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Abstract 

Software tools were designed to characterize the acoustic features of marine animal sounds. 

These have resulted in a set of calculated measurements that summarize particular as

pects of sound sequences. The specificity of these measurements was enhanced by adjusting 

calculations to compensate for ambient noise. The sound measures included statistics for 

Aggregate Bandwidth, Intensity, Duration, Amplitude Modulation, Frequency Modulation, 

Short-term Bandwidth, Center Frequency, and Amplitude Frequency Interaction. The ef

ficacy of noise compensation was tested for each statistic. Then, the sound measures were 

tested on a subset of 200 sequences of marine animal sounds, including sequences from 20 

species: six baleen whales, 13 toothed species, and one seal. The statistics were reviewed 

for each species and a graphical comparison of all species was generated using principal 

components analysis. Preliminary results confirm that such sounds can be classified by 

means of relatively simple statistical algorithms, and we are encouraged to continue toward 

a system for automatic classification of marine animal sounds. 





1 Introduction 

Marine animals produce a remarkable variety of sounds (Watkins and Wartzok 1985). A 

primary goal of the bioacoustic program at the Woods Hole Oceanographic Institution 

(WHOI)has been to parse this variation into sensible classes of signals. Marine mammal 

sounds in particular contain distinctive features associated with species (op. cit.), individual 

identity (Caldwell, Caldwell and Tyack 1990), and certain behaviors. These features have 

never been examined in a broad context, comparing the sounds of a wide variety of species. 

Do the differences in these sound features remain distinctive as the scope of comparison 

widens? With our own ears, we can often distinguish acoustic features that appear to 

be species-specific, and sometimes features unique to individual animals; can we specify 

numerical algorithms that objectively recognize these distinctions? 

The logistic requirements for addressing these questions have been formidable. To quan

tify the interspecific and intraspecific variability in marine animal sounds, a large number 

of sounds must be analyzed for each individual or species to be differentiated. Many biolog

ical and environmental attributes potentially explain acoustic variability. Therefore, these 

numeric results had to be referenced: species, population, group, social context, behavior, 

activity, individual identity, sex, reproductive situation, age, season, geographic location, 

water depth, and sound propagation. Thus, a necessary resource for such acoustic distinc

tions has been a system for integrating the sound sequences with associated biological and 

environmental data. 

The SOUND database system organized for marine animal sounds (Watkins, Fristrup, 

and Daher 1991) has provided this resource. The databases and associated files contain 

thousands of digitized sound segments spanning more than seventy species recorded from 

all the world's oceans. The database describes the time, geographic location, recording 

conditions, identity of the animal(s) producing the sounds, the behavioral observations 
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associated with sound production, etc. These SOUND databases represent years of work by 

several people, and the analyses reported here depend on the availability of such. In turn, 

these analyses complemented and extended the capabilities of the database. New relational 

database structures have been implemented to permit :flexible and convenient integration of 

these statistical results with the biological and environmental information about the sounds. 

The quantification of time-frequency characters of the animal sounds for these analytic 

distinctions has had no precedent on this scale. No prior work has dealt with so many 

species and such a variety of repertoires from individual animals. The WHOI studies of 

marine animal acoustics, which have continued since William E. Schevill's work in the late 

1940's, have provided the heuristic basis for these statistical decisions. We have learned 

to utilize many different acoustic features to describe and diagnose sounds. As a first step 

toward the development of an automatic, non-subjective system for separating the different 

animal sound sequences, we have devised statistical measures to recognize familiar acoustic 

features. 

This report describes the numerical procedures that have been used, and it demonstrates 

their effectiveness with a trial set of 200 digitized sequences of marine mammal sounds. 

These preliminary results suggest that the gross acoustic features we analyzed can be useful 

indicators of species identity, and that with refinement they might provide the basis for 

finer distinctions. 
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2 The Statistics 

Our statistical estimation techniques were based on our experience with the marine animal 

sounds in our tape library. We were guided by the following criteria: 

• Each statistic was designed to emphasize particular parameters of animal sounds that 

we recognized as important for distinguishing species. 

• Each statistic had to be insensitive to sound artifacts introduced by propagation in 

the ocean (multipath, fading, frequency-dependent attenuation, etc.). 

• Most statistics needed to be relatively insensitive to noise and assumed a minimum 

of 15 dB signal/noise. 

• Most statistics had to be insusceptible to the shape (relative frequency emphases) of 

the ambient noise power spectra. 

• Most statistics needed to be related to obvious features in the time-frequency analysis 

displays of these sounds (duration, frequency range, etc.) - so we could recognize the 

effectiveness of the statistics in making the discriminations. 

These criteria reflected our interest in discriminating among the animal sounds rather 

than making selections that were largely controlled by differences in the ambient back

grounds. The choice of criteria did not take into consideration changes to the sounds 

contributed by the orientation and movements of sound sources. A number of other effects 

also have not been addressed, including means for dealing with frequency-dependent atten

uation. Statistics that obviously would be sensitive to distortion of phase information have 

been avoided in these analyses. 

The basic unit of data used for our feature extraction programs was one FFT (Fast 

Fourier Transform) block. For most files, this was 256 sample points, but for very short files 
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(low sampling rates) the FFT size was decreased to obtain no fewer than 16 blocks. Adjacent 

blocks did not overlap. A constant was subtracted from each sample point such that the 

mean for each block became zero, and the data were then tapered with a Hamming window. 

These choices eliminated explicit correlation between adjacent blocks and smoothed the 

resulting power spectra; the cost of this was a. reduction in the degrees of freedom for our 

analyses. 

The noise compensation technique begins by estimating the power spectrum of sounds 

that were present throughout the sound cut. To identify blocks of data containing only noise 

energy, intensity measures were computed for up to 600 blocks of data distributed evenly 

through a sound cut. Blocks were sorted by intensity, and the blocks between the fifth and 

tenth percentiles in level were used to form a noise power spectrum. We eliminated the 

bottom five percent to avoid using atypically quiet sections (tape dropout, etc.). During 

subsequent processing of these data, a multiple (currently 6.67x) of this noise spectrum was 

subtracted from each block's power spectrum (negative values set to zero). All spectral 

statistics were computed from this reduced power spectrum. To obtain the amplitude 

estimate for the block, the adjusted spectrum values were summed; this indirect method of 

computing amplitude, which exploits Parseval's relation (Oppenheim and Schafer 1989, p. 

574), prevents loud noise components from dominating the amplitude statistics. 

2.1 Abbreviations in Statistical Formulae 

• ti, time in seconds: the interval from the beginning of the sound cut to the beginning 

of the ith FFT block. 

• 88i, relative intensity in arbitrary units: sum of the adjusted power spectrum values 

for the ith block. 

• mmi = mine S8i_}, 88i): the smaller of two adjacent 88 values. 
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• F50 in Hertz: the frequency that bisects the area under the power spectrum density. 

• N50 in Hertz: the minimum number of frequency bins required to accumulate fifty 

percent of the total signal energy. 

• F7s in Hertz: the highest frequency encountered when calculating Nso. 

