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Abstract.
This paper reports on the strength and structure of the Kuroshio Extension and its
recirculation gyres. In the time average, quasi-permanent recirculation gyres are
found to the north and south of the Kuroshio Extension jet. The characteristics
of recirculation gyres are determined from the combined observations from the
Kuroshio Extension System Study (KESS) field program program (June 2004 –
June 2006) and include current meters, pressure and current recording inverted
echo sounders, and sub-surface floats. The position and strength of the recirculation
gyres simulated by a high-resolution numerical model are found to be consistent
with the observations.
The circulation pattern that is revealed is of a complex system of multiple recir-
culation gyres that are embedded in the crests and troughs of the quasi-permanent
meanders of the Kuroshio Extension. At the location of the KESS array, the
Kuroshio Extension jet and its recirculation gyres transport of about 114 Sv. This
represents a 2.7-fold increase in the transport of the current compared to the
Kuroshio’s transport at Cape Ashizuri before it separates from the coast and flows
eastward into the open ocean. This enhancement in the current’s transport comes
from the development of the flanking recirculation gyres. Estimates from an array
of inverted echo sounders and a high-resolution ocean general circulation model
are of similar magnitude.

1. Introduction

The warm, northward-flowing waters of the Kuroshio
separate from the Japanese coast at the Bōsō Peninsula to
flow eastward into the North Pacific Ocean as a free jet
– the Kuroshio Extension (see Kawai 1972; Mizuno and
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White 1983; Qiu 2002; Yasuda 2003, for an overview of
the Kuroshio Extension system). Separated western bound-
ary currents, such as the Kuroshio Extension and the Gulf
Stream often have associated recirculation gyres (Hogg and
Johns 1995). The development of flanking, weakly depth-
dependent recirculation gyres significantly increases the down-
stream transport of the separated jet (Richardson 1985; Schmitz
and McCartney 1993). By providing quasi-stable regions
where water can be trapped for long periods, they are sites
for deep wintertime convection, formation regions of mode
waters, and reservoirs of heat and potential vorticity. Fur-
thermore, eddy variability appears to be important in cou-
pling the strong motions in these baroclinic jets to deep
abyssal circulations, driving the deep recirculation gyres
(Hogg 1983, 1985, 1993) and potentially acting back on the
upper jet, influencing its speed and direction (Cronin and
Watts 1996; Cronin 1996).

A variety of mechanisms have been offered for produc-
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ing the intense recirculation zones found in the vicinity of
western boundary currents. A hypothesis is that they result
from the need of the inertial, baroclinic western boundary
current to rid itself of anomalous potential vorticity which
it acquired at other latitudes, prior to separating from the
coast. Three classes of theories appear in the literature to ex-
plain how this occurs. The first are inertial theories in which
time-mean recirculation gyres can arise from the steady-state
time-mean advection of potential vorticity alone (e.g. Fo-
fonoff 1954; Marshall and Nurser 1986; Greatbatch 1987;
Cessi 1990; Nakano et al. 2008). The second group are
theories in which the eddy fluxes resulting from a directly
prescribed vorticity forcing generate mean rectified flows
through eddy-mean flow and eddy-eddy interactions (e.g.
Haidvogel and Rhines 1983; Cessi et al. 1987; Malanotte-
Rizzoli et al. 1995; Berloff 2005). Finally, the third group
of theories derives from studies of unstable jets in which the
generation of mean recirculations results from the combina-
tion of eddy effects (arising from jet instabilities) and inertial
effects (e.g. Spall 1994; Jayne et al. 1996; Beliakova 1998;
Jayne and Hogg 1999; Mizuta 2009). These theories and
their relevance to the Kuroshio Extension are discussed in
more depth by Waterman (2009).

Recirculation gyres flank the Gulf Stream after it sepa-
rates from the coast of North America on both the jet’s north
and south sides (Worthington 1976; Richardson 1985; Hogg
et al. 1986; Hogg 1992). These elongated recirculation gyres
are of approximately equal strength and enhance the trans-
port of the Gulf Stream from 31 Sv in the Florida Straits
(Beal et al. 2008) to approximately 85 Sv at its separation
point at Cape Hatteras to 150 Sv at 60◦W (Hogg 1992). In
the case of the Kuroshio Extension, the situation is less clear.
A westward recirculation has been observed south of the first
crest in the Kuroshio Extension in the WOCE P10 section
using a lowered ADCP (Firing 1998; Wijffels et al. 1998).
This southern recirculation gyre is also clear in altimetry ob-
servations of the Kuroshio Extension (Qiu et al. 1991; Qiu
and Chen 2005) and in subsurface drifting float observations
(Chen et al. 2007; Qiu et al. 2008). Additionally there is
a surface expression of the southern recirculation gyre ob-
served by drifters (Niiler et al. 2003b). However to the north
of the current, the presence or absence of a permanent recir-
culation may be interrupted by smaller scale transient fea-
tures and may depend on measurement depth and location.
It is absent from the regional mean circulation derived from
hydrography (Teague et al. 1990) and a careful compilation
of deep current meter records by Owens and Warren (2001)
supports neither the presence nor the absence of such a gyre.
Westward deep counter currents were observed both to the
south and north of the Kuroshio in two synoptic sections us-
ing lowered acoustic Doppler current profilers (ADCP) by
Yoshikawa et al. (2004). However, single synoptic sections

