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EDITOR'S PREFACE

VOLUME |

This was the twentieth Geophysical Fluid Dynamics program at

Woods Hole. Stephen Childress of the Courant Institute was our principal
lecturer, Dynamo theory, with all its interdisciplinary facets was our
central theme. Geomagnetism and the solar magnetic cycle were brought
closer to comprehension, yet none claimed a detailed predictive theory
was near at hand. Perhaps J. Keller's lecture, entitled ""Smooth equations
for rough problems™, best characterized the nature of these studies. Even
then, the smooth equations are quite nonlinear, with Finite-amplitude
magnetic solutions yet to be explored. Lectures intertwined with those
of Childress exposed us to topics beside and outside his emphasis on a

convective geodynamo.

The fellows of the summer program were responsible for the notes
of the principal lectures and checking their content with Childress.
Extended abstracts of addresses by program staff members and the ten
participants inthe July mini-symposium on magnetohydrodynamics were
prepared by the speakers. The eleven lectures of the Fellows are recorded

in the second of this two-volume report.

Mary C. Thayer has gathered and typed all the abstracts, lecture
reports and fellowship papers -- for a twentieth year! Fellows and staff

salute her skill and patience with an often recalcitrant crew.

W thank particularly Dr. Ralph Cooper, and through him the Office
of Naval Research and the National Aeronautics and Space Administration for

continuing support and encouragement.

Willem V. R. Malkus
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COURSE LECTURES
by

Stephen Childress
New York University
Courant Institute of Mathematical Sciences

Lecture #1. INTRODUCTION TO GEOMAGNETIC DYNAMO THEORY

1.1 Historical Introduction

The problem of explaining the origin of the magnetic fields of the earth
and sun is a difficult one, and only in recent years has substantial progress
been made towards its solution. The following is a list of some of the decisive

contributions made by scientists and mathematicians who have tackled the problem.

1919 Larmor asked how a rotating body, such as the sun, could become a
magnet. One of the suggestions he put forward was that the magnetic field was

maintained by the motion of the electrically conducting fluid of which the sun
is composed.

1934 Cowling found that a steady axi-symmetric magnetic field could not
be maintained by fluid with an axi-symmetric velocity field (with the same axis
of symmetry). This was a 'great step backward' for dynamo theory, since it is

very natural to look for axi-symmetric fields when dealing with a rotating body.
1946 Elsasser studied non-axi-symmetric magnetic and velocity fields.

1954 Bullard and Gellman pointed out the importance of differential rota-

tion for generating a "toroidal" field from a '"polcidal” one, and the importance

of non-axi-symmetric motion's for distorting the toroidal field to produce ™" pol-
oidal" field. WWe shall define these terms presently.) However, the fluid mo=
tions they considered were not capable of indefinitely sustaining a magnetic

field.

1955 Parker provided a physical argument to explain how irregular upwell-
ings of fluid could produce a mean magnetic field when their inductive effect
was averaged over space and time. This was a major break-through in dynamo

theory.

1964 Braginskii considered nearly axi-symmetric systems with very high

fluid conductivity; using a formal asymptotic procedure.

I_S)ﬁ Steenbeck, Krause and Radler considered turbulent dynamos, the
length scale for the turbulent component being much shorter than that for the

mean component. Since this paper. much work has been done on turbulent dynamos.



1.2 The Earth's Magnetic Field

The earth can be regarded as a sphere of radius 6.4 x IOGm, of which a
shell of inner radius 1.4 x 106m and outer radius 3.5 x 106m is composed of
electrically conducting fluid, mainly molten iron. Inside the shell is a solid
core, and outside the shell is the mantle, which can often be regarded as a
solid insulator, although sometimes its visco-elastic deformations or small con-
ductivity need to be taken into account. The basic facts of the earth's magnetic

field which any theory must explain are:

(A) The field is permanent; that is, it has been in existence for the whole

of the earth's history, thought to be about 109 years.

(B) There are large-scale changes of structure, namely reversals of polar-

ity, on a time scale of order 105 years.

(C) There are small-scale variations on a time scale of the order of a hun-

dred years.

Table 1 shows estimates of the main physical parameters of the earth rele-
vant to the subject-matter of these lectures. Since the decay time, 105 years,
for the earth's field in the absence of any fluid motions in the core, is much
less than the age of the earth, 109 years, it is clear that we must look to fluid

motions for the explanation of the persistence of the field.

The reversals of polarity have been statistically analysed by Cox (1968)
who claimed that the probability that the time between successive reversals lies
between t and t t dt is / - it
Lo -5

a &

where t, = 2 X 10° years. However, it is questionable to fit a particular type
of probability distribution in the absence of a theory of the underlying mech-
anism. Further, as more data becomes available of the history of the earth's
field, it may become necessary to put in more reversals, so that what is now be-
lieved to be a period of one particular polarity may subsequently need to be
split into smaller periods of different polarity. Thus statistical formulae may

need to be revised.

The most interesting feature of the small-scale variations is the west-
ward drift of the non-dipole field. After performing a harmonic analysis of
the earth's field it is easy to remove the dipole component, and a contour map

can then be drawn showing, for example, lines of constant vertical component
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of the non-dipole field.

Table 1.

Meaning

core radius
electrical conductivity
magnetic diffusivity
diffusion time
fluid density
kinematic viscosity
rotation viscisity
core temperature
specific heat
thermal conductivity
coef.of volume expansion
thermal diffusivity
accel. of gravity
mean temp. gradient
magnetic field
Alfvén speed
speed

core heating rate

= .|U-]+ I":.q'-.l'i-ll

=1 nzki'z = 239 calorie

= 1 mPks™ig”]
2y, E_Iq-z = 1 mho™!

V' omi

47t x 1077 mikg ™ &

_3_

Physical Parameters of the Geodynamo

Units

m

m'3h'.'15|:|E = mho/m

m25_1

5
ke~ 3

Value

3.5 x 106
3 x 105
3
4 x 10! = 105 yr
1ot
1076 (7)
7.4 x 107°
4000
670
60
5 x 10-6
1075
5
2 x 1073(7)
1072 = 100 gauss
1071
1074
101221913

The main features of such a map drift westward at a

typical rate of 0.2° of longitude per year, although some features move faster

than others.

It is not known whether this is caused by wave motion in the core,

or bulk motion, or both; and it is difficult to do an experiment to find out!

It should be noted that the slight conductivity of the mantle places a lower

limit on the time scale of magnetic effects observable at the earth's surface.

For if Ylm is the magnetic diffusivity of the mantle, and L its thickness,
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then any magnetic field at the bottom of the mantle varying on a time scale
less than Li.-"'ri...-, will be greatly reduced in magnitude by diffusion. Using an

estimate of M ., , this time scale is about 10 yrs.

1.3 The Basic Equations

The physical quantities needed in the analysis are:
8 {x,t) = magnetic field,
1 {x,t) = current density,

E {x,t) = electric field,

u (x,t} = fluid velocity
@ = electrical conductivity,
A = magnetic permeability,
n = () = magnetic diffusivity.

The equations satisfied by these quantities are the 'pre-Maxwell' equations

and Ohm's Law:

divh = 0O (1.1}
curl B :ﬂj {1.2)
curl E = _28 {(1.3)

| =c(E+u,.B (1.4)

The pre-Maxwell equations (which neglect the displacement current term in
(1.2) hold on the assumption that the time taken by light to traverse the
region of interest is small compared with the time scale of the events being
described. On taking the curl of (1.4) and eliminating j and E using (1.2)
and (1.3) we obtain

98 - curl(4aB)+nv?B. (1.5)

This is the fundamental equation for B. Equation (1.5), and the Navier-Stokes
equation (with a forcing term of j.. B per unit volume), form the foundation of

theories of the evolution of magnetic fields in fluids.

To simplify the problem, we often regard w as being given, and use
(1.5) to determine the evolution of B3 the equation is then linear. This is
called the kinematic approach. The resulting problem is still difficult, how-

ever, and further simplifying assumptions need to be made. The most obvious
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way to proceed is to see when one or other of the terms on the right-hand side

of (1.5) is negligible compared with the other. To this end, let

= typical fluid velocity,
L — typical length scale for variation of uwand &
Then leuvl (wa B L1

L

Inv*B
The quantity uL,"rLis. called the magnetic Reynolds number, and is denoted by Rm

(In the earth's core, Rm is typically about 100). So from (1.5) we obtain

E -:-:cu-rll{:;_._l.ﬂg:l (R 3>1) {1.6)

1.'!.:!.':.}

- »11]' B (Rm<<1) {(1.7)

Equation (1.6) is exact when '|f£=f-'-' (perfect conductivity, i.e.& = <= }, and
(1.7) is exact when w = 0. Equation (1.7) is just the diffusion equation, and
when Rm«.t often gives a good approximation everywhere to the true solution.
V\Amﬁm}}i , however, (1.6) fails to be a good approximation in boundary layers,
where diffusion is important, and in these regions a closer approximation to the
full Eq. (1.5) must be used.

1.4 Exact Solution for a Perfect Conductor

The equation for B in a perfect conductor is

T uri(u.B). (1.8)

Taking w as given, this can be solved exactly using Lagrangian coordinates. Let
the position at time t of a fluid particle initially at a be x{a,t), so that

x(a,0) = a, and let

D = dst(Fet)>

plx,t) = fluid density.

For any function f_(x.,t) let the function _;I:a t) be defined by the equation

Hn-t]' § (xla,t), £),

and let [{]:.- denote differentiation with respect to time, keeping a fixed, so
that i ;5 ( )f-
It el = S

Then conservation of mass implies that
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and DP . -pdive
DE
Hence T (ﬂ',] == 'F_W'i.ﬂ f‘; {d"'""" ) D {(1.9)

(This can also be established directly from the expression for the determinant

D.) Equation (1.9) enables us to show that the solution of (1.8) is
arr =
B (2,t)= 4 3ar Bi{2.9)- (1.10)
For (1.9) and (1.10) imply that
o] Eu; Lo
3 t- (_BEE } = -L-‘;'fl-i_ B:l [rf_l‘.-r E}a
and

£ (05) * (div 4) p; + D22

Hence

-D'E'{ » Bu—«. o
nE da; Bi(a,0)- (divu) B

"
Y

i

a3 5"% B~ (i) B;[ by (1.10)

daj

= 2 B, - {il“r"g}]}

3%, »

which is the same equation as (1.8). This proves that (1.10) solves (1.8). The

meaning of (1.10) can be shown by writing it in the form
B (x,6) . 2x; 8)(2,0)
plz.b) ey Fe,0)

and comparing It with

dx

-Eda.j
?

P~ aj
[t follows that E;"IP is transformed like a material element, and that the field

acts as 1f it is 'frozent in the fluid,.

1.5 Dynamos

The fundamental question of kinematic dynamo theory is this: given a volume
V of electrically conducting fluid, which velocity fields w are such that when B
evolves according to (1.5) it does not ultimately decay to zero? This question

will be considered in some detail in Lecture 2. For the time being, define a
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dynamo as a system eomprising V, B, u, ?E such that the magnetic energy
1 "' g
aff space 1M g av

is bounded away from zero for all time. (Of course other measures of magnetic
field strength might be used.) f V is not the whole of space then the condi-
tions outside V must be specified. It is common to take V as a sphere and the
volume outside V as an insulator; this is a good model for the earth's dynamo.
Roughly speaking, for a system to act as a dynamo, the convection term curl

L]
(waB) in (1.5) must be such as to compensate for the dissipation term Q 11._-'? E

1.6 A Non-dynamo

Consider the following means of trying to make a dynamo. At t =0, a
magnetic field is present in a stationary conductor. W wait a time A t, during
which time w = 0 and diffusion operates accoeding to (1.6). At time t = /A t we
instantaneously stretch the conductor and fold it over so that it occupies the
same region of space as before. During the folding, diffusion has no time to act
and so the field satisfied (1.8) (note that )1_1.[: e during the stretching and
folding, so that R, = == ). Assume that the conductor is imcompressible; then
the field can be intensified by stretching in a direction parallel to B, because
of the term Bxg/ﬁ-*ﬂ.j in the solution (1.10) of (1.8). W now repeat the process
by waiting from t = At to 2At and then folding again; this is continued indef-
initely. Thus we alternate between field intensification and decay. By choosing
suitable deformation, the net result might be thought to be a relentless increase
in B (i.e. ]gl—}:;ﬂ as t—>» =), thus giving a dynamo. However, we do not always

obtain a dynamo, and an example of this is now given.

Let the whole of space be filled by an incompressible substance of mag-
netic diffusivity % , and at time t = 0 let the magnetic field B{»,t] be

B(x.y,2.0): ((B,:0.0)(2m= Y<(2m+l)l,m=0xl,+2,...)

—

(-8,,0,0(2m+ 1)L y < Im Lymaog,x),22,...)

as shown in Figure 1. At time &t each band of width L is stretched to three times
its original length in the x-direction and folded over on itself to produce the

configuration shown in the second part of Fig.1. To achieve this, we can conceive
of each band being chopped into sections of length Ly>> L and then folded into W-
shapes. The end regions of these sections, where the field is not as shown in the

diagram, will have a negligible effect. At time t = 28¢t, a similar procedure is
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The stretching and folding procedure. (See Section }.6.)
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used to give the configuration shown in the third part of Fig.]1.

The stretching intensifies the field by a factor of 3 (this is a conse-
quence of (1.10), and so we have
g{x.g,z,ﬂﬂf} =38 (x.3y,2,nAt7),
where m =1, 2, 3, . .. It is clear that B is always in the x-direction and

depends only on y and t; so write
_E(lE,t]'.- E{ﬂ,tj,0.0)
Ve wish to find Biy,t) explicitly. Hence the following problem must be solved:

OB 2'8

se -y (879

t#at,28t,. .. }
— oLy < oo

E{ja.nﬁt‘lﬁaﬂ (3y,nAt7) (n=1,2,: ")

B (AmLlEy<(aman)L)
Hlf_"-:l';f-"'a'i' {-—Ea {:[amﬂ}'—éﬂ":z"‘l‘}

The simplest way to solve this is to change the space variable by a factor of 3

at times t =At, 18€,, ., So define a function f{y,t) satisfying:
-1
2f _pn 2L (1‘” )
et Iyt —e<e y< 20

mbLZy ¢ (2am4)L
(go)=f!  Gm-2d
Jl:jl } =) ([trrlﬂ}l.élj-ﬂ.?.ml_)

-]
(The fact that E".F J"Ia{j"' does not exist at t = 0 does not matter; it will exist
for all t > 0,) The function m(t) is defined by

n(t) = . (o=t < Ar)
9. {(ats t< 2at)

LB"PJ_I- (2at=st < 3aLY
ste.
Then Biy.t) is given by
ﬂfjhihHN(t)E, -Ff.i'ﬂfﬂﬂ.tj
where AM(t) is defined as the integer h satisfying
nat £t <{n+ijat.
It only remains to find f{y,t}. By putting



He:-fhhiﬂn (Tisim (Zne )T 'lf.‘*

It is easily seen that t
a0 W . —
Fyt)= o 2. 3oy exp [ e n FL(EJdT}sm{:.m.}?r L’
where i}
'r;_(fJ=HN .

W can now show that B{y,t)—> 0 as t —s =a , uniformly iny. For

’)C':j’ tj]"'“i’f fTJ’ rl'-if1| . i TawT 5in (tner) I_"'

B 'E-H'.F{% J., n{'fl.'d'rj

Now when £ >2at ., we have

t Ntia e Nie)-
{T}dT = g t
in{f}df D prer-yat JdT = 3 N, At
and so
i T Wb
(& 40| < exp (- 5 g
Hence
MlED
|E':"—_f.-t}|‘-'-3 E"-I'-F"I hu.g'ﬁft}l?'ﬂt]

and so the magnetic energy density tends to  as t—=> oo . Thus the stretch-
ing procedure described above is not capable of sustaining a magnetic field.
The physical explanation of this is that the stretching increases the field by

a factor 3”':{}, but the diffusion decreases it at least by a factor of

cxp {- }EL,—_ 9'”&]1], At } 5

clearly the latter term is dominant except possibly during an initial period,
This is in fact a feature of all two-dimensional systems where there are no

z-components of any of the fields, and everything is independent of

An alternative procedure is to adjust the times between foldings so that
the energy does not decay. But it then turns out that the time intervals re-
quired become shorter and shorter so rapidly that the sum tends to a limit as

the number of them tends to infinity. So this method does not work either.

It is of interest to contrast this situation with what might be achieved

by three-dimentional deformations. Alfven has suggested the process shown in



Fig.2, which, at each step, doubles the field intensity at the expense of a
small " x-point"” where diffusion can be expected to be important. Nevertheless,
diffusion penalty here would appear to be quite small. Unfortunately there is

no simple way to compute the process and establish that a dynamo effect occurs

when ‘.E #Ho.

&= -
%

Fig.2
Notes submitted by
John Chapman and
Frank Condi.
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Lecture #2. SOME NECESSARY CONDITIONS FOR DYNAMO ACTION

(2.1) The Rate of Change of Magnetic Energy

In this lecture we shall consider a finite volume V of electrically con-
ducting fluid, of constant, uniform magnetic diffusivity ?‘L , surrounded by a
L
motionless insulator occupying the rest of space, V. Then as shown in Lecture #1,

the equations for the magnetic field are

28

=t s Curl(uaBlen VB, V.80 (in v) (2.1)

curl B=zo,v.E=0 (tn ':-’Jf, {2.2)

where u is the velocity of the fluid. The boundary conditions on S, the surface
of v, are

m-8]= o, [."JHE] =& (2.3)

[Dng] z 0 (2.4}

where [' "|denotes the jump across S. The first equation (2.3) follows from
div B = 0, and the second follows from curl B = u:i, since there are no surface
currents and hence j is everywhere finite. Equation (2.4) follows from (1.3)
and boundedness of B, Equations (2.3) and (2.4) say merely that B and tangen-
tial E are continuous across S. W also assume that there are no 'sources at
infinity', so that
=3
|8|=:::{r ) as ¥ —s oo (2.5)

where F = [E| . In the kinematic theory, we take u as being given, and so

(2.1) = (2.5), together with the initial value of B everywhere, provide a com=

plete specification of the problem of determining the evolution of B.

The magnetic energy is

| -

E (0=t ' Bdv,
VW

and we now derive two expressions for dEm/dt, using the equations above plus

the equation (1.3),
curl E=-28 /at.

