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S U M M A R Y
In recent years, marine controlled source electromagnetics (CSEM) has found increasing use
in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor.
Although it must be recognized that the quantitative interpretation of marine CSEM data over
petroleum-bearing formations will typically require 2-D surveys and 2-D or 3-D modelling, the
use of the 1-D approximation is useful under some circumstances and provides considerable
insight into the physics of marine CSEM. It is the purpose of this paper to thoroughly explore
the 1-D solutions for all four fundamental source types—vertical and horizontal, electric and
magnetic dipole (VED, HED, VMD and HMD)—using a set of canonical reservoir models that
encompass brine to weak to strong hydrocarbon types. The paper introduces the formalism
to solve the Maxwell equations for a 1-D structure in terms of independent and unique
toroidal and poloidal magnetic modes that circumscribe the salient diffusion physics. Green’s
functions for the two modes from which solutions for arbitrary source current distributions
can be constructed are derived and used to obtain the electromagnetic (EM) fields produced
by finite VED, HED, VMD and HMD sources overlying an arbitrary 1-D electrical structure.
Field behaviour is analysed using the Poynting vector that represents the time-averaged flow of
energy through the structure and a polarization ellipse decomposition of the triaxial seafloor
EM field that is a complete field description. The behaviour of the two EM modes using
unimodal VED and VMD sources is presented. The paper closes by extending these results to
the bimodal HED and HMD sources.
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1 I N T RO D U C T I O N

The theory of propagation for ELF/SLF (<300 Hz) electromagnetic (EM) fields through, under and over the ocean from a submerged source
has been investigated for more than fifty years as a means for communication, underwater detection and geophysical exploration (e.g. Mott
& Biggs 1963; Bannister 1968; Chave et al. 1990). Pioneering measurements by Cox et al. (1978) showed that the natural background noise
in the electric field at frequencies around 1 Hz is extremely low (∼1 pV m–1), suggesting that the weak fields induced within Earth by a
near-seafloor artificial source could be detected at large (many kilometres) source–receiver offsets. This led to the development of practical
geophysical exploration methods based on seabed-to-seabed propagation of low frequency EM fields from controlled sources, as reviewed
by Chave et al. (1991) and Edwards (2005). A variety of techniques have been developed. A vertical electric dipole (VED) source and
horizontal magnetic field receivers have been used for sounding to depths of several kilometres on the continental shelf, over permafrost and
on a mid-ocean ridge (Edwards et al. 1981, 1985, 1988; Evans et al. 1998). A horizontal electric dipole (HED) source and receivers were
employed by Young & Cox (1981), Cox et al. (1986) and Constable & Cox (1996) to investigate the electrical conductivity of the oceanic
lithosphere to depths of tens of kilometres, revealing a very low (∼10−5 S m–1) value beneath the mid-plate oceanic crust. More recently,
MacGregor et al. (1998, 2001) used the technique to investigate the structure beneath a slow spreading mid-ocean ridge and a backarc basin.
Towed time-domain HED−HED technology was developed for mapping methane hydrates on the continental shelf by Yuan & Edwards
(2000). Finally, Evans (2007) describes a towed frequency-domain horizontal magnetic dipole (HMD) source with magnetic field receivers
for the study of shallow (tens of metres) sedimentary structures.

There has been interest in using controlled source electromagnetics (CSEM) for petroleum exploration and especially for direct
hydrocarbon detection, since the 1930s, as reviewed by Nekut & Spies (1989). Much of the early work was based on the belief that CSEM
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1430 A. D. Chave

Figure 1. The canonical reservoir model used throughout this paper. The source (double arrow) is located at (0, 0, z′) and the observation point (eye) is at
(ρ, φ, z). The ocean layer of thickness H and conductivity σ 0 = 3.2 S m–1 is overlain by the insulating atmosphere and underlain by a two layer structure in
turn underlain by a half-space. In all cases, σ 1 = σ 3 = 0.5 S m–1. The weak hydrocarbon reservoir model has σ 2 = 0.05 S m–1, whereas the strong reservoir
model has σ 2 = 0.017 S m–1. The brine reservoir model has σ 2 = 5 S m–1.

could be used to detect EM reflections that was commercialized as the Eltran method in the 1940s (Horton 1946; Yost 1952) and subsequently
discredited. Combined with the increasing success of seismic reflection as the standard tool for hydrocarbon exploration through the 1990s,
this led to a declining level of interest in EM within the petroleum industry. A major exception occurred in the former USSR, where EM
methods played an important role (Spies 1983; Berdichevsky 1994).

It has long (e.g. Martin et al. 1938) been known that hydrocarbon zones are typically resistive relative to the substrate in which they
are embedded, although there are exceptions. Using well log data, Garg & Keller (1984) showed that a sandstone reservoir surrounded by
shale provides the highest resistivity contrast, whereas in a relatively impermeable carbonate sequence, the resistivity contrast can actually
be reversed (i.e. the reservoir is conductive relative to the substrate) unless hydrocarbon saturation is very high. In addition, in many
sedimentary basins, anomalous material produced through chemical alteration by upward migration of hydrocarbons results in a reduction
of the conductivity in the rock overlying a producing layer (Oehler & Sternberg 1984; Nekut & Spies 1989). Consequently, a resistive zone
detected using an EM method may have a greater physical extent than the actual hydrocarbon-bearing formation.

Passalaqua (1983) showed theoretically that a thin resistive hydrocarbon zone could be sensed using CSEM and several groups attempted
to exploit this property on land through the 1990s (e.g. Keller et al. 1995; Strack & Vozoff 1996). Meju (2002) provides a recent survey of
these efforts. Further, it has long been recognized that marine CSEM is preferentially sensitive to thin resistive zones (e.g. Cheesman et al.
1987), including those containing hydrocarbons (Cox & Chave 1983; Srnka 1986). Subsequently, Ellingsrud et al. (2002) demonstrated that
a producing offshore petroleum field could be mapped with the same HED−HED technique and apparatus utilized in academia over the
previous twenty years. This resulted in the rapid commercial expansion of marine CSEM that continues to this day, along with a concomitant
flurry of presentations, publications and patents about the method. Constable & Srnka (2007) provide a historical perspective on these
developments.

Although it must be recognized that the quantitative interpretation of marine CSEM data over petroleum-bearing formations will typically
require 2-D surveys and 2-D or 3-D modelling, the use of the 1-D approximation is useful under some circumstances and provides considerable
insight into the physics of marine CSEM. It is the purpose of this paper to thoroughly explore the 1-D solutions for all four fundamental
source types—VED, HED, vertical magnetic dipole (VMD) and HMD—using the canonical reservoir model shown in Fig. 1. This model
incorporates a 100 m thick reservoir layer centered at 1000 m depth in a substrate with an electrical conductivity of 0.5 S m–1 (resistivity
of 2 �-m). The reservoir layer has a conductivity of 5 S m–1 (resistivity of 0.2 �-m) representing brine, 0.05 S m–1 (resistivity of 20 �-m)
representing a weak hydrocarbon zone and 0.017 S m–1 (resistivity of 60 �-m) representing a strong hydrocarbon zone. The conductivity
contrast between the substrate and reservoir for the hydrocarbon models ranges from 10:1 to 30:1, smaller than the 100:1 value that is
often used (e.g. Constable & Weiss 2006; Um & Alumbaugh 2007). Although 100:1 or higher conductivity contrasts have been observed in
producing hydrocarbon areas (e.g. the Troll gas field off Norway; Johansen et al. 2005), a lower value is more typical. Although of limited
physical significance in marine CSEM, the electric permittivity ε has the free space value throughout the structure except in water, where it
is about 80 times larger.

The remainder of this paper is organized into ten sections and one appendix. Section 2 outlines a formalism to solve the Maxwell
equations for a 1-D structure in terms of two independent and unique modes that circumscribe the salient diffusion physics. Section 3 presents
Green’s functions for the two modes from which solutions for arbitrary source current distributions can be constructed. Sections 4–7 contain
derivations of the EM fields produced by finite HED, VED, VMD and HMD sources overlying an arbitrary 1-D electrical structure. Section 8
defines the Poynting vector that represents the time-averaged flow of energy through a structure and a polarization ellipse decomposition of a
triaxial EM field that is a complete field description. Section 9 describes the behaviour of the two EM modes using unimodal VED and VMD
sources. Section 10 extends these results to the bimodal HED and HMD sources. Section 11 summarizes the results. An appendix contains
the derivation of the modal representation from first principles.

C© 2009 The Author, GJI, 179, 1429–1457

Journal compilation C© 2009 RAS



Marine CSEM 1431

2 G OV E R N I N G E Q UAT I O N S

In a fixed reference frame, neglecting advected charge and polarization current and assuming that the magnetic permeability is invariant,
Ampere’s Law with both the displacement and conduction currents retained may be written

τ∂t E + E = 1

μσ
∇ × B, (1)

where B is the magnetic induction, E is the electric field, μ is the magnetic permeability (assumed to be that of free space throughout this
paper) and σ is the electrical conductivity. The charge relaxation time is τ = ε/σ . Eq. (1) may be regarded as a simple first-order differential
equation for E with driving term given by the right-hand side. It is easily integrated to give

E(r, t) = E (r, 0) e−t/τ + 1

τ

∫ t

0
ds e−(t−s)/τ 1

μσ
∇ × B(r, s). (2)

The electric field on the left of (2) is independent of the initial condition after a few times τ , and thereafter is the convolution of ∇ × B/μσ

with an exponential term whose decay constant is the charge relaxation time, resulting in temporal averaging. Using the estimates for σ and
ε given for the canonical reservoir model of Fig. 1, in the ocean τ is about 0.2 ns, in the overburden τ is about 0.02 ns, in a hydrocarbon
reservoir τ is 0.2−2 ns, and in a brine reservoir τ is about 0.1 ns. All of these values are very small compared to a typical period (of order
1 s) used in marine CSEM, so that the averaging is unimportant, and the electric field E in (2) is effectively given by ∇ × B/μσ , yielding the
pre-Maxwell limit where displacement current is negligible compared to conduction current.

Further, it is not necessary to consider displacement current in the insulating air above the ocean provided that the source–receiver offset
is small compared to the free space wavelength. For a frequency range of 0.01−100 Hz, encompassing that which may practically be used
for CSEM in the ocean, the free space wavelength ranges from 3000 to 30 000 000 km and hence displacement current effects in the air are
also negligible given that the source–receiver offset in marine CSEM is typically well under 100 km. Thus, the pre-Maxwell equations are
sufficient throughout the structure of interest.

The pre-Maxwell equations are given by

∇ · B = 0 (3)

∇ × E + ∂t B = 0 (4)

∇ × B − μ σE = μJ0, (5)

where J0 is an extrinsic (source) electric current density.
The role of electric charge on surfaces in the pre-Maxwell limit is frequently misunderstood. Neglect of the displacement current in (5)

requires that the electric current density J = σE + J0 be divergence-free and hence the time rate of change of charge density is zero. In fact,
the electric currents that distribute charge occur on a time scale given by the charge relaxation time τ that has been shown to be very small
compared to a typical period used in marine CSEM and hence their current fluctuations do not produce a magnetic field. However, the electric
fields produced by charges that move into place on boundaries with seemingly infinite speed are quite important and are not removed in the
pre-Maxwell limit.