• F2s in Hertz: the lowest frequency encountered when calculating Nso. 

Considerable use of symbols could not be avoided, but wherever possible we have used 

descriptive terms for ease of interpretation. 

5 



6 



Table 1: Summary of Statistics 
Equation Page 

Duration: Results in Table 2 
Total Duration 2 
Sound Concentration 3 
Amplitude Modulation: Results in Table 3 
Amplitude Mean 4 
Amplitude Standard Deviation 5 
Attack Fraction 6 
Attack Proportion 7 
Amplitude Skewness 8 
Frequency Modulation: Results in Table 4 
Upsweep Mean 9 
Upsweep Fraction 10 
Upsweep Proportion 11 
Time Frequency Correlation 12 
Time Upsweep Correlation 13 
Short-term Bandwidth: Results in Table 5 
Short-term Bandwidth Mean 14 
Short-term Spectral Concentration 15 
Short-term Spectral Asymmetry 16 
Aggregate Bandwidth: Results in Table 6 
Total Upper Frequency - F7S 

Total Lower Frequency - F2S 

Total Spectrum Concentration - Nso 
Modal Upper Frequency - F7S 

Modal Lower Frequency - F2S 

Modal Spectrum Concentration - Nso 
Center Frequency: Results in Table 7 
Median Frequency Mean 
Total Spectrum Median Frequency 
Modal Spectrum Median Frequency 
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8 
8 

9 
9 
9 

10 
10 

10 
11 
11 
11 
12 

12 
13 
13 

5, 13 
5, 13 
5, 13 
5, 13 
5, 13 
5, 13 
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Amplitude Frequency Interaction: Results in table 8 
Amplitude Frequency Correlation 
Amplitude Upsweep Correlation 

7 

18 14 
19 14 



Intensity measures were computed for each block of data. These values were used as 

weights to find the "center" of the sound, defined as the weighted average of the time values 

(eq. 1). This statistic is only used as a reference point for subsequent calculations of Sound 

Duration (eq. 2) and Amplitude Skewness (eq. 8). 

• Signal Center: weighted mean of t, ss as weights. 

(1) 

2.2 Sound Duration 

The Sound Duration was computed by Equation 2. It yielded a gross estimate of total 

duration, including any intervals of silence between sound elements . 

• Sound Duration: weighted standard deviation of t, ss as weights. 

4Ut = 4 
"N .t2 
L.-i=O SSt i _ f2 
Ef:o SSi 

(2) 

The Sound Concentration was computed by Equation 3. It yielded an estimate of 

duration that would result if the sound were "packed" such that a.ll silent sections were 

removed. It responds only to the relative amplitudes of different blocks, and it is insensitive 

to their ordering in the sound . 

• Sound Concentration: equivalent statistical bandwidth of the amplitude values. 

(Ef:o SSi)2 

"N 2 
L"i=O SSi 

The ratio of these two duration estimates can be used to measure duty cycle. 

8 

(3) 



2.3 Amplitude Modulation 

A reference value was computed for the average level of the sound: the Amplitude Mean 

was computed by Equation 4. 

• Amplitude Mean: average 88 value. 

,,1:1 . 
_ L.."I-O SSt 
8S = N 

(4) 

The Amplitude Standard Deviation (Eq. 5) can be used to measure the average mag

nitude of amplitude modulation. However, Amplitude Mean and Amplitude Standard De

viation are scaled arbitrarily by idiosyncrasies of the digitizing process. To form a useful 

diagnostic, they must be used together to form a scale-independent measure like the coeffi

cient of variation (Eq. 5/ Eq. 4) . 

• Amplitude Standard Deviation: standard deviation of 88 values. 

(5) 

The occurrence and magnitude of sections of sound with increasing and decreasing 

amplitudes was measured by assessing the fraction of blocks in which a subsequent block had 

a larger (or lower) amplitude than the current block. This Attack Fraction was computed 

by Equation 6. 

• Attack Fraction: the fraction of blocks in which subsequent block has a larger S8 value 

than the current block. 
1 

N 
(6) 
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The proportion of average changes in amplitude to the sum of the average increases 

and decreases in amplitude values was calculated and called the Attack Proportion. These 

statistics (Eq. 6 and Eq. 7) were similar in function to the "attack" and "decay" terms 

used to refer to the initial and terminal amplitude modulation of individual notes in music. 

The attack proportion was computed by Equation 7 . 

• Attack Proportion: the proportion of average increase in 88 values relative to the sum 

of average increases and decreases in ss values. 

(7) 

Gross asymmetry in the amplitude modulation relative to the "center" of the sound was 

weighted by a function of time and amplitude. This Amplitude Skewness was computed by 

Equation 8 . 

• Amplitude Skewness: weighted skewness of t, ss as the weights. 

~N .3 ~N. 2 
~i7fss.ti _ 31~i7f88.ti + 2[-3 
Li=O 88i Li=O 118i (8) 

2.4 Frequency Modulation 

The frequency modulation of a sound was expressed by differences between median frequen

cies of adjacent power spectrum estimates. The average upsweep trends (downsweep is a 

negative upsweep) for entire sound cuts were calculated by comparing weighted averages of 

the change in frequency and amplitude values, giving the Upsweep Mean using Equation 9 . 

• Upsweep Mean: weighted average of the change in F50 values, mm as weights. 

L~l mmi~F50i 
Lf:l mmi 
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Estimates of the relative occurrence of frequency modulation were calculated by deter

mining the fraction of total energy that coincided with increases in frequency. This Upsweep 

Fraction was computed by Equation 10 . 

• Upsweep Fraction: fraction of summed mm values that coincide with increases in Fso. 

(10) 

The relative magnitudes of frequency upsweeps and downsweeps were calculated as the 

Upsweep Proportion, using Equation 11. 

• Upsweep Proportion: proportion of average weighted increase in Fso to the sum of 

the weighted average increases and decreases in Fso. 

~F!>Oi>O 

L mm,~F50i 
~F!>Oi>O 

L mm, 
~F!>Oi>O 

~F!>Oi<O 

L mm, 
~F50i>O 

(11) 

The magnitudes of linear relationships between time and median frequency were es

timated by calculating correlation coefficients. This correlation used intensity values as 

weights to focus on portions of the sound cuts with loud signals. This was computed as a 

Time Frequency Correlation by Equation 12 . 

• Time Frequency Correlation: weighted correlation between Fso and t, ss as weights. 

E::o 66i t iF!>Oi t I;1 

"N - ISO 
L...ti=O Ui (12) 
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where 

~o sSiFlOi -2 
N -F50 

Ei=oSSi 

The magnitudes of linear relationships between time and frequency upsweep were also 

estimated by a weighted correlation coefficient. This Time Upsweep Correlation was com

puted by Equation 13 . 

• Time Upsweep Correlation: weighted correlation between ~F50 and t, mm as weights. 

E::', mmiti~F~Oi t· r5 
"N - I50 
L.."i_t mmi 

(13) 

Where 

Tt = 

2.5 Short-term Bandwidth 

Two measures of bandwidth were computed for each block. The gross spread in power 

spectral values (frequency) was calculated to give the Short-term Bandwidth Mean by 

Equation 14 . 