can not establish their permanence due to highly variable
nature of rings and meanders in the Kuroshio Extension. On
the other hand, using a compilation of profiling floats in the
Kuroshio Extension, Qiu et al. (2008) infer a weak recircula-
tion pattern north of the jet from the long-term and spatially-
smoothed average of profiling float displacements at 1500
m. Furthermore, in a study using a high-resolution model,
Nakano et al. (2008) found a chain of multiple recircula-
tion gyres flanking the Kuroshio Extension in their modeling
study. Of note from that work, is that while the recirculation
gyres are not apparent in the surface fields, they dominate
the abyssal flow field.

In this paper, we report on evidence of quasi-permanent
recirculation gyres to both the south and north of the Kuroshio
Extension from in situ observations. The observational data
come from instrumentation deployed for a 2-year period dur-
ing the Kuroshio Extension System Study (KESS). Measure-
ments from moored current meters provide clear evidence
for these recirculation gyres, as do observations from an ar-
ray of current and pressure recording inverted echo sounders,
and evidence of the recirculation gyres comes from profiling
float data. Finally, they are also found in a high-resolution
ocean general circulation model. Estimates of the transport
in the jet and the recirculation gyres are made using the cur-
rent meter data, the inverted echo sounders and numerical
model.

2. Kuroshio Extension System Study

The Kuroshio Extension System Study (KESS) had its
field program from June 2004 – June 2006 (Donohue et al.
2008). One of the goals of KESS is to understand the pro-
cesses that govern the variability of and the interaction be-
tween the Kuroshio Extension and its recirculation gyres.
The KESS field program observed a regime transition from
a weakly meandering state to a strongly meandering state
which occurred in late 2004. The weakly meandering pat-
tern, which had begun in 2001, exhibited the characteris-
tic pattern of two quasi-stationary meanders and a strong
zonally-elongated southern recirculation gyre. Figure 1 dis-
plays the KESS observational array overlaid with the super-
position of weekly snapshots of the Kuroshio’s jet axis (here
taken to be the 2.1 m sea surface height contour from the
Aviso sea surface height product, similar to Qiu and Chen
(2005)) giving the envelope of the jet’s north-south mean-
dering for the years 2004 – 2006. In December 2004 the
Kuroshio Extension switched into its strongly meandering
state in which its path became highly variable and eddy en-
ergy increased dramatically. The meandering spans several
degrees of latitude, and during KESS, the jet crossed the axis
of the mooring array as far south as the southern-most moor-
ing (K-7), and as far north as the K-2 mooring (see Table 1
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Figure 1. Geographical map of the KESS array. Overlaid
are the positions of the current meter moorings (blue stars),
CPIES (red diamonds) and Argo float locations (green dots).
Black contour lines denote the 2.1 m contours of sea surface
height at weekly intervals based on altimeter data for 2004,
2005 and 2006.

for locations).
Seven full-depth moorings with current meters, McLane

moored profilers (MMP) and ADCPs were deployed for
the 2-year period of the field program along a northeast-
southwest tending line, coincident with a Jason satellite al-
timeter ground track (Figure 1). The array was centered on
the first quasi-stationary meander trough of the Kuroshio Ex-
tension which also corresponds to the location of maximum
time-average eddy kinetic energy (Qiu 2002). The current
meter moorings were equipped with upward-looking AD-
CPs at 250 m housed in the moorings’ subsurface spheres,
MMPs which profiled between 250 m – 1500 m, and cur-

rent meters at selected deeper depths. The current meters
used were a mix of vector-averaging current meters (VACM)
and Aanderaa RCM-11 acoustic current meters. They were
deployed at 1500 m (VACM), 2000 m (RCM-11), 3500 m
(RCM-11) and 5000 m (RCM-11). The RCM-11 current
speeds were corrected for the speed of sound and adjusted
upward by 10% to account for a bias in their measurement
compared to other current meters (Hogg and Frye 2007).
The current meters yielded almost complete time series at
all sites (>80% data return), while the MMPs had problems.
All the MMPs were working after deployments in 2004 and
2005, but typically stopped profiling in strong currents and
the winter months. Despite these failures in high currents
(50–100 cm s−1), the MMPs returned temperature, salinity
and velocity measurements at any given depth (250–1500
m) and any given day 55% of the time. Here we focus
only on the observations from the current meters and leave
the MMP data for a future analysis. Additionally the sur-
face geostrophic velocity was estimated from the sea surface
height observed from satellite altimetry.

