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A steady theory is presented for gravity currents propagating with constant speed into
a stratified fluid with a general density profile. Solution curves for front speed versus
height have an energy-conserving upper bound (the conjugate state) and a lower
bound marked by the onset of upstream influence. The conjugate state is the largest-
amplitude nonlinear internal wave supported by the ambient stratification, and in the
limit of weak stratification approaches Benjamin’s energy-conserving gravity current
solution. When the front speed becomes critical with respect to linear long waves
generated above the current, steady solutions cannot be calculated, implying upstream
influence. For non-uniform stratification, the critical long-wave speed exceeds the
ambient long-wave speed, and the critical-Froude-number condition appropriate for
uniform stratification must be generalized. The theoretical results demonstrate a clear
connection between internal waves and gravity currents. The steady theory is also
compared with non-hydrostatic numerical solutions of the full lock release initial-
value problem. Some solutions resemble classic gravity currents with no upstream
disturbance, but others show long internal waves propagating ahead of the gravity
current. Wave generation generally occurs when the stratification and current speed
are such that the steady gravity current theory fails. Thus the steady theory is
consistent with the occurrence of either wave-generating or steady gravity solutions
to the dam-break problem. When the available potential energy of the dam is large
enough, the numerical simulations approach the energy-conserving conjugate state.
Existing laboratory experiments for intrusions and gravity currents produced by
full-depth lock exchange flows over a range of stratification profiles show excellent
agreement with the conjugate state solutions.

1. Introduction
The behaviour of a gravity current propagating in a stratified fluid presents an

opportunity to revisit a classic problem of fluid mechanics that is highly relevant to
environmental flows. In the classic gravity current problem (Benjamin 1968; Simpson
1999), a mass of dense (or light) fluid propagates into a lighter (heavier) ambient fluid
until arrested by friction or boundaries. Motion can be initiated by the removal of
a barrier separating light and dense reservoirs, known as a lock exchange. Benjamin
(1968) found solutions for steady gravity current propagation speeds, including a
special energy-conserving solution when the current occupies exactly half the fluid
depth. Smaller current heights imply energy dissipation and larger heights require
negative dissipation (energy input). Several extensions have been considered, including
non-Bousinesq currents (Lowe, Rottman & Linden 2005) and partial depth lock
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Figure 1. Problem description. Gravity current and ambient properties: gravity current height
h, layer depth H , initial dam height ho, and length Lo, isopycnal displacement η, ambient density
profile ρ(z), where z = z − η(z), and top, ρt , and bottom, ρb , densities.

releases for which the initial-value problem gives energy-conserving gravity currents
different from Benjamin’s energy-conserving solution (Shin, Dalziel & Linden 2004).
Although, this latter extension has been been challenged by Ungarish (2008).

The presence of ambient stratification allows for a richer set of behaviours than
in unstratified gravity currents because the fast long internal waves can propagate
in the fluid ahead of the current. These long internal waves are widespread in the
stratified ocean and atmosphere. Atmospheric fronts generate undular bores such as
the Morning Glory in northern Australia (Rottman & Simpson 1989), which steepen
to produce large-amplitude solitary-type waves. Buoyant river plumes have been
observed to generate nonlinear internal waves in the coastal ocean (Nash & Moum
2005). The advection of deep cold-water masses by the internal tide causes internal
bores which steepen to form internal solitary waves (Pineda 1991). These nonlinear
internal waves closely resemble those generated by the interaction of the barotropic
tide with topography (see review by Helfrich & Melville 2006), and may result in
significant ocean mixing (Nash & Moum 2005) and transport of marine organisms
(Helfrich & Pineda 2003).

A depiction of the problem considered is shown in figure 1. A volume of fluid with
height ho, length Lo and density ρc collapses into an ambient region with general
stratification ρ(z), resulting in a gravity current with thickness h and speed U . The
current displaces isopycnals a distance η, directly by forcing them upward as it
flows beneath, and indirectly by exciting waves which propagate ahead. The flow is
confined to a layer of finite depth, H , with top and bottom densities ρt and ρb. After
sufficient time following the dam-break, the current becomes long compared with H ,
and the flow is nearly uniform (independent of x) in the region above the current.
The isopycnal displacement between the region upstream (in front) of the current
to the region above it may then be approximated as a one-dimensional function,
η(z). We will refer to the region in front of the current as upstream because in the
moving reference frame the problem is similar to stratified flow over topography,
and this terminology maintains consistency with upstream influence problems. Also
note that for the free-slip bottom condition that we consider, the dense bottom
current is analogous under the Boussinesq approximation to a surface current with
an equivalent buoyancy deficit. Moreover, by symmetry, when ρc = ρb, the bottom
current is equivalent to a neutral density intrusion (Ungarish 2005b; Flynn & Linden
2006) into a stratified fluid symmetric around z = 0.

The stratification in the ambient fluid supports waves with a linear long-wave
speed, co, that depends on ρ(z). Nash & Moum (2005) observed internal waves in
the Columbia River plume when the front speed was subcritical to the long-wave
speed, U <co. Initially, the plume travelled faster than co, behaving as a surface
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gravity current, but as it slowed, large-amplitude waves formed near the front and
propagated ahead of it. In laboratory experiments of gravity currents with linear
background stratification, Maxworthy et al. (2002) also observed internal waves in
the subcritical regime, which were generated at the front and carried dense fluid
ahead of the current. In the supercritical regime, there were no upstream waves and
the gravity currents resembled the solutions of Benjamin (1968).

Ungarish & Huppert (2002) introduced a shallow-water hydraulic model for a
gravity current moving at the base of a stratified ambient and their results agreed
with the experiments of Maxworthy et al. (2002). They found the speed is driven by
the pressure gradient at the mid-height of the nose, which is modified by ambient
stratification, but the Froude-number condition relating speed to pressure gradient is
roughly independent of stratification. Ungarish (2005a) extended the shallow-water
theory to include nonlinear stratification and Ungarish (2005b) used the theory
to predict neutral density intrusions propagating into a mixed region between two
homogeneous layers. Results for the front speed agreed well with experiments by Faust
& Plate (1984) and Britter & Simpson (1981). In light of its good agreement with
experiments, the shallow-water model appears to be a robust tool for predicting gravity
current behaviour in stratified fluids. However, drawbacks include the requirement of
an empirical Froude-number condition (Ungarish & Huppert 2002) and the inherent
neglect of internal waves generated in the ambient fluid. Remarkably, Ungarish &
Huppert (2006) found that very little energy is exchanged between the waves and
the current, even as the waves slow down the front under subcritical conditions.
Nonetheless, we are concerned with the wave behaviour, and therefore must move
beyond the shallow-water model.

Ungarish (2006) developed a theory for the steady gravity current speed in a linearly
stratified ambient. He went beyond the shallow-water model by using Long’s method
(Baines 1997) to compute the displacement of isopycnals as they move over the current.
The theory illustrates the effect of ambient stratification on propagation speed and
energy dissipation, and front speeds approach the classic Benjamin (1968) results in the
limit of weak ambient stratification. Some stratification configurations have multiple
steady solutions, corresponding to discrete internal modes from Long’s model, with
higher modes having slower associated gravity current speeds. Ungarish suggested
that a current released by dam break will lock onto the slowest stable solution
and some support is given by numerical results of Birman, Meiburg & Ungarish
(2007) showing correspondence between front speed and second-mode solutions for
subcritical gravity currents. However, Long’s method does not give higher-mode
solutions for all combinations of ρc and h, and because it is a steady theory, is
not strictly valid for subcritical currents which generate upstream waves. Thus, the
higher-mode solutions are an open question and one we explore in this paper.

To illustrate the dichotomy between wave and gravity-current behaviour, the results
from a continuously stratified non-hydrostatic numerical model for the initial-value
problem with two different dam heights, ho/H =0.6 and ho/H = 0.9, and a linearly
stratified ambient density profile, are shown in figure 2. These results are described in
greater detail in subsequent sections. For now, note the distinction between the first
case, with waves generated at the front and outrunning the gravity current, and the
second, which resembles a classic Benjamin gravity current, with a steady propagation
speed and no waves. The increase in ho from cases (a) to (b) represents an increase
in the initial available potential energy which produces a larger, faster current. In
(a), the current is subcritical with respect to the linear long-wave speed, U/co = 0.75,
whereas in (b) the current is nearly critical U/co = 0.95.
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Figure 2. Comparison between two numerical solutions to the dam-break problem with
different initial dam height (S = 1). (a) ho =0.6, (b) ho = 0.9. The first is subcritical, with internal
wave generation; the second is nearly critical, with a classic gravity-current appearance. The
lock is at x = 20. The total depth, H , is used to scale x, z, and the lock depth ho.