• Short-term Bandwidth Mean: weighted average of F75 - F25, ss as weights. 

Ef-o sSi(F75i - F 25i) 
Ef:o SSi 

(14) 

The effective number of frequency bins in each block containing significant power levels 

(ignoring gaps in the sound) also was computed to give the Short-Term Spectral Concen

tration by Equation 15. 
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• Short-term Spectral Concentration: weighted average of N so, 88 as weights. 

Ef:o 88, N SOl 

E~088, 
(15) 

Then, the relative emphasis of sideband energy on either side of the dominant frequency 

was estimated by calculating the Short-term Spectral Asymmetry using Equation 16 . 

• Short-term Spectral Asymmetry: weighted average spectral asymmetry, with 88 as 

weights. 

(16) 

2.6 Aggregate Bandwidth 

Two aggregate power spectra were computed for each sound cut: the Total Spectrum was 

the average of all FFT power spectra for the sound, and the Modal Spectrum accumulated 

only the power spectrum magnitudes for the frequency bin with the largest value in each 

FFT block. Both aggregate spectra were processed to extract three statistics related to 

bandwidth. The Upper (F75) and Lower (F2S ) Frequencies estimated the bounds of the 

aggregate spectra. These could be used to compute a bandwidth spanning any gaps in the 

spectral density. The Spectrum Concentration (Nso) provided an estimate of a "packed" or 

gap-free bandwidth. 

2.7 Center Frequency 

Three statistics were used to estimate the aggregate center frequency, or "average" fre

quency, of the entire sound cut. They were the Fso values computed for the Total and 

Modal Spectra, and a weighted average of the instantaneous Fso values computed by Equa

tion 17. These statistic produced very similar values in most instances. 
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• Median Frequency Me~: weighted average of F50! ss as weights. 

"'iT" Ef-o ss, FSOi 
£so = 

Ef:ossi 

2.8 Amplitude-Frequency Interaction 

(17) 

The strength of a linear trend between amplitude and center frequency was computed as 

the Amplitude-Frequency Correlation by Equation 18 . 

• Amplitude Frequency Correlation: correlation between ss and Fso. 

Ef-o SSi FSOi - n E~o FSOi (18) 

The magnitude of a linear trend between amplitude and frequency modulation was 

calculated as the Amplitude Upsweep Correlation, using Equation 19 . 

• Amplitude Upsweep Correlation: correlation between mm and ~Fso. 

(19) 

where 

-- Ef:l mmi . I Ef':: 1 mm; _ i'iim2 
mm = N ' U mm = Y N 
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3 Noise Performance 

To explore the effectiveness of our system of noise compensation, test sounds were copied 

and contaminated with increasing levels of noise. These test files were processed to generate 

plots of each statistic relative to signal/noise ratios. The differences between adjacent points 

along each curve reflecteq estimation error, because adjacent points represented different 

noise sequences with similar signal/noise ratios. Any overa.ll trend in these plots reflected 

imperfect noise compensation. 

Against Gaussian white noise, these noise tests were successful. However, the density 

of this type of noise was favorable for other noise compensation algorithms as well, and 

we were reminded that noise backgrounds in the ocean were rarely "white" (equal energy 

at a.ll frequencies). Therefore, noise was generated synthetically to resemble the ambient 

background for many of our recordings at sea using MATLAB software (The Math Works, 

Inc.). Parametric spectral estimation procedures extracted parameters for a sixth order 

autoregressive (AR) process from an ambient noise sample. Noise sequences were generated 

by filtering white noise with a finite impulse response (FIR) filter constructed from the AR 

estimates. 

The sound statistics were tested against noise and plotted in Figures 1 through 27 to 

provide an indication of performance for each statistic. In these figures, the horizontal axis 

represented signal/noise ratios, proceeding from low to relatively high values. Note that 

most of our marine mammal sound sequences exceeded 15 dB signal/noise. The vertical 

axes represented the estimated numeric level for this statistic. The variance may be seen in 

the relative amplitude fluctuations on the vertical axes, and the trend for this statistic may 

be seen in the relative changes in the progression from lower to higher signal/noise along 

horizontal axes. 

The performance of each of the statistics relative to noise was summarized in the table 

15 



below, with the plots subjectively classified as follows. 

Table of Noise Performance for the Statistics 
Low Variance High Variance 
Signal Center (Fig. 1) Attack Fraction (Fig. 6) 
Median Frequency Mean (Fig. 25) Attack Proportion (Fig. 7) 
Upsweep Mean (Fig. 9) Upsweep Proportion (Fig. 11) 
TIme Frequency Correlation (Fig. 12) Short-term Spectral Asymmmetry (Fig. 16) 
Time Upsweep Correlation (Fig. 13) Amplitude Skewness (Fig. 8) 

IImall Upsweep Fraction (Fig. 10) 
trend Total Spectrum Median (Fig. 23) 

Modal Lower Frequency (Fig. 21) 
Modal Spectrum Median (Fig. 24) 
Modal Upper Frequency (Fig. 20) 
Sound Duration (Fig. 2) Amplitude Frequency Correlation (Fig. 26) 
Sound Concentration (Fig. 3 Amplitude Upsweep Correlation (Fig. 27) 

large Amplitude Mean (Fig. 4) 
trend Amplitude Standard Deviation (Fig. 5) 

Short-term Bandwidth Mean (Fig. 14) 
Short-term Spectral Concentration (Fig. 15) 
Total Upper Frequency (Fig. 17) 
Total Lower Frequency (Fig. 18) 
Total Spectrum Concentration (Fig. 19) 
Modal Spectrum Concentration (Fig. 22) 

Generally, the statistics performed well in noise. Higher order statistics (standard devia

tions, correlations) were less consistent, and the least useful were those statistics measuring 

frequency-amplitude relations and gross asymmetry in the sound waveform envelope. 
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4 Preliminary Analysis of Marine Animal Sounds 

A subset of approximately 200 sequences of marine mammal sounds were used to test these 

statistics. Sounds were selected without attention to any particular acoustic features. They 

included sequences from 20 species: six baleen whales, 13 toothed whales and dolphins, and 

one seal. A wide variety of sound types was included in this subset; we also included sounds 

from pairs of species that were difficult to distinguish aurally. 

4.1 Statistical Interdependence 

The redundancy in these statistics, for this data set, was examined by a stepwise multiple 

regression procedure. This analysis treated each sound equally, ignoring the identity of 

the sequence. At each stage, the algorithm identified the statistic that had the highest 

linear correlation with other statistics for these data. This statistic was removed, and the 

analysis repeated. When the correlation coefficients and scatter plots indicated relatively 

poor fits, the analysis was terminated. We anticipated some redundancy in our statistics; 

we intended to test alternative sound measures. A more conclusive analysis of redundancy 

and performance awaits analysis of larger data sets. 