Inverted echo sounders equipped with pressure sensors
and current meters (CPIES) were deployed at 46 locations
in an array surrounding the current meter moorings (Fig-
ures 1 and 5a). The CPIES array maps the velocity and
density structure through the full water column (Donohue
et al. 2009). The inverted echo sounder measures round-
trip acoustic echo travel time of a 12.0 kHz pulse from sea
bed to sea surface. Utilizing empirical relationships estab-
lished with historical hydrography (the Gravest Empirical
Mode (GEM) method, e.g. Meinen and Watts (2000); Sun
and Watts (2001); Watts et al. (2001)), a look-up table be-
tween the echo travel time integrated from the surface to a
chosen reference depth and hydrographic properties yields
estimates of vertical profiles of temperature and density at
each CPIES. Time-series profiles of geopotential thickness
are estimated at each site, and through geostrophy, baroclinic
shears are determined. Additionally, the measurements from
the CPIES deep pressure gauges and current meters provide
a reference velocity to make the baroclinic velocity profiles
absolute. This method has been successfully used before
in ocean jets (Meinen and Watts 2000; Book et al. 2002;
Andres et al. 2008). The CPIES array had sufficient lat-
eral spacing (nominally 88 km) to map mesoscale variabil-
ity of the jet. The entire region was well observed for 16
months from June 2004 to September 2005 before some of
the CPIES were lost to equipment failures. Donohue et al.
(2009) provides a comprehensive discussion of CPIES pro-
cessing techniques and associated instrumentation, GEM,
and mapping errors from KESS. Briefly, pointwise root-
mean-square differences between mapped and measured ve-
locities were 15–20 cm s−1 near 200 m. These pointwise
velocities include submesoscale and ageostrophic compo-
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Mooring Longitude Comp. Surface 250 m 1500 m 2000 m 3500 m 5000 m
Latitude Altimetry ADCP VACM RCM-11 RCM-11 RCM-11

K-1 147.4◦E u -9.4±28.0 -3.5±20.5 — 0.1±6.3 — 0.7±6.1
37.1◦N v -1.9±22.2 3.9±19.9 — 1.4±4.5 — 1.5±5.7

K-2 146.9◦E u -2.5±29.6 -4.8±29.3 -1.7±7.4 -1.9±5.9 -1.2±6.2 -0.9±6.2
36.3◦N v -4.2±24.7 -13.3±28.7 0.3±6.5 0.3±4.9 0.7±5.2 1.5±5.3

K-3 146.4◦E u 38.1±38.4 18.5±35.1 -0.8±8.4 -2.0±7.0 -3.5±6.2 -3.7±6.4
35.6◦N v -29.0±53.5 -21.4±45.7 -1.4±8.5 -0.8±7.1 0.5±6.0 -0.4±5.7

K-4 146.1◦E u 58.8±58.3 30.9±45.0 1.1±8.4 1.2±7.3 -0.2±6.7 -0.4±6.9
35.0◦N v -33.7±49.5 -34.6±48.5 -2.2±7.6 -2.7±7.3 -0.8±6.2 -0.1±6.7

K-5 145.5◦E u -2.4±48.0 15.1±41.5 1.8±7.7 0.9±6.0 1.1±6.3 1.6±7.3
34.0◦N v -14.7±50.6 -17.5±37.9 -3.8±7.5 -2.3±7.3 -1.4±7.6 -1.2±9.0

K-6 145.0◦E u 4.0±39.3 8.5±33.6 -2.2±5.9 -2.3±4.9 -2.5±5.1 -2.5±6.2
33.3◦N v 2.6±50.9 -1.8±37.9 -2.0±7.5 -1.7±6.3 -1.4±6.2 -1.4±6.6

K-7 144.6◦E u 1.1±28.0 3.2±27.5 -1.8±5.8 -2.0±5.5 -1.6±4.5 -1.4±4.6
32.4◦N v 5.4±17.6 1.5±21.6 -1.5±4.7 -1.6±4.1 -1.9±3.9 -3.0±4.4

