, ¥ = ¥4, D = Dy, { = {4 (E-14)
After expanding all dependent variables in &-power series, the lowest order
balances for Do and Lo are

Do = %o (E-15)
1/8032D5/8E2+(D}/F-3D/3y+3L 4 /By) 3D} /3E=0 | (E-16)

with the corresponding boundary conditions

Da(0) = Do(y), Do=) = Dyly) (E-17)

where D, and {4 are known functions of y from the interior solution.

The solution of this equation is

Do = (Dg-D2Crexp(-C2£))/(1-C exp(-C,£)) (E-18)
where

Ci = (Do=Dg)/(Ds-D2)

C. = 4[D,-f3(D,-{4)/ay1/f

Do = (D3-2f¥gy) ' 72

D2 = 2F3(Dy-L4)/3y-D, (£-19)

Thus the outer boundary layer solution is

Yo = ¥oq+(D32-D2)/2F+0(5)

¥y = (Fagt¥, 5)-%+0(6)

D = (Dg-D2Cyexp{-CoE))/(1-C,exp(-C,E)) + 0(6)

[ =D+ 0(8) (E-20)

85



Addendum to Part I
On the Generalized Parsons's Model

By our definition, a generalized parsons’'s model is a two-layer model yith
an outcropping zone in a two-gyre basin (the model we studied in Chapters I
and II). In a generalized Parsons's model there are four important assumptions:

1) Two tayers are immiscible.

2) The Ekman layer is combined with the geostrophic flow below, and the
whole layer is treated as a vertically homogeneous layer.

3) The lower layer is motionless except when it is directly driven by the
wind force or underneath the the strong boundary currents. (The supercritical
state (II) is also an exception in which the lower layer is ventilated even
below the upper layer.)

4) The upper layer has a finite amount of water.

There are several boundary conditions that must be considered for all
thermociine problems, such as the upper boundary condition, the western
boundary condition, and the lower boundary condition. Most thermocline models
treat the mixed layer as a separate problem. It is rather difficult to match a
mixed Tayer with the geostrophic flow underneath because of the nonlinear
interaction between these two parts. It is even harder to build a model that
has a mass-balanced circulation. This difficulty also comes from trying to
match a western boundary current to the interior geostrophic flow. By
assumptions 1) and 2), the generalized Parsons’'s model avoids these
difficulties. Thus, by studying the vertically integrated flow, our model

successfully produces a mass-balanced circulation in a two-gyre basin with
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outcropping. Of course, the disadvantage is losing track of the mixed layer
structure and the connecting mechanism.

An essential step in establishing the entire circulation pattern is
finding the shape of the outcropping line. An outcropping line is a very
complicated phenomenon. The thickness of the upper layer becomes zero on that
line and the lower layer rises to the surface. There is a very complicated
three dimensional flow field near that iine. In a model with two immiscible
layers, the flow field is even more complicated because the water in the mixed
Tayer has to turn around quickly to compensate for the fiow in the geostrophic
interior. Fig. Ad.-1 shows schematic pictures for flow patterns near an
outcropping line for both the generaiized Parsons's model and the LPS model.
These pictures are for the cases in a subpolar basin and within the westerly.
The upper-layer light water is on the right-hand side of the outcropping line.
In the generalized Parsons's model, no water is allowed to cross the
outcropping line. Consequently, to the north of the ouicropping 1ine the heavy
Tower layer water sinks down along the interface, and to the south of the
outcropping line water upwells to compensate the southward Ekman transport in
the mixed layer. In the LPS model water crosses the outcropping line on which
its density decreases discontinuously because water densities én both side of
the outcropping line are different according to the definition of an
outcropping line. For the generalized Parsons's model, we do not have to worry
about the three dimensional structure, and the enfire circulation problem is
much easier to solve. In a sense, the present model offers an alternative way
of dealing the outcropping line. The outcropping line is not a streamline for

the interior Sverdrup fliow in this model. Hence there is an internal boundary
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Mixed layer
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(b)

Fig. Ad.-1, Schematic pictures of flow field near an outcropping
line in a subpolar basin. {a) The generalized Parsons' model;
(b) the Luyten, Pedlosky and Stommel model. & and @ represent

the geostrophic velocity vecteor componnent perpendicular to

these sections.
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current on the right-hand-side of the outcropping line because this line is a
western boundary to the upper layer. This internal jet is very similar to the
Guif Stream in the North Atlantic Ocean.

However, one may try to consider other possible approaches for a two-gyre
basin. One of these possible candidates is the LPS model. If one tries to
apply the LPS mode] to a two-gyre basin, one immediately finds a puzzle
(Pedlosky, personal communication): a Tine in which D is constant is also a
streamline for the upper layer; thus, a gquestion arises -- Does this argument
apply to the D = 0 1ine? Assuming this argument does apply, theré would be no
internal boundary current, and the basin flow pattern would change
dramatically. |

" Let us examine how the LPS model works in a subpolar basin. If there were
only one active Tayer right upon the outcropping line, streamfunction would be
constant along the outcropping line where D = Q. However, near the edge of the
outcropping line, D » 0 and v » «, though the vertically integrated mass
flux is still finite. This singularity is due to the assumption of a single
active layer. Physically, v can not be infinite; therefore, there is motion
below the upper 1ayer. If we accept the second proposition, there is no more
simitarity near the outcropping line: the v-velocity remains finite on the
outcropping line; the mass flux in the upper layer tends to zero there;
meanwhile, most of the Sverdrup flux goes into the Tower layer.

Apart from this minor singularity, a two-layer version of the LPS model
works fine for a subpolar gyre. As long as we stick with the assumption that
the lower layer is much thicker than the upper layer, the potential vorticity

isopieths, f/(H -h), in the lower layer remain basically parallel to the
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latitude circles. Therefore, only strong forcing, namely the direct wind
forcing or the interfacial friction underneath the strong internal boundary
current, can drive water particle across these potential vorticity isopleths.
Within the LPS model, the outcropping line is a streamline; thus, there is no
internal boundary current connected with it. Consequentliy, the Tower layer is
stagnant away from the outcropping zone, and a typical LPS solution for a
two-gyre basin Tooks quite different from a typical solution for the
generalized Parsosn's model.

After all, a question remains why there is an internal boundary current in
the generalized Parsons's model. Veronis (1980) pointed out that including the
Ekman flux is essential for a two-layer model to have the thermocline rising
to the surface (within the subtropical gyre). In other words, including the
Ekman flux causes the Guif Stream - like internal jet to appear in a two-gyre
basin model. Cutting out the mixed layer, of course, changes the entire model.
Although the generalized Parsons's model is the only existed model that can
produce the Gulf Stream - Tike internal jet, it is still possible to produce a
similar kind of cross gyre mass flux with other models.

It is interesting to note that most previous modeis treat two gyres
Targely without cross-gyre interaction. The real oceans, however, behave in
the other way. There are interactions between gyres. The following analysis
gives simplest explanation.

First, the boundary between gyres c¢an vary according to the model used.
For the LPS model the boundary between gyres is the line where the Ekman
pumpiﬁg velocity vanishes. For the generalized Parsons's model, the mass flux

is proportional to the wind-stress-curl; thus, the natural boundary between
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gyres is the ZWCL. The relative positions of these two Tines can be determined
by the following relation

We = (3T7/0x-01™/3ay}/f + B*/f? (Ad.-1)
Generally, the subtropical-subpolar gyre boundary is located within the
westerly region. Thus t > O and the zero-Ekman-pumping 1ine is south to
the ZWCL. Fig. Ad.-2a) shows a schematic diagram of a rectangular two-gyre
basin. One can easily show that the distance between these two Tines is much
smaller than the north-south scale of the basin. For simplicity, let us assume
that =¥ = 0. By scale analysis the ratio between the first and the second
term is order of BL/f = L/R << 1, where L is the north-south scale of a
subtropical gyre, R 13 the Earth's radius. Therefore, these two intergyre
boundaries are determined largely by the vanishing of the wind-stress-curl and
located near each other.

Second, there are water mass exchanges across these natural boundaries
determined above. Fig. Ad.-2.b) and ¢) show the corresponding pictures. As
pointed above these boundaries are located in the westerly, so that there are
southward Ekman flux within the mixed layer. On section A - A, where the
wind-stress-curl is zero, the vertically integrated streamfunction (including
the mixed layer) vanishes; thus, there should be a northward return flow
within the geostrophic region underneath the mixed Tayer. A western boundary
current is not a necessary part of a circulation system at this section. This
is a first baroclinic mode of water mass exchange intrinsic to the generalized
Parsons's model. On section B - B, where the Ekman pumping velocity is zero,
the geostrophic mass transport vanishes. To balance the mass transfport,

however, there should be a northward return flow somewhere. Therefore, as a
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by the generalized Parsons' model.
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necessary part of the circulation system here, a northward western boundary
current exists on this section.

The question, of course, is whether there are other kind of water mass
exchanges across the gyre boundaries. There have been speculations about this
kind of phenomena based on observations. Fig. Ad.-3 and Ad.-4 show the
circulation diagram by Worthington (1976) and McCartney (1982). In these
pictures the North Atlantic Current crosses the zero-Ekman-pumping line and
the Labrador Sea water goes southward as a deep western boundary current.
McCartney and Talley (1982) a]so_point out that the subpolar mode water moves
underneath the Gulf Stream and joins the subtropical anticyclonic gyre after
crossing the Gulf Stream.

The generﬁ]ized Parsons's model produces a first baroclinic mode of water
mass exchange that is very similar to the case just described for the North
Atlantic Current. As shown in Fig. Ad.-2d), this baroclinic mode aphears as a
strong, narrow internal boundary currents. It is also important to note that
this baroclinic mode is quite different from the simple Ekman flux -
geostrophic flux mode discussed above. Even the mass flux involved now is much
bigger than the previous mode. From the concrete example in Chapter II, the
mass flux in this baroc1ihic mode can be as big as a large fraction of the
total Sverdrup transport for the subpolar gyre; while the baroclinic mode
involved with the Ekman flux is much smaller than the total Sverdrup transport.

After the draft of this thesis had been finished the author become aware

of Pedlosky's work on the first baroclinic mode of water mass exchange (within
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Fig. Ad.-4. Circulation pattern in the central and eastern North
Atlantic, The dotted line is the axis of zero Ekman pumping
from Leetmaa and Bunker (1978). The solid arrow is Worthington's
interpretation of the axis of the North Atlantic Current for
the temperature range 7—1200. Two advection paths are
schematically indicated by dashed lines: a direct anticyclonic
recirculation from the winter outcropping between  27.0 mg/cm3
and 27.2 mg/cmB, and advection as part of the Deep Western
Boundary Current from the Labrador Sea southward inshore of the

North Atlantic Current. (McCartney, 1982)
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the geostrophic region below the mixed Tayer) across the zero-Ekman-pumping
Tine (Pedlosky, 1984). His solution is also shown in Fig. Ad. -2e).

In summary, the generalized Parsons's model provides a simple way of
describing the Guif Stream - like internal jet and cross-gyre water mass
exchange with the basic circulation in a two-gyre basin. There are, of course,
alternative way of describing the oceans. However, the generalized Parsons's
model is the only known model that can reproduce the internal jet with simple
algebra. |

In the original Parsons's model the physical meaning of having a finite
amount of warm water is not very clear. However, for a two-gyre basin its
meaning is much clearer. Within a subtropical-subpolar basin, the basic
air-sea interaction pattern is that of water being heated in the subtropical
basin and being cooled in the subpolar basin. Cooling is not uniformly
distributed over the whole subpolar basin. In the western basin extremely cold
and dry air from the continents creates cold, dense water during the winter
time. For a two-layer model, this water mass is represented by the outcropping
lower layer. Meanwhile, the upper layer covers almost the entire subtropical
basin and a small part of the subpolar basin. Each layer has only one
temperature which is an averaged temperature determined by integration over
the entire layer. Therefore, for a given wind forcing, if the averaged
atmospheric temperature rises, the amount of warm water increases and, hence,
the upper layer covers a larger area, and vice versa. In this sense, the
amount of warm water reflects the climatological atmospheric temperature
distribution in an average mean. Thus, the generalized Parsons's model does

include some representation of the combination of thermodynamic forcing with
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wind forcing and can give solutions for the entire basin, including the
western boundary current and other boundary currents.

Since the flow pattern in a two-gyre basin is determined by both wind
forcing and thermodynamic¢ forcing, there are some interesting phenomena. For
example, the position of the Gulf Stream changes in response to changes in
both the wind stress curl and the amount of warm water. This occurs by two
different mechanisms.

First, assuming the wind stress is unchanged, the position of the Gulf
Stream and its strength depends on the amount of warm water in the upper
layer. There are many parameters that control the amount of warm water, such
as solar radiation, cloudiness and atmospheric temperature. The Gulf Stream
separation point will change in response to changes in these parameters.

Second, assuming the amount of warm water is given, the position of the
Gulf Stream and its strength depend on the wind forcing. For a weak wind
forcing, the upper layer covers almost the entire basin. There is not much
outcropping in the subpolar basin and the internal boundary current is fairly
weak. For a moderate wind forcing, there is much more outcropping in the
subpolar basin; the Gulf Stream appears as a strong internal jet that combines
two gyres into a united body. One might conclude that the Gulf Stream becomes
very strong if the wind forcing builds up further. This may not be the case.
According to our model (remember that the nonlinear advection term has been
ignored!) the non-dimensiconal streamfunction -y, increases with X\ for X\ ¢
Am; however, at A = A, it attains the maximum value -y. (see Section 7
of Chapter I and Fig. 1-5). When XA > A\n., -¥. decreases with X\ and

becomes zero at A = 7. Assuming that the upper layer depth scale is

93



unchanged, the dimensional mass flux across the ZWCL is equal to —y, times

a constant factor. If the North Atlantic Ocean and the Gulf Stream can be
represented by the generalized Parsons's model, the corresponding X is around
the range of 0.2 ~ 1 (see Fig. 1-6). As wind forcing becomes too strong
compared with the present value, the upper layer shrinks southward and the
cross ZWCL mass flux will decrease eventually. This phenomenon might have a
very important c¢limatological meaning.