Define a coordinate system with ẑ positive upward and zero at Earth’s surface and assume that the electrical conductivity σ varies only in
this direction. Eqs (3)–(5) will be solved for a variety of source geometries in terms of poloidal and toroidal magnetic (hereafter PM and TM,
respectively) modes based on a Helmholtz representation of a vector field, as thoroughly described by Backus (1986). The modal form of the
fields is more useful than the standard vector potential because it reduces the physics into two relatively simple and independent components.
The PM mode is characterized by electric currents flowing in horizontal planes that couple purely by induction and has no vertical electric
field component. The TM mode is associated with electric currents that may flow in planes containing the vertical, couples both inductively
and galvanically and has no vertical magnetic field component.

Using the Helmholtz representation theorem, the source current density J0 may be written in terms of toroidal, consoidal and vertical
parts

J0 = ẑ × ∇hϒ + ∇h T + 
 ẑ, (6)

where ẑ × ∇h and ∇h are the surface curl and surface gradient operators, 
 is the vertical component of the source current, and ϒ and T are
scalar functions that are unique except for additive constants. The toroidal and consoidal source current scalars satisfy

∇2
hϒ = (∇h × J0

h

) · ẑ (7)

∇2
h T = ∇h · J0

h, (8)

where ∇2
h is the surface Laplacian. By transforming the results in Backus (1986) from a spherical to a planar geometry, it can be shown that

〈(∇h × J0
h) · ẑ〉 = 〈∇h · J0

h〉 = 0, where 〈〉 denotes the average over a plane defined as

〈 f (x, y)〉 = lim
L→∞

1

L2

∫ L

−L

∫ L

−L
f (x,y) dx dy. (9)

Consequently, the constants in ϒ and T may be specified by requiring that 〈ϒ〉 = 〈T 〉 = 0.
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Using the properties of analytic functions of a complex variable (Appendix), it can be shown that the magnetic induction and electric
field may be written

B = ẑ × ∇h� + ∇h∂z� − ∇2
h� ẑ (10)

E = ẑ × ∇h∂t� − ∇h (∂z� + μT ) /μσ + (∇2
h� − μ


)
/μσ ẑ, (11)

where the PM and TM mode scalar functions satisfy the differential equations

∇2� − μσ∂t� = μϒ (12)

∇2
h� + σ∂z

(
∂z�

σ

)
− μσ∂t� = μ
 − μσ∂z

(
T

σ

)
, (13)

under the condition that 〈�〉 = 〈�〉 = 0 using (9). The PM mode is associated with the toroidal part of the source current, whereas the TM
mode is driven by its vertical and consoidal elements.

The usual boundary conditions on the horizontal components of the electric and magnetic fields must be satisfied at horizontal interfaces,
with the latter requiring inclusion of the source current when it is located in the interface. These in turn require continuity of �, ∂ z� − μϒ ,
� + μT and (∂ z� + μT )/μσ . Because the boundary conditions are not coupled, the PM and TM modes represented by solutions of (12)
and (13) are independent. Further, the condition that 〈�〉 = 〈�〉 = 0 guarantees that the two modes are unique and hence can be examined
separately to understand the salient physics.

Forced oscillations of energy in a diffusive medium such as (12) and (13) describe are sometimes called diffusion waves (Mandelis
2006), and it is common in the geophysical literature to refer to CSEM fields using wave equation terminology. However, both (12) and (13)
are parabolic diffusion equations rather than hyperbolic wave equations. In one dimension, a parabolic equation has only a single family of
characteristic curves (lines of constant t), whereas a hyperbolic equation has two such families (lines of constant x ± ct , where c is the phase
velocity). Because they are not invariant under the transformation t → −t , solutions to parabolic equations evolve unidirectionally forward in
time simultaneously at all points away from a source. This set of traits precludes the existence of reflection (and concomitantly, refraction) at
interfaces, as well as the use of ray physics. Mandelis et al. (2001) summarize the arguments. Consequently, terminology from and analogies
to wave phenomena will be avoided in the sequel.

Although the derivation presented here requires only that the electrical conductivity σ vary with depth, the formalism extends in a
straightforward manner to the cases where the magnetic permeability μ also varies with depth or the conductivity is transversely isotropic
(i.e. has different values in the horizontal and vertical directions).

3 P M A N D T M M O D E G R E E N ’ S F U N C T I O N S

The time dependence of all variables will be taken as e−iωt where ω is the angular frequency. It will be more convenient to work with the
horizontal Fourier transforms of the modal differential eqs (12) and (13) using the convention

f̃ (η,ξ ) =
∫ ∞

−∞

∫ ∞

−∞
f (x,y) ei(ηx+ξ y) dx dy, (14)

f (x,y) = 1

(2π )2

∫ ∞

−∞

∫ ∞

−∞
f̃ (η,ξ ) e−i(ηx+ξ y) dη dξ, (15)

where η and ξ are horizontal wavenumbers. Further analysis will be confined to the situation where a horizontal current source is not located
in the seafloor interface to avoid boundary condition complexity. Green’s functions solutions to the Fourier transforms of (12) and (13) for a
constant conductivity ocean extending over −H ≤ z ≤ 0 are given by Chave & Luther (1990, Appendix B)

gψ{π}(z, z′) = − e−β0|z−z′ | + �
PM{TM}
L e−2β0 H e−β0(z+z′) + �

PM{TM}
U eβ0(z+z′) + �

PM{TM}
U �

PM{TM}
L e−2β0 H eβ0|z−z′ |

2β0

(
1 − �

PM{TM}
U �

PM{TM}
L e−2β0 H

) , (16)

where k =
√

η2 + ξ 2 is the magnitude of the horizontal wavenumber, σ 0 is the electrical conductivity of the water layer, β0 =
√

k2 − iωμσ0

is the ocean diffusion parameter and �b
a are complex, wavenumber-dependent diffusion interaction coefficients at z = −H (a = L) and z = 0

(a = U) for the b = PM or TM mode. Note that �TM
U = −1 if z = 0 is Earth’s surface overlain by the atmosphere due to the requirement that

the TM mode magnetic field vanish at and beyond insulating boundaries, whereas �PM
U = (β0 − k)/ (β + k) under the same condition.

Chave & Luther (1990, Appendix C) give stable recursive expressions for the lower diffusion interaction coefficient when Earth is
represented as a stack of N layers of variable thickness hi and conductivity σ i terminated by a half-space that may be insulating, conducting,
or a perfect conductor. These are

�PM
i = αi + e−2βi+1hi+1�PM

i+1

1 + αi e−2βi+1hi+1�PM
i+1

�TM
i = χi + e−2βi+1hi+1�TM

i+1

1 + χi e−2βi+1hi+1�TM
i+1

, (17)
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where the interface interaction coefficients are given by

αi = βi − βi+1

βi + βi+1

χi = βiσi+1 − βi+1σi

βiσi+1 + βi+1σi
. (18)

The diffusion interaction coefficients in (16) are obtained when i = 0. The PM mode diffusion interaction coefficient is initialized at z = −zN

with αN for a conducting or insulating half-space or −1 for a perfect conductor, whereas the TM mode diffusion interaction coefficient is
initialized with χN for a conducting half-space, 1 for a perfect conductor or −1 for an insulator.

Using the Green’s functions, solutions to the Fourier domain versions of (12) and (13) for a general source may be written

�̃(z) = μ

∫ 0

−H
gψ (z, z′)ϒ̃(z′) dz′ (19)

�̃(z) = μ

∫ 0

−H
gπ (z, z′)
̃(z′) dz′ + μ

∫ 0

−H
∂z′ gπ (z, z′)T̃ (z′) dz′, (20)

where the second term in (20) is obtained after a single integration by parts. Solutions for the EM fields follow by taking inverse Fourier
transforms using (15) and computing the appropriate horizontal and vertical derivatives. Note that the vertical derivatives (either in z or
z′) of the Green’s functions, appear in some of the field expressions for each source type. Care must be taken in obtaining these, as they
are discontinuous by ±1 at z = z′. In addition, the TM mode horizontal electric field for an HED and horizontal magnetic field for an
HMD contain the mixed second derivative of a Green’s function that possesses a delta function discontinuity at z = z′, and may be written
∂z∂z′ gψ{π}(z, z′) = g†

ψ{π}(z, z′) − δ(z − z′), where g†
ψ{π}(z, z′) is continuous.

Although the Green’s functions in (16) are specific to a source located within the ocean, they can easily be converted to cover a source
located at or above Earth’s surface by replacing z and z′ with z − H and z′ −H , respectively. Taking the limit H → ∞ in the transformed
version of (16) yields solutions for an infinitely thick top layer appropriate at Earth’s surface or for an ocean that is electrically thick

gψ{π}(z, z′) = −
(

e−β0|z−z′ | + �
PM{TM}
L e−β0(z+z′)

) /
2β0. (21)

In addition, the EM fields within the layered structure may easily be derived by matching solutions to the homogeneous forms of the spatial
Fourier transforms of (12) and (13) at the seafloor to the Green’s function using the appropriate boundary conditions. These may be propagated
down to the depth of interest. Such solutions will be used to estimate the Poynting vector throughout the structure in Sections 9 and 10.

4 H O R I Z O N TA L E L E C T R I C D I P O L E S O U RC E

The HED source, along with horizontal electric receivers, has long been used for marine CSEM and remains the configuration of choice for
hydrocarbon applications. Chave & Cox (1982) derived expressions for the EM fields from an HED source and the treatment below builds on
this foundation.

A point source electric dipole is oriented in the x̂ direction and located at (x ′, 0, z′), so that the source electric current density is given
by J0 = pδ(x − x ′)δ(y)δ(z − z′)x̂ , where p is the source moment given by the product of source current and infinitesimal dipole length I dx′.
Applying (14) to (7) and (8), the Fourier domain toroidal and consoidal source current scalars are given by

ϒ̃(z) = − i pξ

k2
eiηx ′

δ(z − z′) (22)

T̃ (z) = i pη

k2
eiηx ′

δ(z − z′), (23)

whereas the vertical current term in (6) vanishes. Consequently, the HED induces both PM and TM modes within conductive media. Taking
inverse Fourier transforms, it is easy to show that 〈ϒ〉 = 〈T 〉 = 0 and hence the constants in the solutions to (7) and (8) are appropriately
constrained.

