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ABSTRACT 

Nonsorted polygons with sand-filled wedges were investigated in lower and central Beacon 

Valley, Antarctica (77.82ºS, 160.67ºE) using field observations coupled with a 2-m resolution 

Digital Elevation Model and a high-resolution aerial photograph. A gasoline-powered concrete 

breaker was employed to expose the sediments of four representative polygon centers and six 

wedges from geomorphic surfaces containing tills of two different ages. The excavated polygons 

ranged from 9 to 16 m in diameter (average = 12 m); the sand-filled wedges ranged from 0.2 m to 

2.5 m in width (average = 0.9 m). The top of ice-bonded permafrost ranged from 12 to 62 cm in 

depth (average = 33 cm) in the polygon centers and from 64 to >90 cm (average = >75 cm) in 

wedges. One active thermal contraction fissure generally was apparent at the surface, but 

excavations revealed numerous inactive fissures. The wedges contain sand laminations averaging 

3 mm in width when viewed in cross section. Although most of the polygons were of the sand-

wedge type, some contained ice veins up to 1 cm in width and could be classed as composite 

wedges. Three stages of polygon development were observed, including strongly developed 

polygons on Taylor II surfaces (ca. 117 ka), moderately developed polygons on Taylor III 

surfaces (ca. 200 ka), and poorly developed polygons on Taylor IVa and older (ca. >1.1 Ma) 

surfaces. This retrogressive development may be due to sublimation of ice-bonded bonded 

permafrost following thermal cracking. With the drop in ice content, the thermal coefficient of 

expansion is lowered, which causes a reduction in tensile stresses.  

 

Keywords: sand-wedge polygons, patterned ground, non-sorted polygons, thermal contraction 

fissures, McMurdo Dry Valleys, permafrost 
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INTRODUCTION 

Since the early work of T.L. Péwé (1959) and R.F. Black (Berg and Black, 1966; Black, 1973) in 

the McMurdo Dry Valleys of Antarctica, there have been few investigations of the mechanisms of 

active sand-wedge formation. Péwé (1959) studied the approximate size and composition of 

thermal contraction fissures in Antarctica, and Berg and Black (1966) and Black (1973) measured 

wedge growth rates from permanent plots and attempted to use this information to date 

landforms. Ugolini et al. (1973) proposed two stages of nonsorted polygon formation in Beacon 

Valley that included well-developed polygons and poorly expressed polygons.  Marchant et al. 

(2002) depicted the key stages in formation of high-centered polygons over buried glacier ice in 

upper Beacon Valley (S77º51.039’, E160º35.576’). Sletten et al. (2003) described the initiation 

and maturation of patterned ground, largely from measurements of 60-cm long rods hammered 

vertically into the ground on opposite sides of contraction cracks in lower Beacon Valley. Levy et 

al. (2006) focused on the geometry of patterned ground on rock glaciers and sublimation till in 

upper Beacon Valley. 

 There have been numerous studies of inactive sand-wedge polygons containing permafrost, 

primarily in the Canadian Arctic (Murton, 1996; Murton and French, 1993; Murton and Bateman, 

2007). In addition, sand-wedge relicts have been observed in many areas where permafrost 

formerly existed and have been used in paleo-environmental reconstruction, including northern 

Alaska (Carter, 1983), eastern New Jersey, USA (French et al., 2003), the Hexi Corridor, China 

(Wang et al., 2003), Flanders, Belgium (Ghysels and Heyse, 2006), and north-central Hungary 

(Kovács et al., 2007). 

 The objectives of this study were to: (1) describe and characterize sand-filled wedges and 

polygons, (2) interpret these features, and (3) propose a descriptive model for the formation of 
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sand-filled polygons in lower and central Beacon Valley from detailed analysis of a digital 

elevation model (DEM) with a 2-m resolution and other information.  