We begin by extending the steady theory of Ungarish (2006) to an ambient fluid with
a general density profile, and we identify a special energy-conserving solution for each
stratification which is analogous to Benjamin’s classic solution. Bounds on the steady
theory predict the conditions for either steady gravity currents or gravity currents
that generate internal waves in two-dimensional Navier–Stokes simulations of the
initial dam-break problem. The numerical solutions show that the energy-conserving
solutions are approached as the height of the dam (i.e. the available potential energy)
is increased. In § 2, governing equations and non-dimensional variables are introduced.
In § 3, literature on nonlinear internal waves is summarized to illustrate the connection
with gravity currents in a stratified fluid. In § § 4 and 5, theory for steady gravity
currents in general stratification is developed and solutions are described. In § 6,
numerical calculations of the dam-break initial-value problem are described and
compared with the steady theory to develop bounds on steady gravity current and
internal wave-generating solutions. Finally, in § 7, the steady theory is compared with
experimental results on gravity currents and intrusions in stratified fluids available
from the general literature.

2. Governing equations and non-dimensionalization
A general description of internal waves and gravity currents in a stratified fluid

begins with the two-dimensional Boussinesq Navier–Stokes equations,

∂u∗

∂t
+ u∗ · ∇u∗ = − 1

ρ∗
o

∇p∗ − ρ∗

ρ∗
o

gk̂ + ν∇2u∗, (2.1a)

∂ρ∗

∂t
+ u∗ · ∇ρ∗ = κ∇2ρ∗, (2.1b)

∇ · u∗ = 0. (2.1c)
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Dimensional variables, denoted with a star, are: velocity, u∗(x∗, z∗, t∗) = (u∗, w∗),
density, ρ∗(x∗, z∗, t∗), a reference density ρ∗

o , pressure p∗(x∗, z∗, t∗), the acceleration

due to gravity, g, and the unit vector in the positive z-direction, k̂. The viscosity is ν,
and κ is the density diffusion coefficient. Subsequently, we use the non-dimensional
(non-starred) velocity, pressure, density, length and time scales,

u∗ = u
√

g′H, p∗ = pρ∗
og

′H, ρ∗ = ρρ∗
o , x∗ = xH,

z∗ = zH, h∗ = hH, t∗ = tH/
√

g′H,

}
(2.2)

where

g′ = g(ρb − ρt )/ρt (2.3)

is the reduced gravity, based on the ambient density difference. Note that the
dimensional ambient density profile is ρ∗ = ρρ∗

o and bottom and top densities are
ρ∗

b = ρbρ
∗
o and ρ∗

t = ρtρ
∗
o . The reduced gravity, based on the gravity current density

anomaly, is

g′/S = g(ρc − ρt )/ρt , (2.4)

where

S =
ρb − ρt

ρc − ρt

� 1 (2.5)

is a parameter that compares the ambient stratification to the gravity current density
anomaly.

The normalized gravity current front speed is

U =
U ∗

√
g′H

. (2.6)

The stratification supports a full spectrum of internal waves with a first-mode long-
wave speed, c∗

o = co

√
g′H , obtained from a linear eigenvalue problem in ρ(z) (Baines

1997). The ratio of the gravity-current front speed to the linear long-wave speed
defines the Froude number,

Fr = U/co. (2.7)

For the case of linear stratification with constant dρ/dz = −1, co = 1/π, and Fr = πU .
A second gravity-current scaling can be defined based on the density difference

between the current and the ambient fluid,

Ugc =
U ∗

√
g′H/S

= U
√

S, (2.8)

where subscript gc denotes classic Benjamin gravity-current scaling. Note that the
limit S → 0 represents the classic gravity-current problem. However, here we require
this limit to be achieved by reducing the ambient stratification, such that (ρb −
ρt ) → 0, rather than (ρc − ρt ) → ∞, since all theory we present makes the Boussinesq
assumption, (ρc − ρt )/ρt 	 1.

The front speed is frequently normalized in yet a third way using the reduced
gravity based on the gravity current, g′/S, and the gravity current height, h,

Uh =
U ∗

√
g′h/S

. (2.9)

We note that (2.9) is frequently refered to as the gravity current Froude-number
condition (to be distinguished from (2.7)). Each of the three normalizations, U , Ugc

and Uh, reveal different gravity-current properties.
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3. Internal solitary waves
Large-amplitude internal waves frequently observed in the ocean, atmosphere and

laboratory experiments are long and maintain coherence over long propagation
distances. The canonical weakly nonlinear theory that captures these features is
the Korteweg–de Vries (KdV) equation, which includes the competing effects of
nonlinearity and non-hydrostatic dispersion. An extended KdV (eKdV) equation,
which adds cubic nonlinearity (see Miles 1980) is frequently employed.

Fully nonlinear theories can be obtained from (2.1) by neglecting viscosity and
diffusion, assuming a frame of reference moving with the wave speed, c, and integrating
the momentum equations along a streamline originating in the undisturbed fluid (see
figure 1). This yields the Dubreil–Jacotin–Long (DJL) equation (Lamb 2002) for the
streamline displacement, η(x, z) (measured relative to the ambient),

∇2η +
N2(z − η)

c2
η = 0, (3.1)

with boundary conditions η =0 at z = 0, 1 and η → 0 as x → ± ∞. Here, N is the
dimensionless Brunt-Väisälä frequency, N2 = − dρ/dz̄. This is an eigenvalue problem
for c and η(x, z) for a solitary wave centred at x =0. DJL solutions become broad-
crested with increasing amplitude, and approach an infinite-wavelength solution that,
in the half-plane, represents a special energy-conserving bore (Brown & Christie 1998;
Lamb & Wan 1998), with uniform upstream and downstream regions connected by a
(dissipationless) jump. In this limit, the flat isopycnals in the disturbed region are said
to be conjugate to those in the undisturbed region (termed originally by Benjamin
1966), and we refer to this dissipationless bore solution as the conjugate state. The
conjugate state is the solution, η(z), to the one-dimensional eigenvalue problem

η′′(z) +
N2(z − η)

c2
η = 0, (3.2a)

subject to the boundary conditions

η(0) = η(1) = 0. (3.2b)

For certain density profiles, solutions to (3.1) do not reach the broad-crested limit as
the wave amplitude is increased, but rather develop a convective instability marked by
a recirculating core of trapped fluid. The onset of instability, as amplitude is increased,
occurs when u(0) = c (for waves of elevation), a condition termed the breaking limit
(Lamb & Wan 1998). Solutions beyond the breaking limit were computed by Brown
& Christie (1998), but because the densities in the core are outside the range of
the ambient density and exhibit gravitationally unstable stratifications in the core,
solutions are unphysical. Derzho & Grimshaw (1997) found weakly nonlinear solitary-
wave solutions with trapped cores in near-linear stratification by matching an outer
region where streamlines are continuous and satisfy (3.1), with a core region of
constant density and uniform vorticity. These waves become broad-crested with
increasing amplitude, approaching a bore-like solution similar to the conjugate state,
but with a trapped core. While conjugate states without trapped cores represent
a dissipationless bore, conjugate states with trapped cores can be thought of as
special energy-conserving gravity currents, with height hCS . Lamb & Wilkie (2004)
found conjugate states (3.2) with trapped cores for arbitrary ambient stratification.
The boundary conditions of (3.2) are modified to η(hCS) = hCS, η(1) = 0, where hCS

denotes the conjugate state trapped core (energy-conserving gravity current) height.
The external solution is matched to the core by applying Bernoulli’s equation along
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the separating streamline and a momentum balance over the full depth. The theory is
limited to situations where the core density is equal to the bottom density (implying
S = 1) and the vorticity in the core is arbitrary. We will extend the theory to calculate
gravity currents with arbitrary S, but take the core vorticity to be zero.