The corresponding Fourier domain PM and TM mode scalar functions are given by

�̃(z) = − iμpξ

k2
eiηx ′

gψ (z, z′) (24)

�̃(z) = iμpη

k2
eiμx ′

∂z′ gπ (z, z′). (25)

The inverse transform of (24)–(25) must average to zero on a given plane. This may be accomplished by replacing gψ and ∂ z′ gπ with hψ =
gψ − g0

ψ and ∂ z′ hψ = ∂ z′ gπ − ∂ z′ g0
π , respectively, where the superscript 0 refers to the Green’s function with k = 0. With this transformation,

the PM and TM mode scalars are unique, as are the modal electric and magnetic field components derived from them.
The spatial domain counterparts to (24)–(25) are given by

�(r, r′) = μp

4π 2
∂y

∫ ∞

−∞

∫ ∞

−∞

hψ (z, z′)
k2

e−i(η(x−x ′)+ξ y) dη dξ, (26)
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1434 A. D. Chave

�(r, r′) = − μp

4π 2
∂x

∫ ∞

−∞

∫ ∞

−∞

∂z′ hπ (z, z′)
k2

e−i(η(x−x ′)+ξ y) dη dξ, (27)

where r and r′ are the observation and source points, respectively. The Green’s functions (16) and their vertical derivatives are azimuthally
symmetric. Consequently, converting from Cartesian to polar coordinates, where (x, y) = ρ (cos φ, sin φ) and (η, ξ ) = k (cos θ , sin θ ), so that
dη dξ = k dk dθ , and applying Poisson’s formula

1

2π

∫ 2π

0
e±ikζ cos(θ−ϑ) dθ = J0 (kζ ), (28)

where ϑ is an arbitrary angle, J 0(kζ ) is a Bessel function of the first kind of order 0, and ζ 2 = (x − x ′)2 + y2 = ρ2 + x ′2 − 2ρ x ′ cos φ,
reduces (26)–(27) to Hankel transforms

�(r, r′) = μp

2π

∫ ∞

0

hψ (z, z′)
k

∂y J0 (kζ ) dk (29)

�(r, r′) = −μp

2π

∫ ∞

0

∂z′ hπ (z, z′)
k

∂x J0(kζ ) dk. (30)

The field components follow by applying (10)–(11) to (29)–(30). The resulting algebra is tedious, but is simplified by using cylindrical
coordinates. Tabulating the necessary derivatives of the Bessel function terms yields

∂x J0(kζ ) = − k∂xζ J1(kζ ) [−k cosφ J1(kρ)]

∂2
ρx J0(kζ ) = − k

(
k∂xζ∂ρζ J0(kζ ) + (

∂2
ρxζ − ∂xζ∂ρζ/ζ

)
J1(kζ )

)
[−k cosφ (k J 0(kρ) − J1(kρ)/ρ)]

1

ρ
∂2

φx J0(kζ ) = − k

(
k∂xζ

1

ρ
∂φζ J0(kζ ) +

(
1

ρ
∂2

φxζ − ∂xζ
1

ρ
∂φζ/ζ

)
J1(kζ )

) [
k sinφ

ρ
J1(kρ)

]

∂y J0(kζ ) = − k∂yζ J1(kζ ) [−k sinφ J1(kρ)]

∂2
ρy J0(kζ ) = − k

(
k∂yζ∂ρζ J0(kζ ) + (

∂2
ρyζ − ∂yζ∂ρζ/ζ

)
J1(kζ )

)
[−k sinφ (k J 0(kρ) − J1(kρ)/ρ)]

1

ρ
∂2

φy J0(kζ ) = − k

(
k∂yζ

1

ρ
∂φζ J0(kζ ) +

(
1

ρ
∂2

φyζ − ∂yζ
1

ρ
∂φζ/ζ

)
J1(kζ )

) [
− k cosφ

ρ
J1(kρ)

]
,

∇2
h∂y J0(kζ ) = k3∂yζ J1(kζ )

[
k3sinφ J1(kρ)

]
∇2

h∂x J0(kζ ) = k3∂xζ J1(kζ )
[
k3cosφ J1(kρ)

]
, (31)

where the term in square brackets is the result for a centered dipole (x′ = 0). The derivatives of ζ are

∂ρζ = ρ2 − xx ′

ρζ
[1]

1

ρ
∂φζ = yx ′

ρζ
[0]

∂xζ = x − x ′

ζ
[cos φ]

∂yζ = y

ζ
[sin φ]

∂2
ρxζ = ζ 2x − (x − x ′)(ρ2 − xx ′)

ρζ 3
[0]

1

ρ
∂2

φxζ = − y(ζ 2 + x ′(x − x ′))

ρζ 3

[
− sin φ

ρ

]

∂2
ρyζ = y(ζ 2 − ρ2 + xx ′)

ρζ 3
[0]

1

ρ
∂2

φyζ = xζ 2 − x ′ y2

ρζ 3

[
cos φ

ρ

]
.

(32)
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The three components of the electric field follow from (11)

Eρ(r, r′) = p

2πσ 0

(
−γ 2

0

∫ ∞

0

hψ (z, z′)
k

1

ρ
∂2

φy J0(kζ ) dk +
∫ ∞

0

h
†
π (z, z′)

k
∂2

ρx J0(kζ ) dk

)
[

p cos φ

2πσ0

(
γ 2

0

ρ

∫ ∞

0
hψ (z, z′)J 1(kρ) dk −

∫ ∞

0
h†

π (z, z′)(k J 0(kρ) − J1(kρ)/ρ) dk

)]

Eφ(r, r′) = p

2πσ 0

(
γ 2

0

∫ ∞

0

hψ (z, z′)
k

∂2
ρy J0(kζ ) dk +

∫ ∞

0

h†
π (z, z′)

k

1

ρ
∂2

φx J0(kζ ) dk

)
[

p sinφ

2πσ 0

(
−γ 2

0

∫ ∞

0
hψ (z, z′)(k J 0(kρ) − J1(kρ)/ρ) dk + 1

ρ

∫ ∞

0
h†

π (z, z′)J1(kρ) dk

)]

Ez(r, r′) = − p

2πσ 0
∂xζ

∫ ∞

0
∂z′ gπ (z, z′)k2 J1(kζ ) dk

[
− p cosφ

2πσ 0

∫ ∞

0
∂z′ gπ (z, z′)k2 J1(kρ) dk

]
,

(33)

where γ 2
0 = −iωμσ 0. The magnetic field components follow from (10)

Bρ(r, r′) = μp

2π

(∫ ∞

0

∂zhψ (z, z′)
k

∂2
ρy J0(kζ ) dk +

∫ ∞

0

∂z′ hπ (z, z′)
k

1

ρ
∂2

φx J0(kζ ) dk

)
[
−μp sinφ

2π

(∫ ∞

0
∂zhψ (z, z′) (k J 0(kρ) − J1(kρ)/ρ) dk − 1

ρ

∫ ∞

0
∂z′ hπ (z, z′)J1(kρ) dk

)]

Bφ(r, r′) = μp

2π

(∫ ∞

0

∂z′ hψ (z, z′)
k

1

ρ
∂2

φy J0(kζ ) dk −
∫ ∞

0

∂z′ hπ (z, z′)
k

∂2
ρx J0(kζ ) dk

)
[
−μp cosφ

2π

(
1

ρ

∫ ∞

0
∂zhψ (z, z′)J1(kρ) dk −

∫ ∞

0
∂z′ hπ (z, z′) (k J 0(kρ) − J1(kρ)/ρ) dk

)]

Bz(r, r′) = −μp

2π
∂yζ

∫ ∞

0
gψ (z, z′)k2 J1(kζ ) dk

[
−μp sinφ

2π

∫ ∞

0
gψ (z, z′)k2 J1(kρ) dk

]
. (34)

For a centered source of finite length L, (33)–(34) must be numerically integrated from x ′ = −L/2 to L/2 after setting the source moment to
p = I dx′. The finiteness of the source is typically important only for observation points within a few times L of the dipole center, and the
point source approximation given by the terms in square brackets in (33)–(34) is adequate at more distant locations.

Equations (33)–(34) may be simplified when the source dipole is of infinite extent. In the limit L → ∞, all but the Ex, By and Bz

components vanish, and the EM fields do not have any x dependence. The integrated Bessel function terms in (33)–(34) become∫ ∞

−∞
∂2

x J0(kζ ) dx ′ = k (πk|y| − 2 cos(ky) − 2ky Si(ky))

∫ ∞

−∞
∂2

y J0(kζ ) dx ′ = −k (πk|y| − 2ky Si(ky)), (35)

where Si(x) is the sine integral. The EM field components are given by

Ex (y, z, z′) = I

2πσ 0

[∫ ∞

0

(
γ 2

0 hψ (z, z′) + h†
π (z, z′)

)
(πk |y| − 2ky Si (ky)) dk .

− 2
∫ ∞

0
h†

π (z, z′) cos(ky) dk

]

By (y, z, z′) = −μI

2π

[∫ ∞

0

(
∂zhψ (z, z′) + ∂z′ hπ (z, z′)

)
(πk |y| − 2ky Si(ky)) dk

− 2
∫ ∞

0
∂z′ hπ (z, z′) cos(ky) dk

]

Bz (y, z, z′) = −μI

2π

∫ ∞

0
hψ (z, z′) k sin(ky) dk.

(36)

The expression πk|y| − 2ky Si(ky) is a quasi-periodic (but asymptotically periodic) function of k, and is symmetric around y = 0. The field
expressions may be evaluated numerically using a modification of the Chave (1983) Hankel transform algorithm in which πk|y|−2ky Si(ky),
sin(ky) and cos(ky) in (36) replace the Bessel function.

5 V E RT I C A L E L E C T R I C D I P O L E S O U RC E

The VED source was proposed by Edwards et al. (1981) for use in magnetometric surveying of the seafloor, and was subsequently applied to a
number of geophysical targets. A VED couples to the seafloor approximately as the ratio of the seafloor to seawater conductivity as compared
to the HED. Consequently, it does not provide high field penetration under the typical circumstance where the seafloor is more resistive than
seawater.
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Consider a point electric source dipole located at (0, 0, z′) and oriented in the ẑ direction, so that J0 = pδ(x)δ(y)δ(z − z′)ẑ. It immediately
follows that ϒ = T = 0, so that there is no PM mode. The TM mode scalar function is

�(r, z′) = μp

2π

∫ ∞

0
gπ (z,z′)k J0(kρ) dk, (37)

where 〈�〉 = 0; replacing gπ with hπ is unnecessary because
∫ ∞

0 k J0(kρ) dk = 0. For a finite length source extending from −H < a < b ≤ 0

with source moment p = I dz′, the Green’s function in (37) may be integrated to yield the closed form solution Gπ (z) = ∫ b
a gπ (z, z′) dz′. From

symmetry considerations, the magnetic field is azimuthal about the source, whereas the electric field has only radial and vertical components,
and the terms follow from (10) and (11)

Bφ(r) = −μI

2π

∫ ∞

0
Gπ (z) k2 J1(kρ) dk

Eρ(r) = I

2πσ 0

∫ ∞

0
∂z Gπ (z) k2 J1(kρ) dk

Ez(r) = − I

2πσ0

∫ ∞

0
Gπ (z) k3 J0 (kρ) dk. (38)

6 V E RT I C A L M A G N E T I C D I P O L E S O U RC E

Coggon & Morrison (1970) presented a theoretical analysis of a VMD source near the seafloor. Cheesman et al. (1987) derived the transient
response for a VMD, showing that it could be useful in the unusual instance where the subsurface target is more conductive than seawater.
However, marine CSEM apparatus based on the VMD does not appear to have been developed.

