Inter-annual variability in isotope and elemental ratios recorded in otoliths of an anadromous fish

Benjamin D. Walther* ¹, Simon R. Thorrold

Benjamin D. Walther: Biology Department MS 50, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543 USA.

Simon R. Thorrold: Biology Department MS 50, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543 USA. E-mail: sthorrold@whoi.edu

*Corresponding author.

¹ Current Address: ARC Centre of Excellence for Coral Reef Studies, Australian National University, Research School of Earth Sciences, Canberra ACT 0200, Australia.

Phone: +61 2 6125 3424

Fax: +61 2 6125 7739

E-mail: <u>benjamin.walther@anu.edu.au</u>

1 Abstract

2 Isotope ratios and elemental concentrations in otoliths are often used as natural tags to 3 reconstruct migratory movements and connectivity patterns in marine and 4 anadromous fishes. Although differences in otolith geochemistry have been 5 documented among geographically separated populations, inter-annual variation within locations is less frequently examined. We compared otolith isotope (δ^{18} O and 6 ⁸⁷Sr.⁸⁶Sr) and elemental ratios (Sr:Ca and Ba:Ca) from several annual cohorts of 7 8 juvenile American shad (Alosa sapidissima) in three rivers. These four geochemical 9 signatures distinguished among river-specific populations of this species at both large and small geographic scales, with δ^{18} O and 87 Sr: 86 Sr generating the majority of 10 11 multivariate variation. We found significant variation among years for all variables in two to three rivers. However, the magnitude of variability differed among ratios, with 12 δ^{18} O ratios showing substantial inter-annual shifts while 87 Sr: 86 Sr ratios were 13 14 relatively stable across years. Sr:Ca and Ba:Ca ratios also varied among years. These 15 results imply that investigators using environmentally labile signatures must quantify 16 geochemical signatures for each cohort of interest in order to confidently identify 17 origins of migrants.

18

19 Keywords: otolith chemistry; strontium isotopes; oxygen isotopes; inter-annual20 variability.

22 1. Introduction

23 Geohemical signatures recorded in calcified tissues of fishes have the potential 24 to resolve outstanding questions about dispersal and migration dynamics of a wide variety of species. Isotope and elemental ratios of aragonitic otoliths, or ear stones, 25 26 have proved particularly useful for identifying rates of natal homing (Thorrold et al., 27 2001), dispersal (Thorrold et al., 2002), thermal histories (Valle and Herzka, 2008), 28 and movements across salinity gradients (Milton and Chenery, 2005). Because 29 otoliths are metabolically inert, accrete discrete layers incrementally, and incorporate 30 some isotopes and elements in proportion to their ambient abundance, they can serve 31 as useful natural tags that reflect the environmental history of a fish (Campana, 1999). 32 When natal geochemical signatures are unique and distinct at appropriate 33 geographical scales, they can then be used to identify origins of individuals at 34 subsequent life history stages. Thus, the first step in many investigations using 35 otoliths as natural tags is to create a baseline map of elemental and isotope signatures 36 from potential source regions. Yet while much attention has been paid to 37 geographical scales of variability for the ratios of interest, temporal stability is less 38 frequently investigated. Understanding temporal variability in both isotope and 39 elemental signatures is essential to determine whether classifications of unknown 40 individuals can only be made using baseline data from the same cohort, or if previous 41 baselines can be applied. 42 For the previous two decades, investigations into the natural tag properties of

otoliths have focused on the relative abundances of elements such as Sr and Ba,
typically expressed relative to Ca (Campana, 1999). However, geographical
variability in isotope ratios have emerged as powerful natural tags, particularly for
species that inhabit fresh water at some stage of their life history (Kennedy et al.,

1997). For instance, otolith ⁸⁷Sr:⁸⁶Sr ratios directly reflect dissolved ambient ratios, 47 48 which in freshwater habitats depend on the geological composition of the drainage 49 basin (Palmer and Edmond, 1992). Because juvenile anadromous fishes reside in discrete freshwater habitats that drain heterogeneous lithologies, otolith ⁸⁷Sr:⁸⁶Sr 50 51 ratios have recently been used to discriminate origins of anadromous fishes at 52 remarkably fine geographical scales (Barnett-Johnson et al., 2008; Kennedy et al., 2002). Similarly, otolith δ^{18} O ratios are deposited in isotopic equilibrium with 53 54 ambient water values (Høie et al., 2003; Thorrold et al., 1997). As a result, latitudinal and orographic patterns in surface water δ^{18} O ratios are recorded in otoliths across 55 56 large geographic scales (Walther et al., 2008). The addition of these two isotope 57 ratios to the suite of geochemical signatures routinely analysed has increased estimates of classification accuracy beyond that generally achievable based only on 58 59 elemental ratios. 60 In a test of the combined power of isotope and elemental ratios to discriminate among source populations, Walther and Thorrold (in press) reported 87 Sr; 86 Sr, ${\delta}^{18}$ O, 61 62 Sr:Ca, and Ba:Ca ratios in the otoliths of juvenile American shad (Alosa sapidissima) 63 from 20 rivers between Florida and Québec along the east coast of North America. 64 This combination of only four elemental and isotopic signatures yielded highly 65 distinct river-specific signatures; mean classification accuracies were 93%. Moreover, signature separation was driven primarily by δ^{18} O and 87 Sr; 86 Sr, 66