For the comparisons described here, the multiple regression functions explained more 

than 80% of the variance for the first nine statistical estimators. The statistics that were 

successively eliminated were (with percent explained variance): Amplitude Standard Devi

ation (0.979, fig. 28), Median Frequency Mean (0.974, fig. 29), Modal Spectrum Median 

(0.974, fig. 31), Total Upper Frequency (0.944, fig. 31), Total Spectrum Concentration 

(0.900, fig. 32), Modal Lower Frequency (0.896, fig. 33), Modal Upper Frequency (.0.885, 

fig. 34), Short-term Spectral Concentration (0.878, fig. 15), and Total Spectrum Median 

(0.839, fig. 36). In these figures, the horizontal axes represented the predicted value, the 

vertical axes represented the observed value, and the dark line represented the regression 
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line. Eight of the nine variables appear to scale with center frequency, and we suspect that 

re-expressing these in relation to center frequency would remove much of this redundancy. 

Amplitude Standard Deviation and other amplitude variables sould be re-expressed relative 

to Amplitude Mean for similal' reasons. It was not resolved whether simple division by these 

scaling factors would be appropriate. 

4.2 Acoustical Analyses and Biological Information 

The ability to select and analyze acoustic measurements based on related biological or envi

ronmental observations was crucial for these data. This could have been done by segregating 

data files for different species, activities, locations, etc. and independently processing each 

batch. However, it would have been cumbersome and difficult to manage such sorting and 

data segregation for each new query, especial.ly as the selections became more complicated. 

A more powerful technique was to link the numerical analyses directly to the text databases. 

All sound cuts were processed in one batch, and these extensive computations proceeded 

automatical.ly, unattended. Interactive exploration of relationships among statistics and 

biological or environmental factors followed, with al.l of the :8.exibility and convenience of 

database queries and reports. 

The SOUND text databases for the recordings and the digital sound sequences (Watkins, 

Fristrup, and Daher 1991) could have accommodated new numeric data from the statistical 

analyses, but with INMAGIC software this required restructuring the entire database each 

time the number of numeric fields changed. This was not feasible: the analyses required 

many iterations and modifications. Therefore, PARADOX software (supports relational 

database models, with visual, query-by-example interface) was used to provide more :8.ex

ible linkage between biological and acoustic information. The text information from the 

SOUND databases remained unmodified as a single table, and additional tables were cre

ated to handle the numeric results. Fields were used in these numeric tables that identified 
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the related SOUND text records. Then, subsets of the statistical results were obtained 

by selecting particular fields in SOUND and reporting the linked numerical information. 

Note that these queries could be reversed to select pertinent biological or environmental 

information based on acoustic criteria. 
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4.3 Preliminary Species Summaries 

We generated summaries of the numerical results for each of the species in the trial data set 

(see Tables 2 through 8). For each species, the mean value of the statistic was listed with 

the maximum as a superscript and the minimum as a subscript. The number of sounds 

analyzed (Count) for each species was indicated in Table 1, but not repeated in the other 

tables. Tables were divided in three sections: baleen whales, toothed species, one seal and 

a transient sequence (hammer simulating clicks of Physeter catodon). 

Two aspects of the summaries of sound duration (Table 2) merit comment. Species that 

are represented by more than ten sounds showed a dramatic variation between upper and 

lower bounds on both statistics. This may have reflected different selection criteria for the 

sound cuts. These sound cuts may have been a mix of isolated sounds, long sound sequences 

with intervals of silence, or continuous choruses from many individuals. All of these are 

valid data, but we need to differentiate among these classes of recordings in future analyses. 

Also, the sound "duty cycle" could be calculated by dividing Sound Concentration by Sound 

Duration. Table 2 indicates that baleen whales could largely be distinguished from toothed 

species by comparison of sound duty cycles. 
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Table 2 
Species Count Sound Sound 

Duration s. Concentration s. 
B. mysticetus 5 1.62 ~Jo 403.782 

• .149 
C. marginata 3 86.93 

• .82 .291:ffl 
E. glacialis 5 831.27 . .39 .265:~ 
E. australis 16 82 2.39 

• .18 443 1.319 
• .126 

B. acutorostrata 5 51.70 
• .27 .255:~~ 

B. physalus 15 1.01 ~:r,g .332:~~ 
P. catodon 28 4.15 ~:291 .051:~ 
D. leucas 1 1111.17 · 1.17 511.517 

· .517 
S. longirostris 25 1.39 ~ir .089:~ 
S. long. + P. cat. 4 1.29 ~7r 019.121 

· .023 
S. bredanensis 7 1.12 ~9~1 .230:~~ 
C. commersonii 2 1.46 ~6rl .102 :M~ 
D. delphis 13 1.68~7 1821.147 · .020 
G. griseus 23 4.06 ~i~2 4141.295 · .013 
G. macrorhynchus 11 1.68~f .403:~ 
G. melaena 11 1.37 ~do 2531.584 • .039 
o. orca 7 981.83 . .56 .393 :~6 
P. crassidens 6 594 9.79 

. 3.23 .410 ~oc.r:? 
P. phoooena 8 1.54~~8 .066 :6~ 
1. geoffrensis 2 1.31t~ 121.132 

. .111 
A. phillipi 4 4.43i:~ 6701.019 · .235 
Hammer on metal 1 241 2.41 

. 2.41 079.079 
. .019 
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Table 3 displayed statistics related to amplitude modulation. The first two of these 

statistics were not useful diagnostics in themselves because the absolute value of each was 

inherently tied to equipment gain settings during any stages of processing. However, the 

proportion of Amplitude Standard Deviation/Amplitude Mean (standard error) was a useful 

indication of amplitude modulation, with larger standard errors indicating more modulation. 

Attack Fraction and Attack Proportion were negatively correlated because sound cuts 

were edited so that initial and terminal noise levels were approximately the same. One of 

these probably would have been sufficient. 

Amplitude Skewness appeared to be a less robust statistic. However, some gross dif

ferences agreed with our experience. Among baleen whales, Eubalaena glacialis tended to 

start loudly and taper to silence (negative skew), while B. acutorostrata often started softly 

and swelled in level. 
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Table 3 
Species Amplitude Amplitude Attack Attack Amplitude 

