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Abstract  
The Basin Acoustic Seamount Scattering Experiment (BASSEX) of 2004 was conducted 
to measure forward-scattering around the Kermit-Roosevelt Seamount Complex in the 
Northeast Pacific. The BASSEX experiment was focused on the bathymetric effects on 
acoustic propagation, in particular, on direct blockage, horizontal refraction, diffraction, 
and scattering by the seamounts. A towed hydrophone array, with 64 sensors cut for 
250Hz (3m spacing), was used to measure the signals transmitted from the 
aforementioned broadband sources at many locations around the Kermit-Roosevelt and 
Elvis seamounts. Utilizing the measured broadband signals from the towed array, the size 
of the shadow zone was obtained. The measured data in the BASSEX experiment 
strongly support the understanding of the complicated phenomena of sound propagation 
around the seamounts. In addition, the experimental data could be used to validate current 
2D and 3D theoretical models and develop new models to properly realize the sound 
propagation with such complicated phenomena.  

In this thesis, the reconciliation between the measured pulse arrivals from the 
BASSEX experiment and various two-dimensional (2D) and three-dimensional (3D) 
theoretical models is carried out to investigate the physical characteristics of the sound 
propagation around seamounts: First, the 2D Parabolic Equation (PE) model and the 2D 
ray tracing model are used to reconcile each ray arrival with the BASSEX experiment in 
terms of arrival time and grazing angle. We construct a sound speed field database based 
on the sound speed profiles from the BASSEX experiment, World Ocean Atlas (WOA) 
2005, and CTD casts using the objective analysis.  

Second, 3D broadband sound propagation around a conical seamount is 
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investigated numerically using the 3D spectral coupled-mode model (W. Luo, PhD Thesis, 
MIT, 2007). Since the calculation of 3D broadband pulses with the spectral coupled-
mode model requires extensive computation time, a parallel program is developed with a 
clustered computing system to obtain results in reasonable time. The validation of the 3D 
spectral coupled-mode model is performed by a series of comparisons between the 
various 2D and 3D models for a shallow-water waveguide. The Kermit-Roosevelt 
seamount is modeled by a simple conical seamount for the 3D model. The computed 3D 
broadband pulses for the modeled conical seamount are compared with those from the 
BASSEX experiment and the 2D PE simulation.  

Through this analysis, we examine the limit of the application of the sound 
propagation models and improve the efficiency of the 3D sound propagation model using 
parallel computing to obtain a broadband pulse in a reasonable amount of time.  
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Chapter 1  

 

Introduction 

 
Although long-range ocean acoustics has advanced to predicting the arrival time within a 

millisecond at megameter ranges, the application of acoustic models to long-range 

acoustic propagation has been limited to two-dimensional (2D) or Nx2D models due to 

the complexity of the problem as well as computational efficiency. Therefore, ocean 

waveguides with strong azimuthal coupling still remain highly challenging because a full 

three-dimensional (3D) modeling is required.  

Acoustic propagation around seamounts is a good example of a problem which has 

strong mode coupling and horizontal refraction by the sloped bathymetry of the seamount. 

In addition, uncertainties from oceanographic variability, e.g., sound speed variability due 

to the internal wave, and the geoacoustic property of seabottom increase the complexity 

of modeling acoustic propagation.  

Physical experiments [1-4] and theoretical approaches [5-7, 15-16, 23] have been 

explored for over 30 years; however, due to the complexity of the problem, the 

phenomena of acoustic propagation around seamounts are not well understood.  

In 2004, the Basin Acoustic Seamount Scattering Experiment (BASSEX) was 

conducted in the North Pacific as a part of long-range ocean acoustic propagation 

experiments of NPAL04 (North Pacific Acoustic Laboratory 2004) with two other 

experiments, called LOAPEX (Long-range Ocean Acoustic Program Experiment) and 

SPICE04. The BASSEX experiment was focused on the bathymetric effects on acoustic 

propagation, in particular, on direct blockage, refraction, diffraction, and scattering by 

seamounts. Moored and ship-deployed acoustic sources transmitted m-sequence signals 

at about 192 dB re 1 μPa, including two SPICEX sources which transmitted eleven 12.3 
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second sequences every hour at 250Hz carrier frequency (83Hz bandwidth), and a 

LOAPEX source which transmitted forty-one 30 second sequences at 68.2Hz carrier 

frequency (35Hz bandwidth). The distances between the SPICEX sources and the 

Kermit-Roosevelt seamount are 617 and 504km.  

 
Figure 1-1: Bathymetry around the Kermit-Roosevelt and Elvis seamounts with the source 

locations (S1 & S2 for the SPICEX sources, LOAPEX (T1000) for the LOAPEX source). 

 

 
Figure 1-2: Measured peak sound levels received from the SPICEX source S1 (left panel) and 

S2 (right panel) [53]. 

 

The Five Octave Research Array (FORA), which is a towed hydrophone array with 

64 sensors cut for 250Hz (3m spacing), was used to measure the signals transmitted from 

the aforementioned broadband sources at many locations around the Kermit-Roosevelt 
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and Elvis seamounts. Utilizing the measured broadband signals from the towed array, the 

size of the shadow zone was obtained and is shown in Fig. 1-2. Figure 1-2 shows the 

measured peak sound levels from the SPICEX sources; deep shadow zones as well as the 

formation of convergence zones are clearly visible behind the seamounts.  

The measured data in the BASSEX experiment strongly support the understanding 

of the complicated phenomena of sound propagation around the seamounts. In addition, 

the experimental data could be used to validate current 2D and 3D theoretical models and 

develop new models to properly realize the sound propagation with such complicated 

phenomena.  

In this thesis, the reconciliation between the measured pulse arrivals from the 

BASSEX experiment and various 2D and 3D theoretical models is carried out to explain 

the physical characteristics of the sound propagation around seamounts. Through this 

analysis, we examine the limit of the application of the models, and improved the 

efficiency of the 3D sound propagation model using parallel computing to generate a 

broadband pulse in a reasonable amount of time.  

In Chapter 2, discussions are presented concerning previous efforts to explore the 

acoustic propagation around seamounts by experimental and theoretical approaches. A 

detailed description of the BASSEX experiment is addressed concerning bathymetry, 

acoustic sources, and sound speed fields. In this chapter, we also introduce an objective 

analysis for reducing uncertainties from the limited coverage of sound speed 

measurements. The objective analysis was performed with measured sound speeds in the 

BASSEX experiment and with climatological data, as well as with two CTD 

measurements in the LOAPEX experiment. The smooth sound speed fields were obtained 

from the objective analysis and used in parts of the 2D PE simulation.  

In Chapter 3, various 3D sound propagation models are presented; specifically, the 

3D spectral coupled-mode model is discussed in detail. Since the 3D coupled-mode 

model requires extensive computational demand, parallel computing is essential to obtain 

results in a reasonable amount of computation time. Therefore, more detailed discussions 

of the promising ways to increase computational efficiency and parallel computing are 
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presented.  

The simulation results are composed of two parts. First, in Chapter 4, the measured 

pulse arrivals in the BASSEX experiment are reconciled using 2D sound propagation 

models. The 2D Parabolic Equation (PE) and 2D ray tracing model were used to identify 

each ray arrival in terms of arrival time and grazing angle. The comparisons are carried 

out for SPICEX 1 and 2 sources with 250Hz of center frequency. The simulations are 

performed for the acoustic paths which pass over the Kermit-Roosevelt and Elvis 

seamounts. Also, 2D simulations are carried out for open sea cases. The correlation of 

clear shadow zone and reappearance of convergence zone behind seamount is presented, 

and individual arrivals are matched with each other from BASSEX data and simulation.  

Second, in Chapter 5, 3D broadband sound propagation around a conical seamount 

is investigated numerically using the 3D spectral coupled-mode model. The computed 

pulse arrivals are compared with the measurement in the BASSEX experiment for the 

LOAPEX ship-deployed acoustic source, which is centered at 68.2Hz. The broadband 

pulses are generated by the Fourier synthesis technique based on the frequency-domain 

solutions, which are calculated by the 3D spectral coupled-mode model. Since the 

calculation of the 3D broadband pulses with the 3D spectral coupled-mode model 

requires extensive computation time, which depends on the number of frequencies, 

normal modes, azimuth modes, and range steps, a parallel program is developed with a 

cluster computing system to obtain results in a reasonable time. The Kermit seamount is 

modeled by a simple conical seamount: the water depth at the peak is 954m with a flat 

bottom at 5750m depth. Two acoustic sources were examined with center frequencies of 

15Hz and 68.2Hz: the sources are located 300km and 510km from the peak of the 

seamount. For the 68.2Hz source, only the water trapped modes are used due to the 

limited computational ability. The computed 3D broadband pulses show the perturbed 

sound fields by the seamount, which are compared with results from the BASSEX 

experiment and from the 2D simulation using the 2D PE.  

This research is supported by the United States Navy, Office of Naval Research 

(ONR), contact number N00014-04-1-0124.  
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Chapter 2  

 

Background  

 
This chapter reviews previous experimental work and computational models concerning 

sound propagation around seamounts. A detailed description of the BASSEX experiment 

is given in terms of bathymetry, acoustics sources, sound speeds, and data processing. 

Finally, the basic phenomena on the sound propagation around a seamount are briefly 

presented.  

 

2.1 Previous work 

 

Physical experiments [1-4] and theoretical approaches [5-7, 15-16, 23] to the sound 

propagation around seamounts have been explored for over 30 years. The experiments 

were conducted in relatively short ranges and focused on measuring additional 

transmission loss by the blockage of a seamount. A full 3D sound propagation model with 

coupled normal mode theory was proposed by Buckingham[21] and Athanassoulis and 

Prospathopoulous[7], but the application has been limited due to the low computational 

efficiency of the sound propagation models as well as the limited computational ability. A 

more stable and numerically effective 3D spectral coupled-mode model was proposed by 

Luo [10] using the superposition representation of the external fields of the seamount and 

the two-way marching approximation. However, this model still requires improvement in 

computational efficiency to realize the broadband pulse simulation.  
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2.1.1 Experimental approach to the acoustic shadowing by seamounts 
 

Northrop [1] measured sound signals from 300 small underwater explosions at various 

depths in the Northeastern Pacific ocean at the SOFAR depth; hydrophones were located 

near Midway and Wake Islands. Explosions were detonated at the azimuth of 38o to 78o 

relative to Wake Island; shots were fired both on the sound channel axis and above the 

axis. Travel paths to Wake Islands crossed the Hawaiian Arch while those to Midway 

Island were unobstructed. The recordings were made for the peak signal level; the 

difference in peak signal level between the level at Wake Island and the level at Midway 

Island was measured. The measurement showed main shadow zones by the Hawaiian 

Arch as a function of the azimuth angle. In this work, Northrop explained some 

receptions through the Hawaiian Arch by passing over the seamount with bottom-

reflection-surface-reflection for steeper rays. In addition, the spectral energy density ratio 

between Wake and Midway Islands showed frequency independence. 

Nutile and Guthrie[2] examined the acoustic shadowing produced by seamounts by 

using shot signals and CW signals. Explosive acoustic sources were dropped from a ship 

traversing a course approximately perpendicular to a line from the ship to a hydrophone 

of the Pacific Missile Impact Locating System (P-MILS) near Midway Island, and the 

shots were detonated at the nominal depth of 200m. The distance from the sources to the 

receiver varied between 1552 km and 1646 km. The rectified shot signatures were aligned 

for identification of arrivals and assignment to ray paths. The signals traveled across an 

area of seamounts located north of the Hawaiian Ridge, and the missing arrivals were 

related to the ray-path blocking effect by the seamounts; the missing arrivals could be 

determined by comparison of shot signatures and predicted by carrying out the ray-trace 

calculations. This study showed that the acoustic shadowing for 14.65 Hz CW signals 

was correlated with the blockage of the shot signals by the seamounts.  

Ebbeson and Turner[3] examined the acoustic shadowing for a 230Hz CW source 

over the Dickins Seamount in the Northeast Pacific. In their experiment, the source was 

towed at depths of 18 and 184m; the hydrophones were located relatively close to the 
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seamount at a range of 60km from the seamount peak in depths ranging from 329 to 

633m. The minimum depth of the near peak of the Dickins Seamount was 420m, and the 

sound channel axis was at a depth of 350m, slightly above the peak. The results showed 

increased transmission loss of up to 15dB for the shallow source in which all deep 

refracted waves could be blocked by the seamount. However, acoustic shadowing and 

reflection effects were minimal for the deep source because most of the source energy 

propagated along the sound-channel axis was located above the seamount peak. The 

analysis to identify reflected waves was performed by the ray tracing method. In their 

work, back reflections were separated from directly received energy by using the opposite 

Doppler shift, which is significant if the source is on the same side of the seamount and 

within 15km of the seamount peak. The back reflections from the seamount were at the 

level of 6 to 13 dB below the direct signal level.  

 

 
Figure 2-1: Experimental transmission loss collected by Chapman and Ebbeson [4].  
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Chapman and Ebbeson[4] presented the results of the multi-path propagation over the 

Dickins Seamount for small explosive shots; two charges were deployed at the depths of 

24 and 196m. The data were presented in 1/3-octave bands from 12.5 to 400 Hz; the 

propagation loss for the shallow shots was increased by 10~15dB over the loss expected 

in the absence of the seamount, as shown in Fig. 2-1. Since the receiver was located in 

the acoustic shadowing zone, all the refracted waves were blocked by the seamount. In 

this work, the first and dominant pulse consisted of a diffracted wave which passed over 

the seamount by rough-surface forward scattering and diffraction for high frequencies 

over 50Hz. It was followed by a series of surface-bottom interacted waves with a weaker 

level. To interpret these pulses, Chapman and Ebbeson proposed to use both the ray 

tracing method and the Medwin-Spaulding model [5]. This model is based on the theory 

of diffraction over a wedge, and on laboratory experiments with a scale model of Dickins 

Seamount. In this model, the ray tracing method was used to predict the propagation loss, 

and was applied separately, from the source to the seamount, and from the seamount to 

the receiver. The Medwin-Spaulding model of seamount shadowing predicts an f1/2 

dependence of the shadowing loss, which was in good agreement with the experimental 

data only at frequencies greater than 50Hz. The cause for the discrepancy could be a 

change in the scattering behavior from rough-surface forward scattering for higher 

frequencies to smooth-surface specular reflection for lower frequencies.   

 

2.1.2 Theoretical approach  
 

Computation time has been a large obstacle to solving range-dependent long-range 

acoustic propagation problems with three-dimensional (3D) effects.  

Kuperman et al. [6] explored rapid three-dimensional acoustic field computations 

for a complex ocean environment using the adiabatic and coupled-mode theory. The pre-

calculations of both vertical and horizontal quantities by the adiabatic and coupled-mode 

theory are used as an input into “spreadsheet” type manipulations. By doing the pre-

calculations, the complex three dimensional field computations are reduced to 
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manipulations of partial solutions to the wave equation. Kuperman et al. applied this 

method to a Gulf Stream environment near the continental shelf with a goal of validating 

the results from the adiabatic and coupled-mode computations by comparison with those 

from the Nx2D parabolic equation method.  

 

A. Full 3-D models 

 

Buckingham[21] proposed a theoretical model of acoustic propagation based on the 

normal mode theory in the ocean around a conical seamount, in which the seamount is 

assumed to be rigid, with the apex of the seamount just touching the surface of the ocean. 

This work showed the shadow zone lying behind the seamount using the mode amplitude 

function.  

Athanassoulis and Prospathopoulous[7] gave an analytical solution to the three-

dimensional (3-D) problem of acoustic scattering from a nonpenetrable cylindrical island 

in shallow water. In this work, the ocean environment around the island is considered as 

range independent, and the bottom is assumed to be hard or soft. The presented analytical 

solution can be applied to a relatively low frequency problem, which can serve as a 3-D 

benchmark solution.  

Taroukadis[8] decomposed a conical seamount into superposed rings and set up a 

coupled-mode formulation for the Helmholtz equation. The pressure field at each ring is 

expressed as a series expansion of normal modes and cosine functions in the azimuthal 

direction. The coupled coefficients are obtained by the continuity conditions at the 

interfaces of the rings. However, this method has a numerical instability with higher order 

of Hankel functions.  

Eskenzai[9] used the Direct Global Matrix (DGM) approach to overcome the 

numerical instability of Taroudakis’ method, and obtained a perturbation zone, or shadow 

zone, behind the seamount. However, in his work, the dimension of the resultant linear 

system was too large to be solved effectively.  

Luo[10] proposed a more stable and effective 3D spectral coupled-mode model 
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based on the well-known Coupled SACLANTCEN normal mode propagation loss model 

(C-SNAP) [63] and on the works of Taroukadis and Eskenzai. To obtain numerical 

stability, ( )m rnJ k r  and (1) ( )m rnH k r  are used with the advantage of linear independence 

of the two functions for both large and small arguments, and the improvement of 

efficiency is achieved by the introduction of the superposition representation of the 

external field with respect to the seamount.  

Lee and Schultz [15] developed a 3D parabolic equation (PE) model that handles 

wide propagation angles in depth and in azimuth. The code, FOR3D, by Lee et al., used 

the finite difference solution, and applications were made to an Atlantic Ocean shelf-

slope environment with realistic bottom topographic variations and sound-speed profiles 

[16]. The 3D PE developed by Collins [14] handles wide angle propagation in depth as 

well as narrow angle propagation in azimuth with the effects of rough boundaries at the 

ocean surface. Collins et al. [13] compared the finite difference, split-step Fourier and 

split-step Padé algorithms in terms of efficiency and capability. The efficiency of the 

split-step Padé algorithm over the finite difference algorithm can be up to two orders of 

magnitude or more on a parallel-processing computer because the finite difference 

algorithm requires a relatively large number of range steps. Brooke et al. [73] developed a 

Canadian Parabolic Equation model (PECan). In the model, the split-step Padé algorithm 

was employed for sound propagation in range, and a finite-difference approximation with 

a low-order Padé approximation to the square-root operator was used for the 3D 

azimuthal coupling. 

Fawcett [17] applied the 3D PE model to a penetrable ocean wedge, and the results 

were compared with those from the ray diagrams using the 3D adiabatic mode theory. 

Another study using the 3D PE model, 3DWAPE, on a CW source with higher-

order finite difference schemes in azimuth was performed by Sturm and Fawcett [52]. To 

consider 3D effects in the 3D PE model properly, the arc length between two adjacent 

vertical sections should be less than a quarter of the wavelength. To meet this requirement, 

the number of vertical sections increases as the desired range increases and hence the 

computational demand can be extensive. The higher-order finite difference schemes 
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reduce the required number of vertical sections, which leads to lower computational 

demand. Sturm [52] applied the developed full 3D PE model, 3DWAPE, to the 

propagation of a broadband sound pulse in 3D shallow water waveguides. In this study, a 

Padé series azimuthal expansion was used to obtain a very wide angle capability in 

azimuth.  

 

B. Horizontal refraction 

 

After the introduction of the term “horizontal refraction” by Weston [25], many 

researchers have tried to explain the horizontal refracted wave for the coastal wedge and 

seamounts, which have a strong refraction effect due to the sloping bathymetry. Harrison 

[18, 19] derived analytical ray paths caused by repeated reflections at a sloping sea bed, 

and showed shadow zone boundaries for a seamount. Munk and Zachariasen [26] also 

analyzed the refraction of acoustic energy by seamounts and islands with a simplified 

assumption of a purely conical shape based on adiabatic mode theory.  

Doolittle et al. [20] observed the horizontal refraction due to multiple reflections 

from a sloping bottom. Smith et al. [24] applied a 3-D ray code, a hybrid ray-mode code, 

and a 3-D parabolic equation model to a study of significant azimuthal coupling which 

exists in the vicinity of the shelf break. Although this study included up-slope, slant-slope, 

and cross-slope propagation, no significant azimuthal coupling was found.  

Heaney et al. [22] calculated very long-range horizontal propagation ray paths for a 

1960 experiment which measured sound near Bermuda from three underwater explosions 

near Perth, Australia. The ray paths were calculated based on the adiabatic mode theory 

(see Section 3.3) in which a horizontal refraction is determined by the gradient of a local 

phase speed for each vertical mode. The mode coupling effects are neglected with an 

assumption that the ocean waveguide varies slowly in the horizontal plane with respect to 

other relevant scales. A horizontally refracted ray for a vertical mode reflects horizontal 

changes in the entire sound speed profile and bottom interaction. McDonald et al. [23] 

also applied the adiabatic mode theory to the examination of the propagation paths for the 
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Heard Island Feasibility Test.  

 

2.2 Basin Acoustics Seamount Scattering Experiment 

(BASSEX) 

 

In 2004, the Basin Acoustic Seamount Scattering Experiment (BASSEX) was conducted 

in the North Pacific. The BASSEX experiment was performed at the same time as two 

other experiments, LOAPEX (Long-range Ocean Acoustic Program Experiment) and 

SPICE04, as parts of long-range ocean acoustic propagation experiment of NPAL04 

(North Pacific Acoustic Laboratory).  

The objective of the SPICE04 was to explore the role of ocean spiciness in long-

range sound propagation, i.e., temperature and salinity fluctuations. The goal of the 

LOAPEX experiment was the investigation of range dependence of resolved acoustic 

rays, ray arrivals in a geometric shadow zone, and frequency dependence of sound 

propagation, as well as large-scale oceanography including the basin-scale observations 

of heat content and temperature.  

The BASSEX experiment was focused on the bathymetric effects on acoustic 

propagation, in particular, on direct blockage, refraction, diffraction, and scattering by 

seamounts. Moored and ship deployed acoustic sources transmitted m-sequence signals at 

about 192 dB re 1 μPa, including two SPICEX sources which transmitted eleven 12.3 

second sequences every hour at 250Hz carrier frequency (83Hz bandwidth), and a 

LOAPEX source which transmitted forty-one 30 second sequences at 68.2Hz carrier 

frequency (35Hz bandwidth). The distances between the SPICEX sources and the 

Kermit-Roosevelt seamount are 617 and 504km. The Five Octave Research Array 

(FORA), a towed hydrophone array with 64 sensors cut for 250Hz (3m spacing), was 

used to measure the signals transmitted from the aforementioned broadband sources at 

many locations around the Kermit-Roosevelt and Elvis seamounts. During the experiment, 
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the bathymetry around the seamounts and the sound speed profile were measured. More 

detailed discussion of the experiment can be found in [31, 32, 33, and 34]. In the 

following sections, the bathymetry, sound speed profiles, and acoustic sources used in the 

BASSEX experiment are addressed briefly. 

 

2.2.1 Bathymetry data  
 

Bathymetry data around the Kermit-Roosevelt and Elvis seamounts were taken during the 

BASSEX experiment using the R/V Roger Revell’s EM120 Multibeam Swath bathymetry 

Echo Sounder [53]. The high resolution multi-beam data around the Kermit-Roosevelt 

and Elvis seamounts were taken; the bathymetry data around the seamounts are shown in 

Fig. 2-2.   

 

 

Figure 2-2: Kermit-Roosevelt and Elvis seamount; the minimum water depths of the seamounts 

are 980 m and 1380m, respectively [53].

Kermit-Roosevelt 

Elvis 
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2.2.2 Acoustic sources  
 

In the BASSEX experiment, four acoustic sources were used: SPICEX source 1 and 2 , 

LOAPEX, and NPAL Kauai source, as shown in Fig. 2-3. The parameters of the acoustic 

sources are described in Appendix A.  

 

 
Figure 2-3: Locations of acoustic sources in the BASSEX experiment: (S) SPICEX moored 
sources, (T) LOAPEX stations, (Kauai) NPAL Kauai Source [53]. 

 

Two SPICEX sources were moored, and transmitted eleven 12.3 second sequences 

every hour at 250Hz carrier frequency with 83Hz bandwidth. The SPICEX acoustic 

sources [31] have m-sequence signals and were located around the sound channel axis at 

a water depth of 750m. A LOAPEX source was deployed at various locations around 

SPICE arrays. The distances between the SPICEX 1 and 2 sources and the Kermit-

Roosevelt seamount are 617 and 504km, respectively. 