There have been many ice ages in our Earth's history. The dynamic reason
for this ice age - interglacial age cycle is not clear. Many theories have
been proposed, such as changes in the Earth's orbit and volcanic activity.
From the values of histograms of &§('®0/'®0) from ice cores in Greenland
and the Antarctic, which are indicators of temperature Ehanges during the past
100,000 years, Newell (1974) argues that there are two preferred modes of
temperature and circulation of the atmosphere-ocean system. These tﬁo modes
correspond to two modes of partitioning of the poleward energy flux between
the atmosphere and ocean. At present the ocean carries about 3/8 of poleward
hear flux at 30°N. In the cold mode, Newell suggested that the ocean carries
much less of the heat flux, and the atmosphere more, than at present.

Newell did not give a dynamic analysis for the ocean circulation pattern.
Can the generalized Parsons's model explains this atmosphere-ocean coupling
mode more clearly. For the present day circulation pattern, if the wind stress
is increased, then A is increased. According to the generalized Parsons's
model, the upper layer shifts southward and the internal jet moves southward.
Assuming that the internal jet is the major mechanism for the poleward heat

flux across the gyre boundary, the decrease in the Gulf Stream strength
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reduces the poleward heat flux and the average temperature in the subpolar
basin. As the temperature in the high latitudes drops, the meridional
temperature gradient increases. Hence, the available potential energy in the
atmosphere increases. As a result, the wind speed is increased rapidly (Newell
et al, 1981). This whole process is a positive feedback that can bring about a
new ice age for a long period (on the order of 10,000 years).

As A is larger than 2.63, all the upper layer water is confined within the
subtropical basin. There is no intergyre jet and no poleward heat flux across
the gyre. That is the cold mode of the atmosphere-ocean coupling model. It is
uncertain how the wind stress pattern looked during that time. In the
following argument we assume that the wind stress pattern was the same as
present, except that the wind strength changed. Temperature maps of surface
water in the North Atlantic for 18,000 B.P. have been reconstructed by
transfer-function analysis of foraminiferal assemblages. Fig. Ad.-5 shows the
sea-surface isotherm map for August 18,000 B.P.. The 22°C-isotherm was
almost the same shape as predicted by our model for % is larger than 2.63 (see
Fig. 1-9), using the fact that the wind stress was about twice as present
value and the amount of warm water was much less, say about 3/4 of the present
value. Fig. Ad.-6 shows the temperature-anomaly map for August in the North
Atlantic: 18,000 B.P. minus today's temperature. There was a big temperature
decrease within the domain that is basically covered by the Gulf Stream System
at present. During that period of time the oceanic poleward heat flux was cut
down almost to zero near 35°N. It was not inconsistent with our model.

As the ice age persisted, the subpolar basin was largely frozen. There was

no cold deep water formed, and the cold water upwelling stopped. Then, due to
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the heating from the solar radiation in the subtropical gyre, the amount of
warm water increased slowly. As long as there was a large mass of ice coverage
at high latitude, the meridional temperature gradient remained basically the
same and so did the wind speed. Therefore, according to our model the
subtropical gyre expanded into the subpolar basin gradually, and transported
much warm water into the subpolar basin. The warming-up period covered a long
time. Finally, the warm Gulf Stream water transported enocugh heat to melt all
the extra ice at high latitudes, and the warm mode of the interglacial period
began.

The scenario above is only a simplified illustration of the complicated
atmosphere-ocean coupling model. Further numerical investigation is underway
to explain the details,.

In summary, the generalized Parsons's model is a very simple model that
combines the dynamic effect of wind forcing and thefmodynamic forciﬁg. It is a
model that can be used to study gyre circulation and climate. Further study is
needed in order to explore all its dynamic meaning and potential for oceanic |

modelling and climatological study.
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Chapter III
Exact Solution of the Ideal Fluid Thermocline

with Continuyous Stratification

ABSTRACT

Welander's (1971a) solution and various generalizations are analyzed in
detail. from examination of possible ways to satisfy the essential upper
boundary conditions, a general way to solve the ideal fluid thermocline is
proposed. Through specifying the functional form of F(p,B) and the sea
surface pressure on the western/eastern walls, the problem is reduced to one
of repeatedly integrating two first order ordinary differential equations.

The present model, with appropriate choice of F, produces
three-dimensional thermocline and current structures in a continuously
stratified wind-driven ocean which are quite realistic. It also emphasizes the
importance of diffusion and upwelling/downwelling in the western/eastern
boundary currents and diffusion in the abyssal ocean. The model confirms the
conjecture that to solve the ideal fluid thermocline problem, information is
needed wherever fluid moves into (or out of) the demain.

The calculated resuits are very similar to the observed thermocline and

current structures in subtropical/subpolar basins.
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1. Introduction

Welander (1971a) was the first fo discuss the exact solution for the ideal
fluid thermocline with continuous stratification. By a simple conservation

argument, a first integration is obtained

fo. = F(p,B) a.n
where
B=p+ pgz (1.2)

is the Bernoulli function and F is an arbitrary function. Equation (1.1) can
be solved together with a second equation

Pz = -p9 (1.3

Welander proposes an intuitive way to solve this first-order differential
equation system, which consists of specifying the form of F(p,B) and the
initial value p = p{x,y,0), B = B(x,y,0). A simple downward marching-then
gives the whole solution.

As discussed in Addendum, however, a solution to the ideal fluid
thermoctine may have some discontinuities. The function F(p,B) may have
different forms for different domains. It is not clear how we can find the
form of F(p,B) from the observational data. Even if one knows the form of
F(p,B) for those water particles that can be traced back to the upper
surface, one still faces the difficulty of not knowing the functional form of
F(p,B) for water particles that come into the.domain through the lateral
boundary (under the sea surface!).

The only successful way to solve this equation system thus far is to

assume a specific simple form for the function F(p,B). There are only a few
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cases that can be integrated into finite analytical forms.

1) fp, = 0.

There are two possible choices :

a) p = po Within the whole Tayer. This gives the traditional
homogeneous layer models in which p, u, v are constant within the whole
layer; thus pressure p and vertical velocity w are linear functions of the
vertical coordinate.

b) p = p(x,y) within the upper layer. This gives the Pedlosky and
Young (1983) model for a subpolar gyre. Though this model gives interesting
hints about the subpolar gyre structure, it is unlikely to yield a stable
solution.

2) fp, = const. This gives the Pedlosky and Young (1983) model with
homogenized botentia] vorticity for layers underneath the directly wind-driven
upper layer. This model is a continuous version of the original Tayer model
with potential vorticity homogenization by Rhines and Young (1982). When the
surface wind forcing is strong enough, there are closed geostrophic contours
in the subsurface density layers. Within the purely ideal fiuid thermocline
theory, there is an infinite number of solutions. The potential vorticity
homogenization theory helps us pick out a unique solution. This kind of
solution is fairly close to the observational data. Huge potential vorticity
plateaus exist in both the North Atlantic and the North Pacific Ocean
(Holland, Keffer and Rhines, 1983); however, for the upper surface layer,
potential vorticity is far from being homogenized due to the strong air-sea
interactions. Thus, near the sea surface F(p,B) should depend on both p

and B. In fact, a realistic model should combine hoth situations into a
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unified pattern.

3 fpr = ap+ bB + C. (1.4)

The function F(p,B) is a linear function of p and B; this is the
logical step to take from the previous cases. Though Welander discusses a more
general case with F(p,B) = G(ap+ bB + c), he gives no concrete example,
except the degenerate case F(p,B) = G{(p). These were the only cases known
previously for exact analytical solutions of the ideal fluid thermocline
equation.

In this chapter we first analyze Welander's solution and examine the
implication of the failure to meet the essential dynamical upper boundary
condition. An approach which permits satisfying the upper boundary conditions
is discussed next. Thus we propose a general way to solve the ideal fluid
thermocline probiem. By specifying the function form of F{(p,B) and the sea
surface pressure on the western (or eastern) wall, the sea surface pressure
~can be determined by integrating a first-order partial differential equation,
using ps and w, as known functions, first suggested by Pedlosky (1983a).
Then, using ps and ps as initial data, a simple downward marching gives
the entire thermocline structure.

This approach emphasizes the idea stated in Addendum that information is
needed wherever fluid moves into (or out of) our domain and that different
information corraesponds to different thermocline structures. In this sense,
for given ps and w. the ideal fluid thermocline problem is highly
underdetermined: the ideal fluid thermocline cannot be solved without knowing

the whole gyre structure. The interior thermocline structure and potential
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vorticity distribution are determined by how the mass i1s balanced and how the
diffusion modifies the water mass property within the entire basin.

By specifying p; on the western (or the eastern) wall and the functional
form of F(p,B), we can find an ad-hoc solution that explains many observed
features. Since the earliest period of thermocline theory, attempts have been
made to exp1ain the observed water mass distribution by either the ventilated
thermocline theory or the diffusive thermocline theory. The present model
confirms the ventilation theory idea that for the interior ocean the basic
thermociine structure can be reproduced fairly successfully with an ideal
fluid model. At the same time, however, the present model emphasizes the
important role of diffusion withfn the western boundary layer and the abyssal
" ocean. In a sense, our model combines Welander's model, the LPS model and
Rhines and Young's model into a unified picture. It also presents an
interesting comparison with Cox and Bryan's (1983) numerical model of the
ventilated thermocline.

Pedliosky and Young (1983) study a layer model that combines the LPS model
with Rhines and Young's model. In principle, a multi-layer model might
approximate a continuous model; however, the algebra involved is extremely
complex. In some ways, the continuous case is actually simpler.

In the following analysis, we present some simple numerical solutions

which are very similar to the thermocline structure in a subtropical/subpolar

basin.
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2. Welander's Solution

In this section we confine our discussion to the functional form (1.4). As
discussed above, a solution to the ideal fluid thermocline can consist of many
Tocal solutions which match through some interfaces. Any physically sound
solution should correspond to a function F(p,B) which has fairly good
analytical properties, incTuding being expandable into Taylor series locally.
Hence a knowledge of form (1.4) can give us much useful information about the
thermociine structure.

The constant ¢ in (1.4) is not essential, because any additional constant
in the pressure field does not change the dynamical field at all. In the
following analysis ¢ is ignored.

By differentiating (1.4) with to z and using (1.3}, a single second order
ordinary differential equation in z is obtained. Integrating this eduation

twice gives the general solution for the density field:

0 = ps(X, ) + KX, ¥)f%exp(~(t+zo) 2o /D) dt 2.1
where
Zo = afbg, D = (-2fq/bg)'"*? (2.2)

This solution has two vertical scales. z, is the depth where the center of
the thermocline is located. D is the vertical scale of the whole thermocline
Tayer thickness. Actually, the local thermocline thickness scale is
D(f/fy)' 72, which includes a factor (sin®)'7%. A thermocline solution

with two vertical scales is, of course, a much better ocean model than the
sihg]e scale exponential similarity solution. However, for a more realistic

picture of the ocean, these two vertical scales should change horizontally
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within the basin. We will come back to this point below.

Relation (2.2) can be written as

a =bgzy <0, b=-2f/D*q ¢ O (2.3)
In (2.1, ps(x,y) is the surface density just below the Ekman layer. Most
thermocline theories treat ps(x,y) as a given upper boundary condition.

By differentiating (2.1),

k(X,¥) = =p=(X,y,2)exp(({Z+2,)/D)*Fo/F)

-pz(X,¥,-2Zo) > 0. (2.4
Thus k(x,y) is the absolute value of the vertical temperature gradient in the
center of the thermocline. To determine k{x,y) Welander proposes a second

boundary condition

p=po a5 2+ (2.5
Therefore
k(X,y) = (po- psCX, ¥/ % expl-(t+zo)%fo/fD*)dt ' (2.6)

this relation éan be put as

kX, =(Fo/fm) ' "2 (po-ps(X,y))/D/erf((2fo/F)} "22,/D) (2.7
where

erf(x) = (2m) 7' 721X exp(-u?/2)dx

The whole solution is now determined completely. The corresponding
pressure and velocity fields can be calculated as following

p = Ps{X,y)-ps{x,y)qz

+k(x, Y idsrsexp(-(t+z,)2fo/fD*)dt (2.8)

Here, the pressure on the upper surface is not an independent new function. By
putting (2.1) and (2.8) into (1.4) and calculating on z = O, one obtains

~fk(x,y)exp(-23Fo/fD?) = aps(x,y)+bps(x,y) (2.9
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Therefore

ps{X,y) = -[aps(x,y)+FK(x,y)1/b 2.10)
where
KOGY) = k(x,y)expl=(2o/D)*Fqo /) (2.1

The horizontal velocity is calculated from

u = -3p/ay/fp, v = 3p/3x/fp (2.12)
The vertical velocity is obtained by

w = ~-{udp/9x + vdp/dy)/dp/oz. (2.13)
Here the entire solution is totally determined by specifying z,, D and
ps(x,y), and therefore the vertical velocity on the upper surface does not
~necessarily satisfy the Ekman pumping condition (Welander, 1971a; Pedlosky,
1983a). Actually, the vertical velocity on the upper surface is

w(2=0)= [3ps/3x+3(fK)/3y-3p./3y=3(fK)/ax1/fKbp, (2.14)

Using (2.7) and (2.11)

w(z=0) = [8ps/8x*8((po-ps)Gly)) /3y

-3ps/3y*3((po-ps)G(y))/ax1/fKbp,, (2.1%
where
G(y) = (ffo/m)'“2/DAB (2.16)
A = exp((Zo/D)*fo/F) (2.1
B = erf((2fo/f)'"2zo/D) (2.18>
so that
w(z=0) = (po-ps)/fKbps*dps/3x 3G/Ay

dps/8x/bpsf'2AeBd(f'72/AB)/dy (2.19)

i

Because f increases as y incteases, both A and B decrease as y increases.

Noting that b < 0, one observes that for 3p./3x > 0, w(z=0) < Q. For the
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special case when 3ps/3x = 0, there can be no Ekman pumping w(x,y,0) =
0. In any case, the vertical velocity is totally determined and does not
satisfy the Ekman pumping condition for the general case.

The longitudinal velocity on the upper surface is
ulx,y,0) = [-adps/3y -a(FfK)/3yl/f(-blp,

=[-a3p+/3y+3/3y{(Ffa/m)' "2+ (ps—po) /DABI/F(~b)p (2.20)
One can make an estimate of the sign for u. Now Ap ~ 107%, but (pe-po)
~ -.01, so that the second term is the order of -.01f,/DAy. From a =
bgzo = -2f,2o/d*, the order of the first term is .001f,/DAy. Thus
all the surface velocity is &estward.