Mean StdDev Fraction Proportion Skewness 
B. mysticetus 095.265 

.• .013 .336 :~r 51.57 
• .49 49.51 

• .43 4391.643 · -.200 
C. marginata .161 :~~ .291 :~~ 44.56 

• .38 .56:~ _ 140.016 
. -.289 

E. glacialis 195.513 
· .011 501 1.584 

• .057 51.57 
• .45 49.55 

· .43 -1.127 ~60 
E. australis 1.254~~1 2.263 :i~~ .50:~ .50 :gy 232 2.658 

-. -1.391 
B. acutorostrata 19.177 f.!~~ 35.734~U~ 45.56 

· .25 .55 :ll 1.123~= 
B. physalus 1.612:oM3 3.383 ~&i~25 .50:~ .56~ 444 3.828 

· -2.211 
P. catodon .077 :~g 4421.565 

· .010 46.57 
· .32 54.68 

• .42 226.885 
-. -2.052 

D.leucas 010.010 
· .010 021.021 

. .021 52.52 
· .52 48.48 

· .48 678.678 
. .678 

S. longirostris .143~~7 .427~~ 50.56 
· .45 50.55 

· .44 131 4.023 
· -3.049 

S. long. + P. cat. .010 :86~ 046.058 
. .032 51.53 

· .48 49.52 
· .47 392 2.632 

-. -5.964 
S. bredanensis .113 :~~ .298 ~~~3 49.51 

· .48 51.52 
· .49 369 3.189 

. -.575 
C. commersonii .008:~ .043 :ggg 58.62 

· .54 .42:~ -5.200:9~~ 
D. delphis .126:~ 484 1.560 

· .022 50.54 
· .46 49.56 

· .39 041 4.272 
-. -4.224 

G. griseus .060 :58i .163 :gg~ 49.53 
· .45 51.55 

· .47 038 2.064 
· -3.067 

G. macrorhynchus 3811.079 · .056 .952~~5 50.57 
· .46 50.54 

• .43 017 2.366 
· -1.606 

G. melaena 7261.757 · .153 1.653~3~ 50.57 
· .42 50.58 

• .43 192 2.065 
· -2.607 

O. orca 228.451 
. .011 .384 :8l~ 50.56 

· .46 50.54 
· .44 2801.348 • -.360 

P. crassidens .084 :~l .231:~ 49.53 
· .46 51.54 

· .47 030.984 
. -.840 

P. phocoena .171:~ .944 ~oA~5 48.56 
· .39 .42:~ 106 3.919 

-. -5.415 
1. geoffrensis .217j~ 1.007 ~8~f3 43.44 

· .42 57.58 
· .56 

992 - 819 -. -i.166 
A. phillipi 566 1.138 

· .161 1.359 ~5~17 51.54 
· .48 49.52 

· .46 .081 !Wo1 

Hammer on metal 14891.489 . 1.489 10 21410.214 . 10.214 40.40 
· .40 .60:~ _ 192 -.192 

. -.192 
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Table 4 displays statistics relating to frequency modulation. Baleen whales and toothed 

species clearly had different magnitudes of Upsweep Mean, but much of this could have 

resulted from higher center frequencies of most toothed whale sounds. 

Upsweep Fraction and Upsweep Proportion were not always negatively correlated, be

cause the sounds from marine mammals could start or end at very different frequencies. 

The numbers for E. glacialis were instructive. Upsweep Mean was negative for this species, 

indicating that the sounds had lower frequencies toward the end, and Upsweep Fraction 

was nearly half indicating that about half of the block-to-block changes in frequency were 

positive. Thus, most of these downsweeps were greater in magnitude than the upsweeps, 

and indeed the Upsweep Proportion was less than one-half. 

The Time Frequency and Time Upsweep Correlations showed considerable variation 

within larger samples. We know that the features they target are useful diagnostics, so we 

must seek better means of measuring them. Alternatives include non-parametric measures 

of correlation. 
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Table 4 
Species Upsweep Upsweep Upsweep Time-Freq. Time-Upsweep 

Mean Hz/s. Fraction Proportion Correlation Correlation 
B. mysticetus 395 18 

- -1149 .47:~ .50:xg _ 24.42 
• -.94 

02.24 
• -.07 

C. marginata 144 -107 - -191 .00 :&\ .68:~ 27.01 -. -.45 .18 ~22 
E. glacialis -1320~~79 54.99 

• .32 .34 :gg -.17~~ 10.32 
• -.03 

E. australis 102 553 
-92 .69 ~3600 57 1.00 

· .20 .18.75 
-.98 16.62 

• -.15 
B. acutorostrata O~oo 72.97 

• .41 .35:gg - 08.13 
• -.63 - 04.33 

• -.41 
B. physalus -36 ~2134 .17o~ 32.91 

• 0.00 
_ 10 1.00 

• -1.0 -.12~98 
P. catodon 45628 799608 -962976 581.00 · 0.00 521.00 · 0.00 13.74 

-. -.76 - 03.72 
• -.63 

D. leucas -680::: 18.18 
· .18 69.69 

· .69 
82 -.82 -. -.82 02 -.02 -. -.02 

s. longirostris 172907 ~~~8~92 .70~~ 59 1.00 
· .16 -.00 ~~89 04.87 

· -.32 
S. long. + P. cat. 81780 ~~1JlI9 .54:~ .29:M -.40::~ -.03 ~13 
S. bredanensis 41495 ~113jj5 .56:~ .45:M -.04~6 -.02 ~~13 
C. commersonii -6998:i~07 .17:~ 37.50 

· .25 10.42 
• -.22 

41 -.30 -. -.51 
D. delphis -70028 ~V:'441 58 1.00 

· .05 581.00 · .22 .00~54 00.23 
• -.38 

G. griseus 443252320 -9104 55.73 
· .35 .49:~ 04.87 

· -.45 - 02.16 
· -.27 

G. macrorhynchus 10434 ~V4o.r1 .51:~ 51.79 
· .28 -.04!~ - 01.11 

· -.35 
G. melaena 2431 :~l:84 .51:~ .49:~ .01 ~90 -.08 ~:47 
O. orca -129211 :5~~83 .48 :b§ .43:~ -.05 ~~40 -.16 ~~90 
P. crassidens 161 1082 

- -2131 55.65 
· .42 38.62 

· .10 45.79 
• .11 -.00 ~1l 

P. phoroena 855046219 -2429 68 1.00 
· 0.00 701.00 · 0.00 021.00 

• -.99 - 09.16 
• -.36 

1. geolJrensis 439 0 -6242 - 4 -81638 35.41 
· .29 54.55 

· .53 
15 -.09 -. -.21 04.10 

· -.02 
.. ~ .. A. phillipi -1633 J367 23.44 

· .10 45.70 
· .22 06.26 

· -.02 .02~02 
Hammer on metal 503277 -503277 - -503277 01.01 

· .01 20.20 
· .20 -.36 -.36 

-.36 48.48 
· .48 
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The short-term bandwidth statistics in Table 5, the aggregate bandwidth statistics in 

Table 6, and the center frequency statistics of Table 7 were the most diagnostic for this set 

of sound sequences. They apparently separated the sounds of different species. Bandwidths 
.. 

appeared to scale with frequency, suggesting that they could be expressed best in proportion 

to center frequency. 