The LOAPEX acoustic source had three types of signals: m-sequence, continuous 
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wave (CW), and pulsed frequency modulated (PFM) signals. The m-sequence is the 

preferred signal in this study. The m-sequence signals consisted of forty-one 30 second 

sequences at 68.2Hz carrier frequency with 35Hz bandwidth at a depth of 350m. Among 

the LOAPEX stations, the T1000 was chosen because the deployed location was close to 

the SPICEX 2 source.  

The NPAL Kauai source was located at a depth of 807m, approximately 14.8km 

north of Kauai island. The Kauai source was not considered in this work.  

 

2.2.3 Sound speed fields  
 

Sound speed is the important environmental input for a sound propagation model. The 

horizontal array at a shallow depth can only detect early-arrival steep rays that sample the 

sound speed fields of the entire ocean column; therefore, the error in the prediction of 

sound speed fields results in significant error in the prediction of the rays of the 

simultation. The discrepancy between real and predicted sound speed gives two important 

effects on the arrival rays: one is a shift in arrival time, and the other is the diffusion or 

fluctuation of wave fronts.  

The shift in arrival time between predicted and measured rays mainly comes from 

the difference in the temperature predicted by the climatology, which is the basis of 

acoustic thermometry. Some of this difference might be from the error of the sound speed 

equation [38, 39, 42]. The intenal ocean wave causes the fluctuation of wave fronts, 

including a rapid variation that is called a broadband fluctuation. This broadband 

fluctuation is associated with multiple arrivals, and internal wave seems responsible for 

this fluctuation [47]. 

The diffused wave fronts can result in missing or additional ray arrivals in the 

measurement. In addition, the broadband fluctuation, or multiple arrivals, greatly increase 

the difficulty in identifying individual rays.  
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In the BASSEX experiment, sound speed profiles were measured by an expendable 

bathythermograph (XBT). The locations where the XBT casts were conducted are shown 

in Fig. 2-4 (a).  

 
Figure 2-4: (a) XBT casts locations around the Kermit-Roosevelt and Elvis seamounts; the 

circles denote the locations where the XBT casts were conducted. Two SPICEX sources (S1 and 

S2) are shown with the LOAPEX source (T1000). Two locations where the CTD casts were 

carried out in the LOAPEX experiment are shown with CTD 1 and CTD 2.  

 

The XBT provides the temperature data of the water column, and sound speed can 

be computed from the temperature data with the given salinity table. Examples of the 

sound speed profile from the XBT casts are shown in Fig. 2-5. The XBT operates in a 

water depth that is limited by the type of sensor; for example, T-5 has 1830m of the 

maximum operating depth, and the maximum depth of ‘Fast Deep’ is 1000m. Beyond the 

terminal depth, sound speed or temperature should be extended based on available 

measurements or database. In this work, the sound speed beyond the terminal depth of the 

XBT casts were extended by the Carter table ( see Appedix C ).  
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Figure 2-4: (b) XBT cast locations around the Kermit-Roosevel and Elvis seamounts. 

 

As shown in Fig. 2-4(b), the XBT locations were covered well around the Kermit-

Roosevelt and Elvis seamounts; however, in the area between the SPICEX sources and 

the seamounts, limited measurement of sound speeds was carried out. In particular, no 

XBT cast was conducted around the SPICEX 1 source or along the acoustic path to the 

seamounts from the source. This sparse and gappy sound speed measurement can be quite 

common in any experiment because the measurement of the sound speed for the whole 

area is difficult and costly to cover the whole area. Specifically, since 3D sound 

propagation is the main topic of this work, sound speeds of the whole area, including 

around the seamounts, and acoustic sources, as well as acoustic paths between the 

seamounts and acoustic asources, are more essential than the 2D sound propagation 

problem. Generally, the 2D sound propagation problem needs sound speeds only along an 

acoustics path between a source and receiver.  
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The limited coverage of raw measurement increases uncertainties in the sound 

propagation model. To reduce the uncertainties from the missing sound speeds, various 

kinds of sound speed data can be used: raw measurement from other experiments, 

climatological data, and dynamic models [61].  

In this work, climatological data from World Ocean Atlas 2005 [36, 37] were used; 

these sound speed profiles will be referred to hereafter as the WOA05. The sound speeds 

were computed using the sound speed equation of Del Grosso [35]. Since WOA05 gives 

the monthly climatology for 0 ~ 1500m, sound speed profiles are extended to 5500m 

using seasonal climatology and nearest-neighbor values. Sound speed at a certain location 

can be obtained by linear interpolation [37].  

The sound speed profiles given by the XBT casts at two locations are compared with 

those from WOA05 in Fig. 2-5. The two locations are chosen around the SPICEX 2 

source (top panels) and the top of the Kermit-Roosevelt seamount (bottom panels). The 

right panels give the difference in sound speed profiles between the WOA05 and the XBT 

casts. The differences are quite large at the mixed layer, up to 6 m/s.  

Figure 2-6 and 2-7 show the horizontal variation of sound speed fields from the 

XBT casts and WOA05 for the depths of 0m, 10m, 800m and 900m, showing clear 

discrepancies between the two sound speed fields on a horizontal plane. First, the sound 

speed fields from the WOA05 are smooth, while the measured sound speed fields show a 

sharp change in the sound speed. Second, overall, the measured sound speed fields give a 

higher sound speed than those from the WOA05. In addition, there are irregular isolated 

spots, which have a much higher sound speed locally, specifically around the seamounts.  

In the measured sound speed fields of Fig. 2-6, a significant isolated region with a higher 

sound speed than the WOA05 is shown around the sound channel axis, -146oE~-147oE, 

and 36 oN~38 oN. 

Figure 2-8 shows the comparisons of the measured sound speed fields and the 

WOA05 along an acoustic path between the SPICEX 2 source and the apex of the Elvis 

seamount (day 268). Since the XBT casts were carried out along this acoustic path, the 

comparison clearly shows the difference between these sound speed fields. In the top 
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panel, the range-averaged sound speed profiles are close to each other except for above 

the sound channel axis. The XBT casts show higher sound speeds above the sound 

channel axis than the WOA05. However, in the two lower panels, the variation of sound 

speed field along the acoustic path is quite different. A large difference exists in the 

smoothness of the sound speed fields along the acoustic path, showing locally isolated 

regions, which have much higher or lower sound speeds, up to 10m/s compared to the 

nearby field.  

From the comparisons, we explored the horizontal difference between sound fields 

from the XBT casts and a database, WOA05, and the difference along a sound path for 

day 268 (Section 4.3). In addition, we confirmed that the measured sound speed fields 

require an interpolation scheme to construct smooth and statistically correct sound speed 

fields based on the various data of sound speed, raw measurements, and climatological 

data to reduce the uncertainty due to the limited coverage of XBT casts.  

Several approaches for smoothed sound speed fields can be found in [38, 43, 48, 

49] by using the objective analysis. In [38], the objective analysis was used to obtain 

sound speed fields from the XBT and CTD data, which give travel time error based on 

the error map associated with the sound speed fields. In [43], the objective analysis was 

used to meld upper ocean perturbations derived from the XBT/CTD data into historical 

data (WOA04) smoothly. Newhall et. al. [49] suggested a way to interpolate sparse, 

irregularly spaced, and gappy data on a regular grid in a horizontal plane using the 

objective analysis for improving the 3D ray-tracing model. More detailed discussion of 

the method of objective analysis in the ocean prediction system and data assimilation can 

be found in [50, 58, and 60].  
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Figure 2-5: Comparison of sound speed profiles from the WOA05 and XBT for two selected 
locations. ‘XBT’ denotes the terminal depth of XBT casts. The right panels shows the compared 
sound speed profiles, and the left panels show the difference in sound speed profiles between the 
WOA05 and the XBT casts. The two locations are chosen near the SPICEX 2 source (top panels) 
and the top of the Kermit-Roosevelt seamount (bottom panels).  
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Figure 2-6: Comparison of the horizontal variation of sound speed from the XBT casts and 
WOA05 at the water depth 0 and 10m; the four lower panels show sound speeds specifically 
around the seamounts.  
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Figure 2-7: Comparison of the horizontal variation of sound speed from the XBT casts and 
WOA05 at the water depth 800 and 900 m; the four lower panels show sound speeds specifically 
around the seamounts.  
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Figure 2-8: Comparison of the sound speed profile from the XBT and WOA05 along an acoustic 
path for day 268 over the Elvis seamount; the top panel shows the comparison of range-averaged 
sound speed as a function of depth, the middle (XBT) and bottom (WOA05) panels show 
variability of sound speed along the acoustic path. 



 54

In this work, we constructed a smooth sound speed database using the objective analysis 

based on the XBT data from the BASSEX experiment and the climatological data, called 

WOA05, for the area around seamounts and acoustic sources as well as along acoustic 

paths between them. The sound speed database constructed by the objective analysis 

enables us to apply 2D and 3D sound propagation models for any acoustic path. The 

objective analysis was carried out by Pierre F. J. Lermusiaux and Wayne G. Lelie of MIT 

following the HOPS (Harvard Ocean Prediction System) optimal interpolation(OI) 

[Appendix of 58].  

In addition to the XBT data from the BASSEX experiment and WOA05, available 

CTD data from the LOAPEX experiment were added to the objective analysis. The 

locations where the CTD casts were carried out are only around the SPICEX 1, 2 and 

LOAPEX (T1000) sources, as shown in Fig. 2-4 (a). Since the CTD cast can measure 

sound speeds up to 5000m deep and the sound speeds at deep water are not sensitive to 

the area, these CTD data can be used for sound speeds at deep sea beyond the terminal 

depth of XBT casts.  

Fig. 2-12 shows the differences between various sound speed profiles from 

XBT/CTD, WOA05, and objetive analysis at the locations where CTD casts were carried 

out. As shown in the right panel in the figure, the sound speed profiles from XBT below 

1500m deep, which was extended based on the Carter table, are different from other 

sound speed profiles. As a result, the inclusion of CTD cast in objective analysis resulted 

in increased correlation in pulse arrivals, in particular, at the open water case of day 271; 

an example of pulse arrivals is given in Fig. 2-13, and more cases are available in Chapter 

4-6.  

For the objective analysis, various correlation parameters were examined, 

180~540km for the zero-crossing length and 60~180 km for the e-folding decay length. 

Sound speed fields were tested with the parameters using the 2D PE to estimate the 

impact of the correlation parameters on the pulse arrivals. Significant difference was not 

found within the limited tests, but more tests would be needed to estimate the impact 

correctly, which might be beyond the scope of this work.  
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In Table 2-1, the correlation parameters used in the objective analysis are shown, 

and the resultant sound speed fields are given in Fig. 2-9. Run 51 used all three data, the 

XBT data, WOA05, and CTD data, for the background mean field as well as for the 

synoptic measurement field. The XBT data were truncated below 1500m to reduce the 

uncertainties from the extension of the sound speed based on the Carter table.  

In Fig. 2-10, the sound speed fields from objective analysis, Run 51, were 

compared with linearly interpolated XBT data and WOA05; this comparison clearly 

shows that WOA05 is fit in to smoothed XBT data. Figure 2-11 shows the comparison of 

sound speed fields from XBT data, WOA05, and objective analysis. The sound speed 

fields from the objective analysis are very close to those from XBT data, but more 

smoothed sound fields can be obtained by the objective analysis. 

 

Table 2-1: Correlation parameters for the objective analysis of sound speed fields 

Run no.  51 

Synoptic field complete_shortA 

Mean field complete_short 

zonal/meridional zero crossing length[km] 540 

zonal/meridional decorrelation length[km] 180 

Synoptic  

decorrelation time scale [day] 30 

zonal/meridional zero crossing length[km] 540 

zonal/meridional decorrelation length[km] 180 

Mean 

 

decorrelation time scale [day] 10000 
Acomplete_short used the WOA05, CTD and XBT ( truncated at 1500m ) for the objective 

analysis.  
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Figure 2-9: Sound speed fields from the objective analysis for various depths. The circle 

corresponds to the peak of the Kermit-Roosevelt seamount, and the square denotes the peak of the 

Elvis seamount. 
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Figure 2-10: Comparison of sound speed fields from the WOA05 (top panels), XBT data (middle 

panels), and objective analysis (bottom panels).  
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Figure 2-11: Comparison of sound speed fields for an acoustic path of day 268 from the XBT data 
(top panel), WOA05 (middle panel), and objective analysis (bottom panel).  
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Figure 2-12: Comparison of sound speed profiles at locations where CTD casts were carried out.  
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As a result, the sound speed extension below the terminal depth in the XBT casts based 

on the database can provide some errors to the sound-speed gradient below the sound 

channel axis. Since a deep-down and high angle ray samples the sound speeds of the 

entire water column, the sound-speed gradient below the sound channel axis has a large 

effect on the pulse arrivals with a horizontal array located at a shallow depth.  

As an example, in Fig. 2-13, the arrival pulses with the sound speeds which are 

extended based on the database, i.e., the Carter table, in the lower panel (blue), shows two 

additional pulses along with the measurement in the upper panel (red). The additional 

pulses  disappear with the sound speeds extended with the CTD data in the upper panel 

(blue) increasing the correlation between the measuremnt and simulation. This increased 

correlation implies that a CTD cast can be used to provide precise sound-speed gradient 

below the sound channel axis if we have limited sound speed data in depth such as XBT 

casts. Since the sound-speed gradient is not sensitive to area because it depends on the 

pressure-gradient effect, only one or two CTD casts over the entire area can be enough 

for the correction of the sound-speed gradient.  

 
Figure 2-13: Comparison of pulse arrivals from the experimental measurement (red) and the pulse 
arrivals using 2D PE with truncated XBT data at 1500m (run 51, blue) in the top panel. ‘OAG16’, 
in the lower panel, denotes the simulated pulse arrivals with the XBT casts without the truncation, 
showing additional early arrivals before the main arrivals. In ‘OAG16+ctd’, the sound speeds 
below 1500m were replaced by the sound speeds from CTD data, and the additional arrivals with 
‘OAG16’ disappear (top panel).
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2.2.4 Data processing  
 

Measured raw data from the Five Octave Research Array (FORA) were processed by 

Joseph Sikora [53] into the arrival time, direction of ray arrival, and signal levels.  

At first, the data were demodulated down to base-band and decimated for 

computational efficiency. In the case of the SPICEX sources, the signals have 

approximately 83Hz bandwidth at 250Hz carrier frequency. The demodulated and 

decimated signals were beamformed. In this study, two kinds of beamformer were used: 

conventional beamformer and Minimum Power Distortionless Response (MPDR) 

beamformer. The MPDR beamformer gives higher angular resolution of the direction of 

ray arrivals.  

The beamformed time series was matched filtered, or pulse-compressed (Appendix 

B), with the synthetic Doppler-corrected m-sequences. The matched filter is an optimal 

estimator of the signal amplitude and time delay with the assumption of Guassian noise 

and linear, non-dispersive propagation along the different sound paths [29].  

The arrival angles off from the source were transformed into those with respect to 

the end-fire array to identify the individual rays. The heading of the array to the source 

was determined by the GPS location of the ship and source, and the WGS 1984 ellipsoid 

model of the Earth. The heading of the array was averaged between the two magnetic 

sensors output. The pitch data of the array were used for the angular transformation [53].  
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2.3 Sound propagation around a seamount  

 

Sound propagation around a seamount is known as a typical range-dependent problem, in 

which the variability of environments strongly influences the sound field. The variability 

is mainly due to the varying bathymetry, but the variability of sound speed profiles cannot 

be neglected in the long-range propagation. Fig. 2-14 shows a typical ray diagram in the 

presence of a seamount. The ray diagram up to 400 km before the seamount shows well 

known convergence zone propagation in deep ocean. The convergence zone propagation 

creates repetitive convergence zones of high sound intensity at the distance of 50km. 

Since the convergence-zone width increases as the range increases, eventually, after 

several hundred kilometers, the zones overlap and become indistinguishable [28]. This 

convergence zone propagation enables long-range sound propagation of high intensity 

and without low distortion.  

As rays meet the upslope of the seamount, steeper angle arrivals are blocked by the 

seamount. The fact that ray angles are steepened by twice the bottom slope per reflection 

results in the redirecting of rays toward the source (backscattering), or the passing over 

the seamount with several surface and bottom reflections. However, both cases suffer 

high reflection loss. Therefore, arrivals can be missing, or diffused and weakened. 

Moreover, the 3D refraction effect will be introduced; reflections from sloping bottoms 

produce the refracted arrivals diverting from the acoustic path. So only lower angle rays, 

less than +/-10 degrees, propagate over the seamount without being disturbed by the 

seamount.  

Fig. 2-15 shows range-stacked broadband pulse arrivals by the PE simulation 

(Section 4.1), showing clearly the blocked refracted rays denoted by red-dashed lines (A). 

In addition, bottom-reflected higher angle rays are blocked by the seamount, and a series 

of scattered waves by the seamount appears after refracted wave arrivals (C).  
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Figure 2-14: Ray propagation with a seamount made by RAY [40] program. The rays were 

generated using the range-dependent sound speeds from the XBT casts nearest the acoustic path 

(Fig. 4-2 for day 268).  

 

Figure 2-15: Range-stacked pulses arrivals at a receiver depth, 250m. The red dashed line denotes 

the blocked refracted wave by the seamount. This result is made by the PE simulation for the 

Elvis seamount.  
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The bathymetric change of the seamount induces strong mode coupling, which results in 

redistribution of energy between modes. To examine the strong mode coupling, the 2D 

PE simulation for a frequency (250Hz) was performed for range-dependent bathymetry 

and a range-averaged sound speed field (see Fig. 2-17), and the result can be presented by 

the modal amplitude using the modal decomposition method [44, 45, 46, and Appendix 

D].  

From (D.6) the PE modal amplitude can be expressed as the following equation: 

 

0

( , ; )( ; ) ( , ; )
( )

D
m

m PE
r zA r r z dz

z
ωω ω

ρ
Φ

= Ψ∫ ,     (2.1) 

 
where ( , ; )m r z ωΦ  is the local modal shape, and PEΨ  is the factorized pressure fields 

from (D.1), which can be obtained by the product of the PE pressure fields, 

( , ; )PEP r z ϖ and 0jk rre− .  

Figure 2-16 shows the absolute value of the resultant modal amplitude, | ( ; ) |mA r ω , 

along the acoustic path over the seamount. Figure 2-17 shows the modal shapes of the 

selected modes along the acoustic path, and Fig. 2-18 shows the turning depths of the 

trapped modes in the waveguide for the three selected locations, around the acoustic 

source, a small seamount, and the peak of the Elvis seamount.  

Around the acoustic source, modes below 391 are trapped in water, which 

correspond to the refracted-refracted waves. Higher modes than the trapped modes start 

to feel the bottom interaction and result in quite perturbed patterns of the modal 

amplitudes. As the range increases, the higher modes are blocked by the two small 

seamounts.  

Before the seamount, modes below 255 are trapped in water, corresponding to the 

refracted-refracted wave. The modes lower than 35 can only pass the seamount without 

any interaction with the seamount. However, modes higher than 100 are disturbed and 

blocked by the seamount at the peak of the seamount; this is called the modal cut-off. 
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After the seamount, energy transfer from lower modes to higher modes occurs, which is 

called the mode repopulation.  

Fig. 2-19 shows the sum of amplitude squared along the bathymetry, which is 

equivalent to energy. This figure gives an idea of energy dissipation from the blockage of 

the seamount. As the range increases, the energy decreases from the dissipation through 

the sea bottom, and then there is an abrupt drop of the energy with the two small 

seamounts. Another large drop in the energy takes place just after the big seamount.  

 

 
Figure 2-16: Strong mode coupling with seamount bathymetry. This is obtained from PE 
simulation at a frequency, 250Hz, and the modal amplitude can be estimated by the modal 
decomposition method (Appendix D). In higher modes, their energy is dissipated by the seamount, 
and also lower mode amplitude is disturbed by the seamount. Transfer of energy between modes 
is clearly visible in the figure. After the seamount, energy transfer to higher modes from lower 
modes, i.e., mode repopulation, occurs.  
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Figure 2-17: Modal shapes for 1-4th and 100th, 200th, 300th, 400th modes versus range. Bathymetry 

and SVP (top left panel) as well as the number of propagating modes (top right panel) are shown.  
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Figure 2-18: Turning depths of the water trapped modes at three locations: around the acoustic 

source, a small seamount, and the peak of the Elvis seamount. 
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Figure 2-19: Sum of amplitude squared along the bathymetry, which provides an idea of energy 

dissipation by the blockage of the seamount. 

 

Figure 2-20 shows modal pulse arrivals in terms of the absolute value of the pulse 

amplitude, at the distance of 400km from the source with a flat bottom: this result is 

constructed by the 2D PE simulation over the source bandwidth (50Hz) and the modal 

decomposition method. The 1-400th modal pulses are trapped in the water column 

corresponding to refracted-refracted waves. In water trapped modes, higher angle rays 

arrive faster than lower ones because of higher group speed (see lower panel in Fig. 2-20), 

which can be explained by the fact that steeper rays sample higher sound speed. However, 

modes higher than 400 touch the bottom, which are not trapped in the water column but 

start to generate bottom-reflected waves that arrive later with lower group speed. The 

resultant pulse can be constructed by the interference of the modal pulses with different 

phases.  
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Figure 2-20: (a) Modal pulse arrivals (top panel), (b) group speed of each mode (bottom panel). 
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As previously mentioned, with the 3D refraction effect, multiple reflections from 

sloping bottoms produce refracted arrivals diverting from the acoustic path. In addition, if 

we presume the adiabatic approximation (Section 3-3), rays for each mode can be traced 
with refraction by the gradient of the horizontal wavenumber, nk , or local phase speed. 

The horizontal refraction reflects horizontal changes in the entire sound speed profile and 

bottom interaction through the vertical acoustic mode structure.  

Figure 2-22 shows measured arrival pulses in the BASSEX experiment [53], for the 

LOAPEX source with lower center frequency (68.2Hz). Most pulses are measured at 

broadside, which coincides with a direct acoustic path (geodesic) between the source and 

a receiver, but there is an additional pulse coming from a different arrival angle, which 

could be the horizontally refracted wave.  

Figure 2-21 shows the horizontally refracted wave for the 1st ~ 151st modes for an 

acoustic path in the top panel and 1st (black), 51st (blue), 101st (red) modes for three 

different acoustic paths in the bottom panel using the adiabatic mode theory, in which the 

horizontal refraction is caused by the effect of strong bathymetric change around the 

seamount. The lowest mode runs along the geodesic; higher modes experience higher 

refracted angles, and divert more from the geodesic. Note that, for the higher modes, the 

angles between a horizontal refracted ray and a geodesic on the left and right sides with 

respect to an acoustic path passing over the peak of the seamount are not symmetric. This 

axis-asymmetric of the horizontal refracted angles suggests that we have to consider the 

axis-asymmetric of the environments.  

Strictly speaking, since the varying bathymetry of the seamount induces strong 

mode coupling, the assumption of the adiabatic approximation breaks down in this 

problem. However, the result provides a possible explanation for a measured horizontal 

refracted wave in the BASSEX experiment.  
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Figure 2-21: Horizontally refracted rays for the 1st ~ 151st modes for an acoustic path (top panel), 
and 1st (black), 51st (blue), 101st (red) modes for three different acoustic paths (bottom panel). The 
circles denote the locations where a horizontal refracted ray is detected in the BASSEX 
experiment. The refracted angles between a geodesic and a 101st mode ray are 21.35 and 5.75 
degrees for the rays passing the left and right sides with respect to an acoustic path passing the 
peak of the seamount. 
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Figure 2-22: Measured pulse arrivals for LOAPEX source, 68Hz at 350m depth, behind the 
Kermit-Roosevelt seamount, showing pulse arrivals with a different arrival angle (adapted from 
[53], and reproduced). 
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Chapter 3  

 

Sound propagation models 

 
In this chapter, the two-dimensional (2D) and three-dimensional (3D) sound propagation 

models used in this thesis are outlined. First, 2D, Nx2D, and 3D concepts in sound 

propagation model are presented in Section 3.1. The coupled normal mode theory is 

outlined in Section 3.2, and the 3D horizontal ray theory is described in Section 3.3. In 

Section 3.4, the broadband pulse modeling by the Fourier synthesis is presented. The 3D 

spectral coupled-mode model is outlined in Section 3.5, and a comparison between the 

3D spectral coupled-mode model and the 3D parabolic equation (PE) is discussed in 

Section 3.6. A discussion of parallelization and approximation to increase computational 

efficiency follows in Section 3.7.  