 

STUDY AREA 

Located in the Quartermain Mountains, Beacon Valley is 17 km long and 3 km wide (Fig. 1). The 

valley trends upward northeast to southwest, with the valley floor rising from 930 m near the 

Taylor Glacier to over 1,600 m in the uppermost part of the valley. The bedrock is comprised of 

sandstones from the Devonian-to-Jurassic Beacon Supergroup that have been intruded by sills 

and dikes of Ferrar dolerite during the Jurassic (Barrett, 1981). Reconnaissance glacial 

geomorphology maps of Beacon Valley were prepared by Linkletter et al. (1973), Sugden et al. 

(1995), and Bockheim (2007). Based on differences in moraine morphology, surface boulder 

weathering, and soil development, at least five drift sheets have been distinguished in Beacon 

Valley and the nearby Arena Valley. These include Taylor II, Taylor III, Taylor IVa, Taylor IVb, 

and Granite till, which are believed to be 117 ka, 200 ka , 1.0-2.2 Ma, >2.2 to <7.4 Ma, and 8 Ma  

in age, respectively, based on cosmogenic nuclides, volcanic-ash dating, and stratigraphic and 

geometric relations of drifts (Brook et al., 1993; Marchant et al., 1993; Sugden et al., 1995). The 

drift sheets and recessional moraines along the valley floor are thin, ranging from one to several 

meters in thickness. 

 Soils of Beacon Valley generally contain ice-bonded permafrost within 100 cm of the surface 

and, compared to the nearby Arena Valley, have higher moisture contents and lower levels of 

salts (Bockheim, 2007). The following properties increase with age on glacial drifts of Beacon 

Valley: weathering stage, morphogenetic salt stage, electrical conductivity of the horizon of 

maximum salt accumulation, and depth of staining.  
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 From temperature measurements in a borehole at a depth of 19.6 m, the mean annual air 

temperature of Beacon Valley is approximately -23ºC (Sletten, personal communication). The 

mean monthly air temperature of the coldest months, June through August, is approximately  

-35˚C and the mean monthly temperature for the warmest months, December through February, is 

about -10˚C. There are very few days when the air temperature rises above 0˚C. The mean annual 

precipitation is ca. 100 mm/yr (water equivalent). Frequent snowfalls followed by strong winds 

may selectively contribute snowfall to polygon wedges. However, our observations suggest that 

little of this snow melts; rather, the snow is lost in late summer due to sublimation. 

 The region contains continuous permafrost. However, the upper part of the permafrost often is 

“dry” in that it contains very low concentrations of ice (<5% by weight) and is, therefore, loose. 

Ice-bonded permafrost contains about 10 to 15% ice. The active-layer depth, which must be 

determined from closely spaced thermisters, ranges from 20 to 30 cm in thickness. 

 

METHODS 

A manual examination was conducted of polygon dimensions, including size and shape of 

polygons and width and depth of wedges from the Beacon Valley Digital Elevation Model 

(DEM), which has a 2-m resolution (U.S. Geological Survey and Ohio State University), a 

scanned, high-resolution, high-elevation, oblique color air photograph (USGS), and the authors’ 

personal photographs taken during helicopter flights. Our observations of patterned ground were 

made on drift sheets along an approximate 400-m wide longitudinal profile down the center of the 

valley where valley sidewalls had minimal influence, with an emphasis on lower and central 

Beacon Valley. Although we avoided excavating on moraine crests, we recognized the 
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termination of Taylor II, III, and IVa drifts as being 2.1, 4.9, and 9.8 km southwest of the Taylor 

Glacier, respectively (Fig. 1). 

 Recognized polygons shapes identified previously in Antarctica include rectangular, 

pentagonal, hexagonal, heptagonal, and octagonal, and recognized polygon forms include high-

centered and flat-centered (Berg and Black, 1966; Black, 1973). Five representative polygons 

were selected on Taylor II and Taylor III drifts. There was insufficient time to excavate on older 

drifts. Selected polygons were of average form and size on a particular drift and were located 

away from boulder-belt moraines and valley walls. Because they were most common on Taylor II 

and III drifts, all of the polygons excavated were of the high-center type. A gasoline-powered 

concrete breaker (Wacker Incorporated ©) was employed to excavate within the polygon centers 

and the wedges.  