Table 5 
Species Short-term Short-term Short-term 

Bandwidth Spectral Spectral 
Mean Hz/s. Concentration Hz/s. Asymmetry 

B. mysticetus 34502 39597 32023 3016 3756 2592 11.22 
· .03 

C. marginata 881~g 106M8 .17:~ 
E. glacialis 744419157 3200 335~65 -.15o~ 
E. australis 4378 6773 

3269 417m 22.40 
· 0.00 

B. acutorostrata 907 1094 
814 102 158 

74 20.54 
· 0.00 

B. physalus 464 ~~5 40r> 06.29 
· 0.00 

P. catodon 1898178 ~lt~8 135440Pt~1 41.76 
· .07 

D. leucas 52254 52254 52254 4652 ~~~~ 13.13 
· .13 

S. longirostris 1189241 2556271 821087 102772316991 51781 .12:ri> 
S. long. + P. cat. 3387894 6005715 891902 221269 t~~~2 .22 :35 
S. bredanensis 3454478 7664267 1336456 166331 ~~~~~ 22.31 

· .15 
C. commersonii 30991 rs~~ 2471 ~r~g .04:~ 
D. delphis 1266464 3159867 132364 102935=6 13.32 

· .01 
G. griseus 508874 ~~~M44 26081 ~~5~9 .24:~ 
G. macrorhynchus 721235 1932495 129749 38673102974 11581 25.49 

· .10 
G. melaena 327154 ~~im5 277241~~ 18.41 

· .05 
O. orca 214199322328 14074 1724227372 1113 .19:~ 
P. crassidens 2004921~~ 20372~2 .14:~ 
P. phoroena 39577126412 12800 3815M:'7 17.47 

• 0.00 
1. geoffrensis 1102209 M~~~ 47188 g~~~ 49.52 

· .47 
A. phillipi 137311 164278 

119179 12491 14300 
11469 18.20 

· .17 
Hammer on metal 3383956~~~ 119674H~~ .36:~ 
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Table 6 
Total Spectrum Modal Spectrum 

Species Upper Lower Spectrum Upper Lower Spectrum 
Frequency Frequency Concentration Frequency Frequency Concentration 

Hz Hz Hz Hz Hz Hz 
B. mysticetus 821 ~~1 545l3r 149~~2 903UbS 558lgs 114 ~~2 
C. marginata 93~g 79~~ 15n 91 94 

90 76~g 10 17 
5 

E. glacialis 361 ~Ab 156 ~go 48g9 314~go 158 ~Ao 2n~ 
E. austrolis 174~~0 124 ~g8 38~~ 1641~0 132 ~~9 221~ 
B. acutorostrota 891~0 70~~ 15 ~4 88 130 

'40 721go 915 

B. physalus 74Mo 58 ~~9 615 74 140 
30 67 130 

25 4 10 
2 

P. catodon 6463 11100 
320 1411 8480 160 13851g~4 3093 Agg40 1919 ~~r 215 610 82 

D. leucas 2563~~~ 2266 ~~~~ 298 ~~~ 2517 ~~g 2266~~~ 251 ~~l 
S. longirostris 11329 ~~~o 6987§~~0 1009 n~9 11050 ~~~43 7166 §~g20 757 ~~~9 
S. long. + P. cat. 20036~g~~ 8640 10560 

4480 2105 ~~I8 11258 t~~~ 8640 l~~go 674 g~6 
S. bredanensis 15250~~~0 4118 ~~go 2237n~6 8849 1~gf' 5517 ~~g2 798 ~~l5 
C. commersonii 3574g~~ 2785~~~ 771g9 3574~~g 3503~~ 47g~ 
p. delphis 16484~ng3 9127 15040 

1753 1284 g~~2 13598 ~ggo 909715306 2286 807 ~~~3 
G. griseus 8682 ~~g45 4185 ntH 903 ~~21 7815 1~~94 4440 ntt4 525 g~79 

G. macrorhynchus 5941 ~~~o 2186 ~3~7 6591~P 5064Mg8O 2586~~~ 356 ~b~ 
G. melaena 5707 ~~~ 4586 8451 

1992 556 t~r 5599~~g 4729~~~ 317~g 
O. orca 1936 ~~~ 949 ~~~ 336 ~~7 1635 ~3~ 1067 ~gg2 189~9 

P. crassidens 6891 ~g~59 5184 In6 473 ~~f 6706 ~~59 5219n~ 313 ~~9 
P. phocoena 1522 ~g8O 6105480 110 ~~1 660 ~g60 6195520 28~~ 
1. geofJrensis 5291 ~~~ 1875 1992 

1758 1143 ~~8 3379 ~~1g 2184 ~:~ 278 ~g~ 
A. phillipi 234 234 234 117 117 117 100M3 234 234 234 117 117 117 67 76 60 
Hammer on metal 1440 t~l& 640 ~~g 800~gg 11111111 1111 800 ~gg 210ng 
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Table 7 
Species Median Total Modal 

Frequency Spectrum Spectrum 
Mean Hz Median Hz Median Hz 

B. mysticetus 698~~3 642 1586 
187 634lgg1 

C. marginata 83:1 82:3 82:g 
E. glacialis 345f~ 317~~~ 226Fs 
E. australis 157 ~~5 145U8 141 ~!9 
B. acutorostrata 78Uo 75 103 

28 73~ 
B. physalus 66~~9 66~~9 67~f! 
P. catodon 4906 11283 

525 4340 11578 234 2606lggoo 
D. leucas 2058 2058 

2058 2279 ~~~~ 2312 2312 
2312 

S. longirostris 9451 ~§24 9702 ~~Aro 9664 ~~18 

S. long. + P. cat. 16107~= 16848 ~gn~ 10874lGGg 
S. bredanensis 11038~r~ 8837Wr 7230r>J~ 
C. commersonii 3236= 3473= 3503~~ 
D. delphis 13538 ~~~fi 13571~7 11917 ~~J5 
G. griseus 6518M~5 6763~~ 6408~~97 
G. macrorhynchus 4339~~ 3859r~~ 3398r~r 
G. melaena 5195 ~~~ 5198~ll 5136 ~1~ 
O. orca 1850~3f 1480~gr 1290 ~~2 
P. crassidens 6558= 5623r~ 5459 r~~5 
P. phoroena 1423 2537 

536 1346 3017 
14 625 ~520 

1. geoJJrensis 3622 4250 
2994 3387 ~~6~ 2840 3129 

2551 
A. phillipi 263 393 185 149 161 141 125H~ 
Hammer on metal 2718 2718 

2718 12171217 1217 840~g 
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Table 8 displays statistics relating to amplitude-frequency interactions. Although rel

atively less robust than many of the previous statistics, these measures also appeared to 

be useful. For example, the statistics for C. marginata had positive Amplitude Frequency 

Correlation suggesting that the higher frequency sections were louder than low frequency 

ones, and the negative Amplitude Correlation indicated that sections with downs weeps (or 

smaller upsweeps) tended to be the loudest. 