 

3.1 Two-dimensional, Nx2D, and three-dimensional sound 

propagation 

 

The three-dimensional far-field equation in cylindrical coordinates takes the form [15]: 

 

                  2 2
0 02

12 [ ( , , ) 1] 0rr r zzu ik u u u k n r z u
r θθ θ+ + + + − = .          (3.1) 

 

The Nx2D concept was introduced by Perkins and Baer [27], and the proposed 

algorithm is: solve 2D problems in N vertical planes and combine the results to form an 

approximate 3D problem. This Nx2D method is valid, provided redirection of energy in 
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azimuth due to boundary interaction is negligible. Equation (3.1) becomes 

  

                  2 2
0 02 [ ( , , ) 1] 0rr r zzu ik u u k n r z uθ+ + + − = .          (3.2) 

As we can see, the azimuthal coupled term ( 2

1 u
r θθ ) has been dropped, but the 

index of refraction ( ( , , )n r zθ ) is still dependent on the azimuth angle. If azimuthal 

coupling is weak or absent, the Nx2D method can greatly reduce the computation time 

using the 3D calculation.  

In the 2D case, we assume that there is no variation in azimuthal direction, i.e., no 
horizontal refraction. Therefore, the index of refraction ( ( , )n r z ) no longer depends on 

the azimuth angle.  

                  2 2
0 02 [ ( , ) 1] 0rr r zzu ik u u k n r z u+ + + − = .           (3.3) 

   

3.2 Normal modes in a range-dependent waveguide and 

adiabatic approximation [30] 

 

If we consider that the acoustic waveguide in which the sound speed varies in depth as 

well as in range, but, is much slower in depth, then the 3D Helmholtz equation in 

cylindrical coordinates can be expressed as: 

 

   
2

2
2( , ) 0
( , )

p r z p
c r z
ω

∇ + = .        (3.4) 

 
Suppose for an arbitrary range r, eigenfunctions ( , )l r zψ  satisfy the equation with 

proper boundary conditions at the bottom and surface 
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2

2 2
2 [ ( , ) ] 0l

rl l
d k r z k
dz
ψ ψ+ − = ,                      (3.5) 

where rlk  are horizontal wave number of thl mode. Then the acoustic field can be 

represented as an expansion in terms of eigenfunctions, ( , )l r zψ , and the expansion 

coefficients, ( )l rΨ : 

 

                         ( , ) ( ) ( , )l l
l

p r z r r zψ= Ψ∑ .                     (3.6) 

 

The expansion coefficients are given by (1)( ) ( )l l o rlr C H k rΨ = , in which lC  is a 

slowly varying function of r. Substituting Eq. (3.6) into Eq. (3.4), and using the property 
of orthonormality of eigenfunctions, ( , )l r zψ , i.e.,  

 

                             
0

( , )h l m
lm

r z dzψ ψ δ
ρ

=∫ ,     (3.7) 

 

a set of coupled differential equations can be obtained as follows: 

 
2 2 2[ ( )] 2r rm m r l m r l l m r l

l l
k r dz dzψ ψ ψ ψ∇ + Ψ = − ∇ Ψ ∇ − Ψ ∇∑ ∑∫ ∫ .        (3.8) 

 

The coupled terms on the right hand side of Eq. (3.8) are small if the properties of 

the waveguide vary slowly in the range. If the right-hand side equals to zero, the 

equations of the normal modes become uncoupled, which means that each normal mode 

propagates in the waveguide independently, or energy is not transferred to the other 

modes. This approximation is called adiabatic approximation, which neglects the 

interaction between normal modes.  

With the adiabatic approximation, Eq. (3.8) becomes a horizontal wave equation 

for modal amplitudes,  
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                           21 ( ) ( ) 0m
rm mr k r

r r r
∂Ψ∂

+ Ψ =
∂ ∂

.               (3.9) 

 

Let us introduce a new function 1/ 2( ) ( )m mF r r r= Ψ . Then Eq. (3.9) becomes 

  

                               2
2

1( )
4m rm mF k F

r
′′ = − + .                  (3.10) 

 
For 1rmk r � , the solution of Eq. (3.10) is the same as that from the Wenzel-

Kramers-Brillouin-Jeffreys (WKBJ) approximation. 

Finally, the solution becomes 

 

                      
0

42( , ) ( , ) ( , )

r
rlj k dr

j

l s l
l rl

ep r z e r z r z
k r

π

ψ ψ
π

− ∫
= ∑ .         (3.11) 

 

3.3 Three-dimensional ray theory and horizontal ray theory 

with the adiabatic approximation 

 

A set of three-dimensional ray equations in ellipsoidal coordinates was derived by Yan 

and Yen [57] as follows: 

 
cos cos

( )
d
ds r
φ θ α

μ φ
=

−
,      (3.12) 

cos sin
( ( ) ) cos( )

d
ds r
λ θ α

ν φ φ
=

−
,      (3.13) 

sindr
ds

θ= ,       (3.14) 
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cos tan sin 1 1sin sin cos
( )

sin cos ln
( ) ( ( ) ) cos cos

d
ds r r r

N
r r

α θ φ α θ α α
υ φ ν μ

α α
μ φ φ υ φ φ λ θ

⎛ ⎞
= + −⎜ ⎟− − −⎝ ⎠
⎛ ⎞∂ ∂

+ − +⎜ ⎟− ∂ − ∂⎝ ⎠

,  (3.15) 

2 2sin coscos

sin cos sin sin cos ln
( ) ( ( ) ) cos

d
ds r r

N
r r r

θ α αθ
ν μ

θ α θ α θ
μ φ φ υ φ φ λ

⎛ ⎞
= − +⎜ ⎟− −⎝ ⎠
⎛ ⎞∂ ∂ ∂

+ − − +⎜ ⎟− ∂ − ∂ ∂⎝ ⎠

 (3.16) 

2 2 2 3/ 2( ) (1 ) /(1 sin )eqrμ φ ε ε φ= − − ,    (3.17) 

2 2 1/ 2( ) /(1 sin )eqrυ φ ε φ= − ,     (3.18) 

 
where φ  is geographic latitude (the angle between the surface normal and the equatorial 

plane), r is ocean depth with downward positive, λ  is longitude, θ  is grazing angle, 

and α  is azimuth, i.e., the ray heading measured clockwise from north. Coordinates on 
the surface of ellipsoid are adapted, and nk is the horizontal wave number. 

Eccentricity,ε (=0.081819191 for the earth), is defined such that 21p eqr r ε= −  with pr , 

polar radius, and eqr , equatorial radius. 1/ ( , , )N C rφ λ=  is slowness, where C denotes 

sound speed as a function of position.  

To compute travel time and propagation range, Eq. (3.19) and Eq. (3.20) can be 

used.  

 

1dt
ds C

=         (3.19) 

2 2

cos cos sindR
ds r r

μ υθ α α
μ υ

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠
.   (3.20) 



 78

The horizontal ray equation is a special case of the 3D ray equation derived above, which 

can be obtained by setting θ  (grazing angle) and r (ray depth) to be zero. This 

approximation makes a ray lie on the surface of the earth. The slowness, N, can be 
replaced by the horizontal wavenumber, nk . With the adiabatic approximation, the 

horizontal wave equation (3.9) leads to horizontal rays for each mode, which are refracted 
by the gradient of the horizontal wavenumber, nk .  The horizontal ray equation can be 

obtained as follows [23, 24]: 

 

cos / ( )φ α μ φ=� ,      (3.21) 

sin /( ( ) cos )λ α υ φ φ=� ,      (3.22) 
sin sin costan ( ) ln

( ) ( ) ( ) cos nkα α αα φ
υ φ μ φ φ υ φ φ λ

∂ ∂
= − −

∂ ∂
� ,  (3.23) 

2 2 2 3/ 2( ) (1 ) /(1 sin )eqrμ φ ε ε φ= − − ,    (3.24) 

2 2 1/ 2( ) /(1 sin )eqrυ φ ε φ= − ,     (3.25) 

 
where φ  is geographic latitude (the angle between the surface normal and the equatorial 

plane), λ  is longitude, and α  is the ray heading measured clockwise from north. 
Coordinates on the surface of ellipsoid are adapted, and nk is the horizontal wave number. 

Eccentricity,ε (=0.081819191 for the earth), is defined such that 21p eqr r ε= −  with pr , 

polar radius, and eqr , equatorial radius.  

The horizontal ray theory may not be adequate for the sound propagation around a 

seamount because of strong mode coupling from the large change of bathymetry, while 

the 3D ray theory can overcome the shortcoming.  

However, the 3D ray theory also has a limitation to realization of the reflected rays 

by a seamount with complicated bathymetry. A reflection at the sea bottom is very 

sensitive to the local slope of the bathymetry if we use a simple geometric reflection 

condition. In this work, the horizontal ray theory was used to demonstrate the existence 
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of the refracted rays at the higher modes due to the bathymetry effect qualitatively (Fig. 

2-19). 

 

3.4 Broadband modeling 

 

A broadband signal can be obtained from a Fourier transform of the frequency-domain 

solutions over the source bandwidth as follows: 

max max

0 0

1 1( , , ) Re ( , , ) Re ( ) ( , , )j t j tp r z t p r z e d S g r z e d
ω ω

ω ωω ω ω ω ω
π π

− −
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∫ ∫ ,  (3.26) 

where ( )S ϖ is the source spectrum, and ( , , )g r z ω is the spatial transfer function [28].  
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3.5 Three-dimensional spectral coupled-mode model around a 

conical seamount  

 

Luo[10] proposed a more stable and numerically effective three-dimensional (3D) 

spectral coupled-mode model based on the well-known Coupled SACLANTCEN normal 

mode propagation loss model (C-SNAP) [63].  

 

 
Figure 3-1: Description of problem with stepwise conical seamount [10]. 

 

In the spectral coupled-mode model, the pressure field can be expressed as follows:  

 
1) 1r r≤ : the innermost ring,  

 

  1 1 1 1

0 1

ˆ( , , ) ( ) ( ) ( )mn mn n m
m n

p r z b J r zφ φ
∞ ∞

= =

= Ψ Φ∑∑ ,    (3.27) 

 

2) 1j jr r r− < ≤ : ring j, 
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0 1

ˆ ˆ( , , ) [ ( ) ( )] ( ) ( )j j j j j j
mn mn mn mn n m

m n
p r z a H r b J r zφ φ

∞ ∞

= =

= + Ψ Φ∑∑ ,   (3.28) 

 
3) Ir r> : outside of the base of the seamount  

 

  
0 1

ˆ( , , ) ( , ) ( ) ( ) ( )J J J
i mn mn n m

m n
p r z p r z a H r zφ φ

∞ ∞

= =

′= + Ψ Φ∑∑ ,  (3.29) 

 
where r′ is the range of a field point from the source, and ( , )ip r z′  is the pressure by the 

incident wave as shown here: 

 

  2 2( , ) 2 cos( )s s sr r r r rrφ φ φ′ = + − − ,  

  (1)
0

1

1( , ) ( ) ( ) ( )
4 ( )

J J J
i n s n rn

ns

ip r z z z H k r
zρ

∞

=

′ ′= Ψ Ψ∑ .   (3.30) 

 

The pressure fields outside the base of the seamount can be expressed as the 

superposition of the pressure fields by the incident wave and by the outgoing wave from 

the seamount. This superposition reduces the minimum number of azimuthal orders to 

0 Ik r , where 0k is the medium wave number at the source (= 0/ cω ), Ir  is the radius of 

the base of the conical seamount. For a fixed source frequency, the number of azimuthal 

orders depends only on the size of the seamount, not the source distance.  

The ( )j
n zΨ  denotes the depth-dependent eigenfunctions at ring j, and the 

azimuthal eigenfunctions, ( )m φΦ , are defined as:  

 
  ( ) cos ( ), 0,1, 2,...m m se m mφ φ φΦ = − = ,    (3.31) 

 
where sφ  is the direction of an acoustic source with respect to the peak of seamount, and  
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1
2

1

, 0

, 0m

m
e

m
π

π

=⎧⎪= ⎨ ≠⎪⎩
.      (3.32) 

 

The normalized Hankel and Bessel functions and derivatives used above are defined as 

follows: 

 

  
(1)

(1) 1

( )ˆ ( )
( )

j
j m rn

mn j j
m rn

H k rH r
H k r −� ,       (3.33) 

  
(1)

(1) 1

( ) / ( )ˆ ( )
( )

j j
j m rn rn

mn j j
m rn

dH k r d k rDH r
H k r −� ,     (3.34) 

  (1)ˆ ( ) ( ) ( )j j j j
mn m rn m rnJ r J k r H k r� ,     (3.35) 

  (1)( )ˆ ( ) ( )
( )

j
j j jm rn

mn m rnj
rn

dJ k rDJ r H k r
d k r

� .     (3.36) 

 
j

mna  and j
mnb  are coupling coefficients for outgoing and ingoing waves with respect to 

the peak of a seamount, respectively. The coupling coefficients can be computed with the 

boundary conditions at the leftmost and rightmost interfaces. To compute the coupling 
coefficients, j

mna  and j
mnb , we need to construct and solve a large matrix for all rings for 

a azimuth mode using the direct global matrix approach [9]. However, this approach 

requires extensive physical memory size and computational ability.  

Luo [10] suggested a two-way marching as an approximation of the whole 

coupling in the direct global matrix approach. The two-way marching consists of the 

inward marching coupling with the single-scatter approximation and the outward 

marching with the approximate single-scatter method (or one-way approximation) [54]. 

This two-way marching enables splitting of the large matrix in the direct global matrix 

approach into small multiple linear systems which can be solved with much lower 

computational ability.  

 



 83

 
Figure 3-2: Two-way marching approximation. 

 

For the inward marching coupling with the single-scatter approximation, an incoming 
wave, 1j

mnb + , is given at the left ring j+1, with a purely outgoing wave at the right ring, j
mnb  

as shown in Fig. 3-3. Since the incoming wave, 1j
mnb + , at the left ring is given by the 

incoming wave from an acoustic source, the remaining two unknowns, 1j
mna +  and j

mnb , can 

be expressed as 1j
mnb + .  

 

Figure 3-3: Single-scatter approximation between two neighboring rings. 
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We apply the boundary conditions at the interface, jr r= , between ring j+1 and ring j.  

 

1) Continuity of pressure at jr r=   

 

To satisfy the continuity of pressure at the boundary jr r=  between ring j+1 and 

ring j:  

 

  1( , , ) ( , , )j j j jp r z p r zφ φ+= ,      (3.37) 

 

  0 1

1 1 1 1 1

0 1

ˆ ˆ[ ( ) ( )] ( ) ( )

ˆ ˆ[ ( ) ( )] ( ) ( )

j j j j j j j
mn mn mn mn n m

m n

j j j j j j j
mn mn mn mn n m

m n

a H r b J r z

a H r b J r z

φ

φ

∞ ∞

= =

∞ ∞
+ + + + +

= =

+ Ψ Φ =

+ Ψ Φ

∑∑

∑∑
 (3.38)  

 

for the mth azimuthal mode, we have  

 

1 1 1 1 1

1 1

ˆ ˆ ˆ ˆ[ ( ) ( )] ( ) [ ( ) ( )] ( )j j j j j j j j j j j j j j
mn mn mn mn n mn mn mn mn n

n n
a H r b J r z a H r b J r z

∞ ∞
+ + + + +

= =

+ Ψ = + Ψ∑ ∑ . (3.39)  

 

By applying the operator 1
( )0

( )( )j
j

z
z dzνρ

∞
Ψ∫ i  to Eq. (3.39), we obtain 

 

 1 1 1 1 1

1

ˆ ˆ ˆ ˆ[ ( ) ( )] [ ( ) ( )]j j j j j j j j j j j j j
m m m m mn mn mn mn a n

n
a H r b J r a H r b J r Cν ν ν ν ν

∞
+ + + + +

=

+ = +∑ ,   (3.40) 

 

where 1 1

0

1 ( ) ( )
( )

j j j
a n njC z z dz

zν νρ
∞+ +Ψ Ψ∫� .      (3.41) 

 

2) Continuity of normal particle velocity at jr r=  

 

To satisfy the continuity of normal particle velocity at the boundary jr r=  
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between ring j+1 and ring j:  

 

  
1

1

1 1
j j

j j

j j
r r r r

p p
r rρ ρ

+

+
= =

∂ ∂
=

∂ ∂
     (3.42) 

 

for the mth azimuthal mode, we have  

 

 1

1 1 1 1 1 1 1
1

1

1 ˆ ˆ[ ( ) ( )] ( )

1 ˆ ˆ[ ( ) ( )] ( )

j j j j j j j j j
mn rn mn mn rn mn nj

n

j j j j j j j j j
mn rn mn mn rn mn nj

n

a k DH r b k J r z

a k DH r b k J r z

ρ

ρ

∞

=

∞
+ + + + + + +

+
=

+ Ψ =

+ Ψ

∑

∑
 (3.43) 

 

By applying the operator 
0

( )( )j z dzν

∞
Ψ∫ i  to Eq. (3.43), we obtain 

 

1 1 1 1 1

1

ˆ ˆ ˆ ˆ[ ( ) ( )] [ ( ) ( )]j j j j j j j j j j j j j
m m m m mn mn mn mn b n

n
a DH r b DJ r a DH r b DJ r Cν ν ν ν ν

∞
+ + + + +

=

+ = +∑ ,   (3.44) 

 

where 
1

1 1
10

1 ( ) ( )
( )

j
j j jrn

b n nj j
r

kC z z dz
k zν ν
ν ρ

+ ∞+ +
+ Ψ Ψ∫� .     (3.45) 

 

Eq. (3.43) and Eq.(3.44) can be rewritten in the matrix form,  

 

 ˆ ˆ ˆ ˆ( )=j j j j j+1 j+1 j+1 j+1 j+1
m m m m a m m m mH a + J b C H a + J b ,     (3.46) 

 ˆ ˆ ˆ ˆj j j j j+1 j+1 j+1 j+1 j+1
m m m m b m m m mDH a + DJ b = C (DH a + DJ b ) ,    (3.47) 

where ˆ j
mH , ˆ j

mDH , ˆ j
mJ , ˆ j

mDJ , ˆ j+1
mH , ˆ j+1

mDH , ˆ j+1
mJ , ˆ j+1

mDJ  are diagonal matrices. For 

example,  
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(1)

1,2,3,..., (1) 1
1,2,3,...,

( )ˆ ˆdiag( ( )) diag
( )

j j
j j m rn

mn n N j j
m rn n N

H k rH r
H k r= −

=

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
j
mH ,  (3.48) 

where N is the number of normal modes. j
ma , j

mb , j+1
ma , and 1+j

mb  are column vectors 

such as:  

  

1

2

j
m
j

m

j
mN

a
a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

j
ma

#
.        (3.49) 

 

With the single-scatter approximation, j
ma = 0  and ˆ j+1

mH = I , which comes from 

the definition of the normalized Hankel function, the two unknowns, j+1
ma  and j

mb  can 

be obtained from the Eq. (3.46) and Eq. (3.47) in terms of j
mb : 

 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆj+1 j j+1 j+1 j j+1 j+1 -1 j j+1 j+1 j j+1 j+1 j+1
m m a m m b m m a m m b m ma = -(DJ C H - J C DH ) (DJ C J - J C DJ )b ,  (3.50) 

 1ˆ ˆ( ) ( )−=j j j+1 j+1 j+1 j+1
m m a m m mb J C Ia + J b .     (3.51) 
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Figure 3-4: One-way approximation between two neighboring rings. 

 

For the outward marching coupling, the one-way approximation is used as shown in Fig. 

3-4. In the one-way approximation, we assume that no back-scattering is allowed, i.e., a 

purely incoming wave at the right ring j is assumed with a purely outgoing wave at the 
left ring j+1, 0j

mnb =  and 1 0j
mnb + = , respectively. Then the outgoing wave at ring j, j

mna  

can be expressed in terms of 1j
mna +  with the boundary condition between two neighboring 

rings, ring j+1 and j as follows: 

 

 ˆ ˆ ˆ ˆj+1 j+1 -1 j+1 j j j+1 j j j
m a m c m m d m ma = (G ) (DJ C H - J C DH )a ,    (3.52) 

 

where,  

 1 1
1 10

1 ( ) ( )
( )

j
j j j jrn

c n n b nj j
r

kC z z dz C
z kν ν ν

νρ
∞ + +

+ +Ψ Ψ =∫� ,    (3.53) 

 1 1
1 10

1 ( ) ( )
( )

j j
j j j jrn rn

d n n a nj j j
r r

k kC z z dz C
k z kν ν ν
ν νρ

∞ + +
+ +Ψ Ψ =∫� ,    (3.54) 

 
(1) 1

1
(1) 1 1

( )diag( )
2 ( )

j jj
j m r

rv j j
m r

H k rri k
H k r

ν

ν

π +
+

+ +=j+1 -1
a(G ) .     (3.55) 
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As shown in Fig. 3-2, j
mna  from the outward marching is added to the j

mna  from the 

inward marching before marching to the next range step.  
Note that the coupling coefficients, j

mna  and j
mnb are computed at each azimuthal 

mode independently.  

    After the inward and outward marching, the total pressure fields can be computed by 
Eq. (3.27) ~ (3.30) with the computed coupling coefficients, j

mna  and j
mnb .  

 

 
Figure 3-5: Structure of 3D spectral coupled-mode model program. 

 

Fig. 3-5 shows the structure of 3D spectral coupled-mode model program. The 
coupled matrices, ,j j

a bC C , in Eq. (3-41), (3-45), (3-53), and (3-54) are computed at every 

range step using the 2D C-SNAP program [63]. The same coupled matrices are required 

for all the azimuthal modes. In addition, the coupled matrices are required for both the 

inward and outward marching. Therefore, it is essential to avoid solving the depth-

separated wave equation at every azimuthal mode; the coupled matrices are pre-

calculated and saved to a file to reduce computation time.  
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At higher frequency, the size of the coupled matrices, ,j j
a bC C , is proportional to N2*Nr*2, 

where N is the number of modes and Nr is the number of range steps. The size of the file, 

including the coupled matrices, may be so large that it is a bottleneck of the whole 

computation because of the slow file I/O, compared to fast operation by the CPU. In 

particular, this bottleneck becomes significant when we carry out the inward/outward 

marching at each azimuth mode, as shown in left panel of method I in Fig. 3-6. In this 
method, the input of the coupling matrices, ,j j

a bC C , should be repeated Nr*M times, 

which can slow down the entire computation significantly.  

To reduce the number of reading files for the coupling matrices, a do-loop for the 

azimuth modes can be moved into the inward/outward marching, as shown in the right 

panel of Fig. 3-6 (method II). At each section, the computation for all azimuth modes is 

performed in the inward/outward marching. This method can reduce the entire 

computation time by 1/N compared to method I.  
However, another issue arises associated with the coupling coefficients, j

mna and 
j

mnb . As shown in Fig. 3-2, j
mna  from the inward marching should be added to the 

outward  marching; therefore, j
mna  from the inward marching should be saved for the 

outward marching in method II. In method I, it is not necessary to save j
mna  in the 

inward marching. The size of j
mna  and j

mnb is proportional to N*M*Nr, where N is the 

number of modes, M is the number of azimuthal modes, and Nr is the number of range 

steps. This size after the inward marching can amount to several hundred gigabytes at a 

higher frequency. This large size of the coupling coefficients requires a large storage 

capacity (hard disk drive), which limits the overall efficiency of the program. Of course, 
if we need to save the coupling coefficients, j

mna and j
mnb , for further purposes as well as 

the pressure fields, the large size of the coefficients may be an issue even with method I.  