From the analysis above, one can see that although Welander's solution
gives a gbod meridional density section, the corresponding velocity field is
unreasonable.

The original ideal fluid thermocline equation is a third-order partia]
differential equation to z, so that one expects to have to specify three
vertical boundary conditions. Through giving the function form of F(p,B), the
equation becomes a second-order ordinary differential equation. Thus the form
of F(p,B) may imply a kind of boundary condition that the corresponding
solution can satisfy. However, one faces the difficult problem of choosing two
vertical boundary conditions from three.

The commonly accepted vertical boundary conditions for the ideal fluid
thermocline are the upper boundary conditions

atz =0 p = ps{X,¥Y), W= w.(x,y) (2.21)

There are also commonly used lower boundary conditions. Considering the case
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when both 2z, and D are much smaller then the ocean depth, the Tower boundary
tcondition can be proposed as
at 2> =, p* po, W20 (2.22)
If our solution can only satisfy two vertical boundary conditions,
Welander's choice seems better. However, as discussed above, the corresponding

velocity field is so unrealistic that we have to try the other vertical

boundary condition.
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3. How to Satisfy the Ekman Pumping Condition

We begin with a solution in the form of (2.1). Instead of satisfying the
lTower boundary condition at z = -=, here we apply the Ekman pumping
condition on the upper surface (Pedlosky, 1983a), first suggested this
possibility). To find the solution, one can rewrite (2.14) as a first-order
partial differential equation for fK
dps/Ay*d(FKI/Ox - 3p</3xe(FK)/By = -bpsw,(fK) (3.1
where ps(x,y),we{x,y) are specified upper boundary conditions. This
equation can be solved by a standard characteristic method. The corresponding
characteristics are defined by

dx/ds = 3ps/dy, dy/ds = -9p./3x (3.2)
Hence, along a characteristic

dy/dx = -8ps/3x / Bp./8y = (dy/dO| p = conse. 3.
Therefore, on z = 0 surface any constant density line is a characteristic.
Along a characteristic the original equation becomes

d(fK)/ds = -bpsW.(FK) (3.4

If we specify fK on the boundary where fluid comes into ocur domain, (3.4)
can be integrated by standard methods; in the numerical solution below, we use
the improved Euler method.

Physically, imposing data about fK(x,y) on either the western boundary or
the northern/southern boundaries implies giving information about the density
structure for fluid particles that move into (or out of) the domain from the

Jateral boundary and under the sea surface.
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For the special case when p, and w., are independent of x, (3.4)
becomes a simple ordinary differential equation

dK/dx = -bw.p<K/ dps/dy, (3.5
and the solution is

K{x,y) = k(0,y) exp(-bw.psx/ dps/dy) (3.6)

The entire soiution for the upper layer is now fully determined if we
specify ps, We, 2o, D and kK(O,y). Using (3.6), one finds k(x,y) and
hence the whole dénsity structure. The corresponding pressure and velocity
fields are uniquely determined.

However, this solution can only apply to the upper part of the ocean. The
iower boundary presents problems in matching. We will return to the lower
boundary condition below.

In addition, this kind of solution has unpleasant features. Firstly, the
isopycnal surfaces all are deeper on the eastern side. This can be seen easily
for the case with ps = ps(y). From (3.6), because b ¢ 0, we.< O for the
subtropical gyre, we have kix,y) < k{(0,y). Thus the isopycnal surfaces are
deeper in the eastern basin than in the western basin. Secondly, there is a
contradiction between having a good meridional density profile and a
reasonable anticyclonic horizontal velocity pattern. The longitudinal velocity
on the sea surface is
u(x,y,0)=[-adps/y-3/3y(fexp(-(2 /D)3 Fo /FIK(X,y) Y1/ Ff(-b)p, €3.7)
By examining the right-hand side of (3.7), one finds that
d/dy(fexp(-(zo/D)2fo/f)) > 0, -adps/d8y > 0, so that to have an
anticyclonic gyre, 8k/3y must be positive in the southern basin. However,

this kind of k(x,y) profile gives a very unrealistic thermocline shape.
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Even if the surface density distribution is dependent on x, the same
problem apperears. One cannot expect a thermocline formula with only two

vertical scales to give a very realistic global picture.

4. General Cases of F{(p,B)

Welander's model has two parameters a and b, and the corresponding
thermocline structure has two vertical scales z, and D. A two-scale
thermocline model can describe the ocean much better than other similarity
solutions. Of course, two scales are still not quite enough, since above we
have seen that a two-scale model has an unrealistic feature. In the real
ocean, the depth of the thermocline and the thermocline thickness should
change across the basin.

If one wants to describe the longitudinal thermocline structure, there
must be a third length scale. To do this, one can try to solve a function
F(p,B) with more than two parameters. For example, if one couid solve

fo. = a + bp + cB + dp® + eB* + fpB (4.1)
the solution would have five length scales and one would expect a much more
complex thermocline pattern.

We shall now describe a more general procedure for obtaining solutions to
the ideal fiuid thermocline model. First consider how to satisfy the upper
boundary conditions with an arbitrary function F. In Section 3, we have
discussed the way to satisfy the Ekman pumping condition for a special form of
F. This approach can be generalized as following. On the upper surface’ the

density conservation equation gives
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Udps/3X + V3ps/Ay + Wedp/0z = 0. (4.2>
Using |

U= -1/Fpse(8ps/3Y), v = 1/fp,*8p./0x, (4.3)
(4.2) can be written as a first-order partial differential equation for p,
3ps/3y*dps/3x~3ps/3xe3ps/0y=-psWF{ps,ps) (4.4)
Introducing the characteristic

dx/dt = 3p./dy, dy/dt = -3p./dx (4.5)

the equation for pe is

dps/dt = -psWeF(ps,ps? (4.62)

or
Op</DX = —psWeF(ps,Ps)/ dps/ay (4.6b)
where the characteristic 1ine is ps(X,y) = constant. It is interesting to
note that this first-order differential equation can be integrated either
eastward or westward. It is also important to emphasize that this equation can
apply only to a steady and non-dissipative case. Accordingly, given p: on
the western/eastern boundary (or even part of the northern/southern
boundaries), where fluid moves into (or out of) the domain, this first-order
differential equation can easily be solved numerically.
Based on these results, we can formulate two boundary value probiems for
the ideal fluid thermocline:
1) BVP-A.
a) Specifying the functional form of F(p,B).
b) Giving ps = ps(X,y) and w = w.(x,y) on z = 0.

c) Specifying ps = ps(0, y) on the western boundary where fluid
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comes into the domain. (As discussed above, this condition can be
more general.)
The BVP-A can be solved with two steps:
&) Integrating the first-order differential equation for the sea surface
pressure
dpe/dt = -psWeF(ps,ps)
Ps = ps(0, ¥ (4.7)
b) Solving the following two-equation system
fp. = F(p,B)
B=ps + pgz + % pg dz (4.8)
p(X,¥,0) = ps(x,y), B(x,y,0) = ps(x,y) .
A simple downward marching gives the vertical density and pressure’
distribution. Afterward, the corresponding velocity fieid can easily be
calcutated from geostrophic condition. |

2) BVP-B.
This is an alternative procedure in which pe is specified rather than F.
a) Specifying ps, Ps, and w, on z = 0 surface.
b) Specifying p = p(2) where water comes into the domain (on the western
wall or part of the northern/southern wall).
The BYP-B can be solved with the following equations
U =-1/fpe(ap/ay), v = 1/fpe(3p/3x)
ap/fdz = -pg, p/d3z = -(Udp/AxX+vip/Ay)/w
fow/dz = Bv (4.9
except on the singular interface where w = 0. This singularity leads to two

difficulties: First, on this surface we cannot find the vertical density
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gradient from the density conservation equation. Second, within a subtropical
gyre we do not have information about the flow field below the w = 0 surface.
It is unclear whether the ideal fluid thermocline equation apply to this
region.

Here one also needs density data on the western wall, because calculating
term udp/ox+vdp/ady requires upstream density data. What one is really
dealing with is water that comes into the domain through the lateral
boundaries.

Comparison between BVP-A and BVYP-B:

Both probiems include ps and w, as input data. However, there is still
an infinite number of solutions. To solve BVP-A it is necessary to input
ps{0, y), a one-dimensional array; and to specify the form of F(p,B).
Numerically, a two-dimensional array is necessary to specify the form of
F(p,B). In contrast, to solve BVP-B, ps(x, y) and p(0,y,2) —— two
two-dimensional data arrays —— are necessary. In some cases data on the
northern/southern boundaries also may be necessary.

Presently, there is no accurate way to measure sea-surface pressure within
a few cruises. Thus integration of BVP-B from data seems difficult. However,
the satellite altimetry technique is developing so fast that within this
decade sea surface pressure measurements will become routine procedure and
BVP-B might become a useful approach (although the problem of the w = 0
singuiarity must still be resolved). In the following analysis we will
concentrate on BVP-A. Again, it is difficult to specify F directly from data
and we take the approach of choosing a parameterized form and selecting the

one giving the most realistic results.
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5. On the Boundary Conditions

One of the major difficulties intrinsic to the ideal fluid thermocline is
to satisfy complicated boundary conditions in a basin. Although we proposed a
way to satisfy the upper boundary conditions, there are other difficulties .
with the lateral and bottom conditions. In this section we will examine these
conditions in details.

1) The eastern boundary condition.

The traditional approach for wind-driven circulations is to assume that
the interior solution is applicable upon the eastern boundary. Thus u = 0, at
X = X. and the interior solution is found by integrating from the eastern
wall.

For the ideal fluid thermocline, the following simple partial differential
_equation (the M-equation, Welander, 1959) can be found through simpTe algebra

“MzyMzzx + MaMazy + B/foM M., = 0 (5.1
where

P/po = Mg, -gp/po = Mz,

U= =M /f, v =M, /Ff, w=BM/F
This equation is third order in z, first order in x and y. An intuitive way to
specify the boundary conditions is to impose three boundary conditions in z
and one in x and y.

Considering the boundary condition in x, a natural approach is to assume
the ideal fluid thermocline equation to be valid on the eastern boundary.
However, it will be demonstrated below that there is a problem in applying the

boundary condition on the eastern wall. If the ideal fluid thermocline theory
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is valid on the eastern wall,
U =0, at Xx = X

Assuming that wind stress has only a zonal component, from the y-momentum

eqﬁation

ap/dy = 0 at x = X, (5.2)
implying

p = p{2) at x = X, (5.3

The density conservation equation is now

wdp/dz = 0, at x = x, (5.4)
so that
w=0o0r 3p/3z =0, at x= x. (5.5)

Therefore, we have either w = 0 or p = const. on the eastern wall (Killworth,
1983).

For layer models, these conditions are satisfied completely. In the top
layer, p = const. and w is non-zero, and below this active layer there is no
motion, w = Q. Thus, stratification can exist in the lower layer.

For a continuously stratified model, w is non-zero within the top part of
the ocean, so that if one wants u = 0 on the eastern wall, an ideal fluid
thermocline solution must have a constant density p. on the eastern wall. In
such cases, the full solution may consist of several local solutions. Thus,
under the active upper layer there c¢an be a stagnant abyssal layer with
continuous stratification even on the eastern wall.

However, ps = const. on the eastern wall is not consistent with real
oceanic observations. Surface density distribution and the corresponding

v-velocity in the ocean imply that setting u = 0 and p = const. on the eastern
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wall is not a good assumption. The other possibie choice, then, is to match an
eastern boundary layer to the interior solution. In this boundary layer, there
is strong upwelling/downwelling and the other dynamical terms may play an
important role in bringing the u-velocity to zero. In assuming there is an
eastern boundary current, Pedlosky (1983b) relaxes the eastern boundary
condition for layer models. Instead of requiring u = 0 there, the new
constraint requires

Jluudz = 0 (5.6)
on the eastern wall. As will be shown below, the lower boundary condition on
our ideal fluid thermocline model is also not very clear. Therefore, we are
not able to apply this constraint and the eastern boundary condition is still
- uncertain.

By examining (1.1), we see that specifying the form of F{(p,B) turns the
original partial differential equation into a second-order ordinary'
differential equation in z. Therefore, there is little freedom left for any
kind of lateral boundary condition. In other words, the form of F(p,B) may
imply a lateral boundary condition. This can be seen clearly from the
following theorem.

Theorem I.

Functions in the form of

F(p,B) = (p-po)G{p,B> (5.7)
can guarantee that u = 0,p = const. on the eastern wall, if ps(x.,y) =
Pe-
Proof:

Using (4-6.a) on the characteristic x = x. where F(ps,ps) = 0,
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one finds that
ps= const. on x = X,
By equation (1.1), it follows
p = pe ON the eastern wall.
Q.E.D.

Welander's Tinear function F(p,B) = ap+bB+c does not satisfy this
criterion, so that if we use w, as the upper boundary condition, the

corresponding solution does not satisfy the u = 0 condition on the eastern
| wall. Welander's original solution does not, however, use w. as an upper
boundary condition, so that by imposing the condition that p = p. on the
gastern wall his solution can satisfy u = 0 on the eastern wall.

From observation, u-velocity near the eastern boundary is rather small
compared with the interior ocean. Therefore, in the following analysis, we try
to find solutions that are not strictly subjected to the eastern boundary
condition u = O, but have a relatively small u-velocity on the eastern wall.
By starting from the eastern boundary, one can satisfy roughly the eastern
boundary condition (5.6). We assume that an eastern boundary current exists to
match the interior solution to the real eastern wall. Because the lower limit
of the ideal fluid thermocliine solution and the structure of the corresponding
eastern boundary current with continuous stratification are not clear, the
eastern boundary condition for the ideal fluid thermocline is still an open
question.

2) The western boundary condition.

From the discussion above the western boundary and the eastern boundary

play the same kind of role in the ideal fluid thermocline theory. If one
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starts from the eastern boundary, the behavior of the solution is completely
free on the western boundary. Even if one chooses to start from the western
boundary, the only input there is the pressure and density distribution on the
sea surface line. Below the sea surface the whole solution has a fairly
arbitrary structure.

The validity of our model, therefore, depends on the existence of the
corresponding western/eastern boundary currents, which can turn the water mass
back into the interior ocean at exact latitudes and dépths.

3) The upper boundary condition.