The nonlinear internal-wave solutions are also closely related to upstream wave
generation in stratified flow over topography. The DJL equation (3.1) is identical to
Long’s model (Baines 1997) for a steady flow approaching a bottom topographic
disturbance. For certain subcritical (Fr < 1) conditions, Long’s model predicts
upstream-propagating disturbances that violate the assumption of steady uniform
approach flow. These degenerate solutions are identical to the two-dimensional wave-
breaking DJL solutions. Moreover, in a frame moving at speed c, a trapped core may
be thought of as a topographic bump and the upstream ambient fluid as the uniform
approach flow. Ungarish (2006) used this approach along with a one-dimensional
Long’s model to compute steady solutions for gravity currents in a linearly stratified
fluid. He recognized that solutions become unphysical at the breaking limit, signifying
the onset of upstream-propagating disturbances, but as in Long’s model, all Fr > 1
solutions are valid. However, the connection between the breaking and internal wave
generation was not fully explored.

The dam-break solutions shown in figure 2 show the connections between gravity
currents, Long’s model, and conjugate states with trapped cores. For small dam
height, Fr < 1 and the gravity-current fluid generates waves consistent with upstream
propagation in Long’s model (figure 2a). However, for large dam height, Fr � 1 and
a pure gravity current is obtained (figure 2b) which is consistent with the trapped core
conjugate state. The smooth streamline displacement over the gravity current is also
consistent with supercritical Long’s model solutions. In general, smaller dam heights
are more likely to generate waves, and large heights, steady gravity-current solutions,
but the crossover will depend on the ambient stratification and the parameter S.

Here, we extend the conjugate-state wave theory of Lamb & Wilkie (2004) to
compute steady gravity-current solutions for arbitrary core density and ambient
stratification. It will be shown that the trapped-core conjugate-state solutions are
analogous to Benjamin’s energy-conserving gravity-current solution, and that the two
are equivalent in the limit of small S. Moreover, by allowing dissipation, the Lamb &
Wilkie theory can yield solutions for a range of h. These dissipative gravity currents
can be calculated for arbitrary stratification, and overlap with the results of Ungarish
(2006) for linear ρ(z). However, steady solutions are limited by the onset of convective
instability when u(hCS ) = C. From full numerical dam-break solutions, it is shown
that this limit marks a transition between steady gravity currents and those that
generate internal solitary waves in the fluid ahead.

4. Steady gravity current theory
Here a theory for steady gravity currents is developed by adapting the trapped-core

conjugate-state theory of Lamb & Wilkie (2004). The streamline displacement, η(z),
is computed by assuming the gravity current is long, and the flow above the gravity
current is approximately uniform in x, enabling the hydrostatic approximation. As
a result, the region near the nose, where the flow changes rapidly, is not resolved.
However, evidence that the isopycnal displacement through the front of a trapped core
is smooth and resembles a gravity-current front is provided in the two-dimensional
trapped core solutions of Derzho & Grimshaw (1997). The theory will yield steady
solutions for a range of h and ρ(z). Gravity currents with heights different from the
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conjugate state, h 
= hCS , can be found, but these solutions implicitly require energy
dissipation. The mechanism(s) for this dissipation are not addressed, but the theory
presented makes an implicit assumption regarding the form, namely that it is uniform
over depth.

First, consider a gravity current whose front moves with steady speed, U . In a
frame of reference moving with the current, the variables in the upstream ambient
region (see figure 1), denoted with an overbar, are

(u(z), ρ(z), p(z)) =

(
− U, ρ(z), p(0) −

∫ z

0

ρ(z′)

ρb − ρt

dz′
)

. (4.1)

Here, z = z − η(z) denotes the upstream vertical coordinate, whereas z is defined as
positive from the bed in the region through the current. The pressure is hydrostatic
and we take the reference density ρo = ρt . From continuity between isopycnals,
udz =−Ud(z − η), so that the velocity (in the moving frame) above the gravity
current is

u = U

(
dη

dz
− 1

)
, z � h (4.2)

and inside the gravity current is

u = 0, z < h. (4.3)

The stagnation pressure at the gravity current nose, by applying the Bernoulli
equation along the bottom streamline originating in the upstream ambient, is
ps =p(0) + (ρb/ρt )U

2/2. Following this streamline back, the hydrostatic pressure
within the current is

p(z) = p(0) +
1

2

ρb

ρt

U 2 − ρcz

ρb − ρt

, z < h, (4.4)

while above the current

p(z) = p(0) +
1

2

ρb

ρt

U 2 − ρch

ρb − ρt

−
∫ z

h

ρ(z − η)

ρb − ρt

dz, z � h. (4.5)

The streamline displacement, η(z), is given by the one-dimensional DJL equation
(3.2), with the boundary conditions, η(h) = h and η(H ) = 0. The DJL equation carries
an implicit assumption that the Bernoulli energy dissipation is identical along all
streamlines (independent of z). It will be shown that for the conjugate state, h = hCS ,
the dissipation is everywhere equal to zero; otherwise dissipation is finite but uniform.
No assumptions are made regarding the form or mechanism behind these losses.

Next, U is determined by a flow-force balance. The momentum flux through a
vertical section including the current and the fluid above it must balance the flux
through a section in the upstream ambient fluid,∫ H

0

[
p(z) + u2(z)

]
dz −

∫ H

0

[p(z) + u2] dz = 0. (4.6)

Substituting (4.1)–(4.5) above yields,∫ H

h

[p(z) − p(z − η)(1 − η′) − U 2η′(1 − η′)] dz

+

∫ h

0

[
p(0) +

1

2

ρb

ρt

U 2 − ρc

ρb − ρt

z

]
dz = 0. (4.7)
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Note that η′ =dη/dz and in the upstream ambient the change of variable z = z −η(z),
dz =(1 − η′)dz is used to simplify the second integral in (4.6), resulting in a change of
integration limits after using η(0) = h. Equation (4.7) can be simplified by substituting
the hydrostatic pressure relations (4.1) and (4.5) and integrating several times by parts
using (3.2) and the boundary conditions, η(h) = h and η(H ) = 0 (see details in the
Appendix).

After the simplifications, the flow-force balance becomes∫ 1

h

η′(z)3 dz − 1 − S

S

h(2 − h)
1
2
U 2

+ η′(h)2(2 − h) − 2η′(h)(2 − h) + 2 = 0. (4.8)

Overall, there are three unknowns: the gravity current height, h, and speed, U , and
the pycnocline displacement, η(z). There are two equations, the DJL equation (3.2),
and the flow-force balance (4.8). Thus, it is not possible to determine both U and h,
except in the energy-conserving case h = hCS (see below), so we approach the problem
by specifying h and determining U . This is the same approach as used by Benjamin
(1968) in his original analysis without statification and by Ungarish (2006) in linear
stratification.

4.1. Comparison with Benjamin’s solution

In the limit S → 0, the ambient stratification is negligible and the gravity current
dynamics should approach the classic solution of Benjamin (1968). Ungarish (2006)
has already demonstrated this limit for the case of linear stratification (we will
later show a more general comparison with Ungarish’s results). For our general
stratification theory, it can be verified that for S → 0, the DJL equation (3.1) reduces
to η′′

B = 0, with the solution ηB = h(z − 1)/(h − 1), where the B subscript denotes
Benjamin’s solution. Substitution of ηB into the flow-force balance (4.8) yields the
current speed,

Ugc = U
√

S =

√
2h(1 − h/2)(1 − h)

1 + h
, (4.9)

which is identical to Benjamin’s solution.

4.2. Energy dissipation

The theory of Benjamin predicts that gravity currents are dissipative except in the
special case h = 0.5. Although dissipation is implied, the theory does not account for
its source. An energy balance in terms of Bernoulli head along any streamline outside
the gravity current can be written

p(z) + 1
2
ρ(z − η)u(z)2 +

ρ(z − η)

ρb − ρt

η(z) + Δ = p(z − η) + 1
2
ρ(z − η)U 2, (4.10)

where Δ =Δ∗/(ρtg
′H ) is the head loss. By substituting the pressure and velocity

expressions (4.1), (4.2) and (4.5), and using the expression for p − p(z − η) from (A 2),
it can be shown that the head loss is equal to

Δ =

(
1 − S

S

)h

− 1
2
U 2[η′(h)2 − 2η′(h) + 1]. (4.11)

Note in cases for which Δ > 0, energy dissipation is implicit in the gravity current
solution. Moreover, dissipation is constant over depth, an implicit assumption of the
DJL equation (3.2). Although we do not address mechanisms behind this dissipation,
we do note that many of the steady solutions we find contain regions in which the
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Richardson number, Ri = N2/(du/dz)2, becomes critical (Ri � 0.25). These regions
imply shear instability that can lead to mixing and are consistent with Kelvin–
Helmholtz instabilities observed in the numerical calculations described later.