Using a perturbation of the horizontal wavenumber and modal shape [69, 70] can 

be a promising way with method I to overcome the problem associated with the slow file 

I/O and the requirement of a large storage.  
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Figure 3-6: Do-loops associated with azimuth modes and range steps. 

 

Based on the 3D spectral coupled-mode model, two programs were developed in Fortran 

95 and MATLAB○C . These programs can be run in single- or multi-processor environment 

using parallel computing. A detailed description on the development of the parallel 

computing is presented in Section 3.7.1. 
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3.6 Three-dimensional spectral coupled-mode model vs. three-

dimensional parabolic equation 

 

The Parabolic Equation (PE) has been applied to long-range sound propagation 

successfully, and it has grown to be the most popular technique for range-dependent 

problems in acoustics [28]. Three-dimensional (3D) PE codes have also been developed 

[13-17]; however, the applications have been limited to shallow water and/or a short 

range problem because of the extensive computational demand. To consider 3D effects 

properly, the arc length between two adjacent vertical sections should be less than a 

quarter of wavelength. This requires that the number of vertical sections increases at a 

longer range, which means that the computational demand can be extremely extensive.  

The developed 3D spectral coupled-mode model shows higher computational 

efficiency to compute a broadband pulse for sound propagation around a seamount with a 

low frequency source or a limited number of normal modes (see Chapter 5). However, 

this model is only applicable to an axisymmetric bathymetry. In addition, range-

dependent sound speed fields can not be used with this model. Because of the limitation 

with the axisymmetric bathymetry, and range-dependent sound speed fields, more 

realistic realization of sound propagation with 3D effects from complicated bathymetry 

can not be accomplished. In contrast, the 3D PE can consider full range-dependent 

environments, bathymetry, and sound speed fields. Figure 3-7 demonstrates the large 

difference between the computational domain with a conical seamount and real range-

dependent complicated bathymetry for both models. However, the backscattering wave 

can not be realized with the 3D PE that uses an approximated model with a one-way 

wave equation1.  
 

1 Collins and Evans [74] proposed a two-way PE method to handle backscattered acoustic energy 
in the ocean. The two-way PE is implemented for a two-dimensional problem, which is based on 
the single-scattering approximation with a sequence of range-independent regions.  
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After all, the 3D coupled-mode model and 3D PE are mutually complementary to realize 

3D sound propagation; the choice of model can be decided based on the complexity of 

the environments. In addition, an efficient 3D PE method is essential, and the 

comparisons between the two models are required in various problems.  

 
Figure 3-7: Comparison of computational domain for the 3D spectral coupled-mode model with 
an approximated conical seamount and the 3D PE with real range-dependent bathymetry.  

 

Table 3-1: Comparison between 3D spectral coupled-mode model and 3D PE method  

3D spectral coupled-mode model 3D PE method 

Exact solution to full wave equation One-way wave approximation 

Applicable to axisymmetric bathymetry Range dependent bathymetry 

Range independent sound speed fields Range dependent sound speed fields 

Easy for parallel computing in azimuth modes Difficult for parallel computing  

Computation time ~ (N3+I/O)*M*Nr
A Computation time ~ Nz*Nr*Nt

B 

M ~ [ ]r Ik r , depends on frequency C Nt ~ range of receiver 
A N: number of normal modes, I/O: file I/O overhead, M: number of azimuth modes, Nr: number 
of sections, 
B Nz: no. of vertical segments, Nr: no. range steps, Nt: no. of segments in azimuth, 
C

rk : wavenumber, Ir : radius of the base of the seamount. 
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For parallel computing, the 3D spectral coupled-mode model can be parallelized easily in 

terms of azimuth modes, called embarrassingly parallel, because the computation for 

azimuth modes is performed independently. In contrast, the parallel computing of the 3D 

PE method may be complicated with large message passing between CPUs for solving in 

depth and azimuth at every range step even with an efficient alternating direction method.  

The computation time of the 3D spectral coupled-mode model is proportional to 

(N3+I/O overhead)*M*Nr, where N is the number of normal modes, M is the number of 
azimuthal mode, which can be obtained from [ ]r Ik r , and Nr is number of range steps. 

The parameters are all dependent on frequency, meaning that the computation time can be 

extremely extensive at higher frequency. The computation time of the 3D PE seems less 

sensitive to the source frequency than that of 3D spectral coupled-mode model. However, 

the number of angular sections, which is proportional to the source frequency, becomes a 

significant obstacle to practical application of long-range sound propagation with higher 

frequency, due to the marching scheme of PE from the acoustic source.  

The problem of the number of angular sections could be solved with the higher 

order finite difference scheme [51] and parallel computing. In addition, a 2D or Nx2D 

problem can be assumed before a large change of bathymetry such as a seamount. This 

assumption is valid if the azimuthal coupling is small enough to be ignored with a slowly 

changing bathymetry. Since the required number of sections at a short range is much 

smaller than one at a long range, the number of sections can be varied while marching in 

range. Instead, an interpolation scheme should be adopted for the pressure fields after 

regridding of the computational domain due to the increase of the number of angular 

sections. This interpolation scheme might be valid with slow varying of the phase of the 

pressure fields. This proposed efficient 3D PE model is shown in Fig. 3-8, but 

development of code will remain as a future work. 

One more drawback that should be addressed concerning the 3D PE method is an 

uncertainty at side boundaries. Generally, 2D solutions are imposed on the side 

boundaries. This boundary condition requires a wide computational domain, enough so 

that the horizontal refraction due to the seamounts at the side boundaries can be neglected. 
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However, a computational domain that is too wide leads to a large number of angular 

sections increasing the computation time.  

 

 
Figure 3-8: Proposed 3D PE model with high computational efficiency for a long-range and 
highly range-dependent problem.  
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3.7 Parallel computing and the approximation  

 

Although the 3D spectral coupled normal mode code can be much more efficient than 

earlier models [10], this model still requires huge computational demand, in particular, 

for a deep-sea problem at a higher frequency.  

The computation time of the 3D spectral coupled-mode model is proportional to 

          

  [N3 + (File I/O overhead)]*M*Nr,     (3.56) 

 
where N: no. of normal modes, M: no. of azimuth modes = [ ]r Ik r , and Nr: no. of range 

steps. N, M and Nr are all dependent on frequency, i.e., the computation time increases 

dramatically at higher frequencies. For example, consider a problem with a 68.2Hz CW 

source and the radius of the conical seamount of 28.6km (see Fig. 5-47). The parameters 

associated with the computation time become:  

 

      
0

2[ ] [ ] 8170c
I I

fM kr r
c
π

≥ = = ,  

      12 1328600~ 5.5 ~ 5200 ~ 2 or 2
4 5.5rdr m Nλ

≤ → ≥ .    (3.57) 

 

At the outermost ring, there are 119 water-borne modes, 378 propagation modes 

including bottom-bouncing modes, and 598 modes including leaky modes. These values 

must be satisfied as a reasonable guideline for a valid solution; otherwise, we need to 

perform a series of convergence tests for the parameters. In Fig. 3-9, the amplitude of 
outgoing wave terms, | |j

mna , are compared with two different numbers of sections at the 

outermost ring after the outward/inward marching. For 1024 range steps, the high 

amplitude artifacts are shown at the higher normal/azimuth mode where the amplitude 

converges to zero in the left panel of Fig. 3-9. Luo [10] pointed out that these artifacts 

originate with the stepwise approximation if the range step is large enough to generate a 
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back-scattered wave at each stair step. Therefore, to remove these artifacts, the range step 

should be less than / 2λ  or meet a stricter criterion, / 4λ . Fig. 3-9, in the right panel, 

shows the disappearance of the artifacts with a finer step size, 2048 range steps.  

 

 
Figure 3-9: | |j

mna  at the outermost ring after inward/outward marching with different number of 

sections, 1024 and 2048. In the left panel, the artifacts from the stepwise approximation are 
shown in the top right corner; however, the artifacts disappear with 2048 sections in the right 
panel.  

 

Table 3-2 shows the computation time with various numbers of normal modes and 

range steps for the 68.2Hz CW source. At a greater number of normal modes and higher 

range steps, a parallel program was used to obtain a result in a reasonable amount of 

computation time. The computation time was given in hours per CPU (column A), and 

also core hours (column B) were estimated only by the product of computation time and 

number of CPUs. During the test, three different systems were used: a quad-core PC, a 

clustered computer at MIT, and LLGRID at the MIT Lincoln Laboratory. Since the 

performances of the systems are different, and the test environments were not exactly the 

same for all the cases, it is difficult to compare the computation time directly. For 
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example, the program for a single-processor is faster than the one for multi-processors in 

the same condition due to so-called parallel overhead. However, we could compare the 

computation time roughly to make a guideline. For example, it may take 100 days to 

obtain a result for a CW source in the case of 500 normal modes and 2048 sections with a 

single CPU. This means that even with 100 CPUs and parallel computing, we could 

obtain a broadband pulse in 240 days, if we consider a broadband pulse that is 8 seconds 

long with 30Hz bandwidth. This large amount of computation time would not be 

acceptable in practical use.  

 

Table 3-2: Computation time for various no. range step and no. normal modes in hours  

512 1024 2048 
       Range step 

No. of  

Normal mode A B A B A B 

100 26.7 / 1 26.7 39.5 / 11 39.5 50.1 / 1 50.1 

200 - - 45.2 / 2 90.4 41.6 / 8 332.8 

300 - - 70.0 / 8 560.0 - - 

400  - - 180.0 / 8 1440.0 17.0 / 100 1700.0 

500   - - - 23.47 / 100 2347.0 

A: [Computation time (in hours) per CPU] / [number of CPUs]. 
B: Core hours (in hours). The core hours are estimated computation time for a single-core, i.e. 
computation time per CPU *number of CPUs. 
1: The computer system used is different depending on the number of CPUs: 
 1: PC with 3.0GHz, 

2 and 8: clustered computer at MIT, 
100: LLGRID at the MIT Lincoln Laboratory.  

 

In addition to the large number of normal modes, azimuth modes, and range steps, 

there are several problems to be addressed carefully for better computational efficiency 
and stable computation: 1) matrix inverse, 2) coupling matrices, ,j j

a bC C , and 3) Hankel 

function computation.  
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At every azimuth mode, we need to solve equations (3.50) and (3.51) for the 

outward marching. In (3.50), a matrix inverse, ˆ ˆ ˆ ˆj j+1 j+1 j j+1 j+1 -1
m a m m b m(DJ C H - J C DH ) , is required, 

which is the reason why the amount of computation time is proportional to N3 in Eq. 3-56. 

We could reduce the computational demand for the matrix inverse using a more efficient 

matrix inverse scheme as well as a reduction in the total number of the matrix inverse. 

The matrix inverse is required to be carried out repeatedly M (number of azimuth modes) 

times, which is quite large at high frequency. Therefore, the reduction of the number of 

azimuth modes may be a better way to reduce the total amount of computation time, 

which will be discussed more in Section 3.7.2.  
As stated in Section 3-5, the coupling matrices, ,j j

a bC C , can increase the 

computational demand due to the overhead of slow file I/O. This will be discussed more 

in Section 3.7.1 for parallel computing.  

The best way to decrease the amount of computation time is to reduce the number 

of normal modes, azimuth modes, and range steps in Eq. (3.56), since the amount of 

computation time is directly proportional to the product of the parameters. In Section 

3.7.3, the truncation of normal modes and the sub-sampling of azimuth modes are 

examined as promising ways to reduce computation time.  

The 3D spectral coupled-mode model is expressed in the Bessel and Hankel 

functions; therefore, it is essential to compute these functions in a fast and stable way. In 

Section 3.7.4, the real-valued argument approximation of the Bessel and Hankel function 

will be examined; this enables use of a look-up table, rather than computing the Bessel 

and Hankel function at every step. Another issue concerning the Hankel function is 

associated with the instability at higher modes with a high complex part of the argument. 

The stability of the Hankel function should be handled very carefully in numerical 

calculation.   

In the following sections, 3.7.2~3.7.4, results are computed for a problem in Fig. 3-

10 with a 10Hz CW source.   

 



 99

 

Figure 3-10: Description of problem with a 10Hz CW source (see Section 5.2 for details). 
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3.7.1 Parallel computing  
 

Recently, the rapid advance in computer technology has enabled us to solve a 

complicated and realistic long-range sound propagation problem in a reasonable 

computation time; however, 3D sound propagation problems are beyond the current 

computational ability. We described, in previous sections, the large computation time of 

the 3D spectral coupled-mode model, in particular, for the deep-sea, high frequency 

sound propagation problems, even for a CW source. Therefore, parallel computing is 

essential to obtain a transmission loss or broadband pulse in a reasonable computation 

time.  

If the computation time for a CW source is not significantly large, a single-core 

program can be used. For a broadband pulse, the single-core program computes pressure 

field solutions for multi-frequencies independently and simultaneously in a cluster 

computer. The single-core program gives much higher efficiency, avoiding the parallel 

overhead, which means additional computation time to coordinate parallel tasks. If the 

computation for a CW source, however, takes too much time, it is necessary to use a 

parallel program. The approach we use here is to divide the azimuth modes into a certain 

number of sets and distribute the jobs for the sets of azimuth modes over the available 

CPUs. The computations of (3-51), (3-52), and (3-53) should be done independently and 

repeatedly in azimuth modes.  

Since the azimuth modal cut-off as well as modal cut-off of normal modes take 

place along the inward and outward marchings (see section 3.7.2), the inward marching 

for a certain azimuth mode can be stopped at a certain section before the center of the 

seamount. This azimuth modal cut-off requires larger computational demand at lower 
modes because the coupling coefficients, j

mna and j
mnb , converge to zero more quickly at a 

higher azimuth mode.  

In Fig. 3-11, the workloads for 100 CPUs with equally spaced azimuth modes are 

shown; the workload can be compared by the ratio of computation time to the maximum 

computation time among all CPUs. The workloads linearly decrease at higher azimuth 
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modes. Therefore, the total computation time is determined by the first CPU with the 

largest computation time, while the other CPUs are waiting with idle tasks. The ideal 

scenario for the highest computational efficiency might be distributing the jobs with 

equal computation time. To finish the distributed jobs for all CPUs at the same time, the 

workload for each CPU should be balanced.  

As a way to balance the workload for all the CPUs, the linearly increasing number 

of azimuth modes was tested; i.e., more azimuth modes are assigned to higher mode. 

Figure 3-12 shows the workload ratio with respect to the maximum computation time 

with a linearly increasing number of azimuth modes. The workload ratios with the 

linearly varying number of azimuth modes are more balanced than the equally spaced 

azimuth modes. The overall workload ratios are increased to 1 ~ 0.6, which are compared 

to 1 ~ 0.1 for the equal spaced azimuth modes in Fig. 3-11. The balancing of the 

workloads could be improved with more careful distribution of jobs over the CPUs.  

The parallel version of the MATLAB○C  program was developed with the pMatalb 

[66] which is a Message Passing Interface (MPI) library for MATLAB○C  developed by 

the MIT Lincoln Laboratory [67]. In addition, a parallel Frotran program was developed 

and is compatible with widely used MPI libraries, openMPI [64] and mpich2 [65]. The 

programs were tested and run on three different computer systems: a quadcore PC of 

3.0GHz, a clustered system at MIT, and Lincoln Laboratory GRID (LLGRID) at the MIT 

Lincoln Laboratory. The MATLAB○C  code can be easier to run and revise, but the Fortran 

code is much faster than the MATLAB○C  code. The Fortran code was also tested and run 

in a cluster computing system with Condor, a specialized workload management system 

for computer-intensive jobs [68].  
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Figure 3-11: Computation time of CPUs with equally spaced azimuth modes. 
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Figure 3-12: Computation time of CPUs with linearly increasing number of azimuth modes. The 
program adds some additional higher azimuth modes at the beginning of the computation; 
therefore, the jobs for these higher azimuth modes were performed very quickly, which explains 
the abrupt change in the workload ratio at the highest number of CPUs.  
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3.7.2 Azimuth modal cut-off  
 
As the inward marching heads toward the center of a seamount, the well-known ‘modal 

cut-off’ takes place due to the upslope sound propagation. The modal cut-off explains that 

some trapped modes are lost to continuous modes as the water depth decreases; the modal 

cut-off happens with significant energy transfer.  

 

 
Figure 3-13: Amplitudes of incoming coupling coefficients, | |j

mnb , at the fifth normal mode in 

terms of azimuth modes and sections.  

 

Figure 3-13 shows the coupling coefficients, | |j
mnb , for the fifth normal mode along 

sections in the inward marching. The modal cut-off of the fifth mode after the thirty-third 

section takes place with the abrupt change of the coupling coefficients, which converge to 

zero after the section. In addition to the modal cut-off, we can see that the coupling 

coefficients for the higher azimuth modes converge to zero before the modal cut-off takes 
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place. As clearly shown in the figure, the coupling coefficients for the higher modes 

decrease to zero faster than those for lower modes. This phenomenon is hereafter called 

azimuth modal cut-off. 

The azimuth modal cut-off is quite clearly shown in Fig. 3-14. The amplitudes of 
the coupling coefficients, | |j

mnb , in four different sections are shown in the lower panels 

during inward marching to the center of the seamount. The | |j
mnb  are shown in terms of 

the azimuth modes and the normal modes.  

In the first section, the constant amplitude is given for all azimuth modes as an 

initial condition, but the significant parts of the amplitudes of the coupling coefficients 

become narrower and more limited in both the azimuth modes and the vertical modes in 

the subsequent sections. The azimuth modal cut-off is valid for the coupling coefficients 
for the outgoing wave, | |j

mna , which are shown in the top panels in Fig. 3-14.  

This azimuth modal cut-off enables us to limit the number of azimuth modes in a 

certain section, which can be decided from the highest horizontal wavenumber and the 

range from the center of the seamount as shown in the following equation:  

 

1[ ]j j jM k r≥ ,         (3.58) 

where jM : the minimum number of azimuthal modes, 1
jk : the largest horizontal wave 

number, and jr : the radius of the ring for section j.  

The limitation of the number of azimuth modes can reduce the total computation 

time, which was implemented in the developed 3D spectral coupled-mode program.  
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Figure 3-14: Amplitudes of outgoing and incoming coupling coefficients, | |j

mna  and | |j
mnb , 

respectively, in four different sections in terms of normal and azimuth modes.  
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3.7.3 Approximations with the truncation of normal modes and the sub-
sampling of azimuthal modes  
 
The best way to reduce the amount of computation time might be to use fewer normal 

and azimuth modes. However, we are unable to reduce the number of sections along a 

conical seamount because of the artifacts in higher azimuth and normal modes due to the 

coarse step size, as shown in Fig. 3-9. In this chapter, some other promising ways to 

reduce the number of normal modes and azimuth modes will be examined.  

 

1) Truncation of normal modes 

 

For the problem with a 10Hz CW source shown in Fig. 3-10, at the outermost ring, there 

are 12 water-borne modes, 43 propagation modes including 31 bottom-bouncing modes, 

and 221 leaky modes. In this problem, since the frequency is so low that a leaky mode 

plays a significant role associated with the energy dissipation at a higher mode, in 

particular, around the seamount. Figure 3-15 shows the transmission loss (TL) with 

truncation of normal modes such as 50, 100, and full modes (266). The overall accuracy 

of the approximation with the truncation of normal modes is imprecise along the 

centerline (top panel), and the error of TL is quite large around the seamount. As shown 

in the bottom panel, however, the TL for an acoustic path with 7.5 degrees off centerline 

shows acceptable accuracy.  

In a practical sense, we can use the truncated normal modes with reasonable 

accuracy. This requires a series of convergence tests to maintain the accuracy at an 

acceptable level.  

 

2) Sub-sampling of azimuth modes 

 

Here we explore the reduced number of azimuth modes due to the sub-sampling of 

azimuth modes. If there is a coefficient which is dependent on the azimuth mode and is 
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smooth enough to be interpolated, then the full set of the coefficients can be constructed 

by an interpolation scheme. This enables computation of the coefficients with a subset of 

azimuth modes increasing the computational efficiency.  

The pressure fields outside of the base of the seamount can be expressed as in Eq. 

(3.29),  
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where J

mP  is the azimuthal mode amplitude.  

Since j
mna are highly fluctuating, it is difficult to interpolate j

mna . However, J
mP  is 

less fluctuating and slowly varying compared to j
mna . Figure 3-17 shows the real parts of 

the J
mP  for the various azimuth modes at 150 km from the source. The real parts of the 

J
mP  are compared with those obtained using the interpolation with the 1/2 and 1/5 sub-

sampling. The blue triangles denote the correct coefficients from the computation, and the 

red circles denote the azimuth mode chosen for the sub-sampling. The cyan circles are the 

interpolated coefficients based on the sub-sampled coefficients. For the 1/2 and 1/5 sub-

sampling, the computation of coupling coefficients is performed at every 2 and 5 azimuth 

modes, respectively. As shown in Fig. 3-17, the accuracy of the interpolation with 1/2 

sub-sampling is quite acceptable, and the transmission loss (TL), given in Fig. 3-16, 

shows good agreement with that of the full azimuth modes. For 1/5 sub-sampling, the 

error becomes bigger than the 1/2 sub-sampling, and the TL shows large discrepancies, 

specifically around the seamount. However, the TL far outside of the seamount shows 

quite good accuracy.  
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Figure 3-15: Transmission losses for various number of normal modes along the centerline (0 
degree, top panel) and 7.5 degrees off centerline (bottom panel).  



 110

 

 

Figure 3-16: Transmission losses with various sub-samplings of azimuth modes: 1/2 sampling 
(top left), 1/5 sampling (top right) and 1/7 sampling (bottom right). The transmission losses with 
the sub-samplings are obtained only in the region outside the seamount.  
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Figure 3-17: Interpolation of the real part of the J

mP  at each azimuth mode at 150km for 1/2 (top 

panel) and 1/5 (bottom panel) samplings. The blue triangles denote the correct coefficients from 
the computation; the red circles denote the azimuth modes chosen for the sub-sampling. The cyan 
circles are the interpolated coefficients based on the sub-sampled coefficients (red circles).  
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3.7.4 Real-value argument approximation of the Hankel and Bessel 
function  
 

The 3D spectral coupled-mode model is expressed in the Hankel and Bessel functions. 

Therefore, computing these functions in a fast and stable way is essential. If we could 

avoid computing the Hankel and Bessel functions, currently performed at every step 

repeatedly, we could achieve substantial gain in computation time. As shown in Eq. 

(3.60), the Hankel function with the complex-value argument can be expressed as a 

product of an exponentially decay function and a Hankel function with the real-value 

argument. This approximation enables use of the look-up table of the pre-calculated 

Hankel function with an interpolation scheme. The look-up table can be computed and 

prepared before the computation. By using the look-up table, the repeated computation of 

the Hankel function is not necessary, thus saving computation time.  

 

  (1) (1)(( ) ) ( ) r
v r v rH k j r H k r e αα −+ ≈ .     (3.60) 

 

The Bessel function can be obtained from the approximated Hankel function. 

Figure 3-18 shows the transmission loss (TL) with the real argument approximation of 

the Hankel and Bessel function; the TL was compared to that without the approximation. 

The TL was calculated along the centerline between an acoustic source, a 10Hz CW 

source, and the peak of a conical seamount. The overall accuracy with the approximation 

seems imprecise because of the high fluctuations that originate from the error of the 

approximation with a high complex valued argument. The smoothed version of the 

approximated TL, however, shows good agreement with the TL with no approximation, 

except for the region just after the peak of the seamount between 10 ~ 12 km.  
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Figure 3-18: TL with the real argument approximation of the Hankel and Bessel function 
compared to the TL without the approximation for a 10Hz CW source.   
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Chapter 4  

 

Reconciliation of arrival pulses between the 

BASSEX experiment and two-dimensional sound 

propagation model  

 
In this thesis, reconciliation of pulse arrivals between the BASSEX experiment and two-

dimensional simulations are carried out using the 2D Parabolic Equation (PE) and ray-

tracing method.    