 Cross-sectional diagrams were prepared for four of the six sand-filled wedges using the 

technique described by Bockheim and Tarnocai (1998). The stratigraphy along a cross-sectional 

profile was examined qualitatively, including field textures, nature of the fabric, distribution, 

form and relative amount of ice, and shape and degree of frosting of infilled sand grains.  

 Although a primary aim of this study was to characterize sand-filled wedges in lower and 

central Beacon Valley, soils were important in preparing our descriptive model of polygon 

formation. Soil profiles were described, weathering stages and morphogenetic salt stages were 

determined (Bockheim, 2007), and the soils were classified according to Soil Taxonomy (Soil 

Survey Staff, 2006). Color development equivalence (CDE) was determined using the system of 

Buntley and Westin (1965). In addition to data collected during the study, we utilized 

unpublished data from the 1969 notes of J. Bockheim on Taylor IVa surfaces in central Beacon 

Valley. A descriptive model was developed from the aforementioned data. 
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RESULTS 

Polygon morphometrics 

The excavated polygons ranged from 9 to 16 m in diameter (average = 12 m), 80 m2 to 240 m2 in 

area (average = 159 m2), and the sand-filled wedges ranged from 0.2 m to 2.5 m in width 

(average = 0.9 m) (Table 1). We were able to excavate in wedges to depths ranging from 50 to 

130 cm (average = 86 cm). Because the depth to ice-bonded permafrost averaged 29 cm, we 

excavated an average of 57 cm into ice-bonded permafrost. 

 From analysis of the DEM, polygons on Taylor II drift were commonly high-centered, 

pentagonal to heptagonal in shape, and had an area of about 100 m2 (Figs. 2A and 3A). The 

troughs averaged 0.5 m in width and 1 m in depth (Table 1). Polygons on Taylor III drift were 

often high-centered and had a pentagonal or hexagonal shape (Figs. 2B and 3B). The polygons 

were comparable in size to those on Taylor II drift. However, the wedges were wider, averaging 2 

m, and less deep (average = 1 m). Polygons on Taylor IVa drift were more diffuse than those on 

younger drifts. Due to wind-blown snow accumulating in the wedges, only two or three sides of 

the polygons often were visible. The wedges were very broad often reaching 6 m but averaging 3 

m in width. We observed very few rims on either side of the polygon wedges. 

  

Stratigraphy of polygon centers and wedges 

In polygon centers, the top of ice-bonded permafrost or buried ice ranged from 12 to 72 cm in 

depth (average = 33 cm). Two of the polygon centers were underlain by relatively pure, gray 

buried ice. The unfrozen portions of wedges had a steep “V” shape on Taylor II surfaces (Figs. 
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4A, 5A, 5B) and a broadened “V” shape on Taylor III surfaces (Fig. 5C). The maximum depth to 

the top of ice-bonded permafrost in wedges ranged from 64 to more than 90 cm (Table 1). 

 Following the terminology of the Soil Survey Manual (Soil Survey Divisional Staff, 1993), 

polygon centers were comprised of cobbly (75 to 250 cm) or gravelly (2 mm to 75 cm) sand, and 

the wedges were cobbly or gravelly sands in the upper 20 to 40 cm (Fig. 4A), but with pure sand 

below. Although active single fissures were visible in wedges when viewed in plan section, 

inactive cracks filled with sand were seen below the surface (Fig. 4C). The typical cross-sectional 

profile of a wedge contained a series of sand laminations arranged in a V-shaped network. Clasts 

having fallen into the fissures appeared to have interrupted the flow of sand, creating columns of 

sandy material (Fig. 4D). Multiple flow lines of infilling sand were viewed in sections across the 

wedges, especially in older sand-filled wedges (Fig. 4C). When viewed in long section, these 

features resembled bundles of parallel sand laminations (Fig. 4E).  Individual laminations 

averaged 3 mm in width. Mineral grains in the fissures, particularly quartz, were well rounded 

and frosted. We did not observe upturned sediments adjacent to the wedge when it was viewed in 

cross-section. 