67 highlighting the utility of these isotopes in discriminating among these rivers.

68 Although this prior work comprehensively addresses the spatial variability in these

69 chemical tracers, inter-annual variability has not been thoroughly investigated for

70 these systems. Here, we expand on our previous work to examine inter-annual

71 variability in otolith signatures for the Hudson, the Mattaponi and Pamunkey rivers.

These data are used to discuss potential errors that could arise if migrants are notclassified using baseline signatures from the appropriate cohort.

74

75 2. Materials and Methods

76 Juvenile American shad were collected in freshwater or upper estuarine 77 habitats from the Hudson, Mattaponi, and Pamunkey rivers (Figure 1) prior to their 78 emigration to the ocean. Collections were timed to occur during the late summer 79 months when juveniles were at their highest abundances in each river. Push nets and 80 beach seines were used to obtain representative samples and specimens were 81 subsequently returned to the lab and frozen whole. Sagittal otoliths were dissected 82 from each fish, cleaned of adhering tissue, and stored dry. Samples were unavailable 83 for analysis in 2003 for all rivers and in 2002 and 2004 for the Hudson and Pamunkey 84 rivers, respectively, due to recruitment failure in those systems or incomplete 85 collections. Analyses were performed on all available samples from these three 86 rivers. Prior to analysis, both sagittal otoliths from each fish were mounted on 87 petrographic slides with cyanoacrylic glue and ground to the midplane on 30 and 3 88 µm lapping film. One otolith from each pair was randomly chosen for Sr:Ca, Ba:Ca and ⁸⁷Sr:⁸⁶Sr analyses. To remove surface contaminants, this otolith was sonicated for 89 90 2 minutes and triple-rinsed in ultrapure water in a class 100 clean room. The remaining otolith was used for δ^{18} O analyses. 91

The first otolith from each fish was used for analyses of Sr:Ca and Ba:Ca
ratios using a Thermo Finnigan Element 2 single collector inductively coupled plasma
mass spectrometer (ICP-MS) coupled to a 213 nm laser ablation system. A 200 x 200
µm raster was ablated adjacent to the core and extending toward the posterior lobe.
This raster ablated material laid down over approximately two to three months of the

97 juvenile freshwater residency period. Elemental ratios were quantified by monitoring ⁴⁸Ca, ⁸⁶Sr, and ¹³⁸Ba using methods following those of Rosenthal et al. (1999) as 98 99 modified by Walther et al. (2008). Briefly, a He gas stream carried ablated material to 100 the ICP-MS where it was mixed with an Ar sample gas and a wet aerosol (2% HNO₃) supplied by a self-aspirating (20 m•min⁻¹) PFA nebuliser in the concentric region of 101 102 the quartz dual inlet spray chamber. Instrument blanks of 2% HNO₃ and two certified 103 reference materials (CRM; Sturgeon et al., 2005; Yoshinaga et al., 2000) were run at 104 the beginning and end of each block of ten otoliths and used to correct for background 105 intensities and instrument mass bias. External precision (relative standard deviation) 106 of the technique, calculated by treating one of the CRMs as an unknown for 2000, 107 2001, and 2002 samples was 0.3% for Sr:Ca and 0.6% for Ba:Ca (CRM n = 92). 108 Otoliths collected in 2004 were analysed separately, and relative standard deviations 109 were 0.3% for Sr:Ca and 1% for Ba:Ca (CRM n = 134). After elemental ratio analyses, the same otolith was used for ⁸⁷Sr.⁸⁶Sr analyses 110 111 using a Thermo Finnigan Neptune multiple collector ICP-MS coupled to a 213 nm 112 laser ablation system. A 250 x 200 µm raster was ablated adjacent to previous raster 113 and covering the same time period analysed for elemental ratios. A suite of isotopes,