Table 1. Time-average currents and their standard deviations calculated from the moored current meters. The surface currents
are estimated from the AVISO sea surface height product assuming geostrophy. The currents at 250 m are taken from the
ADCPs on the moorings. The currents at 1500 m were observed with vector-averaging current meters (VACM), and the
currents at 2000 m, 3500 m and 5000 m where measured with Aanderaa RCM-11 current meters. The zonal velocity, u, and
the meridional velocity, v, are positive to the east and north, and are in units of cm s−1.

nents. Velocity errors decreased with depth and mapped
errors were typically less than 6 cm s−1 (3 cm s−1) near
500 m (800 m) depth. The error in the average near surface
geostrophic velocity between adjacent CPIES is 10 cm s−1

(Donohue et al. 2009).
The KESS program also deployed 48 APEX profiling

floats in the region of the Kuroshio Extension, which pro-
vided a detailed description of the temperature and salinity
structures at 5 day intervals. Lagrangian velocities at their
parking depth of 1500 m were computed from their displace-
ments (Chen et al. 2007; Qiu et al. 2008). These observa-
tions are in addition to float displacements from the interna-
tional Argo program which drifted at depths between 1000
m and 2000 m and generally profiled every 10 days (Lebe-
dev et al. 2007). Together, these provide 4795 displacements
in the region of 140–150◦E and 32–37◦N.

3. Observations

3.1. Current meters

Velocity timeseries: Figure 2 illustrates the raw time-
series of the zonal velocity from the current meters from
two of the moorings, one to the north of time-average jet
position (K-2) and one to the south of the time-average jet
(K-6) (see Table 1 for locations). Additionally surface veloc-
ities were calculated at each mooring location from the sea

surface height observed by altimetry assuming geostrophy.
In the surface ocean, the strong currents associated with the
meandering jet are observed. In the deep ocean, the current
meter records reveal that the fluctuations are much smaller
in magnitude than the surface ocean Furthermore the deep
flow is uncorrelated with the surface flow, with vector corre-
lations of in the range 0.1–0.3 between the surface velocity
and abyssal velocities. However, amongst themselves the
abyssal currents are highly vertically coherent (with vector
correlations of greater than 0.8 between the three deepest
current meters) and are largely barotropic in nature. The
deep current meters at 1500 m show the largest variability
since they are closest to the surface jet and the thermocline
(comparing variances in Table 1 for 1500 m versus deeper
levels). The current meters at 2000 m and 3500 m show
relatively reduced variability, while those at 5000 m show
a slight enhancement, compared to those at 3500 m. This
enhancement of the variability near the bottom is likely the
result of interactions of the currents with a sloping bottom
(Salmon et al. 1976; Merryfield 1998).

The weak depth dependence of the velocity field is con-
sistent with previous current meter observations from the
Kuroshio Extension (Schmitz 1984; Schmitz et al. 1987).
They found that the eddy field in the Kuroshio Extension
is highly vertically coherent from the base of thermocline to
200 m above the ocean bottom from mooring observations
located at 35◦N, 152◦E, which was slightly to the east of the



DEEP-SEA RESEARCH I 5

KESS array location. The KESS mooring observations sim-
ilarly suggest that the abyssal ocean below the thermocline
acts as a single layer (Waterman 2009).

Time-averaged velocity: The time-averaged velocity
observations are tabulated in Table 1 along with their vari-
ances. It should be noted that the current’s variance exceeds
the mean at nearly every current meter because of the pres-
ence of a strongly meandering jet. Figure 3a shows these
time-averaged velocity vectors of the mooring array in the
upper ocean measured by the ADCP at 250 m on the moor-
ings, and the surface velocity estimated from satellite al-
timetry, overlaid with the mean surface height contours from
the time-averaged sea surface height from the KESS period
(June 2004 – June 2006). The upper ocean velocity vec-
tors show a strong surface-intensified jet as expected, and
it is noted that the direct current measurements at 250 m
and the geostrophic velocities estimated from altimetry as-
suming geostrophy agree well. Figure 3b shows the time-
averaged velocity vectors in the deep ocean from current
meters at 1500 m, 2000 m, 3500 m, and 5000 m. There
is a strong indication of westward flow associated with re-
circulation gyres flanking the jet to the north and south.

The current meter array crosses the jet nearly perpendic-
ular to a quasi-permanent meander in the jet. Because of
the presence of this meander, a rotation of the velocity field
into a coordinate system parallel and perpendicular to the
array axis allows the core of the jet and the flanking flow to
be more plainly seen than it would be in the zonal velocity
component. Therefore we rotate the mean velocity vectors
shown in Figure 3 by 26.2◦ to the right to get the cross-array
velocity component and contour them as a function of lati-
tude and depth (Figure 4a). We see a relatively wide (≈ 250
km) jet in the upper ocean with an average velocity at the
surface of about 68 cm s−1. Again there is some evidence of
westward flow on the north and south flanks of the jet.