 Ice was occasionally found in the fissures, generally as veins up to 1 cm in width but also as 

lenses up to 5 mm in thickness (Fig. 4F). The ice-bonded permafrost surrounding the wedges was 

of a concrete type with most of the pores filled with ice. 

 

Soil development 

The soils show a general progression in development from Taylor II to Taylor IVa surfaces within 

polygon centers and within polygon wedges (Table 3). Within polygon centers and the wedges, 

the following properties commonly increased with an increase in approximate age of the drift: 
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depth to the base of oxidation, maximum color-development equivalence (CDE), depth to the 

surface of ice-bonded permafrost, and weathering stage. Soils in polygon centers were more 

strongly developed than those in polygon fissures on Taylor II and III moraines. However, on 

Taylor IVa drift, soils in polygon centers were comparable in development to those in wedges.  

 

DISCUSSION 

Interpretation of nonsorted polygons 

The polygons examined in this study are primarily sand-wedge polygons. A few of the polygons 

contain lenses and veins of ice that comprise less than 2% of the total volume of the wedge; these 

may be classed as composite polygons. The polygons appear to have formed from sand falling 

into thermal contraction fissures and resemble those reported by Péwé (1959) and Berg and Black 

(1966).  

 

Descriptive model of sand-wedge formation 

At least four descriptive models for sand-wedge formation have been developed for Beacon 

Valley alone (Table 4). The model of Ugolini et al. (1973) is largely a retrogressive model in 

which high-center polygons continue to develop for a period of time and then undergo a flattening 

and the wedges become wider with additional time. The models of Marchant et al. (2002) and 

Levy et al. (2006) deal specifically with the key stages in the formation of high-centered polygons 

over buried glacier ice in upper Beacon Valley and bear only peripherally on our study. They also 

are retrogressive models because they evoke a negative feedback through which secondary ice 

formation is proposed to terminate further thermal contraction. As the troughs enlarge, they 

collect wind-blown snow from the polar plateau. This snow retards sublimation of buried ice by 
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reducing the vapor-pressure gradient. Because of their insulating effect, snow and slumped 

material in deep troughs may terminate further contractions. Marchant et al. (2002) used this 

model to explain the persistence of buried ice for periods of up to 8 million yr.  

 In contrast to the previously mentioned models, the model of Sletten et al. (2003) is 

progressive and is based on measurements of displaced rods driven into the permafrost 40 years 

earlier by Berg and Black (1963). They proposed three stages in sand-wedge development: an 

initial phase (10-103 years), a developmental phase (103-104 years), and a mature phase (104-106 

years). During development, sand wedges become progressively wider with time, causing the 

formation of “shoulders” (rims) adjacent to the fissures and aggradation of polygon centers due to 

expansion and deformation. 

 Based on our field observations and image analyses, we propose an additional model for sand-

wedge formation in lower and central Beacon Valley (Fig. 6). During the initial stages of sand-

wedge formation, fissures propagate upward through the overlying drift when the tensile stresses 

induced by the cooling of the ground and subsurface reach the tensile strength of the underlying 

ice-bonded permafrost. These fissures typically are 0.5 to 2 cm in width and in plan view are 

reflected in the summer by “dimples” of flowing sand (Fig. 7). Fracturing results in a polygonal 

network of approximately 100 m2 in plan view.   