114 including ⁸⁴Sr, ⁸⁶Sr, ⁸⁷Sr, ⁸⁸Sr, ⁸³Kr, and ⁸⁵Rb were monitored. Contributions of ⁸⁷Rb

115 to ⁸⁷Sr and ⁸⁶Kr to ⁸⁶Sr intensities were removed by applying mass bias corrections

116 described by Jackson and Hart (2006) as modified by Walther et al. (2008). All data

117 were normalized to a SRM987 ⁸⁷Sr:⁸⁶Sr value of 0.71024 based on mean ⁸⁷Sr:⁸⁶Sr

118 values measured in SRM987 for a given analysis day. For otoliths collected in 2000,

- 119 2001, and 2002, mean (\pm 1 SD) values of ⁸⁷Sr:⁸⁶Sr ratios sampled from an otolith
- 120 CRM (n = 38) and solutions of SRM987 (n = 40) were 0.70915 (± 0.00002) and
- 121 0.71025 (\pm 0.00002), respectively. For otoliths collected in 2004, mean (\pm 1 SD)

126	Oxygen isotope ratios were obtained from the second otolith of each fish using
125	Ingram and Sloan, 1992) and the certified ⁸⁷ Sr: ⁸⁶ Sr value of SRM 987 (0.71024).
124	These data compare favourably to the accepted marine ⁸⁷ Sr: ⁸⁶ Sr value (0.70918;
123	SRM987 ($n = 41$) were 0.70916 (± 0.00002) and 0.71025 (± 0.00002), respectively.
122	values of ⁸⁷ Sr: ⁸⁶ Sr ratios sampled from an otolith CRM ($n = 74$) and solutions of

isotope ratio monitoring mass spectrometry (irm-MS). A 400 x 400 μm raster with a
75 μm depth was removed from an area adjacent to the nucleus and extending toward
the posterior lobe. The powder from the milled region was placed in glass
scintillation vials and analysed on a Thermo Finnigan MAT 252 equipped with a Kiel
III carbonate device following methods outlined by Ostermann and Curry (2000).
Isotopic values are reported relative to Vienna Pee Dee belemnite (VPDB) in standard
δ notation. The precision estimate for the mass spectrometer based on long-term

134 monitoring of the NBS19 standards was $\pm 0.07\%$ (Ostermann and Curry, 2000).

135 Samples from 2000-2002 were additionally analysed for Mn:Ca, Mg:Ca and 136 δ^{13} C ratios (Walther et al., 2008). However, it was determined that the addition of 137 these ratios did not improve classification accuracies obtained using just Sr:Ca,

138 Ba:Ca, 87 Sr: 86 Sr, and δ^{18} O ratios (Walther and Thorrold, in press). Thus, analyses of

the additional ratios were not performed for 2004 samples and are excluded from thisinvestigation.

Variable numbers of juveniles were collected and analysed each year. For instance, 50-59 individuals were analysed in 2004 compared to 18-28 individuals for earlier year classes. In order to compare approximately equal sample sizes across years for each river, we randomly selected a subset of individuals from the larger sample sizes to achieve a balanced design. Numbers of individuals included in analyses were between 27-28 for the Hudson River, 24-28 for the Mattaponi River,

147 and 18-19 for the Pamunkey River. The randomized subsampling procedure did not 148 significantly alter the means or standard deviations of isotope or elemental ratios. 149 One-way analyses of variance (ANOVAs) were performed on mean isotope 150 and elemental ratios within a river with year as a random factor. Variance 151 components for each ANOVA were also calculated to assess the percentage of total 152 variance explained by yearly variation in each ratio for that river. Variances were not 153 homogeneous across years for some ratios, and thus an ln(x+1) transformation was 154 applied to the data and the ANOVAs were recalculated. This transformation did not 155 alter the significance of any ANOVA, and therefore only the results for the 156 untransformed data are presented. 157 We used discriminant function analysis (DFA) to assess inter-annual 158 variability of multivariate signatures for different combinations of the four chemical 159 ratios. Quadratic DFAs were first calculated for each river using all four ratios, with 160 otoliths grouped by year. Higher misclassification rates indicated more homogeneous 161 multivariate signatures across years. We then recalculated the QDFA for each river, 162 sequentially excluding each ratio in turn to determine the effect on a single ratio on 163 inter-annual misclassification rates. 164