Ve also use the fact that

]_I'_'—:'[-: o(r?)as r—s oo, (2.6)
(since the charge is confined to the finite region V), and we use Ohm's Law
(1.4) in the form

Neurl B=E+uw . g (2.7)



Thus dFE, r-1-4

F.l
Ve

-J B.cur|EdV
el

=",§,. {d!r'v{ga B)+ E curlB}dV

W

The first term vanishes (using the divergence theorem and (2.5), (2.6) and the

second term is zero in V. So by (2.7) we obtain

dTEt__ﬂl-_-j(ﬂ..[ﬂ-cuﬂﬂ}dv-?—li.[:cur.rﬁ:ll,d'l..f' (2.8)
v

This is our first expression for dE_/dt. Using the fact that
j!e-{ﬁ,t"uﬂf@]af V= J’E‘ .{i-'r-a_dlfal_ E:UI' GV E}..;IL-"
W
.;{u,m (4 8,8)-u; B, 5= JdV

we can obtain a second expression provided that we assume more, namely that

div =0 (incompressible flow) and won S. Then the first term above is
= i
Sz (454 8,8,) dv=0,
W i
by the divergence theorem, and the second term is

f”!a (8 B;)dV- é{%nfujahﬂi} a*'ﬂ Bj}dv

Y,
The first term here is zero (by the divergence theorem again), and we are

finally left with

w. (8, curl B) dv= gs Bje;jdV.
where
i Bu dxj
E;'.j-%- (T‘I?J,E+ Bu;).

Hence from (2.8) we obtain a second expression,
2En. } j’a rey AV - I { leurl B AV. (2.9)

The basic d:fference between (2.8) and (2.9) is that w enters (2.9) only through

its spatial derivatives, while it enters (2.8) only through its undifferentiated
values.

In both (2.8) and (2.9) the first term on the right-hand side represents
rate of creation of magnetic energy by the agency providing the fluid motion, and

the second term represents rate of destruction of magnetic energy by ohmic decay.



(2.2) Two Necessary Conditions for Dynamo Action

We say that a velocity field u in the volume V defined above capable of
dynamo action if for some initial magnetic field there exists a constant E%’

strictly greater than zero, such that
E. (&) >E, forall t2o0
Hence if it is possible to find a function f such that

A% (e) & ¢

then a necessary condition for dynamo action is that f is not always negative
(when B is not everywhere zero). It is shown below that Egs. (2.8) and (2.9)

provide us with two such f's. W need to use the length ':i defined by
5
s 5 ;wm v
_
ks (. B*dV

|.-I'+'-"
where _[E is the class of admissible functions over which the minimum is found,

taken to be the set of all solenoidal fields continuously differentiable in V,
irrotational in /\A/, continuous across S, and {}{'r'f'j at infinity. (It can be
shown that if V is sphere of radius L, then -il= L,-"ﬁ.ll Let uy be the maximum
value Of‘,.&L_l , and let lrn be the maximum eigenvalue of the tensor fE‘;J.- J. In
each case the maximum is taken over all time and all X in V. It can easily be
shown that if w is not everywhere and always zero, then .}\m?‘-’:". Using the

Cauchy-Schwarz inequality and the definition of & we obtain

J‘[E“‘{E..afn‘rf E'_]dl.f'| = ""“m“@i [‘:"-“"_El|dl-1l.ﬂ?

& Um Hu}.ilﬂH { Jeur! ‘3|5‘*‘”’}]
< r_r.,,"-f ;]Em’i E]Lﬂi Vs

e

and

(85 ec;dV| <A | 184V =2 § 1B oLV
W

lmaftg |£u.|'|.E,| dV
Hence (2.8) a{]d (2.9) give the inequalities
CllrF E d
irf—h»u Jfl r ]ﬂw”l (2.10)

wF
s 2pd) (farapdy )
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Therefore two very simple necessary fonditi(lns for dynamo action are
T 4
. Ml S N ﬁn_ > |

m

Note that t.lm-#f.,.fIrL is the magnetic Reynolds number based on the length scale 08

If V is convex the maximum distance apart of any two points in V is denoted by

D, then by the vector mean-value theorem

u.m a Dlm'

If we regard df , I, and N as given, then (2.11) and (2.12) imply that any
velocity field permitting dynamo action must be such that i, and :'L,,., lie with
in the shaded region shown in Fig.1(a). W can express this result in terms of

the dimensionless variables defined by

_ LwmD
ﬂ{:-L'IL: .ﬂ.—_—?:—.l?-jg} Hm__-.-'m;.
L yr
(@)
l-!;' F'F%
Fic. | >
6 & >
(&) |
o e NRN
m \v

-
-

a2 s

\aﬂm= ot ™
A necessary condition for dynamo action is that the parameters shown lie in the
shaded areas. (See section 2.2 for the definitions of these parameters.)
Then (2.1 1) and (2.12) become
s

ARL>o ., A=), Rm>et,
and so regarding & as given, we see that £ and Ry must Tie in the shaded region
shown in Fig.1(b). It should be emphasized that these conditions are not suffi-

cient for dynamo action.
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It is very plausible that an inequality such as the second part of (2.11)
should be a necessary condition, since it was shown in Lecture #1 that shear can
greatly intensify B by stretching the field lines. The first part of (2.11) is
not so obvious, however, because this inequality depends only on the magnitude
of u, not its derivatives. Note however that we have not had to select a special
coordinate system, so uy could have been chosen relative to any convenient coordi-
nate frame. In particular, in a spherical domain we deduce that core motions must

differ from solid-body rotation by an amount u, consistent with these inequalities.

It is very probable that these estimates have counterparts in electrical
circuit theory. The inequality involving lm was first derived by Backus (1958)
while that involving u was noted by Childress (1969). There is considerable room
for improved estimates of dynamo action. Recemt;u Proctor (1978} has observed that
Backus' estimate can be improved by 20% if the integral of |§_|2 over V is retained
in the estimate of of. instead of extending the integral to V + '\?). Such refine-
ments complicate the variational problem which must be solved to complete the esti-

mate, but presumably move us closer to realistic'estimates for the dynamo process.

It is also possible to sharpen necessary conditions by elaborating the
structure of admissible magnetic fields. W consider next a condition of this kind.

(2.3) A Third Necessary Condition for Dynamo Action

Busse (1975) has obtained another necessary condition for dynamo action by

splitting Bup into its toroidal and poloidal parts:

B=curl (Tx) + curl curl {F‘:_t.}l

This decomposition is always possible for a solenoidal field; F and T are sca-
lar functions of position, to which an arbitrary function of I can be added with-
out altering . Busse showed that

d 71 . Em ”*}ﬁ ! d(B%) Ay

LTy g £ = ax (L~ rad| L } s

Ik [§+§] d Vs |-n+mex (4 EJ(EEPJ pris

W

where E. is again the total magnetic energy, Ep is magnetic energy in the poloidal
part of B, and V is a sphere. It is assumed that divu=0and w= 0 on S, the sur-

face of the sphere. Thus we obtain a third necessary condition for dynamo action:
- i
3 Ep 4/t
' FoLa
m (w-x) > ( e ) n

This condition is of rather a different type from those derived in (2.2), since
E!:,/Em depends on B As an example of its use, we can deduce, from the fact that

the magnetic field in the earth has a poloidal component, that there are radial
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fluid motions there. This is relevant when considering convection.

(2.4) A One-dimensional Analog

It would be of interest to solve Eg.{2.1} for B, given some particular
class of velocity fields u, and then relate the necessary conditions derived to
the occasions when dynamo action actually occurs. Unfortunately this is diffi-
cult to do, because the equation is so hard to solve; indeed, this is why it is
worthwhile to derive the necessary conditions in the first place. So we look
for a simpler equation, which we hope retains the important features of (2.1)
and which we can solve exactly. The corresponding necessary conditions for dy-
namo action can be derived, and then compared with the exact solutions of the

simple equation.

As such an equation take u and B to be complex-valued functions of x and

t tisfyi
RIS BB 1 28,1 (o) o0 cx< ot 50) .10

(it is something of an act of faith that the solutions of this equation behave,
in some sense, like the solutions of Eq.(2.1) l:l. Note that (2.14) has been made
nondimensional; assume that this has been done by measuring x in units of L, and
u in units of the maximum velocity, uy ; then t is measured in units of L/umg.

The quantity R in (2.14) is then the magnetic Reynolds number uglL# n -

The first step is to derive an inequality corresponding to the first part
of (2.10). To do this multiply (2.14) by B* and integrate with respect to x
from a to b, say, to obtain i

b b -] =
" [} faB -# 2B BB

[ 98 8ax = 1 { 32 57 ") Fxax ¢
xr

a

<210 b
” {[ug ‘]{Iu E*TE_ ﬂ“’g (2.15)
O

wh

Assume that a and b can be chosen so that the integrated parts vanish; this will
be possible if, for example, u and B are space-periodic. Taking the complex con-
jugate of (2.15) and adding to {2.15) gives

4 b, b, " b .

:FE;JE] cl.'.\'.:-ES {L-LE g—f+u*5‘a—':}}clx—--%J |§—E—| o x (2.16)
= a [

Define of by the equation



(2.17)

where E is some suitable class of functions. Now u & 1, because u is meas-

ured in units of ug, the maximum value of [uf , and so using the Cauchy-Schwarz

inequality and the definition of at , (2.16) gives,

Y b 1
:H-I (8] d"ﬁll 8["ds %i:irm’rj —%i |%E—| dx

- {2.18)
b = .
ea(f-4f B2
ax |
This is the analog of the first part of (2.10). It implies that a necessary
condition for dynamo action is R > .-"‘cbf , that is
_"i'.'ﬂi._ v 18 B {2.19)
We now solve (2.14) exactly for the particular velocity field
ce+Lwt
uletl=e 3 (2.20)
where [ is aconstant. Trying the solution
L ot : + 3t
Bz, t)=e "7 + Ae'l* y (z.21)
where ©1 , 0 , "o, and A are complex constants, as yet unknown, we obtain

o {H 5”J= {n"-!;l e Lint=1lzt (o )t
X

(AU # (F LwdE

A (A% e

3 3"5 = » Lnz+ ot
H%_.. _R.' axt,.(ﬂ"i-ﬁl}e
+jq|:'..-.+$)e iix «FL

Therefore (2.21) solves (2.14) if

and

- (n*=1),

T Lud,

n

1

=
A{E"+§} L

L
A(-1) ="+ f

If it is assumed that B is bounded when t = 0, then FI must be real; so assume

this. Hence a solution of (2.14) is
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inz+et (& n Slln-Ng+ (FS LWt 2.22)
Bl el (£ )
L | where
H-i'_rl-:I"IJ :{ﬂ-"r+ ﬂﬂjji.:r*q- I-'u.l-r fﬂé—ll} (2.23)

We can regard (2.22) as a family of solutions labelled by the single parameter

T, since for given ) Eq.(2.23) determines just two available values of &

We are interested in whether the solution (2.22) decreases to zero or
grows without 1imit as t—> o= . This is determined solely by the sign of
the real part of o ; for a given N ,the system acts as a dynamo if and only if

the larger real part of the two possible values of & is positive.

L
We now deal with the case & =© in more detail. Equation (2.23) when
gives i rﬂ:,L F | 'I"] (2.24)
. « < [5R flm 2w (-7
H
_ where N:l,.lifl-—ﬁ.r.

From (2.22) it can be seen that the appropriate length scale af for the solution
B is the larger of /A and |/(i’\~i) (times the unitl ). For simplicity, consider
{?én'.'.—'n'i; then we have . = f-fnf Figure 2 shows a graph of & as function
of m for 0% HE'I , for different values of R

a

Flg.2

by
L duit 1

Graoh o f 6 against N for D= NEL when w = 0.
(See section 2.4 for the explanation of these quantities.}
Ly -
Putting "= 0 in (2.24) gives R/ n* = l/my =1 3 SO the necessary and suffi-
cient condition for dynamo action is
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AL 2R
This can be written as
TR g
(2= > 5 -1,
"

from the definitions of /& and of .

Equation (2.27) is what we are looking for. Our aim is to compare it with
the crudely derived necessary condition given in (2.19). Since we are only con-
sidering €= k-~ < al,-“’r;.::, , We see that they are consistent. Further, (2.19) is the
best possible condition of its type, because a condition of the farm u,.,:.ff[h:rl*E
where € >C, is violated by taking F close enough to 1/2. In this sense, (2.19)
is a 'good' result about the solutions of the simple Equation (2.1)

Notes submitted by

John Chapman and

Francis J. Condi.
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Lecture #3 CONSTRUCTIONS BASED ON SMOOTHING

3.1 Introduction

In this lecture we shall discuss an asymptotic method for treating the
kinematic dynamo problem. In general there are at least three methods which have

been used.

{i) Filtering method

(a) Temporal filtering is based on the fact that the fluctuating magnetic
field decays much faster than the mean one. V¢ are interested primarilly in the
mean field. The velocity field is turned on and off periodically. While the
velocity is on, the magnetic field is created. While it is off, the magnetic
field decays. Hence the turn-off time should be long enough to allow the un-
wanted fluctuating field to decay. For example, Tverskoy (1965) applied this
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method to prove dynamo action by a toroidal eddy in a solid conductor.

(b) Geometric filtering is based on the similar idea that certain har-
monic decay spatially faster than the others. Hence the harmonics will affect
each other selectively according to the distance between sources (see for example

Herzenberg's two-sphere dynamo, 1957).

(ii) Symmetry breaking

Cowling's theorem (1933) does not allow steady dynamos when both fields
are axially symmetric. This has been studied by Braginsky (1964, 1965). In this
method the variables are divided into axially summetric and small asymmetric
parts.

(1i1) Smoothing

This method is the main topic of this lecture. Here the variables are
assumed to consist of a spatially rapidly varying part (small length scales = Eil
and of a spatially slowly varying part (large length scales =i). An averaging
process le.g. over an intermediate scale) is essential to separate the mean field
from the fluctuating field. This idea has been initiated by Parker (1955) and
been explored since then by Steenbeck & Krause (1966), Childress (1967}, G. 0.
Roberts (1970), Moffatt (1970), and many others.

3.2 First-order smoothing

W start with the induction equation:
EE’.: f— i - -
Fy nyg ﬂg(ﬂ_xé)-o

where tb = W +u, and B= B+ By | i, and 3, are respectively the smooth
(large scale) parts of t4 and Q, while ¢&, and E; are their fluctuating (small
scale) parts. W define an averaging operator { = ? . As we have noted, this
might be a spatial or temporal average, but it might also have other meanings,

e.g. ensemble averaging.

Then by definition
{u,7= Wy

™

,.L._'I:'I"l} = &
(B> B, 3 Br=0
Also to simplify the notation let us introduce the following operators

L.z ;ﬂ_, -net- X (wx ()



= :
= et Lo ! -
'r—r' 2t J v VX (% ()

L = - @& Liyx 3)

With these above defined operators the induction e.g. (3.1) can be

written as:

| B =0 (3.2)

By applying the averaging procedure to (3.2) we get:
LoBsx L LB > =0 (3.3)

where the terms <L| En} and <La Bb are assumed to vanish due to the

"smoothness" of L'o and Bu .

Subtracting (3.3) from (3.2) we get:
— i A
LJEE'-‘-LﬂEl—{LlﬁI}“LiBJ (3-4)

In the first-order smoothing the right-hand side of (3.4) is neglected.

Hence in this case we have (formally)

-1
Ql = - I—p IL—J I_Eu_ﬂ [3 LE']
Then (3.3) gives -
LoBa= L L, Lo LYBe (3.6)
which is the equation determining ﬁﬂ . Given the solution ,.1..30 of (3.6) the

'ISt

approximate { order) solution for the complete magnetic field is then

=1
E =8,-Lo 3. (3.7)
if (3.6) is simpler than (3.2) we have gained something, and this seems likely
since now the coefficients are smooth functions. Compared with by f?u = O,

(3.6) has a new term on the right-hand side, which is crucial for the dynamo action

in those cases where &by fails by itself to give dynamo action.

To have a rough idea of the physical conditions under which this first

order smoothing is valid we assume W, = € . Then (3.4) gives

38 *
22 VBV [ x Bo)zyx (wixB)-<vx(u,x B)>,
| R W e

‘h____'___._r,...-f""_"""r"—'ﬁ-.______...J
. va {3.8)
o(ws) o) 0 F= 007 :

where .'_.-", /f,w'|are the characteristic scales of i, . For the right-hand side

to be negligible compared to at least one of the first two terms on the left-
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hand side either uf-‘.ﬂ or Uf/{l has to be small compared to 1. The first condi-
tion does not involve the resistivity )’L and that means that one must be care-
ful when using it. The second condition turns out to be sufficient when Uf’é’w is
arbitrary and O(l). In what follows we use the magnetic Reynolds numbers & and

R, based on ,-E and of. respectively.

Also, the mean equation (3.3) gives:

2 B -nUWB. = ,
SEBe ~AVE - (x(wixB8)2 —
o(1r)

o(F) o (42

where ;f , 1 are the characteristic scales of ﬁ . In (3.8) the fact that the

last two terms on the left are comparable gives:

_gn%fg,sRE,

2
VEB
so that the right-hand side of (3.9) is of order _Q_JEP' which is comparable to
. o w
the terms on the left if (AZ n 22 | since R = ,Tﬂ £<|. Thus the two scales

must be widely separated. This is equivalent to saying that E"{H ) The

different scales can be pictured in Fig,). Also from (3.9) we have

(3o ()
£

wave length ~~ ;:E

When 5__4.,.# @ the situation remains the same provided its magnetic Reynolds is

not too large, although the determination of L.D_’ is not easy then.

3.3 The < -effect

By the =< -effect (terminology of Steenbeck & Krause, 1966) we mean the

case in which the term <§l X Eh. in the mean field equation‘ can be written

¥ B o =ec B, (3.10)

where e is a constant. |n the general case we have <,“-£-4X H‘}-:?,‘, « B, where
S =

in the form:

= is a pseudo-tensor.

L
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consider the periodic velocity field in Cartesian coordinates
w,zU(fo,ces kx, sin k)

To the first-order smoothing Eq.

%*E‘“-w“@. =ox (g% Bl
QA -8z B, VY -u Th,

(3.4) gives

oF
In
£t .

=1
e s

T RV 8, = Bau Uk r:ﬂ,—.si'n hx, eos ke ).

{3,11)

(3.12)
(3.12) we can neglect the term Q,-?Eﬂ compared to B e e, since
Hence from (3.11)

(3.13)
After a time t such that

) (Lt T = n

the effect of initial transients disappears and {3.13) gives

¥ .
‘_5, o= Box N (O, ~5in KX, c0s kx)
we then have

L™ o ot .
(L X, E(Box";'r,{:'*ﬂ)“ = 2.

[ o o\

where

I

uR
<
4

0 0
KT, G
oo 0

i1f B, is a uniform field in the X -direction, then the ©& -effect here
produces a mean induced current <td,X §‘>:.'in- in the same direction as [a.

g, Zartiicd

# J o

Eit“l,

Amperes law

Bot

But in this case there is no feedback upon H.x so that ng would de-
cay away and no dynamo action is possible.

phase shift.

Note here the important effect of
The flow deforms the field in just the right way to give a max-

imum interaction between the perturbed field and the flow (see Fig.2).