Consider an infinitesimally thin loop of electric current of radius a and magnitude I oriented in the x−y plane at a height z′ (Fig. 2), so
that the source electric current density is given by

J0(r) = I δ(ρ − a)δ(z − z′)φ̂, (39)

where the sign has been chosen so that the magnetic moment points in the ẑ direction. From (8), the consoidal part of the horizontal current
vanishes, and because there is no vertical current source, there is no TM mode. The Fourier transform of (7) is

ϒ̃(z, z′) = 2M
J1(ka)

ka
δ(z − z′), (40)

where M = Iπa2 is the source magnetic dipole moment and 〈ϒ〉 = 0. Substituting (40) into (19), applying the inverse Fourier transform (15)
along with Poisson’s formula (28) and verifying the zero average condition on � yields

�(r, z′) = μM

πa

∫ ∞

0
gψ (z, z′)J1(ka)J0(kρ) dk. (41)

By symmetry, the radial and vertical electric and azimuthal magnetic fields vanish. The remaining electric field component follows from
(11)

Eφ(r, z′) = iωμM

πa

∫ ∞

0
gψ (z, z′)k J1(ka)J1(kρ) dk, (42)

Figure 2. Diagram showing the geometry for a finite vertical magnetic dipole of radius a as described in the text. The loop source lies in the x–y plane at
(0, 0, z′) with current flowing so that the magnetic moment points in the z-direction. The observation point at (ρ, φ, z) is depicted by the eye.
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whereas the two magnetic field components obtain from (10)

Bρ(r, z′) = −μM

πa

∫ ∞

0
∂z gψ (z, z′)k J1(ka)J1(kρ) dk

Bz(r, z′) = μM

πa

∫ ∞

0
gψ (z, z′)k2 J1(ka)J0(kρ) dk. (43)

Eqs (42) and (43) are exact, and include the geometric effects of a finite current loop through the J 1(ka) term. For points at horizontal
distance ρ � a, the Bessel function J 1(ka) may be approximated by the first term ka/2 in its series expansion. The resulting approximate
forms of (42)–(43) are equivalent to those obtained by including point magnetic dipole sources in the pre-Maxwell equations. However, the
full solutions (42)–(43) are easily evaluated numerically at horizontal ranges ρ � a because J 1(ka) changes very slowly compared to the
range-dependent Bessel function term. Note further that (42)–(43) are well-defined at the center of the source loop, where ρ = 0.

7 H O R I Z O N TA L M A G N E T I C D I P O L E S O U RC E

Dey & Ward (1970) derived the EM fields produced by an HMD source in air above a layered Earth. In this instance, no TM mode is induced
in the ground, and the EM coupling becomes purely inductive. Cheesman et al. (1987) derived the EM fields for an oceanic HMD (which
does induce a TM mode) with magnetic receivers, and a frequency domain HMD system is described by Evans (2007).

Consider an infinitesimally thin current loop of radius a and magnitude I oriented in the x−z plane such that its magnetic moment points
in the ŷ direction (Fig. 3). The center of the loop is at (0, 0, a) where −H + a ≤ z′ ≤ −a. An infinitesimal piece of the loop oriented at a
clockwise angle α from the x-axis carries an electric current density

dJ0 = (Iα dα)δ(x − a cos α)δ(y)δ(z − z′ + a sin α) α̂ (44)

where α̂ = − sin α x̂ − cos α ẑ. Integrating α over a complete circle yields the source current density

J0(r, z′) = −I aδ(y)
∫ 2π

0
δ(x − a cosα)δ(z − z′ + a sinα)(sin α x̂ + cos α ẑ) dα. (45)

Decomposing (45) using (6)–(8) and taking Fourier transforms gives

ϒ̃ = iξ I a

k2

∫ 2π

0
eiηa cosαδ(z − z′ + a sin α) sin α dα

T̃ = − iηI a

k2

∫ 2π

0
eiηa cosαδ(z − z′ + a sin α) sin α dα


̃ = −I a

∫ 2π

0
eiηa cosαδ(z − z′ + a sin α) sin α dα, (46)

yielding 〈ϒ〉 = 〈T 〉 = 0 by inspection. Substituting into (19)–(20), taking the inverse Fourier transform (15) and applying Poisson’s formula
(28) gives

�(r, z′) = − μM

2π 2a

∫ ∞

0

∫ 2π

0

hψ (z, z′ − a sinα)

k
∂y J0(kζ ) sin α dα dk (47)

Figure 3. Diagram showing the geometry for a finite horizontal magnetic dipole of radius a as described in the text. The loop source lies in the x–z plane at
(0, 0, z′) with current flowing so that the magnetic moment points in the y-direction. The angle α used in the derivation is oriented clockwise from the x-axis.
The observation point at (ρ, φ, z) is depicted by the eye.
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�(r, z′) = μM

2π 2a

[
−

∫ ∞

0

∫ 2π

0
hψ (z, z′ − a sinα) k J 0(kζ ) cos α dα dk

+
∫ ∞

0

∫ 2π

0

∂z′ hπ (z, z′ − a sinα)

k
∂x J0(kζ ) sin α dα dk

]
,

(48)

where ζ 2 = ρ2 + a2 cos2 α − 2 ρ a cos α cos φ and the zero average conditions on � and � have been satisfied. Eqs (47) and (48) are exact,
and the EM fields may be computed by differentiation using (10) and (11) combined with a pair of numerical quadratures.

An approximate solution for an infinitesimal source where a → 0 such that M remains fixed may be found by explicitly writing out
the exponential terms in the Green’s functions for points z above and below the loop, and considering the double Fourier transform form of
(47)–(48) prior to applying Poisson’s formula. Using the generating functions for regular and modified Bessel functions of the first kind

eiηa cos α = J0(ηa) + 2
∞∑

n=1

i n Jn(ηa) cos(nα)

eβ0a sin α = I0(β0a) +
∞∑

n=1

In(β0a) cos (n(α − π/2))
(49)

yields∫ 2π

0
eiηa cos αeβ0a sin α sin α dα = 2π I1(β0a) J0(ηa) + 2π

∞∑
n=1

J2n(ηa)(I2n−1(β0a) + I2n+1(β0a))

∫ 2π

0
eiηa cos αeβ0a sin α cos α dα = 2π

∞∑
n=1

(−1)ni2n−1 J2n−1(ηa)(I2n(β0a) − I2n−1(β0a)).
(50)

For sufficiently small a, (50) reduces to πβ0a and iπηa, respectively. Writing out the terms in the Green’s functions defined in (16) explicitly
for z > z′ + a and z < z′ − a under this approximation, it can be shown that∫ 2π

0

gψ (z, z′ − a sin α)

πa
eiηa cosα sin α dα ≈ −∂z′ gψ (z, z′)

∫ 2π

0

∂z′ gπ (z, z′ − a sin α)

πa
eiηa cosα sin α dα ≈ −β2

0 gπ (z, z′) − δ(z − z′)

∫ 2π

0

gπ (z, z′ − a sin α)

πa
eiηa cosα cos α dα ≈ iηgπ (z, z′). (51)

whereas T ≈ 0. The point source solutions for the PM and TM mode scalar functions are

�
(
r, z′) = μM

2π

∫ ∞

0

∂z′ hψ (z, z′)
k

∂y J0(kρ) dk (52)

�(r, z′) = −γ 2
0 μM

2π

∫ ∞

0

hπ (z, z′)
k

∂x J0(kρ) dk. (53)

The magnetic fields follow from (10)

Bρ (r, z′) = −μ M sinφ

2π

[∫ ∞

0
h†

ψ (z, z′) (k J 0 (kρ) − J1(kρ)/ρ) dk − γ 2
0

ρ

∫ ∞

0
hπ (z, z′) J1(kρ) dk

]

Bφ (r, z′) = −μ M cosφ

2π

[
1

ρ

∫ ∞

0
h†

ψ (z, z′) J1(kρ) dk − γ 2
0

∫ ∞

0
hπ (z, z′) (k J 0(kρ) − J1(kρ) /ρ) dk

]

Bz (r, z′) = −μ M sinφ

2π

∫ ∞

0
∂z′ gψ (z, z′) k2 J1(kρ) dk

(54)

and the electric fields obtain from (11)

Eρ(r, z′) = − iωμM cosφ

2π

[
1

ρ

∫ ∞

0
∂z′ hψ (z, z′) J1(kρ) dk −

∫ ∞

0
∂zhπ (z, z′) (k J 0(kρ) − J1(kρ)/ρ) dk

]

Eφ(r, z′) = iωμM sinφ

2π

[∫ ∞

0
∂z′ hψ (z, z′) (k J 0(kρ) − J1(kρ)/ρ) dk − 1

ρ

∫ ∞

0
∂zhπ(z, z′)J1(kρ) dk

]

Ez(r, z′) = iωμM cosφ

2π

∫ ∞

0
gπ (z, z′)k2 J1(kρ) dk.

(55)

8 R E P R E S E N TAT I O N O F T H E E L E C T RO M A G N E T I C F I E L D

In the absence of insight from ray concepts in diffusion physics, it is useful to examine the flow of energy to visualize CSEM field behaviour.
Taking the dot product of E with (5), subtracting the dot product of B with (4) and using standard vector identities yields

∇ · S + ∂twB + J · E = 0, (56)
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where S = (E × B)/μ is the Poynting vector and wB = B · B/2μ is the internal energy in the magnetic field. There is no internal energy
in the electric field under the pre-Maxwell approximation. A physical interpretation follows by applying the divergence theorem to (56). In
a volume of material that does not include a source, S represents the amount of energy flowing into the volume per unit area per second that
is balanced by thermodynamically irreversible Joule heating and the time rate of change of energy stored in the magnetic field within the
volume.

For time harmonic fields, the terms in (56) may be represented as E = Re(Ee−iωt) and B = Re(Be−iωt), where E and B are complex. It
is easy to show that the Poynting vector is

S = 1

2μ

{
Re (E × B∗) + Re

[
(E × B) e−i2ωt

]}
, (57)

where the superscript (∗) denotes the complex conjugate. The first term in (57) is real and time independent, whereas the second term is real
and time-varying such that its time average is zero. Consequently, the time average of S is equal to the real part of the complex Poynting vector
S = (E × B∗) / 2μ, where S �= S. The real part of the complex Poynting vector represents the time-averaged energy flux into a volume of
material that is balanced by Joule heating from (56).