165 **3. Results**

Isotope and elemental ratios varied among years within each of the three rivers
(Figure 2). Most signatures were significantly different among years, and only Sr:Ca
in the Hudson River and ⁸⁷Sr:⁸⁶Sr in the Mattaponi River showed statistically
insignificant inter-annual variation (Table 1). Surprisingly, ⁸⁷Sr:⁸⁶Sr ratios were
significantly different among years in both the Hudson River and Pamunkey River.
Variance components, however, showed that variability in ⁸⁷Sr:⁸⁶Sr ratios accounted

for only 5-19% of the total variability within a river. In contrast, δ^{18} O accounted for 172 173 large proportions of the total variance (34-85%). Mean Sr:Ca and Ba:Ca ratios were 174 significantly different in two and three of the rivers, respectively, and accounted for 175 varying amounts of the total variance (14-38% for Sr:Ca and 11-45% for Ba:Ca). 176 The relative importance of each signature in homogenizing multivariate 177 signatures among years was shown by misclassification rates of quadratic DFAs 178 (Table 2). When all four signatures were included, misclassification rates were 179 generally low, averaging 28% for the Hudson River, 8% for the Mattaponi River, and 180 9% for the Pamunkey River. These low misclassification rates indicated the 181 multivariate signatures did not overlap substantially among years for a given river. However, misclassification rates rose to 22-39% on average when δ^{18} O ratios were 182 excluded from the multivariate signature. In contrast, excluding ⁸⁷Sr:⁸⁶Sr ratios did 183 184 not significantly alter misclassification rates. Similarly, the exclusion of Ba:Ca led to 185 higher misclassification rates while the exclusion of Sr:Ca did not have a large effect. 186

187 **4. Discussion**

188 Temporal variability in chemical signatures can pose significant problems for 189 researchers who use them to identify natal origins of mobile organisms. If 190 geographical maps of isotope or elemental ratios are assumed to be stable when in fact 191 they shift over time, spatial and temporal differences may be confounded (Gillanders, 192 2002). As a result, estimates of source origins could be significantly biased if 193 temporally inappropriate baseline signatures are used to classify migrants. Here, we report statistically significant inter-annual variability in mean 87 Sr; 86 Sr, δ^{18} O, Sr;Ca 194 195 and Ba:Ca ratios recorded in otoliths of an anadromous fish during the freshwater 196 residency period. Because these combined signatures constitute the baseline map

197 identifying source rivers for this highly migratory fish, care must therefore be taken to 198 match cohorts to the appropriate annual map to identify fish of unknown origins. Of the four ratios we examined here, the most variable was δ^{18} O. Because 199 otolith δ^{18} O ratios is incorporated in isotopic equilibrium with ambient waters (Høie 200 201 et al., 2003; Thorrold et al., 1997), this variability likely reflected substantial interannual shifts in ambient freshwater δ^{18} O values. A wide variety of environmental 202 forces can drive temporal shifts in riverine δ^{18} O values, including precipitation 203 204 amount, temperature, evaporation intensities, groundwater contribution, and storm 205 events (Kendall and Coplen, 2001). Indeed, the years sampled in this study covered 206 divergent climatic conditions. The Mattaponi and Pamunkey rivers experienced 207 severe drought conditions between 2000 and 2002, while river flows in 2004 were 208 above average (USGS, 2005). For the Hudson River, 2000 and 2004 were relatively 209 wet years with above average flows while 2001 was a drought year (USGS, 2004). 210 However, we have a limited ability to retrospectively determine mechanisms generating variability in δ^{18} O otolith signatures in the absence of detailed water 211 samples constraining variability in ambient waters. Regardless of the cause, δ^{18} O 212 213 ratios varied enough to cause significant biases in estimates of natal origin if fish were classified using inappropriate baseline maps. Indeed, δ^{18} O shifted up to 1.5% among 214 215 years in the Mattaponi and Pamunkey rivers. Shifts of this magnitude would be 216 equivalent to erroneously classifying a Chesapeake Bay fish as coming from either 217 Georgia or Delaware, depending on the direction of the shift. Clearly, researchers who use environmentally labile signatures such as δ^{18} O must be careful to use 218 219 temporally appropriate baseline maps when classifying migrants of unknown origins. Otolith ratios of ⁸⁷Sr:⁸⁶Sr directly reflect ambient freshwater composition and 220 are not trophically fractionated (Capo et al., 1998; Kennedy et al., 2000). In general, 221