A stream-coordinate time-average was constructed by lo-
cating the jet axis (defined by the 2.1 m sea surface height
from the AVISO altimetry product which is the same contour
plotted in Figure 1) relative to the array at each measurement
time (see for example Halkin and Rossby 1985; Johns et al.
1995; Meinen et al. 2009; Howe et al. 2009). Then, at each
mooring, the nearest point to the jet axis was located, and
the distance to the mooring and the orientation to the jet axis
at that point was computed. Using the orientation of the axis
relative to the mooring array, the velocity components for
each time were rotated into down-stream and cross-stream
components. The distance between the moorings and jet axis
were used to bin-average the down-stream and cross-stream
velocities in time with a bin size of 25 km (about a quarter
the spacing between the moorings, which was found to give
reasonably smooth estimates). The stream-coordinate aver-

aged, down-stream velocity component is shown in Figure
4b. In general more measurements make up the average near
the jet axis compared to away from it as a result of the jet
axis almost always being inside the array. The time-average
in stream-coordinates represents a picture of the mean jet
structure with the smearing effects of the jet meanders re-
moved, and can be thought of as the mean synoptic jet. We
see that the core of the jet is over twice as strong, with veloc-
ities of 152 cm s−1 in the stream-coordinate average versus
68 cm s−1 in the geographic average, the result of the core
being smeared out by the meandering of the very strong jet.
The stream-coordinate average also highlights the existence
of weakly-depth dependent recirculations flanking the jet to
both the north and the south that extend throughout the water
column. Given the relatively weak magnitude of the recircu-
lations relative to the baroclinic jet, we can see more clearly
the westward flows of the recirculations that are absent in the
geographical mean picture in the upper ocean. This is a con-
sequence of occasional strong eastward velocities associated
with the meandering jet dominating over the weak flanking
flows and erasing them in the Eulerian time average (Hogg
1992).

3.2. CPIES

The CPIES array provides an mapped estimate of the ab-
solute geostrophic flow for the period June 2004 through
September 2005. Throughout the region, the mean currents
turn with depth and tend to decrease in amplitude down
to about 2000 m (Howe et al. 2009), as is also shown by
the vectors in Figure 3. The time-averaged geopotential
anomaly field at 1500 m is shown in Figure 5a. The cur-
rents at this level have substantial contributions from the
abyssal and upper baroclinic flow, such that in the mean they
closely resemble the vertically-integrated transport (Figure
5b), which will be discussed later. Along the path of the
surface jet, a coherent, strong southeastward current exists
at 1500 m along the north side of the southern recirculation
(centered at 144◦E, 24.3◦N). To the north of the jet is a cy-
clonic circulation associated with the northern recirculation
gyre (centered at 146.5◦E, 35.5◦N).

3.3. Floats

A total of 48 APEX profiling floats that were released as
part of KESS were set to have a parking depth of 1500 (see
Qiu and Chen 2005; Chen et al. 2007; Qiu et al. 2008, for
more details). Additional Argo floats with parking depths
of 1000 m, 1500 m, and 2000 m were taken from the YoM-
aHa’07 database (Lebedev et al. 2007). To correct the ad-
ditional Argo float displacements to a uniform depth, their
drifts were corrected for the time-average shear to estimate
the Lagrangian velocities at 1500 m. The resulting displace-
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Figure 2. The timeseries of the zonal velocity at the K-2 mooring in the upper ocean (a) and the lower left in the deep ocean
(c). The timeseries of the zonal velocity at the K-6 mooring in the upper ocean (b) and the in the deep ocean (d). Note the
change in scale between the upper and deep ocean plots. The velocity at the surface was calculated from altimetry assuming
geostrophy.

ments were then bin-averaged in to nominal 1◦ bins to cal-
culate the Eulerian space-time average velocities and their
statistical uncertainties (Davis 1998; Lavender et al. 2005).
The bin-averaged velocities and sampling errors were then
mapped by objective analysis using the technique of Brether-
ton et al. (1976) assuming a non-divergent velocity field and
a length scale of 100 km to estimate the geostrophic pressure
field at 1500 m (Figure 6). The mapped geostrophic pressure
field is that which would be associated with the flow field
presented by Qiu et al. (2008, see their figure 4). The same
general features that are seen in the pressure map from the
CPIES (Figure 5a) can be seen here, but with a wider ge-
ographic coverage. The profiling float drifting data reveals
that the northern recirculation gyre extends from 144◦E east

of Japan all the way to about 159◦E, where it is blocked by
the meridionally-aligned Shatsky Rise.