The real part of the complex Poynting vector was used by Chave et al. (1990) to visualize the time-averaged energy flux for an earth
model containing a low conductivity lithospheric zone bounded above and below by higher conductivity regions. Their results showed that the
energy flux is large and nearly horizontal within the low conductivity region, with continuous leakage to the surface that produces a seafloor
EM field that is enhanced over that which would be observed without the resistor. Weidelt (2007) presents analogous results for a hydrocarbon
reservoir model. Similar behaviour will be seen for the reservoir models of Fig. 1, as further described in Sections 9–10.

The EM fields produced by controlled sources have a 3-D vector rather than a scalar form, and hence the standard practice of examining
the amplitude and/or phase of Cartesian field components against range or frequency is not sufficient for understanding their behaviour. It
is well known (e.g. Born & Wolf 2002, Section 1.4.3) that time harmonic vector fields can be depicted as a polarization ellipse oriented
appropriately in space, and this representation serves as a complete description of the field. Further, the fact that an ellipse is required to
represent the EM field indicates that its Cartesian components are not independent.

Let the equation for a time-harmonic ellipse be

e = (
aei(φ−ωt), ibei(φ−ωt), 0

)T
, (58)

where a ≥ b ≥ 0. The parameters a and b are the lengths of the semi-major and semi-minor axes of the ellipse, respectively, and φ is the
generalized phase. Eq. (58) represents counter-clockwise rotation as a function of time for a fixed value of φ. It can be converted to an ellipse
arbitrarily oriented in space through three positive counter-clockwise rotations

R =

⎡
⎢⎢⎢⎣

1 0 0

0 cos ξ sin ξ

0 −sin ξ cos ξ

⎤
⎥⎥⎥⎦, (59)

where ξ is the roll around the semi-major (a) axis

P =

⎡
⎢⎢⎢⎣

cos ψ 0 sin ψ

0 1 0

−sin ψ 0 cos ψ

⎤
⎥⎥⎥⎦, (60)

where ψ is the pitch of the semi-major (a) axis and

S =

⎡
⎢⎢⎣

cos θ sin θ 0

−sin θ cos θ 0

0 0 1

⎤
⎥⎥⎦, (61)

where θ is the strike of the semi-major (a) axis. The electric or magnetic field at a given observation point may be written

E = RPSe. (62)
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After some tedious algebra, the six parameters representing the polarization ellipse are given by

a =
√

(|E · E∗|2 + |E · E|) /2

b =
√

(|E · E∗|2 − |E · E|) /2

tan (2φ) = Im (E · E)

Re (E · E)

tan θ = a Im
(
Eρe−iφ

)
b Re

(
Eρe−iφ

)
tanξ = Im

(
E∗

z Eρ

)
Im

(−E∗
φ Eρ

)
tan ψ = − Im

(
E∗

z Eφ

)
√

Im2
(
E∗

z Eρ

) + Im2
(
E∗

φ Eρ

) . (63)

There is an inherent ambiguity in this representation, as (62) is unchanged if any pair of (θ , φ), (θ , ξ ) and (ξ , φ) are altered by 180◦. This
can easily be fixed because all three variables should be continuous (modulo 360◦) without discontinuities. An alternative parameter to the
semi-minor axis b is the ellipticity b/a that lies between 0 for a line and 1 for a perfect circle.

9 U N I M O DA L S O U RC E S : T H E V E D A N D V M D

For all save the simplest earth models, numerical solution for the EM fields (33)–(34), (38), (42)–(43), and (54)–(55) is essential. This requires
the computation of zero and first-order Hankel transforms. Throughout this paper, the direct numerical integration algorithm of Chave (1983)
based on Gauss quadrature between the zero crossings of a Bessel function combined with Pade′ approximant convergence acceleration will
be used. With the speed of modern computers, the computational overhead of direct numerical integration compared to digital filter algorithms
is not a significant factor, whereas the accuracy advantage for more complicated models is important. In addition, the ability of the Pade′

approximant to correctly sum divergent series is essential when calculating the EM fields within the sub-seafloor structure.
The behaviour of CSEM fields is best understood in terms of the relevant distance scale governing the diffusion physics, the skin depth

over which the EM field attenuates by 1/e. Throughout this paper, results for a 1 Hz source will be presented; this is in the middle of the
practical frequency range of 0.1−10 Hz. At 1 Hz, a skin depth is 280 m in seawater, 710 m in the 0.5 S m–1 substrate (hereafter called the
burial skin depth), 225 m in the 5 S m–1 brine layer, 2250 m in the 0.05 S m–1 weak hydrocarbon layer, and 3900 m in the 0.017 S m–1 strong
hydrocarbon layer. Given that the physical distance scales in the reservoir model are 950 m (depth to the reservoir) and 100 m (thickness of the
reservoir), it should be expected that the seafloor EM fields will be influenced to varying degrees by more than a single part of the structure
at a given range, so that the diffusion physics governing CSEM fields is quite heterogeneous. In addition, the buried layer is electrically thin
for all of the models, ranging from 0.4 skin depth for the brine reservoir to 0.03 skin depth for the strong hydrocarbon reservoir.

Fig. 4 (bottom panel) shows the radial electric field produced by a 1 Hz VED source for the brine, weak and strong hydrocarbon reservoirs
in Fig. 1 and for an ocean of 5000 m depth. The water layer is about 18 skin depths thick, hence is nearly the same as an infinitely deep ocean.
In each case, the electric field for the model with a reservoir is normalized to that for a 5000 m ocean overlying a uniform half-space of
conductivity 0.5 S m–1 to remove the strong exponential fall-off of the field with range, facilitating interpretation. For this purely TM mode
source, the brine reservoir model results in weak field enhancement above that for a half-space at short (∼1000–5000 m) ranges followed
by attenuation at larger distances. In contrast, the hydrocarbon models display monotonic field enhancement with range, with the weak and
strong reservoirs displaying an increase of about 6 and 100 at 10 000 m range, respectively.

Fig. 4 (middle and top panel) shows the radial and azimuthal TM mode fields at an azimuth of 0◦ and 90◦, respectively, produced by
a 1 Hz HED source. These two orientations are usually referred to as the in-line and parallel (or sometimes broadside) directions. In each
case, the TM mode has been normalized by the corresponding component (TM + PM mode) for a half-space of conductivity 0.5 S m–1.
The in-line field (middle panel) is nearly identical to that produced by a VED (bottom panel) except very close to the source where direct
diffusion through the ocean is dominant. In contrast, the parallel TM mode field (top panel) is weaker than the half-space field at all ranges
for the brine reservoir, approaches the half-space value at a range of 10 000 m for the weak hydrocarbon reservoir model, and is larger than
the half-space value at ranges over 4000 m for the strong reservoir model. Because the hydrocarbon reservoir TM mode normalized response
increases monotonically with range, it follows that the presence of a thin resistive layer will always result in dominance of the measured EM
field by the TM mode at a sufficient range in both the in-line and parallel configurations for an HED source.

Fig. 5 (bottom panel) shows the azimuthal electric field produced by a VMD source for the three reservoir models and normalized as in
Fig. 4. For this purely PM mode source, the brine reservoir model produces rapid attenuation with range compared to a half-space to about
5000 m, after which it continues to decrease at a slower rate. In contrast, the PM mode response to the hydrocarbon reservoirs is nearly
indistinguishable from that to a half-space, displaying only a miniscule increase with range that is nearly identical for the two models.
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Figure 4. The logarithm of the normalized electric field amplitude on the seafloor as a function of source–receiver offset produced by a 1 Hz point source
located 50 m above the seafloor at a range of 0. With reference to Fig. 1, the water depth H is 5000 m, the dot-dash line represents the brine reservoir, the
dashed line represents the weak hydrocarbon reservoir, and the dotted line represents the strong hydrocarbon reservoir. The three panels show the radial electric
field for a VED source (bottom), the radial TM mode electric field at an azimuth of 0◦ for an HED source (middle), and the azimuthal TM mode electric field
at an azimuth of 90◦ for an HED source (top). The field for each model has been normalized to the same component of the electric field for a half-space of
conductivity 0.5 S m–1. For the HED source, this is the sum of the TM and PM modes.

Fig. 5 (middle and top panels) show the in-line and parallel PM mode fields for an HED source for the three reservoir models normalized
as in Fig. 4. The parallel response (top panel) is nearly identical to that for a VMD, showing attenuation for the brine model and no effect
for the two hydrocarbon models. The in-line response (middle panel) displays attenuation with range relative to the total field in the in-line
direction for all reservoir models, although the effect is more pronounced for brine.
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Figure 5. The logarithm of the normalized electric field amplitude on the seafloor as a function of source–receiver offset produced by a 1 Hz point source
located 50 m above the seafloor at a range of 0. With reference to Fig. 1, the water depth H is 5000 m, the dot-dash line represents the brine reservoir, the
dashed line represents the weak hydrocarbon reservoir, and the dotted line represents the strong hydrocarbon reservoir. The two hydrocarbon models produce
nearly identical responses, and are nearly superimposed in the diagram. The three panels show the azimuthal electric field for a VMD source (bottom), the
radial PM mode electric field at an azimuth of 0◦ for an HED source (middle), and the azimuthal PM mode electric field at an azimuth of 90◦ for an HED
source (top). The field for each model has been normalized to the same component of the electric field for a half-space of conductivity 0.5 S m–1. For the HED
source, this is the sum of the TM and PM modes.

Because the HED models in Figs 4 and 5 have been normalized by the same total half-space electric field, the relative size of the TM and
PM modes may be directly compared. For the in-line configuration, the TM mode dominates the PM mode at ranges beyond about 1000 m
(or four seawater skin depths) independent of the underlying resistivity structure. This observation extends to a half-space. The relative size
of the modes becomes larger in the presence of an increasingly resistive sub-surface structure. For the parallel configuration over a brine
reservoir, the PM mode is larger than the TM mode only at ranges under about 3500 m and is of comparable size at longer ranges. For the
parallel configuration over a hydrocarbon reservoir, the PM mode is larger than the TM mode at short ranges, but there always exists a range
beyond which the TM mode becomes increasingly dominant. For the weak reservoir model, this occurs at about 12 000 m, whereas for the
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strong reservoir model, it happens at about 4000 m. For a half-space model, the PM mode is always larger than the TM mode in the parallel
direction. In all instances, the in-line total (TM + PM) electric field is substantially larger at all ranges as compared to the parallel direction.

All CSEM source types excite both electric and magnetic fields, and hence it might be expected that additional information will ensue
from measuring all possible components. However, plots for the magnetic field such as Figs 4 and 5 are nearly identical in form to those for
the electric field. In addition, plots of the ratio of the electric to the magnetic field as a function of range are nearly flat beyond 2000 m range.
These observations suggest that there is limited additional information in the magnetic field, and hence in the absence of signal-to-noise
considerations, little is gained beyond redundancy by measuring both the electric and magnetic fields. This is not meant to imply that for all
source–receiver orientations, measurement of the electric and magnetic fields yields identical information about subsurface; in particular, the
in-line and parallel geometries show a large difference. Finally, the HMD produces both TM and PM modes, and its response to the three
reservoir models is identical in form to that for the HED beyond a range of a few skin depths in seawater where the source geometry induces
differences within the ocean layer.