The helicity of Li, (terminology introduced by Moffatt,

1970) is defined
as H =<§\.§., VX y,} and is a measure of the knottedness of vortex lines;
in this case we obtain H=z -u?

-

—
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The motion that is next simplest is

@, = U (sm Ay, cos ke, 3in KX 4 ce5 Ky )i (3.14)

Using (3.12) this gives
ﬁl ~— %{Ebﬂ cos Ky - 'Ew'- Sin K¥, Boycos Kx = Eﬂ: Sin HH}

and

(i X By T'%.: (Bﬂ. Boy, ﬂ)ﬂ ol -

o ut J1e06
~ "0 0
a oo

This model can cause dynamo action by the following interaction:

il
By

or

% o

(o effect

a1 RF
Eﬂlj Cal -'llrﬂ
The cross arrows in the above diagram are ude to Ampere's law. This kind of

-
interaction is called the o& -effect.

To obtain
100

ol
~z | IO
oo |
we can take
h:(sin !% +COSKR, SIn k24 cps KX sin K1+cask5) {3.15)



where H is the helicity.
In all of these examples we have

This kind of field is called Bettrami (velocity is parallel to vorticity). In

general orbits of such a flow are known to be topologically complicated.

Fig.3. Stream lines for %
and g' components of &,
given by (3.14).

+. upwelling

=: downwelling.

Fig.4. Numerical computation
(G.0.Roberts, 1972) of the
growth rate &5. as function
of ® ad ' for L, given

R by (3.14).

LAY,
l_ I'l_\ll'._%

ne—f

e
-
pe

Figure 3 represents the stream line for X and &j components of the velo-
city field W, given by {3.T14). The instabilities take the form of large scale
circularly polarized stationary waves with magnetic field components perpendicular
to the axis of the "eddies'. Figure 4 shows G.0.Roberts (1972) computation of
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the growthrate @ as a function of A and R for the same velocity field.
The growth rate increases to a maximum and then decreases as R-'l decreases.
Figure 5 shows the lattice of straight particle paths (correcting stagnation

points) for the three-dimensional motion (3.15).

B

N
s

Fig.5. An element of the orbit structure of the motion (3.15}. All
labeled points are stagnation points, equivalent under a rota-
tion and translation. All lines are particle trajectories in
the indicated direction. Lines such as P involve a divergence
(in the plane ABC) and a convergence (toward the plane DEF).
Note the helicity evident in the structure.

Note that Fig.4 bears a resemblance to Fog.2 of Lecture 2. It can
easily be seen that 15T order smoothing is actually exact for the one-dimen-

sional analog.

3.4 Periodic dynamos

In all three examples in Sec. 3.3 the velocity fields LL are steady and
periodic in space. In general when W is periodic in space and time we expect
the magnetic field to incorporate the same periodicity in addition to large-
scale components {G.0.Roberts 1970, 1972; Childress 1967, 1970).

We now consider, for such periodic fields, some interesting points related

to "infinite-order” smoothing of the induction equations. Consider the modal
form ip-ateot
B.=X o'k (3.16)

With &L, given to be periodic we can write the mean field Eq.(3.3) as:
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(a:r+ n“eﬂﬁ =th lfﬂ f!:g,-:r, R;g,} +I:J

where R = l"‘."'.[ . [We show how ;ﬂ is derived in the next lecture.) The matrix

A can be written in the form of a cumulant expansion

A = T A j

‘I:l ]
in terms of cumulants of the velocity field W, . The AJ have some nice sym-
metry properties and in particular «‘ﬂ- ':l:.'-' 0o, R u)js real and symmetric or anti-

symmetric depending on whether J is even or odd. Also note that
"—-,j'z (6.0 R, &, )=

It is interesting to note that in order to have dyname action it is suf-

ficient that Gft{ﬂ-‘i;z{ﬂ-ﬂ: RrH’:]:I be different from zero, since in this case two
eigenvalues of thig matrix are of the same sign ( och—effect). This is true for
almost all periodic motions (in a precise sense based on the representation of
the admissible L—: , as a Hilbert space, and the non-dynamos as confined to a "lower
dimensional™ hypersurface in that space). Also, ,-‘:l fc} o R, U-) is analytic in
E and thus if ﬂlfﬂ'.ﬂ, R, )is such that det [:.-":I,.{D a. a, :.Jllj'#' 0 then det
(A_.‘fp_u,ﬂ-u'ﬂ#ﬂfﬂr' almost all R.
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Lecture #4 MEAN-FIELD ELECTRODYNAMICS

4.1 Smoothing to all orders

Applied to the equations of magnetohydrodynamics, the smoothing method
has come to be known as mean-field electrodynamics. As a theory it encompasses
not only the derivation of the mean-field equation but also the solving of the
mean-field equation under conditions pertinent to the dynamo problem. W ex-
amine these two aspects of the theory in this lecture, beginning with the gen-

eral form of the mean-field equation.

As in the last lecture we let

Lo = -av-9x(Z,x ()

L, = —wx (&% ()
Using these, the dynamo problem can be written
(L,+L)B =0

We now define P as an averaging or smoothing operator.

P(}=s<(+17

W require only that P be a projection, i.e. that it satisfy

P*=P
It is important to note that when u is small scale LD'1 Ly may not be a '"'smalt"

operator on B even though L,:,'](L1 = PLy) is "small'. (This has already been

used at the level of first-order smoothing.).

Since
(Lo + LB =0

we have (lLe + L) - Py + Ly)lE =0
ar (Lo - FLD]E =" I:-Ll - P‘Ll:lg
We assume that P and L, (or Lo']) commute, that is

Ply = LoP, PLy™! = L Te,



and that L produces only "rough" field when applied to smooth:

PL, P =0.

Commutation implies
(Lo = PLy}B = LglB - PB).
Letting PR = £ equal the mean field, then
Lo (B - £) = (Lo = PLo)B = - (L - PLy)B.
By inverting Ly, this can be rewritten as
B-f=-L,"1{Ly - PLy)E = SB

where the operator S is

§ == Lo~ MLy = PLY).
Hence
|:| = SJE = i I
If S is a small operator as claimed (the formal smallness of S is implied by
the smallness of ER= %fnr %— from the last lecture), we should be able to

write 8 = (I1-5)7"£.
The mean field equation now becomes
PLoB + PLYB = L, f + PLB
which implies
Lof +PLy(t - 51718 = 0. (4.1)

This is an exact equation for the mean field.

W can easily rederive first order smoothing from this equation as
follows:

W have approximately: (I - 5)°1 2 |+ S

Substituting into the mean field equation, we get
Lof + PL1(I +S)£=0

or

o
1]

Lof + PL (=L (L, - PLy)E

= Lgl = PL, Ln'] Ly £ (since PLyLy"'PLy = PLIPL,"TL; = 0.
Of course, one may also use the previous method in which
B, = PB , B - PB=B), LBy = - L1k,

We then againhave
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This simpler sequence of steps is all that need be considered if one stops at

first order.

The full mean-field equation has, however, a much richer structure. It
can be thought of, at least when H = U-f.-lmL{"l{_u is small, as containing a
double expansion, both in & and in the ratio -El,.-"af of spatial scales. (A "slow"
time derivative in the mean field equation is regarded as order ?'fll,.-"lafj' and counts
in the ordering as equivalent to a double space derivative.) A symbolic repre-
sentation of the expansion goes as follows: First we write (upen expanding
{1 - 5371 in (4.11)

o .
Lof+ X T Ljf =0Lj () =-PleX 5700

The operators L'. have dimeanions of a speed U and an order of magnitude (after

division by U) of OCR’H). Moreover, it can be shown that L; involves only

the jth order cumulant of wuy.

Second, each Lj is, when expressed as a sum of a series of differential

operators, formally of infinite order. W can then write

L *‘i‘ Lik

K =0
where 2y . , =1 Y K
U L_',h"ﬂxﬁ [f.r“f:l ).
In customary terminology LED represents the o -effect and Lay the " /-effect”
(when ug vanishes). The last effect thus accounts for large-scale gradients of
the mean field insofar as these affect mean induction. Because of the curl in
(4.2) we see that the ﬂ -effect involves second derivatives of the mean field,

and hence the capacity to modify the effective diffusion.

4.2 Examples

1) As we saw in the previous lecture it is easy to compute for certain simple
motions. For a progressive wave of the form

& =U(0sinE, sin(E -0, E=kx+wl,

we have, as the only non-zero entry in the pseudo-tensor
_Ulrl ka 5“.' ¢
== W+ > K7

Note that if ¢cas# O the effect vanishes in the limit }1—'.”:'. (We consider the

matter of small and zero resistivity below in an appendix).



2) Let W = W, be periodic, solenoidal, and representable in the form

(e + et
“US a (kow)e
EeW, we L

where K and L. are suitable sets. As we noted previously, the mean field

tion, 1T '
equation, 1 .:I:_P_'|v5+{:-t'.r

fFz="g

= ==

has the form

1 #
Eennt)L=inxA.rL
The matrix :_;:'L has the cumulant expansion r‘:f-. = 'Ez & sand if we write

A E ey F B fing + o(n?)

we obtain the = and ﬂ effects with

=T UrE Eidm p} Aty

] " L i.'f.u.'u-:ErH'-'-
ﬁ - =R, zi-.t.im_,..'_;g Fron 1 ' EL]'I_,,&#’}_,UE)]
| ( lfi.u_lfrl-’t‘} R R

3) For stochastic LL with energy spectrum tensor ii} [".f_:,u.i:,l , expressions

for % and /3 can be obtained from those just giwen by the replacement

oM 01— [ (B () dude

The e;mres.s.[.;:un for Fr’ is equivalent to that obtained by applying first-order
smoothing to a mean field with constant gradient, up to a distant surface in-
tegral in wave number vector space; the latter will vanish for most physically

realizable flows.

4) An important generalization of the method allows W, to have, in addition
to its basic small-scale features, a slow variation of structure. The computa-
tion of ™ in the first-order theory treats such motions as if the slow varia-
tion of parameters were not there, so there is no special difficulty at that
level. A formal study of this and other generalizations has been carried out by
Roberts and Soward (1975).

To take one example that will be important later let
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L= {——fr‘-iin“ﬁ:'mﬂil y 3 KX ter ar, con Ry sinan)
B f-’-,-"ﬁ << | this can also be written
w = (0, Yar ) sin (kx +22)+ (0, 1+ = 4 )sim (Kx-az)+ 0(a/R).

Thus L is approximately the sum of two nearby modes in ;ﬁ—space, each having
components in phase. The full spatial average of helicity is, moreover, zero.

However, the two modes in combination produce a non-trivial @£ -effect, given by

1
oty = 4 Hin 202+ O8I0

4.3 Boundary-value problems

W now examine several examples of boundary value problems arising in
mean field electrodynamics.

Consider the boundary value problem for the kineamtic o(."'-dynamo ina
slab. This model relies solely on the o&-effect: we take f:l.ﬂ,:ﬂ' so that there

is no contribution from the W &K I:r.iﬁv: En':'terrn.

The model is as follows:

g8 = (B, (2,t) o) s a two-dimensional field,

and the = matrix is taken to be

o Q
o =X, \ O 1 O
=D B ]
The dynamo equations become

2B, n 8 ___ 3
a.t ElE:. L] IE.,
28, _, 9B 35
ot L Iur % ee5s

Setting 8 = B,4T B , We have a complex equation
93 8 .. @
3 kR 52

(which compares closely with the model problem of lecture 2). W assume motion

to occur in a slab O%& & < L, suppose both magnetic components to vanish else-
- . — OtriAm

where, and therefore set 3=0 at 2 = @,L, with @=e HiA amd St s an

eigenparameter, we have the eisenfunctions

- T (l+K)ie [E‘. N _r]

B=¢""¢ :
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here & =
Whapra ﬂ{;.
& L
E_(n-'-
and I="E"rl;J":‘Jq‘T, 1 an integer, provided that L;ld_ = R——’T ﬂ;- R= n
Yy

Formaz1,R>27 gives dynamo action. There are no oscillatory modes.

5
Induction regenerates the field by the "o " interaction:

B, B,y
f_gf

= Fig.]

-'r:l.
Consider now the same problem in a spherical core. A number of these cases
have been studied by Steenbeck and Krause, and re-examined by Roberts (1972). The
.case of constant e{ = .:u:ﬂ]f, can be solved explicitly and the minimum critical value
of (B (based on sphere radius) for steady dynamo action was found to be 4.49
corresponding to a vacuum dipole field. For the cases where is odd with re-
spect to the equatorial plane the critical g for dipole and quadrupole field x,
while not identical, are so close as to make them for all practical purposes in-

distinguishable. For example, with

oh = .;i.qj;" (L-=r) *Uees 65in*8

the dipole eigenvalue is 10.09 and the quadrupole eigenvalue 10.45. An explana-
tion of this coincidence has been given by Proctor [1977), using a comparison
problem which exactly admits these degeneracies and appears t o be close to the

realiz'ed structures.

We now consider the migratory dynamo model of Parker (1955). Consider an
infinite domain With mean field of form
e 2% —-—-— |
B= az ? E{‘F\.‘:J * oy %
where A and [# are independent of vy. ;"f'l. is a stream function for the poloidal

field while B is the torroidal field, we take
= (O w (B),0) with -%—"'!9- = constant.
F ’

The eauations are

38 . dw 24
a—th"l-;-‘;wr e et A
3A 3*A

13 =1 ax ™ == B
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Looking for modes proportional to & we find

(6+ 1 *H.:.:' = i'r].u{‘|5'+ﬁlc:1' where ¥ = —%—C;— = constant. )
If § = dr+i6¢, for neutral stability (§r =0) andbe.c-éljinﬁ_:'rz:‘i:kota’

or g‘L = d_xh sowavespropagate in thedirectionof negative)( when o & < 0.
in
Applied to the surface of a fluid sphere, these waves suggest how the poloidal

field components migrate across latitude lines under the combined influence of
microscale motions and large-scale subsurface shear. This is particularly in-

teresting because of the migration of sunspots to the solar equator.

These migratory waves illustrate what is known as the " ©d=W" effect.
-,
When ™ <€ 1 and o ¥z O(}) theed M term in the dispersion relation may be ne-

glected, as may the ={ term in the equation for 24 . Simultaneously << B,
and this is the most reasonable parameter range for the geodynamo. In this
limit, the "&f={" effect looks like
B
P, Fig.2
% ¥ >0
h

¥ oa o "
ﬂ““wjhﬂt |ine fTraTehing , w- e lfesl

s FrifEn FL-LLLII

Fig.3

Joeld Indyeed
*3 H-sleegt

s

A -
Mty
A number of©& w3 dynamos have been tried in a spherical core. For a

recent assessment see Roberts (1972) ; see also, Deinzer et.al. (1974), and
Roberts and Stix (1971). |If one allows for some meridional flow in addition
to the differential rotation responsible for the & -effect, the fields have

the forms
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B=UxT(re)lr +vxvg P(r8 v

Since we are dealing with axially-symmetric fields there are two principle par-
ities (components parallel or perpendicular to the equatorial plane)
dipole symmetry: By; odd, B) even
quadrupole symmetry:By; even, BJ_ odd.

Roberts {1972) examines a model of Steenbeck and Krause,

o= o, cos P,
wad,r, Pzpo.

As in the =L* cases the dipole and quanrupole critical -'.'J:I'.. are quite close,
there being a slight preference for the quadrupole mode when U"-,,,TD>0 and for
the dipole when ©X, 3’, < . In both cases the modes are oscillatory. Similar
results are obtained with other choices af @£ and <A of the same basic parity,
although for some configurations the preference for one of the symmetries becomes

motre pronounced.

It is found that the oscillatory solutions exhibit a lateral migration of
poloidal field structures, toward the equator if &, B',_., < 1 , thus suggesting
that the physical mechanism isolated by Parker plans an important role in the

oscillation.

For a model of Braginsky incorporating both components of (£, we have
te-pig-ryt P (cos &)
P= 10w r®(L-r)* P, (s G)
r
o = ; r(1-r)? [Pl (CasE?)—F;Lr-:-rﬁ'I:l

Roberts finds that, in the range .52 = m < -.012 the most easily excited mode
is a steady dipole when <, Xe > O , the smallest critical e occurring when
m=-.3. |f the sign of I:H'u'!:f., is reversed, the quadrupole mode replaces dipole,
critical R,JL bndlml's are again close, but the sign of m is changed. This sur-
prising symmetry property has recently been discussed by Proctor, (1978) and ex-
plained in terms of the proximity of solutions to those of a comparison problem
where the property holds exactly. |f we were to seek the model most relevant to

the earth, we would have to pick this one, with =<, ¥, positive in the northern
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hemisphere (to select the dipole mode). In the range of parameters studied the
most easily excited fields were steady. |In this reapect reversal phenomena are
not predicted and indeed the oscillatory kinematic dynamos are probably mislead-

ing as models for reversals.

Notes submitted by
Christopher Frenzen
and Pham G. Cuong.
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Appendi x
The &X -effect in the limit
Stephen Childress

We record here some observations regarding the difficult and controver-
sial matter of applying smoothing to perfect or near-perfect conductors. (A

discussion of the problem may be found in Moffatt's book.)

Formally, asymptotic smoothing was seen to be valid if Ug_fhu << [ and
this condition is independent of ?E . This leads to the hope that rapid move-
ments, or a stochastic field with short correlation time, can be made to achieve

dynamo action in first-order smoothing even for vanishing resistivity.

Ore immediate point, if one really wants actual convergence of the mean-

field equation, is whether such convergence can ever be achieved for vanishing

One's suspicions in this regard are confirmed by estimates on an appropriate

no]zm.of the operator 5 considered above. It is not sufficient that Uf{mbc
:.-
small, but is sufficient that LJ..-*’.:..”I be small, the condition again involving ‘VL-
. -1
In fact the condition V. 4se=| is "only” asymptotic, with L} —S)  having a

divergent majorant series of the form
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when 'rt=-':' . Of course most frequently this is a minor point, but in at least
one class of dynamos, rapidly periodic in time and periodic in space, first-order
smoothing induces a secondary flow and a mean-field equation with an effective
magnetic Reynolds number "-"'1;/;._1-.1. As this last parameter tends to infinity the

o -effect is found to vanish (as in the steady flows considered below).

On the other hand, Alfwén's twisting of a torus to amplify the field (lec-
ture #1) is a tempting mechanism and may work for sufficiently small resistivity.
By its very nature, however, this process cannot be accessible to modeling by
asymptotic first-order smoothing, since mean and perturbational fields are compara-
ble during the twisting process. One possibility then, is that there are diffi-
culties to smoothing a perfectly conducting dynamo. In addition, it is not imme-
diately clear what unnatural zero resistivity phenomena might be introduced by
ensemble averaging over admissible motions, if the latter contain singularities
capable of severing and reconnecting lines of force.