4. Numerical model results

The ocean general circulation model simulation utilized
for this study is an eddying run of the Parallel Ocean Pro-
gram (POP, see Smith et al. 1992; Maltrud and McClean
2005; McClean et al. 2006, 2008). POP is a three-dimensional,
z-level, primitive equation model. For this simulation it
was configured on a 40-vertical level, 1/10◦ global grid,
with the numerical grid’s North Pole displaced into Hudson
Bay. In the region of the Kuroshio Extension, the model
has a local resolution of 9 km in zonal direction, and 11
km in the meridional direction. The model was initialized
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geostrophy. Note the change in the scaling of the vectors between the two panels.
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Figure 6. Time-averaged geopotential anomaly at 1500 m
objectively mapped from profiling float displacements for
the KESS period. The units are dynamic centimeters. The
KESS-period time-averaged position of the 2.1 m sea sur-
face height contour (from Aviso) is over-plotted to indicate
the location of the surface jet.

from the Navy’s Modular Ocean Data Assimilation System
(MODAS) climatology (Fox et al. 2002), except in the Arc-
tic Ocean where the Polar Hydrographic Climatology was
used (Steele et al. 2001). No data assimilation was used in
the model simulation. The model was forced with synoptic
atmospheric fluxes derived from the NCEP-NCAR reanal-

ysis product (Large and Yeager 2004) for the period from
1979–2003. This simulation was previously used to exam-
ine the formation and variability of the North Pacific Sub-
tropical Mode water in the KESS region for a three year pe-
riod (1998–2000) by Rainville et al. (2007), and additional
model-data intercomparisons can be found therein. Here we
utilize the same three year period to examine the model’s
recirculation gyres.

It should be noted that a deficiency of the model sim-
ulation is that over the 3-year period which is available,
there was no regime shift from a weakly-meandering state
to a strongly-meandering state as the model stayed in the
weakly-meandering state for the whole 3 years. This has
the effect of highlighting the recirculation gyres since during
the strongly-meandering state of the Kuroshio Extension the
westward flow associated with the recirculation gyres tend
to get smeared out by the time averaging.

In order to more easily visualize the abyssal circulation,
the geostrophic geopotential anomalies at 1500 m and 5000
m, and depth-integrated transport streamfunction was com-
puted as follows. Using the same methodology as was ap-
plied to the float data, the daily velocity fields from the
model simulation were binned into 0.5◦ bins, then objec-
tively mapped to derive the total transport streamfunction
and geostrophic geopotential anomaly at the selected depths,
and finally averaged in time. The surface height field and
geopotential anomalies at 1500 m and 5000 m are shown in
Figures 7b and 7c. What is notable is that there are elon-
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Figure 4. Contours of time-averaged velocity perpendicular to the mooring array averaged in (a) geographic coordinates with
black ’×’s indicating the locations of current meters and (b) the time-averaged down-stream velocities averaged in stream
coordinates. The time-average center of the stream-coordinate system was at approximately 35◦N. Panels (c) and (d) show
the vertically integrated transport streamfunction in Sverdrups.

gated recirculation gyres to the north and south of the jet
which are modulated in amplitude by the meander crests
and troughs. The overall recirculation fields extend about
1000 km in the meridional direction, but they are concen-
trated into several cells of order 400 km in lengthscale. This
is quite different than the recirculation in the Gulf Stream,
where single elongated flanking gyres with lengthscales on
the order of 2000 km along-jet and 500 km cross-jet flank
the Gulf Stream (Hogg 1992). The surface pressure field
shows almost no signature of this circulation, similar to the
findings of Nakano et al. (2008). Additionally, as in Nakano
et al. (2008), the deeper pressure fields in the model show
multiple closed contours to both the north and south of the
jet, supporting the KESS observations of a time-averaged re-
circulation gyres to the north and south of the jet.

5. Transport estimates

Imawaki et al. (2001) estimated that Kuroshio at Cape
Ashizuri on the south coast of Japan (located about 133◦E)
carries 42±1.6 Sv (averaged over the time period from 1992-
1999), excluding the contribution from the local recircu-
lations. This transport estimate was made from the com-
bination of hydrographic surveys and current meter moor-
ings maintained along the Affiliated Surveys of the Kuroshio
off Cape Ashizuri (ASUKA) observation line. The trans-
port across the ASUKA line was correlated with sea surface
height measured by satellite altimetry along the line to es-
tablish a means of long-term monitoring the Kuroshio trans-
port that continues through the present. During the KESS
period the average transport was 45±11 Sv, slightly higher
than the long term average (data from the ASUKA website:
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Figure 5. (a) Time-averaged geopotential anomaly (in dynamic centimeters) at 1500 m mapped with the CPIES array over
the period June 2004–September 2005. The locations of the CPIES used in the mapping are shown by black dots. The mean
location of the upper Kuroshio Extension jet, also derived from the CPIES measurements for the same 16-month period, is
superimposed. (b) The time-averaged transport streamfunction (in Sverdrups) vertically-integrated between the surface and
5300 m for the same 16-month period.

http://www.riam.kyushu-u.ac.jp/oed/asuka/alt/index.html). This
transport estimate provides a reference from which to quan-
tify the enhancement of the transport in the Kuroshio Exten-
sion after it separates from the coasts and develops recircu-
lation gyres.