freshwater ⁸⁷Sr:⁸⁶Sr ratios are assumed to be temporally stable since they reflect the 222 223 combined geological composition of the drainage basin (Palmer and Edmond, 1992), To date, otolith ⁸⁷Sr:⁸⁶Sr ratios have been reported as temporally stable for splittail 224 Pogonichthys macrolepidotus (Feyrer et al., 2007), and Atlantic salmon Salmo salar 225 (Kennedy et al., 2000). We found that mean otolith ⁸⁷Sr:⁸⁶Sr ratios were significantly 226 227 different among years in the Hudson and Pamunkey rivers. The reason for this 228 variability is unknown, although increased discharge rates can potentially alter ⁸⁷Sr:⁸⁶Sr ratios (Åberg et al., 1989). Also, inter-annual shifts in spatial patterns of 229 habitat use within a river could alter the ⁸⁷Sr:⁸⁶Sr of otoliths. Yet, although inter-230 annual differences in otolith ⁸⁷Sr:⁸⁶Sr ratios were statistically significant, overall the 231 232 variability was relatively small as measured by both variance components and the 233 contribution to misclassification rates. In addition, the magnitude of inter-annual 234 variation is much less than average geographical variation reported by Walther and Thorrold (in press). Pair-wise differences in ⁸⁷Sr:⁸⁶Sr ratios between years were 235 236 0.0002 on average, an order of magnitude less than average pair-wise differences 237 between rivers (Walther and Thorrold, in press). Further, for the 20 rivers examined 238 by Walther and Thorrold (in press), only 3% of the pair-wise geographic differences 239 between rivers were less than the average inter-annual pair-wise difference. The 240 reason for the higher variance in Hudson river strontium isotope ratios in 2000 is 241 unknown, although it likely reflects the inclusion of fish from isotopically distinct 242 tributaries that were not present in subsequent collections. This indicates the need to 243 obtain sufficient sample sizes to accurately characterize the spread of values 244 encountered in a particular watershed. However, this increased variance likely did not 245 bias the minimal effect of Sr isotope ratios on misclassification rates, since the other 246 year classes from the Hudson River also recorded similar ratios despite smaller

variances. Thus, while we observed statistically significant inter-annual variability in
 ⁸⁷Sr:⁸⁶Sr ratios for two rivers, this variability is minor compared to geographic
 variability and unlikely to bias classification estimates.

250 Several studies have reported significant temporal variability in otolith Sr:Ca 251 and Ba:Ca ratios for a variety of species (reviewed by Gillanders, 2002). The 252 majority of these studies focus on estuarine or marine species, with many reporting 253 significant variability in Sr and Ba otolith signatures at time scales ranging from 254 seasonal to inter-annual (Bergenius et al., 2005; Elsdon and Gillanders, 2006; 255 Gillanders, 2002; Hamer et al., 2003; Patterson and Kingsford, 2005; Patterson et al., 256 2004; Patterson et al., 2008; Rooker et al., 2003). Temporal variation in freshwater 257 systems is less frequently reported and not always significant. Feyrer et al. (2007) 258 reported significant differences in otolith Sr:Ca and Ba:Ca across two year classes of 259 splittail Pogonichthys macrolepidotus. In contrast, Wells et al (2003) and Munro et 260 al. (2005) report inter-annual stability in Sr:Ca ratios of cutthroat trout Oncorhyncus 261 clarki lewisi and lake trout Salvelinus namaycush, respectively. Using the same 262 species reported here, Thorrold et al. (1998) report significant seasonal variability in 263 Sr and Ba for the Connecticut, Delaware, and Hudson rivers, although the variability 264 was not enough to significantly bias accurate classifications of known-origin fish. 265 Because otolith Sr:Ca and Ba:Ca reflect ambient water composition, as modified by 266 temperature (Bath et al., 2000; Walther and Thorrold, 2006), the variability we 267 detected in American shad otoliths likely resulted from forces that altered ambient 268 composition, such as fluctuations in flow rates or tidally-driven resuspension (Jarvie 269 et al., 2000).

270 In conclusion, we observed statistically significant differences in 87 Sr; 86 Sr, 271 δ^{18} O, Sr:Ca, and Ba:Ca ratios among years for three rivers. This variability limits the

272 ability of researchers to use a database of juvenile signatures collected in one year to 273 classify fish born in other years. Although inter-annual variability in a ratio such as δ^{18} O is more likely to result in classification errors than a more stable signature like 274 ⁸⁷Sr:⁸⁶Sr, it would be prudent to match cohorts whenever possible, regardless of the 275 276 signature used. However, this is not always possible due to a lack of available 277 juvenile otoliths from the cohort of interest. An alternative would be to restrict the 278 database to more temporally stable signatures and pool juvenile otoliths from several 279 years. This approach, taken by Walther et al. (2008), accounts for the range of values 280 likely to be found in the cohort of interest, although it has the potential to decrease 281 overall classification accuracies. Also, this approach assumes that the range of values 282 of the pooled signatures reflects the variability that occurred over longer time periods. 283 The benefit of including or excluding temporally variable chemical ratios will 284 ultimately depend on the system in question and to what extent those ratios 285 significantly improve natal classification accuracies. Extended time series of otolith 286 analyses from one location, ideally with accompanying water samples, would help 287 explore variability on these time scales. Clearly, this issue is of paramount concern to 288 those wishing to accurately identify origins of fish and temporal variability must be 289 accounted for in any well-designed study using otolith chemistry as a natural tag.