The flow force balance (4.8) can be decomposed into inviscid and head loss
components, ∫ 1

h

η′(z)3 dz + h − (2 − h)
1
2
U 2

Δ = 0, (4.12)

In the special case of Δ =0, a third constraint, in addition to (3.1) and (4.8), is
obtained for gravity-current solutions by setting (4.11) equal to zero. This constraint
yields a value for h corresponding to the energy-conserving gravity current for a
given S and ρ(z). When S = 1, this solution is identical to the conjugate-state solution
(hCS, UCS) given by Lamb & Wilkie (2004) for a trapped core with zero vorticity.

In the limit of S → 0, the Benjamin limit, the head loss can be calculated from
(4.11) and the solution ηB = h(z − 1)/(h − 1), and is equal to

ΔB =
1 − S

S

[
h2(1 − 2h)

2(1 − h2)

]
, (4.13)

in agreement with Benjamin’s original solution (this agreement was also shown for
linear stratification by Ungarish 2006). Thus, as S → 0, the conjugate-state internal
wave with a trapped core is equivalent to a dissipationless gravity current with h = 0.5.

4.3. Computational method

The system (3.2) and (4.8) must be solved numerically because of the nonlinearity of
the DJL equation for arbitrary stratification. Following Lamb & Wilkie (2004), the
boundary-value problem (3.2) is solved using a shooting method that satisfies η(h) = h

and η(1) = 0, and U is determined using a Newton iteration that satisfies (4.8). If the
dissipationless conjugate-state solution is sought, the additional condition, Δ =0 from
(4.11) is also satisfied with a second Newton iteration to determine h.

The additional constraint
dη

dz
� 1, (4.14)

which from (4.2) is equivalent to requiring u(z) � 0, ensures that convective overturning
does not occur in the domain, i.e. all streamlines originate in the upstream ambient
fluid. Combinations of ρ(z) and h which do not satisfy this criterion imply up-
stream propagating disturbances, and are rejected since this violates the steady-state
assumption. The violation occurs when u(h) = U and, in general, this condition is
reached by steadily decreasing h for a constant value of S.

For some combinations of (S, h, λ), higher-mode solutions to the DJL equation
(3.2) can be found. These higher modes have been described by Ungarish (2006) for
constant N stratification. We will primarily focus on the first-mode solutions, but in
§ 6.4, we discuss higher modes in relation to the dam-break problem.

Internal wave modes in the region [h, 1] above the gravity current depend on u(z)
and ρ(z), and are given by the Taylor–Goldstein (T-G) equation (Baines 1997) after
treating the top of the gravity current as a solid horizontal boundary. For long waves,

(u − cj )
d2φj

dz2
+

[
dρ/dz

u − cj

− d2u

dz2

]
φj = 0, φj (h) = φj (1) = 0, (4.15)

where the eigenvalues cj are the long-wave speeds and φj the corresponding
eigenmodes. The largest neutral (Im(cj ) = 0) eigenvalue is the fastest internal wave
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Figure 3. Density profiles (5.2) for several values of λ.

that can propagate toward the gravity current front, and we denote its speed cl .
The T-G neutral modes lie outside the range of the velocity profile, and thus the
fastest mode exceeds the maximum velocity, cl � u(h). As h is decreased for a given
stratification, cl and u(h) both approach U from the left, that is u(h) � cl � U .
At a critical height and speed, (hc, Uc), cl = u(h) = U , implying that long waves
propagate upstream and signifying incipient overturning. Beyond this point, solutions
are unphysical owing to a violation of the assumption of steady upstream flow. The
critical points depend on the stratification, hc(S, ρ̄(z̄)), Uc(S, ρ̄(z̄)), and define a lower
boundary curve separating steady and unsteady gravity-current solutions.

An upper bound on steady solutions is given by the energy-conserving conjugate-
state solution. Above the conjugate state, dissipation is negative, Δ < 0 for h > hCS ,
an unphysical result in the absence of external energy sources. Thus for each S, ρ(z)
combination, only solutions in the range [hc, hCS] are accepted. Note that in the
limit S → 1, hc = hCS , since, from the head loss expression (4.11) the gravity current is
dissipationless for η′(h) = 1 and u(h) = U .

5. Steady gravity current solutions
Here we show the results of the steady gravity current propagation theory. We study

stable density profiles chosen from a family of hyperbolic tangent curves given by

ρ(z) = ρt (1 + Δρρ̃(z)), (5.1)

where Δρ =(ρb − ρt )/ρt and

ρ̃ = 1 − tanh(λz)

tanh λ
. (5.2)

These profiles have non-zero buoyancy frequency at z = 0, and thus the conjugate-
state solutions develop trapped cores (Lamb & Wan 1998). The only exception is
for S =1 and linear stratification which does not have a conjugate-state solution
with a trapped core. The parameter λ is a measure of the non-uniformity of the
stratification. In the limit λ→ 0, ρ̃ = 1 − z and the stratification is linear (constant
N), whereas for λ� 1, the stratification is strongly bottom-trapped (figure 3).

Steady gravity-current solutions (U vs. h) are shown for a case λ=8 and S =0.952
in figure 4. Physically relevant steady solutions lie between the limits marked by the
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Figure 4. Gravity-current solutions for a fixed stratification and core density (λ= 8, S = 0.952).
Front speed, U , head loss, Δ, and ambient fluid velocity directly above the current, u(h), are
shown as a function of gravity-current height, h. The conjugate-state solution (Δ =0) and the
critical point for incipient overturning (u(h) =U ) are marked. Solutions on the lower branch,
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Figure 5. Gravity-current speed vs. height for curves for λ= 0. Speed is normalized as U in
(a) and Ugc in (b). Conjugate-state solutions (squares); critical points (open circles). The S = 1
case has only a single solution at h = 0, U = Ugc = 1/π. The Benjamin curve from (4.9) (dashed
line) is shown in (b).

conjugate-state solutions (hcs, Ucs) and the critical point at which overturning begins
(hc, Uc). The latter limit is the point at which u(h) = U (see convergence of u(h) and
U curves). Below the critical point, a second branch of solutions exists for which
u(h) > U , but these violate the steady assumptions and are rejected. The head loss is
also shown, with Δ =0 for the conjugate-state solution, and invalid solutions with
Δ < 0 for h>hCS .

The (physical) U vs. h solutions are shown for varying values of the density anomaly
S and for linear stratification (λ= 0) in figure 5. Gravity-current speed is normalized
as U in figure 5(a), and Ugc in figure 5(b), the latter for comparison with the Benjamin
solution. In figure 5(a), the critical velocity is Uc =1/π, independent of S, and equal
to the linear long-wave speed, co. For S = 1, hCS = 0, implying that there are no finite-
height energy-conserving gravity currents for the constant N case. As S decreases,
both hCS and UCS increase. In figure 5(b), steady solutions lie below the Benjamin
curve for large h, but exceed it for small h. The small h and S ≈ 1 solutions (with
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Figure 7. Gravity-current speed, normalized as Uh (2.9), as a function of the core density
ratio, S for various gravity current heights. (a) Uniform stratification (λ= 0). (b) Non-uniform
stratification (λ= 8).

U ≈ co) are closer to the long-wave speed than the Benjamin gravity-current speed,
but solutions approach the Benjamin curve as S → 0. The conjugate-state height
and speed increase with decreasing S, approaching the energy-conserving half-depth
Benjamin solution (h = 0.5, Ugc = 0.5) as S → 0. For λ= 8 (figure 6), Uc increases with
S, and Ugc curves for all values of S are approximated well by the Benjamin solution,
provided that h > hc.

In figure 7, the speed is normalized as Uh (2.9). For λ=0, Uh agrees with figure 3
of Ungarish (2006). For λ= 8, Uh is nearly independent of S for a given h, and
approaches the Benjamin solution for h =0.5 and S → 0. However, steady solutions
exist only for regions of (h, U ) above the critical overturning point, and thus the
solution curves terminate as S → 1.

In figure 8, the critical points for convective overturning Uc are shown as a function
of gravity-current height, h, and normalized by co. These curves are generated by
increasing S (moving to the right along the curve). As λ→ 0, Uc/co → 1, but hc → 0.
No solutions produce overturning for λ=0, but for all λ> 0, the wave-breaking limit
is reached for combinations of (h, F r) that lie below the corresponding curve.