In this reconciliation, various acoustic paths from the SPICEX source 1 and 2 

sources to the receivers behind the Kermit-Roosevelt and Elvis seamounts as well as open 

sea cases are considered as follows:  

 

1) from SPICEX source 2 over the Elvis seamount (day 268), 

2) from SPICEX source 2 over the Kermit-Roosevelt seamount (day 267), 

3) from SPICEX source 1 over the Kermit-Roosevelt seamount (day 264), 

4) open sea cases (day 271).  

 

Due to the limited computational efficiency of the three-dimensional (3D) model at 

a higher frequency, such as 250Hz, only 2D simulations are carried out for the SPICEX 

sources. Through the 2D simulations, we identify the individual ray arrivals in the 

BASSEX experiment by comparing the ray arrivals from the 2D simulation to those from 

the experiment.  

Instead of using the 3D model, we perform Nx2D computation using the 2D PE 

model. For the Nx2D PE numerical simulations, four approximated conical seamounts 
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with range-averaged sound speed profiles are considered, and the locations of the shadow 

zone behind the seamounts can be confirmed by comparing the Nx2D computation with 

the BASSEX experiment in terms of the arrival energy.  

 

4.1 Parabolic Equation 

 

The RAM, a 2D Parabolic Equation (PE) model developed by Collins [12], was used in 

the 2D simulation for the SPICEX sources. To obtain broadband pulses by the Fourier 

synthesis method [28], 821 frequencies over the 100 Hz bandwidth with 250 Hz center 

frequency were considered. This is equivalent to an 8.192 second long simulation with a 

time step of 0.001 second. While the 8 second simulation is enough for refracted rays, the 

bottom-reflected rays give the wrap-around problem. Therefore, we introduce the high 

attenuation at the bottom within a 200km range to reduce the bottom-reflected rays. Even 

in real data, no significant bottom reflected rays were found before the seamount.  

Convergence tests for a single frequency (250 Hz, the center frequency of the 

SPICEX sources) were conducted with various vertical grid sizes from 0.25 ~ 1.0m and 

10 ~ 100 m range steps. Through the convergence tests, 0.5 m vertical grid size and 50 m 

range steps were chosen as maximum values for highest computational efficiency and 

consistent pressure fields.  

The computation time of the 2D PE for a broadband pulse is directly dependent on 

the number of frequencies (or time duration), vertical grid size, and range steps; with the 

above conditions, the calculation requires approximately 22 hours with an single CPU of 

Intel CPU (Q6600, 3.24GHz).  

 

4.1.1 Bathymetry  

 

Bathymetry for an acoustic path from a source to an instantaneous array location was 

obtained from bathymetry measurement around the seamounts from the BASSEX 
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experiment (see Section 2.2.1) and GTOPO(GDEM) database[72] for the area which is 

not covered by the measurement. The Voronoi interpolation, which is used in the 

SEALAB [41] program, and a linear 2-D interpolation were tested, but no significant 

difference in simulation results was found. Hence, the bathymetry was linearly 

interpolated.  

  

4.1.2 Sound speed profile  

 

As discussed in Section 2.2.3, sound speed fields from the XBT casts of the BASSEX 

experiment were limited to the covered entire area. However, for day 268, sound speed 

fields from the XBT casts are quite well-defined along the acoustic path over the Elvis 

seamount, as shown in Fig. 4-1. Therefore, the sound speed profiles from the XBT casts 

were used in the simulation; the nearest XBT sound speeds were chosen along the 

acoustic path. In contrast, for the acoustic path over the Kermit seamount (day 267, day 

264) and the open sea cases (day 271), the sound speed fields from objective analysis 

were used, as discussed in Section 2.2.3.  

 
4.1.3 Bottom properties  
 

Since geoacoustic properties were not measured in the BASSEX experiment, two 

different bottom properties [42], porous basalt and loose sediment, were considered as 

described in Table 4-1. These bottom types are chosen to see the effect of the bottom with 

reflected waves behind the seamounts. If reflections by the seamount were involved, the 

geoacoustic properties become essential to estimate signal level and reconcile the 

individual rays. However, it was difficult to determine whether there was a significant 

difference in the simulation result with different bottom types, so most simulations were 

done with the porous bassalt bottom condition. In this simulation, shear effect was not 

included. The bottom was treated as homogeneous with an absorption layer below 7000m, 
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and to reduce the bottom reflected wave, a high attenuation value (10 /dB λ ) was used for 

the entire bottom within a 200km range from the source.  

 

Table 4-1: Bottom properties for the PE simulation 

 
Compressional 

Speed(m/s) 

Shear Speed1 

(m/s) 
Density( bρ ) Attenuation( pα )2

Porous Bassalt 2200 1100 2.1 wρ  

Loose Sediment 1550 200 1.7 wρ  
0.1 /dB λ  

1In this simulation, shear effect was not included. 
2The bottom was considered as homogenous, while an absorbing layer with high attenuation 

(10 /dB λ ) was located below 7000m of depth. The high attenuation value was used to reduce 

bottom reflected waves for 0~200km range.  

 

4.2 Ray tracing method  
 

The RAY code, developed by Bowlin et al. [40], was used in ray tracing simulation. The 

environmental inputs, bathymetry and sound speeds, were the same as those used in the 

2D PE simulation, but sound speeds from the XBT casts were smoothed well to obtain 

continuous sound speed fields with a bounded second derivative. Without well-smoothed 

sound speeds, the intrinsic smoothing function of the RAY code can lead to the incorrect 

ray paths.  

The initial launch angles were defined by -30 to +30 degrees inclinations relative to the 

horizon with 0.005 degree increments, and all rays that experience five or more surface 

and/or bottom reflections before the seamounts are excluded from the results.  

 

4.3 Behind the Elvis seamount: day 268 with XBT sound speeds  
 

Here comparisons between the two-dimensional (2D) simulation and the experimental 

data for Julian day 268 (hereafter day 268) are presented. The acoustic data were gathered 
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above and behind the Elvis seamount for the SPICEX 2 source. Fig. 4-1 shows an 

acoustic path that passes from the source over the peak of the Elvis seamount, and 

bathymetry and sound speed profiles along the acoustic path are given in Fig. 4-3. The 

sound speeds are obtained from the XBT cast measurements with the nearest neighbor 

rule. In Fig. 4-4, the range-averaged sound speed profile (left panel) and variability from 

the range-averaged sound speed profile are given. Note that there are locally isolated 

regions with an abrupt change of sound speeds.  

Figure 4-2 gives the receiver locations obtained from GPS as well as the reference 

acoustic path over the apex of Elvis seamount. The location is chosen at the time when 

the first significant pulse of the SPICEX 2 source appears in the measurement.  

Table 4-2 shows the arrival time difference between the 2D PE simulation and 

measurement. Compared maximum signal level in dB is also given in the table. There 

were 13 measurements in the shadow and the convergence zones along the acoustic path 

from the SPICEX 2 source to the peak of the Elvis seamount. 

 

Figure 4-1: Acoustic path (geodesic) that passes over the peak of Elvis seamount. The depth of 
the peak of Elvis seamount is 1369m from the sea surface.  
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Figure 4-2: Receiver locations for the reference acoustic path that passes over the peak of Elvis 

seamount; this acoustic path is designed to pass over the apex of Elvis seamount.  
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Figure 4-3: Bathymetry and sound speed profiles along the acoustic path. The sound speed 
profiles are obtained from the XBT casts in the BASSEX experiment, and the XBT cast locations 
nearest the acoustic path were used. The sound speed profiles are linearly interpolated in ranges 
along the acoustic path to reduce the abrupt change of sound speed in the simulations. In the left 
panel, the range-averaged sound speed profile is shown, and the right panel shows the perturbed 
sound speed profiles along the acoustic path.  
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Figure 4-4: Sound speeds derived from XBT casts of BASSEX experiment along the acoustic 
path (Figure 4-1); the left panel shows range-averaged sound speed profile, and the right panel 
shows the difference from the range-averaged sound speed.  
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Table 4-2: Receiver locations and simulation results for day 268  

No. Exp. Range(km)1 Depth(m)2 

Arrival 

time error 

(sec) 3 

Maximum peak 

amplitude(dB)4 

Characteristics 

of significant 

ray arrivals 

1 26802 533.217 296.5 -0.016 86.9A 90.45B 3.56C Refracted 

2 26803 526.664 275.8 - - No signal 

3 26804 520.245 287.2 -0.224 89.8 97.7 7.9 Refracted 

4 26805 513.952 285.2 -0.133 84.9 92.2 7.3 Refracted 

5 26806 507.448 280.4 -0.690 77.8 89.7 11.8 Shadow zone 

6 26807 500.512 256.1 -0.180 87.0 67.9 -19.1 
Diffracted/ 

Reflected 

7 26808 493.152 251.2 -0.261 83.0 92.7 9.7 Refracted 

8 26809 486.001 260.0 -0.069 89.7 83.2 -6.5 Refracted 

9 26810 478.590 238.3 -0.113 87.1 61.7 -25.5 Boundary 

10 26812 463.169 238.8 0.000 70.0 63.9 -6.0 Shadow zone 

11 26813 455.524 246.6 -0.372 84.8 83.0 -1.8 
Diffracted/ 

Reflected 

12 26814 448.268 272.3 -0.018 79.5 87.3 7.8 Boundary 

13 26815 441.685 296.2 -0.115 90.2 96.6 6.4 Refracted 
1 The range from the SPICEX 2 source that is obtained from the GPS location when the first 
strong pulse arrives. 
2 Averaged depth.  
3 Arrival time of simulation minus arrival time of experiment for the reference peaks; (-) means 
pulses from experiment arrive later than those from simulation.  
A Peak amplitude of experiment in dB re 1 Paμ , 
B Peak amplitude of Simulation in dB re 1 Paμ , 
C Peak amplitude of experiment minus Peak amplitude of simulation in dB re 1 Paμ ; experimental 

pulses are obtained by averaging over all 11 periods and grazing angles after using conventional 
beamformer [53].  
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The range-stacked pulse arrivals from the 2D PE simulation at the depth of 270m are 

shown in Fig. 4-5. First, clear shadow and convergence zones can be found behind the 

seamount. The convergence zones consist of the refracted ray arrivals which pass over the 

seamount without any bottom interaction; the shadow zones are located between the 

convergence zones. The shadow and convergence zones are spaced approximately 50 ~ 

60 km apart. At the boundary of the convergence zone before the shadow zone, diffused 

reflected rays appear in the same pattern as the refracted rays; however, the rays arrive 

later than the refracted rays, which prove the rays are bottom reflected.  

The appearance of shadow zones by the blockage of the refracted rays is quite 

clearly shown by the compared simulations with and without the seamount in Fig. 4-6. In 

the latter case, the seamount was removed and replaced by a straight line.  

Figure 4-7 presents the comparison of arrival pulses from experiment and the 2D 

PE simulation. Amplitudes in each panel for the experiment and simulation are 

normalized by the maximum amplitude of the experiment and simulation, respectively. 

The comparison shows good correlation between the measurement and the PE simulation, 

in particular, within the convergence zones in which the refracted rays appear. However, 

the significant difference can be found at transition regions, i.e. the boundaries of the 

shadow zone. In the figure, B and C sit on the transition regions; the PE simulation shows 

a much higher signal level than the measurement. This implies that the span of the 

shadow zone might be underestimated in the simulation; i.e. the real size of the shadow 

zone is larger than that from the simulation. Another significant difference can be found 

at A, in which data were gathered at the top of the Elvis seamount. The early arrival 

refracted waves were not measured in the experiment, but in the simulations they were 

clearly shown.  

Comparison results of arrival patterns between the PE simulation, ray tracing 

method, and experiment in terms of arrival angle and time are shown in Fig. 4-8 ~ 4-31. 

Due to the uncertainty associated with the timing of FORA array by up to 0.25 seconds, it 

is difficult to match individual rays exactly with arrival time. The estimated errors of 

arrival time between the experiment and simulations are given in Table 4-2, obtained 
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from considering the pattern of significant pulse arrivals. The random timing error of 

FORA array provides serious difficulty in analyzing the arrival time error from the 

uncertainty of sound speed fields.  

In many cases, arrival patterns show good correlation between the results, as in 

26802 (Fig. 4-8), 26804 (Fig. 4-10), 26805 (Fig. 4-12), 26808 (Fig. 4-18), 26809 (Fig. 4-

20), 26810 (Fig. 4-21). In particular, the refracted rays from the BASSEX experiment can 

be reconciled with the 2D PE simulation very well, as in the above cases; however, it is 

difficult to match the reflected rays in the experiment, 2D PE, and ray tracing model 

because of the uncertainties from the geoacoustic properties. At least, we could claim that 

overall arrival patterns, however, seem quite close each other.  

The simulation results from the ray tracing model and the 2D PE show good 

correlation in terms of arrival time and grazing angle. However, in some cases, since the 

ray tracing model is much more sensitive to the local bottom slope and sound speed fields, 

as in 26805, the ray tracing model can not detect a strong arrival refracted ray which is 

shown both in the experiment and 2D PE simulation.  

Here we have compared the pulse arrivals from the BASSEX experiment with 

those from the 2D models, 2D PE, and ray tracing method. From now on, we discuss  

the main causes of the discrepancies in the comparison.  

All discrepancies between the experiment and the 2D models could be explained 

by 1) the uncertainty in the sound speed fields, 2) geoacoustic properties, 3) diffused 

reflection, and 4) the 3D sound propagation effect. 

In this simulation, the sound speed profiles are constructed based on the XBT casts 

performed in BASSEX experiment. However, we could expect fluctuations in the sound 

speed profiles that result in the changing of the turning depth and arrival angle of the 

individual ray. Whether an individual ray can pass over the seamount or can be blocked 

by the seamount is highly dependent on the sound speed fields along an acoustic path 

from source to the seamount as well as the local bathymetry of the seamount because the 

early arrivals or deep-down rays sample entire sound speeds in depth. Therefore, a 

refracted ray which passes over the seamount can be blocked by the seamount with a 
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small change of sound speed fields.  

If the reflection occurs on an upsloping bottom, the ray will be steepened by an 

angle twice that of the slope and may be converted to a bottom reflected ray. Then the 

signal will be attenuated rapidly by absorption and scattering at the bottom. Therefore, 

arrivals can be missing, or can be diffused and weakened. The uncertainty in the 

geoacoustic properties of the seabottom associated with the reflections might be another 

issue that explains the differences in the reflected waves between measurements and 

simulations. Moreover, the real sea-bottom is not as smooth as we assumed in the sound 

propagation models; the diffuse reflection from the roughness might be another source of 

difference.  

In real measurements, the 3D horizontal refraction effect might be introduced; 

reflections from the sloped bottoms produce refracted arrivals diverting from the acoustic 

path with an angle twice the local slope of the bathymetry such as the 2D upslope sound 

propagation. This horizontal refraction was discussed in Section 2.4. 

One more effect to increase the difficulty in identification of reflected rays might 

be the use of a towed horizontal array; quite diffused rays by reflection can be smoothed 

out by the range-averaging effect of the horizontal array.  
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Figure 4-5: Range-stacked arrival pulses for the range of 325 ~625 km. Although receiver depths 
vary in the range of 240 ~300m, the pulse arrivals at the depth 270m are given in this figure. 
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Figure 4-6: Compared range-stacked arrival pulses for the range of 325 ~625 km with (left panel) 
and without (right panel) seamount. 
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Figure 4-7: Comparison of arrival pulses from experiment and PE simulation for day 268. For 
each panel, the amplitudes of pulses are normalized by the maximum values of all pulses. B and 
C are located in the transition region between the refracted wave arrival zone (convergence zone) 
and shadow zone. This implies that the size of the shadow zone might be underestimated by the 
PE simulation. Another significant discrepancy can be found at A, which is located above the 
Elvis seamount. As shown in this figure, the early arrival refracted waves in the PE simulation 
were not measured in the experiment.  
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4.3.1. 26802 

 
Figure 4-8: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the BASSEX experiment 

for 26802. Ray arrivals are shown in the left panel; only refracted rays are marked with the circles, and rays 

that reflect at both the bottom and the surface are marked with the crosses. Results from the PE simulation 

and experiment are shown in the middle and the right panel with 30 dB dynamic range; an MPDR 

beamformer is used for the experiment to obtain higher angular resolution, but a conventional beamformer 

is used for PE simulation. Grazing angle is defined with respect to horizontal plane. The last of 11 periods 

of the measurement is shown in the right panel, which has the maximum amplitude. Pulse arrivals from the 

experiments are shifted in time by -0.016 seconds (Table 4-2), to be aligned with the other results. The 

significant ray arrivals are quite close to each other. The refracted rays that are shifted from higher to lower 

angles are followed by some lower angle ray arrivals. These low angle arrivals might be reflected-refracted 

rays because of the lower arrival angle and faster arrival than reflected-reflected rays. The reflected-

reflected rays that correspond to higher grazing angles can be found in ray tracing and PE simulation, but 

no clear reception of these reflected-reflected rays was shown in the experiment. The poor reception of the 

reflected-reflected rays is common in all cases of day 268; this might be due to the diffuse reflection and 

the fact that reflection from sloping bottoms produces the horizontal refraction that diverts arrivals from the 

receiver. In addition, it is difficult to reconcile the reflected rays without measured geoacoustic properties.  
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Figure 4-9: Ray arrivals from ray tracing method for 26802. Ray arrivals are grouped into 4 groups: only 

refracted wave (R) without bottom interactions, surface-reflected-bottom-reflected wave (SRBR), only 

surface-reflected wave (SR), and only bottom reflected wave (BR). (+) and (-) signs denote up and down 

rays, respectively. The number before the sign means the total number of turns. 
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4.3.2. 26804 

 
Figure 4-10: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the BASSEX 
experiment for 26804. Ray arrivals are shown in the left panel; only refracted rays are marked 
with the circles, and rays that reflect at both the bottom and the surface are marked with crosses. 
Results from the 2D PE simulation and experiment are shown in the middle and the rightmost 
panel, respectively, with 30 dB dynamic range; an MPDR beamformer is used for the experiment 
to obtain higher angular resolution, but the conventional beamformer is used for the PE 
simulation. Grazing angle is defined with respect to the horizontal plane. The last of 11 periods is 
shown at the right panel, which has the maximum amplitude. Pulse arrivals from experiment are 
shifted in time by -0.224 seconds (Table 4-2), to be aligned with the other results. At this receiver 
location, the refracted waves are almost blocked by the seamount except for a pair of refracted 
ones, but one wave is far stronger than the other in terms of intensity. This is consistent with the 
ray arrivals from the ray tracing method, as shown in the left panel. Higher angle and late arrival 
is not clearly shown in the experiment (rightmost panel), which is shown in the ray tracing 
method (leftmost panel). 
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Figure 4-11: Ray arrivals from ray tracing method for 26804. Figure 4-9 provides the definition of rays. 
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4.3.3 26805 
 

 
Figure 4-12: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the BASSEX 
experiment for 26805. Pulse arrivals from the experiment are shifted in time by -0.133 seconds 
(Table 4-2), to be aligned with the other results. As indicated in Fig. 4-3, at this receiver location, 
a receiver is sitting at the boundary between shadow zone and refracted wave arrivals. A refracted 
ray arrival is shown in both the PE simulation and experiment, but ray tracing method does not 
detect any refracted ray.  
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Figure 4-13: Ray arrivals from ray tracing method. Figure 4-9 provides the definition of rays. 
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4.3.3. 26806 
 

 
Figure 4-14: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the BASSEX 
experiment for 26806. In the leftmost panel, the cyan triangle denotes the bottom only reflected 
ray. Pulse arrivals from the experiment are shifted in time by -0.690 seconds (Table 4-2) to be 
aligned with the other results. Since at this range, a receiver is located in the shadow zone, only 
reflected rays appeared with low signal levels. 
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Figure 4-15: Ray arrivals from ray tracing method for 26806. Figure 4-9 provides the definition of rays. 
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4.3.5 26807 
 

 
Figure 4-16: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the BASSEX 
experiment for 26807. Pulse arrivals from the experiment are shifted in time by -0.180 seconds 
(Table 4-2), to be aligned with the other results. The cyan triangles denote the bottom only 
reflected rays in the leftmost panel. At this range, as seen in Fig.4-3, the diffused wave arrivals 
are dominant which are bottom-reflected by the seamount and then trapped in water column again 
after the reflection. Therefore, this wave has a lower arrival angle and faster arrival time than the 
reflected-reflected wave. These waves are clearly found in the ray tracing method (leftmost panel) 
and the 2D PE simulation (middle panel), but in the experiment only one relatively significant 
wave is measured. In the case of 26813, this kind of wave appears more clearly. 
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Figure 4-17: Ray arrivals from ray tracing method for 26807. Figure 4-9 provides the definition of rays. 
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4.3.6 26808 
 

 
Figure 4-18: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the BASSEX 
experiment for 26808. Pulse arrivals from the experiment are shifted in time by -0.261 seconds 
(Table 4-2), to be aligned with the other results. The cyan triangles denote the bottom-only 
reflected rays. Since horizontal array is moving to the source after passing the shadow zone, the 
refracted waves appear again and are dominant. The refracted waves are followed by some 
reflections which are consistently found in the 2D PE simulation and experiment.  
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Figure 4-19: Ray arrivals from ray tracing method for 26808. Figure 4-9 provides the definition of rays. 
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4.3.7 26809 
 

 
Figure 4-20: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the BASSEX 
experiment for 26809. Pulse arrivals from the experiment are shifted in time by -0.069 seconds 
(Table 4-2), to be aligned with the other results. Since, at this range, a receiver is located at the 
middle of refracted wave zone, the clear refracted waves are detected and dominant. These waves 
are comparable in all the results. 
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Figure 4-21: Ray arrivals from ray tracing method for 26809. Figure 4-9 provides the definition of rays. 
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4.3.8 26810 
 

 
Figure 4-22: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the BASSEX 
experiment for 26810. Pulse arrivals from the experiment are shifted in time by -0.113 seconds 
(Table 4-2) to be aligned with the other results. At this range, a receiver is located at the transition 
region between the shadow zone and refracted wave zone. The ray tracing method detects only 
one refracted wave rather than the 2~3 waves that appeared in the PE simulation. The MPDR 
beamformer (rightmost panel) detects one peak at the same arrival time with the ray tracing 
method and 2D PE simulation; however, the signal level is quite smaller. This corresponds to B in 
Fig. 4-4; due to the small amplitude, this wave cannot be shown in the experiment (left panel in 
Fig. 4-4).  
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Figure 4-23: Ray arrivals from ray tracing method for 26810. Figure 4-9 provides the definition of rays. 
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4.3.9 26812 
 

 
Figure 4-24: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the BASSEX 
experiment for 26812. In the shadow zone, no refracted wave but some reflected waves with 
higher angles and lower signal levels can be measured in all three results.  
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Figure 4-25: Ray arrivals from ray tracing method for 26812. Figure 4-9 provides the definition of rays. 
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4.3.10 26813 
 

 
Figure 4-26: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the BASSEX 
experiment for 26813. Pulse arrivals from the experiment are shifted in time by -0.372 seconds 
(Table 4-2), to be aligned with the other results. The cyan triangles denote the bottom-only 
reflected rays. A receiver is located in the diffraction/reflection region between the shadow zone 
and the refracted wave zone. Although good correlation between results from the ray tracing 
method and PE simulation, the results from experiment show a slightly different pulse arrival 
pattern.  
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Figure 4-27: Ray arrivals from ray tracing method for 26813. Figure 4-9 provides the definition of rays. 
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4.3.11 26814 
 

 

Figure 4-28: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the BASSEX 
experiment for 26814. Pulse arrivals from the experiment are shifted in time by -0.018 seconds 
(Table 4-2), to be aligned with the other results. The cyan triangles denote the bottom only 
reflected rays. The results from the ray tracing method and PE simulation show some reflected 
waves, and the reflected waves are dominant. However, in the experiment, a very high intensity 
wave is detected. 