290 Acknowledgements

- 291 Juvenile samples were provided by K. Hattala (new York State Department of
- 292 Environmental Conservation), and J. Olney (Virginia Institute of Marine Science).
- 293 Thanks to L. Ball at the WHOI Plasma Mass Spectrometry Facility, D. Ostermann at
- the WHOI Micropaleo Mass Spectrometry Facility, and S. Birdwhistell for help with
- sample analysis. Comments by H. Patterson greatly improved an early draft of the
- 296 manuscript. Funding was provided by National Science Foundation grants to SRT
- 297 (OCE-0215905 and OCE-0134998) and grants by the American Museum of Natural
- History Lerner-Gray Fund for Marine Research, SEASPACE, Inc., and the WHOI
- 299 Ocean Life Institute to BDW.

301 Literature cited

302	Åberg, G., Jacks, G. and Hamilton, P.J., 1989. Weathering rates and ⁸⁷ Sr/ ⁸⁶ Sr ratios:
303	an isotopic approach. Journal of Hydrology (Amsterdam), 109(1-2): 65-78.
304	Barnett-Johnson, R., Pearson, T.E. and Ramos, F.C., 2008. Tracking natal origins of
305	salmon using isotopes, otoliths, and landscape geology. Limnology and
306	Oceanography, 53(4): 1633-1642.
307	Bath, G.E. et al., 2000. Strontium and barium uptake in aragonitic otoliths of marine
308	fish. Geochimica et Cosmochimica Acta, 64(10): 1705-1714.
309	Bergenius, M.A.J., Mapstone, B.D., Begg, G.A. and Murchie, C.D., 2005. The use of
310	otolith chemistry to determine stock structure of three epinepheline serrannid
311	coral reef fishes on the Great Barrier Reef, Australia. Fisheries Research
312	(Amsterdam), 72(2-3): 253-270.
313	Campana, S.E., 1999. Chemistry and composition of fish otoliths: pathways,
314	mechanisms and applications. Marine Ecology Progress Series, 188: 263-297.
315	Capo, R.C., Stewart, B.W. and Chadwick, O.A., 1998. Strontium isotopes as tracers
316	of ecosystem processes: theory and methods. Geoderma, 82(1-3): 197-225.
317	Elsdon, T.S. and Gillanders, B.M., 2006. Temporal variability in strontium, calcium,
318	barium, and manganese in estuaries: Implications for reconstructing
319	environmental histories of fish from chemicals in calcified structures.
320	Estuarine Coastal and Shelf Science, 66(1-2): 147-156.
321	Feyrer, F. et al., 2007. Otolith microchemistry provides information complementary
322	to microsatellite DNA for a migratory fish. Transactions of the American
323	Fisheries Society, 136(2): 469-476.

324	Gillanders, B.M., 2002. Temporal and spatial variability in elemental composition of
325	otoliths: implications for determining stock identity and connectivity of
326	populations. Canadian Journal of Fisheries and Aquatic Sciences, 59(4): 1-11.
327	Hamer, P.A., Jenkins, G.P. and Gillanders, B.M., 2003. Otolith chemistry of juvenile
328	snapper Pagrus auratus in Victorian waters: natural chemical tags and their
329	temporal variation. Marine Ecology Progress Series, 263: 261-273.
330	Høie, H., Folkvord, A. and Otterlei, E., 2003. Effect of somatic and otolith growth
331	rate on stable isotopic composition of early juvenile cod (Gadus morhua L)
332	otoliths. Journal of Experimental Marine Biology and Ecology, 289(1): 41-58.
333	Ingram, B.L. and Sloan, D., 1992. Strontium isotopic composition of estuarine
334	sediments as paleosalinity-paleoclimate indicator. Science, 255(5040): 68-72.
335	Jackson, M.G. and Hart, S.R., 2006. Strontium isotopes in melt inclusions from
336	Samoan basalts: implications for heterogeneity in the Samoan plume. Earth
337	and Planetary Science Letters, 245(1-2): 260-277.
338	Jarvie, H.P. et al., 2000. Riverine inputs of major ions and trace elements to the tidal
339	reaches of the River Tweed, UK. The Science of the Total Environment, 251-
340	252: 55-81.
341	Kendall, C. and Coplen, T.B., 2001. Distribution of oxygen-18 and deuterium in river
342	waters across the United States. Hydrological Processes, 15(7): 1363-1393.
343	Kennedy, B.P., Blum, J.D., Folt, C.L. and Nislow, K.H., 2000. Using natural
344	strontium isotopic signatures as fish markers: methodology and application.
345	Canadian Journal of Fisheries and Aquatic Sciences, 57(11): 2280-2292.
346	Kennedy, B.P., Folt, C.L., Blum, J.D. and Chamberlain, C.P., 1997. Natural isotope
347	markers in salmon. Nature, 387(3365): 766-767.