According to the discussion above, the upper boundary condition is simply
the specification ps, W. on the sea surface and p, on lateral boundaries
where fluid moves into (or out of) the domain under study. In the following
analysis we examine the topology of the solutions.

The first question is whether a closed p: contour is possible.

Lemma 1.

There is no closed ps contour for a steady ideal fluid thermocline
solution within the interior of a subtropical (or subpolar) basin.

Proof:

Suppose there is a closed contour C. Integrating (4-6.a) along this
closed line C, one has

JeweF{(ps,psids = 0
Because w, is always negative (or positive in a subpolar basin), the sign of
F(ps,ps) must change or F(ps,ps) = 0. In the the first case, F
becomes negative, indicating an inertial instability. In the second case, F =

0,indicating that near the sea surface isopycnals are vertical along the
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closed line C, which is also an unstable condition.

Therefore, a stable solution of the ideal fluid thermocline has no closed
constant density line on the upper surface.

Q.E.D.

Lemma 1 excludes the possibility of having closed ps contours in a
subtropical (or subpolar) gyre. However, for a two-gyre basin there may be
closed ps contours that go across the ZWCL or that extend into the western
boundary current. In the ideal fluid thermocline theory, the western boundary
current is not included. Fortunately, the observed ocean dces not have large
scale closed ps contours across the ZWCL. Therefore, the first step of
integrating the ideal fluid thermocline can always be taken.

Remarks. The above discussion applies to the planetary scale only. Even
on the synoptic scale there are closed ps contours, such as warm-core rings
and cold-core rings. In most thermocline models, meso-scale eddies are treated
as noise.

4) The lower boundary condition.

Specifying the form of F(p,B) turns the original third order partial
differential equation into a second-order ordinary differential equation in z.
Therefore, if one specifies two upper-boundary conditions, the solution cannot
satisfy an arbitrary lower-boundary condition. Even if we try different
solutions for different domains, as long as they are solutions for second- or
first-order differential equations, the lower boundary condition cannot be
satisfied for general cases.

One way to solve this problem is to terminate the upper layer solution

along an interface where w = 0. Across this interface the horizontal velocity
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jumps to zero. Thus there is a density discontinuity across this interface. On
the other hand, this approach does not necessarily give a solution with a
totally stagnant abyssal layer. Because observation gives no evidence of the
existence of this front at middle depth, we do not use this approach.

Another way to solve this problem is to find functions F(p,B) that have
attractive solutions. By definition of attractive solutions, as t » =, any
solution x(t) of a differential equation dx/dt = f{x,t) approaches a limit
point X, that is independent of x(t,y).

A simple example is the equation

dx/dt = -a(X-Xa), x(0) = X,

The corresponding solution ié

X = Xo + (Xo—Xo)eXp{-al).

For our model, we can use any attractive solution to satisfy the lower
boundary condition p{(x,y,-=) = p,. The simplest choice is

fap/dz = -alpu—p) (5.8)
However, though p » ps at z = -=, both the pressure p and the vertical
velocity w cannot satisfy arbitrary lower-boundary conditions at z = -=».
Nelander's'solution also has the same problem.

In principle, one can try to find some attractive solutions for the
first-order differential equation system

F(p,B)/f < 0

Pz
B.

gzp. > 0 z: (-=,0]
Introducing the new variables
R=-B, t=-2z, G(p,R) = -F(p,B)/f,

the system becomes
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p. = G{p,R) > 0

R.

tG(p,R) >0. t: [0,®)
Generally, this is a non-autonomous and nonlinear system. There may be special
forms of G(p,B) that make this system attractive. This means

P ? Pos R* Ry aS t > @,

In other words, density and pressure are horizontally uniform on the sea
bottom.

However, though p, p might be constant on the bottom, the vertical
velocity is not necessarily zero there

W(-H) = wo -B/f%poeS2u pxdz,
where

Px = Psx + 9F2pxdz.

No sotution that satisfies w = G on the bottom has thus far been found. We
will discuss the lower boundary condition further in the next section.

In principle, one can include more and more parameters in the function
F(p,B). By adjusting these parameters, one might satisfy the lower-boundary
condition w = 0 at a number of points on the bottom. This is a tedious
nonlinear optimization problem, involving a large number of parameters.

The Tower-boundary condition for the ideal fluid thermocline is not clear
from the above analysis. From the physical point of view, the abyssal
circulation is very slow, and horizontal and vertical diffusion may be
dynamically important. Therefore, the ideal fluid thermocline is possibly not
a correct model for the abyssal circulation. In this sense, the real
lower-boundary condition for the ideal fluid thermocline is an open question.

Considering the above analysis, we will try to find some attractive
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solutions that have a very small residual velocity in the abyssal layer and
leave the exact formulation of the lower-boundary condition for a future
study. One can terminate our solution at a middle depth and match it with a
diffusive solution.

5) The northern/southern boundary conditions:

In the previous section we argued that density data might be needed on
both the northern and southern boundaries. Thus, a single gyre box model is
not strictly valid unless we can prove a-priori that there is no water mass
exchange across the northern and southern boundaries. The following theorem is
a sufficient condition for non-existence of water mass exchange.

Theorem II. If on ¥ = y.(x), wo = 0 and p = p, = const. and F(p,B)
is a single-valued function, there is no water mass exchange across the
surface y = y,(x).

Proof':

We = 0, and p = const. on y = ¥.(xJ, so that y = y.(x) is a
characteristic. Using (4.6), one obtains
dps/ds =0 ony = y.(x), z=0.

Using ps = pn, Ps = Pa to integrate fp, = F(p,B) from

N
1}
(e}

downward, the solution is p = p(2), p = p(2). Therefore, 3p/3s = 0, and
Ve S WZ=Z00ny =y, (X) interface.
Q.E.D.
Remarks: This theorem can apply to both the northern and southern
boundaries.
One notices that if lines ps = const. cross the line y = y.(x) (where

we = 0), there possibly is a baroclinic mode of water mass exchange across
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this interface. Consequently, we have to specify ps and p: on these
boundaries.

In passing, we see that the ventilated thermocline model of Luyten,
Pedlosky and Stommel belongs to this special case with ps = const. on both
the northern and southern boundaries. According to our Theorem II, there is no
water mass exchange across both the northern and the southern boundaries. As a

result, a single-gyre model for the subtropical basin circutation can be

studied.
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6. The Existence of the Unventilated Thermocliine and

the Determination of the Potential Vorticity

We will first define the term "unventilated”. By an unventilated layer we
mean that a layer is not Ekman-ventilated, i.e., not directly exposed to the
air-sea interaction in the interior ocean. This definition implies the
possibility of this layer being exposed to air-sea interaction in the western
boundary current. Rhines and Young (1983) pose a model with closed
streamlines, so that the weak vertical turbulent forces drive a circulation
within the unventilated fhermoc1ine. However, the deep thermocline can also be
ventilated by the strong western boundary current.

Héw deep the wind-driven circulation is and how a fluid below the directly
wind-driven surface layer is set into motion have bheen very difficult probltems
in thermocline theory. In an ideal fluid thermocline model, as discdssed in
the LPS model, the upper part of the thermocline is driven by the wind.
Therefore, the existence of subsurface motion can be explained if these water
particles trace back to an outcropping region. However, there are other
possible sources for the subsurface motion.

Let us consider a layer model of a stratified ocean. If there were no wind
forcing, every layer would be level and potential vorticity isopleths in each
layer would be paraliel to the latitudinal circles. The whole ocean would be
stagnant. If there is a weak wind forcing, the upper Tayer will be driven by
the direct wind forcing. The interface between the first layer and the second
layer will be deformed. Thus, the potential vorticity isopleths in the second

layer will be slightly deformed, but all of them still meet the eastern wall,
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making fluid motion impossible within this tayer (and all layers helow). As
Rhines and Young (1982) point out, however, when the wind forcing is strong
enough, the interface is sfrongly deformed and some closed potential vorticity
isopleths develop within the second layer (or even layers below). Rhines and
Young have discussed a model including these closed potential vorticity
isopleths. In this modeil, motion in a deep ocean cah only occur in a domain of
closed potential vorticity contours within which motion is driven by small
vertical friction forcing from the upper layer.

Although observations show fairly homogeneous potential vorticity plateaus
in both the North Atlantic Ocean and the North Pacific Ocean (Holland, Keffer
and Rhines, 1983), in large regions of these oceans potential vorticity is not
uniform. The potential vorticity homogenization theory also has difficulty in
coupling with a western boundary current (Ierley and Young, 1983). One,
therefore, must try other possible explanations of the unventilated motion. A
simple choice is to cut the ¢losed potential vorticity isopleths in half, thus
having pofentiai vorticity isopleths coming from and returning to the western
boundary current. In other words, when we have a subsurface motion ventilated
by the western boundary current, the western boundary-current picks up water
particles from the southern basin and puts them back intc interior circutation
in the northern basin. Unknown upwelling/downwelling and diffusive processes
within the western boundary current transport potential vorticity and other
properties, redistribute them, and feed them back to the interior ocean at the
right latitudes and depths.

There is no doubt that subsurface water does move. The problem is whether

we can prove the exjstence of subsurface motion within the theoretical frame

124



work of the ideal fluid thermocline. Thus, we first discuss the existence of
the unventilated thermocline. Afterward, our topic is the determination of the
potential vorticity in a basin.

1) The existence of the unventilated thermocline in a subtropical basin.

For simplicity we discuss a special case when the sea surface density is
independent of x and the northern boundary of the basin is the a latitudinal
circle, ¥y = v., and ps = po is constant along this line. Fig. 3-1 shows
a north-south section of this case.

Lemma 2.

w < 0 on the interface p = p, (except on the sea surface).
Proof:
Using (4.2), at section A-A the v-velocity on the sea surface is

Ve = =Wep2/py (6.1)
From the Sverdrup relation

Bv = f(we-w)/h (6.2)
where w is the vertical velocity on the interface p = pn, v is the
vertically averaged meridional velocity, and v = v, approximately.

By definition

h =-Lpy/p: (6.3)
Combining (6.1; 6.2; 6.3), one obtains

w= (1-8L/fw, (6.4

or

w = (1-L/Rw, (6.5}

where R is the Eath's radius.
Therefore, w ~ w. < 0 for a subtropical gyre.

Q.E.D.
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Fig. 3-1. A meridional section showing the density field

in the vicinity of a isopycnal outcropping line.
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This lemma means that south of the ZWCL, a w = constant interface slopes
down faster than a p = constant interface on a large scale.

Clearly, v and w are non-zero on the interface p = pn. By our bhasic
assumption, there is no density discontinuity within the whole ocean. Thus,
from the thermal wind relation the water below the p = p. interface should
move as well.

Recalling our assumption that p. = const. on the northern boundary,

Y = ¥n, and using Theorem II, one concludes that there is no water mass
exchange across the northern boundary. Because the water particles below the
p = pn interface have a density greater than p,, they cannot have a source

on the upper surface. Therefore, this subsurface current must have its source
in the western boundary current. (The amount of deep water ventilated by the
eastern boundary current is very small because there is no evidence of an
eastern boundary current that can support a net meridional mass flux.) In
summary, we have the following theorem.

Theorem IIT.

If the sea-surface density is constant along the ZWCL (which is the
northern boundary of a subtropical gyre), and if F(p,B) is a single-valued
function, there is a unventilated thermocline below the directly wind-driven
surface layer in a subtropical basin. The flow in this unventilated
thermocline has its source in the western boundary current.

2) Ventilation in a subpolar gyre.
With all previous layer model (Veronis, 1973; LPS, 1983; Pedlosky and
Young, 1983; and Chapter I and II of this thesis) the assumption has been used

that in a subpolar gyre layers beneath the upmost layer are motionless (except
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below narrow boundary current). This assumption makes these models simple
enough to be worked out analytically. There is another possible assumption,
however, that the lower layers are in motion before they outcrop (LPS
mentioned this possibility, but did not give a real example). Although the
assumption of single moving layer can be useful for layer model, a model with
continuously stratification needs slightly different assumptions. In fact, it
seems reasonable to assume that water particles below the upper surface are in
motion even before they outcrop.

In this case the western boundary current sets up the potential vorticity
field within these subsurface layers. The sole function of the venfi]ated and
unventilated thermoclines in the subpolar gyre is to send water particles in
these layers to the interior circulation. Some 6f these water particles
outcrop in the interior, others move along a cyclonic path and return to the
western boundary in the northern basin.

As can be seen from the concrete examples in the next section, the present
model gives more similar c¢irculation patterns for the subpolar and subtropical
gyres than these layer models.

3) How deep is the total thermocline.

There have been several estimates of the thermocline depth (Welander,
1971b; Pedlosky, 1983a). One can make another simple estimate by using the
present model.

Assuming w = 0 at depth z = -H where p = p,, one has

H = fw./Bv, (6.6)

Combining (6. 6) and (6. 1) gives

H = -fp,/Bp. ~ -Rpy/p: 6.7
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For the subtropical ocean the typical values are py, ~ 1073/2000km, p, ~
50+107%/cm, thus H ~ 600 meters.

At section A-A (#ig. 3-1) the ventilated thermocline depth is h =
-Lpy/p-. Introducing a ventilation ratio v. = h/H, one obtains v, =
L/R. Therefore, for a subtropical gyre the overall ventilation ratio is

V. = L,/R (6.8)

Rhines (1983) first introduced a recirculation index R, = R/L, =
1/V. from a different point of view. According to our definition V. is the
ratio of the ventilated thermocline depth to the total thermocliine depth for
the entire basin. Obviously, (1-V.) also represents that portion of.water
which §s recirculated within the unventilated thermocline and the western
boundary current. For both the North Atlantic Ocean and the North Pacific
Ocean, V. is the order of 0.3 ~ 0.5, which means that there are big
unventilated water pools in both these two oceans. The water in these pools
has its source in the western boundary currents or the subpolar gyres.

4) How the potential vorticity field is determined within a basin.

Ih the previous section we suggested a way to solve the ideal fluid
thermocline for a entire basin by giving the functional form of F(p,B} as an
input data. There has been no conventional way of finding F(p,B) from oceanic
measurements. Even if we had a way of getting p. on the entire sea surface,
we still would face the difficulty of not knowing the p, distribution on all
lateral boundaries. The way we propose to solve this problem is rather ad-hoc.
After all, a question remains whether it is possible to find the g-field for

at least part of the ocean without solving the entire circulation problem.
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At first glimpse, the LPS model seems able to determine the g-field fairly
easily without solving the whole basin circulation. However, as we examine the
LPS model in detail, this first impression turns out to be untrue.