The conjugate-state gravity-current speeds, UCS

√
S, are shown in figure 9. For

each λ, decreasing S (increasing core density) increases the height and speed of
the conjugate state. As S → 0, Benjamin’s dissipationless gravity-current solution
(Ugc =h = 0.5) is approached. For constant N , there is a notably sharp kink in the
behaviour of UCS . For S = 1, UCS is equal to the linear wave speed, 1/π, whereas
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Each curve tends to the energy-conserving Benjamin solution, h = 0.5, Ugc = 0.5, as S → 0.

for S = 0, UCS is the Benjamin gravity-current speed. Non-uniform N cases are much
faster than the linear wave speed for S = 1, starting out closer to the Benjamin limit
(e.g. λ= 8). In the limit of either λ→ ∞ for any S, or S → 0 for any λ, the conjugate
state is identical to the energy-conserving Benjamin solution.

6. Numerical dam-break calculations
6.1. Numerical details

To provide a comparison with the steady-gravity-current theory and to investigate
the evolution of the full initial-value problem, simulations of gravity currents and
intrusions were carried out using a non-hydrostatic two-dimensional Navier–Stokes
solver. The numerical model uses a second-order projection method based on that
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of Bell & Marcus (1992). The method uses a Godunov-type evaluation of the
nonlinear terms (a non-oscillatory finite-volume formulation) and is ideally suited to
gravity-current flows where sharp gradients of density and velocity naturally develop.
The governing equations (2.1) are solved with no explicit dissipation or diffusivity,
ν = κ =0. The numerical method does introduce numerical dissipation and mixing,
but an important property of the advection scheme is that the numerical diffusion
is significant only where large gradients (e.g. shocks) occur on the grid scale. This
class of non-oscillatory finite-volume schemes are mass and momentum conserving
and have dissipation properties comparable to large-eddy simulation (LES) models
and have therefore been termed implicit-LES models (Margolin, Rider & Grinstein
2006).

The numerical method has been used successfully for studies of large-amplitude
internal solitary waves (Lamb 2002), and tests of the code show that large internal
solitary waves can propagate distances of ∼ 100H with the correct phase speed, form,
and minimal loss of energy (<1%). As a further check of the model, λ= 0 results
were compared with the constant N simulations in Maxworthy et al. (2002). Gravity-
current propagation speeds, Ugc, and the density structure compared favourably,
even though Maxworthy et al. used a no-slip bottom condition compared with our
free-slip condition. A few calculations were carried out both with small uniform
viscosity (giving a Reynolds number of Re =

√
g′HH/ν = 1 × 108), and with density

and momentum diffusion calculated using a Smagorinsky-type closure (Afanasyev &
Peltier 1998). Very little dependence on the dissipation scheme was observed.

The ambient density structure, ρ(z) from (5.1), the gravity-current core density, S−1,
and the lock height, ho, were each varied independently. Velocity, lengths, time and
density were normalized as described previously. Calculations were carried out in a
rectangular domain of unit height and dimensionless length ranging from 60 to 100,
and with typical resolutions of 2000 in the horizontal and 200 in the vertical. Slip
boundary conditions were applied at all boundaries. Each run was started from a
dam-break initial condition, with a ‘lock’ of height ho and length Lo, and the initial
density field given by

ρ̃i(x, z) =

⎧⎨⎩1/S, z � ho, x � Lo,

ρ̃(z), z > ho, x � Lo,

ρ̃(z), x > Lo.

(6.1)

For t > 0, disturbances are generated which propagate in both directions from the
dam at x = Lo. Eventually, these disturbances will reflect from the lateral endwalls and
reach the current front, affecting its propagation. The phase prior to the interaction
between the current and the reflected waves, in which the current propagates with
constant speed, is termed the slumping stage (Ungarish & Huppert 2002). In our
simulations, we focus entirely on this initial phase by making Lo =20 and the
horizontal domain length equal to 100, sufficiently long to avoid the effects of
endwall reflections. Both the domain and lock aspect ratios (1:100; 1:20) are very
small compared with most numerical and experimental studies (typically 1:10; 1:1).
However, they are appropriate for some natural conditions, such as river plumes,
which can have vertical to horizontal extents of tens of metres to several kilometres.
An estimate of the gravity-current height, h, during propagation is made for each
numerical case by taking the first local maximum of the ρ = (ρc +ρb)/2 contour in the
direction moving from the undisturbed upstream region towards the gravity current.
The height of this maximum is averaged over discrete times t � 30 following the initial
release to produce a mean h used in the analysis.
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Each set of numerical calculations was carried out holding fixed ρ(z) and S, and
varying ho, in order to examine the effect of increasing dam height on current
propagation and wave generation. Because the dam height is a measure of the
available potential energy, the relative comparison between the initial energy in the
dam and the energy required by gravity-current solutions, particularly the conjugate
state, has implications for steady vs. wave-generating solutions.

6.2. Numerical results

A representative numerical solution is shown in figure 10 for the case λ= 0, S =0.91,
ho = 0.5. For this case Fr = 0.93, indicating a gravity current which is subcritical
with respect to the linear long-wave speed. The fluid within the gravity current core,
defined by the region in which ρ � (ρc + ρb)/2, is indicated by the grey shading.
Waves are generated at the gravity current front which detach, outrun and carry
fluid from the front with them. These results are similar to the subcritical gravity
currents of Maxworthy et al. (2002). The position of the front, xf , is plotted with
time in figure 10(g) and compared to the position of the leading wave, calculated as
the foremost point at which η > 0.001 for the ρ = 0.5 isopycnal. The front speed, Ugc,
is calculated for each case by the best-fit line through the xf vs. t curve (figure 10g).
Comparison of the two slopes shows that the wave outruns the current. The point
at which the wave first detaches, bringing core fluid with it, can be seen in the
abrupt negative jump in the front position around t = 26. The gravity-current speed,
Ugc, is computed from the propagation prior to this time. The gravity-current speed
is constant during this initial period, despite the presence of waves. Moreover, the
gravity current does regain its initial speed Ugc following the breakaway of core fluid,
and the process repeats with the next wave, as observed by Maxworthy et al. (2002).

The waves generated by the gravity-current collapse are highly nonlinear (the
maximum streamline displacement of the leading wave is approximately 0.2 for this
simulation). A lower bound for the leading-wave speed is the linear long-wave speed
co, but the actual speed is greater owing to the nonlinearity. It would appear that
the greatest interaction between the current and the waves occurs when the nonlinear
wave speed is close to the speed of the current.

As the height of the dam is increased for a given ρ(z) and S, the resulting currents
undergo a series of transitions. These are shown in figure 11 for λ=0 and figure 12
for λ=8. For small ho, the gravity current is slow and waves propagate upstream
ahead of the gravity current. In figure 11(a), the flow above the gravity current head
resembles a mode-2 disturbance, with isopycnals displaced upward near the bottom,
and downward at the top, but further upstream is a train of mode-1 nonlinear waves
in the form of an undular bore. As ho is further increased, finite-amplitude mode-1
waves become apparent ahead of the gravity current (figures 11b and 12a). These
waves are initiated near the head of the current, but they quickly outrun it. The wave
amplitude increases with increasing ho, and they may carry a core of dense fluid
from the current (see the leading wave in figure 11b), and there is also evidence of
convective overturning inside the waves (figures 11b and 12a, b), both characteristic
of internal solitary waves with trapped cores (Lamb 2002). In some cases, further
increase of ho results in a single large-amplitude wave that remains locked to the front
of the gravity current over the course of the simulation (figure 12b). Although the
waves do modify the current, at times resulting in an irregular rate of advance, the
mean front speed is approximately constant over time, demonstrated in the figures by
the good agreement between the data and the best linear fit to xf vs. t (figures 11a, b

and 12a, b). This constant propagation speed is consistent with the ‘slumping’ phase,
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Figure 10. Representative gravity-current calculation beginning from a lock release (λ= 0,
S = 0.91). Snapshots of the density contours are shown for dimensionless times (a) t = 0,
(b) t =6, (c) t = 12, (d) t =18, (e) t = 24 and (f ) t = 30. The gravity-current core, containing
fluid that originated in the dam, is shown in solid grey. (g) The position of the gravity
current front (squares) and the leading-wave disturbance (circles) with time. The speed, Ugc is
computed from the best-fit line through the initial propagation prior to front regression.
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Figure 11. Gravity currents and upstream waves for λ= 0 and S = 1 (left-hand side). Gravity
current (·) and leading-wave (∗) front positions vs. time following lock release (right-hand
side). (a) ho = 0.4, (b) ho = 0.7, (c) ho = 0.9. The gravity-current core is shown in grey, density
contours are spaced more closely near the current for detail. The plots represent a transition
from upstream-propagating internal waves (a − b) to steady gravity-current flow (c). The lock
is at x = 20.

identified in Ungarish & Huppert (2002), which here extends over the duration of the
simulation because the long lock negates end effects.