 Over time fissures become filled with sand during sand-wedge formation creating V-shaped 

wedges. The sand originates partially from collapse of polygon sides and partially from wind 

deposition. With repeated cracking, loose sand moves downward into the contraction fissures, 

leaving a coarse-grained gravel and cobble lag at the base of the wedge. Lowering of the surface 

of the ice-bonded permafrost table in the sand-wedge is due primarily to the loss of matrix ice due 

to sublimation. Ice-bonded permafrost in Beacon Valley often contains only 10 to 15% moisture 
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by weight (Black, 1973). In contrast, sand in the fissures has between 2 and 4% moisture. The 

pores within the sand-filled fissure have a lower thermal capacity than the ice in ice-bonded 

permafrost (Burn, 2004). The drop in ice content may lower the coefficient of linear expansion in 

accounting for the lowering of tensile stresses. Eventually, the polygons centers become smaller 

and have less relief as the wedges spread and the fissures eventually become inactive. On Taylor 

IVa drift in central Beacon Valley, the lack of contraction fissures suggests that many of the 

polygons are no longer active. 

 A key difference in the descriptive models of sand-wedge development pertains to the 

mechanism of displacement of materials as the wedge grows laterally. Sletten et al. (2003) 

proposed a convection-like system similar to what occurs with ice-wedge formation in the arctic 

(Mackay, 1986), whereby there is an upward “bulging,” i.e., aggradation of the polygon surface. 

They suggested that eventually the entire polygon becomes underlain by reworked materials from 

sand-wedge formation, and they proposed that the polygon materials could be reworked in as 

little as 104 years. In contrast, we found no evidence for convection flow or deformation of 

polygon edges and centers in lower and central Beacon Valley. Moreover, Sletten et al. (2003) 

reported rims of compressed sand along the edges of wedges accompanied by upwarping of 

sediments adjacent to the wedge when viewed in cross section. However, we did not observe 

these features. 

 According to our model, once fissures form, sand and gravel from the side of the polygon fall 

into the fissure (Fig. 6). The trough widens with time creating a characteristic V shape. There is 

some displacement of material alongside the fissure; however, we saw minimal evidence of 

“shoulders” (rims) in lower and central Beacon Valley. Because the lag deposits in the trough are 

sufficiently permeable to permit enhanced conductive cooling during the winter months, they tend 
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to favor repeated thermal contraction sites. Fissures may become blocked by trapped gravel and 

cobbles that create sand columns (Fig. 4D). The fissures tend to migrate laterally across the 

wedge over time when view in plan section. Once the wedges become deep enough, windblown 

sand may become a primary source of material to the wedges. 

 The buildup of material in the wedge causes a localized depression in the underlying ice-

bonded permafrost table. Whereas the depth to ice-bonded permafrost ranges from 12 to 62 cm 

(average = 33 cm) in the polygon center, it ranges from 64 to >90 cm (average = >75 cm) in the 

wedge. With our model, there is no need to invoke mechanical convection within the frozen 

polygon center and aggradation, as was proposed by Sletten et al. (2003). This is supported by our 

soils examinations. Soils within polygon centers have a comparable development to those on 

moraine crests that lack high-centered polygons. In addition, soils in both polygon centers and 

polygon fissures show progressive development with time (Ugolini et al., 1973; Bockheim, 

2007), which argues against extensive convective cycling in polygon centers and continued 

wedge growth for periods up to 106 years. 

 Polygons in Mullins Valley in upper Beacon Valley are oriented down-valley because of rapid 

flow of underlying rock glaciers (Levy et al., 2006). The same is true of polygons on Taylor IV 

drift in central Beacon Valley (Figs. 1, 3C). However, this distortion is not apparent in patterned 

ground on Taylor II and III drifts, either because they are not underlain by rock glaciers or 

because the rock glaciers are no longer active. Although Péwé (1959) suggested that sand wedges 

may theoretically extend to depths of 5 m, our preliminary excavations yielded fissure depths of 

0.6 m to approximately 1.5 m (Table 1). 

  

Retrogression of patterned ground development  
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Field observations and examination of the Beacon Valley DEM and color air photographs support 

an eventual degradation of high-centered polygons. The number of polygon sides visible 

diminishes with time. Whereas high-centered polygons were common on Taylor II and III 

surfaces, flat-centered polygons were prevalent on Taylor IVa surfaces. With time, the width of 

the polygon wedges increases and the depth of the wedges decreases.  