Note that all of these biological sounds except A. phillipi tended to have positive Am

plitude Frequency Correlations (higher frequency sections were louder). 
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Table 8 
Species Amplitude Amplitude 

Frequency Upsweep 
Correlation Correlation 

B. mysticetus 27.40 
• .07 

_ 01.01 
• -.04 

C. marginata 51.91 
• .13 

_ 28 -.17 
~ -.40 

E. glacialis 11.37 
• -.04 -.12 ~20 

E. australis 24.92 
• -.15 04.21 

• -.06 

B. acutorostrata 13.74 
• -.40 01.12 

• -.05 
B. physalus 651.00 · -.22 -.37~98 
P. catodon 22.65 

· -.02 
_ 01.43 

• -.98 

D. leucas 69.69 
· .69 

10 -.10 -. -.10 
S. longirostris .34~02 09 1.00 

· -.24 
S. long. + P. cat. 51.57 

· .42 00.11 -. -.07 
S. bredanensis 28.47 

• .11 .00~02 
C. commersonii .62:~ 26 -.22 -. -.31 
D. delphis 37.77 

· .10 
. 02.13 

-. -.37 
G. grise us 44.78 

· .19 03.15 
· -.05 

G. macrorhynchus 19.48 
· .02 01.08 

• -.04 

G. melaena 28.43 
· .17 01.07 

· -.05 
O. orca 40.72 

· .07 
_ 09.02 

. -.63 

P. crassidens .40 :gg -.00 ~02 
P. phocoena 32.95 

• .11 
02.56 

-. -1.00 
I. geoffrensis 24.25 

· .24 
09 -.01 -. -.16 

A. phillipi -.04j'i -.01 ~~02 
Hammer on metal 47.47 

· .47 
_ 63 -.63 

• -.63 

4.4 Principal Component Analysis 

To obtain a better perspective on the overall distribution of sounds as measured by our 

statistics, we performed a principal components analysis on the numerical results. The 

first two principal components provided axes for scatter plots that expressed about half 

of the total variability in our statistics. As discussed earlier, segregation of the principal 
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component scores by species was accomplished by linking to the SOUND table in our 

PARADOX structure. The baleen whales and toothed species were plotted separately in 

Figures 38 and 39. These two groups generally could be separated by frequency alone, and 

the separate plots focus attention on the variation within these groups. Each sound cut 

is represented by a colored symbol on the plot; color and symbol type redundantly code 

species identity. 

In both Figure 38 and Figure 39, the data for most species tended to cluster in a relatively 

discrete portion of the plot. Some regions were shared by a few neighboring species with 

similar sound types. These results appeared to confirm that acoustic features could be 

analyzed so as to compute sound statistics that would be useful to classify an unknown 

biological sound as one of a few potential candidates. 

This result was particularly remarkable because the sound data used for the tests in

cluded both specific sounds produced by individuals and sounds produced by many animals, 

with temporally overlapping sounds by two or more animals. If we distinguish between the 

individual and group recordings, our acoustic classifier will perform much better. 

A goal for such analyses has been the development of a system for automatic diagnosis 

of marine animal sounds based on acoustic criteria. The statistical problem for classification 

of an unknown relative to known groups is usually addressed by forming estimates of the 

distance between the unknown and the known, with the most likely classification being 

the one that minimizes this distance. The distance measure that is usually employed is 

the Mahalanobis distance (e. g. Morrison 1976, p. 241). Alternatively, we may find that 

methods which make fewer assumptions (Efron and Tibshirani 1991) will be better suited 

to developing the classifier. Non-acoustic criteria also could be incorporated from the text 

databases for additional refinement of these judgements. 
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5 Discussion and Summary 

Software tools have been developed and tested for statistical analysis of marine animal 

sounds. The preliminary results suggest that such sounds can be classified by means of rel

atively simple statistica.l algorithms. Three areas of this research are planned for particular 

attention. 

The SOUNDC database will need to be modified to identify additional information about 

the sound cuts. These additions will include identification of choruses of overlapping sounds 

and notes regarding the sequential organization of discrete sound elements. Sequences also 

needed to be identified relative to the usual pattern of sound production for that species or 

behavior, and noted if atypical. 

Continued evolution of our sound statistics is inevitable. All frequency statistics should 

be re-scaled, such that the other information is not swamped by gross differences in center 

frequency, for example. Some correlations may need to be replaced with more robust 

(perhaps non-parametric) alternatives. Methods for expressing some of these statistics may 

need to be investigated to increase their independence from each other. 

A comprehensive analysis of noise sensitivity and compensation techniques is also impor. 

tanto The specificity of our acoustic measurements is improved by removing the influence 

of ambient noise, but our ability to classify could be critica.lly impaired if we erroneously 

discard portions of the signal. 
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Figure 1. Noise performance of Signal Center (eq. 1). The vertical axis scores Signal Center 

in seconds; the horizontal axis scores signal/noise. Note the small range of values on the 

vertical axis. We subjectively label this as low variance, small trend. 
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Figure 2. Noise performance of Signal Duration (eq. 2). The vertical axis scores Signal 

Duration in seconds; the horizontal axis scores signal/noise. We subjectively label this as 

low variance, large trend. 
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Estimated Signal Concentration vs. Signal/Noise 
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Figure 3. Noise performance of Signal Concentration (eq. 3). The vertical axis scores Signal 

Concentration in seconds; the horizontal axis scores signal/noise. We subjectively label this 

as low variance, large trend. 
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Estimated Amplitude Mean vs. Signal/Noise 
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Figure 4. Noise performance of Amplitude Mean (eq. 4). The vertical axis scores Amplitude 

Mean in arbitrary units; the horizontal axis scores signal/noise. We subjectively label this 

as low variance, large trend. 
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Estimated Amplitude Standard Deviation vs. Signal/Noise 
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Figure 5. Noise performance of Amplitude Standard Deviation (eq. 5). The vertical 

axis scores Amplitude Standard Deviation, in arbitrary units; the horizontal axis scores 

signal/noise. We subjectively label this as low variance, large trend. 
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Estimated Attack Fraction vs. Signal/Noise 
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Figure 6. Noise performance of Attack Fraction (eq. 6). The vertical axis scores Attack 

Fraction (values of 0 +-+ 1 are possible); the horizontal axis scores signal/noise. We subjec

tively label this as high variance, small trend. 
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Figure 7. Noise performances of Attack Proportion (eq. 7). The vertical axis scores Attack 

Proportion (values of 0 ~ 1 are possible); the horizontal axis scores signal/noise. We 

subjectively label this as high variance, small trend. 
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Estimated Amplitude Skewness vs. Signal/Noise 
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Figure 8. Noise performance of Amplitude Skewness (eq. 8). The horizontal axis scores 

Amplitude Skewness (scale independent)i the horizontal axis scores signal/noise. We sub

jectively label this as high variance, small trend. 
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Estimated Upsweep Mean vs. SignaI/Noise 
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Figure 9. Noise performance of Upsweep Mean (eq. 9). The vertical axis scores Upsweep 

Mean in Hz/s.; the horizontal axis scores signal/noise. We subjectively label this as low 

variance, small trend. 
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Estimated Upsweep Fraction vs. Signal/Noise 
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Figure 10. Noise performance of Upsweep Fraction (eq. 10). The vertical axis scores 

Upsweep Fraction (values of 0 +-+ 1 are possible); the horizontal axis scores signal/noise. 

We subjectively label this as low variance, small trend. 
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Figure 11. Noise performance of Upsweep Proportion (eq. 11). The vertical axis scores 

Upsweep Proportion (values of 0 - 1 are possible); the horizontal axis scores signal/noise. 