When ho is sufficiently large, upstream waves are not observed (figures 11c and 12c).
The current is supercritical with respect to internal waves, and the flow near the head
is approximately steady in the frame moving with U , resembling a Benjamin gravity
current with nearly constant thickness behind the front. Kelvin–Helmholtz billows
are observed over the gravity current, but they are swept behind the current and do
not affect the front region, though they contribute to mixing between the current
and the ambient. These two-dimensional numerical simulations do not adequately
resolve this mixing, and its description is beyond the scope of the paper. However,
the Kelvin-Helmholtz instabilities are consistent with the critical Richardson number
(Ri � 0.25) condition found in some of the steady gravity current solutions.

The steady, large ho cases can be interpreted as the trapped core conjugate state for
ρ(z) with core density ρc. Consistent with this interpretation, the isopycnal structure
around the gravity current in figures 11c and 12c resembles supercritical Long’s
model solutions with the gravity current playing the role of the topography. The
smaller ho cases that generate waves in front of the gravity current illustrate the
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Figure 12. Gravity currents and upstream waves for λ= 8 and S = 0.8 (left-hand side).
Gravity-current (·) and leading-wave (∗) front positions vs. time following lock
release (right-hand side). (a) ho = 0.25, (b) ho = 0.4, (c) ho = 0.7. Transition through
upstream-propagating internal waves (a), a single trapped large-amplitude wave (b) and a
steady gravity current (c). The lock is at x = 20.

upstream propagation expected when u(h) > U . The finite-amplitude solitary-type
waves observed in these cases are also consistent with resonant flow over topography
explored by Grimshaw & Smyth (1986), Melville & Helfrich (1987), and Grimshaw &
Yi (1991), which have shown that within a range around critical flow, Fr = 1, steady
solutions are not possible because nonlinear internal waves (solitary and undular
bores) propagate into the undisturbed ambient flow. For uniform stratification, even
very small topography can produce waves with a large-amplitude response owing
to nonlinearity. The resonant band increases with the height of the topography
(Grimshaw & Smyth 1986). In the dam-break problem, h and U are not decoupled,
as in fixed topography, yet the presence of the waves implies that this type of
resonant forcing mechanism occurs near Fr = 1. In the next section, the limits of
wave-generating and steady gravity-current solutions are delineated.

6.3. Wave–gravity-current regime diagrams

Based on the results of the steady theory (§ § 4–5), the numerical results can be
grouped into gravity current and internal wave regimes. Steady solutions are predicted
to lie between the overturning limit (U = u(h) = cl) and the conjugate state. In
figures 13(a) (λ= 0) and 13b (λ= 8), numerical results for Ugc as a function of S

are plotted with the relevant curves from the steady theory: the upstream generation
limit Uc, the conjugate-state speed, UCS , and the linear long-wave speed for the
ambient stratification, co, which defines critical (Fr = 1) flow. The numerical results
are separated into the three regimes identified above. Note that for a constant S,
increasing Ugc corresponds to increasing lock height, ho.

For λ= 0 (figure 13a), numerical solutions that generate internal waves lie entirely
within the subcritical domain (Fr = U/co < 1). The Fr =1 boundary (lower dashed
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Figure 13. Regime diagrams in Ugc vs. S for (a) λ= 0 and (b) λ= 8. Bounds from steady
theory are U/co = 1 (dashed) and the upstream generation limit (U/cl = 1) (dash-dotted),

and the conjugate-state solution, Ugc = UCS

√
S (solid). Dashed and dash-dotted lines overlap

for λ= 0. Symbols represent the three regimes observed in the numerical results: upstream
propagating waves (triangle), trapped solitary wave (circle), and steady gravity current (square).

line) approximately defines the transition between unsteady generated waves and
steady flow with a single trapped wave. Note that for λ=0 (and only for this case)
co = cl , and the two curves Fr =1 and the U = cl are identical. In the supercritical
domain, the numerical solutions approach the conjugate state U = UCS , but do not
exceed it.

For λ=8 (figure 13b), wave-generating solutions lie within a band around Fr =1.
However, the curve U/cl = 1 appears to define the transition between unsteady wave-
generating and steadily propagating gravity currents. The numerical results give waves
of very large amplitude between the Fr = 1 and U/cl = 1 curves. This is consistent
with the idea of transcritical resonant forcing. In the region between these two lines,
the steady theory predicts that long waves propagating above the gravity current
are faster than the current, cl >U . However, long waves in the ambient fluid ahead
of the gravity current are slower, U >co. Thus, it is hypothesized that energy can
accumulate near the gravity current front in the form of large internal waves. The
speed of these highly nonlinear waves exceeds both co and U , and they are able to
outrun the gravity current. As noted for λ= 0, co = cl , and upstream waves occur only
for Fr � 1. Again, gravity currents for λ= 8 (figure 13b) approach the conjugate-state
limit for large U (corresponding to large ho).

Figure 14 shows a comparison between the steady gravity current theory and
the numerical calculations plotted in Fr − h space. Fr − h plots organize regime
transitions in Long’s model and topographic resonance problems, and are relevant
since we treat the current as topography of height h (though, as noted, U and h are not
decoupled). For λ= 0 (figure 14a), all solutions above Fr = 1 are steady, consistent
with supercritical Long’s model solutions. Long’s model also predicts subcritical
solutions with higher vertical mode numbers within the three-humped curve shown
(first three modes), but the dam-break calculations produce only wave-generating
solutions within this region. These violate the steady assumptions of Long’s theory
and suggest Long’s subcritical solutions cannot be realized from the gravity-current
initial-value problem. Note that these subcritical solutions correspond to the higher
mode solutions of Ungarish (2006). For λ=8 (figure 14b), no subcritical Long’s
solutions exist, so only the critical lines Fr = 1 (solid) and U/cl = 1 (dashed) are
shown in figure 15(b). Internal wave solutions are found in a region around Fr =1,
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Figure 14. Regime diagrams in Fr vs. h. (a) λ= 0. Fr = 1 (dash-dotted line) separates
supercritical and subcritical domains. The uppermost solid line (Fr � 1) is the conjugate-state
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line gives Long’s solutions for the first three subcritical modes. (b) λ= 8. Conjugate state (solid
line), Fr = 1 (dash-dotted line), U = cl (dotted line). Symbols represent numerical solutions as
in figure 13.
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consistent with topographic resonant forcing, and U/cl = 1 provides the cutoff above
which only steady gravity currents are produced.

These results clarify an earlier hypothesis regarding the internal wave generation
by gravity currents. Maxworthy et al. (2002) concluded that waves are associated with
subcritical conditions, Fr < 1, for λ=0. The results of our theory and simulations for
nonlinear stratification demonstrate that U/cl ≈ 1 divides wave-generating and steady
gravity-current solutions (also the case for an intermediate stratification, λ=2). This
is broadly consistent with ‘topographic’ resonance as the wave-generation mechanism.
The conditions U/cl = 1 and Fr = 1 coincide only for linear stratification. Note that in
nearly all of the unsteady cases, the waves generated near the front are nonlinear and
travel faster than cl . However, cl is the minimum speed at which waves can propagate
ahead of the front, and thus U/cl is the appropriate ‘Froude’ number condition for
the boundary between steady and unsteady solutions.

6.4. Front speed: theory vs. numerical calculations

Figure 15 depicts gravity-current speed, U , as a function of thickness, h, for λ=0,
λ=2 and λ=8 for two different values of S. The numerical dam-break calculations
are compared with the steady theory. Additionally, where they exist, the second-mode
solutions described in § 4.3 are shown. Also shown are dam-break solutions computed
using the single-layer shallow-water hydraulic model of Ungarish & Huppert (2002)
and Ungarish (2005a) to predict both U and h from the dam-break initial conditions.
Here, we use Benjamin’s Froude-number condition (Ugc/

√
h from (4.9)) (see also

Ungarish 2008) for the model because it gives the best agreement with our numerical
dam-break calculations.