 151

 

Figure 4-29: Ray arrivals from ray tracing method for 26814. Figure 4-9 provides the definition of rays. 
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4.3.12 26815 
 

 
Figure 4-30: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the BASSEX 
experiment for 26815. Pulse arrivals from the experiment are shifted in time by -0.115 seconds 
(Table 4-2) to be aligned with the other results. The receiver is located above the Elvis seamount, 
and this range also belongs to the end of the refracted wave arrival zone. However, in the 
experiment, two early refracted arrivals with higher angles are blocked and missing. In addition, 
two significant waves at 298.5 seconds are missing in the experiment. Good correlation between 
the ray tracing method and 2D PE is shown.  
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Figure 4-31: Ray arrivals from ray tracing method for 26815. Figure 4-9 provides the definition of rays. 
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4.4 Behind the Kermit-Roosevelt seamount: day 267 with the 

sound speed fields from the objective analysis 

 

In this chapter, the comparisons of the measurement and simulation are presented for the 

experiment performed on Julian day 267 (hereafter day 267). 

Table 4-3 lists the receiver locations, which are described in Fig. 4-32. There were 

only eight measurements on day 267 along the acoustic path from SPICEX 2 behind the 

Kermit-Roosevelt seamount, and most of them were located in the shadow zone or 

transition region. Therefore, it is difficult to reconcile the pulse arrivals of experiments 

with the 2D PE simulations. Moreover, because the Kermit-Roosevelt seamount is much 

higher than the Elvis seamount, the perturbation by the seamount on day 267 is expected 

to be greater than on day 268, which provides the larger span of the shadow zone and a 

more complicated arrival pattern with many reflected rays.  

The sound speed fields used here are obtained from the objective analysis 

discussed in Section 2.2.3 because the XBT measurements are sparse along the acoustics 

paths between SPICEX source 2 and the receivers.   

Figure 4-33 shows the comparison of peak pressures from the BASSEX experiment 

and the 2D PE simulation. The peak pressures from the measurement are higher than 

those from the 2D PE simulations, with a difference of 4~10 dB.  

Since most measurements were detected in the shadow zone or transition region, it 

is hard to reconcile the individual ray arrivals. Moreover, the sound speed fields from the 

objective analysis, with the limited measurements, could be responsible for the 

discrepancies in the comparisons. Figure 4-34 and Fig. 4-35 compare arrival patterns 

from the experiment, the 2D PE, and the ray tracing model for the selected cases, 26708 

and 26715. These results show better correlation of results with higher signal levels than 

other cases because the receivers were located in the convergence zone. The experiment 

and the 2D PE simulation show good agreement in the arrival pattern of the refracted rays, 

while the experiment shows more reflections than the simulation.  
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Table 4-3: Receiver locations in day 267 experiment for SPICEX source 2 

No. Exp. Range(km)1 Depth(m)2 

1 26708 609.38 296.3 

2 26709 602.85 304.0 

3 26710 596.22 295.6 

4 26711 589.53 272.8 

5 26712 582.73 295.2 

6 26713 576.14 285.3 

7 26714 569.39 290.9 

8 26715 562.63 284.5 
1 The range from the SPICEX source 2 source which is obtained from the GPS location when the 

first strong pulse arrives.  
2 Average array depth during the measurement. 

 
Figure 4-32: Receiver locations for day 267, as well as an acoustic path passing over the Kermit-
Roosevelt seamount from the SPICEX source 2. 
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Figure 4-33: Comparison of the peak signal levels from the measurement and the 2D PE 
simulation.  
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Figure 4-34: Comparison of pulse arrivals from the ray tracing method, the 2D PE, and the 
experiment for 26708. The ray arrivals are shown in the leftmost panel; only refracted rays are 
marked with circles, and the rays reflected both at the bottom and the surface are marked with 
crosses. Results from the 2D PE simulation and the experiment are shown in the middle and the 
rightmost panel with 25 dB dynamic range. A conventional beamformer is used for the 
experiment and the PE simulation. Grazing angle is defined with respect to the horizontal plane. 
The last of 11 periods of measurement is shown in the rightmost panel, which has the maximum 
amplitude among all the periods. Good correlation between pulse arrivals from the 2D PE and 
experiment is shown; however, the ray tracing method failed to detect some late arrivals.  
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Figure 4-35: Comparison of pulse arrivals by the ray tracing method, the 2D PE, and the 
experiment for 26715. Good correlation between pulse arrivals from the 2D PE and experiment is 
shown; however, the ray tracing method fails to detect some late arrivals.  
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4.5 Behind Kermit-Roosevelt seamount: day 264 with the 

sound speed fields from the objective analysis  

 

In this chapter, the comparisons of the measurement and simulation are presented 

for the experiment performed on Julian day 264 (hereafter day 264). 

Table 4-4 lists the receiver locations, which are described in Fig. 4-36. The 

receivers are located behind the Kermit-Roosevelt seamount. The sound speed fields used 

here are obtained from the objective analysis discussed in Section 2.2.3 because there was 

no sound speed measurement around SPICEX source 1.    

Fig. 4-37 shows the comparison of peak pressures from the measurement and the 

2D PE simulation. Note that the large drop of signal level is shown in a shadow zone just 

behind the seamount, around 640 km from the source (26417). Another shadow zone 

appears around 680~700 km from the source. The peak of the seamount is located at 

around 620km. The peak pressures are quite close to each other (1~5dB) in most cases, 

with the exception of 26415 and 26417.  

Figure 4-38 and Fig. 4-39 present the compared arrival patterns from the BASSEX 

experiment, 2D PE, and the ray tracing model. Figure 4-38 shows good correlations 

between results for the refracted ray arrivals; strong refracted ray arrivals are clearly 

shown in all the results. In the experiment, complicated reflections are detected in 

addition to the refracted rays. In Fig.4-39, the receivers are located above the Kermit-

Roosevelt seamount. As expected, complicated reflections with the higher angle arrivals 

are shown even before the refracted ray early arrivals. The ray tracing model detects 

strong only-bottom reflections, which is quite consistent with the experiment. However, it 

is difficult to reconcile these reflected waves because geoacoustic properties and local 

complex bathymetry play an important role in these complicated reflections.  
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Table 4-4: Receiver locations in day 264 experiment for SPICEX source 1 

No. Exp. Range(km)1 Depth(m)2 

1 26408 716.46 257.3 

2 26409 708.82 254.6 

3 26410 701.57 278.1 

4 26412 686.88 261.8 

5 26413 679.60 269.3 

6 26414 672.25 272.6 

7 26415 664.71 280.3 

8 26417 650.45 267.2 

9 26419 635.33 253.3 

10 26420 627.80 255.2 
1 The range from the SPICEX 1 source which is obtained from the GPS location when the first 

strong pulse arrives.  
2 Average array depth during the measurement. 

 
Figure 4-36: Receiver locations for day 264, as well as an acoustic path passing over the Kermit-
Roosevelt seamount. 
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Figure 4-37: Comparison of peak signal levels from the measurement and 2D PE simulation. 
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Figure 4-38: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the experiment 
for 26414. The ray arrivals are shown in the leftmost panel; only refracted rays are marked with 
circles, and rays that reflect both the bottom and the surface are marked with crosses. Results 
from the PE simulation and the experiment are shown in the middle and the rightmost panel with 
25 dB dynamic range. A conventional beamformer is used for the experiment and the PE 
simulation. Grazing angle is defined with respect to the horizontal plane. The second period of 11 
periods of measurement is shown in the rightmost panel, which has the maximum amplitude 
among all periods. Strong refracted ray arrivals are clearly shown for all results. In the experiment, 
complicated and many reflections exist in addition to the refracted rays, which are not detected in 
the 2D PE simulation. The ray tracing method detects many reflected waves; however, it is 
difficult to match these waves with those from the experiment.  
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Figure 4-39: Comparison of pulse arrivals by the ray tracing method, 2D PE, and the experiment 

for 26420. The cyan triangles denote the only-bottom reflection rays. The receivers were 
located above the Kermit-Roosevelt seamount. As expected, complicated reflections with 
the higher angle arrivals were detected even before the refracted ray arrival. As shown in 
the results from the ray tracing method, the only-bottom reflections are strong, which is 
quite consistent with the experiment. 
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4.6 Open sea case: day 271 with the sound speed fields from the 

objective anlaysis 

 

In this chapter, the comparisons of the measurement and the 2D PE simulation are 

presented for the experiment performed on Julian day 271 (hereafter day 271).  

Table 4-5 and Fig. 4-40 show the receiver locations. The ship was moving 

downward between the two SPICEX source 1 and 2 during the experiment; there are 10 

measurements for the two sources. Sound speed profiles are obtained from the objective 

analysis discussed in Section 2.2.3.  

These open sea cases are used for the calibration of the sound speed fields using the 

objective analysis. Sound speed fields with many parameters were tested for the best 

correlation to the arrival pulses. The random timing error of FORA array (< 0.25 seconds) 

leads to a serious problem in tuning of the sound speed fields; therefore, the best 

correlation was chosen based only on the overall pattern of the arrival pulses. The 2D PE 

simulation was performed with the selected sound speed fields from the calibration. 

Figure 4-41 and Fig. 4-42 show the comparison of arrival pulses in terms of arrival 

time. The arrival pulses are quite close to each other; however, in some cases, the 

experiment shows quite small amplitudes, e. g., 27100.  

In Fig. 4-43, the arrival pulses from the BASSEX experiment (black) and the PE 

simulation (red) are directly compared for the SPICEX source 1 at the top panel and 

SPICEX source 2 at the bottom panel. Amplitudes are normalized by the maximum value. 

The error of arrival time is not corrected. In addition to the random timing error of the 

FORA array, the uncertainty of the sound speed fields could increase the error of the 

arrival time; however, the arrival time error can not analyzed because of the random 

timing error of the FORA array.  
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Table 4-5: Receiver locations in day 271 experiment for SPICEX source 1 and 2 

No. Exp. Range1 (km) from S1 Range(km) for S2 Depth(m)2 

1 27100 378.616 332.339 252.6 

2 27102 359.908 317.372 339.4 

3 27104 340.642 300.357 325.0 

4 27106 322.671 287.201 340.0 

5 27108 306.605 273.254 319.0 

6 27110 291.888 263.294 351.0 

7 27112 279.075 253.214 244.0 

8 27114 266.948 249.876 340.7 

9 27116 256.909 248.204 325.9 

10 27118 249.364 250.545 325.1 
1 The range from the SPICE source 1 and 2, which is obtained from the GPS location when the 

first strong pulse arrives.  
2 Average array depth during measurement. 
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Figure 4-40: Receiver locations for day 271; two acoustic paths are shown for 27100 and 27108.  
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Figure 4-41: Comparison of arrival pulses from experiment (left panel) and PE simulation (right 
panel) for day 271, SPICEX source 1.  
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Figure 4-42: Comparison of arrival pulses from experiment (left panel) and PE simulation (right 
panel) for day 271, SPICEX source 2.  
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Figure 4-43: Comparison of arrival pulses from the experiment (black) and PE simulation (red) 
for day271, SPICEX source 1 (top panel) and SPICEX source 2 (bottom panel). Arrival time 
errors were not corrected. Amplitudes are normalized by the maximum amplitude.   
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4.7 Nx2D simulation with a simplified conical seamount 

approximation and a range-averaged sound speed profile 

 

In this section, the Nx2D simulation by the 2D PE for an approximated conical seamount 

is explored. In the Nx2D simulation, the 2D PE simulations are performed for many 

vertical planes, and the solutions are combined to form an approximated 3D problem 

without the cross-coupling between the solutions.  

Figure 4-44 shows the four different acoustic paths from SPICEX source 1 and 2 to 

the Kermit-Roosevelt and Elvis seamounts; the acoustic paths were used for 

approximating the seamounts with conical shapes. The acoustic paths are as follows: 

 

1) from the SPICEX source 1 to the apex of the Kermit-Roosevelt seamount (day 

264), 

2) from the SPICEX source 1 to the apex of the Elvis seamount (day 265), 

3) from the SPICEX source 2 to the apex of the Kermit-Roosevelt seamount (day 

267), and  

4) from the SPICEX source 2 to the apex of the Elvis seamount (day 268). 

 

Hence, Fig. 4-45 shows the range-dependent bathymetry along the acoustic paths 

with the conical shapes. For each approximated conical seamount, 14 acoustic paths were 

considered for the 2D PE simulation; the half of the conical seamount is divided into 14 

vertical sections for the acoustic paths.  

To examine the bathymetric effect, range-averaged sound speed profiles are 

considered. The range-averaged sound speed profiles for the four acoustic paths are given 

in Fig. 4-46; the sound speed profiles are obtained from the XBT casts in the BASSEX 

experiment. Figures 4-48 and 4-50 show the resultant conical seamounts and sound speed 

fields. Figure 4-47 shows the range-stacked arrival pulses for 7 selected vertical planes 

out of the 14 vertical planes. The arrival pulses describe the blockage effect of the 
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seamount by showing the significant change of the disturbed arrival pulses. Note that the 

blocked refraction waves are clearly correlated with the height of the cross sections along 

the acoustic paths. This correlation can be explained by the fact that higher steep angle 

rays are much more blocked by the seamount than lower angle rays.  

In Fig. 4-49 and 4-51, energy plots are constructed by the summation of squares of 

arrival pulse amplitudes at a receiver depth of 250m. The energy levels for each section 

are computed, and then the levels are linearly interpolated in azimuthal direction. Note 

that the discontinuity of convergence zones in the figures is explained by the discrepancy 

in the sound speed profiles. Although the sound speeds appear to be very close to each 

other, as shown in Fig. 4-46, the small discrepancy in the sound speeds results in a 

relatively large phase discrepancy in long-range sound propagation.  

In Fig. 4-52, the computed energy is compared with the measured energy in the 

BASSEX experiment [53]. Although we use very simplified Nx2D model, the locations 

and the sizes of shadow zones show good agreement. This good agreement indicates that 

arrival energy is not so sensitive to the environments.  

Note that, in the energy plots, some strong energy arrivals appear just before the 

apex of the seamount, which are not clearly shown in the measured energy. These strong 

energy arrivals could be explained by: 1) in the 2D model, we could not include the 

horizontal refraction effect by which energy can propagate out of the plane, and 2) in 2D 

PE, there is no backscattering effect. Therefore, rays or energy could be trapped just 

before the seamount due to the 2D PE model.  
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Figure 4-44: Acoustic paths for the four acoustic paths: day 264 from the SPICEX source 1 to the 
apex of the Kermit-Roosevelt seamount, day 265 from the SPICEX source 1 to the apex of the 
Elvis seamount, day 267 from the SPICEX source 2 to the apex of the Kermit-Roosevelt 
seamount and day 268, from the SPICEX source 2 to the apex of the Elvis seamount. 
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Figure 4-44: continued. 
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Figure 4-45: Approximated conical seamounts for the four acoustic paths. 

 

Figure 4-46: Range-averaged sound speed fields for the four acoustic paths; sound speeds are 
obtained from the XBT casts. 
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Figure 4-47: Range-stacked pulse arrivals for the acoustic paths from the centerline to the 
outermost ring.   

#

#
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Figure 4-48: Conical seamounts with range-averaged sound speed fields. 

 
Figure 4-49: Energy plot for the SPICEX source 1.  
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Figure 4-50: Conical seamounts with range-averaged sound speed fields.  

 
Figure 4-51: Energy plot for the SPICEX source 2. 
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Figure 4-52: Comparison of the arrival energy between the Nx2D simulation and measurement 
(the measurements are adapted from [53]).  
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Chapter 5 
 

Three-dimensional sound propagation around a 

seamount  
 

In Chapter 4, we reconciled the measured broadband pulses between the BASSEX 

experiment and the two-dimensional (2D) sound propagation model. The 2D parabolic 

equation (PE) and the ray tracing method were used for the comparison. In the 

reconciliation of broadband pulses, we considered the range-dependent bathymetry and 

sound speed fields. However, in the Nx2D computation for the comparison of arrival 

energy, a simplified conical seamount was examined with the range-averaged sound 

speeds.  

In this chapter, three-dimensional (3D) broadband pulses are explored around a 

conical seamount for the acoustic broadband sources using the 3D spectral coupled-mode 

model, which is described in Section 3.5. To obtain a broadband pulse, the developed 3D 

spectral coupled mode model with higher computational efficiency and parallel 

computing ability is used.  

This chapter consists of three parts. First, to validate the 3D spectral coupled-mode 

model for sound propagation around a seamount, comparisons of transmission loss (TL) 

and broadband pulses are performed using various 2D and 3D sound propagation models, 

including the 2D PE (RAM [12]), 3D PE (FOR3D[15]), 2D coupled normal mode 

program (CSNAP[63]), and 3D spectral coupled-mode model. The comparison results are 

described in Section 5.1.  

Second, a benchmark problem in a deep-sea waveguide similar to the configuration 

of the BASSEX experiment is considered in Section 5.2. In this work, the 3D spectral 

coupled-mode model is applied to the benchmark problem for an acoustic broadband 

source with a center frequency of 15 Hz (10 Hz bandwidth).  
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Third, the Kermit-Roosevelt seamount is modeled with a simple conical seamount. 

In this work, two broadband acoustic sources are considered: a center frequency of 15 Hz 

(10 Hz bandwidth), and a center frequency of 68.2 Hz (16Hz bandwidth, LOAPEX 

source, T1000). However, due to the limited computational ability, only water-trapped 

modes are computed for the 68.2 Hz source. The resultant broadband pulses using the 3D 

coupled-mode model are described in Section 5.3.  

 

5.1 Comparison of two-dimensional and three-dimensional 

sound propagation models for a shallow-water waveguide with 

a conical seamount  

 

To validate the 3D spectral coupled-mode model program, a series of comparisons are 

performed as follows: 

a) Comparison of transmission loss between 2D models (CSNAP, RAM and 

FOR3D), 

b) Comparison of transmission loss between Nx2D and 3D models (FOR3D), 

c) Comparison of transmission loss between 3D models (FOR3D, 3D spectral 

coupled-mode model), and  

d) Comparison of broadband pulses between 2D and 3D models (CSNAP, RAM, 

FOR3D, and 3D spectral coupled model).  

 

Through these comparisons, we examine the accuracy of the widely used 2D and 

3D models for sound propagation around a conical seamount. In particular, the accuracy 

of the 3D spectral coupled-mode model is evaluated by the comparisons. In addition, we 

explore the significant discrepancies between the 2D and 3D models, as well as between 

the PE and the coupled normal mode model.  
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5.1.1 Description of problem  
 

Here we consider a shallow water waveguide with a water depth of 250 m. A conical 

seamount with a height of 200 m is located at a range of 5 km from the acoustic source, 

as shown in Fig. 5-1. The radius of the seamount at the base is 350m, and the slope is 

around 30o, which is quite steep. We assume a Pekeris wave guide with an isovelocity 

water column of 1500 m/s. The sub-bottom properties are described in Table 5-1. For 

RAM and FOR3D, an absorbing layer with high attenuation (10 dB/λ ) is used to prevent 

spurious reflections from the bottom boundary.  

Figure 5-2 shows a broadband acoustic source, a center frequency of 50Hz (50Hz 

bandwidth) [28]:  
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A broadband pulse is obtained from the Fourier synthesis method described in 

Section 3.4.  

 

5.1.2 Comparison of transmission loss for a CW source (40Hz)   
 
A convergence test is performed for a CW source (40Hz) to determine the adequate grid 

size in range and depth for the PE models, RAM and FOR3D. Figure 5-3 shows the 

transmission loss (TL) using the RAM (top panel) and FOR3D (bottom panel) with 

varying grid sizes. As a result, the FOR3D requires a smaller step size (< 10m) in range 

than the RAM (< 20m) for equivalent solution. In addition, the range step size was tested 

for the CSNAP, as shown in Fig. 5-4. In the CSNAP, the range step size is defined with a 

number of steps for the radius of the seamount.  

Figure 5-5 shows the comparison results of TL using the RAM, CSNAP, and 

FOR3D with the obtained parameters from the convergence test. The TL from the RAM 
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and CSNAP show quite good agreement; however, the FOR3D shows slightly different 

TL from the RAM and CSNAP. The overall accuracy of the FOR3D can be acceptable 

with the 2~3dB error.  

The 3D PE model, FOR3D, requires one more criterion for the angular step size, 

i.e., the arc length between two adjacent vertical sections. Figure 5-6 shows the 

comparison of TL from the FOR3D for various angular step sizes. To meet the criterion 

that the arc length, in general, be less than a quarter of a wavelength, the angular step size 

is required to be smaller than 0.054o for a 40 Hz CW source at the range of 10 km. Here 

we consider 0.025o and 0.0125o to confirm that the solutions are converged; the TL on a 

horizontal plane (top panel) and along the centerline (bottom panel) show good 

agreement.  

Figures 5-7 and 5-8 show the comparison of TL using the FOR3D for a CW source 

(40Hz) at the depths of 25 and 100m. The Nx2D and 3D solutions are obtained by the 

FOR3D program. As shown in the figures, the TL for the Nx2D and 3D show a large 

discrepancy along the centerline (lower panel) as well as a disturbed pattern on a 

horizontal plane (upper panel). The 3D TL is higher than that of the Nx2D. On a 

horizontal plane, the 3D TL shows a much clearer and wider shadow zone than the Nx2D. 

In the Nx2D, a disturbance is confined within 4o, which corresponds to the angle between 

the centerline and an acoustic path passing over the outermost ring of the seamount; 

however, the disturbed region by the seamount from the 3D model is much larger than 

that from the Nx2D. The disturbed patterns are compared between the FOR3D and the 

3D coupled-mode model in Fig. 5-9 and Fig. 5-10. Overall, the accuracy could be 

acceptable.  

 

5.1.3 Comparison of broadband pulses   
 

In this section, the pulse arrivals using the 2D models (RAM and CSNAP), and the 3D 

models (FOR3D and 3D spectral coupled-mode model) are presented. Broadband pulses 

are obtained from the Fourier synthesis method described in Section 3.4. For 104 
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frequencies within the 50Hz bandwidth, from 25 to 75Hz, pressure fields are computed 

using the 2D and 3D models, and the transfer functions are synthesized with the source 

spectrum, as shown in Fig. 5-2, by an inverse Fourier transform, resulting in a time series 

of 2.0 second period. The pulse arrivals are described in the reduced time with a reference 

speed of 1600m/s. The compared results are shown in Fig. 5-11 ~ Fig. 5-20. Note in the 

figures that: First, the broadband pulses from the 2D models, the RAM, and the CSNAP  

demonstrate no discrepancy, as shown in Fig. 5-11 and Fig. 5-13. Second, broadband 

pulses from the 3D models, the FOR3D and the 3D spectral coupled-mode model, show 

good agreement except for the strong back-scattered waves in the 3D spectral coupled-

mode model, as shown in Fig. 5-12 and 5-14. However, in the case of the forward 

scattering behind the seamount, it is valid to claim that the 3D PE, FOR3D, could be 

applied with good accuracy. Third, the discrepancies between broadband pulses behind 

the seamount are shown in Fig. 5-15 ~ Fig. 5-20 for the selected azimuthal angles.  

 

5.1.4 Comparison of transfer function between the two-dimensional and 
three-dimensional model 

 

In Fig. 5-21 and 5-22, the amplitude and phase of pressure fields (transfer function) from 

2D (RAM) and 3D (FOR3D and 3D-CSNAP) models are compared. Figure 5-21 

compares the amplitude and phase before the seamount; there is no 3D effect due to the 

seamount. Therefore, as expected, no significant discrepancies are found between the 

amplitudes and phases. However, in Fig. 5-22, the compared amplitudes behind the 

seamount show large discrepancies between the 2D and 3D models.   
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Figure 5-1: Schematic of a shallow-water waveguide with a conical seamount. 
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Table 5-1: Definition of problem for the shallow water case with a seamount 

Acoustic source 

Frequency 40Hz(CW)  25~75Hz(broadband) 

Depth 100m  

Seamount 

Height 200m 

Width 700m 
Slope = 29.75o 

Distance from the source 5000m  

Water column 

Sound speed( cω ) 1500 m/s  

Sub-bottom 

Sound speed( bc ) 1800 m/s  

Density( bρ ) 2.0   

Attenuation(α ) 0.1/10.0*  dB/λ   

*high attenuation at 4000m depth for the RAM and FOR3D  
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Figure 5-2: Time series and spectrum of the broadband source. 
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Figure 5-3: Convergence test for the range and depth step size of the RAM and FOR3D along the 

centerline (through the peak of the seamount, z=100m) with a 40 Hz CW source. 
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Figure 5-4: Convergence test for the range step size of the CSNAP along the centerline through 

the peak of the seamount at a depth of 100 m. 