Actually little is known about the Iimit of small n even in the case of
induction by steady spatially-periodic flows. G.0.Roberts' numerical results
(see lecture #3) included some values of ©« out to X = 64 and these can be com-
pared with calculations based on boundary-layer theory. The latter makes strong
use of symmetry and evaluates o¢ once f|u_X is concentrated near the boundaries
of cells. It is found that o = c=nsl & R o as M —* 2@ where the constant ob-

tained produces rough agreement with Roberts' values. It may be conjectures that

this ordering persists for any steady motion independent of one coordinate.

For three-dimensional steady spatially-periodic motions one expects concen-
tration of flux into tubes and possibly also sheets. The former can be shown
(using the asymptotics described elsewhere by Proctor) to produce an oX-effect
nominally & l..l ./R), but at the present time there are no worked-out examples to

support this estimate.
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Lecture #5 ALMOST SYMMETRIC DYNAMOS

5.1 Graginskii's (1964) solution to the kinematic dynamo problem

Consider the dimensionless equation

fﬁ(%-v‘j@:?nu ~ B

with @+« 3 = and R:%‘—'— in the limit R—» == ., The time scale of the field

has been taken as the diffusive time scale £t = time

It is.known from Cowling's theorem that axisymmetric fields cannot main-
tain a dynamo. Braginskii's idea was that fields which were close to axisym-

metric might be able to maintain a dynamo for sufficiently large R . He assumed

8= B(z,p)ip + 001) *
- R
= "..ﬁ..l"f.i'., ":‘-""ﬁ * G'Iia]ﬁ.n H—i"-ﬂ'ﬂ \...'.-‘?'--¢P

I

His analysis then investigates whether the small additional. o(1} components of
u can act with W to create a kinematic dynamo such that B can be maintained or
amplified. Braginskii sought a symmetric "mean=field" equation,. An averaging
operator P is defined to be averaging over @ , so if

VeVoily + Vig + 4.

VeVatz v Wole * pog

then am =T

" | Y,
PV - (il? "-'Ld‘?"}la* (;_1: Ve d )i
AT

" iﬁ-g Vad 9t

A velocity field is postulated of the form exemplified by
i ‘ z = . - il
wsWiz,p)ig+ R~ (¥ (2,0)ig)+ R (2p.0)

o]

with  pPui , o,
The results following from this choice can then be viewed as a special asymp-

totic version of 1st order smoothing.

It is found that a self-consistent expansion of B takes the form
B= El:zi.ﬂ:lr:q:,* F;,—l.,? = I';.-:| {z, g} L!l]
T

v 2 R BY (apip) s o(RT ).
7

PE". e S



The mean field equations obtained from these fields can be written in a form
almost identical to those obtained for an axisymmetric =¢ &3 dynamo from 1st

order smoothing. Given A, W "effective'™ variables are defined

— e

A A+ &8

eff - _ s
LF-I;-F - Lrl+ a’ W: fi‘FF = "'_:?4 EiF I-fl_l:l
where . -
, I:J':‘"Lt'-ﬂ"_i'1 “:;'F'
% - Bl
Y
and

[ ; AN a A -
L'ﬁ,‘ ""':j‘l“‘(% L‘r‘a"ll--. * (ﬁulﬂl by = U

Then, in the limit B—»o=, the equations are

e

1) Ag+8

2.0 pug T(B) < (72 B+ (0 Ho 9P A,

& Agpr e D(eAeg)= (v

— ] o () ="
where od.(z,,r_'::l is quadratic in it R
These equations are precisely the same as those of an axisymmetric dynamo, with
the exception that the equation for B would also contain the term
(?ﬁ = {?ﬁ Jﬂlr.,i.}}
on the right-hand side. The absence of this term in Braginskii's formalism means
that he can only obtain & «* dynamos (and that ot dynamos are not obtainable,

except possibly through higher-order calculations).

Since it can be shown that the same boundary conditions apply to the ef-
fective variables in the boundary value problem, we have two independent asymp-
totic theories which produce the same 'smooth'™ mathematical problem. However,
Braginskii's method has the advantage that there is no assumption about length

() (1)

and the singular limit i —= e is used to make possible the expansion of the non-

scales associated with w Instead u is chosen to be slightly asymmetric

axisymmetric component of B

The emergence of the effective variables is startling and led Soward to
reinterpret Braginskii's work by considering it to be an instance of " diffusive
modification™ of the kinematics of an essentially perfect conductor. This point
of view is useful here because the perfect fluid kinematics are close to a sim-

ple form, because the fields are almost axially symmetric.
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5.2 Soward's pull-back method

The idea of this method is to explain the form of Braginskii's equations

by using a transformation property of the perfect conductor.

We are interested in motions close to simple ones, &.g.

4\? 4]

1} almost 2-0 motions

/(( pull-back
i

The pull-back maps R to R and straightens out the "wiggles''.

"
=

o . F 4
F 2) almost 3-D motions A
— 2 i

da &

pul I-back

In order to erase the ""wiggles'™ at a given instant we can imagine a smooth vol-
ume-preserving map of space into itself, which we write as
Fiox=(¥,t
We want to see the effect of such a transformation on the equations for

a moving perfect conductor. Let fields B (:;(' , t ) E{f '.t'] E{f t}l be
- r = - - s B
given as solutions of

(it ]
»

_E:+ =0
e

-
-

]

<] =]
H'IT! L TR L=<

gf . Tﬂf‘@n EJ*

The Lagrangian form of this equation is

Then
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This equation can easily be transformed using the transformation ’3 and we find
ﬂ 'Eﬂr.]r F _
—_ ¥t =} =
where -
i w1 ".'.-'II-*
x,EB)= B: (¥.,t) —
Ei{-- 4 L ) EI:
Hence 3B
* . i
FE X A I':L;[. « B
where B Ny X B %pn 5 mn ’51-1“
b . :.1 "I:iﬁ't a'IE__ at * f‘f;

We can now find E_.I':EE ,'tj since E = - L_._bﬂ@ . Using the fact that 3" is volume

preserving, so .

F
. Dy g =~ ey,
o . F. R B
Then e = &) 3o, EL,T St 3: ¥

10 »! t
£

So we see the equations are invariant under the transformation of Z,B, -
into X, 3, .

However, if we have chosen 3‘ as a pull-back to symmetric flow, we can

average along the direction of symmetry (z for 2-D, % for 3-D). So
P[ag TR E_'E'FLL].‘—'I::'
Bt Tf:-"‘ = - =
=53¢ TB+u-¥YPB-PE-Yu

since the equation is linear in B and since Pu = 0 as w is symmetric.

We now claim we may identify u with 'lT_gFF and PR with ;E_‘eff of Braginskii's
dynamo. This is particularly easy to argue if i is a steady motion and all stream-
lines are unlinked closed curves, since it is plausible that in this case that
the necessary mapping, > , can be found. In general the method hinges on the
existence of a smooth > , and it is not obvious when it exists. All 4 for which
the method works can, of course, be obtained by smooth transformations, '}_L of
symmetric flows w. Since Braginskii's equations are asymptotic for R— o0
the pull-back need only have certain asymptotic properties (e.g. near closure of

orbits).

Having examined how the perfect conductor equations transform, we now

wish to see how the exact equations transform. One finds,
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cinmy s pin (22
g% o d:ll'.|_
N AR 4 S RN
r:-"i.LJ = FlEe.-i-r.L Bim 0% {3;”‘1‘?
L Px Bk
Acja= 1 i 5= 320

't can be shown for choices of ¥ appropriate to Braginskii's special

R—.I.I'rz

choice of velocity field {0{ ) axisymmetric part etc.) that the .I"Sb,ji. term

is negligible and that the equations obtained already, by Braginskii's method,
can be rederived.

Notes submitted by
Judith Y. Holyer
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Lecture #6 CONVECTIVE DYNAMOS: General Principles

V¢ turn now to the full magnetohydrodynamic dynamo problem, and in par-

ticular the convection driven model, which may be diagrammed as follows:

c1|_’-_p rotation?

kinematic induction

- _

magneto convection

heat Tflux

Fig.]

r|-rd;¢]-,-1,|'.r.: Flﬂ].:lf
o
i

The most relevant problem - the convective MHD dynamo in a rotating spher-
ical annulus - is quite formidable, and has not been in any sense '"solved™, n

the other hand, one might argue for the existence of solutions as follows:
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(1.) show that nonmagnetic (B = 0) solutions are unstable to the addition
of field, i.e. infinitesimal magnetic fields are amplified. (In this case, in

the weak-field theory, the kinematic induction uncouples from the dynamics.)
(2.) Show that the magnetic field energy is necessarily bounded.

Given that the dynamo is being driven by applying energy at a fixed rate,
the latter point is very plausible. Today we shall see how it goes for a con-

vective dynamo, driven by heat sources.

We use the term "convective'™ to mean there is some scalar field (e.g.
temperature), affecting the fluid density, which can itself be advected and dif-
fused (one nonthermal process, suggested by Braginskii, involves the floating up
of light elements released during the growth by accretion of the inner core).
There is no real concensus concerning the energy source for the geodynamo, but
we feel that convection, (thermal or nonthermal), is as plausible as any of the
other proposed mechanisms [&.g. core turbulence driven by precession, or baro-
clinic instability analogous to that in the atmosphere). Moreover it rests on a

well-understood process, so that various models can be formulated rather easily.

A profound (and controversial) criticism of the thermal convection model
has been put forward by Higgins and Kennedy (1971, 1973). They propose that the
core is, for the most part, stably stratified (their second paper says that a
convecting region may exist within 500 km of the inner (solid} core). Their
argument is that the adiabatic gradient is shallower than the melting point
gradient. Assuming that the mantle/core and core/inner core boundaries are melt-
ing-point transitions, they argue that the temperature profile must follow the
melting point curve: greater temperatures would lead to melting of some of the

solid core, lower temperature would tend to solidify some of the liquid core.

To compute the adiabatic gradient we have 'D'l:- ] —Jﬂ-&- {-for L = radius of core;

¢ L = (/5*"") . i) | fdT) o =igr
—_]EI— -EJ!.T-_F, dF"TSIj HF o d F':? &“ﬂ!‘r l"-"L_,:lF ':r*l—

The melting-point gradient was obtained by extrapolation of shock-tube data for

melting temperature vs pressure.

For convection, the temperature profile must increase (with depth) faster

than the adiabatic increase.
-1 _( Ty ity
ar
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WitheX |, T, C as in Table 1 (Lecture 1}, 3[ 5m.-"'$qr_‘*, we get
LEH') = 2xi0” R,
ad

ar bis
Assuming all heat sources are in the core (quite unlikely), and that the radial

gradient at the core/mantle boundary is given by the last figure, we get a surface
heat flux of approximately 6 x 1121_1+ cal/m?s. If we assume the Kennedy-Higgins
melting-point curve, we obtain 4 x m"l‘ cal/mzs. Both values are considerably

below the observed flux of 1.5 x 10_1 cal/m?s.

Another basic criticism of a thermal model of convection has been given

by Braginskii (1964), which lead him to his proposal of a geochemical mechanism.

Treating the thermal dynamo as a heat engine with optimal efficiency ﬂTT'%nﬁ

actual efficiency perhaps , the work done in sustaining the field (most of

o
which appears as Joule heat:ng) is about T-;;_J of the net core heating (presumably
by radioactive decay). Assuming 1/5 of the 10'5 joule/sec heat flux at the sur-
face is created in the core, Joule heating should amount to 2 x 1010 joules/sec.
Suggested values for Joule heating have ranged from 4 x 109 to & x 10'2 joules/sec;
Braginskii favored the latter, higher figure, based on a kinematic dynamo model

of his.

Both of the above objections [popularly known as **core paradoxes'') are
themselves subject to criticism; in what follows, we treat convection explicitly
as thermal.

Our eauations Jow, become (in a rotaE;ln_p framg)

odu""i_pfj_ LF"-"'F-"'_'I- r-il-_P— ..'::ﬂ 1__..1"'-:"'F, J_ ?" 11} = pF I:'E-I:'
F



-
where F includes all gravitational forces and "F'F,-_j is the viscous stress tensor;
—_—
2Ff L Wi(pi)=0;

at
dp
_,F [:F :f'—;r = o T + - v'}*ailuﬂ'_#Q|u + erl?lljt ¥ (€.2)

] 3 ——m a‘u;_ i e
where of = = ?’(?%}F} QI"JEI.'.“ ”':F. E a ajﬂﬂll = E:r ’ ﬂ.l"il'|'1:f 3 = J;I-?Ti'
the thermal diffusivity.

V¢ assume U = 0 on S, the boundary of the sphere which i ou_r‘ domain,
all ] i
and that T = Tg is constant on §. Setting F=-V¥ amd ff + £ J,.['L .

taking the dot product with the momentum equation gives
E‘} = o a =
5P (E e 0)ev (pid (K 8+ 5) -
,Fv.d-a.{ﬂlﬂ-a.qn-ﬁﬁ-{ﬂﬁr‘-}+f§_%. (6.3)
Integrating over the core, T
a- -—IJF
E(E*E) s Wt W - Q,, — )it BT aa s, . (6.4)
where Ei, Ep are kinetic and potential energy given by !&JF‘W"‘*""LJF'PJ‘M

4
respectively, the compressional work 1I-f'-"':g -‘-_fﬁ?- wdwland the precessional

(and tidal) work -E‘-'@" .
- .-"‘ - =N
Wp ‘jp(ﬁ"—u'{ﬂnrj‘)dful.
Recall, from the kinematic dynamo problem,
'H'E__.I h I.' 3w
— S'—-LLE,. Tt B (6.5)

where E_ is the magnetic energy. Putting this together with the previous

equation gives 3
H—(EwE.,* EF)= Werw,-2, -2 (6.6)

Introduce entropy, s and internal energy density e, we rewrite the tem-

VIfE Jauvle

perature equation as

,PT-fi—;raF‘g—:-—i- %‘E = %(Pe]+?-{fﬂi}+pﬁ'-i

—t
=V 2+ G:';_,,“-rl;iuuf-p L~ (6.7)
Again we integrate, and get

T . Y
F Y EI-J“F'EJP” E = M‘*L Fen ds :—,_mt_‘i‘ﬂ_”lt + 5'_“'1‘ [&.8)
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so iIf E = Em"‘"Eh"" Ef"' Ei'
£ % 2 (6.9)
'g_t = Wp + ﬂ;_"“*L F.nds.

Denote time average by an overbar, and assume the system is near equilibrium.
Then

\A/r.+w v g'wsc*ihﬂ-ln
and = 5""17;'!‘15 :W_H".F“"E.’

St
g Chgs

(6.10)

We can consequently sketch the system as a heat engine driving a kinematic
dynamo.

surfoce
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|
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ﬂ_ Soures "’"1

Fig.3
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Of course, there is but a single earth, and so the two must be superim-
posed, as they consist of the same fluid particles.

We want to show that i._,“_l_i + is bounded in terms of ‘Q\._,_H,.u .
The idea is that parcels of fluid deep in the core absorb heat 9.; at tem-
perature Ti, and give it up at the surface at temperature Tg; entropy increases,
2, ., 4 | 2 o (Bard a2, (Bs48eray); |
so ET-.' 5-?;1-, However,i-.n‘_._E T = 2 T

ma.x

T T,
50 almﬂuc"‘ g-wue "';-;d.k_ _ "#hL:"'-; and ?‘w;u_ ':l--j,“‘_ =] (—%L—da“ This

[
still involves the unknown T however, For further discussion, see Malkus

(1973}, Hewitt e+ ad {1975}, and Backus (1975).
THE BOUSSINESQ APPROXIMATION

. §
W assume at the start that -fL = constant.

W then treat the density # as a constant 2 EXCEPT in the body force

- _ | f Bey
termf)F: -, Y Fe Ll-ﬂj‘T}f: , Where L = radius of earth and & “'-F.'{_a'r' .
he effect of density fluctuations on the gravitational potential is also ignored.

We also neglect, in the temperature equation, the terms 3,..,,_ :..,“l‘an-:l

Dp
"'ITFF' The equations (6.1} = (6.2) then become



F;ﬁd#lf,ﬂﬁa*?lp*ﬁuf+?'% [5]:}
=g = 19 757 *
Vi =0,
and :;J_'T 2
ﬁ,erﬁn}.? T=8, (6.2")

These assumptions require that the thickness of the convecting region, L,

. 4
be much less than the *"temperature scale height", Lr:|-= CI N for the earth, one

obtains L = 2 x 106m. Lt = 2 x 10’ . so this is not too bad. This condition

m!
arises from the supposition that buoyancy and magnetic (Lorentz) terms are com-

parable, the G:-mr much smaller.

A remark: in the Boussinesq approximation, if all time-averaged quantities
are independent of initial conditions, then the mean total helicity must vanish.
P L I:;_ 'T E - & =ty "
Onejets the initial conditions aIternate_Ly to HF:- _{. ,:I {u_j {r), FE["},
(ri, for some given functions U,. Fe ,'1: and Bo,and to (&’_,PL,T“
sk & =l e
E‘,::I :{Eﬂt"r.], F-? -.’I'J, T-ﬂ L_ 7-), Ecl I:_' r }F
Then le.llllll-l'__.l'_l-lll{'lﬂ-,.|I E'} ﬂ:hl"ﬁf = '.Jlr[i:_" {Enﬁzl].ﬂfvﬂ'j = —-H-"_.j

since we assumed H; = Hz, we conclude that they must be zero.

W now consider a bound on magnetic energy in the Boussinesq limit. One

—

can show (see the appendix) that Ryjse ¥ Dgowse

A ¢ 2 - 2 e
j—ifif—j;—ﬂ't‘—m;m}*Hfﬂjrj{_f‘}tﬂr.r)drc{r: (6.11)
\ i i B o

where /3 =fLi: & I and Q(r) =<0, 25 <()>, denoting the mean over a spherical shell

of radius r, and Qg = Qg rce- The first term vanishes if Qg is constant, so

iu‘“’f L 2!I'l-ll.it E ‘fﬂfﬁ'L ':I—ja-.uf.g'

~ -+
Ve now use (cf. Lecture 2) .-;?r_u_ 2 -U._‘:II-—% jﬁld”r and secjﬂdvalrﬂl—.mfj
. kL
. . ':':ﬂ'_i il =—L‘ L'i
define the Rayleigh number as R, = Py Cpv K* the Hartman number as M *“Qf’bv

in which case one obtains -R./Tﬂf 2 570%% 50,

(Our standard values.(Lecture #1) give H,E..ll,-ﬁjé 190 for fields of 100 G.)

Thus in the Boussinesq case, the field must be bounded {('most of the small-scale



_ﬁ!:‘l_

stuff is wiped out, so only about 1/10 of the = -effect remains'™). This bound

was obtained (using a somewhat different argument) by Hewitt et al. (1975).