The agreement between the steady theory and the numerical dam-break results
is best for smaller S and for highly nonlinear stratification, λ= 8. For small S and
large λ, the steady theory is closest to the Benjamin theory (see figures 5 and 6),
suggesting ambient stratification plays only a small role. On the other hand, for S ≈ 1
and λ→ 0, stratification modifies the front speed significantly. In these cases, the
dam-break gravity-current speeds are well below the steady theory for subcritical
conditions, U <cl , but do approach the conjugate state (upper terminus of the curve)
when ho is large.

Birman et al. (2007) suggest the higher-mode solutions explain slower gravity-
current speeds in the subcritical regime and that currents released from a dam-break
will lock onto the slowest stable mode. For the stratification profiles studied here,
the higher-mode solutions exist for some combinations of (h, S) for λ= 0 and λ=2,
but none could be found for λ=8. When they do exist, it is generally only for a
narrow range of h (figure 15a, b). It does not appear that these solutions explain the
subcritical gravity current speeds sufficiently. Moreover, unsteady waves are generated
in the (h,U ) range in which these solutions appear, which is a violation of the steady
assumption of Long’s theory.

The shallow-water hydraulic theory provides a much better description of current
properties in the subcritical range. Both gravity-current height and speed from dam-
break initial conditions are predicted surprisingly well across the full range of (S,λ),
even though the hydraulic theory neglects dynamics of isopycnal displacement in
the ambient fluid. Thus, it appears that gravity-current speed and height are not
substantially modified by internal-wave generation. This is consistent with results of
Ungarish & Huppert (2002), which show little energy loss from the current to internal
waves.
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If current speed and height are not overly sensitive to isopycnal dynamics, as
the hydraulic theory suggests, then second-mode solutions would appear to be of
secondary importance. The success of the hydraulic theory suggests that the speed
and height, even for subcritical currents, are set to first order by the local pressure
gradient near the front, modified slightly by the ambient stratification. Once the speed
is set, the details of the isopycnal displacement would be determined by Long’s model
dynamics (but with unsteadiness). For slower subcritical currents, the result would
probably be a mode-2 isopycnal structure, like that observed in figure 11(a).

For supercritical currents, the flow is steady, and thus within the range of validity for
Long’s theory. As a result, the agreement between the steady theory and the dam-break
numerical results is excellent, and for some cases (S = 0.95, λ=0, 2) slightly better
than the hydraulic model. The best method for predicting gravity-current behaviour
following dam break would appear to be some combination of the shallow-water
hydraulic model and the steady Long’s theory. If gravity current behaviour alone
is sought, the hydraulic model gives good results. If internal-wave generation is of
interest, the hydraulic model can indicate whether a current released from a given
dam-break configuration will be sub- or supercritical, and Long’s theory and the
regime plots (figures 13–14) indicate the wave characteristics and the approach to the
conjugate state.

6.5. Available potential energy

The approach to the conjugate-state solution as ho is increased, suggests that the
initial available potential energy (APE) of the dammed fluid is important. The initial
APE per unit length of the fluid in the lock is

APE =

∫ ho

0

(
1

S
− ρ̃(z)

)
z dz. (6.2)

The non-dimensionalization is APE = APE ∗/(ρtg
′H ). The APE , which is propor-

tional to ho and increases with S−1, is not a conserved quantity in this case, but is a
heuristic that captures the influence of both dam height and density on the energy of
the current.

The energy per unit length contained in the conjugate state is

ECS =

∫ hCS

0

(
1

S
− ρ̃(z)

)
z dz +

∫ 1

hCS

(ρ̃(z − η) − ρ̃(z)) z dz

+ 1
2
U 2

CS

∫ 1

hCS

((1 − η′(z))2 − 1) dz. (6.3)

This is the sum of potential energy in the current relative to the ambient (first two
integrals) and the kinetic energy (third integral). Figure 16 shows U/UCS as a function
of APE/ECS . As APE → ECS , U → UCS . For λ=0 (figure 16a), there is some spread
for APE/ECS < 1, but the curves collapse for S < 0.9. For λ= 8 (figure 16b), there is
good collapse for all S. All wave-generating solutions are confined to APE/ECS < 1.
Results for an intermediate stratification (λ= 2) are similar to λ= 8 results.

6.6. Velocity and density structure

The density and velocity structure of the steady numerical gravity currents are
compared with the corresponding conjugate-state predictions in figure 17 for λ=0
and λ=8. A vertical transect is taken through the numerical solution, including the
current and the fluid above it, at the maximum of the ρ = (ρc +ρb)/2 contour (where h
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Figure 17. Comparison between conjugate-state solutions and numerical simulations for
density and velocity profiles through the gravity current. (a) λ= 0, S = 0.91: conjugate-state
theory for ρ(z) (solid line) and u(z) (dash-dotted line) compared with vertical transects (open
circles and squares, respectively) from the numerical simulations taken near the gravity current
head (vertical line in inset below). (b) λ= 8, S = 0.91.

is defined). The agreement between the theory and the simulation results is excellent.
The theory predicts a discrete density and velocity jump between the current and the
fluid above, whereas in the numerical calculation, this transition is smoother owing to
mixing. Because of the strong shear at the top of the current, the flow is often unstable
to Kelvin–Helmholtz instabilities, which are apparent in the numerical simulations
(including those shown in figure 17), and are responsible for the mixing between the
current and the ambient fluid. Because of the mixing, h, determined as above from the
numerical calculation, can be less than the conjugate-state thickness, hCS . However,
the conjugate-state theory accurately predicts the gravity-current speed as well the
density and velocity structure through most of the depth.
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Figure 18. Comparison between the full-depth lock releases of Maxworthy et al. (2002) in a
linearly stratified ambient (squares), the conjugate state wave speed predicted by the steady
gravity-current theory for λ= 0 (line), and the numerical results for λ= 0 (open circles). Also
shown for reference is the dissipationless Benjamin solution, Ugc = U

√
S =0.5 (dashed line).

7. Comparison with existing experiments: gravity currents and intrusions
In this section, the conjugate-state theory is compared with experiments from the

literature on gravity currents and intrusions in stratified fluids. Experimental results
for gravity currents generated by full-depth lock releases that do not exhibit finite
domain effects are chosen for comparison. Few experiments in stratified fluids meet
these requirements, but data sets are available, one from experiments by Maxworthy
et al. (2002) on full-depth lock releases into a linearly stratified fluid, and experiments
on neutral density (S =1), symmetric intrusions by Faust & Plate (1984) and Britter
& Simpson (1981).

7.1. Full-depth lock releases in a linearly stratified ambient by Maxworthy et al.

The data of Maxworthy et al. (2002) have been discussed in the context of internal-
wave generation, and our numerical calculations produced upstream waves under the
same conditions as their experiments. In figure 18, we compare their measurements
of gravity-current front speed, U , for full-depth lock releases, over a range of core
densities, S, with the λ= 0 conjugate-state gravity-current speed, UCS . Also shown for
comparison are our numerical results in this range, as well as the Benjamin energy-
conserving half-depth solution. The experimental data and the numerical results agree
very well with the theoretical conjugate-state curve. The experimental front speeds
consistently lie just below UCS , probably becouse of a combination of losses due to
mixing above the gravity current and friction at the no-slip bottom. The numerical
simulations agree slightly better, presumably because the bottom is free-slip. The
Benjamin solution significantly overpredicts the current speed. The continuously
stratified result approaches the Benjamin solution in the limit S → 0.

7.2. Intrusions

Several data sets are available for symmetric intrusions, in which a region of neutral
density fluid propagates into a stratified fluid with a density profile that is symmetric
about the intrusion centreline (see figure 19). If the density of the intrusion is equal to
ρb, the mean ambient density, and the layer depths, H , above and below the intrusion
are equal, then the intrusion is equivalent to the S = 1 gravity-currents considered
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Figure 19. Intrusive gravity-current in a stratified ambient. The ambient is stably stratified
with an overall density difference of 2Δρ between the uniform top and bottom layers, with an
interface of thickness δ between them. If the density of the intrusion is equal to ρb , the mean
ambient density, and the layer depths, H , above and below the intrusion are equal, then the
intrusion may be considered equivalent to the gravity currents considered here with S =1.

here. The piecewise linear profile shown in figure 19 is an idealization of the density
structure that results when the interface between a two-layer fluid has finite thickness
2δ. These profiles, studied in the experiments of Faust & Plate (1984) and Britter &
Simpson (1981), are best fit by an antisymmetric hyperbolic tangent profile, which is
equivalent to (5.2) with reflection about z = 0 and δ/H = tanh λ/λ. The limit δ/H → 0
represents an intrusion propagating into a two-layer fluid (λ→ ∞), whereas the limit
δ/H → 1 is an intrusion into a linearly stratified (λ= 0) fluid.