Since the LPS model appeared, an important question has been how to
transit from the layer model to a continuous model. A simple choice would be
to divide the surface into more and more layers. Although it becomes more and
more tedious to derive the corresponding equations, it can, in principle, be
done. Hdwever, dividing the surface into more layers does little help in
understanding the structure of the deep thermocline. The real problem is in
the first moving layer near the northern boundary. Luyten et al. wisely chose
to start the model there with a constant depth Ho and assume that there is
no water mass exchange across the ZWCL. Qur Theorem II proves that their
assumptions are consistent. Next, they assume that w = O on and below a
constant density interface p = p». This assumption has never been pfoved as
far as the author knows.

Let us examine section A-A in Fig. 3-1. There are two layers: the upper
ventilated layer, in which the water all comes from the mixed layer, and the
unventilated layer below. As discussed in great detail in the LPS model, if we
treat these two layers as a vertically averaged single layer, for given H,
the flow field at section A-A can be determined completely. However, as shown
above, water mass within the unventilated thermocline on section A-A comes
from the western boundary current. Thus, the g-field within the whole
unventilated thermocline is unknown before solving the entire circulation.
Without knowing the g-field in the second layer, solving the problem of the

flow field is impossible,
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Pedlosky and Young (1983) improve the LPS model by combining it with
Rhines and Young's unventilated thermocline model. They propose to divide the
unventilated thermocline into many layers each of which has a homogenized
potential vorticity. Such a multi-layer model can be solved in principle,
though the calculations are tedious.

Noting that layer thickness and potential vorticity have to be specified
for each unventilated Tayer in Pedlosky and Young's model, it is easy to
explain why potential vorticity functional relationship hust be specified in a
continuously stratified model. Between the directly ventilated and the
unventilated thermocline with potential vorticity homogenized layers in real
oceans, furthermore, there are transition zones where the potential vorticity
is not homogenized. Even within the lower part of the thermocline there may be
weak potential vorticity gradients; the deep oceans are not completely
homogenized. The basic gyre-scale potential vorticity field is potentially
unstable and there are meso-scale eddies moving around. Thus, our model
chooses to specify a g-field that depends on both p and B, though there is a
fairly low gradient potential vorticity pool in the middle of the so-called
mode water region.

Classifying the ideal fluid thermocline equation as a non-strict
hyperbolic system (see Addendum) also raises hopes that, if by some method we
can find the g-field on part of the sea surface, we can find part of the
solution by simply tracing streamlines along which the density, potential
vorticity and Bernoulli function are conserved. Although this kind of standard
characteristic approach might be valid for a time-dependent thermocline

problem, the equation for steady ideal fluid thermocline has exceptional
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properties. First, it has a triple characteristic that goes vertically and has
an unknown role in boundary value problems. Second, the single characteristic
is reversible. Thus, instead of getting g-field information from Tocal
dynamics on the base of the mixed layer (assuming we can do this), we should
be equally able to find the g-field within the western boundary current and
let the information return to the mixed layer along the streamlines in the
ventilated thermocline. Certainly, it is still not a well-understood approach.

As discussed in Addendum, the functional form of F(p,B) includes
information about the boundary conditions. There is no conventional way to
find the actual form of F(p,B) for part of the domain without solving the
entire boundary value problem.

In summary, the g-field is a quality of the entire circulation balance. To
find the g-field one has to include the western boundary current and other
boundary currents. Giving a g-field is equivalent to giving the whole
solution. There seems no way of finding the g-field for some part of the

circulation by local dynamics.
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7. Calculated Results

Before going into the details of numerical examples, let us examine the
general criteria for the function F(p, B) in order to fit the realistic
oceanic data. First, we discuss the simplest form of F = ap + bB + c. A very
natural choice is Welander's solution: a < Q0 and b < 0. However, as pointed
out in section 3, this kind of functional forms gives unpleasant feature: all
isopycnal surfaces are deeper on the eastern side. This troublie comes from the
negative sign of 3F/3B. For simplicity, we assume ps = p<(y). From (4.6b)
ps decreases eastward in a subtropical gyre. By definition, B = p; on the
sea surface, so that B decreases eastward on the sea surface. Let us look at a
longitudinal section. On the sea surface p is constant. Therefore, to have
isopycnals slope westward. p. should be smaller in the western basin than in
the western basin. Hence, 9F/3B should be positive, meaning F is an-increasing
function of B. The simplest choice is

F(p, B) = ap + b(Bo - B) with a, b <0 (7.1

However, a close examination of this functional form reveals that the
solution blows up in the deep ocean because |p.| is unbounded. Thus, to
find a nice-looking solution we have to match this solution to another
solution. Actually, a typical vertical density profile in the subtropical
oceans has a high gradient region near the sea surface -- the seasonal
thermocline; a low gradient region below —- the mode water; a high gradient
region again -- the permanent thermocline; and the almost homogeneous deep

ocean near the hottom. Any successful model should take these regions into

account.
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Obviously, to find a solution that fits the observed oceans better,.one
has to include more parameters. Here, we try to emphasize that even a fairly
simple functional form of F(p,B) can give a picture very similar to
observations. However, the actual form of F in a basin must be very
complicated; the solutions here are not the exact flows in the real oceans.
1) Subtropical gyre.

Assuming a subtropical gyre from 20°N to 50°N, we have

fo = 0.0000837 /sec, 8 = 1.875¢107"" /sec/m

and

Ly =6000 km, Ly,= wR/6 ~ 3300 km.

The surface density is the same as in the LPS model

pe = 1.026 + .001y (7.23
The Ekman pumping velocity is assumed to be x-independent

We = —.0001 sin{wy) cm/sec ' (7.3
The sea surface pressure on the western or the eastern wall is given as a
boundary value to start the integrating. As discussed above, there is no
definite direction for the characteristic of the equation, so we can start
from either the western or the eastern boundary. To compare with the LPS
model, we choose to begin at the eastern boundary.

The u-velocity on the eastern boundary is generally fairly small. Thus we
choose

psC1l,y) = O ' (7.4)
This boundary value guarantees that u is identically zero on the eastern
boundary surface line. Vertically, we choose three different regions where the

function F(p,B) has different forms:
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a) The
F(p,B)
b) The
F(p.B
c) The
F(p.B)
Using p in

parameters

a, = 3.

b, = 4

]

]

[+B]

B] = 9.

buffer layer between the mixed layer and the mode water.

= -3, (p-p1)-b:(B,-B) for 1.026 < p < 1.027 (7.9
mode water layer.

= -32p-b,(B2~-B)+b3(B3-B)(B4+B) for 1.027<¢p<1.028 (7.6
abyssal water.

= -a3(1.0285-p) for 1.028 < p < 1.0285 (7.7
units of g/cm® and B in units of m*/s?, the corresponding

are

627077; a, = 51077, a; = -24107°

.5¢107""; by = 4#107""; by = 1.8107'2
.0265

4; Bz = B3 = 7; Bq = 13-

These functions are matched through smooth transitional regions:

F=F,

-
[}

for 1.0260 <.p < 1.0270

dF,+(1-d)F, for 1.0270 < p < 1.0275

where d = ((1.0275-p)/.0005) 3

F=F,

-n
[}

for 1.0275 < p < 1.0280

dF ,+(1-d)F4 for 1.0280 < p < 1.0285

where d = ((1.0285-p)/.0005))3

Fig. 3-2 shows the functional relationship between F and p for B = -5, 0,

5 m*/sec?.
structure.
horizontal

mode-water

The buffer layer basically represents the upper-layer
Therefore, the corresponding parameters determine how big the
velocity is and hence the depth of the wind-driven gyre. The

layer is the main body of the subtropical gyre. Within this layer

the vertical density gradients are small, which means a low-potential
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vorticity pool. In principle we could try solution with homogenized potential
vorticity; however, the solution here has a small potential vorticity gradient
on middle-depth potential density surface. This gives slight differences
between the Rhines -~ Young, Pedlosky - Young, and the present model. The
transitional region between the mode water and the abyssal layer is the main
thermocline. A dashed Tine in Fig. 3-2 represents the change of potential
vorticity along a vertical lTine. Because the Bernoulli function decreases
downward, this dashed line crosses constant-B lines in this figure. In the
abyssal layer potential vorticity is uniform.

Here, we should emphasize that it is essential to have these three zones,
the buffer layer, the modé water layer, and the abyssal water. The mode water
regfpn appears as a deep valley in the potential vorticity graph. The peaks on
both sides of the valley are the seasonal thermocline and the permanent
thermocline. The smoothing regions make all property profiles smooth and help
to avoid unnecessary compiications connected with matching solutions of quite
different properties. The smooth steps used here are merely convenient rather
than essential.

Fig; 3-3 shows the horizontal velocity field on the upper surface (the
base of the mixed layer). As the eastern boundary condition requires, u = 0
along the eastern boundary (a single line on the upper surface). This figure
is a typical anticyclonic gyre with Umax = 10cm/sec and |v]msx=
1.68cm/sec. Therefore, u/v = 6; unlike a simple scale analysis, this ratio is
three times the geometrical aspect ratio L./L, = 1.8.

Fig. 3-4 shows three meridional sections. From Fig. 3-4(a,c¢), one can see

the density profile with a typical thermocline structure in a subtropical
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(e) N ll L 1 f)\ i\_l 1

Fig. 3-4. Meridional sections of a subtropical gyre (H=3km).

.8, ¢, e) Density profile at x=0, 0.5, 1.0 (sigma theta),

b, d, f) u-velocity profile at x=0, 0.5, 1.0 (in units of cm/sec).
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gyre: a buffer layer on the top with the seasonal thermocline, a mode water
Tayer with its thermostat ;nd the main thermocline underneath the mode water.
Below the main thermocline, density is almost homogeneous everywhere. From.
Fig. 3-4(b,d), one sees that the u-velocity is less than 2cm/sec below the
main thermocline, except in a small region below the northern/southern
boundaries. In principle, if we include more parameters in (7.5,6,7), we can
find a better solution with the u-velocity nearly zero aimost everywhere below
the main thermocline. Therefore, as one can see from the thermal wind
relation, the thermocline is the layer where the largest vertical velocity
shear is located. Above the main thermocline the horizontal velocity is fairly
barotropic. This result confirms the basic picture from a two-layer model with
the main thermocline as the interface. Of course, the three dimensional
picture here has a much richer structure.

Fig. 3-4(e,f) shows the structure on the eastern wall. For the harameters
we choose, the density surface p = 1.0275 levels off and below this interface
density surfaces tilt down northward. Because p. = O on the upper surface, u
< 0 within the top 600 meters and -|u|max= ~-.7cm/sec. Below the first
600 meters, u becomes positive. Thus the vertical integrated longitudinal mass
flux is near zero. If we add an eastern boundary current which allows
upwelling to return the'eastward mass flux in the lower layer to the westward
mass flux in the shallow layer, the u = O condition can be satisfied on the
real eastern wall. However, as we will see below, our solution is valid only
for the upper part of the ocean (depth < 300m on the eastern wall). This

leaves the eastern boundary condition slightly uncertain.
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Our model gives a continuocus field near the eastern wall. However, the
ideal fluid thermocline equation cannot describe the fiow within this narrow
eastern boundary current. To build a closed model, there should be an eastern
boundary current to transport the necessary water mass. Within this eastern
boundary current the upwelling/downwelling and diffusion are important. Of
course, different eastern boundary currents can return the flow at different
ievels and reshape the interior potential vorticity field. Therefore, the
interior thermocline and current structure depend on the eastern boundary
current structure.

From observations in both the North Atlantic Ocean and the North Pacific
Ocean, local wind forces an upwelling near the eastern boundary. By choosing a
sﬁall eastward flow at the eastern boundary on the upper surface (just below
the Ekman layer), our model can easily simulate this case. However, the
interior thermocline structure will remain basically the same.

Fig. 3-5 shows two longitudinal sections. The isopycnals slope westward.
Fig. 3-5(c, d) shows the velocity profiles. The wind-driven circulation should
end somewhere around w = 0 (actually, the w-velocity becomes as big as
3¢10°% cm/sec, though the number was not shown in these figures, in the
eastern abyssal layer). Compared with Fig. 3-4(b,d), the w = 0 interface here
is near the base of the main thermocline where the horizontal velocity is Tless
than 2cm/sec. Below this domain, density is aimost homogenized and water moves
very stowly. This is the region of the thermohaline circulation where the
horizontal and vertical diffusion terms might become important. The boundary
between the ideal fluid thermocline and the diffusive thermohaline is not well

defined. Considering that the upwelling velocity through the main thermociine
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Fig. 3-5. Longitudinal sections of a subtropical gyre (H = 3km).
a, b) Density profiles at sections y = 0.5, 0.25 (sigma theta).
¢, d) Velocity profiles at sections y = 0.5, 0,25.
v=velocity contours (heavy line) in units of cm/sec;
w-velocity contours (dashed line) in units of 0.0001 cm/sec and
at intervals of 0.000025 cm/sec. w>0000025 cm/sec in stippled

regions where the validity of the model is uncertain.
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is only one-tenth of the Ekman pumping velocity, we place this boundary
somewhere near w = 0.

Fig. 3-6 shows the flow structure on two density interfaces of the
ventilated thermocline, p = 1.0264,1.0268. In Fig. 3-6.a) water particles
enter the thermocline from the base of the mixed lTayer and move westward
toward the western boundary. Fig. 3-6.c) describes the corresponding case in
the northern part of the gyre. Water particles move eastward right after they
enter the thermocline, then they move along an anticyclonic path. Fig.
3-6(b,d) shows the corresponding layer depths of these two density interfaces.
The structure here is similar to the solution in the LPS model.