348	Kennedy, B.P., Klaue, A., Blum, J.D., Folt, C.L. and Nislow, K.H., 2002.
349	Reconstructing the lives of fish using Sr isotopes in otoliths. Canadian Journal
350	of Fisheries and Aquatic Sciences, 59(6): 925-929.
351	Milton, D.A. and Chenery, S.R., 2005. Movement patterns of barramundi Lates
352	calcarifer, inferred from Sr-87/Sr-86 and Sr/Ca ratios in otoliths, indicate non-
353	participation in spawning. Marine Ecology Progress Series, 301: 279-291.
354	Munro, A.R., McMahon, T.E. and Ruzycki, J.R., 2005. Natural chemical markers
355	identify source and date of introduction of an exotic species: lake trout
356	(Salvelinus namaycush) in Yellowstone Lake. Canadian Journal of Fisheries
357	and Aquatic Sciences, 62(1): 79-87.
358	Ostermann, D.R. and Curry, W.B., 2000. Calibration of stable isotopic data: an
359	enriched delta O-18 standard used for source gas mixing detection and
360	correction. Paleoceanography, 15(3): 353-360.
361	Palmer, M.R. and Edmond, J.M., 1992. Controls over the strontium isotope
362	composition of river water. Geochimica et Cosmochimica Acta, 56(5): 2099-
363	2111.
364	Patterson, H.M. and Kingsford, M.J., 2005. Elemental signatures of Acanthochromis
365	polyacanthus otoliths from the Great Barrier Reef have significant temporal
366	spatial and between-brood variation. Coral Reefs, 24(3): 360-369.
367	Patterson, H.M., McBride, R.S. and Julien, N., 2004. Population structure of red drum
368	(Sciaenops ocellatus) as determined by otolith chemistry. Marine Biology,
369	144(5): 855-862.
370	Patterson, W.F., Cowan, J.H., Wilson, C.A. and Zhongxing, C., 2008. Temporal and
371	spatial variability in juvenile red snapper otolith elemental signatures in the

- 372 northern Gulf of Mexico. Transactions of the American Fisheries Society,
 373 137(2): 521-532.
- Rooker, J.R., Secor, D.H., Zdanowicz, V.S., De Metrio, G. and Orsini Relini, L.,
 2003. Identification of Atlantic bluefin tuna (*Thunnus thynnus*) stocks from
 putative nurseries using otolith chemistry. Fisheries Oceanography, 12(2): 7584.
- 378 Rosenthal, Y., Field, P.M. and Sherrell, R.M., 1999. Precise determination of
- element/calcium ratios in calcareous samples using sector field inductively
 coupled plasma mass spectrometry. Analytical Chemistry, 71(15): 3248-3253.
- 381 Sturgeon, R.E. et al., 2005. Certification of a fish otolith reference material in support
- of quality assurance for trace element analysis. Journal of Analytical Atomic
 Spectrometry, 20(10): 1067-1071.
- 384 Thorrold, S.R., Campana, S.E., Jones, C.M. and Swart, P.K., 1997. Factors
- 385 determining δ^{13} C and δ^{18} O fractionation in aragonitic otoliths of marine fish. 386 Geochimica et Cosmochimica Acta, 61(14): 2909-2919.
- 387 Thorrold, S.R., Jones, C.M., Campana, S.E., McLaren, J.W. and Lam, J.W.H., 1998.
- 388 Trace element signatures in otoliths record natal river of juvenile American
- 389 shad (*Alosa sapidissima*). Limnology and Oceanography, 43(8): 1826-1835.
- Thorrold, S.R. et al., 2002. Quantifying larval retention and connectivity in marine
 populations with artificial and natural markers. Bulletin of Marine Science,
 70(1): 291-308.
- Thorrold, S.R., Latkoczy, C., Swart, P.K. and Jones, C.M., 2001. Natal homing in a
 marine fish metapopulation. Science, 291(5502): 297-299.
- 395 USGS, 2004. Water-Data Report NY-04-01. United States Geological Survey,
- 396 Alexandria, VA.