Frequency domain CSEM fields possess a phase (not shown) as well as a magnitude, and the observable electric field components are
the sum of its complex TM and PM mode elements. It is well known that the phase changes at about one radian per skin depth in the part of
the structure whose effect is dominant at a given range. In the presence of a resistive reservoir layer, the rate of the phase change with range
decreases as the reservoir conductivity decreases. Examination of the phase of the two modes unsurprisingly shows that this effect is confined
to the TM mode, with the PM mode phase nearly unchanged from that for a half-space. In the presence of a conductive reservoir, the roles of
the two modes are reversed, although the effect of a conductor on the PM mode is weaker than that of a resistor on the TM mode for a given
reservoir conductivity contrast.

Figs 6–10 extend the seafloor EM fields shown in Figs 4–5 to the entire electrical structure through visualization of the time-averaged
energy flow via the Poynting vector representation in (56)–(57). The greyscale contours in Figs 6 and 9 represent the magnitude of the real

Figure 6. Contours of the logarithm of the magnitude of the real part of the complex Poynting vector (greyscale) and its local direction at the origin of each
black arrow produced by a 1 Hz point VED source located 50 m above the seafloor at a range of zero. The arrow orientation has been adjusted for the different
horizontal and vertical scales, and the black horizontal line depicts the seafloor. With reference to Fig. 1, the water depth H is 5000 m, the upper panel represents
the brine reservoir and the lower panel represents the weak hydrocarbon reservoir.
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Figure 7. Vertical cuts through the brine and weak hydrocarbon models of Fig. 6 (top and bottom plots, respectively) showing the radial (solid) and vertical
(dashed) components of the Poynting vector at ranges of 2000 m (left), 6000 m (middle) and 10 000 m (right). Each set of curves has been normalized to the
maximum value at the given range. The weak dotted line indicates the center of the reservoir layer.

Figure 8. Vertical cuts through a uniform half-space of conductivity 0.5 S m–1 for a VMD (top panels) and VED (bottom panels) showing the radial (solid) and
vertical (dashed) components of the Poynting vector at ranges of 2000 m (left), 6000 m (middle) and 10 000 m (right). Each set of curves has been normalized
to the maximum value at the given range. The weak dotted line indicates the center of the 1000 m reservoir layer for reference.

part of the complex Poynting vector, whereas the black arrows show its direction at the arrow origin. Figs 7 and 10 show vertical cuts through
the structure at three ranges.

Fig. 6 depicts the Poynting vector for a 1 Hz VED source (hence a purely TM mode) for the brine and weak hydrocarbon models. In
each instance, the reservoir layer at 1000 m depth is represented by three closely spaced arrows at its center and 10 m inside its edges, and

C© 2009 The Author, GJI, 179, 1429–1457

Journal compilation C© 2009 RAS



Marine CSEM 1445

Figure 9. Contours of the logarithm of the magnitude of the real part of the complex Poynting vector (greyscale) and its local direction at the origin of each
black arrow produced by a 1 Hz point VMD source located 50 m above the seafloor at a range of 0. The arrow orientation has been adjusted for the different
horizontal and vertical scales, and the horizontal black line depicts the seafloor. With reference to Fig. 1, the water depth H is 5000 m, the upper panel represents
the brine reservoir and the lower panel represents the weak hydrocarbon reservoir.

is bounded by arrows 100 m above and below the layer. For both models, energy flow in the ocean is upward and outward relative to the
seafloor at ranges beyond 1000 m (or about 4 skin depths in seawater). At this distance, direct diffusion through seawater from the source
is sufficiently weak that the EM field is dominated by the effect of diffusion through the sub-seafloor structure, as modified by the reservoir
layer to produce the changes in the seafloor EM field depicted in Fig. 4 (bottom).

Fig. 6 (bottom) shows the Poynting vector for the weak hydrocarbon model. Guided energy flow within the reservoir is manifest as strong
deflection of the Poynting vector magnitude contours away from the source and a nearly horizontal flow direction beyond a range of about
1500 m. This distance is the same for the strong reservoir model (not shown), hence does not depend on the reservoir conductivity. In fact, it
corresponds to about 2 burial skin depths, illustrating the well-known (e.g. Chave & Cox 1982; Srnka 1986; Chave et al. 1991) rule of thumb
that the source–receiver offset needs to be over 2−3 burial skin depths to detect a resistive layer. Energy flow in the overburden rotates from
being downward and outward to horizontal to upward and outward between 2000 and 4000 m range, and thereafter is in a steady directional
state. For increasing range, the Poynting vector magnitude at the seafloor for the hydrocarbon model is increasingly larger than that for the
brine model at a given range, as is evident by comparing the top and bottom panels in Fig. 6. Overall, the behaviour of TM mode energy flow
in the presence of a thin resistive layer is one of guided diffusion with continuous leakage into the over and underburden where dissipation is
larger.

Enhanced Joule heating in the brine reservoir (top panel) is evident through the deflection of the Poynting vector magnitude contours
toward the source within the reservoir layer. In addition, the energy flux is predominantly vertical downward within the brine layer near the
source, becoming more horizontal with range until the flux is upward beyond about 8000 m. Concomitantly, the energy flux becomes nearly
horizontal on either side of the layer, becoming somewhat more vertical with distance away from it. From Fig. 4 (bottom), the electric field is
weakly enhanced over that for a half-space in the 1000–5000 m interval, corresponding to the range span where the energy flux in the upper
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Figure 10. Vertical cuts through the brine and weak hydrocarbon models of Fig. 9 (top and bottom plots, respectively) showing the radial (solid) and vertical
(dashed) components of the Poynting vector at ranges of 2000 m (left), 6000 m (middle) and 10 000 m (right). Each set of curves has been normalized to the
maximum value at the given range. The weak dotted line indicates the center of the reservoir layer.

950 m in the Earth is the most horizontal, suggesting that the relatively resistive zone between the brine reservoir and seawater supports weak
guided energy flow.

Fig. 7 shows vertical cuts of the VED Poynting vector at 2000, 6000 and 10 000 m range for the brine (top panels) and weak hydrocarbon
(bottom panels) reservoirs. The bottom panels reinforce the conclusions from Fig. 6 (bottom): TM mode energy flow in the presence of a thin
resistive layer is dominated by guided diffusion through it, and this characteristic is established within a few burial skin depths of the source.
Further, the flow is weakly upward above and weakly downward below the layer beyond about 3000 m (or four burial skin depths). For the
brine model, the reservoir is a locus of dissipation and not horizontal energy flow, as manifest by a minimum value for the Poynting vector
within the layer. Further, the depth and vertical extent of peak horizontal energy flow moves deeper with range, consistent with the purely
diffusional nature of marine CSEM.

Fig. 8 (bottom) provides an instructive comparison with Fig. 7 by showing vertical cuts of the VED Poynting vector for a half-space
at the same ranges. For the hydrocarbon model, guided diffusion in the reservoir dominates over any tendency toward a half-space Poynting
vector. For the brine reservoir model, there is close resemblance to the half-space Poynting vector except within the conductive layer. The
presence of a conductive zone does not alter the range at which penetration of the peak energy flux reaches a given depth. Further, the increase
of depth and breadth of the radial Poynting vector peak with range is consistent with a diffusion process.

Fig. 9 shows the Poynting vector cross-section for a 1 Hz VMD source (hence a purely PM mode) for the brine and weak hydrocarbon
models. For both models and as for the TM mode in Fig. 6, energy flow in the ocean is upward and outward relative to the seafloor at ranges
beyond a few skin depths in seawater. However, energy flux downward from the sea surface is increasingly evident beyond 5000 m range. This
is due to a weak so-called air wave propagating along the seawater-air interface. Because a 5000 m ocean is electrically thick, the airwave is
not strong enough to overcome the upward energy flux from the seafloor over the ranges depicted. However, at a sufficiently large range, the
latter will attenuate such that the air wave will dominate the physics regardless of the subsurface structure, although this may well occur at
ranges below the receiver noise floor in deep water.

Fig. 9 (bottom) depicts the Poynting vector for the weak reservoir model, and is nearly indistinguishable from the response to a uniform
half-space. This is not unexpected because the purely inductive physics of the PM mode will easily couple across an electrically thin, resistive
layer, and is consistent with the flat nature of the normalized electric field at the seafloor for both reservoir models in Fig. 5 (bottom).

Fig. 9 (top) depicts the Poynting vector for the brine reservoir model. In and immediately around the brine layer, the energy flux is
downward from the source to about 1500 m (or 2 burial skin depths) range, and thereafter becomes downward above and in the upper parts
of the reservoir and upward below and in the lower parts of the reservoir. The upward flow from below becomes more vertical whereas
the downward flow from above becomes more horizontal with range. Concomitantly, the flow in the overburden changes from horizontal
to downward and then back to being horizontal with a slight upward bias, whereas the flow in the underburden changes from downward to
horizontal to upward. Further, the Poynting vector magnitude at the seafloor for a given range is consistently weaker for the brine as compared
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to the hydrocarbon reservoir, whereas there is a decrease across the brine reservoir whose size increases with range. Taken together, these
observations are consistent with a conductive reservoir acting as a locus for dissipation with no evidence for guided diffusion. The changing
direction of energy flow reflects the complex interplay between the EM fields throughout the structure.

Fig. 10 shows vertical cuts of the radial and vertical VMD Poynting vector at the same ranges as for Fig. 7. For the resistive reservoir
model (bottom), these are essentially the same as the half-space plots in Fig. 8 (top). For the brine reservoir in Fig. 10 (top), the presence of a
conductor consistently acts to increase the depth of the peak radial energy flux at a given range as compared to a half-space. It also reverses
the direction of the vertical Poynting vector across the conductive layer depth as compared to a half-space. Finally, for a given range, Fig. 10
suggests that the peak radial energy flux occurs at a larger depth for a PM mode as compared to a TM mode, an effect that is accentuated by
the presence of a conductive zone, as seen by comparing Fig. 7 (top) with Fig. 10 (top).

Fig. 11 shows the Poynting vector for a 1 Hz VMD (bottom) and VED (top) for a 500 m deep ocean overlying a uniform half-space
of conductivity 0.5 S m–1. The results graphically illustrate a key difference between the PM and TM modes. The horizontal magnetic field
for the latter vanishes at an interface with an insulator such as air, and hence the Poynting vector vanishes at the ocean-air boundary. As a
result, the TM mode is not affected by an air wave. In contrast, the PM mode seafloor response is dominated by energy flow downward from
the sea surface at ranges beyond about 4000 m, and the energy flux is increasingly downward throughout the subsurface structure as range
increases.