Notes submitted by
David C.W.Hart
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Appendix (Stephen Childress)

To obtain (6.11), first multiply (6.2') by T-T., integrate over V and

average over time. After use of Gauss' theorem and the constancy of T, we

obtain r . r .
Af(aTrdvel = |G, (T-Tdve
v v
and therefore 3 E

Tﬁﬂ:ource = J I"-T"-" E-'H!'-"T!r-

V¢ will use this relation presently. Now define
<G> = Wir),

where S I f
Sl rirl = '-I__ﬁ_'-'.:_ (~ld area
'|":'|"n
is the spherical mean at radius r,. The spherical mean of (6.2') gives, after

integrating once with respect to v, S .l’?
b T e e Ly s o L) o
BT 'i.'—"-a-T."-"a’L*“ia.r?"g, |F) d p.
But in the present case ,L
W = :Tf.'f!'.n:-f '-1,.'.- — = o
AT |7 G, Todr = 4+

o
i Trale (LR TL"E ]



")
I'IL.. 5 r
":.'-"TJ. r :ﬁ-‘mTJir:*!'HLJE‘EHTJ”“'I

and so, now using

S f&;Td! val

I:E‘I.]mﬂ-‘. II|
1T, .
& b LT, - 218
i & ,::?!-Im“ irdu'l"ﬂn

where the maximum is over space and time.
Combining these results, we have (reca”ﬁ =L/L’ = '!'ﬂjff'!:'aj

B 'IF
o _r » IAET | 4 o4 ﬁ;l""'-!'!'i"-.-_]

c"'r-.\-.'.'u: FanL L1' L3 '-".':;':]n--.'p

T A
i %T.-‘—JJ r){,.ﬂ"ﬁ"{_ﬁ':' dp

which is (6.11).

Lecture #7 ROTATING MAGNETO CONVECTION

Now we consider the effect of putting in heat to support a magnetic
field and a convective velocity field. There are two aspects of the complete
dynamical problem that we will consider. 1) The kinematic problem of genera-
ting a magnetic field from the free convective motion of the fluid and 2) the

effect of an imposed uniform magnetic field on the fluid motion.

First we examine the Bénmard convection problem, i.e. a rotating layer of
fluid heated from below, in a uniform gravitational field, (c.f. S.Chandrasekhar
""Hydrodynamic and Hydromagnetic Stability' Chap.3). Our interest from the point
of view of dynamo theory is the structure of the realized modes of convection.
W make the Boussinesq assumption that density changes are important only in the
buoyancy term and inertial effects are negligible. Also we linearize the equa-

tions of motion which eliminates the advective nonlinearity of the substantial
il

derivative. Jr.ﬂ. "
I |',;|.
z 4 d ¢ ffF
| | J . l.""r"Jr_L A depotes unit vector
g ‘reaT (AT =9

In the temperature we subtract out the initially imposed linear gradient:

T=T,+AT-2AaT+8




_5|_

The momentum equatlon is: ~

:I. & -
and temperature equation:
-a-g-at W S—= =K 8=
We apply ''slippery'’ boundary conditionr: & =y m E‘u 'a.t YzDat 2 = 2 L for
isothermal bounding surfaces.
Keller: In elasticity theory these boundary conditions are termed a

"greased surface''.
Malkus: This is achieved experimentally at Ry== 640 with silicone oil
bounded by mercury below and helium above both of which are good

conductors.

We will obtain asymptotic results which in any case are relatively insensitive

to choice of boundary conditions.

A A
To put the equations in more tractable form apply 2-%¥X and - "-:"'.l!:f"h'. to
the momentum equation and let _f :.{U;_J};_ , the vertical component of vorticity,

obtaining (extemporaneously)

it -2 = wor i s '::' 'II-_Il-" U)=-n a;]
1 dw ekl ; _ﬂ s e
-V }va W-20 22-=-g& V"6
Spiegel : '""That deserves a round of applause . . . even the signs are right".

Childress: '"ls that right?™
Spiegel : "How should | know?"

E- may be eliminated between the two equations, multiplying the first by

2.0 aan , the second byL EE: -7 ) and adding. This result and temperature equa-
tion are nondimensionalized with the followina scales:

3
1PN Ty e
length = L Rayleigh number Rg= Wﬂ-

D=
time -~ L (typical vertical diffusion time)

Y .

_ HIAL _ _

Taylor number Ta= T (measures effects of rotation relative to

viscosity)

- - |
Also note TeZ A% (U. K= &=+ (E = Ekman number), and
. 2 d~ .
finally E"‘li = V"= -3 . Note the Taylor number for the Earth using
L—- 3x10° £1=704x105 V-105(mks) is ~ 1.8 x 1030}



in final form:

5] ' =
P -v e 1 3% R (A7) 0
(Pr%-v*)o=w

for which there is a class of solutions with
! T T S P
W:SIJ‘I'[HTTE}EEIE[[H"TK-:IEE Fy = '.-1-,-"{H.'ﬁin p]ane_LZ)
where the wave vector (kx, k n) satisfies the relation

* e Tt vy o T T
R, = L '}(1 Tn" To for neutral stability

Proctor: This is for Pr =1 1
Childress: Assume T & ,&-,]. This insures exchange of stability at

large Ta.

We are concerned with the onset of instability for @ crossing through zero, in

the 1imit Ta —# <. Qualitatively the relation above may be sketched as

Clearly fﬁa}m;n is achieved for n = 1, but for what value of k? (as Tqg —= c0).

. 4 7™ Ta
If we assume that k ~1, then Ra ~~ Tg. But if k »> 1, then Rgas k* + —&®E

adRa
Taking * =0 for a minimum yields
£ L L
ke = (T oy Ra=3(¥ Ta G
(which is smaller than the estimate from the k =~ 1 analysis. From the point of
view of dynamo theory this is nice, for a fast enough spin the convection modes
have bery large horizontal wave number, i.e. small spatial extent {",’ . Thus
2 W .
—mf T ]‘<< | as T, —> oo
The appearance of this new scale in the problem may be thought of as aris-
ing from strong Coriolis forces which cause a large orthogonal deflection in the
trajectory of a particle initially moving horizontally, leading to thin vertical

convection cells.

Malkus: Veronis found as Ty —3 oo and k. gets larger the actual particle

trajectory in a roll is the same as for Ty-~1, just tilted. The balance is feo-

strophic.

Stern: Think of a top, the rotation stabilizes the motion even though it



is top-heavy. The only thing that makes it fall is friction as in this case,

small cells are formed in which frictional forces offset centrifugal forces.
Malkus: Yes, but the viscosity destabilizes the flow.

Spiegel: The point is, why is k. large? Viscosity kills large wave
numbers.

Malkus: Suppose you increase the heat flux, what happens to A Tc?7 How
does it depend on ¥ ? & T. goes to infinity as viscosity goes

to zeroE The k4 is a viscous term.

Spiegel: The inviscid problem has a critical wave number such that all
smaller wave numbers are stable and which tends to infinity for

infinite rotation rate.

Childress: Perhaps the term to focus on is —'ﬁ;Iu.r , Where we see a bal-
ance of buoyancy in the numerator with vertical forcing in the

denominator, i.e. not a geostrophic balance to lowest order.

Nowvw we consider the velocity field of a roll.

=

=
© &L

) 0@(} =k

k. X

[
= , = w A
U, =sinlne)cos [KoX j2 s

rlﬁ"cns['ﬂ?i}sm {r-e. ED

2
% (34 K, Jees (TT2]sin Ilri:."t‘.']-

-c.
Note that the first two components, vertical and perpendicular to the plane. of
the page, are 0(1) quantities while the last component which makes up divergence
free is D[TE'HF‘:I. We expect from examples already studied that the —;”: phase
lag between the first two components should lead to regeneration. The pressure
of a small scale »e Justlfled first order smoothlng and we find the dyad

_._.*&._ o1~ %)

- ,.-T sin (2"12)

l'.l-

Proctor: This is for fixed 'f"L

VW can add any number of rolls with the same kc but at different angles,

e.g. a hexagonal or square arrangement leading to a matrix of the form:

ol ol ix o \
ﬂ_ﬂ [= R n

el = J
o

KD o ﬂ,.-'



with a positive definite upper block. A mean current in the plane suggests an
-:h:i dynamo is possible in principle, having a periodic repeated cell structure.
Although the net helicity j(.—jivu f!J.:{(vOi} is zero, there is a '"'polarizaticn of

helicity by rotation™ with respect to the midplane:
—_— i
N+J H—

EH""':.IH:-"

We can produce a dynamo with large scale magnetic field by slow (horizontal)

modulation of ©%£.
Stern: Are there modes which aren't dynamos?

Childress: The only case which would not be a dynamo would be a degen-

erate matrix, e.g. one roll alone (9__6 diagonal with ane nonvanishing element).
—F
Pedlosky: Wy isn't. this realistic, that is, does B have to develop?

Childress: this is a highly degenerate plane problem, in a sphere one
can't arbitrarily combine rolls, for example you might have an .o -effect, but
!
no &=t

Proctor: According to Soward with two or three rolls you can have a field

with R smaller than the critical value, here.

Childress: Actually the problem is even worse as there is golbal subcriti-

cal instability as opposed to just local.

Proctor: A smaller value of Ra. for two rolls with a field suggests the

only possible mode is a dynamo.

Malkus: Roberts following Chandrasekhar suggests that *‘gyroscopic con-
straints are stabilizing"™ which is widely accepted. It is interesting here that

the two constraints oppose each other, relaxing the conditions for instabiliry.

Now we add a uniform imposed magnetic field following Eltayeb and Roberts,

and examine the asymptotic dependence of Ry. and kc on Tj.

% -—-. ", B e e
. L ] _‘6//5' }’:
K BE LY

* ,..i.:_-ur L) M
M~B LT ') (Hartman number) N * gk
Horizontal field Vertical field




The minimum Rac in both cases is for M ~— Tﬂl"llI in the intermediate mag-

netic field region where magnetic and rotational constraints come closest to can-

celling. In the weak field regime, not surprisingly, rotation dominates and the
exponents are those found earlier, while for strong fields, horizontal and verti-

cal (cf. J.Pedlosky on "Inviscid Stabilization'), results differ markedly.
Spiegel: There is a dip for the vertical field?

Childress: Remember, the vertical field responds to both horizontal mo-

tions. 2

Vi
Ta

numbers for the earth, the ratio is —~ 16.

Note that the ratio is independent of viscosity and putting in the

a : . . . .
Proctor: E’a"' '5'[(_1'; } puts one out in the high field regime where the in-

stability is a diffusive one.

Knobloch: For no field, R - T_:,EH1 and with a strong (horizontal) field

R, -~ T,1/2 1

1/6

Childress: Yes, and notice that the change in exponent of Ty now means

£~ L”.;f. for the earth which would invalidate the mean field equation and
o -effect.

Malkus: In a spherical geometry, though, the constraints might lead to an

!
optimal k such that £ T Radius.

For a sphere the problem is complicated considerably. Busse and Roberts used
linear stability theory to obtain asymptotic results for T,—» @9 . The convec-
tive mode for a spherically symmetric gravitational field consists of slender
rolls oriented along the rotation axis which propagate eastward, this being one

of the consequences of a loss of a geostrophic balance.

=,

/
&> inm

There is an expanded radial structure and a rapid azimuthal variation;

b}

thus one neglects r derivatives relative to ¢ derivati'ves obtaining an equa-

tion in ¥ and z which reduces to an eigenvalue problem in z with the assumption



of a mode '™®. The loss of radial dependence leads to an infinitely degener-
ate class of modes. Soward did a multiple scale analysis supposing Ry & Rac and
found a radial dependence of & and thus of the wave apeed. If one does an in-

itial value problem, eventually viscosity kills the mode.

Spiegel: Perhaps the time involved is too great in the context of other

approximations.

Soward employed nonlinear stability theory and was able to resolve the

structure on a long time scale for

Dot~ o(nY)

There is a complicated radial structure on slow space (_Ta_':"r":l and long time scale
resulting in a Stewart-Robertson type evolution equation, Heat is transferred
radially by a soliton-1ike structure (rather than the laminar Plow of a conven-.
tional cell) of dimension T, . In Busse's experimental apparatus one would ex-
pect Ta_k"v 1, thus his observation of convection cells propagating eastward is
not in conflict with Soward's asymptotic results. (Also, the gravitational

field is cylindrical not radial.)

Eltayeb and Kumar considered the effect of a magnetic field
=3 Ce'ey) i
E=0 _L:‘.\‘_x-I i

in a sphere, obtaining the following results:

THE 11
Ta [ oy
ity & i "
J_}qr—%
K
Mo Ty

i
For M -"-'Ta”'s'- T,-_.”’ the drift direction switches so that very strong fields
(M2 == Tauz‘.l (with essentially no dissipation) are associated with westward
drift. From numerical results the velocity is found to be

_,M" e S =5 T j
Lugs 12,33 T L~ 10 %W:u



which with .HEITE,”‘,-..- 16 for the earth is comparable to the observed westward
drift. (This is the phase velocity, the group velocity is always westward even

for small B. Also these results are for I~ ¥ = V.

For a dynamo one would like to find a simple problem which contains the
essential physics without having to consider a sphere. Soward explored the weak
field limit of a Benard dynamo, and found a local regime of stable dynamo opera-
tion. His results coupled with those of Etayeb & Roberts and Eltayeb & Kumar sug-

gest the following sketch for general rotating bodies with convective dynamos.

Strong =—— subcritical bifurcation
mag ]

. supercritical bifurcation
Weak - :

Va 32

*
Ryre Ty

A Bénzrd dynamo in the strong field regime Is rendered extraordinarily compli -
cated by these aspects of magnetoconvection. Thus one might consider, rather
than the full spherical model, either a planar limit or, as Eusse has done, an
annular model with top and bottom surfaces inclined at a small angle to allow

Rossby~like wavsas.
Malkus: Also one might examine a ¢yiinder with spherical caps.

Any modei of an =< dynamo is subject to the criticism that cne would expect
an =L L dynamo due to large scale motion in the strong field regime since con-
vection will distort the initial radial symmetry of the temperature field lead-
ing to a "thermal wind" to provide large scale aximuthal motion. in any case
either approximate models or approximate analysis through a truncated modal ex-
pansion seems crucial to obtaining a tractable problem. In the next lecture
we shall examine the case of a weak field planar Benard dynamo, where some of
these ideas can be examined in what is probably their simplest setting.

Notes submitted by

Glenn R. lerley
and Hisashi Haukuda
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Lecture #8 THE BENARD DYNAMO

In this lecture we consider a successful hydrodynamical dynamo, studied
by Soward (1974} in the weak field regime. Physically we have in mind a rota-
ting Bénard dynamo in the Ta—> &2 |imit. This implies, as we have seen, a
small scale convective motion (from linear stability considerations). W will
put in a small field and see if it is amplified. As the structure has local
helicity we anticipate it will excite magnetic fields. Finally we use a modi-
fied finite amplitude theory which incorporates first order magnetoconvective

back reaction on the velocity field, and enables us to investigate dynamical

A B.L ~
. . . .-'r'ﬂ'.L: —_ . (1),
equilibration. By weak field we mean ! VR R, ( )

Malkus: How is it that equipartition doesn't enter into the problem?

Childress: This requires M~ O(Ta”E'“.I in which range there may be more
than one stable state.

Pedlosky: M ~0(1) means all the terms in the dynamic equation are com-
parable and in particular the buoyancy roughly balances the

magnetic energy.
R.- F:',c
R

-4y . . . . .
< = {T:,. 1 in which case the convection process rapidly achieves
e

an equilibrium convective heat flux (essentially total kinetic energy) equal to

W fix

that realized without a field, while the dynamo process changes on a very much
longer time scale. Effectively this decouples the energy of the convective flow

from the magnetic energy (cf. discussion on this point re: validity of first



order smoothing). The magnetic field in the weak field limit merely redistrib-

utes the energy among the available modes; thus the question of mode degeneracy
K

4

is important. In the Bénard problem all rolls of fixes

are equivalent and
direction is then a continuous parameter at our disposal.
Malkus: These are assertions not duductions, one wishes to establish that
this is what emerges.

-1/12

For our choice of R, there is a band of allowed |-"l| of width ~~ Ty but for

convenience we shall restrict ourselves to a band of O(Ta—”6) about !he..l , to
|
avoid multiple scale analysis in the horizontal.
Malkus: 1Is this essential? Wy are you being so restrictive considering
supercritical equilibration when in fact a subcritical distur-

bance may be important? It seems a kinematic approach, essen-
tially you are saying a square lattice of rolls works.

Childress: No, you do not know that ane mode isn't selected dynamically.

Malkus: There is even a convection experiment with triangles! With an
appropriate bottom surface you could probably even get a convec-
tion pattern in the form of the GD dragon!

Pedlosky: You impose no planform restrictions other than no variation on
small scales.

Spiegel: You can always put walls in the problem and select a single k.

‘."",'- . LA
scales: M~ oli), R, ~ o[ T ™) ﬁl: o(T™)
Let up = velocity scale,

. e =M
expansion parameter = & = Ta

- 3
Recall, o = T. . 5(5‘%) so then, balancing large scale diffusion

against the U“fﬁﬁ.]ter-'n in the mean field equation, we have

_QE" S H-E*‘ = LLp = -1—= ‘r'll:"i gTij'
L - > wo= = & Gl )

For the unit of time we choose the magnetic diffusion time:

Finally write the temperature as

TeT.+-FLIBT+EATE

Keller: It is interesting that u, is determined independently of the mag-
netic field even though it is the back reaction of the field that
should limit the velocity.

Childress: That's basically due to the linearity of the kinematic dynamo
problem.
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3
Pedlosky: It seems that your choice of R—L imposes a develop-
K

-}
ment time for an unstable mode. A dissipative time for scales
of Ta‘”E leads to a Landau-type evolution equation. The other

time unit, Ll.-""L , 1S much longer so that there is a rapid hydro-
dynamic equilibration which fixes in quasi-static equilibration
and then one can imagine turning down the magnetic diffusivity
to produce a slow drift.

Stern: This approach presumes that one can solve the stability problem
for a finite amplitude velocity field without a magnetic field.

Malkus: We have for example Busse's G{E }expansion around the band or
Pedlosky's technique.

Ve set Ra‘: E-H ﬁq so that &;"-’ O (1) (since H,"“'T,iﬁ' ) and we pre-

sume all diffusivities are about equal i.e. Y~ K ~ :rl (although for the Earth

-5
H_ ~=[2"" for which singular perturbation there is a "sharp' temperature field

which does not diffuse while momentum and magnetic fields do).