 In lower Beacon Valley well-developed polygons occur primarily on Taylor II surfaces that 

are 117 ka in age. An examination of Black’s original 14 patterned ground monitoring sites 

revealed that all but the two at Nussbaum Riegel in Taylor Valley occur on surfaces <117 ka in 

age. According to our model, poorly expressed polygons exist on older surfaces except where 

there is a pronounced local moisture supply. At Nussbaum Riegel moisture is supplied by streams 

from the Kukri Hills and freshwater ponds. Eventually the polygons become more subdued and 

the fissures broaden to widths of 6 m or more (Fig. 3C). 

 The presence of diffuse polygons is not unique to central Beacon Valley. They are also found 

on Taylor III (208-335 ka), Taylor IV (ca. 1.1-<3.5 Ma), and Alpine III (<3.5 Ma) in Taylor 

Valley and on Miocene-aged surfaces in the Asgard Range (Bockheim, personal observations). In 

addition, many Pliocene and older surfaces in the McMurdo Dry Valleys lack patterned ground 

but the soils contain sand-wedge casts that attest to the former presence of ice-bonded permafrost 

and patterned ground (Bockheim, 2007). It is interesting that Berg and Black (1963, p. 125) 

suggested: “Growth rates of sand wedges theoretically will diminish with time as loose sand is 

added to the ground, leaving small cores of ice-cemented material in the centers of polygons too 

small to crack under the seasonal temperature changes.”  

 Finally, we express concern over the use of sand-wedge growth to date landforms. Berg and 

Black (1966) recognized several sources of error in measurement of wedge growth rates, 
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including limitations of the measuring devices, the quality of measuring points (e.g., tilting of 

rods), stake movement, and personnel factors. In addition to these, we question growth rates 

estimated from rods penetrating only 2 to 12 cm into ice-bonded permafrost. Contraction sites 6 

and 7 in Beacon Valley yielded dates of 3 to 5 ka as estimated from patterned ground growth 

rates (Berg and Black, 1966). In contrast, cosmogenic dating of equivalent moraines traced to the 

nearby Arena Valley yielded an age of 117 ka for Taylor II drift (Brook et al., 1993). 

 

CONCLUSIONS 

Sand-wedge polygons in Beacon Valley reach a maximum state of development achieved over ca. 

117,000 yr and then regress with further time. Well-developed, nonsorted high-center polygons 

occur on surfaces up to 117,000 yr. However, on older surfaces the polygons become more 

subdued and the wedges become broader, attaining widths of 6 m. Our findings of sand-wedge 

development support those of Berg and Black (1966) in that a thaw bulb in ice-bonded permafrost 

develops in the sand wedge.  Although we did not observe rims or other evidence of deformation 

near the margin or center of polygons, these features occur in Victoria Valley and other areas of 

the McMurdo Sound region (Berg and Black, 1966).  

 Excavations in polygon centers and sand wedges yield pertinent information regarding the 

stratigraphy, fabric, and distribution of ice in patterned ground of Beacon Valley. Sand wedges 

have a characteristic V shape but fissures are not limited to a single location. Instead, these 

fissures appear to migrate as they become plugged with coarse fragments. In lateral view, infilling 

fissures resemble rivulets of flowing sand. There is some segregated ice in sand wedges, 

primarily as ice veins but also as ice lenses. In contrast the surrounding ice-cemented permafrost 
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is of a concrete type. The segregated ice in sand wedges probably originates from unusual 

warming events that melt snow accumulated in polygon wedges.   
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List of Figures 

Figure 1.  Approximate position of outer Taylor II, III, IVa, and IVb moraines in lower and 

central Beacon Valley. Location of excavation sites for detailed examination of polygon centers 

and wedges is shown. Air photo by U.S. Geological Survey. The coordinates of sites 7-9 are 

77°50’S, 161°00’E. 