Weidelt (2007) presents an elegant derivation of the functional form of the leading term for an HED air wave, and shows that its
subtraction results in an EM field as a function of range that is largely the effect of subsurface structure. Although this is an important
elucidation of the relevant physics, it is unlikely to be useful in practice, as it involves subtraction of two large quantities (the measured field
and the analytic air wave formula) to reveal a much smaller one (the corrected field). As a result, small errors in the correction can produce

Figure 11. Contours of the logarithm of the magnitude of the real part of the complex Poynting vector (greyscale) and its local direction at the origin of each
black arrow produced by a 1 Hz point VMD (bottom) and VED (top) source located 50 m above the seafloor at a range of 0. The arrow orientation has been
adjusted for the different horizontal and vertical scales, and the horizontal black line depicts the seafloor. The water depth H is 500 m, and the subsurface
electrical structure is a half-space (σ = 0.5 S m–1).
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large errors in the corrected field. Probably a more viable way to eliminate airwave effects is use of a time- rather than a frequency-domain
approach, as has been suggested by others (e.g. Weiss 2007)

1 0 B I M O DA L S O U RC E S : T H E H E D A N D H M D

In contrast to the VED and VMD, horizontal electric and magnetic sources produce a mixture of TM and PM mode EM fields. At a given
azimuth, the EM field can be represented as radial, azimuthal and vertical components that are interdependent. For simplicity, the present
focus will be on the in-line and parallel directions. However, the electric field polarization ellipse becomes degenerate in these instances,
reducing to an ellipse with a fixed strike of 0◦, roll of 90◦ and pitch of 0◦ or a line, respectively. To more fully understand the behaviour of the
triaxial electric field, it will be examined at azimuths of 5◦ and 85◦ prior to viewing the Poynting vector in the nearly equivalent in-line and
parallel directions. Finally, the Poynting vector is the cross product of the electric and magnetic fields, so cannot be separated into distinct
modal contributions for horizontal sources.

Fig. 12 shows the six ellipse parameters defined in (63) for the electric field produced by an HED source in a 5000 m deep ocean at an
azimuth of 5◦. Both the magnitude of the semi-major axis and the generalized phase are consistent with the discussion in Section 9, displaying
electric field enhancement and a decrease in the phase slope with range as the conductivity of the reservoir layer decreases and a much weaker
effect for a conductive reservoir. The ellipticity approaches 0.35 near the source where direct diffusion in seawater is dominant, and then
becomes quite small. Beyond 4000 m, the semi-minor axis is about 1/20 of the semi-major axis for the hydrocarbon reservoir models, and

Figure 12. The six polarization ellipse parameters in (62)–(63) as a function of range for the 1 Hz seafloor electric field at an azimuth of 5◦ from a unit point
HED source located 50 m above the seafloor at the origin. With reference to Fig. 1, the water depth H is 5000 m, the solid line represents a uniform half-space
(σ = 0.5 S m–1), the dot-dash line represents the brine reservoir, the dashed line represents the weak hydrocarbon reservoir, and the dotted line represents the
strong hydrocarbon reservoir.
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Figure 13. The six polarization ellipse parameters of (62)–(63) as a function of range for the 1 Hz seafloor electric field at an azimuth of 85◦ from a unit point
HED source located 50 m above the seafloor at the origin. In all cases and with reference to Fig. 1, the water depth H is 5000 m, the solid line represents a
uniform half-space (σ = 0.5 S m–1), the dot-dash line represents the brine reservoir, the dashed line represents the weak hydrocarbon reservoir and the dotted
line represents the strong hydrocarbon reservoir.

is even smaller for the half-space and brine models. The remaining three angle parameters show the largest variation as direct diffusion in
seawater is overcome by diffusion through the subsurface. In particular, the roll indicates a change in the sense of rotation from clockwise to
counter-clockwise during this transition. Systematic differences that depend on subsurface structure are also evident. Because the TM mode
always dominates the PM mode in the in-line configuration, the variability evident in Fig. 12 is largely due to the former.

Fig. 13 shows the ellipse parameters for the electric field produced by an HED source in a 5000 m deep ocean at an azimuth of 85◦. The
magnitude is consistent with the discussion in Section 9, showing attenuation for a brine layer, a small difference from a half-space over the
depicted ranges for a weak hydrocarbon reservoir and a substantial increase with range for a strong hydrocarbon reservoir. The generalized
phase displays more structure than at 5◦ azimuth, with the hydrocarbon models peaking, then dipping and finally rising at a faster rate with
range. The peak occurs at about 4000 and 8000 m range for the strong and weak hydrocarbon models, respectively, which are both smaller
than the range where the amplitude changes. Concomitantly, the ellipticity peaks at values that approach circularity and the ellipse strike shifts
dramatically, with weaker changes in the roll and pitch. The brine model also displays a marked change in ellipticity and strike, although with
a different pattern.

Fig. 14 shows the ellipse parameters for the electric field produced by an HED source in a 1000 m deep ocean at an azimuth of 5◦. For
this water depth, the air wave effect is expected to be large, and is manifest as the well known flattening of the amplitude and phase curves at
ranges where the upward diffusing electric field from below the seafloor becomes substantially weaker than the downward diffusing air wave
that has a nearly constant amplitude and phase, reflecting the negligible fraction of a free space wavelength that 10 000 m range represents.
Because the upward diffusing electric field is weaker for the half-space and brine models, this occurs at a smaller range compared to the
weak reservoir model; the strong reservoir model does not show any perceptible effect in the amplitude and phase. However, comparison of
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Figure 14. The six polarization ellipse parameters of (62)–(63) as a function of range for the 1 Hz seafloor electric field at an azimuth of 5◦ from a unit point
HED source located 50 m above the seafloor at the origin. In all cases and with reference to Fig. 1, the water depth H is 1000 m, the solid line represents a
uniform half-space (σ = 0.5 S m–1), the dot-dash line represents the brine reservoir, the dashed line represents the weak hydrocarbon reservoir and the dotted
line represents the strong hydrocarbon reservoir.

Figs 12 and 14 shows marked variability in the remaining ellipse parameters at smaller source–receiver offsets than for the amplitude and
phase, including for the strong reservoir model.

By comparing Figs 12 and 13, it is apparent that sensitivity to resistive layers is higher at azimuths near the in-line orientation for an
HED source, whereas sensitivity to conductive layers is more substantial at azimuths near the parallel one. However, this does not mean
that measurement of the in-line orientation is always preferred in hydrocarbon applications. Constable & Weiss (2006) utilized synthetic
inversions to show that the combination of the in-line and parallel orientations is required to resolve a resistive layer, and that use of only the
in-line orientation misses the layer completely. Thus, measurement of the EM field over a range of azimuths is essential, as will inevitably
happen in a practical survey.

Taken in aggregate, Figs 12–14 demonstrate that measurement of the triaxial rather than only the horizontal electric field components
can yield additional information about subsurface structure. Similar results are obtained for the magnetic field. However, these diagrams do
not provide great insight into the physics governing EM diffusion within the substrate, and hence it becomes necessary to investigate the
Poynting vector.

Fig. 15 shows the Poynting vector for a 1 Hz HED source and the brine model in the in-line (bottom) and parallel (top) orientations.
Because the TM mode always dominates the seafloor electric field in the in-line direction, it is expected that the corresponding HED Poynting
vector will closely resemble that for a VED source. Comparison of Fig. 6 (top) and Fig. 15 (bottom) shows that this is indeed the case except
for an increase in magnitude at a given range and a weak airwave near the sea surface for the HED. Vertical cuts through the cross-section
closely resemble those in Fig. 7 (top). In contrast, the parallel seafloor electric field for a brine reservoir is largely PM mode at ranges under
3500 m (or 5 burial skin depths), and thereafter is a combination of TM and PM modes with comparable magnitudes out to the largest range
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Figure 15. Contours of the logarithm of the magnitude of the real part of the complex Poynting vector (colours) and its local direction at the origin of each
white arrow produced by a 1 Hz point HED source with a moment of 1 A-m located 50 m above the seafloor at a range of 0. The length of each arrow is
identical, and the horizontal black line depicts the seafloor. The water depth H is 5000 m, and the subsurface electrical structure is the brine model of Fig. 1.
The top panel shows the Poynting vector at an azimuth of 90◦, whereas the lower panel shows it at an azimuth of 0◦. In both instances, the horizontal component
is in the radial direction.

shown. This is reflected in Fig. 15 (top), which closely resembles Fig. 9 (top) close to the source but is different from both that plot and Fig. 6
(top) beyond that point, where the flux from below the conductive layer to within the ocean layer is increasingly vertical as depth decreases.
Further, comparison of the top and bottom panels of Fig. 15 shows that the in-line energy flux is larger than the parallel energy flux throughout
the structure.

Fig. 16 shows the Poynting vector for a 1 Hz HED source and the weak hydrocarbon reservoir model in the in-line (bottom) and parallel
(top) orientations. As for the brine reservoir, the in-line cross-section closely resembles that for the VED in Fig. 6 (bottom) and Fig. 7 (top),
except that guided diffusion in the resistive layer is established very close to the source for the HED. In the parallel direction, the seafloor PM
mode is larger than the TM mode at ranges under 12 000 m, although the difference is quite small beyond 6000 m. Fig. 16 (top) bears some
resemblance to Fig. 9 (top) out to 6000 m range, and thereafter the Poynting vector is increasingly vertical with distance above the resistive
layer. A decrease in the Poynting vector magnitude across the reservoir layer that grows with range is also evident. As for the brine model,
the parallel direction Poynting vector is much weaker than the in-line one for a given range.

Fig. 17 shows the Poynting vector for a 1 Hz HED source and the strong hydrocarbon reservoir model. The in-line cross-section resembles
that for the VED in Fig. 6 (bottom) and Fig. 7 (top) and the weak reservoir model in Fig. 16 (bottom), except that enhancement of the Poynting
vector magnitude both within the reservoir layer and substrate at a given range is stronger. In the parallel direction, the seafloor PM mode
is larger than the TM mode only at ranges below about 3000 m, and the TM mode becomes increasingly dominant with range beyond that
point. Fig. 17 (top) resembles Fig. 16 (top) close to the source, but changes form around 3000 m range and then evolves into nearly vertical
flow out of the reservoir layer both above and below it. Concomitantly, the Poynting vector magnitude displays a sharp minimum within the
reservoir layer that grows with increasing range, energy flux in the ocean becomes nearly vertical, and the magnitude at a given range becomes
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Figure 16. Contours of the logarithm of the magnitude of the real part of the complex Poynting vector (greyscale) and its local direction at the origin of each
black arrow produced by a 1 Hz point HED source with a moment of 1 A-m located 50 m above the seafloor at a range of 0. The length of each arrow is
identical, and the horizontal black line depicts the seafloor. The water depth H is 5000 m, and the subsurface electrical structure is the weak hydrocarbon
reservoir model of Fig. 1. The top panel shows the Poynting vector at an azimuth of 90◦, whereas the lower panel shows it at an azimuth of 0◦. In both instances,
the horizontal component is in the radial direction.

dramatically smaller than for the in-line orientation. The physical picture that emerges for the region where the TM mode is dominant is one
of enhanced dissipation from the reservoir layer with no evidence for guided diffusion as in the in-line direction.