Pedlosky: Strong differences in diffusivity hence a lag between fields in-
troduces fluctuations in finite amplitude states which are other-

wise stable.

e

Introduce horizontal scaling: %:E % = _';f" (and by extensiaon ?h ) and
we have
ow
I:-::l-nl:in-u'llr 1:::1_' i+ § >z = o]

- .
Temperature: Eh g-—i:' ['LJ 'E."h"ﬂ-n- Ew 53—- £ e - 5”11—:.‘: ;;?-w =0

Magnetic Field: e.TF'% B,. E.‘;SI—% L E.":"(. xﬁf?.fkj% {il (2% é))

: ] ‘:I'Il Eu .q. e~ L] -
Hm&rhtum-r—{ E*'{ Ja+& w53 EEJ*‘E aF rUFe2 a0

T PR ard o ph G - ' ¢
> E M B« (T B)LEM {a:{n??))-fwa-g‘—ﬁ, =& R,eoz

where in the last equation we further define E“-E‘J':?,.“*rf-ﬁﬁ'l{_x,‘jj.z.t, E)
mean temperature

Eai"@ F *E {“*"-_'EJE*EW[&‘ Ili"LI L"E',,,E £y ;’E fh'ﬂa]-w=ﬂﬁ

Notice in the momentum equation that the Coriolis force is a dominant term.

Finally we introduce expansions in the other fields:

b =t u
BE 2 WL, &+ W where
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b
Eh=..-nn:_-b]- E'I_,n'j_d-lfl &
W o= wl"':'+.f, ¥ VL LU
= el L B me
and B . B0+ 4BV (E T ).,
[}
P = FP ¢a2.-=
E"= gl:"'+. M

I
where fluctuations first enter at order & e (eventual Iy but produce other ef-

fects, e.g. a mean flow in the velocity field, through nonlinear coupling).
Pedlosky: What about a boundary layer on the horizontal surface?

Childress: The boundary conditions are stress free, isothermal, so there
is no boundary layer. But even if you inserted one with no
slip conditions it doesn't affect results, to the order we
shall work, in the high T5 limit.

(et
Zeroth order "f-",.., TR Continuity

N

S~ g A =g
TP +2xty =0 Momentum

s (=]

A i II..-"“ (:J? . i
which is readily solved with ub 2V, P 5-VX(2P ) (div(curl) =0 in

continuity equation)

Note that 5% 0{!) so the velocity field is a baroclinic geostrophic bal-

ance of pressure field and Coriolis forces.

4}

s - )
In &@{& ") we find the same set of equations for ey and P so that

. . . . = . )
a suitable choice of normalization allows us to set U-E‘]:: =0

s L4y i
o) TP Ex iy = T
aw{ﬂ
0B

I

Oliver; Where is the fluctuating temperature field?

Childress: That enters only in the vertical component of the equations.

e e ! = -
The first equation is solved byal_t,::‘:;I vt F"ﬂ +E2x TP then the
= w ;
second equation yields V P“) = ~ma + The & component at order & yields

] o
ga = 4 R 9% T2 wuhere Ry = R+ £ R,

Pedlosky: Taking the curl of the E:. ol equation we see that the diffusion
of the vertical component of vorticity is balanced by fortex
tube stretching, the pressure gradient is in geostrophic equili-
brium, it is not just hydrostatic; as in Stewartson's work,



- (2 =

involving an EI"'-" expansion with buoyancy, internal stretching is much greater
than Ekman boundary layer stretching.
i ) @l L3
The .:j,:r;,"} temperature equation is 5 v Elf-;-WE: . Applying Vot
this, ‘Fq to the O(E)E component of the momentum equation, and eliminating
s | ]
v pLd yields

fosh el = ?
L?—Ru ?4— 'E‘i';_“}wfd:f:'
2.3
el A [ o o el
et W = & w/(e Stn(T2) then Ry = -k:-‘rd".-"which recovers
lljf..l'“ke

the asymptotic result from the last lecture. Closure at any order, ¥Vt , requires

the vi+2 order equation.

A 12
Also the heat flux is known from || by the adjointness (or solubility)

——

condition applied to F'.Lﬂ. In this weak field model (M ~ (1)} the B field en-
ters only in the O(Ez)momentum equations and thus does not affect the heat flux.
A different scaling appropriate to the intermediate field regime would bring in
B at second order (albeit for this model it seems to be no stable solutions in
such a range) while in the strong field regime magnetoconvection would greatly
modify the heat flux and B would be present in lowest order and it would be in-

appropriate to expand about the zero field Bénard problem.
Stern: When does the linear stability problem for_E enter?
Childress: The ﬂlff-:;' equations give the modal amplitudes.
Pedlosky: Note the field corrections are of order (amplitude)z.

4
if we consider terms of 'ﬂ'{ﬁ- )in the temperature equation and average over

the horizontal we obtain

A& g Wiy | K &
3t T o2 WEeTe 7 8= ?

where the second term represents the convective heat flux, that is, there is a
balance of kinetic energy and the mean field. This is how via the =< -effect
large scale motions are driven in a sphere. Convective motion leads to a new

temperature profile which stabilizes quickly.

mmn temperature with convective heat flux
a J
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We will write the mean field equation with this convective mode for small scale
motion in the horizontal (compared with a length scale of O (1) in the vertical).
Smoothing is done by horizontal averaging in both the mean field and induction

equations. Recall our expansion for the magnetic field
= ;
3. (e-)+ é P - -

where we write the mean field B as (ﬁv}-‘- {lﬂ;{i,‘t}JE,_{E-.f].t i.e. no horizon-
tal mean on the fluctuating part of the field. From B(E") terms in the mag-
netic field equation we have -*w = N\ fad

_§BY-B".yu
which expresses the interaction of the small scale velocity field with the mean

magnetic field. Then, taklng terms of O(E")one obtains

T 2T o) o

at 2z*
which becomes
"".I:‘i' F,;‘ _.s(c) :'- - Y -
a;g S & [2x[d x| 1] (ﬂr':?:-'rimj]"‘
Averaging in the horizontal (indicated above by brackets) yields, ultimately,
&E A B; A
. ) — (sin {271 2IM{
a"'t =421 j L5in i El‘] &
where
my r|'frﬂﬁurﬁﬂx s LIL/ P
L] ‘Iw-. . -Elll'l..), o " !

and € is essentially the energy in the mode ’ﬁ « W can normalize by re-
quiring d, ;teL,, =2. (For the isotropic case d, , &.,2& | .) Note the factor
of mn{qn,ﬂ which corresponds to the polarization of helicity by rotation.
Specifying some initial distribution of amplitudes one finds there is a certain
minimum value of A required for a solution, which corresponds to a critical

kinematic energy for the convective field.

The self-consistency for the problem enters in third order by an evolution
equation for the amplitudes, given the magnetic field. Thus one can imagine iter-
- e
ating the problem numerically be giving e(k,2), finding E:-M[:i-;ﬂf} which de-

termines € LR, ﬂ*t} « The evolution equation is of the form
d £l " o .
*“" = = L”” ZY RORLE B (nt)e (R t)e (R.8)

with the requirement that since the kinetic energy (heat flux) is fixed, ( ) on

both sides is identically zero. To simplify the problem one can imagine a system

with discrete wave vectors and certain selection rules.

Keller: If the initial value (amplitude) of a mode is zero, it stays zero.



Stern: But only at first order, there are certainly mode-mode inter-
actions in higher order.

Pedlosky: The total energy is determined hygrodynamically, so the rolls
could arrange themselves to make B = 0 couldn't they?

Childress: It doesn't happen, apparently, if two or more rolls are
excited.

Pedlosky: Shouldn't the system try to break constraints?

Childress: Yes, but it never quite makes it.

Keller: It's like the oscillatory case with no dissipation.
Motivated by the spirit of the kinematic problem we will set
[ o (:‘-* -rf)
= rn =
(o1)rm=(, )
Pedlosky: In considering all rolls with all possible distributions, how

do you choose == ?

=
. . i _ . .
Childress: There is only one scalar,“—,‘“ to within a rotation of coordi-

nates. W now look for steady solutions.

The field equations are

3 Fo 57 )_ 2’8, 4
11T1~ﬁ-(sm (am=)(-B,))- 523 =
3
L2 . - B E,:L -
lﬂ).-:-—(&lﬂ (7_'71":..") BJ} ':a—a-_ﬂ_ = 0
: . a58; . _
with boundary conditions ?t_:'j E=O, y 1.2, perfectly conducting walls,
carrying no tangential current. 'To eliminate uniform fields we require
{820
=

If we define 5,* I'E_= 'F’ the equations become
i .
27ns (@ sin (27m2) - =0
integrating once #?I':Iﬁ;"ll'!'i” I'_-";Ffi."]'fisﬂ thus

- A DS (277 %)
4oe”

and . -
| - ca,sr?-u ]
JA d %

e = Jg A1 20 is the associated eigenvalue problem

=]
with a minimum of

JLE_ = 2.404.

Soward considered nonstationary fields and found a smaller .:'L:..
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For a more general mode distribution the steady result is

Jﬁln_. 2,404 where J‘(a{etx)"i

Don't bounding techniques for the unsteady case give a (an

Proctor:
absolute lower limit) value of ‘M f2 ?

Childress: The smallest exhibited is A % 1-

Keller: It doesn't seem you should beat the steady result with bounding

techniques which are insensitive to unsteady G-

If one considers a wave-like field of the form
g4

B; = ef“*gﬂ‘- cns{im-l'l:l’i'ri

with «¢ imposed the result is ﬂ:Jﬁ 1.597 and t_f': = -1.394.
EEE— ]

Alternatively we can compute the = matrix for a single, slowly rota-

ting, roll (rotational frequency “*) with the result that lcrr= 1.08 and

n ’ )
Spiegel: A rotating roll is not an exact solution of the convection

problem.

But the rotational rate is on a very long time scale (com-

Pedlosky:
pared to hydrodynamic equilibration time).

This approach gives rise to an ordinary differential equation

Keller:
with periodic coefficients soluble with Floquet theory.

Now we turn on feedback and look at the results of some numerical experiments.

For two orthogonal modes there is a limit cycle behavior for energy distri-

1)
bution in the field and rolls Fy
"
kinetic energy kinetic energy
all in roll #2 all inroll #1
2) With three rolls oriented at 120° intervals the distribution of kinetic
energy in the modes is something 1ike the following
s
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which can be thought of as the system mimicking ane roll rotating.

3 Following Soward one considers a continuous angular distribution of energy.

-"-'""E.]ﬂﬁ & < 27 (corresponding to -'"I.-"'-‘*ﬂ'f-":l for a class of motion with E(e)cor—

responding to a fixed structure rigidly rotating at fixed angular velocity, i.e.
the distribution has the form &{&-wt]. The following results are obtained:

continuous branch of
rotating solutions

o

N energy concentrating in one roll i.e.
e > dia, -t}

. — results from 2 and 3 roll calculations above
. E

i |

subcritical (3
disturbance i

The dynamical picture for the weak field Ilimit is as sketched below:

-
45

Side view T -
| ‘_"""_‘unlfor-m

B AY-S I

i:far’

=1

Top view

&
a —rh

roll axes

Malkus: This orientation of roll axes is the same as in the case of a
weak shear field, for a strong field the roll axes line up with
the field.

This suggests a physical mechanism to explain the rotating solutions.

Roughly, roll axes stay orthogonal to some representative vertical average of

the magnetic field. By the ot-effect, mean current is generated perpendicular
to roll axes, which acts to feed the orthogonal component of the field. This
changes the actually direction of the field, and so rotation occurs. When one
considers the polarization of helicity, the boundary conditions on the field, and
the signs of the e -effect, one gets the following sketch ( El- is taken a pro-

portional to =&sil#):
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3 G, K
ﬂ;ﬁ-;ﬂn’ — —p rotation of rolls

"""--.q________ __._,_f" -
30 35 g 1 mean current

T westward rotation induced

fietl at F—

“induced field
The rotation of rolls to the ''west' is observed in the numerical solutions.

Keller: How about a different means for limiting B besides back
reaction? It seems [ has to be too large to limit the
motion.

Proctor: No, it is otherwise a kinematical problem.
Malkus: Yes, there are certainly other mechanisms though.

Spiegel: Yes, saturation for example where # =nt3*)

Notes submitted by
Glenn R. lerley
and Hisashi Hukauda

Reference

Soward, AM 1974 A convection driven dynamo. |. The weak field case.
Phil.Trans.Roy.Soc. A 275: 611-651.

Lecture #9 COMMENTS ON THE SMOOTHING METHOD

Yesterday afternoon Joe Keller presented a general method of applying
smoothing methods to "‘rough* problems. It might be useful to consider what

the smoothing method applied to the dynamo problem is giving in its entirety.

In Keller's formalism the operator which gives the total field from the
mean field is LFI-r (m~t1- P) 'v'}‘]:nll, and in Lecture #3 we called IL[I‘E]_"
Each operator is a differential operator. |f we invert and substitute into
the Mean Field Equation the result is

(& -19")f = vx[5% 5" 51

3
where -F is the smoothed field. The magnitude of the 57 term is



[I;r o —-— oo ] where the first term represents the o€ -effect

w+‘11" L+
2
and the second term is J.«:J . If we assume that & W) is smaller than or comparable
) -
to TE and balance the diffusion with the = -effect we find that ’E—:j-_"“" - 1

L
or, if R‘ ""E%—"-then, E.- Riﬂ—-'l 1Eﬂ--|.|'?—.

The /3 -effect is then always smaller than the 4-effect by a factor of
‘E,.-"’L . (This need not be true if o is ordered differently, however), even if
the o{ term were vanishingly small and we attempted to balance diffusion with

the 3 term we discover that the ratio of the two terms is
*
£ vE /i R
i
so the xj—effect is O(R) compared to diffusion.

I f we suppose that the second order statistics disappear (or at least that

the == _-effect vanishes), then the diffusion term must balance with the 53 term.

3L "
The ratio of the largest terms is R'#~1 so R~ E % and in general, if (j-1)

I
order statistics vanish then W= £ .

The Bénard Dynamo

In lecture #8 we learned that the kinetic energy of the flow in the rota-
ting Bénard Dynamo tends to concentrate in a very narrow spectrum in wave number
space and that the roll axes that are most easily excited tend to be aligned per-
pendicularly to the main field. In order to maintain this alignment the rolls ro-
tate slowly with the main field. Compared to the spherical dynamo this model is
ery easy to analyze but we should also consider the possible defects of the ro-

tating Bénard dynamo.

One problem may arise from the degeneracy which allows multiple-roll solu-

tions. If walls could be imposed which would not allow rotation of the rolls while
still allowing the existance of several nearby wave numbers then an =£ -effect
would still be present. |In this case however the # matrix would be very aniso-

tropic and as a result the components of the magnetic field will be of very dif-

ferent magnitudes.

It is also very likely that the Bénard Dynamo is unstable for larger fields
than we considered. In the weak field analysis the total heat flux was fixed.
-t
Physically we would imagine that the addition of B field would further decrease

the eigenvalues and the dynamo would take off.
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1f the Hartmann number is in the intermediate field range, Mw;_g,
then the magnetic field terms enter into the perturbation equations at the same
level that the heat flux is determined. The steady state solution with two
orthogonal rolls was found to be unstable to the intermediate field, and numet-
ical calculations by Yves Fautrell indicate that for certain conditions, Bénard

dynamos in the strong field regime are also unstable.

Convective Dynamo Action in a Sphere

This topic will be difficult to study directly since no working models of
a spherical convective dynamo have been fully explores. W will therefore limit

ourselves to a few general properties imposed by the sphericity.

W start with the simplest system and work up in complexity by incorpo-

rating more of the physics. The simplest model is simply geostrophic motion.

Geostrophic Motion: Here we have only the balance of the pressure gra-

dient with the Coriolis acceleration.

- -t
P+ 25Lx U v.u =0
and we require the normal component of the velocity to vanish on the sphere, S.
Taking the curl we have 3 ]
d&

The only constant vector which can be tangent to both intercepts of S
-
with a vertical line is parallel to I‘P . Hence, by incompressibility, the

velocity is only a function of . and we write it as

WwePw | ,-:'}J y o= fx-r}'fl
Geostrophic balance alone is not enough since it neglects convection and
the coupling of the flow to the magnetic field, but we are interested in how mo-
tion similar to this might be set up by nonlinear processes in a convective sys-

tem. Note that no geostrophic motion is possible if T =0onS.

Taylor's Constraint: W expect the magnetic field to play some role in

the dynamic balance in the core. Therefore we add a magnetic field and "every-

thing else',.

Bx(Vx8)- '3"“'

1
FP"‘Eﬁ.iu*'ﬁP

In cylindrical component form this can be written

Fi a8, 3&_]

s AP 2B i
dy *pxt ‘:' L%'-Elz _&_plfl"ﬂlp(f; 2y ~ 0=
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Consider the % -component. If we integrate this equation over the
cylindrical surface inbedded in the sphere, the result will be the torque on

the cylinder. W& are assuming that all of the physics is included so we my
set U=0o0n S and so there is no flux through the spherical caps. Only two

of the terms contribute to the integral of the & =equation.

qee ot | 38y = 35 3.0 5
. T l:i - J-:.F: é J_"lx 3?'1 + o = Jﬂ-"rj l:-L
.F

This is Taylor's Constraint. This condition must be satisfied by B at

every instant. W can write Taylor's Constraint in a slightly different form
-

if B is axisymmetric and

—di

E=E@vvaa7? , 320 an 5.

=3
W substitute the axisymmetric form for B into the equation
e

i ded 3B BA dpB) j.
pmpdir)= E (5= - )
T ALE 4

& £ A
5-1'1'[-5-{3 ‘ﬂ J HE&E
A

Thus, if the ¢@-component of force is negligible, the integral must vanish
dearly Eﬁ#‘dﬂ p
r.'i'? EI '!.'-\I-i = F =0
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Note that the parity of A and B for dipole symmetry {i.e. A even, B odd)
should make this a non-trivial constraint. What are the implications on the

dynamo problem?

A Non-existance Theorem. Consider a dynamo with the following four properties:

(i) the dynamo is essentially axisymmetric,
2 ee
(ii) F7=0 or at least negligible,
!
(iii) B >> A (e.g. Braginskii's Dynamo where A=0C {.'ﬁ B)

(iv) there is no eX-effect in the mean field equation for B.

Then the dynamo runs down in that B decays to 0.

Proof: Integrate the 2-component equation for B, keeping only the dominant
I,Hf.', 'F TPt

imilarly, from the /# -component equation we get

a]ﬂ I .—J- |' ;{FEE}

—_ :,l:l‘
Y] ﬂp{, IV 253 “e
Combine these two equations
By T
b e L ¥ . 8T
Y = Zm =t op
If we define = pwd then fu= '—{F{F}.,,i:).-

A58 pk P
Nowv & satisfies Braglnskll % Equation based on smoothing,

25 v PN T B (P )B4 [ Qe xTpA]

Substitute for to from the above expression, multiply'b':.r B/IP‘ and inte-

srate over the spherical core

%t l %¢U+J-@-v -9(p"8)dv= } 2L (v-4) E:‘.::!'n-"+j—-._~ [vmivpﬁ] dv
¥ -
The second term vanishes because V is divergence Free and 2 vanishes

on S. The third term can be rewritten as

S (o )av = [ & (:f’— ' —;‘f: ) Edp s
1[0(s)
The last term can be separated into two parts.

jsimiqp.q] pdve L j%[ﬁ’fﬂE‘p.ﬂzpd.'h’iﬁjfitp%:ﬂaﬂ}?ﬁv

Eutfﬁ{‘?{x {?‘FA:J?J-;; & by Taylors constraint and the final term can be

il
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further expanded.