Fig. 3-7 shows two deep layers p = 1.0275, 1.028. Fig. 3-7(a,c) describes
complete particle trajectories; they come out of the western boundary and
follow an anticyclonic path until joining the western boundary again on the
southern basin. These two levels represent unventilated thermoc1ine'regions.
The LPS model does not produce this type of picture because it combines the
unventilated thermocline and the first moving layer into a single layer. In
the original LPS model only a small part of the circulation is ventilated by
the western boundary current. This case apparent in Fig. 3-6.¢) on the upper
part of the western boundary. OQur model also differs from Rhines and Young's
model because we do not require potential vorticity homogenization. The strong
upwelling/downwelling and diffusion within the western boundary current play
an important role in setting up the potential vorticity field for the
unventitated thermocline. In our model, this effect appears as specification
of the potential vorticity on the f]uﬁd flowing out of the western boundary
current. In this sense, the present model combines these two earlier models to

create a more consistent picture.
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(a) (b)

Fig. 3-6, Flow patterns on density surfaces Gg= 26.4 (a, b); 26.8 (¢, d).
a, ¢) Bernoulli function contours on G;é 26.4 (a): 26.8 (c).

b, d) Depth contours on §g= 26.4 (b); 26.8 (d) (in units of meter).
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Fig. 3-7. Flow patterns on density surfaces Gg= 27.5 (a, b); 28.0 (c, d).
= 27.5 (a); 28.0 (c).
b, d) Depth contours on &g= 27.5 (b); 28.0 (d).

a, c) Bernoulli function contours on G
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There is no shadow zone in the sense of a stagnant region in the present
solution. This is due to the way we treat the eastern boundary current. Both
the potential vorticity homogenization theory by Rhines and Young and the
ventilated theory by Luyten, Pedlosky and Stommel predict the existence of
shadow zone. There is also shadow zone in the generalized Parosns's model. In
the real oceans there are large, poorly ventilated regions in the eastern
basins. For continuously stratified model it is not clear whether a strict
shadow zone can be found. Our present example shows slow ventilation near the
eastern wall which is very similar to the numerical simulation by Cox and
Bryan (1983). |

Fig. 3-6(b,d) and 3-7(b,d) show the depths of these four density surfaces.
We can see how the deepest points of these density bowls move northward
compared to quasi-geostrophic model (northern intensification).

Fig. 3-8 shows how the horizontal velocity vector rotates verti¢a11y. Fig.
3-9 shows two examples of B-spirals in the southern basin. These B-spirals
have the same structure as those observed by Schott and Stommel (1978).
Counter-intuitively, u-velocity increases downward within the upper 300
meters, then it decreases. This phenomenon, which is quite appearent in Schott
and Stommel's data, also can be seen from the meridional velocity profiles in
Fig. 3-4{(b,d). It can be explained by the thermal wind relation

U, = gp,/f >0 for p, > 0.

Since within the southern basin u < 0, |u| increases downward. Within the
northern basin u > 0, so that |u| decreases downward monotonically.

We have shown all the velocity and density profiles. In addition, we can

also look at the potential vorticity field. As we pointed out earlier in this
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W E
Fig. 3-8. Vertical rotation patterns of the horizontal velocity

vector in the southern basin of a subtropical gyre.
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(a)

(b)

Fig. 3-9. Beta-spirals at two places. Numbers on curves are
depths in units of meter, velocity in units of cm/sec.

a) at x=0.72, y=0.20; b) x=0.72, y=0.38.
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chapter, there is a slight difference between our numerical examples and
Rhines and Young's theoretical model. Fig. 3-10 shows the corresponding
potential vorticity profiles along the western boundary and a longitudinal
section through the center. The potential vorticity profiles along the western
boundary are very similar to the picture calculated from data (Keffer, Rhines
and Holland, 1984). There is a bif Tow potential vorticity plateau in the
western side of the subtropical basin. However, in our case the potential
vorticity has not compietely been homogenized. This feature can be seen more
clearly from Fig. 3-11, in which potential vorticity isopleths are shown on
two density surfaces. Density surface oo = 27.5 corresponds to the middle
surface of the mode water region where the theoretically predicted Tow
potential vorticity plateau is located. Obviously, the potential vorticity and
its horizontal gradient here are much smailer than on the other density
surface oo = 27.0. However, the horizontal potential vorticity gradient is

not zero and has different signs within the subtropical basin. This means that
the corresponding flow field is possibly baroclinically unstable. This is a
real difference between the present model nad both Rhines and Young's model,
and Pedlosky and Young's model. In these two theoretical models they assﬁme
the potential vorticity is totally homogenized in order to make a simple
analytical model possible. The potential vorticity homogenization theory
depends on a very special form of diffusion and other assumptions. Their
models are very idealized. The real oceans, of course, do not behave in such a
simple way. The potential vorticity is not completely homogenized. The basin
flow field is baroclinically unstabie. There are meso-scale eddies moving
around the oceans. In a sense, our model gives a more realistic picture by

fitting the data with an increasing number of parameters.
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2) Subtropical/subpolar gyres.

Assuming the two-gyre basin covers roughly from 15°N to 75°N, we have

fo

[}

0.000103 /sec, B = 1.61«10""" /sec/m

and

Le = 6000 km, Ly, = wR/6 = 6600 km.

As in the first example, we choose a surface density distribution independent

of x

ps = 1.026+0.002y | - (7.8
The Ekman pumping velocity 1is

We = -.0001sin(2my) cm/sec (7.9)
For convenience, we impose ps on the western wall and move eastward. The
u-velocity on the western wall is a simpie sinusoidal form, and the
corresponding ps is calculated by integrating the velocity.

The function F(p,B) has the same general form as in (65, 66, 675, but the
parameters are slightly different.

Fig. 3-12 shows the horizontal velocity on the upper surface. There are
two gyres: the anticyclonic subtropical gyre and the cyclonic subpolar gyre.

Fig. 3-13 shows three meridional density and u-velocity profiles. Many
features compare well with observations from the North Atlantic Ocean, Fig.
3-14. There is a subtropical gyre with its bowl-shaped thermociine and a huge
volume of mode water. The northern basin has a subpolar gyre with its
dome-shaped isopycnals. There is isopycnal outcropping within the subpolar
gyre.

Because of the strong vertical shear of the horizontal velocity within the

subtropical gyre, there is not much flow below the main thermocline. In the
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Fig., 3-13. Meridional sections of a subtropical/subpolar gyre (H=2km).

a, c, e) Density profile at x=0, 0.5, 1.0 (sigma theta).

- b, d, f) u-velocity profile at x=0, 0.5, 1.0 (in units of cm/sec).
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subpolar basin the thermocline layer is very thin and shallow; therefore the
corresponding horizontal velocity is much more barotropic (Fig. 3-13(b.d,f)).
On the eastern wall most isopycnals are Tevel, and the u-velocity is very
small ( < 2cm/sec). Because in this case we start from the western boundary
with a very simple function form of F(p,B), we cannot expect our solution
would give the right detail near the eastern wall.

Fig. 3-15 shows the density and w-velocity profile on y = .76 (the central
latitude of the subpolar gyre). One can see how isopycnals slope down eastward
and that the w = 0 interface roughly corresponds to p = 1.02825 density
surface. However, the u-velocity is large on this w = O interface due to the
barotropicity of the subpolar gyre. How and where the thermocline solution
matches to the thermohaline circulation is not clear.

For the present case p = const. along the ZWCL, so there is no interaction
between the two gyres.

The corresponding potential vorticity section through the center of the
basin, Fig. 3-16, shows the same low potential vorticity plateau in the middle
of the subtropical basin. There is a high potential vortivity layer in the
subpolar basin. Comparing our model with the picture from data in the North
Pacific (Keffer, Rhines and Holland, 1984), there is similarity between them.
The high potential vorticity layer in the subpolar basin might represent the
sharp halocline in the North Pacific Ocean.OUr present example does not show a
low potential vorticity plateau below the surface layer. This is due to the
very simple functional form used for our two-gyre basin. One cannot expect to

simulate every details of the double gyre structure with such a simple

functional form.
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POTENTIAL VORTICITY ON X=.5 SECTION L1984,

THO-GYRE MODEL, WOARA
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Fig. 3-16, Potential vorticity contours {(in units of 10—13/cm/sec) along
a meridional section through the center of a two-gyre basin. The
prominent feature includes the potential vorticity pleateau in the
subtropical basin and the high potential vortivity layer in the

upper part of the subpolar basin.
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In a second case, ps 15 a function of both x and y. Starting from the
western boundary, the distribution of ps can be easierly calculated along
the ps = constant lines. Fig. 3-17.a) shows the surface density
distributibn. Fig. 3-17(b,c) shows the density profiles on sections y = .76
and along the eastern wall (x = 1). One can see how the isopycnals outcrop
within the subpolar gyre. Our model gives a structure very similar to the
observations in the North Atlantic Ocean (Fig. 3-18).

Fig. 3-19 show the B-contours and depth of the p = 1.0274 surface. The
present case does not have much water mass exchange across the ZWCL, so these
two gyres are still fairly independent. There is a anticyclonic gyre in the
subtropical basin, as described above. Hithin the subpolar gyre, water comes
out of the western boundary current and turns northward, following a cyclonic
path until it hits the outcropping line. This figure gives a complete physical
realization of the abstract ideal concerning the unventilated thermocline and
the potential vorticity field discussed in Section 6. Looking at this figure,
one can see the role of the western boundary current in setting up the entire
deep circulation. As pointed in Section 6, in a subpolar gyre, water particles
move even before the corresponding layer outcrops.

Combining these figures with Fig. 3-6 yields a unified picture, Fig. 3-20,
describing how water particles move within a two-gyre basin. In the subpolar
gyre, the Ekman suction picks up water from below the mixed layer and the
Ekman transport moves these water partic1es southward across the ZWCL into the
subtropical gyre. In this process, air-sea interaction modifies the water
properties. In the subtropical gyre the convergent Ekman flux pushes water

down into the interior ocean. After entering the anticyclonic gyre there,
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Fig. 3-17. Subtropical/subbolar gyre with surface density depended

on x and y: a) surface density profile; b) demsity profile at

¥y=0.,76 section; c) density profile at x=1.0 section.
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Boundary Basin

Current
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Fig. 3-20. Water mass transport pattern within a subtropical/
subpolar basin.

A, B are streamlines of the directly ventilated
thermocline.

C, D are streamlines of the non-directly ventilated
thermocline.
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water particles move toward the western boundary, where they are transported
northward. Along the western boundary (and part of the northern outcropping
Zone) air-sea interactibn modifies the water properties again. Part of the
western boundary current comes back to the subtropical gyre and becomes water
in the recirculation layers (mode water). Some part of this goes into the
subpolar basin (required by the mass balance), mixing with the
southward-moving western boundary current of the subpolar gyre, and joins the
cyclonic circulation. The upper part of the water mass in this cyclonic
circulation will be picked up by the Ekman suction. The whoie cycle is
repeated again and again.

Of course, the above dynamical picture is an idealized case. In the real
ocean the diffusion, eddy activity and déep water formation affect the total
picture.

In a sense, the present model describes similar circulation patferns for
both the subtropical and subpolar gyres. At least within our GFD model for a
two-gyre basin the circulation in subpolar gyre seems a reverse for the
subtropical gyre. In the subtropical gyre water is pumped down from the mixed
Tayer and transported along downward anticyclonic paths; while water in the
subpolar gyre is transported along upward cyclonic paths and sucked up by the
mixed layer. At the same time, we notice the remarkable difference between
these two gyres, namely the bowl-shaped thermocline in the subtropical gyre
and the dome-shaped thermociine in the subpolar gyre.

Fig. 3-21 shows a case with a slightly different surface density pattern,
but here there is water mass exchange across the ZWCL as shown in Fig. 3-21a).
Some water particles leave the western boundary current of the subpolar gyre,

flow southward and join the subtropical gyre circulation.
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We were not able to build a complete picture of a first baroclinic mode of
water mass exchange across the ZWCL. Possibly the interfacial friction is
essential for the existence of these baroclinic modes. Generally, layer models
with density discontinuities at interfaces imply a kind of friction that makes

the baroclinic mode possible. Further study is needed to find a solution for

this problem.
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8. Conclusions

For a long time, two theories about the thermocline and water mass
formation have competed. Sverdrup et al's classic book, "The Oceans" presents
both of them. The first theory explains the thermocline as the result of a
diffusion process caused by the cold abyssal water upwelling through the main
thermocline. The second theory describes the thermocline as the fesu]t of
surface ventilation of an essentially ideal fluid. There is general agreement
that diffusion is important in the thermal balance of the ocean. However, the
ideal fluid approach can aiso give a very simple and clear picture for the
oceans. Indeed, the analytical similarity solutions for the ideal fluid
approach are basically the same as the similarity solutions for a diffusive
model. Thus, the real question is how far the ideal fluid thermocline model
can go in explaining the observed thermocline structure. Welander's solution
was the first attempt; that solution, however, does not satisfy the important
Ekman pumping condition.

The present modei, with appropriate choice of F, produces
three-dimensional thermociine and curvent structures in a continuously
stratified wind-driven ocean which are quite realistic. (The deep velocities
and inflows into the eastern boundary region were not dynamically specified
and may not be realistic.) First, our solutions satisfy two essential upper
boundary conditions and a homogeneous density condition in the abyssal layer.
This is a big improvement compared with Welander's solution. As a result, our
model can produce not only realistic basin-wide density structure, but also a

reasonable three-dimensional velocity field. For example, we produce B-spirals
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which are very similar to observations in the oceans. In a sense, our model
presents a simple way of generating a three-dimensional wind-driven
circulation in a continuousiy stratified ocean which can be very useful for
the general study of the oceans.

Second, our model advances the ideal fluid thermocline theory to a higher
level. By appropriate choice of potential vorticity functional forms, we have
demonstrated that this model can reproduce the main feature of the
thermocline, such as the seasonal thermocline, the mode water region, the main
thermocline, and the homcgeneous abyssal water. Furthermore, cur model can
reconstruct the potential vorticity field, for example the low potential
vorticity plateau, fairly successfully. At the same time, the present model
also gives another possible explanation for the origin of the potential
vorticity plateau -- it may be produced by the outflow from the western
boundary layer.

Two major problems in this model are treating the boundary conditions and
finding the potential vorticity functional forms.