Figure 2.  Photographs of an age-sequence of non-sorted sand-wedge polygons in Beacon Valley 

from a digital elevation model: (A) high-centered polygons with troughs 1-2 m wide on Taylor II 

drift in lower Beacon Valley (Black monitoring site 7); (B) a high-centered polygon with troughs 

2-3 m wide on Taylor III drift in lower Beacon Valley (Taylor Glacier in the background is 

approximately 2 km away); (C) high-centered polygons with troughs up to 6 m wide on Taylor IV 

drift in central Beacon Valley looking southwest. 

Figure 3.  Selected areas of patterned ground from the Beacon Valley digital elevation model for 

three drift sheets on the valley floor showing the increasingly diffuse expression of high-center, 

sand-wedge polygons with time in Beacon Valley: (A) Regular pentagonal and hexagonal 

polygons on Taylor II drift in lower Beacon Valley (from oblique aerial photo); (B) poorly 

expressed polygons on Taylor III drift in lower Beacon Valley; and (C) diffuse polygons on 

Taylor IV drift in central Beacon Valley. The apparent fluting on Taylor III and IV surfaces may 

reflect prevailing wind ablation from the southwest to northeast or may represent aberrations in 

the DEM. 

Figure 4.  Selected photographs of sand-wedge excavations in Beacon Valley: (A) a wedge 

showing a fissure (arrow); (B) an exposed fissure (arrow) surrounded by ice-bonded permafrost; 

(C) and a series of inactive fissures (arrows) in a diffuse polygon (the fissures are spaced at 

approximately 10-cm intervals); (D) vertical laminations of sand as columns on stones (arrow) in 
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a sand wedge; (E) a lateral view of rivulets of flowing sand along a contraction crack; and (F) ice 

veins (arrow) in fissures of a sand wedge. 

Figure 5.  Cross sections of sand wedges on the innermost Taylor II moraine (A), the second-to-

the-outermost Taylor II moraine (B), and on Taylor III drift (C). 

Figure 6.  A model of sand-wedge polygon formation in lower and central Beacon Valley, 

Antarctica.  

Figure 7. “Dimples” where sand is actively flowing down into a thermal-contraction fissure. The 

infilling sand originates from the side of the polygon and from aeolian addition. Note the lack of 

raised rims on the sides of the fissure. 

















Table 1. Characteristics of sampling sites in Beacon Valley, Antarctica

Polygon Polygon Polygon Wedge Wedge Location Geomorphic Depth to ice Total depth of
No. Pit No. dimensions (m) morphology depth (m) width. (m) of pit surface bonding (cm)** excavation (cm) Comments
3 5 10 x 11 high center center TIIc 12 50 ice-bonded permafrost contains rounded, frost qtz. xls, 48% interstitial ice; concrete-type frost

(110 m2)
3 6 0.3-0.4 0.4-0.5 fissure 20/>90 90 ice lenses up to 5 mm thick and veins up to 1 cm wide; few gravels below 40 cm

4 7 10 x 8 high center center TIIc 26 75 buried ice at 39 cm; oblique sand-filled fissures in ice-bonded permafrost and vertical veins

(80 m2) of sand and ice
4 8* 2.0 0.2-1.0 fissure 28/64 64

4 9* 2.0 0.2-1.0 fissure 19/>86 86 no gravel; fissures filled with loose sand; concrete frost;  vertical sand laminations 3 mm wide

5 10 10 x 11 high center center TII innermost 33 63
(110 m2)

5 11* 0.3-0.5 fissure 26/67 130 few gravel below 20 cm; vertical sand laminations as columns on clasts

6 12* 15.3 x 13.5 high center 1.5 2.0-2.5 fissure TIII 16/70 90 secondary fissures; quartz grains rounded & frosted; fissures spaced 

(207 m2) at approximately 10-cm intervals across 2.5-m-wide primary wedge
6 13* 1.5 .15-2.0 fissure 45/79 110 buried ice at 92 cm; vertical fissures up to 45 cm deep; rounded quartz grains

throughout; sand columns on clasts; few gravels
7 14 15 x 16 high center center TII outermost 62 100 ventifacts throughout; laminations in upper 20 cm

(240 m2)
0.5-1.5 0.3 fissure

*Cross-sectional diagram prepared

**The slash shows minimum depth to ice bonding in the wedge and maximum depth beneath the thermal contraction fissure



Table 2. Morphometry of polygons in relation to drift sheet, Beacon Valley, Antarctica.