The current meter data from the KESS array can be used
to estimate the total downstream transport of the combined
Kuroshio Extension and its recirculation gyres across the ar-
ray. Taking the depth integral of the stream-coordinate time-
averaged current meter velocity and then performing a sec-
ond integration in the cross-stream direction yields an esti-
mate of the transport streamfunction across the current meter
array. A total downstream transport of 114±13Sv across the
KESS current mooring array is estimated (Figure 4b), with
the error estimate taking into account temporal variability
(the dominant source of uncertainty), binning error, and un-
certainty in the depth. A similar transport can be estimated
from the simple time-averages at each mooring (i.e. the Eu-
lerian average), which gives a weaker estimate of 79 Sv for
the total transport (Figure 4a). This reduction of 31% in the
jet and recirculation strength of the Kuroshio Extension in
the Eulerian averaging compared to the stream-coordinate
average is very similar to the 38% reduction seen in the
Eulerian average of the Gulf Stream of 93 Sv (Richardson
1985) compared to 150 Sv in the stream-coordinate average
(Hogg 1992). Estimates of the transport during the weakly-
meandering state and the strongly-meandering state are quite

similar, 109 Sv and 119 Sv respectively (Table 2).
The transport estimate from the CPIES, calculated be-

tween the center of the southern recirculation gyre to the
center of the northern recirculation gyre, represents a geo-
graphic average (not the stream-coordinate average) and is
made over a slightly different time period, is of similar mag-
nitude at 111 Sv (Figure 5). Transports between the south-
ern and the northern recirculation gyres estimated separately
for the two periods from CPIES array show higher trans-
ports during the weakly-meandering state (155 Sv) than the
strongly-meandering state (93 Sv) (see Table 2). Howe et al.
(2009) estimate a transport of 124 Sv at the same location
as the mooring array based on a stream-coordinate analy-
sis of the CPIES data averaged over the first 5.5 months (1
June – 16 November 2004), with a higher transport of 138
Sv upstream at 143◦E at the first quasi-stationary crest of the
Kuroshio Extension, and a lower transport of 75 Sv entering
the second crest.

By comparison, there are a few prior estimates of the
Kuroshio Extension transport. Farther downstream the KESS
array, a historical estimate was made by Hall (1989), who
calculated a transport of 87±21 Sv from a single mooring lo-
cated at 152◦E. More recently, from a synoptic section using
lowered ADCP Yoshikawa et al. (2004) calculated a trans-
port of 113 Sv across 152.5◦E. They also suggest that the
Hall (1989) estimate missed about 10 Sv of eastward flow on
the southside of the current, and hence her estimate should
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Figure 7. Time-averaged sea surface height (a), geopotential anomaly at 1500 m (b) and 5000 m (c), and the depth-integrated
transport streamfunction (d) from POP model. The units on the sea surface height are centimeters, the geopotential is in
dynamic centimeters, and the transport streamfunction is in Sverdrups. The time-averaged 0.5 m sea surface height contour
from the model is over-plotted to indicated the location of the surface jet.

Method Averaging Time period Location Transport [Sv]
Current meters Stream-coordinate 6/2004–6/2006 KESS mooring line 114
Current meters Stream-coordinate 6/2004–11/2004 KESS mooring line 109
Current meters Stream-coordinate 12/2004–6/2006 KESS mooring line 119
Current meters Geographic 6/2004–6/2006 KESS mooring line 79
CPIES ¶ Stream-coordinate 6/2004–11/2004 across first trough 124
CPIES Geographic 6/2004–9/2005 between SRG and NRG 111
CPIES Geographic 6/2004–11/2004 between SRG and NRG 155
CPIES Geographic 12/2004–9/2005 between SRG and NRG 93
POP model Geographic 1998–2000 between SRG and NRG 102

Table 2. Transport estimates of the Kuroshio Extension and its recirculation gyres from the KESS observations and POP
model. Included is a transport estimate from ¶ Howe et al. (2009). The time period from 16 June 2004 through 16 November
2004 corresponds to when the jet was in its weakly-meandering state, while the period from 17 November 2004 – 19 May
2006 the jet is strongly meandering. The transports calculated from the CPIES and POP model using the geographic averages
are between the center of the southern recirculation gyre (SRG) to the center of the northern recirculation gyre (NRG).
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be about 97 Sv. More relevant to the KESS observations
presented here, is their estimate of 163 Sv across 146.4◦E.
In the same region, separate estimates of the transport in the
southern recirculation gyre were 86 Sv observed by Firing
(1998) using a lowered ADCP during WOCE on the P10
line (see also Wijffels et al. 1998), and 101 Sv estimated by
Chen et al. (2007) from subsurface floats during KESS.