Presently, neither the western nor the eastern boundary conditions can be
satisfied by an ideal fluid thermocline model with continuous stratification.
OQur model only applies to the interior domain away from both the western and
the eastern boundaries. In applying this model to the real oceans, we propose
the existence of western and eastern boundary currents that can build up the
corresponding potential vorticity field and return the mass flux at the right
latitude and depths. Consequently, the validity of our solution depends on

whether there are such boundary currents and how one can really construct them.
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Although we do not include these boundary currents in our model, their
dynamical roles in this model are very important. As seen from the thermal
structure on the western wall, the isopycnals slope down southward. Therefore,
to have a mass balance of the entire basin, there should be upwelling and
cooling within the western boundary region to set the water properties
required by the input condition on the western boundary for the ideal fluid
thermocline problem. Here the vertical diffusion is dynamically essential. In
this sense, water particles within the upper ventilated layer are subjected to
strong diffusion in the western boundary current region for each cycle around
the gyre.

The eastern boundary current plays a role similar to the western boundary
current. Because the zonal flow velocity near the eastern wall is much less
than near the western wall, the dynamical role of the eastern boundary current
in determining the entire gyre structure is less important than the western
boundary current.

The Tower boundary condition for the ideal fluid thermocline also remains
an open question. No solution for a continuously stratified ocean has been
found that satisfies w = O on the bottom. Our model treats the lower boundary
condition by using solutions in which p becomes asymptotically constant and
horizontal velocity becomes relatively small in the abyssal region. In
principle, by using more complicated functional forms and carefully choosing
parameters, one might be able to satisfy the lower boundary condition more
convincingly. Since we are yet not sure whether the ideal fluid thermocline
theory can apply to the deep ocean, we choose to terminate our solution

somewhere below the w = O interface. Our present knowledge about the deep
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circulation is rather poor, and hence we propose that some kind of diffusivé
thermocline (or thermohaline) solution can be matched with our solution near
this interface.

Imposing the functional form of F(p,B) is a rather qd-hoc way of solving
the thermocliine problem. Actually, the interior potential vorticity field can
not be determined without knowing the entire gyre structure, especially the
western/eastern boundary currents and the outcropping zone near the northwest
corner where the strong air-sea interaction and diffusion modify the water
mass property. According to the model, we need the sea-surface density, the
Ekman pumping velocity, and the sea-surface pressure on part of the boundary.
By specifying ps(0, y) or ps(1, y), one imposes information about the
property of water that moves into (or out of) the domain from the
western/eastern boundary. However, the corresponding thermocline structure
problem is still highly underdetermined. By specifying F, we pick one solution
from an infinite number of solutions. In this sense, the ideal fluid
thermocline problem can be only an incomplete idealization of the observed
thermocline structure. The real structure in a basin is also determined by the
upwelling/downwelling and the diffusive process in the western/eastern
boundaries and the abyssal circulation. The input from the western/eastern
boundary currents determines the interior potential vorticity distribution and
the gyre structure.

In this model, we define a ventilation ratio V.=BL,/f, as the ratio of
the ventilated thermocline depth to the entire thermocline depth. The fact
that v.~0.3-0.5 For the subtropical gyres in both the North Atlantic Ocean
and the North Pacific Ocean implies that there are big unventilated water

pools in both of these oceans below the directly wind-driven ventilated layer.
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In addition, we have clarified the existence of mass flux across the ZWCL.
For a general case, there will be water mass exchange across the ZWCL, uniting
the two gyres into a singie body. Only if on the northern and southern
boundaries the ZWCLs are constant density lines, will there be no water mass
exchange (within the limitation of the ideal fluid thermocline theory, as
presented above); hence the subtropical gyre can be studied as a single gyre.
Note that even in such & special case there can be cross-gyre interactions,
such as the Ekman flux and the western bouhdary or interior boundary currents.
For general cases, information is needed wherever fluid moves into (or out of)
the domain through the lateral boundaries.

In summary, the examples shown in this chapter demonstrate the power of
the model. Although, this model gives some realistic feature, there are major
deficiencies:

1) The potential vorticity field is specified in an ad-hoc way.'

2) The model does not satisfy the eastern boundary condition.

3) The lower boundary condition is treated in an asymptotical way which
needs further careful examination.

4) The mixed layer is not included in the model.

5) There is neither friction nor time dependence.

Further study on these topics seems very interesting and important.
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Addendum to Part II

Mathematical Background

Abstract

Using the standard mathematical theory for classifying partial
differential equation systems, various forms of the thermocline eguation
systems are analyzed. The ideal fluid thermociine equation is a nonlinear
non-strict hyperbolic system. This system has one single real characteristic
and one triple real characteristic. The single characteristic is bidirectional
(reversible). No well-posed boundary value problem has been proved. A proper

way to deal with a reasonabie boundary value problem is proposed.
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1. Introduction

For a long time people have been trying to find a correct formulation of a
boundary value problem for the thermocline structure. Welander (1971a)
suggested that a general formulation of the boundary conditions for the ideal
 fluid thermocline equations should be:

P = ps, W =W, at z =20

w=20 at z = -H (1.5

Recently Luyten, Pedlosky and Stommel (1983), based on physical
intuitions, have suggested a slightly different way:

specify p = p; only where w, < O (1.2

Killworth (1983) argues that this means the equation system should be a
hyperbolic system. In this Addendum we try to examine this problem from the
standard theoretical point of view of partial differential equations. Our
notations are based on the standérd form in Courant's "Partial Differential
Equations".

In fluid dynamics there are many problems involving first-order partial
differential equation systems with 3 to 6 equations. These high-order partial
differential equation systems have many strange properties, compared with the
more straightforward classical results for second-order partial differential
equations.

For second order partial differential equations, there is a standard way
of classification, described in Courant and Hilbert (1962). From the original

system, one derives the characteristic form of a second order partial
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differential equation in two independent variables. If there is no real
solution to the characteristic form, it is an elliptic differential equation.
If there is one real double solution to the characteristic form, it is a
parabolic differential equation. If there are two distinct real solutions, it
is a hyperbolic differential equation. Because equations of different types
have quite different properties, the classification of an equation is the
first step in studying the corresponding boundary value problems for that
equation.

The properties of a second-order hyperbolic differential equation, such as
characteristics, domain of influence, domain of dependence and the Cauchy
problems (or the initial value problem) are well known. Generally, a
hyperbblic gquation has more than one characteristic. Some information (in
some cases, physically conserved quantities) is carried along with these
characteristics. There may be discontinuities across these characteristics.
Characteristics are unidirectional. In the corresponding physical (or
mathematicai) system, there is a kind of dissipation (or entropy) which makes
the systems (and the directions of these characteristics) irreversible.

However, the classification of higher order partial differential equation
systems is much more complicated. The corresponding characteristic forms are
generally high order algebraic equations in the partial derivatives of the
characteristic surfaces. If all roots are complex, we have an eiliptic
equation system. If all roots are real and distinct, we have a so-called
complete hyperbolic equation system. A high-order complete hyperbolic equation
system has basically the same properties as the classical second-order

hyperbolic equation. However, there are many strange types of equation systems
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which fall in between these two types. For example, some equation systems have
all characteristics real, but some of these characteristics are muitiple
roots. This kind of system is called a non-strict hyperbolic system.

The ideal fluid thermocline equation belongs to the non-strict hyperbolic
system because this system has a single characteristic and a real triple
characteristic. The mathematical properties for this equation system are still
largely unknown. The analysis in this chapter suggests that the single
characteristic of this eguation is reversible. A corresponding way to
formulate a boundary value problem is proposed. There are two interesting
points: 1) One can specify ps even in the upwelling region and find the
corresponding solution; 2) Density data is needed wherever water particles
move into (or out of) the domain under study.

A general discussion of several other formulations of the thermocline
problem also reveals interesting points concerning with the classification of

equation systems and the existence of generalized solutions.
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2. Basic Equations

For simplicity we use the B-plane approximation. The spherical geometry
modifies only the equations slightly. For a steady thermocline problem with

only the vertical diffusion taken into consideration, the basic equations are:

Ux+Vy+W, =0
Upx+Vpy+Wp: = Kp..
UUx+VUy +WU, + P = Fv (2.1
UV +VV +WV, + p, = -fu
UW,+VW, +WW, + DP. = —pg
where
P =( Prortar+pod2)/po
p={prorari= pol/po (2.2)

po is the reference density
f = fq + By is the Coriclis parameter

We introduce the non-dimensional variables by the following relations:

(x,y) = L(x',y"), z = DZ'
(u,v) = Utu',v", W = SUw'
p = follp' (2.3)
p = folli/gDep’
f = Fof'
where
§ = D/L is the aspect ratio (2.4
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The equation system then can be written, after dropping primes, as:
Ug+tVy+W, = O

Up+Vpy+Wpz = Ap::

e(UUy e+ VUy+ WU:) + Py = fv (2.5)
e(UV,.+ VW + WV) + py, = -fu
8%e(UWy+ VW + WW,) + P, = —p

where
g = U/fL << 1
A = KL/D?U << 1 (2.6
§ = D/L << 1

are small parameters.

3. The Ideal Fluid Thermocline

Now put X = 0 into (2.5), but at present keep the advection terms.
However, to distinguish terms resulting from each of the nonlinear convection
terms we introduce the following factors

£1,e2,62 which will take the values 0 or g, (3.1
and rewrite (2.5) as

Uet Vy+t Wy = 0

Upx+ Ypy+ Wp, = 0

g1 (UUL+ VU + WU) + Dy

fv (3.2)
g2 (UV. .+ VW + WVv,) + p, = -fu
§%c;(UW.+ VW, + WW.) + D, = —p

Using the matrix notation, equations (3.2) can be written as a single matrix

equation

156



AF.+ BF,+CF, = G (3.3
where

1 0 0 0 0 u
0 0 0 u v

A=leu 0 0 10, F=lwl,
0 g0 0 0 0 P
0 0 e38%u 0 0 P
0 | 0 0 0 0
0 0 0 0 v 0

B=lev 0 0 0 |, G =] fv [,
0 v 0 1 0 -fu
0 0 e3:8%v 0 0 -p (3.4)
0 0 1 0 0
0 0 0 0 W

C=lew 0 0 0 0
0 gaW 0 o 0

0 0  g38%w 1 0
The characteristic manifolds of this matrix equation are défined by the
following equation
|Ad, +Bd,+Cd, | = 0 (3.5)

or

;40 O %. 0 =0 (3.6}
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where

A= ud+ vl + wh, : (3.7
With simple algebra, equation (3.6) becomes

A°[es62(e,0% 4,02 +e,6,82] = 0 (3.8)
which determines the characteristic manifolds &(x,y,z) = 0 of the original
equation system (3.2).

As discussed in the introduction, the characteristic manifolds of an
equation system are useful for classifying the equation system} A manifold'in
three-dimensional space can be either a two-parameter surface or a
one-parameter curve. If a characteristic is real and single, one can find a
quantity that is conserved along this line, and across this 1ine there may be
discontinuities in the solution. If the characteristic manifolds are complex,
the original equation system generally has properties similar to the classical
efliptic differential equation.

1) Assuming e¢; = 0, we have the hydrostatic approximation, but keep the
nonlinear convection terms €, = ¢, = ¢ # 0. Thus the characteristic
gquation becomes

e*d3a® = 0 (3.9
The second factor A* = (ud.+vd,+wd.)*® = 0 means that a
streamline is a triple characteristic line. Along a streamline the density p,
potential vorticity, and Bernoulli function are conserved. The fact that a
streamline is a triple characteristic seems unrelevant to the fact that there
are three conserved quantities along a streamline. As will be shown below, a
streamline is a single characteristic for the ideal fluid thermocliine

equation; nevertheless, there are the same conserved quantities along a
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streamline. The first factor ®2 = 0 means that the z-axis is a double
characteristic. The proper formulation of a weli-posed boundary value probliem
is not clear for this nonlinear non-strict hyperbolic system.

For the traditional ideal fluid thermocline, the nonlinear convection
terms are neglected. Thus €, = €, = 0, and we have a degenerate system. To
find the corresponding characteristic manifolds, we have to eliminate an extra
equation and get a non-degenerate system. We will discuss this matter below.

2) If we keep ¢z = ¢ # 0, then the characteristic equation becomes

e?A’[6%(02+02) +02] = 0 (3.10)
The first factor A* = 0 has the same meaning as before, but now we have a
new factor:

52(¢i+¢§) + 2 =0 (3.1
which has no real characteristic solution; thus it is a compiex characteristic
manifold making the corresponding equation system.a hyperbo]ic—e11ipt1c
composite type system. There are many examples of hyperbolic-elliptic
composite type systems in fluid dynamics, but the corresponding mathematical
theory is a relatively new research area for mathematicians. Some Russian
mathematicians are active in this field now (Dzhuraev and Baimenov, 1980;
Nurubloev, 1981; Sergienko, 1982), but there is no theory yet available for
the well-posedness of the boundary value problem for this hyperbolic-elliptic
composite type system.

3) Case with e, = €5 = €3 = ¢ = 0, the classical ideal fluid
thermocline. As discussed above, equation system (3.2) becomes a degenerate
system in this case. To get a non-degenerate system, we can use fhe

hydrostatic relation to eliminate the pressure. Then the original equation
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system can be rewritten as
Ut Vy+ W, =0
Upx+ Vpy+ Wpz = 0
v, + px =0 (3.12)
fu, -py, =0

which can be put in a matrix form again

AF.+ BF,+ CF, = 0 (3.13
where
1T 0 0 O 0 1 0 0O 0 0 1 0 u
0 0 0 u 0 0 0 v 0 0 0 w v
A={0 0 0 1], B=1]10 0 O d , C=10 f 0 0}, F=|w (3.14)

0 0 00 0 0 0-1 f 000 p

Using the same procedure as above, the characteristic equation of equation
(3.13) is |

| Ad,+ Bd,+ CO,| = 0 (3.15)
or

20 (U, +vD +wd,) = O (3.1

From (3.16) factor ud,.+vd,+wd. = 0 means that a streamiine
dx/u = dy/v = dz/w = dt is a characteristic and $: = 0 means the z-axis
is a triple characteristic. The equation system for the ideal fluid
thermociine is a non-strict hyperbolic system. (General references on
non-strict hyperbolic systems, see Carasso and Stone, 1975; Bear, 1972.) Due
to its nonlinearity and the special boundary conditions for a whole basin, the
formutation of a well-posed problem is not yet clear. However, the discussion

of a linearized model equation system in Appendix A suggests useful

information.
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Suppose we have a box far away from any solid boundary, and u, v, w do not
change signs within this box. One appropriate boundary value problem for

equation system (3.12) is then

BVP - A

p = X,y on z = 1

p = p2(X,2) ony=20

p = p3ly,2) on x =0 (3.17)

Po = PolX,¥), W= w(X,y) on z=1

where we assume that u,v > 0 and w < 0 for the whole box (or for general
cases, u, v, w do neither change sign nor become zero; this assumption should
be checked after the whole solution has been found). By marching downward from
z=11t02z =20 step by step, the whole solution can be easily found. This
equation system has almost the same properties as the model equation system in
Appendix A. This boundary value problem is well posed. It is not clear whether
we can pose the second boundary value problem BVYP-B as in Appendix A.