Approximate No. of polygon Mean polygon Mean wedge Mean wedge
Drift sheet age (yr)1 Polygon shape2 sides visible Polygon form3 area (m2) width (m) depth (m)

Taylor II 117 ka R (4.5), P (38.6), H (27.3), S (27.3), O (2.3) 4-8 H (90), F (10) 100 0.5 1.0

Taylor III 200 ka R (7.7), P (61.5), H (30.8) 4-6 H (80), F (20) 125 2.0 1.0

Taylor IVa >1.0-<2.2 Ma (not determined) 2-3 F (90), H (10) 125 3.0 0.5

1 Brook et al., 1993; Sugden et al., 1995.
2 Shape: R = rectangular; P = pentagonal; H = hexagonal; S = septagonal; O = octagonal (percentage of total given in parentheses).
3 Form: H = high-centered; F = flat-centered (percentage of total given in parentheses).



Table 3. Properties of soils in polygon centers and fissures of Beacon Valley.

Polygon 7 Polygon 5 Polygon 5 Polygon 3 Polygon 3 Polygon 4 Polygon 4 Polygon 4 Polygon 6 Polygon 6 4 profiles 8 profiles
Property Pit 14, Center Pit 10, Center Pit 11, Wedge Pit 5, Center Pit 6, Wedge Pit 7, Center Pit 8, Wedge Pit 9, Wedge Pit 12, Wedge Pit 13, Wedge Center6 Wedge6

Geomorphic surface TIIa TIIb TIIb TIIc TIIc TIIc TIIc TIIc TIII TIII TIVa TIVa
Depth to base of oxidation (cm) 3-25 8.5 0 0 0 0 0 0 0-24 1-17 >34 >44
Maximum CDE1 24 24 12 12 12 12 12 12 30 24 22 23
Field texture2 vks ks gs gs s gs gs gs gs gs ks s
Depth to surface of ice-bonded permafrost 62 33 38-67 12 12-40 26 28-64 19-86+ 16-70 45-79 >39 >43
Salt stage3 2 1 1 1 0 1 0 0 1 1 1 1
Weathering stage4 2 2 2 2 1 2 1 1 2.5 2.5 4 3.5
Depth of cohesive soil (cm) 62 9 67 12 0 0 0 0 24 7 >39 >44
Soil subgroup5 THo THo THt THo THt GHt THt THt THt GHt TAo THt

1 Color Development Equivalents (Buntley and Westin, 1965)
2 Texture: vks = very cobbly sand; ks = cobbly sand; gs = gravelly sand; s = sand.
3 Bockheim (1990)
4 Campbell and Claridge (1975).
5 THo = Typic Haplorthels; THt = Typic Haploturbels; GHt = Glacic Haploturbels; TAo = Typic Anhyorthels (Soil Survey Staff, 2006).
6 Bockheim (unpublished).



Table 4. Comparison of models explaining development of sand‐wedge polygons in Beacon Valley, 
Antarctica.

Valley Parent Mode of  Deformation of Change in height Evolutionary Number of devel‐

location materials observation1 adjacent strata2 of polygon center development opment stages Reference
entire variable sh ex nd lowered retrogressive 2 Ugolini et al., 1973

upper till/buried ice sh ex no no change retrogressive 4 Marchant et al., 2002

lower till sh ex, rd dis, cor yes raised progessive 3 Sletten et al., 2003

upper "debris"/ sh ex nd no change retrogressive ‐‐ Levy et al., 2006
buried ice (deformed)

lower, till & till/ dp ex no lowered retrogressive 3 this study
  central buried ice

1 Mode of development: sh ex = shallow excavation (<0.6 m); rd dis = rod displacement; cor = coring; 
dp ex = deeper excavation (0.6‐1.0 m)
2 Nd = not determined.
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