}P"[F w,m =§[5%[;—E{E‘d"}—ﬂ afg;i] ‘w']f]at
5.”} “arﬂﬁf} af-.q ?P ’J’ afﬂ]#gt
222 ”*U 2(2 8 dpds
= O
since @ =z & on S.

Thus, the energy equation for E reduces to

B v = nfvd £ av.

B must decay exponentially, if the four assumptions we made initially are to
hold. It is of interest to note that the addition of Taylor's Constraint was

sufficient to destroy the =& -effect in Braginskii's kinematic model.

Breaking the theorem. |In order to have dynamo action in a sphere one or more of
the conditions must be relaxed. Braginskii {1975) hypothesized that 3‘

though small, is not negligible. He proposes that ;‘q!{i.‘:{,w that the poloidal
field is almost vertical. The core-mantle coupling is important due to eddy

currents induced in the mantle. =L jis prescribed and there is buoyancy in the
Braginskii model. The object is to discover the function gl:’__p,t;l given all of

the assumptions.

Another possible wav to break the theorem is to include two X -effects
ee
or put in a radial dependence of # . Malkus and Proctor proposed a model where
the ﬂ*‘ﬁ' -effect is important. If we take a plausible e (one that is odd in & ),

the B field can be prevented from dying a-:ra-,-. If we write the force equation as

ee _ d L 3 &
+ E (e
¥ -egE+EV
we can regard this as a predictive equation. By evolving the fields numerically,
the role Taylor condition can be investigated. The result seems to be numerical

equilibration to the Taylor condition.

The Convective Dynamo. Nondimensionalizing the equations whould give a good indi-

cation of the problems we face in attempting to solve the problem of a complete

convective dynamo.

The variables in the problem can be scaled as follows:
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£ W
Temp = -&L—- Magnetic Field —~~ {?ﬂ}-‘_ﬂ"],-:'
A5
Unit of speed —:L
The resulting nondimensional equations are
=l - A =& A e = q ==
5'%%"’1!" e + TP+ BxTa B = _H-ﬂi.. L,.Tt—ff"l L
2T L -?T‘l'ﬂiT=l {uniform heating)
at n
68 g B-yxiLxB
at
The values of the coefficients for the earth core can be estimated as,
- - {;‘ L
Szrl'_mm'q el Huaeitrt s |30

Y a= Zpl i
E - E.n:.'l-l.n.l,- ."'i..‘lp. nuj.‘,,‘.!'” :Pi‘ e ||:1"""

Calculations by Proctor indicate that we can probably neglect terms mul-
tiplied by S and E. The effect of large ﬁ;_ still remains to be solved. If
there were some region in a sphere where convection were allowed to occur, it
might be possible to make the convective system thin while increasing the Ra.
This would force the existance of one small length scale to be important in the
problem so a smoothing method could be used. Then, in a thin geometry we could
see if we recovered results obtained previously.

Notes submitted by

Dean S. Oliver
and Shigeki Mitsumoto
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Lecture #10 APPROXIMATE DESCRIPTIONS: MODAL, DISC, CONCEPTUAL

In order to approximately study the convective dynamo there are several
useful approaches quite different from formal asymptotics but still very useful
for understanding the dynamics of the system at an almost structural level.
There are many examples of simple models that exhibit behavior very similar to
the record of magnetic reversals of the earth's field. W will examine several

of these models.

The simple disc dynamo consists of a disc ﬁ
driven by a constant torque and spinning in a mag-
netic field. This model has the equivalent of an t::__}q__
ws -effect without an =< -effect (although at this {::,4
level we cannot attach much of a distinction be- —h»Lb -b
tween them). If the rotation rate is large enough
the field will increase.

The idea in looking at this simple laboratory model of a dynamo is to
formulate ordinary differential equations which capture the essential elements

of the system. The two equations describing the currents and the torque are

Li*RI 3Mw-r—

and Cw =T=-m1*

where C is the inertia and M is the mutual inductance of the disc. I f these

are then nondimensionalized the result is

Aok AL X :I‘El'

}r' = = x*
These can be solved in the form
'.If-l
(y-ua)dy = ) dx.

If we look then at the phase plane we see that oscillitory solutions ex-

ist but the dynamo cannot reverse.

The coupled-disc dynamo of Rikitake is slightly more complex than the

simple disc model.
n

o
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We can think of the current through one loop as representing the poloidal
field while the other represents the toroidal field. Insofar as the kinematic

dynamo is concerned we would call this a model of an &> dynamo (or w3*-dynamo ).
Unlike simple disc, this coupled system exhibits aperiodic reversals (see e.g.
Cook and Roberts, 1970).

Approximate models can be considered from several points of view. The
simple disc dynamo is an example of an analog for dynamo. They are similar in
some aspects of their behavior but that is all. The coupled discs dynamo is an
example of a heuristic model. An attempt has been made to put some physics into

the model: in this case the coupling of the poloidal and toroidal fields.

The simple disc with a shunt carried the heuristic process one step fur-
ther. Malkus and Howard proposed that we should reason not only from how the
laboratory dynamo works but also on the basis of how the theoretical models we
have been looking at would work. Consider a model with a poloidal field, A,
and a toroidal field, B. |In an elw=-kinematic dynamo we could write the follow-

ing equations to describe the time dependence of A and B.
A +}Atq = o 3
Bam B =wA
Aa and VE are the effective diffusivities for the two fields. If we seteof =,

and @i =z &; , we would be back to the two-disc dynamo model. Instead of this, we

take oL to be a constant as before, but allow ¢uv to vary according to the equa-

tion, Car=T-vw-=AB

T is the external torque on the system,Vw describes the viscous torque and AB is
A,

the reaction of the field back on the system. It is reminiscent of the CIF' -com-
ponent of the momentum equation in cylindrical coordinates,

Euﬂ I = o ok

—ty —— [Bx?xB)-vl,=3

st = MP ( i AR §

In order to realize this system mechanically, it is only necessary to add a
shunt- to the simple disc dynamo.

The equations for this dynamo model are:
MwI, s Lyl Ryl + R (L-T,)
o5 ) DR M s 4 O
Cs 2 T-ML L, -V
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i g —
L‘H‘C?_._-g 1;": ok ﬁ‘“’ lI|
‘_‘_H““v shunt !'
J \

1
H Circuit Diagram
-
The Shunted Dynamo

Kay Robbins transformed the variables in the following manner:

[t"""J’IJ‘I.] fttscrfx“%.]:‘.ﬂﬂ.}l,cﬁ.f]

Ly iz [CwtRHRy <P}
H,J'P A, e Ei.M.
g R +-H; R:'Eﬂ

* MRvd P RR,

Then the equations become

where T

dx = R-yz-VX
E:X\-Z

dt

ey _

= zo{x-y)

where 7 = ":ﬁl.l-"r_ﬂdi]r
b4

R e S5

Three steady-state solutions to these equations exist. The easiest to con-

sider is the case of convection without fields so that y=2 = 0 and x= RA, -

To examine the stability of this case we linearize the equations around the point

At .
(R4, ©,0) by putting x2 RAy; y,axe’ - The equations reduce to

| A+e -
= 0
|"H‘."-|__| ;".,.+'||
So H—---—'il:ﬂ"-H]H--‘]_ '-"'I:[T+If+ ‘iﬂ'{ﬁfﬂ"} for the unstable root. |IFf RJ,.’.‘,-{J all
solutions approach the zero field solution. |f R/v > | the eigenvalue is positive

and the field is unstable to the addition of magnetic field in the weak Iimit. The



_??_

other critical points have nonzero magnetic field. [If we repeat the above pro-
cedure and linearize around the points [ | Jt‘IH-';J,tJR-'I.-'jtht: eigenvalue problem
reduces to a solution of the equation

Rj+{1,-+r+r']h1’*.g"u.g—+[2)?\,+1[.'?*‘,;}.;.-—:.:.

As the constant term,lﬂ'{F‘-.—'L-'}is positive, the necessary and sufficient
condition for A to have a positive real part is that the cubic equation can be

written in the following form:
f}g_(}\r-vi?\'l)} iﬁ.—{ﬂlr-?ﬁ'ﬁl} A+ )=0 2> 0
For the critical point 7\,-5 @ then
e AL Na l? A s "fi- :"-r.- =0
If we compare terms with the eigenvalue equation we find that at the critical

point 2alR-v)a (e ¥+ 13 (Ve RY

i L e
Therefore Pues — V- J_L

As R increases, the first positive real value of )R occurs for complex

The dynamo is unstable to growing oscillations for R>Re-

t
R 1
= Y
|

W+l e

The question of behavior below Rﬂis not answered by the linear theory,
but solutions of the dynamo equations can be unstable well below the point of
linear stability. It turns out that there is a critical value of ® such that
the fields characterized by E"C- H},: are completely stable. P\SC has been deter-
mined numerically for the system of equations we have considered but jt has not

proved possible to calculate R” analytically.

Convective models

We keep the same two kasic equations for the poloidal and toroidal fields,
A+ uA:=B
B+ R B : wA
but now we attach a slightly different meaning to the forcing equation. |n a con-

vective model «* should represent the response to thermal driving in the presence



of a magnetic field, i.e. a modified thermal wind. If we let & denote the
mean temperature perturbation then for (& we write (neglecting "inertia')

[£P ] klr'i'l-.t‘;ll:l":":ll[?:'a
In other words, the distortion of the mean temperature field gives rise instan-

taneously to e,

Ve still need equations for ® and @ so we should consider the effects
of small scale quantities. Let & be the small scale temperature and let LL
be the small scale velocity. Ideally € should be correlated to W by an equa-

tion of the form:

i3y

L1
]
&

G+n'e 2 Kulik

The term on the right represents the effect of the advection on the small
scale of the distortion of the mean temperature profile. W assume, instead,

that & is related by the simpler equation,
8= h,u{!-#@}r
50 that if <487 is the convective heat flux then
B> = k(W2 (1-k®)
It is the convective heat flux which distorts the mean temperature profile, so
@rH® =k LU~k @)
Only 4" remains to be determined. In first-order field models ¢4 can be
written ol z CLL A (A, B)-

Letting M be a function of A and B allows for effects absent in two scale
smoothing. But take A to be a constant here. W still need an equation for
s or <LL*) . Multiply the momentum equation by W and average, then, if

the inertia is small (£ <<1) the equation is
£ -2 ¢us <[R (1-h®) - GA.B) - R (A.B) o] <ut>

where Q(A)B) is the back-reaction of the mean field and E':.fq.ﬁ.} of the small
scale magnetic field. After rapid equilibration, with F{A,E} taken as 1.

%R, U=~k@ =-Q(4n

The equations are then

J.I'E'|_-4-.I',|_.|,.I"-"-'| :[Ra{fnﬁ(@)":']B
rE,-q-yEE ={Hr@—k.'ﬂ1’~|ﬁ
@+X@=Ma[R, (1-h@)-Gl 1-k @)

Yotice that if & is identified with the mean temperature perturbation
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and some nonlinear effects are ignored, one recovers the model of Malkus and
Howard. Equilibria and stability are highly dependent on the values of the
parameters. In some models AB is put in for Q W would at least like to know

if Q is positive definite and perhaps we can get it from the Physics.

Kennet's "ABCDE"™ Model |ooks at the full equations but considers only certain

modes. It includes both convection and the Lorenz force. The model assumes

only one temperature, velocity and mean temperature perturbation modes.

rl
LJL = {C—;]lf_ (47 aps FHHE,E%EM i@, fsin mTE) et

8 = FesmmTa g(t)

sin 2mTTa @(%)

ml ®

(d %?{‘Ln"j'j:ﬂﬁ NTE, nr-'ﬂ.a.,—pé- cos NTE, 51N nra) AlE)

ah{z,g) _ oh
"'( E“.E 1 T * G}

Then, if we disregard positive constant multipliers the equations have the form:
f-6-u-AB
§=-86 su(I-k@)
é 2 -BDeu b
.'E"i L] -..a.iu.lg
f]. s ~Bruf

The equations are very similar to Soward's model. The magnetic field has
two components. The convective system without the magnetic back reaction can be

compared with the shunted disc model.

We end with one possible idea for further research. It may be possible
to apply variational principles to obtain dynamos. VW would look at the system
which maximizes the growth of magnetic energy given a particular state. [If we
assume that all the energy flows into the mode which causes the greatest maximum
growth, an o< -effect would be generated.

Notes submitted by

Shigeki Mitsumoto
and Dean S. Oliver
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SEMINARS
and
ABSTRACTS CF SEMINARS

ON FLUID MOTION AT THE SURFACE GF THE CORE
Edward R. Benton

Two different methods of obtaining unique horizontal fluid motions
adjacent to the core-mantle boundary using geomagnetic measurements at earth's
surface are considered. The mantle is taken as a spherical annulus of inner
(outer) radius r = b = 3485 KM, (r = a = 6371.2 KM). The core fluid is assumed
to be sufficiently highly conducting that the frozen flux assumption holds to
leading order, and to the same order the mantle is an insulator. However, core
conductivity is not supposed sufficiently large that a current sheet exists at
r = b and the magnetohydrodynamic boundary layer there is largely ignored (on
the basis that, because the core magnetic Prandtl number is small, then so
also should be the jump in T x B across the layer, at least if it is of Ekman-

Hartmann type).

For the first method, continuity of E across r = b, together with the
insulating nature of the mantle assures that one can find Eat the top of the
core. Backus (1968) considered what velocity information could be obtained
primarily from the radial frozen flux induction equation. His result, that
null-flux curves (on which B._ = 0) move with the fluid, only determines the
core motion orthogonal to those contours, as he emphasized. Hereﬂvve add fur-
ther ingredients from other components of 4 BR% v 9 m B). The fol-

lowing results are obtained:

(1) At 18 points on r = b as the field presently stands B, and E¢, simul-
taneously vanish and these points are fluid tracers if the angular speed of
westward drift about earth's axis is locally uniform in latitude, t.e. if

i 3 o &
ai"""’,-"ﬂ'-r'-'f":a"“"; 0, where w=y.f,and & is colatitude. This can subsequently
be checked.
(2) At six points on r = b, By and Hg simultaneously vanish and these
§ - = A .
points are fluid tracers n’f-;"-.-'.-"-i'?"f" £ 0, where v = -8 . This can subsequently

be checked.

(3) At 17 points on r = b, Bg and E; simultaneously vanish and these

points are fluid tracers if the horizontal motion, at the edge of the boundary
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layer is, at most, a linear function of depth, i.e. |F-:'J!|.-'..-",-.?I.lﬂr:-.".-', ﬂ.['l.-'.-..-'r.-',.'ar- 0.

There is no direct way to verify or refute this assumption.

In the second method, we attempt to construct a systematic perturbation
procedure for the magnetohydrodynamics at the core-mantle boundary which can lead
to unique velocities, not just at isolated points or curves on r = b, but rather
nearly everywhere on r = b. Additional physical assumptions are, of course, needed

and what is put forward (still very much in the formative stages) is not what one
would claim to be a picture of what is actually occurring, but rather only that it
is one of many models that could be achieved. Its virtue is its solvability.
Scaled equations of interest are
—k il
VeB=0, T-E =g
* i e e (1}
PaBs=j , UxE=-2B/at,
b i _— =
j =g {E+Vy0)
.} - - -5
where the scale factors for (B; V; j; E; q; and o ) are, respectively,

:_“,:4_,}-1 'I.-r-,J.u:Eﬂ'L.";UB,‘,E,UE,:,L'I‘.,U',‘I- Here, we think of By == 1073 tesla (10 gauss),

U= 410" m/sec (westward drift speed), L = 300 KM (a bit less than the smallest
scales resolved at r = b by spherical harmonic field models truncated at N = 12).
Time is scaled with advection, Lo~} ( £ 24 years with the above values). The two
small dimensionless parameters of the problem are then (in terms of dimensionsal
paramaters) _ o
MmZ MaTm (BIVL, =, 03 UL)

where a7, (bl=a, is the conductivity at the base of the mantle, say 200 mho/m
and @. the uniform core conductivity of 3-]05 mho/m. For these values,

m=0,030, ¥, = 0.022.

The idea is to solve the system (1) throughout the mantle and sown to the
edge of the boundary layer subject to |&]= IS'ILP‘E),.IEl ‘G'(Y"‘) as F —# 0o,
with ﬁl known at r = a at two epochs separated by a few decades (or B and :E‘known
at a single epoch) and with the following continuity conditions across the core-
mantle boundary:
(B2 (FeE ) (FUp=0, (@) # 0, <¥. F 4 0,4rdv 7 40
The velocity in the mantle is zero and the object js to find the slip velocity

just inside the core-mantle boundary layer.

= == =h

The quantities ?3‘ V, J, E .are assumed to have expansions of the form
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. l""I: :J,r-'E_._._ “a¥re* However, (and this is a central assumption that

needs verification or refutation) volume charge in the mantle is assumed absent

at zeroth order. The argument is that if @, were truly zero, no charge from

the core could teak into it and we assume no one put charge in the mantle to be-
gin with; so & ought to be proportional to &3, as 0n,—> 0 . W now have

= 2
4 =."'1m‘]|.-n4+ﬂ{f1ﬂ~,,",:,-.-.1‘ll_u-,. fe= e, * Mm ’f,r,_-Jq- Medee, * 5 o

The first three perturbation problems are then;

MANTLE CORE
v . E-""""n 2 D ? * E:d = D
I';'rl.:":. Sln.n,ﬂ_ Ju’u"'.': VX D":e- - -"Il:.j

L
L

'T,-'.Eﬂ&:ﬂ ';.'.Eh:rb_ﬁ

7 & B,z - 9 Bu, /ot v x Ee, = 3B, /ot
_'.:‘%:c:e E:,‘ . Jf‘,_.g;.; fﬂ*ﬂ.ﬂ
G-E,,.zc: G._;:,j

VX By= Jm, VA B = e,

Vo Em, = §m, e EJ::I:- %e,

PR Ey » -2 B, Jot VXE, :-2

_Ihl 2 Ohy Em, IE_.-';I-—‘;FL-,K B, :{-‘;ﬁ. E:,
‘G’-Eﬂ__g ’G"—ﬁf:ic

TX By, = o, ??‘iijl : Je,

P EiyuD V- Ee, = ac,

VA Ea, = ~2B, /3t v B, = -0B. /ot
Ty %0 Jey B Vix B~V x B,

The zeroth order magnetic problem in the mantle is solved by the usual

geomagnetic field model in terms of a (truncated) spherical harmonic expansion

for the scalar potential. For the zeroth order electric problem in the mantle,
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note_’.that from the next order problem, since Jwn = T E'.-‘L,E, , in order that

L A =
7« lpa=0it is necessary that . Emnnﬂ' , assuming spherically symmetric man=-
tle conductivity. Then, Em, is obtained from the magnetic vector potential:

my = TXA, = T[T (Syef)] and

ol

E. = &Iﬂl—ML 8
", 2t
e

No potential part of Eﬂa is needed because it would have to be a solution of

Laplace's equa}\}ior‘;‘ without radial variation. The form of SM is
-—

5“‘"1-5 ot s Gso n {%)r[g': ees m@ s+ h sin m¢] F':{E?j'

and this series converges rapidly.