- 397 USGS, 2005. Water-Data Report VA-05-01. United States Geological Survey,
 398 Alexandria, VA.
- Valle, S.R. and Herzka, S.Z., 2008. Natural variability in δ¹⁸O values of otoliths of
 young Pacific sardine captured in Mexican waters indicates subpopulation
 mixing within the first year of life. ICES Journal of Marine Science, 65(2):
 174-190.
- Walther, B.D. and Thorrold, S.R., 2006. Water, not food, contributes the majority of
 strontium and barium deposited in the otoliths of a marine fish. Marine
 Ecology Progress Series, 311: 125-130.
- Walther, B.D. and Thorrold, S.R., in press. Continental-scale variation in otolith
 geochemistry of juvenile American shad. Canadian Journal of Fisheries and
 Aquatic Sciences.
- 409 Walther, B.D., Thorrold, S.R. and Olney, J.E., 2008. Geochemical signatures in
- 410 otoliths record natal origins of American shad. Transactions of the American
 411 Fisheries Society, 137(1): 57-69.
- 412 Wells, B.K., Rieman, B.E., Clayton, J.L., Horan, D.L. and Jones, C.M., 2003.
- 413 Relationships between water, otolith, and scale chemistries of westslope
- 414 cutthroat trout from the Coeur d'Alene River, Idaho: The potential application
- 415 of hard-part chemistry to describe movements in freshwater. Transactions of
 416 the American Fisheries Society, 132(3): 409-424.
- 417 Yoshinaga, J., Nakama, A., Morita, M. and Edmonds, J.S., 2000. Fish otolith
- 418 reference material for quality assurance of chemical analyses. Marine
- 419 Chemistry, 69(1-2): 91-97.

421 Figure captions

422

423 Figure 1. Map indicating locations of the Hudson, Mattaponi, and Pamunkey rivers

424 where juvenile American shad were collected..

- 425
- 426 Figure 2. Mean (± 1 standard deviation) values of (a) δ^{18} O, (b) 87 Sr: 86 Sr, (c) Sr:Ca,
- 427 and (d) Ba:Ca ratios for the Hudson, Mattaponi, and Pamunkey rivers across years.

			$\delta^{18}O$		87	Sr: ⁸⁶ Sr			Sr:Ca			Ba:Ca	
Hudson	df	MS	F	$\%\omega^2$	MS	F	$\%\omega^2$	MS	F	$\%\omega^2$	MS	F	$\%\omega^2$
Year	2	6.21	43.16**	34	2.35x10 ⁻⁶	5.50*	5	4.83×10^{-3}	2.16^{NS}	0	13.16	11.10**	11
Residual	79	0.14		66	4.27×10^{-7}		95	2.23×10^{-3}		100	1.19		89
Mattaponi													
Year	3	13.07	594.06**	85	1.37×10^{-7}	0.73 ^{NS}	0	0.37	63.03**	38	318.42	27.57**	21
Residual	99	0.02		15	1.87x10 ⁻⁷		100	0.01		62	11.55		79
Pamunkey													
Year	2	11.45	241.33**	81	3.97x10 ⁻⁷	14.37**	19	0.05	9.88**	14	353.80	46.28**	45
Residual	52	0.05		19	2.80x10 ⁻⁸		81	0.01		86	7.64		55

Table 1. Single factor ANOVA results for yearly variation in isotope and elemental ratios for each river. NS = not significant, *p < 0.01, **p < 0.01, *p <

430 0.001. Variance components ($\%\omega^2$) are given as the percentage of the total variance for each ANOVA.

431

- 432 Table 2. Percentages of misclassifications among years for a given river from
- 433 quadratic discriminant function analyses (QDFA). The first column shows
- 434 misclassification results for QDFAs using otolith δ^{18} O, 87 Sr: 86 Sr, Sr:Ca, and Ba:Ca
- 435 ratios. Following columns show QDFA results excluding each chemical ratio in turn.

		Excluding							
Hudson	All	δ^{18} O	⁸⁷ Sr: ⁸⁶ Sr	Sr:Ca	Ba:Ca				
2000	26	41	15	22	30				
2001	11	14	7	4	14				
2004	48	63	44	52	48				
Average	28	39	22	26	31				
Mattaponi									
2000	15	52	7	7	26				
2001	4	14	7	4	7				
2002	0	57	0	0	0				
2004	12	33	12	12	25				
Average	8	39	7	6	15				
Pamunkey									
2000	11	22	17	11	28				
2001	11	28	11	11	17				
2002	5	16	5	5	5				
Average	9	22	11	9	17				