 
Figure 5-5: Comparison of TL from the RAM, CSNAP, and FOR3D (2D) along the centerline 

through the peak of the seamount at a depth of 100 m. 
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Figure 5-6: Comparison of TL from the FOR3D for two different angular step sizes on a 

horizontal plane (top panel) and along the centerline (bottom panel). 
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Figure 5-7: Comparison of TL from the FOR3D for the Nx2D and 3D problem with a 40 Hz CW 

source at a depth of 25 m. The TL is shown on a horizontal plane (top panel) and along the 

centerline through the peak of the seamount (bottom panel).  
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Figure 5-8: Comparison of TL from the FOR3D for the Nx2D and 3D problem with a 40 Hz CW 

source at a depth of 100 m. The TL is shown on a horizontal plane (top panel) and along the 

centerline through the peak of the seamount (bottom panel).  



 192

 

 
Figure 5-9: Comparison of TL from the 3D spectral coupled-mode model and FOR3D for a 3D 

problem with a 40 Hz CW source at a depth of 25 m. The TL is shown on a horizontal plane (top 

panel) and along the centerline through the peak of the seamount (bottom panel).  
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Figure 5-10: Comparison of TL from the 3D spectral coupled-mode mode and FOR3D for a 3D 

problem with a 40 Hz CW source at a depth of 100 m. The TL is shown on a horizontal plane (top 

panel) and along the centerline through the peak of the seamount (bottom panel).  
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Figure 5-11: Comparison of broadband pulses at a depth of 25m, 0.0 degrees off the centerline: 

RAM (2D, upper panel) and CSNAP (2D, lower panel). 
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Figure 5-12: Comparison of broadband pulses at a depth of 25 m, 0.0 degrees off the centerline: 

FOR3D (3D, upper panel) and 3D-CSNAP (3D, lower panel). 
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Figure 5-13: Comparison of broadband pulses at a depth of 100 m, 0.0 degrees off the centerline: 

RAM (2D, upper panel) and CSNAP (2D, lower panel). 
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Figure 5-14: Comparison of broadband pulses at a depth of 100 m, 0.0 degrees off the centerline: 

FOR3D (3D, upper panel) and 3D-CSNAP (3D, lower panel). 
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Figure 5-15: Comparison of broadband pulses at a depth of 25 m, 1.0 degrees off the centerline: 

RAM (2D, upper panel), FOR3D (3D, lower left panel) and 3D-CSNAP (3D, lower right panel).  
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Figure 5-16: Comparison of broadband pulses at a depth of 100 m, 1.0 degrees off the centerline: 

RAM (2D, upper panel), FOR3D (3D, lower left panel) and 3D-CSNAP (3D, lower right panel). 
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Figure 5-17: Comparison of broadband pulses at a depth of 25 m, 2.0 degrees off the centerline: 

RAM (2D, upper panel), FOR3D (3D, lower left panel) and 3D-CSNAP (3D, lower right panel).  
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Figure 5-18: Comparison of broadband pulses at a depth of 100 m, 2.0 degrees off the centerline: 

RAM (2D, upper panel), FOR3D (3D, lower left panel) and 3D-CSNAP (3D, lower right panel). 
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Figure 5-19: Comparison of broadband pulses at a depth of 25 m, 3.0 degrees off the centerline: 

RAM (2D, upper panel), FOR3D (3D, lower left panel) and 3D-CSNAP (3D, lower right panel). 
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Figure 5-20: Comparison of broadband pulses at a depth of 100 m, 3.0 degrees off the centerline: 

RAM (2D, upper panel), FOR3D (3D, lower left panel) and 3D-CSNAP (3D, lower right panel). 
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Figure 5-21: Comparison of the transfer function between RAM (2D), FOR3D (3D), and 3D 

spectral coupled-mode model (3D) before the seamount (r = 3.5 km, depth = 25 m, azimuth angle 

= 0.0 degrees): amplitude (top panel) and phase (bottom panel).  
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Figure 5-22: Comparison of the transfer function between RAM (2D), FOR3D (3D), and 3D 

spectral coupled-mode model (3D) behind the seamount (r = 7.0 km, depth = 25 m, azimuth angle 

= 0.0 degrees): amplitude (top panel) and phase (bottom panel).  
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5.2 Broadband pulse modeling for a benchmark problem in 

deep-water waveguide with a conical seamount 

 

In the previous section, we compared the 2D and 3D models for a shallow-water 

waveguide problem with a conical seamount in terms of transmission loss (TL) for a 

continuous wave (CW) source and the broadband pulses. Although we found  

discrepancies of TL between the 3D PE (FOR3D) and 3D spectral coupled-mode model, 

the accuracy could be acceptable. In addition, we found that no significant discrepancies 

between the 3D PE (FOR3D) and 3D spectral coupled-mode model in the resultant 

broadband pulses except for the strong backscattered waves from the 3D spectral 

coupled-mode model. In addition,  

In this chapter, we apply the 3D spectral coupled-mode model to a benchmark 

problem in a deep-water waveguide.  

 

5.2.1 Description of problem  
 

Here we consider a benchmark problem in a deep sea waveguide similar to the 

configuration of the BASSEX experiment. The schematic of the problem is given in Fig. 

3. The radius of the conical seamount at the base is 20 km with a height of 3800 m; the 

slope of the seamount is 10.76 degrees. A flat bottom is assumed at a depth of 5000 m for 

the outside of the seamount.  

Range-independent sound speed is assumed, as shown in Fig. 5.23, and the 

geoacoustic properties of the bottom are a compressional sound speed of 2000 m/s, a 

density of 1.0 g/cm3, and an attenuation of 0.1 dB/λ . The false bottom was introduced 

below the sea bottom to suppress the spurious reflections from the boundary.  

As shown in Fig. 5.24, an acoustic source depth is 100 m, and the center frequency 

of the source is 15 Hz with 10 Hz bandwidth. Figure 5-25 shows a number of waterborne 
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and propagation modes at each frequency for the 10Hz bandwidth from 10 to 20 Hz. Note 

that no waterborne mode exists for this frequency band at the top of the seamount, 

meaning that there is no ray passing over the seamount without the bottom-bouncing. The 

angle between the centerline and the outermost ring with respect to the source is 11.31 

degrees. The seamount is located at 100km from the acoustic source so that the 

significant refracted rays are all blocked by the seamount along the centreline, as shown 

in Fig. 5-27; this placement can maximize the blockage effect by the seamount.  

 
5.2.2 Transmission loss for a 10 Hz CW source  

 

Figure 5-26 shows the TL for a 10Hz CW source at a depth of 300m. The upper panel 

compares the TL from the 2D coupled normal mode (CSNAP) and the 3D spectral 

coupled-mode model along the centerline. The TL from 3D is greater than that from 2D 

with a difference of 5~10dB in most of ranges except for the convergence zones. This 

higher TL from the 3D model can be explained by the fact that energy dissipates outward 

from the centerline due to the horizontal refraction.  

The lower panel shows the TL on a horizontal plane, which shows clear shadowing 

cast behind the seamount with weak appearance of the convergence zones. The full 

normal modes, including leaky modes at the outermost ring, were used for the mode 

coupling.  

 

5.2.3 Comparison of pulse arrivals between the 3D spectral coupled-
mode model and the ray tracing method without seamount 

 

To validate pulse arrivals from the 3D spectral coupled-mode model, we compare the 

pulse arrivals from the 3D spectral coupled-mode model with those from the 2D ray 

tracing method. In this comparison, a flat bottom is assumed in the 2D ray tracing method. 

The eigenrays are compared with those from the 3D spectral coupled-mode model for an 

acoustic path that passes far away from the seamount. Along the acoustic path, the 3D 
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refraction effects could be neglected; therefore, the eigenrays from the 2D ray tracing 

method must be comparable to the pulse arrivals from the 3D spectral coupled-mode 

model.  

Figure 5-27 shows the ray representation without a seamount. The convergence 

zones are composed of the refracted rays without bottom-bouncing, shown in black. The 

ray family at the convergence zone is all blocked by the seamount located at the 100 km 

from the acoustic source.  

Figure 5-28 shows the computed arrival pulses from the 3D spectral coupled-mode 

model (lower panel) compared with the eigenrays from the ray tracing method (upper 

panel). The arrival pulses and eigenrays are shown in terms of the reduced time. The 

eigenrays are close to the arrival pulses far outside the seamount, 30 degrees off the 

centerline, with negligible 3D effects. At a depth of 200 m, significant convergence zone 

arrivals are followed by the bottom-bounced rays. The numbers at the upper panel denote 

the number of bottom-bounces. 

Figure 5-29 compares the arrival time from the 2D ray tracing method from the 3D 

spectral coupled-mode model at a range of 130 km. The A ray family forms a strong 

convergence zone without bottom-bouncing; the arrival times in this ray family are quite 

close to each other. B,C, and D correspond to the bottom-bouncing ray family with 2, 3, 

and 4 bottom bounces, respectively.  

Through these comparisons, we show the good correlation between arrival pulses 

modeled by the 3D spectral coupled-mode model and those from the 2D ray tracing 

method, with negligible 3D effects.  

 

5.2.4 Broadband pulse arrivals  
 

The pulse arrivals using the 3D spectral coupled-mode model are computed with various 

numbers of normal modes and at different receiver depths.  

     Pressure fields are computed using the 3D spectral coupled-mode model for 165 

frequencies within 10 Hz bandwidth (10 to 20 Hz), and the transfer function is 
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synthesized with the source spectrum shown in Fig. 5-25 using the inverse Fourier 

transform, which results in 16.4 second time series. For the solution at each frequency, 

the waterborne modes or propagation modes in the outer-most ring are used. The number 

of waterborne modes varies from 11 to 22, and the number of propagation modes varies 

from 42 to 87 at frequencies of 10~20 Hz. The pulse arrivals are shown in the reduced 

time with a reference time of 1520 m/s.  

 

a) With waterborne modes only 

 

Here we consider the waterborne (water-trapped) modes at the outermost ring (see Fig. 5-

25) for the mode coupling.  

Figure 5-30 shows the computed arrival pulses at a depth of 200 m in terms of 

range and the reduced time for the selected angles. The angle in the figure denotes an 

acoustic path running off the centerline. The convergence zone arrivals are all blocked 

after the seamount up to 10 degrees, and weak reflections exist in shadow zone.  

Figure 5-31 shows computed arrival pulses at a depth of 200 m on a horizontal 

plane; the reduced time with a reference speed of 1520 m/s is shown at the corner of each 

panel. The first convergence zone arrivals appear at the reduced time of 0.7~0.8 seconds, 

at a range of 60 km from the source, followed by weak reflections. The second 

convergence zone appears at 1.3 seconds, 120 km. The third convergence zone arrivals 

appear at 1.8~1.9 seconds, 180~190 km. The reflected waves are not significant because 

only waterborne modes are used.  

Figure 5-32 shows computed arrival pulses at a depth of 1000 m in terms of range 

and arrival time. Two strong ray family arrivals are shown in the higher angle, but those 

are all blocked in the lower angle after the seamount up to 10 degrees, and weak 

reflections appear in the shadow zone. Computed pulse arrivals on a horizontal plane are 

shown in Fig. 5-33.  

In the computed pulse arrivals with waterborne modes only, weak reflections are 

shown within the perturbed zone.   
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b) With propagation modes  

 

Here we consider the propagation modes at the outermost ring (see Fig. 5-25) for the 

mode coupling. The propagation modes generate stronger reflections by the seamount. 

Figure 5-34 shows the computed pulse arrivals at a depth of 200 m in terms of 

range and reduced time for the selected angles. The convergence zone arrivals are all 

blocked after the seamount up to 10 degrees and strong reflections appear in the shadow 

zone. Disturbances with bottom-bouncing waves due to the seamount appear in much 

higher angles up to 16 degrees.  

Figure 5-35 shows the computed pulse arrivals at a depth of 200 m on a horizontal 

plane; the reduced time with the reference speed of 1520 m/s is shown at the corner of 

each panel. The first convergence zone arrivals appear at 0.75 seconds, 60km from the 

source, which are followed by strong reflections. The pulse arrivals appear to be moving 

toward the acoustic source because of the higher propagation speed relative to the 

reference speed. The second convergence zone appears at 1.25 seconds, 120km, which 

clearly shows the shadowing cast of the seamount. The third and fourth convergence 

zones appear at 1.75~2.0, 2.5 seconds, 190km and 250 km, respectively. At around 2.25 

seconds, between the third and fourth convergence zone appearances, a convergence is 

formed by the reflected-refracted rays within the perturbation zone. Reflections due to the 

seamount generate quite complicated patterns of pulse arrivals in and around the shadow 

zone, including waves going away from the seamount to higher angles. Figures 5-36 and 

5-37 show only reflected late arrivals with the strong disturbances by the seamount.  

Figure 5-38 shows the computed pulse arrivals at a depth of 1000 m in terms of 

range and reduced time for the selected angles. The two strong ray families arrive in 

higher angle without blockage; however, these are all blocked in lower angle after the 

seamount, up to 10 degrees, and strong reflections appear in the shadow zone. 

Disturbances in bottom-bouncing waves due to the seamount are shown in much higher 

angles up to 16 degrees. Figure 5-39 shows computed pulse arrivals at the depth of 
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1000m on a horizontal plane.   

   

c) Comparison of pulse arrivals with various number of modes 

 

Comparisons of pulse arrivals are carried out to examine the effect of the number of 

normal modes. These comparisons are performed at the two receiver depths, 200 m and 

1000 m, and around seamount at 90 km, 100 km (peak of seamount), 110 km, and 150 

km (behind the seamount). Figures 5-40~5-43 show the comparison results of the pulse 

arrivals.  

As we examined in Section 3.7.3, the TL is affected greatly by the truncation of 

normal modes especially around (or just behind) the seamount at low frequency. However, 

the pulse arrivals appear to be less sensitive than the TL because the pressure fields for a 

CW source could be smoothed in frequency, using the Fourier synthesis. As shown in the 

figures, pulse arrivals using the waterborne modes show limited arrivals. However, 

primary arrivals using the propagation modes and full modes (including leaky modes) are 

quite comparable to each other. This agreement indicates that we could use the 

waterborne modes instead of using the full modes with consistent pulse arrivals, which 

provides a gain in the computation time. 
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Figure 5-23: Schematic diagram of a benchmark problem with a conical seamount at a range of 
100 km from the acoustic source, and the angle between acoustic paths passing through the 
centerline and outermost ring becomes 11.31 degrees. The source is located at the depth of 100m.  
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Figure 5-24: Source spectrum at a center frequency of 15 Hz with 10 Hz bandwidth. 

 
Figure 5-25: Number of vertical modes at each frequency for 10Hz bandwidth from 10 to 20 Hz; 
waterborne and propagation modes are compared in terms of frequency. No waterborne mode 
exists for this frequency band at the top of the seamount, i.e., there is no ray passing over the 
seamount without bottom-bouncing.     
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Figure 5-26: TL for a 10Hz CW source at a depth of 300 m; the upper panel shows a discrepancy 
of the TL between the 2D and 3D model. The TL from the 3D model (3D spectral coupled-mode 
model) shows greater value than those from 2D model (CSNAP) by 5~10dB. The lower panel 
shows the TL on a horizontal plane, which shows clear shadowing cast behind the seamount.  
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Figure 5-27: Ray representation without a seamount. The convergence zones consist in the 
refracted rays, shown in black, without bottom-bouncing. The ray family at the convergence zone 
is entirely blocked by the seamount that is located at a range of 100 km from the acoustic source.  
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Figure 5-28: Computed pulse arrivals from the 3D spectral coupled-mode model (lower panel) 
compared with the ray tracing method (upper panel). In the upper panel, the eigenrays are shown 
in terms of reduced time; the rays are comparable to the computed pulse arrivals, far outside the 
seamount, 30 degrees off the centerline, with no diffraction by the seamount. At this depth, 
significant convergence zone arrivals are followed by bottom-bounced rays. The numbers in the 
upper panel denote the number of bottom-bounces for each ray family. 
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Figure 5-29: Comparison of arrival time between the ray tracing method and 3D model at a range 
of 130 km. The computed pulse arrivals from the 3D spectral coupled-mode mode, along an 
acoustic path of the 30 degrees off the centerline, have no 3D effect by the seamount. The A ray 
family forms strong convergence zones without bottom-bouncing; the arrival times of this ray 
family in the ray tracing method and the 3D spectral coupled-mode mode are quite close to each 
other. The ray families B, C, and D correspond to the bottom-bouncing ray families with 2, 3, and 
4 bottom-bounces, respectively. 
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Figure 5-30: Computed pulse arrivals at a depth of 200 m. The waterborne modes at the 
outermost ring are used for the mode coupling. The pulse arrivals are shown in the reduced time 
with a reference time of 1520m/s. The angle denotes an acoustic path running off the centerline. 
The convergence zone arrivals are all blocked after the seamount up to 10 degrees, and some 
reflections are shown in the shadow zone.  
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Figure 5-31: Computed pulse arrivals at a depth of 200 m; the pulse arrivals on a horizontal plane 
are shown in term of the reduced time with a reference speed of 1520 m/s (0.6 ~ 1.3 seconds). 
The first convergence zone arrivals appear at the reduced time of 0.7~0.8 seconds, at a range of 
60 km; the first convergence zone arrivals are followed by the weak reflections. The second 
convergence zone appears at 1.3 sec, 120 km.  
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Figure 5-31: (continued) Computed pulse arrivals at a depth of 200m (1.4 ~ 2.1 seconds); the 
third convergence zone arrivals appear at 1.8~1.9 seconds, 180~190km from the source. The 
reflections are not significant because only waterborne modes are used in the mode-coupling.  
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Figure 5-32: Computed pulse arrivals at a depth of 1000 m; the waterborne modes at the 
outermost ring are used for the mode coupling. The pulse arrivals are shown in the reduced time 
with a reference time of 1520m/s. The angle denotes an acoustic path running off the centerline. 
The two strong ray family arrivals appear in higher angle; however, those are all blocked in lower 
angle after the seamount up to 10 degrees. Weak reflections are shown in the shadow zone.  
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Figure 5-33: Computed pulse arrivals at a depth of 1000m; the pulse arrivals on a horizontal plane 
are shown in terms of the reduced time with reference speed of 1520 m/s (0.6 ~ 1.3 seconds).  
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Figure 5-33: (continued) Computed pulse arrivals at a depth of 1000m (1.4 ~ 2.1 seconds). 
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Figure 5-34: Computed pulse arrivals at a depth of 200 m; the propagation modes at the 
outermost ring are used for the mode coupling, which provides full ray arrivals, including bottom 
bounces. The pulse arrivals are shown in the reduced time with a reference time of 1520m/s. The 
angle denotes an acoustic path running off the centerline. The convergence zone arrivals are all 
blocked after the seamount up to 10 degrees and the strong reflections are shown in the perturbed 
zone. However, disturbances of bottom bouncing rays due to the seamount appear in much higher 
angles up to 16 degrees, compared to the cases with the waterborne modes.  
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Figure 5-35: Computed pulse arrivals at a depth of 200m; the pulse arrivals on a horizontal 

plane are shown in terms of the reduced time with a reference speed of 1520 m/s (0.75 ~ 2.5 

seconds). The first convergence zone arrivals appear before the seamount at 0.75 seconds, 60km 

from the source, which are followed by the strong reflections. The pulse arrivals appear to be 

moving toward the acoustic source because of the higher propagation speed relative to the 

reference speed. The second convergence zone appears at 1.25 seconds, 120km, which clearly 

shows the shadowing cast of the seamount. The third and fourth convergence zone appear at 

1.75~2.0, 2.5 seconds, 190km and 250 km from the source, respectively. At around 2.25 seconds, 

between the third and fourth convergence zone appearances, a convergence is formed by the 

reflected-refracted rays within the perturbation zone. Reflections due to the seamount generate 

quite complicated patterns of pulse arrivals in and around the shadow zone, including waves 

going away form the seamount to higher angles. 
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Figure 5-36: (continued) Computed pulse arrivals at a depth of 200m (2.75 ~ 4.5 seconds). 



 227

 
Figure 5-37: (continued) Computed pulse arrivals at a depth of 200m (4.75 ~ 6.5 seconds). 
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Figure 5-38: Computed pulse arrivals at a depth of 1000m; the propagation modes at the 
outermost ring are used for the mode coupling, which gives full ray arrivals including bottom- 
bouncing. The pulse arrivals are shown in the reduced time with a reference time of 1520m/s. The 
angle denotes an acoustic path running off the centerline. The two strong ray families arrives in 
higher angles without blockage; however, these are all blocked in lower angle after the seamount 
up to 10 degrees and the strong reflections appear in shadow zone. Disturbances of bottom 
bouncing waves due to the seamount are shown in much higher angle up to 16 degrees.  
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Figure 5-39: Computed pulse arrivals at a depth of 1000 m; the pulse arrivals on a horizontal 
plane are shown in term of the reduced time with a reference speed of 1520 m/s (0.75 ~ 2.5 
seconds). 
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Figure 5-39: (continued) Computed pulse arrivals at the depth of 1000m (2.75 ~ 4.5 seconds). 
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Figure 5-39: (continued) Computed pulse arrivals at the depth of 1000m (4.75 ~ 6.5 seconds). 
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Figure 5-40: Comparison of amplitude of computed pulses between waterborne modes (black), 

propagation modes (blue), and full modes (with leaky modes, red) at a depth of 200 m. The 

ranges are 90km (top panel) and 100km (bottom panel). 
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Figure 5-41: Comparison of amplitude of computed pulses between waterborne modes (black), 

propagation modes (blue) and full modes (w/ leaky modes, red) at a depth of 200 m. The ranges 

are 110km (top panel) and 150km (bottom panel). 
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Figure 5-42: Comparison of amplitude of computed pulses between waterborne modes (black), 

propagation modes (blue) and full modes (w/ leaky modes, red) at a depth of 1000 m. The ranges 

are 90km (top panel) and 100km (bottom panel). 
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Figure 5-43: Comparison of amplitude of computed pulses between waterborne modes (black), 

propagation modes (blue) and full modes (w/ leaky modes, red) at a depth of 1000 m. The ranges 

are 110km (top panel) and 150km (bottom panel). 
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5.3 Broadband pulse modeling for the LOAPEX source  

 

In the previous chapter, a benchmark problem was explored with a broadband acoustic 

source with lower frequency at the center frequency of 15Hz. Resultant broadband pulses 

show the clear shadow zone cast and the convergence zone reappearance behind the 

seamount. In addition, complicated three-dimensional (3D) perturbed waves by the 

seamount can be found clearly in the results.  

In this chapter, we apply the 3D spectral coupled-mode model to a problem with a 

conical seamount which models the Kermit-Roosevelt seamount; the LOAPEX source at 

the center frequency of 68.2 Hz is considered. Due to the limited computational ability, 

the computations were carried out with the only waterborne modes.  

 

5.3.1 Approximation of the Kermit-Roosevelt seamount with a conical 
seamount 
  

Since 3D spectral coupled-mode model can be applied to only axisymmetric bathymetry 

and range-independent sound speed fields, the Kermit-Roosevelt seamount needs to be 

approximated with a conical seamount.  

Figure 5-45 shows the shapes of the cross sections of the Kermit-Roosevelt at 

selected depths compared to the circular sections of approximated conical seamount. 

Apparently, the shapes of the cross sections of the Kermit-Roosevelt are not perfect 

circles; however, the slope of the seamount can be modeled by a straight line along an 

acoustic path passing over the peak of the seamount from the LOAPEX source, as shown 

in the right bottom panel. The blue line is chosen for the slope of seamount, which 

corresponds to the blue circles in other panels.  