Experimental data for intrusion propagation speed and thickness from the
experiments of Faust & Plate (1984) and Britter & Simpson (1981) are compared with
the conjugate-state theory with S = 1 in figure 20. For both experiments, intrusions
were generated by the release of a lock with height comparable to H , and long
enough that the intrusion was not influenced by the length of the lock or domain.
The agreement between the theoretical prediction and the experiments is excellent
(figure 20a). In the two-layer limit δ/H =0, the data, in agreement with the theory,
approach the energy-conserving Benjamin solution, Fr = 0.5, h = 0.5, (4.9). In the
linearly stratified limit, δ/H = 1, the speed approaches the linear long-wave speed,
Fr = 1/π.

The intrusion thickness (figure 20b) is also predicted well by the steady theory.
However, the linearly stratified limit is a degenerate case, as the conjugate-state
theory predicts a vanishing intrusion thickness h → 0 as δ/H → 1. Faust & Plate (1984)
observed a slowly decreasing intrusion thickness for δ/H � 0.64, but the experimental
apparatus was not long enough to allow full adjustment of the intrusion. Hence, the
interface thickness for experiments with δ/H > 0.6 are not shown in figure 20(b).

8. Conclusions
Theory has been presented for steady gravity currents propagating in a stratified

ambient with a general density profile. The theory predicts steady solutions only
for a range of gravity-current thicknesses and front propagation speeds. When
the front speed is less than the lower limit for steady solutions, we have shown
that large-amplitude internal waves are generated at the gravity-current front and
propagate ahead of the gravity current. Comparison between the theory and numerical
calculations of the dam-break initial-value problem shows that the theory does an
excellent job delineating the boundary between the wave-generating and the steady-
gravity-current solutions. Previous observations of waves excited in an ambient
waveguide by a propagating density current (Maxworthy et al. 2002; Nash & Moum
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Figure 20. Comparison between experimental results for intrusive gravity currents and the
conjugate-state theory for S = 1 as a function of interface thickness. (a) Propagation speed of
the intrusion front, �, Faust & Plate (1984); ×, Britter & Simpson (1981);—, conjugate-state
speed, S = 1, δ/H = tanh λ/λ. (b) Thickness of the intrusion. �, experiments of Faust & Plate
(1984);—, conjugate state height.

2005) led to the hypothesis that waves exist when the gravity-current speed is less
than the linear long-wave speed, Fr = U/co < 1. Rather, the theory coupled with the
numerical results demonstrates that for general stratification, steady gravity currents
exist only when U > cl , the long-wave speed for waves above the gravity current.
For a range of speeds, co <U <cl , large-amplitude waves are produced, broadly
consistent with a mechanism of resonant forcing over topography. Since co = cl for
λ= 0, generation of waves for Fr > 1 occurs only in nonlinear stratification (λ 
= 0).

For sufficiently large dam height, or potential energy, gravity currents attain a
limiting, supercritical form that is described well by the steady energy-conserving
conjugate-state solution for the corresponding (λ, S). The conjugate state is
an extension of Benjamin’s energy-conserving half-depth solution to arbitrary
stratification, but is also equivalent to the limiting large-amplitude internal solitary
wave with a trapped core for the given stratification. The conjugate state provides a
good description of previous numerical and experimental results for gravity currents
and intrusions generated by full-depth lock release.
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The steady theory is an extension of the constant N results of Ungarish (2006)
to arbitrary nonlinear stratification (although numerical solution is required, whereas
Ungarish provided an analytical approximation for constant N , small S). Despite
the success of the steady approaches in delineating the boundary between wave-
generating and steady solutions, and predicting the limiting energy-conserving gravity-
current form, they describe poorly the behaviour of subcritical gravity currents,
whose speeds are well below Long’s theory for a given current height. The poor
agreement is probably because the subcritical currents do not conform to the steady
requirements of Long’s theory. We explored the possibility that higher mode (slower)
solutions suggested by Ungarish (2006) and Birman et al. (2007) may explain the
subcritical speeds. However, higher modes are found only in a limited range of
(h, S, λ), and therefore, cannot explain all subcritical currents. Moreover, the shallow-
water hydraulic theory of Ungarish & Huppert (2002), which does not consider
isopycnal displacement, does an excellent job of predicting subcritical current speeds.
Thus, although the higher-mode solutions are an interesting feature of the steady
solutions, they do not appear to be a useful predictive tool. A good approach
for predicting the behaviour of dam-break gravity currents is to use the shallow-
water model to determine the approximate current speed, after which the steady
theory presented here can be used to delineate internal-wave-generating from steady
solutions, and to predict the limiting energy-conserving gravity-current form for large
dam height.

The class of stratifications considered have finite-density gradients at z = 0, which
is a requirement for solitary waves with trapped cores. When there is a region of
constant density near the bottom, conjugate states are possible that do not reach the
overturning limit and do not form trapped cores (Lamb 2002). Without the trapped
core, these conjugate states are not equivalent to a gravity current, and gravity-current
solutions to the dam-break problem can be expected to be fundamentally different.
For these stratifications, we might expect that a full-depth lock-release may excite a
bore-like conjugate state that moves faster than the gravity current. These conditions
will be explored in a future paper.

This work was done while B. L. W was a Postdoctoral Scholar at the Woods Hole
Oceanographic Institution. K. R. H was supported by ONR grant N000140610798.

Appendix
The flow-force balance (4.7),∫ 1

h

[p(z)−p(z−η)(1−η′)−U 2η′(1−η′)] dz+

∫ h

0

[
p(0)+ 1

2
ρbU

2 − ρc

ρb − ρt

z

]
dz = 0,

(A 1)
can be simplified as follows. Consider the first two terms, which can be simplified
using (4.1) and (4.5) to

p(z) − p(z − η) = 1
2
ρbU

2 − ρc

ρb − ρt

h −
∫ z

h

ρ(z − η)

ρb − ρt

η′ dz. (A 2)

Integrating by parts, and using N2 = − dρ(z − η)/d(z − η) and ρ(0) = ρb, the integral
in (A 2) can be written∫ z

h

ρ(z′ − η)

ρb − ρt

η′ dz′ =
ρ(z′ − η)

ρb − ρt

η − ρb

ρb − ρt

h +

∫ z

h

ρt

ρb − ρt

N2η(1 − η′) dz′. (A 3)
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Then, applying the DJL equation over the region of integration, [h, 1], gives N2η = −
U 2η′′, and integrating again by parts, the last integral in (A 3) can be simplified as∫ z

h

ρt

ρb − ρt

N2η(1 − η′) dz′ = − ρt

ρb − ρt

U 2
[(

η′(z′) − η′(h) − 1
2
(η′(z′)2 − η′(h)2)

)]
. (A 4)

Now consider the third term in the first integral of (A 1), which can be simplified by
integration by parts,∫ 1

h

p(z − η)η′ dz = −p(0)h +

∫ 1

h

ρ(z − η)

ρb − ρt

η(1 − η′) dz, (A 5)

where we have taken p(1) = 0. Expansion and further integration by parts of the
integral on the right-hand side gives∫ 1

h

p(z − η)η′ dz = −p(0)h +

∫ 1

h

ρ(z − η)

ρb − ρt

η dz

+
ρb

2(ρb − ρt )
h2 −

∫ 1

h

1

2(ρb − ρt )
N2η2(1 − η′) dz. (A 6)

Use of the DJL equation and further integration by parts simplifies the last integral
in (A 6) to∫ 1

h

1

2(ρb − ρt )
N2η2(1 − η′) dz =

1

2(ρb − ρt )

[
U 2h

(
η′(h) − 1

2
η′(h)2

)
+

∫ 1

h

U 2η′2 dz −
∫ 1

h

1
2
U 2η′3 dz

]
. (A 7)

In addition, the second integral of (A 1) can be evaluated as∫ h

0

[
p(0) + 1

2
ρbU

2 − ρc

ρb − ρt

z

]
dz = p(0)h + 1

2
ρbU

2h − 1
2

ρc

ρb − ρt

h2. (A 8)

Finally, substituting (A 2)–(A 8) into (A 1) and carrying out the remaining simple
integration yields the result in (4.8)∫ 1

h

η′(z)3 dz − 1 − S

S

h(2 − h)
1
2
U 2

+ η′(h)2(2 − h) − 2η′(h)(2 − h) + 2 = 0. (A 9)
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