The observations about Figs 15–17 are consistent with the behaviour of the EM fields, and can be understood in terms of their changes
across the subsurface structure. For the in-line direction, the Poynting vector is (Sρ , Sz) = (−EzB∗

φ , EρB∗
φ)/2μ. Fig. 18 shows profiles of the

magnitude and phase of Eρ , Ez and Bφ from the seafloor to the bottom of the model at ranges of 2000 and 8000 m, respectively. At both of
these ranges, the TM mode is weakly (a factor of 2–5) larger than the PM mode for the horizontal field components except around 500 m
depth for the brine and weak hydrocarbon models, whereas the TM mode is dominant everywhere for the strong hydrocarbon model. For the
hydrocarbon reservoir structures, Ez is discontinuous at the reservoir boundary and increases within it because the vertical electric current
density is continuous, whereas Eρ is continuous at the reservoir boundary, decreases within it and undergoes a nearly 180◦ phase change
across the layer. Bφ is continuous and less dependent on the conductivity jump. Because Ez is substantially larger than Eρ , the in-line Poynting
vector is nearly horizontal within the reservoir and its vertical component changes sign across it, consistent with Figs 16 and 17 (bottom).
Eρ and Bφ for the brine model are similar to those for a half-space, whereas Ez displays a minimum at the layer due to continuity of vertical
electric current density. Consequently, Sρ is at a minimum in the brine layer, and there is no guided diffusion.

For the parallel direction, the Poynting vector is (Sρ , Sz) = (EφB∗
z , −EφB∗

ρ) / 2μ. At 2000 m range (Fig. 19, top panels), the horizontal
fields are the result of a complex interplay between the TM and PM modes. At 8000 m range (Fig. 19, bottom panels), the Eφ TM mode is
much larger than the PM mode for all models, whereas Bρ is the result of depth-varying interplay between the modes except for the strong
hydrocarbon model, where the TM mode is dominant. Eφ displays a change of sign across both hydrocarbon reservoirs, resulting in a sharp
minimum in the Poynting vector that is especially apparent for the strong hydrocarbon model. At 2000 m range, Bρ is comparable to Bz near
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Figure 17. Contours of the logarithm of the magnitude of the real part of the complex Poynting vector (greyscale) and its local direction at the origin of each
black arrow produced by a 1 Hz point HED source with a moment of 1 A-m located 50 m above the seafloor at a range of 0. The length of each arrow is
identical, and the horizontal black line depicts the seafloor. The water depth H is 5000 m, and the subsurface electrical structure is the strong hydrocarbon
reservoir model of Fig. 1. The top panel shows the Poynting vector at an azimuth of 90◦, whereas the lower panel shows it at an azimuth of 0◦. In both instances,
the horizontal component is in the radial direction.

the reservoir, whereas Bρ is substantially larger than Bz at 8000 m. As a result, the parallel direction Poynting vector is nearly vertical and
changes sign across the layer, consistent with Figs 16 and 17 (top).

Finally, the Poynting vector and seafloor field behaviour from an HMD source is very similar to that for an HED source. This ought not
to be a surprise given that an HED of a given length is an approximation to an HMD with the same diameter, as most of the return current
from the bared ends of the HED flows in the water. This does raise the issue of whether an HMD might offer practical advantages over an
HED in terms of deployment ease, source moment, ability to maintain azimuth and accuracy of the point source approximation that require
further investigation.

1 1 C O N C LU S I O N S

This paper presents a comprehensive framework for the solution of 1-D EM induction problems in terms of independent modes that separate
the salient physics into two distinct types. It also provides solutions for finite versions of the four fundamental sources along with their point
limits. It is hoped that collecting this information in a single place will serve both pedagogic and practical purposes.

Throughout the paper, emphasis has been placed on the diffusional nature of the EM field in marine CSEM. This is more than a pedantic
point, as the use of wave propagation analogies for diffusion can lead to incorrect physical insight. Further, basing the theory on the governing
diffusion physics rather than the full Maxwell equations results in considerable conceptual and mathematical simplification, as may be seen
through comparison to Løseth et al. (2006) and Amundsen et al. (2006). This reflects the fact that inclusion of displacement current in
the governing equations, and the mathematical complexity that ensues, does not imply that wave propagation phenomena are present in the
physics.
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Figure 18. From top to bottom, the logarithm of the amplitude and the phase of the radial and vertical electric, and azimuthal magnetic fields from the seafloor
to the base of the model structure at 2000 m range (first six panels) and 8000 m range (last six panels), as produced by a unit HED source at 50 m height
above the seafloor at the origin and at an azimuth of 0◦. The four models shown are a uniform half-space (solid line), the brine model (dash-dot line), the weak
hydrocarbon model (dashed line) and the strong hydrocarbon model (dotted line).

In Section 8 and Figs 12–14, evidence has been presented that a single component view of marine CSEM fields is insufficient, and that
in fact the three Cartesian components are interdependent in a complicated manner. Even when the elliptical polarization of the EM field
is taken into account, it is difficult to obtain much insight into marine CSEM from field behaviour only at the seafloor. Nevertheless, it is
clear that there is information in triaxial as opposed to only horizontal measurements of the EM field. It has also been shown that, leaving
aside possible signal-to-noise considerations, there is limited gain from augmenting either electric or magnetic field data with the conjugate
quantity for a given source–receiver offset. However, because the electric and magnetic fields respond differently for a given source–receiver
orientation, there may be value in measuring both quantities in practical surveys where a wide range of source–receiver geometries occur.

A core theme of this paper is that understanding the physics of marine CSEM requires insight into the flow of energy in the subsurface
structure through visualization of the Poynting vector. Section 9 and Figs 6–10 present that quantity for unimodal VED and VMD sources,
showing graphically that, for the TM mode, a thin resistive layer serves as the locus for horizontal energy channeling with concomitant leakage
into more conductive regions, leading to enhancement of the seafloor EM field compared to models without resistive zones. In contrast, a
conductive zone results only in field attenuation through increased Joule heating. The PM mode is quite insensitive to a thin resistive layer,
and is attenuated by dissipation in a conductive zone. It is also strongly influenced by the so-called air wave diffusing along the sea surface,
whereas the TM mode is unaffected. None of these results are new, but their presentation in the form of the Poynting vector provides a basic
grounding for marine CSEM physics that has heretofore been obscure.

For the bimodal HED and HMD sources, the Poynting vector does not separate into TM and PM mode components, and hence insight
from the unimodal sources is needed to understand the energy flow. Additional complexity ensues from the azimuthal dependence of the EM
field that is reflected in the Poynting vector. However, it is only necessary to consider it in the in-line and parallel configurations to understand
energy flow for any source–receiver orientation, and those results have been analyzed in Section 10.
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Figure 19. From top to bottom, the logarithm of the amplitude and the phase of the azimuthal electric, and radial and vertical magnetic fields from the seafloor
to the base of the model structure at 2000 m range (first six panels) and 8000 m range (last six panels), as produced by a unit HED source at 50 m height above
the seafloor at the origin and at an azimuth of 90◦. The four models shown are a uniform half-space (solid line), the brine model (dash-dot line), the weak
hydrocarbon model (dashed line) and the strong hydrocarbon model (dotted line).

Finally, extension of the Poynting vector analysis to 2-D and 3-D structures would be of considerable benefit to both students and
petroleum industry practitioners. Such calculations could be obtained fairly easily from existing numerical simulation codes.
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A P P E N D I X : D E R I VAT I O N O F T H E M O DA L E Q UAT I O N S

Using the Helmholtz representation theorem, any vector field may be written in terms of its toroidal, consoidal and vertical parts

T = ẑ × ∇hr + ∇hs + t ẑ, (A1)
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where r, s and t are scalar functions and 〈r〉 = 〈s〉 = 0 using (9). By virtue of (3), a condition on the Helmholtz representation of the magnetic
induction is ∇2

h s + ∂ zt = 0. This condition may be satisfied by choosing r = �, s = ∂z� and t = − ∇2
h�, yielding (10). This is equivalent

to the familiar vector potential with A = (∂y�, −∂x�, −�) and B = ∇ × A. The scalar functions � and � represent poloidal and toroidal
magnetic modes for which governing differential equations will be derived using (4) and (5) combined with a Helmholtz representation of
the electric field

E = ẑ × ∇hα + ∇hβ + γ ẑ, (A2)

and the source current density (6).
Substituting (10) and (A2) into Faraday’s Law (4), assuming e−iωt time dependence and writing out the three components yields

∂x (−∂zα − iω∂z�) − ∂y (−γ + ∂zβ − iω�) = 0

∂y (−∂zα − iω∂z�) + ∂x (−γ + ∂zβ − iω�) = 0

∇2
h (iω� + α) = 0.

(A3)

The first two equations are the Cauchy–Riemann conditions. Taking

u1 = −∂zα − iω∂z�

v1 = −γ + ∂zβ − iω�,
(A4)

these require

u1 + iv1 = f1 (x + iy) (A5)

where f 1 is an analytic function of a complex variable, and u1 and v1 are harmonic.
Any transformation may be made to the modal scalar functions provided that the pre-Maxwell equations are not violated and the fields

are unchanged. Let � = � ′ − υ, where υ = � + α/iω. Substituting into (10) yields

B = ẑ × ∇h� + ∇h∂z�
′ − ∇h∂zυ − ∇2

h�
′ ẑ + ∇2

hυ ẑ, (A6)

where the final term vanishes because of the last equation in (A3). Consequently, writing �=�′ + ς and choosing ς such that ẑ×∇hς = ∇h∂zυ

yields (10), and hence υ may have been taken as zero from the outset. Because u1 = ∂ z υ, that quantity is also zero, and hence v1 is a constant
(i.e. independent of x and y). However, a constant may be added to � in the second term of (A4) without changing (10), and hence v1 may
also be taken as zero. This establishes two conditions on α, β and γ .

Repeating the same procedure using Ampere’s Law (5) yields

∂x (∇2� − μσα − μϒ) − ∂y(∂z� + μσβ + μT ) = 0

∂y(∇2� − μσα − μϒ) + ∂x (∂z� + μσβ + μT ) = 0

∇2
h� − μσγ − μ
 = 0.

(A7)

The first two equations are again the Cauchy–Riemann conditions. Defining

u2 = ∇2� − μσα − μϒ

v2 = ∂z� + μσβ + μT, (A8)

these require

u2 + iv2 = f2 (x + iy) , (A9)

where f 2 is an analytic function. Because (10) is independent of ∂ z�, that quantity may be chosen arbitrarily (note that this is functionally
equivalent to the choice of gauge through specifying ∇ · A for the ordinary vector potential), and hence v2 may be taken as zero. This means
that u2 is independent of x and y, but a constant may be added to ϒ in (6) without changing the source current density, and hence u2 is also
zero. Combining the terms yields the electric field (11) and the frequency domain version of the modal differential eqs (12) and (13).
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