Based on the approximated conical seamount, the description of the problem is 

shown in Fig. 5-47. The radius of the conical seamount is around 28.6 km with a water 

depth of 954m at the peak of seamount; the slope of the seamount becomes 9.52o. 

The range-independent sound speeds are obtained by averaging all sound speed 
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measurements from the BASSEX experiment, as shown in Fig. 5-48. The geoacoustic 

properties of the sub-bottom are shown in Table 4-1, which was used in the 2D 

reconciliation of the pulse arrivals.  

 

5.3.2 Comparison of transmission loss from two-dimensional and three-
dimensional model  
 

Transmission loss (TL) for a 68.2Hz CW source is explored using the two-dimensional 

(2D) coupled normal mode method (CSNAP) and the 2D Parabolic Equation (PE, RAM), 

as shown in Fig. 5-49. The figure shows good agreement in TL from the CSNAP and PE. 

This 2D computation of the TL is performed for a convergence test, and the parameters 

used in the 2D computation are used in the 3D computation. 

Figure 5-50 compares the 3D and Nx2D TL on a horizontal plane using the 3D 

spectral coupled-mode model and the 2D PE (RAM). The overall shadow zones behind 

the seamount are quite similar to each other.  

Figure 5-51 shows the TL with various numbers of sections to examine the effect of 

grid size along the seamount in the 3D spectral coupled-mode model. In this case, since 

we use 100 vertical modes, the effect of the number of sections on the TL appears not to 

be significant.  

 
5.3.3 Broadband pulse modeling for a 15Hz source  
 
Due to limited computational efficiency to handle a higher frequency such as at the 

LOAPEX source, an acoustic source with the lower frequency, 15Hz of center frequency 

with 10Hz bandwidth, is considered, and the computed arrival pulses are presented in Fig. 

5-52 and 5-53. The arrival pulses are presented in the reduced time of 1520 m/s.  

      Compared to the benchmark problem presented in Section 5.2, the perturbation 

zone including the shadow zone is much smaller because the seamount is located much 

farther than the benchmark problem. In addition, the clear convergence zones are formed 
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with the refracted rays passing over the seamount at 10.2 and 11.0 seconds. However, no 

significant horizontal refracted rays are found; the refracted rays were detected in the 

BASSEX experiment.  

 
5.3.4 Broadband pulse modeling for a 68Hz source  

 

In this section, we compute the pulse arrivals for the LOAPEX source with limited modes, 

that is, only water-borne modes. For a 60 Hz source, the numbers of water-borne modes 

are 105 and 1 at the outermost ring and the peak of the seamount, respectively; for a 76 

Hz source, the numbers of water-borne modes are 133 and 1 at the outermost ring and the 

peak of the seamount, respectively.  

Figure 5-54 compares the pulse arrivals with the 68.2 Hz and 15 Hz sources. The 

primary pulse arrivals are quite comparable; however, the additional reflected pulse 

arrivals are not shown with the 68.2Hz source because only water-borne modes are 

included in this calculation. The first three primary pulse arrivals are quite consistent with 

the arrival pulses from the 2D PE, as shown in Fig. 5-56. These pulses are also consistent 

with the detected pulses in the BASSEX experiment in Fig. 5-57; however, because of the 

narrow source bandwidth, and the limited normal modes for the 68.2 Hz source, it is 

difficult to resolve the higher angle arrival in the simulation, which is believed to be a 

horizontal refracted ray by the seamount. In addition, the approximation of the 

axisymmetric conical seamount can be another reason that the horizontal refracted ray is 

not found.  

To verify this horizontal refraction, the increase in computational efficiency of the 

3D spectral coupled-mode model is required to handle the higher frequency source such 

as 68.2 Hz. In addition, in the experiment, the horizontal refracted rays are detected only 

at the left side of the seamount, which suggests that the assumption of the axisymmetry of 

the seamount is not valid. Therefore, a problem with the sophisticated bathymetry based 

on the real bathymetry with range-independent sound speed needs to be explored with a 

sound propagation model which can handle the sophisticated problem and is fast enough 
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to obtain the broadband pulse in a reasonable time. The 3D PE can be a candidate; 

however, the model also needs improvement to be applied to long-range sound 

propagation and broadband pulses.  

 

 

 

 

 

Figure 5-44: Bathymetry around Kermit-Roosevelt seamount complex.
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Figure 5-45: Shapes of seamount at the selected depths with circular sections of approximated 

cone. The blue line was chosen for the conical shape of the seamount.  

 

 

Figure 5-46:  Comparison of the real bathymetry (left panel) and an approximated conical 

seamount (right panel). 
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Figure 5-47: A problem with a conical seamount approximation of the Kermit-Roosevelt 

seamount. 

 

Figure 5-48: Averaged sound speed profile (red line).
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Figure 5-49: Compared TL from the CSNAP and 2D PE (RAM).
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Figure 5-50: TL on a horizontal plane at a depth of 250m from the Nx2D (RAM, top panel) and 

the 3D model (3D spectral coupled-mode model, bottom panel).  
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Figure 5-51: TL using the 3D spectral coupled-mode model with various range steps (or the 

number of sections).  



 245

 

 
 

Figure 5-52: Computed pulse arrivals for a broadband source with a center frequency of 15Hz 

source at a depth of 200m (7.0~8.4 seconds). 
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Figure 5-52: Computed pulse arrivals for a broadband source with a center frequency of 15Hz 

source at a depth of 200m (10.2~11.6 seconds).  
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Figure 5-53: Computed pulse arrivals for a broadband source with a center frequency of 15Hz 

source at a depth of 500m (7.0~8.4 seconds). 



 248

 
Figure 5-53: (continued) Computed pulse arrivals for a broadband source with a center frequency 

of 15Hz source at a depth of 500m (10.2~11.6 seconds).  
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Figure 5-54: Comparison of pulse arrivals between two broadband pulses with a center frequency 

of 68.2 Hz LOAPEX source (with water-borne modes only) and 15Hz source (with propagation 

modes) for 26601. The angles denote the location of the 26601 with respect to the peak of the 

seamount.  

 

Figure 5-55: Kermit-Roosevelt seamount and the location of receiver for 26601 (Longitude: -

146.329506, Latitude: 39.484648). 
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Figure 5-56: Pulse arrivals for 26601 (LOAPEX) using 2D PE. Range-dependent bathymetry and 

the sound speed fields from objective analysis are used for the simulation. Beamformed pulse 

arrivals at a depth of 300 m (left panel) and the depth stacked wave fronts (right panel) are shown.  

 

 
Figure 5-57: Measured pulse arrivals in the BASSEX experiment for 26601. E appears to be a 

horizontal refracted ray by the Kermit-Roosevelt seamount.  
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Chapter 6 
 

Conclusion  
 

In this thesis, the reconciliation between the measured broadband pulses from the 

BASSEX experiment and the simulated pulses using various two-dimensional (2D) and 

three-dimensional (3D) theoretical sound propagation models was carried out to 

investigate the physical characteristics of the sound propagation around seamounts. 

      The rays and the pulse arrivals from the 2D ray tracing method and the 2D PE 

showed the clear shadow and convergence zones formed behind the seamount. The modal 

amplitude obtained by the modal decomposition method for the 2D PE pressure fields 

showed the strong mode coupling due to the seamount; the mode cut-off at up-slope 

sound propagation, and mode repopulation at down-slope propagation can be explained 

by the energy (or modal amplitude) dissipation and transfer.  

The shadow and convergence zones behind the seamounts were matched well 

between the experiment data and the 2D and 3D sound propagation models; however, the 

reconciliation of the broadband pulses behind the seamount was more challenging 

because of the complicated physical phenomena due to the sloped bathymetric effects as 

well as the uncertainties from the geoacoustic properties and sound speed fields. In 

particular, the application of the 3D sound propagation model is more limited due to the 

low computational efficiency.  

The broadband pulses using the 2D parabolic equation (PE) for the SPICEX 

source 2 were successfully matched with the measurement in the BASSEX experiment, in 

particular, within the convergence zones in which the refracted rays appear. However, it 

was difficult to reconcile the reflected rays in the shadow zones and the transition regions 

between the shadow and convergence zone because the geoacoustic properties and local 

bathymetry play an important role in the reflection. These complicated reflections are 

related to the ray chaos, which needs a statistical approach and can be a challenging 
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problem in future.  

Through the reconciliation, the increase of computational efficiency of the 3D 

spectral coupled-mode model (W. Luo, PhD Thesis, MIT, 2007) was explored using 

parallel computing to realize the broadband pulses with strong azimuthal coupling around 

a seamount. The realized 3D broadband pulses showed the clear shadow and convergence 

zones as well as the wider disturbed (shadow) zone than in the Nx2D calculation because 

of the horizontal refraction. The size of the shadow zone is one of significant concerns on 

the sound propagation around a seamount.  

However, due to the limited computational efficiency, we mainly considered the 

15Hz broadband source in the 3D broadband pulse realization. The broadband pulses 

using a higher frequency source, 68.2 Hz, were computed with the limited vertical modes. 

Hence, although the primary pulse arrivals are consistent with the detected pulses in the 

BASSEX experiment, the horizontal refracted rays could not be resolved.  

To verify the horizontal refraction, the increase in computational efficiency of the 

3D spectral coupled-mode model is required to handle the higher frequency source such 

as 68.2 Hz with wider bandwidth. The higher efficiency can be achieved by using faster 

and more CPUs with parallel computing, or introducing some approximations. Since the 

enormous computer system can be limited and costly, some approximations can be 

essential to the higher efficiency. In the thesis, several approximation methods were 

explored: the truncation of normal modes, the sub-sampling of azimuthal modes, and the 

real-value argument of the Hankel and Bessel functions. However, these approximation 

methods can be applied to limited regions, in particular, far from the seamount. It is worth 

noting that using a perturbation of the horizontal wavenumber and modal shape is a 

promising way to reduce the computational time. 

 The Kermit-Roosevelt seamount was modeled by a simple conical seamount for 

the 3D model. However, we found that the horizontal refracted rays are axis-asymmetric 

through the simulation of horizontal refracted ray using the horizontal ray method with 

the adiabatic assumption. This axis-asymmetry can be a possible explanation for why the 

horizontal refracted rays were detected only at the left side of the seamount.  
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This implies that the sophisticated bathymetry based on the real bathymetry 

measurement with range-dependent sound speed needs to be explored. In addition, we 

need a sound propagation model which can handle the sophisticated problem and is fast 

enough to obtain the broadband pulse in a reasonable time. The 3D PE can be a 

candidate; however, the model also needs improvement to be applied to long-range sound 

propagation and broadband pulses for a higher frequency source.  

In this work, for the preparation of the simulation, we examined the construction 

of a sound speed field database using the objective analysis, based on the sound speed 

profiles from the BASSEX experiment, World Ocean Atlas (WOA) 2005, and CTD casts. 

The simulated pulse arrivals were compared with those from the experiment, showing the 

increased correlation between the pulse arrivals; however, it is difficult to conclude on the 

validity of the sound speed database because of the limited measured data, and the 

random timing error of the DAQ system in the experiment. Since the precise sound speed 

fields covering the entire area are essential for the sound propagation model, in particular, 

the 3D sound propagation model, more efforts are required to obtain the precise sound 

speed fields.  
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Appendix A 

 

Specifications of acoustic sources in the BASSEX 

experiment 
 

Table A-1:  M-sequence signal parameters of the SPICEX sources [54] 

HLF-5 Acoustic sources S1 S2  

Source Depth 773.51 738.01 m 

Source level 192 192 dB re 1 Paμ  at 1m

Center Frequency 250 250 Hz 

Cycles/digit 2 2  

Digit length 12.000 12.000 ms 

Sequence length(L) 1023 1023 digits(degree 10) 

Sequence period 12.2760 12.2760 s 

Sequence law[octal] 2033 3471  

Artifact location 531 474 digit 

Sequence 

initialization[octal] 

1000 1000  

Phase modulation angle 89.209215o 89.209215o  

Longitude 34.324333 34.88912 deg N 

Latitude -143.01708 -148.408033 deg E 

1: The designed source depth was 750m for both sources; the measured source depths were found 

based on the position records by the installed acoustic transducers on the sea floor around sources 

[54]. 
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Table A-2:  M-sequence signal parameters of the Kauai sources [54] 

Source Depth 825 m 

Source level 195 dB re 1 Paμ  at 1m

Center Frequency 75 Hz 

Cycles/digit 2  

Digit length 26.6667 ms 

Sequence length(L) 1023 digits(degree 10) 

Sequence period 27.2800 s 

Sequence law[octal] 3471  

Artifact location 474 digit 

Sequence 

initialization[octal] 

1000  

Phase modulation angle 89.209215o  

Sequence repetitons  44  

Transmission duration 1200.3200  

Longitude 22. 349156 deg N 

Latitude -159.569924 deg E 
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Table A-3:  M-sequence signal parameters of the LOAPEX Sources [54] 

Source Depth 800 350 m 

Source level 195 194 dB re 1 Paμ  at 1m

Center Frequency 75 68 Hz 

Cycles/digit 2 2  

Digit length 26.6667 29.4118 ms 

Sequence length(L) 1023 1023 Digits(degree 10) 

Sequence period 27.2800 30.0882 s 

Sequence law[octal] 2033 2033  

Artifact location 531 531 digit 

Sequence 

initialization[octal] 

1000 1000  

Phase modulation angle 89.209215o 89.209215o  

Sequence repetitions transmitted 

20 minutes 44 40  

80 minutes 176 160  

 

Station Latitude [deg N] Longitude [deg E] 

T50 33.513590 -138.208350 

T250 33.869780 -140.322990 

T500 34.248840 -142.882500 

T1000 34.864170 -148.280130 

T1600 35.285610 -154.949970 

T2300 35.312730 -162.647970 

T3200 34.631820 -172.472870 
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Appendix B 

 

Matched filtered pressure 
 

Let us define the source pressure in Paμ  as: 

 
( ) ( )s t Aq t=  or ( ) ( )S f AQ f= ,                    (B.1) 

 
where ( )q t  and ( )Q f  are a Fourier transform pair and satisfy unit energy such as  

 

2 2| ( ) | | ( ) | 1q t dt Q f df= =∫ ∫ .                      (B.2) 

 

Then the pressure at the receiver can be expressed as follows:  

 
                  ( ) ( ) ( | , )oP f AQ f G r r f= .                (B.3) 

 

The matched filter is derived by finding a linear filter which gives a maximum SNR, 
and the resultant filter is simply the time reversed version of a source signal, ( )q t , which 

has no unit.  

The matched filtered pressure becomes 

 

                

max

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( | , )

| ( ) | ( | , )

mf

o

o

p p q p t q t dt

AQ f Q f G r r f df

A Q f G r r f df

τ τ τ τ∗ ∗

∗

= ∗ − = −

=

=

∫
∫
∫

            (B.4) 
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where max arg max mfp
τ

τ = . 

  The matched filtered pressure in decibel is 2
10 1010 log | | 20 log | |mf mfp p=  dB re 

1 Paμ .  

 

The matched filtered pressure for the source is  

 

2
max( ) ( ) ( ) ( ) ( ) | ( ) |mfp s q Aq t q t dt A q t dt Aτ τ τ τ∗ ∗= ∗ − = − = =∫ ∫ .       (B.5) 

 

In decibel, 10 1020 log ( ) 20logmfp A= dB re 1 Paμ . 

For the BASSEX experiment, two correction factors are needed to obtain the matched 

filtered pressure shown above:  

 

i) a factor for unit energy of the reference signal, 21 | ( ) |q t dt∫ ,  

ii) unit conversion from the original data to physical data in micro-pascal ( Paμ ) 

with the following gain: 

10( 1 ) 20log ( ) 24.35originalpressure dB re Pa xμ = + .                    (B.6) 

 

Then time-averaged power can be acquired by the summation of the squared of 

matched filtered pressure in time domain:  

 

2

0

1 | ( ) |
T

mfP p t dt
T

= ∫   , 

2
10 10 100

10 log ( ) 10log | ( ) | 10 log
T

mfP dB re Pa p t dt Tμ = −∫ .       (B.7) 
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Appendix C 

 

XBT output file 
 

 

### Sound Velocity Profile /SCG.PROC/CRUISE.DATA/SVPROFILES/KRUS03RR.svp.20 
### Created by /scgscg/bin/DOsvp  
### by scg on rv-revelle date: Mon Aug 16 01:36:12 GMT 2004 
### XBT file name: /SCG.PROC/CRUISE.DATA/XBT/tf_00022.edf 
### Date of Launch  :  08/16/04 
### Time of Launch  :  01:12:36 
### Sequence #      :  22 
### Latitude        :  23 21.1797 N (SPS)       
### Longitude       :  159 52.3376 W 
### Serial #        :  08919 
### Probe Type          :  Fast Deep (Original**) 
### Terminal Depth      :  1000 m 
### Depth Coefficient 1 :  -0.00182 
### Depth Coefficient 2 :  6.39 
### Raw Data Filename   :  TF_00022.RDF 
### Display Units       :  METRIC 
### Salinity used is: 34.8 
### Salinity table used: /scgscg/src/bin/SVPROFILES/files/salinity.tbl 
   0.0  1539.5  
  21.1  1539.7  
  31.3  1539.6  
  45.9  1539.3  
  54.8  1534.6  
  63.1  1533.1  
  70.7  1530.8  
  77.0  1530.1  
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  80.9  1529.9  
  96.7  1527.8  
 102.4  1527.1  
 105.6  1526.9  
 113.8  1525.8  
 120.1  1525.5  
 125.2  1524.9  
 136.5  1522.8  
 139.7  1521.9  
 147.3  1520.8  
 151.7  1520.5  

 
 
 
959.5  1481.6  

 978.1  1481.8  
1000.2  1482.0  
# Carter Table Area 52 
1500.0  1485.0 
2500.0  1499.0 
3500.0  1514.0 
4500.0  1534.0 
5500.0  1551.0 
6500.0  1571.0 
7500.0  1589.0 
8500.0  1609.0 
9500.0  1629.0 
10500.0  1648.0 
#11500,1667 
#12500,1687 



 263

Appendix D 

 

Modal decomposition method: modal spectrum of 

the Parabolic Equation pressure field 
 

D.1 Theory  

 
The pressure field given by a parabolic equation (PE) solver, ( , )PEP r z , can be written as 

follows: 

 

0
1( , ; ) ( , ; ) jk r

PE PEP r z r z e
r

ϖ ϖ= Ψ ,                     (D.1) 

 
where 0k is a reference wave number, and PEΨ is governed by  

 
2

2 2
0 022 [ ( , ) 1] 0PE PE

PEik k n r z
r z

∂Ψ ∂ Ψ
+ + − Ψ =

∂ ∂
.               (D.2) 

 
Suppose ( , ; )m r z ϖΦ  is a local mode at range r, then the pressure field from the PE can 

be expressed as a summation of the product of the amplitude of local mode and the modal 

shape: 

 

( , ; ) ( ; ) ( , ; )PE m m
m

P r z P r r zϖ ϖ ϖ= Φ∑                      (D.3) 

 
If we use the orthonomality of the local mode, ( , ; )m r z ϖΦ as follows: 
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2

0

( ) 1
( )

D
m z dz

zρ
Φ

=∫ ,        (D.4) 

 

then the amplitude at each mode in the above summation can be obtained by: 

 

0

( , ; )( , ) ( ; )
( )

D
m

m PE
r zP r P r dz

z
ϖϖ ϖ

ρ
Φ

= ∫ .                 (D.5) 

 

Substituting Eq. (D.1) into Eq. (D.5), we obtain: 

 

0 0

0

( , ; )( ; ) [ ( , ; ) ] ( ; )
( )

D jk r jk r
m

m PE m
r ze eP r r z dz A r

zr r
ϖϖ ϖ ϖ

ρ
Φ

= Ψ =∫ .   (D.6)  

 
If the source spectrum is ( )S ω , then a pulse is given by a Fourier transform: 

max

max

max

max

max 0

max

max 0

max

1( , , ) ( ) ( , , )
2

1 ( )( ( , ) ( , , ))
2

1 ( )( ( , ) ( , , ))
2

1 ( ) ( , ) ( , , )
2

( , , )

j t
PE

j t
m m

m

jk r
j t

m m
m

jk r
j t

m m
m

m
m

p r z t S P r z e d

S P r r z e d

eS A r r z e d
r

eS A r r z e d
r

p r z t

ϖ
ϖ

ϖ

ω
ω

ω

ω
ω

ω

ω
ω

ω

ω ϖ ω
π

ω ω ω ω
π

ω ω ω ω
π

ω ω ω ω
π

−

−

−

−

−

−

−

−

=

= Φ

= Φ

= Φ

=

∫

∑∫

∑∫

∑ ∫

∑

   (D.7) 

 
where a modal pulse at mode m, ( , , )mp r z t , describes: 
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max 0

max

1( , , ) ( )[ ( , ) ] ( , , )
2

jk r
j t

m m m
ep r z t S A r r z e d

r

ϖ
ϖ

ϖ

ω ϖ ϖ ϖ
π

−

−

= Φ∫ .   (D.8) 

 

In following sections, the modal decomposition method is applied to problems which 

have weak and strong mode coupling due to upslope and downslope propagation. The 

problems are adapted from [3].  

 

D.2 Weak coupling 

 

The environment, as shown in Fig. D-1, consists of a mild upslope section (0.7o) up to 10 

km, a 5 km flat section, and a steeper downslope (1.4o) section. The bathymetry and a 

range-independent SVP are shown in Fig. D-1. The detailed environmental input is given 

in [3]. In addition, Fig. D-1 shows the modal shapes along the section, and Fig. D-2 

shows a transmission loss plot using the 2D PE for a 50 Hz source frequency.  

For the 50 Hz source, we have four propagation modes at the source, and two modes in 

the shallow section of 80 m depth. However, with the source depth of 100 m, only modes 

1 and 3 among the 4 modes are excited at the starting field, which provides two-mode 

interference in Fig. D-2. At a range of 7 km, mode 3 cuts off and leaks into the bottom, 

and, in the shallow part after the modal cut-off, there is a weak interference structure 

demonstrating energy transfer into mode 2.  

The modal amplitude obtained by the modal decomposition method is shown in Fig. 

D-3. The two modes 1 and 3 are excited with high amplitude at the starting field, and the 

modal cut-off takes place with the abrupt change of the modal amplitude of mode 3 at a 

range of 7 km. However, there is no significant change in the amplitude of mode 2 (< 

3 %), which claims that the adiabatic approximation can be valid with the weak mode 

coupling.  
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D.3 Strong coupling 

 

To demonstrate the strong mode coupling, we increase bottom slope to 17o as shown in 

Fig. D-4. Figure D-5 shows transmission loss computed by the 2D PE. The initial field 

consists of modes 1 and 3 only; however, mode 3 cuts off during upslope propagation. In 

contrast to the weak coupling problem, on the shelf, there is a two-mode interference 

showing energy transfer into mode 2. Modal amplitude in Fig. D-6 demonstrates the 

energy transfer to mode 2 and the strong mode coupling.  

 

 

 

 
Figure D-1: Bathymetry and SVP (top leftmost), number of propagation modes (top middle), and 

modal shapes for 1-4th mode versus range.  
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Figure D-2: Transmission loss of the PE. Mode 2 leaks into the bottom at a range of 7km. 

 
Figure D-3: Modal amplitude and wavenumber versus range. Only modes 1 and 3 are 
excited at a starting field, and the mode 3 cuts off at a range of 7 km. The modal 
amplitude shows negligible coupling between modes.  
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Figure D-4: Bathymetry and SVP (top leftmost), number of propagation modes (top middle), and 

modal shapes for 1-4th mode versus range.  
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Figure D-5: Transmission loss of the PE  

 

Figure D-6: Modal amplitude and wavenumber versus range. Only modes 1 and 3 are excited at a 
starting field, and the mode 3 cuts off during upslope propagation at a range of 100m. After the 
modal cut-off, energy transfer to mode 2 is quite clear, demonstrating the strong mode coupling.  
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