We subjectively label this as high variance, small trend. 
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Estimated Time Frequency Correlation vs. Signal/Noise 
1~----~------~------~-----,------~------~------~----~ 

0.99 

0.98 

0.97 

0.96 

0.95 

5 10 15 20 

SIN (db) 

25 30 35 

Figure 12. Noise performance of Time Frequency Correlation (eq. 12). The vertical axis 

scores Time Frequency Correlation coefficients (values -1 - 1 possible); the horizontal axis 

scores signal/noise. We subjectively label this as low variance, small trend. 
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Figure 13. Noise performances of Time Upsweep Correlation (eq. 13). The vertical axis 

scores Time Upsweep Correlation coefficients (values of -1 +-+ 1 possible); the horizontal 

axis scores signal/noise. We subjectively score this as low variance, small trend. 
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Estimated Short-term Bandwidth Mean vs. Signal/Noise 
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Figure 14. Noise performance of Short-term Bandwidth Mean (eq. 14). The vertical 

axis is Short-term Bandwidth Mean in Hz/s.; the horizontal axis scores signal/noise. We 

subjectively label this as low variance, large trend. 
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Figure 15. Noise performance of Short-term Spectral Concentration. The vertical axis 

scores Short-term Spectral Concentration in Hz/s.; the horizontal axis scores signal/noise. 

We subjectively label this as low variance, large trend. 
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Figure 16. Noise performance of Short-term Spectral Asymmetry (eq. 16). The vertical 

axis scores Short-term Spectral Asymmetry (values of 0 ~ 1 are possible); the horizontal 

axis scores signal/noise. We subjectively label this as high variance, small trend. 
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Figure 17:. Noise performance of Total Upper Frequency (see p. 5). The vertical axis scores 

Total Upper Frequency in Hz; the horizontal axis scores signal/noise. We subjectively label 

this as low variance, large trend. 
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Figure 18. Noise performance of Total Lower Frequency (see p. 5). The vertical axis score 

Total Lower Frequency in Hz; the horizontal axis scores signal/noise. We subjectively label 

this as low variance, large trend. 
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Figure 19. Noise performance of Total Spectrum Concentration (see p. 5). The vertical 

axis scores Total Spectrum Concentration in Hz; the horizontal axis scores signal/noise. We 

subjectively label this low variance, large trend. 
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Figure 20. Noise performance of Modal Upper Frequency (see p. 5). The vertical axis scores 

Modal Upper Frequency in Hz; the horizontal axis scores signal/noise. We subjectively label 

this low variance, small trend. 

55 

-

-

-

40 



~ --
~ 
e 
E u 

~ -'" '0 

~ 

190 
Estimated Modal Lower Frequency vs. Signal/Noise 

180 

170 

160 

150 

140 

130 

120
0 5 10 15 20 

SIN (db) 

2S 30 35 

Figure 21. Noise performance of Modal Lower Frequency (see p. 5). The vertical axis scores 

Modal Lower Frequency in Hz; the horizontal axis scores signal/noise. We subjectively label 

this low variance, small trend. 
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Figure 22. Noise performance of Modal Spectrum Concentration (see p. 5). The vertical 

axis scores Modal Spectrum Concentration in Hz; the horizontal axis scores signal/noise. 

We subjectively label this low variance, small trend. 
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Figure 23. Noise performance of Total Spectrum Median (see p. 5). The vertical axis scales 

Total Spectrum Median in Hz; the horizontal axis scales signal/noise. We subjectively label 

this low variance, small trend. 
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Figure 24. Noise performance of Modal Spectrum Median (see p. 5). The vertical axis scales 

Modal Spectrum Median in Hz; the horizontal axis scales signal/noise. We subjectively label 

this low variance, small trend. 
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Figure 25. Noise performance of Median Frequency Mean (eq. 17). The vertical axis scales 

Median Frequency Mean in Hz; the horizontal axis scales signal/noise. We subjectively 

label this as low variance, small trend. 
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Figure 26. Noise performance of Amplitude Frequency Correlation (eq. 18). The vertical 

axis scales Amplitude Frequency Correlation coefficients (values of -1 +-+ 1 are possible); 

the horizontal axis scales signal/noise. We subjectively label this as high variance, large 

trend. 
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Figure 27. Noise performance of Amplitude Upsweep Correlation (eq. 19). The vertical 

axis scales Amplitude Upsweep Correlation coefficients (values of -1 +-+ 1 are possible); the 

horizontal axis scales signal/noise. We subjectively label this as high variance, large trend. 
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Figure 28. Linear prediction of Amplitude Standard Deviation based on 25 other variables 

(Signal Center not used for any regressions). The axes are in arbitrary units. The percent 

of variance explained by the linear regression is displayed in the title. 
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Figure 29. Linear prediction of Median Frequency Mean based on 24 other variables (Am

plitude Standard Deviation already removed). The axes are in Hz, but the data are shifted 

such that the means are zero. The percent of variance explained by the linear regression is 

displayed in the title. 
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Figure 30. Linear prediction of Modal Spectrum Median based on 23 other variables (two 

variables previously removed). The axes are in Hz, but the data are shifted such that the 

means are zero. The percent of variance explained by the linear regression is displayed in 

the title. 
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Figure 31. Linear prediction of Total Upper Frequency based on 22 other variables (three 

variables previously removed). The axes are in Hz, but the data are shifted such that the 

means are zero. The percent of variance explained by the linear regression is displayed in 

the title. 
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Figure 32. Linear prediction of Total Spectrum Concentration based on 21 other variables 

(four variables previously removed). The axes are in Hz, but the data are shifted such that 

the means are zero. The percent of variance explained by the linear regression is displayed 

in the title. 
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Figure 33. Linear prediction of Modal Lower Frequency based on 20 other variables (five 

variables previously removed). The axes are in Hz, but the data are shifted such that the 

means are zero. The percent of variance explained by the linear regression is displayed in 

the title. 
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Figure 34. Linear prediction of Modal Upper Frequency based on 19 other variables (six 

variables previously removed). The axes are in Hz, but the data are shifted such that the 

means are zero. The percent of variance explained by the linear regression is displayed in 

the title. 
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Figure 35. Linear prediction of Short-term Spectral Concentration based on 18 other vari

ables (seven variables previously removed). The axes are in Hz, but the data are shifted 

such that the means are zero. The percent of variance explained by the linear regression is 

displayed in the title. 
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Figure 36. Linear prediction of Total Spectrum Median based on 17 other variables (eight 

variables previously removed). The axes are in Hz, but the data are shifted such that the 

means are zero. The percent of variance explained by the linear regression is displayed in 

the title. 
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Figure 37. Linear prediction of Amplitude Upsweep Correlation based on 16 other variables 

(nine variables previously removed). The axes are correlation coefficients (values -1 +-+ 1 

possible), but the data are shifted such that the means are zero. The percent of variance 

explained by the linear regression is displayed in the title. 
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Figure 38. Plot of sound samples from six baleen whale species. The horizontal axis 

scales each sample's score on the first principal component (which basically reflects center 

frequency). The vertical axis scales each sample's score on the second principal component 

(not easily interpreted). 
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Figure 39. Plot of sound samples from thirteen toothed whale species. The horizontal axis 

scales each sample's score on the first principal component (which basically reflects center 

frequency). The vertical axis scales each sample's score on the second principal component 

(not easily interpreted). 
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