Actually, the physical meaning of this boundary vailue problem is not very
ciear. First, no traditional oceanographic measurement can give accurate sea
surface pressure distribution within a few cruises. Second, this formulation
is valid only if u, v, w do not change sign within the entire box. Therefore,
it does not apply to an entire basin because u must change sign in a closed
basin. In such cases we do not know where to input the lateral density data
before we know the whole solution. Furthermore, it does not apply to the case
where a ZWCL is inside the upper surface of the box. This cdse involves
different signs for both v and w, so that it is difficult to use this
approach. Thus BVP-A has only a mathematical meaning. A practical way of

salving the ideal fluid thermocline probiem has been discussed in Chapter III.
161



By introducing a function M{(x,y,z) (Welander, 1959

g = _Mzz
u= —sz/f, v = M, /f (3.18
W= MHB/F?

a single equation follows

Mo Moo ntM M, B/ FOM M, ., = 0 (3.19
As Killworth points out, (3.19) is unchanged under the following transformation

X +» -X (3.20)
Notice that the western boundary becomes an eastern boundary. Thus both the
eastern and western boundaries have a similar role in a boundary value problem
for the ideal fluid thermocline.

Another interesting property of this equation is that the characteristic p
= const. has no preferable direction. One can go backward along a streamline.
For most ordinary complete hyperbolic equations, there can be some strong
discontinuities and dissipation in the solution; generally the characteristics
are not reversible. The ideal fluid thermocline has, however, no dissipation
at all. Therefore, density data can be given at either end of a streamiine.

We can explain this strange property in two ways:

Firstly, one can pose a boundary value problem similar to BVP-A;

BVP-A':

p = p {x,y) on z =20

p = p2(X,2) on y =1

p = paly,2) on x = 1 (3.21
p = PolX,y), w = wix,y) onz =20

where we assume that u,v > 0, w ¢ 0 for the whole box. By marching upward

from z = 0 to z = 1, the entire solution is easy to find.
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If one knows all the necessary data somehow, both approaches, BVP-A and

BVP-A', are equivalent mathematically.

Secondly, (3.19) is unchanged under the following transformation

X x', y>-y',zs-2',0+»-0 (3.22)
Now u' = -u, v' = =v, w' = -w and the streamline in the new coordinates is
dx'/u' = dy'/v' = dz2'/w' = dt' (3.23)

For dt' < 0, the corresponding water particle moves backward along the
streamline compared with the original case. This transformation (3.22) puts
the eastern/western boundaries, the northern/southern boundaries and the
upper/lower boundaries for the ideal fluid thermocline equation in more
equivalent positions.

In trying to formulate the appropriate boundary value problem for a whole
basin, the following arguments are important:

a) A streamlines is a single characteristic for the equation system. Along
a streamiine the density, potential vorticity, and the Bernoulli function are
constant. The fact that a single characteristic carries three conserved
quantities seems quite different from the classic situation for hyperbolic
systems. This might be special property for non-strict hyperbolic system.
Across a streamline there may be weak discontinuities in the solution (some
derivatives, such as the gradients of velocity, density or potential
vorticity, may have jumps). The most important thing is that we must specify
the density p wherever the fluid moves into (or out of) the domain.

b) The western boundary condition. We must specify the density where the
fluid joins the interior ocean, so that the ideal fluid thermocline problem

cannot be solved without knowing the structure of the western boundary
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current. In this sense, the so-called ideal fluid thermocline cannot be
studied in isolation. Attempts have been made to solve this problem since its
formulation by Welander, but his model, though simple and interesting, does
not apply to the entire basin. The equation system must contain friction terms
to satisfy the appropriate boundary conditions for a whole basin.

The eastern boundary condition has the same kind of role as the western
boundary condition.

¢) The upper and bottom conditions. It is not surprising to find out that
we need three boundary conditions on the upper surface to start the
integration. According to the previous argument, we have to specify p where
we < 0, even if wg > 0, we can specify p on the surface and trace back
along a streaﬁline. The boundary value problem BVP-A seems difficult to apply
to the real ocean. Specifying w = 0 on the bottom may release one boundary
condition on the sea surface; however, it seems difficult to find a solution
which satisfies w = 0 on the bottom. If one specifies p on the bottom in order
to release another sea surface boundary condition, w would not be zero on the
bottom. Thus the best procedure may be not specifying the lower boundary
condition.

d) Other lateral boundary conditions. Suppose the northern and southern
boundaries are the ZWCLs. According to Sverdrup dynamics, the vertical
integrated north-south mass fiux across these boundaries is zero for the
interior ocean. This does not mean, however, there is no baroclinic mode. In
fact, we find baroclinic modes across the northern ZWCL in the two-layer model
(See Chapters I and II). In such cases, we must specify the density where
fluid moves into (or out of) our domain. The same difficulty arises: we don't

know where to specify boundary conditions before we solve the whole problem.
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4. The Thermocline Problem with Vertical Diffusion

Assuming that €= ¢, = €3 = ¢ = 0, we can use the hydrostatic
relation to eliminate the pressure. By introducing a new function h = p,, we
can convert the basic eguation system (2.5) into a first order partial
differential equation system

Ut Vy+ W, = 0

Upx+ Vpy+ Wp. - Kh, = 0

pz = h 7 4.1
fv: + px =0
fu; - py =0

This system can be written as a 31ngIé matrix equation

AF,+ BF,+ CF, = G (4.2)
After simple manipulations, the characteristic equation is found to be

Kf2g: = 0 _ (4.3
Thus a streamline is no longer a characteristic and there is no conserved
quality along a streamiine. Now & = 0 is a fivefold root. No

well-posed boundary value problem has been discussed for this equation system.

5. The Existence of the Solution for a Steady Thermocline
with Diffusion
The existence of the solution for a steady thermocline model with both
‘vertical and horizontal diffusions taken into account Has recently been
proved. Using the functional analysis in the Sobolev spaces W3 and
Wy, Kordzadze (1979) proves the theorem on the existence of a generalized

solution u, v, p, p € WZ and w & W}.
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Consider an ocean basin Q of constant depth H with lateral surface ¢ and

boundary S. The basic equation system for the thermocline can be written as

AU + vUz. + TV = pe/po + diviuw

pAv + w.,. - fu = py/pe + divivuw)

0 = -p. -pg (5.1
diviu) = 0
Midp + vipaz = diviup)
u={u, v, w
with the boundary conditions

u:

Folx,y), v = F2(x,y), p. = F2lx,y), w=0 at z =0
pz = 0, U=v=w=20 at z = -H (5.2)

u=v=20, op

fa(z,3) on o
where f,,f,,fs,f4 are given functions with continuous first

derivatives.

THEOREM (Kordzadze): There is at least one solution for the equation system
(5.1) with boundary conditions (5.2).

Here, by "solution", we mean a generalized solution in the Sobolev spaces
u,v,p, p € Wi and w & Wi. (By definition, Wy is a Hilbert space
defined by the norm || F [l = |grad®F{'7*, W is a Hilbert
space defined by a norm || F ff,a =C| F {I,, +lgrad®FP"7*). (See
Richtmyer (1978).) By definition, a function in W space is a function
whose first derivatives are square-integrable and a convergent functional
series in Wy space is convergent according to the norm
lgrad®F|'7%. A function in Wi space is a functioﬁ which is

square-integrable and has square-integrable first derivatives. A convergent
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functional series in W2 space has convergent zero-order and first order
derivatives (in square-integration sense).

Physically, Kordzadze's'theorem guarantees that for given upper-surface
wind stress (f, and f,), heat flux (fi) and density on the lateral
surface (f4), there is at least one generalized solution that has
square-integrable first derivatives. (For oceanographic application,
specifying a no-heat flux lateral boundary condition seems more realistic than
specifying density on‘the lateral surface). The difference between W; and
Wi is the way in which functional series converge. Roughly, if one used a
first-order finite element method to solve (5.1) numerically, the solution
would belong to W3 space.

It would be interesting to find a similar theorem for the ideal fluid
thermocline equation. However, no proper way of formuiating a boundary value
problem has been discovered.

The above theorem guarantees the existence of the generalized solution,
but the uniqueness of the solution is far more complicated. Actually, there
may be more than one solution for the same given boundary conditions. In the
case of the ideal fluid thermocline with no diffusion or with weak diffusion,

there are examples of multiple solutions.

6. Conclusions
Though nonlinearity and other mathematical properties prevent us from
attaining strict proof, the above analysis strongly suggests the following:
The ideal fluid thermocline cannot be solved in isolation. The

corrasponding partial differential equation system is a noniinear, non-strict
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hyperbolic system with streamiines as its characteristics and the z-axis as a
triple characteristic. Along every streamline the density, the potential
vorticity, and the Bernoulli function are conserved. To solve the thermocline
problem density data are required wherever water moves into (or out of) the
domain of interest.

On the western (or eastern) boundary, density has to be specified where
water comes into (or goes out of) the interior ocean.

On the northern/southern boundaries density data are required wherever
water moves into (or out of) the domain under study. Even if the
northern/southern boundaries are the ZWCL, there can be some baroclini¢ modes
of water mass exchange across these boundaries; thus the density data are

required for solving the ideal fluid thermociine problem for the interior

ocean.

In other words, the ideal fluid thermocline problem cannot be sdlved'

without knowing the western/eastern boundary current structures and the entire

basin circulation.
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Appendix A. A Linearized Model Equation for the Ideal

Fluid Thermociine

It is fairly easy to examine the local behavior of the ideal fluid
thermocliine equations. Putting u = a, v = b, w = ¢ into the second equation of
(3.12) and assuming f is a constant, we obtain an analogous equation system

which is considerably simpler:

Uet Vot Wy = O (A-1)
ap.+ bpy+ cp. = 0 (A-2)
fv.+ px = 0 (A-3)
fu, - py =0 (A~4)

The corresponding characteristic equation is

(ad,+bd +cd. D] = 0 (A-5)
The first factor means that the straight line dx/a = dy/b = dz/c is a
characteristic. Actually, it is easy to see that equation (A-2) is a statement
that p is conserved along lines dx/a = dy/b = dz/c.

Consider the appropriate boundary value problem for this model equation
system. Within a box in a subtropical gyre a > 0, b > 0 and ¢ ¢ 0. For a cubic
volume [ 0= x=1,0=y<=1, 0<2<1 1, the following boundary value

problems are well posed:

A) BVP-A:
1) p=pi(x,y) onz=1.
p = p2{x,2) ony=20
p=paly,2) on x =0 (A-6)

2) u, v can be specified either on z= 0 or z= 1, but we can not specify u

on both z =0 and z = 1 (can nor specify vonz =20, 1).
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3) w can be specified either on 2z

0orz=1.

The solution is very simple:

i) Using p = const. along dx/a

i

dy/b = dz/c and the boundary
conditions for p, the distribution of p in the whole volume is obtained.
ii) From (A-3) and (A-4)

v

Vo - J21 px/f dz (A-7)

u

L]

Uo + fz2 py/f dz (A-8)
where vg = vo(X,¥,21), Uo = Uo(X,y,22) and z,,z, are the
places where we specify v, u.
iii) From (A-1)
W= Wo— [z3{Uy+vy)d2 (A-9)

where z3 = 0 or 1, wo = w(X,y,22).

Obviously, this boundary value problem is well posed. It is important to
notice that we do not have to specify more data on lateral surfaces x = 0, 1;

y =0, 1 ; the solution (u, v, w) gives the corresponding value on these

surfaces.
B> BVP-B:
e =rpix,y on z =1
p = p2(x,2) on y =20 (A-10)
p = paly,2) on x =20
2} v = v (X,y) on 2z =] (A-112
3D W= welx,y) ' on z =0
W= w;{x,y) on z =1 (A-12)
4) U = Uo(y) on x =0, z =1 (A-13)

Using the characteristic dx/a = dy/b = dz/c and the boundary conditions for p,
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we find out p = p(x,y,z). From equations (A-8) and (A-9)

W= wai+(Uy 4V, 2 (1-2) (A-14)
Now boundary condition (A-12) gives

Ui x= Wo= Wi~ Vi (A-15)
which can be calculated from data. Afterward, u, is obtained from

Ur= U70€0,y,0) + J35 Uy, dx (A-16)

and u, v can be calculated from

U= U= §l py/f dz (A<17)

v

Vi+ o opu/F dz (A-18)

This boundary value problem is well posed.

Lemma A. Both BVP-A and BVP-B are well posed.
Proof:

The existence of the solutions has been proved by actually constructing
solutions in integration forms.

The stability of the solutions is guaranteed if the input density data is
smooth enough, i.e., if Solpx|dz < @ and f3|py| dz
¢ @,

Because (A-1,2,3,4) is a linear system, to prove the uniqueness of the
solutions, one must prove that if input data is all zero, there is only a
null solution. Now p = 0, therefore u and v are independent of z.
Differentiating (A-1) with z

Wez =0 OF W=a+ bz

For BVP-A, w, is constant. However, u S v=0o0nz=0(o0or z = 1).

Hence w, = 0, since w=0onz =0 {or z = 1), thus w = 0.
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For BVYP-B, w =0 on z = 0, 1, and therefore a and b are both zero. Hence

0.

=z
1l

u

)

Q.E.D.

For this equation system, there also can be discontinuities. For example,
p can have a discontinuity in its first-order derivatives. According to the
theory of characteristics, the characteristics can be the interface between
solutions which have quite different analytical structures. When we cross a
characteristic manifold, there may be jump in the solution.

This model equation shows the reversibility of its characteristic clearly.
If density data is givenon x =1, y =1, z = 0 surfaces, the interior density
field can be found by conservation law along the characteristic, the same as

before.

For the calculation of the velocity field, one can specify v = vo(X,y)

on z=0and u = Ugoly) On x = 0, 2 = 0. The corresponding solution is

calculated by integrating upward.
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