The larger scale picture provided by the POP model (Fig-
ure 7b) shows that there are a series of recirculation gyres to
the north and south of the jet, located under the crests and
above the troughs. This demonstrates the difficulties of try-
ing to observe the transport in the Kuroshio Extension, and
may explain the wide range of transport estimates, as such
observations, even in the time average, will be very sensitive
to the exact location of the measurement system. The mean-
dering of the jet and the presence of detached rings further
complicates the picture.

In the POP simulation (Figure 7d), the transport increases
from 41 Sv carried by the jet at Cape Ashizuri (notably
within the error bounds on the ASUKA estimate) to 102
Sv across the first permanent meander trough (near where
the KESS array was) between the first set of southern and
northern recirculation gyres, and 110 Sv across the second
permanent meander trough between the second set of south-
ern and northern recirculation gyres. At 152◦E, the lon-
gitude of the WESTPAC array (Schmitz et al. 1987), the
Hall (1989) analysis, and one of sections from Yoshikawa
et al. (2004), the POP simulation has a mean total transport
of 75 Sv. However, it should be noted that this longitude
cuts through the eastern edge of the recirculation gyre sys-
tem (Figure 7d) in the model and therefore the transport es-
timate there will be highly sensitive to the zonal extent of
recirculation gyres which varies in time. Also, from the
POP simulation it can be seen that the southern recircula-
tion gyre (maxima of 64 Sv for the first cell at 143◦E and
66 Sv for the second at 149◦E) is stronger at than the north-
ern recirculation gyre (minima of -37 Sv for the first cell at
146◦E and -44 Sv for the second at 150◦E). On the whole
the high-resolution POP simulation appears to reproduce the
Kuroshio Extension system reasonably well. It is important
that models correctly represent these recirculation gyres as
the realistic depiction of these features is critical for fidelity
in air-sea interactions in western boundary current extension
regions, and the models can ultimately provide insight into
the recirculation gyre’s dynamics.

6. Summary and Discussion

The combination of observations from the KESS pro-
gram, in addition to a high-resolution numerical model, sup-
port the presence of quasi-permanent recirculation gyres to

the north and south of the Kuroshio Extension jet. While the
recirculation gyre to the south of the jet has been previously
observed (Qiu et al. 1991; Wijffels et al. 1998; Niiler et al.
2003a; Yoshikawa et al. 2004; Qiu and Chen 2005; Chen
et al. 2007; Qiu et al. 2008) the northern recirculation gyre
is first clearly identified in the KESS observations (see also
Qiu et al. 2008). The recirculation gyres appear to signifi-
cantly enhance the local circulation by increasing the trans-
port of the Kuroshio from 42 Sv when it separates from the
coast (Imawaki et al. 2001) to 114 Sv at the KESS array (a
increase of about 2.7 times).

The numerical model results show series of recircula-
tion cells flanking the jet. Furthermore, the model results
show that the southern recirculation gyre appears to be much
stronger and the northern gyre correspondingly weaker. The
modulation of the overall recirculation gyres in the Kuroshio
Extension by the crests and troughs appear to be quite differ-
ent from those in the Gulf Stream where elongated gyres of
almost equal strength are found flanking the stream (Hogg
1992). The north-south asymmetry in the transport of the
recirculation gyres is likely due to the presence of quasi-
stationary meanders in the mean path of the Kuroshio Ex-
tension.

Previous studies on the Kuroshio Extension’s quasi-stationary
meanders have argued about the dynamics of the mean-
ders. In particular White and McCreary (1976) argue that
the quasi-stationary meanders are the outcome of standing
Rossby waves, while others find that they are maintained by
the convergence of the eddy potential vorticity flux (Hurl-
burt et al. 1996; Qiu and Chen 2009). It is difficult to know
at present how the recirculation gyres fit into this dynamical
picture. Qiu et al. (2008) find that the northern recircula-
tion gyre is driven by radiating eddy fluxes. Future work
should seek to elucidate the dynamical connection between
the quasi-permanent meanders, the recirculation gyres, and
eddy fluxes.
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