—

with B « EM;. known and the continuity boundary conditions, we turn to
the zeroth order problem in the core, but evaluated at the core surface where
= A
Wair=0for all , ¢ . Ohm's law gives (with subscripts 0 temporarily sup-

pressed and the c on W dropped since the core is the only place where there is
motion) : [ oz
I:':r = hA BI:&" W B.:#_ 3

= — = E
E., u—vE',_,rﬁ Ee, v B,
Equation (3) gives the desired horizontal fluid motion at r =b in terms of the

horizontal electric field and the vertical magnetic field there; but these latter
quantities are all continuous across r =D , SO we can use the values at the base
of the mantle. Only at null flux curves where B, = 0 is the motion undetermined

(even there, field models should be adjusted or constrained to make null curves

of & ,E{ coincide with those of B.).

Once V, W have been found, (2) gives ECr which measures the surface charge
needed to bring th?.. ground state core radial electric field to the value zero in
the mantle. From EM,,’ previously found, we also immediately obtain the leading
(horizontal) system of currents in the mantle from the last equation in the mantle
problem at order ‘q‘,.,‘ (provided a model of mantle conductivity is supplied).

It is interesting that, from (3), the direction of core fluid motion, de-
pending as it does on the ratio of V to W is independent of the relatively poorly
convergent series for B.. Thus, the streamline pattern is obtainable, on this

theory, purely from the secular variation of the magnetic vector potential.
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TRANSITION CF DECAYING TURBULENCE TO DECAYING INTERNAL GRAVITY WAVES
Thomas Dickey

Turbulence properties of neutral and stratified fluids have been studied
experimentally. Temporal decaying turbulence was created by towing a grid through
an initially quiescent fluid. Streak photographs of neutrally buoyant particles
and a photodigitizing system were used for velocity measurements. Conductivity
measurements were employed in the stratified experiments in order to ascertain

both stationary and dynamic values of density.

Results of the decaying turbulence experiment (neutral) indicated that
the initial period decay law, qzcc:‘ t_], applies through wgt/Mﬂ 800 for a
relatively high mesh Reynolds number, 48,260. Previous measurements at compar-
able Reynolgs_ r_1u_mbers have been limited to the range wgt/M £ 400. Anistropy
was small, W ju2 1.1, throughout the experiment. The dissipation rate was
found to decay inversely with the square of time. The Taylor microscale was eval-
uated and the turbulence Reynolds number was found to be Re L + 90.7 for the ex-
periment. Two point turbulence velocity correlation measurements were utilized
in evaluating the macro or integral length scale. A method of determining dis-
sipation from these correlations was presented.

The effect of stratification upon a turbulent flow created by a vertically
towed grid was determined for the first time. Conductivity probe measurements
of density variations indicated a turbulence-dominated regime through approximate-
ly wgt/M = 275, after which internal gravity waves were predominant. The transi-
tion period features properties of both internal gravity waves and turbulence.The
decay rate of turbulence was virtually identical to that of the neutral case
through wgt/M - 275. However, after this time the decay rate was much lower. In-
tegral length scales were computed as before with greater values (by ~~ 20%) being
determined for the stratified case. A model for this experiment was developed so
that a general set of parameters could be used in predicting the initiation time
of the internal gravity waves. The results of the decaying turbulence experiments

are relevant to modeling dissipation in geophysical systems.



THE APPLICATION TO THE EARTH G A NEW METHOD FOR DETERMINING THE RADIUS
COF THE ELECTRICALLY-CONDUCTING FLUID CORE OF A PLANET
FROM EXTERNAL MAGNETIC OBSERVATIONS
Raymond Hide

The proposed new method (Hide, R., 1978, Nature 271: 640) when applied
to the Earth gives a core radius differing by less than 2% from the "seismo-
logical™ value. This finding strongly implies that effects due to ohmic decay,
though crucial in the dynamo process by which the magnetic field is produced,
can be treated as small perturbations in theories of the geomagnetic secular
variation. It also sets limits on the electrical conductivity of the lower man-
tle and the viscosity of the core. The new method could be exploited in the in-
vestigation of the internal structure of other magnetic planets': it will be par-
ticularly important to use the method to determine the size of the electrically-

conducting fluid core of Jupiter.

NONLINEAR OSCILLATIONS

Louis N. Howard

Three lectures about nonlinear oscillations and techniques for studying
them beginning with a description of various examples such as pendulums and
clocks, electronic oscillators and the van der Pol equation, and models of os-
cillations in chemical or ecological systems. This was followed by a discus-
sion of small amplitude weakly nonlinear oscillations which can be regarded as
arising from a change in stability of a stationary solution (critical point)
as some parameter is varied. When this change in stability occurs because a
single conjugate pair of complex eigenvalues crosses the imaginary axis ("over-
stability''), and crosses at a nonzero rate with respect to the parameter varia-
tion, the 'Hopf bifurcation theorem' asserts the existence - somewhere in the
neighborhood of the critical point in the phase space and the crossing point
in parameter space ('bifurcation point') - of a one-parameter family of peri-
odic solutions might not occur all for the same value of the parameter (the
bifurcation value); the latter indeed happens for an exactly linear system,
as well as some nonlinear ones. With some additional hypotheses about the
nonlinear terms, amounting to the statement that in an appropriate sense some

quadratic and/or cubic terms are genuinely present, one can be sure that a
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periodic solution will occur for each value of the parameter sufficiently close,
on one side or the other (but not both), to the bifurcation value. Furthermore,
if the bifurcation point is one at which a stable critical point loses its sta-
bility, and if the family of periodic solutions occurs on the unstable side
('supercritical bifurcation'), then at least close enough to the bifurcation

point the periodic solutions will be stable.

This theorem is the formalization of techniques which have been used very
extensively to calculate small amplitude oscillations in many kinds of systems,
some of them infinite dimensional like convection in rotating systems or hydro-

magnetic dynamos.

The second lecture began with the presentation of a convenient way to
organize the calculations required to study a Hopf bifurcation, and illustrated
this with an example. After this, attention was directed to singular perturba-
tion techniques which can be used to study certain strongly nonlinear oscillators.

Two major types were distinguished, relaxation oscillators and Flatto-Levinson

systems. Both refer to singular perturbation systems of the form
x‘ = 'F {'t B Ij.l E l:l

E-';f 'L'El'fl;':l"‘j.'E:'

where x and y are vectors of dimensions n and m say. in both cases the x, y

phase space contains an invariant n-dimensional submanifold, the 'slow manifold’,
given asymptotically for E—0by the equations g(x,y,0) = 0. 0ff the slow mani-
fold y must vary rapidly. In a typical relaxation oscillator the slow manifold

is folded over so that if glx,y,0} = 0 is solved for y, y = h(x), then for at
least some range of x the solution is multiple valued - often triple valued:

y = hp(x), ho(x), h-(x). Typically, though not invariably, the portions of the
slow manifold given by h+(x) are attracting, while the middle sheet y = hg(x) is
not. Relaxation oscilla ions may occur when the motion on a stable part of the
slow manifold, described approximately by x = f{x,h.{x),0), say, always leads
eventually to an edge where this portion connects to y = hg{x). When this point
is reached the trajectory jumps rapidly over to the other stable branch y = h (x)
and then moves along this portion to another edge, where it jumps back to the ori-
ginal sheet y = h_,_(x). Of course this process need not always tend toward a
closed orbit, but when it does we get a Ilimit cycle of relaxation oscillator type.
In many interesting examples the motions on the slow manifold can be approximately

determined fairly easily, and from this a reasonably satisfactory description of
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the oscillator can be constructed. Such oscillations are characterized by the
alternation of short periods of rapid transition (‘fast phases') with longer

periods of slow evolution (‘relaxation phases'). The details of the rapid tran-
sition are usually none too simple, however, and a full asymptotic description

is often remarkably complicated, even in the simplest examples.

The Flatto-Levinson theorem is not particularly concerned with a folded
slow manifold, but with situations where on the slow manifold for one branch of
it) y = h(x) there is a limit cycle solution of x = f{x, h(x), 0). It is also
assumed that at least near this limit cycle the slow manifold has a ‘hyperbolic
structure', meaning that gy(x,h{(x), 0) is non-singular. Thus we are here con-
cerned with a singular perturbation of a limit cycle. The theorem asserts that
for small £ there is also a periodic solution of the full system, whose orbit

is close to that of the limit cycle of x = f(x, h(x), 0).

The third lecture began with the presentation of the application of the
Flatto-Levinson theorem to finding the limit cycle solution of a model chemical
oscillator (the 'Oregonator'). This was followed by a discussion of some topo-
logical methods for showing the existence of periodic solutions, mainly the Poin=-
caré-Bendixson theorem in the plane, and the sequential box method of showing the
existence of fixed points of the Polncaré map, which has been successfully used
in certain higher dimensional cases. As an example the Hastings-Murray treat-
ment of the Oregonator was sketched. Finally certain methods for the numerical
calculation of periodic solutions, and some questions of numerical analysis espe-
cially relevant to finding unstable periodic solutions and dealing with stiff

systems like relaxation oscillators were touched upon.

MELT ING ICEBERGS
Herbert E. Huppert

Each year 10'7 cubic metres of ice melts into the Weddell Sea. It can be
argued that the melting takes place primarily along the sides of the icebergs.
Previous studies have led to two inconsistent suggestions: 1) that the relatively
fresh meltwater rises in a thin boundary layer up the side of the iceberg without
any significant mixing with the ocean; and 2) that the Grashof number based on
the total depth of the iceberg is so large, of order 1017, that the boundary

layer entrains a large amount of salty ocean water and the resulting mixture
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rises to the surface. A study by Huppert and Turner indicates that there is a
third and, in their opinion, more probable process. They argue that both of the
above suggestions neglected to include the effects of the existing salinity gra-
dient in the Weddell Sea. Modelling the melting in a series of laboratory exper-
iments, Huppert and Turner found that the meltwater moves through the boundary
layer and propagates-mainly horizontally. The ambient fluid supplies the heat
for the melting, sinks in the surrounding density gradient until its buoyancy
force becomes zero and then turns into the interior. The melting thus generates
a series of layers, of thickness h say, containing regions of inwardly flowing
ambient fluid and outwardly flowing meltwater mixed with ambient fluid. A movie
and some slides were shown, some of the latter being copies of figures presented
in "Melting Icebergs™ by H. E. Huppert and J. S. Turner, Nature, 271, 5640: L6~
48, January 5, 1978, Experiments with different salinity gradients indicate that

8

when the Grashof number lies between 10% and 10° the layer thickness is given by

h=0.662p/¢

where Op is the density difference between the meltwater and the ambient fluid
evaluated at the mean salinity in the water column and ¢ is the vertical density
gradient due to salt. It is planned to perform experiments extending the Grashof

number range in the near future.

Finally, it was observed that the heat generated by the audience during

the two-hour lecture would have greatly accelerated the melting of any iceberg.

SVOOTH EQUATIONS FOR ROUGH PROBLEMS
Joseph B. Keller

By a rough problem we mean a problem involving irregularly fluctuating
or rapidly varying functions. Such problems arise in the analysis of wave prop-
agation in random media, in the generation of magnetic fields by conducting
fluids in turbulent motion, etc. Because of the difficulty of analysing such
problems, it is desirable to replace them by problems involving only smooth
functions. The resulting smooth equations can then be treated much more com-
pletely than can those of the original problem. This goal has arisen in many
different contexts and has been attained by various methods. Many of them in-
volve some kind of averaging, such as spatial, temporal, or ensemble averaging,
or a combination of them. Other methods involve the introduction of multiple

spatial and/or temporal scales.



In this lecture two different systematic methods are presented for ob-
taining smooth equations. One is the so-called smoothing method, which has
been used widely for about 15 years. It is usually based upon stochastic or
ensemble averaging, but it can be used also with other kinds of averaging. The
basic assumption underlying it is that the fluctuations in the given functions

and in the solutions are small.

The second method is that of using multiple space and time variables,
each corresponding to one of the scales of variation of the solution. The
assumption upon which this method is based is that there is a great disparity
between these different scales. For example the given coefficients may vary Ly
rapidly, but the main part of the solution may vary slowly. Then equations for
this slowly varying part are obtained. The results can also be described in

terms of a suitable spatial or temporal averaging procedure.

Finally it is shown how the two methods, that of smoothing and that of
multiple scales, can be combined. This combination simplifies some of the cal-
culation in the multi-space method, and is applicable when that method is

applicable.

As an example the two methods are applied to the equation governing a
magnetic field in a conducting fluid undergoing turbulent motion. Each method

leads to a dynamo equation for the large scale magnetic field.
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STATISTICAL DYNAMICS CF THE LORENZ MODEL
Edgar Knobloch

1. Introduction

There are two basic approaches to the problem of turbulence. In the first,
one seeks to obtain statistical solutions to the equations of motion by taking
repeated moments of the. equations and using some kind of a closure scheme to close
the hierarchy of moment equations. tn the second, one solves nonlinear differ-
ential equations obtainable from the equations of motion, that have no explicit
stochastic element in them, but that can, for certain ranges of values of the
parameters, exhibit apparently random solutions owing to the appearance of a
strange attractor. Both methods are assumed to be relevant to the problem of

"turbulence', although the connection between the two is not immediately clear.

In the first part of this paper we shall consider the most famous example
of a system of equations with a strange attractor. These are the Lorenz (1963)
equations, derivable from the first nontrivial truncation of a modal expansion
of the equations for Benard convection in the Boussinesq approximation. The

equations may be written in the standard dimensionless form

Vo= o (g -x) (1a)
:']f = FPE-4 - LE (1b)
2 - - V% Yy (1)

il
Here the variable x measures the vertical convective velocity! y the tempera-

ture fluctuation. and z the mean convective temperature gradient: & is the
Prandtl number of the fluid, ¥y is a reduced Rayleigh number (r = 1 for the on-
set of convection), and  is related to the wavenumber of the convection rolls.
If o and ¥ are fixed at 10 and 8/3 respectively (the values originally used
by Saltzman (1962}), and r is gradually increased, it is found that at r = 24-74
the solutions to the equations become unstable according to the linear theory,
although there exist finite amplitude instabilities already for r == 21. The sys-

tem is then in the "turbulent! state.

In the following section we shall apply to equations (1) the techniques
used in the first of the above approaches and shall compare the results of such a
calculation with the numerical evaluation of certain statistical averages of the

solution carried out by Liucke (1976). We shall find good agreement between the



theory and the numerical results. W hope in this way to show that these two,
apparently quite unrelated, approaches to turbulence theory are in fact closely
related, and to suggest that both methods are useful in contributing to our un-

derstanding of the physics of turbulence.

!In the second part of this work we examine the variational problem for
the Lorenz model, and suggest a new and potentially very useful method for carry-
ing out an approximate statistical mechanics of the Lorenz model and other sys-

tems with strange attractors.

II. Statistical dynamics of the Lorenz model

In this section we shall be concerned with calculating various time aver-

ages of the solution to equations (1) in the turbulent regime.

From the equations it is easy to show that

(ry=€yp=<xz>=Lyz2) =0 (2)
where the angular brackets denote time averages. Throughout what follows, we
shall assume that the solutions of (1) in the turbulent regime are ergodic. Thus
we shall assume that we may identify averages over an ensemble of realizations
of the solution with time averages in any one realization. In particular we shall
assume that the solutions are statistically stationary. There is ample evidence
for this property from numerical investigation, but a rigorous mathematical
proof of this property is not available. As a consequence of this assumption

all time derivatives of averages vanish. By writing down quantities of the form

: Y f 2 L 44 A4 4 2 -
i CAlgr) = S5 14 By 17 Taa 2 =0 (3

and using equations (1), it is possible to obtain an infinite number of relations

between various averages. One obtains (cf. Ludke 1976)

yy s it (ha)
< X*> = M Lav {4k)
= * - q &

{nTmp=(XYy2y = {“*'1"_‘*'?}]}— <xh ) {&e)
(AYq2r = wLar7y (&d
2> = efeytr- 23] (o exts (he)
¥ {x"E7 ¢ Iﬂ']_{uﬁi? - Lxtao] pexty . (4F)

These relations have been verified numerically by Lucke (1976), providing fur-

ther evidence for the validity of the stationariness hypothesis. From equations
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(4) one obtains an important identity
_l___. G AN - * - - e
Lo AN = Ly = v (1) ey - 2D =)
An equivalent result has been given by Mdkus (1972):

{11-}:'1.’{E:?:'U(Y‘-])_# %_V {'{EE:;}T} (6)

=
Since {?ﬁ }:{1_5} is the convective heat flux, this result shows that the heat
flux transported in turbulent convection has to be less than that transported
L]
in steady convection (% = 0 , 2 ={®% . This important result is derived by

another method in section 1il. In particular equations (5) and (6) show that
R
(r-1y = (r-1)<e>» = <& (7)
with equality only in steady convection.

It is to be observed that the number of relations of the type (3) is in-
sufficient to determine all the averages. For example, the relations (4} only
enable one to express the low order moments in terms of the two unknown correla-
tions <#», and (21} , that are constrained only by the inequality (7). Our task

will be to calculate these two moments, and other such essentual moments.

VW shall use the general method for solving stochastic differential equa-
tions with rapidly fluctuating coefficients (Ban Kampen 1974, 1976). Suppose

that we have a stochastic differential equation of the form

daf

= L(t) 4

at Lt (8)
where L{t} is a stochastic matrix. |f Ly is the mean of L, and L} = L-Lg is the

rapidly fluctuating part of L that need not be independent of f, then the mean of

he process f,{f> , satisfies the equation

R ¢
—c&“{{}: [L,+fd1’¢ L.I:t}_p_L“fL,{t-fJ,i.l. }{Fd‘?} (9)

In order to apply this theory to the Lorenz model we rewrite equations (1),

by eliminating y, in the form

L %+ (~arwlENx=0 {10)

where a-zo[r-i-427], 4= o+ (rn
wit) 2 alm - <2y] (12)

and B4 VE e h-ﬁt_ rl:":lc_rﬂl:-l"h 5 d (13}

Equation {10) is thus an equation of a linear ''oscillator" with a zero-mean fre-

quency modulation wilt). The quantity @& is always positive definite as can be



seen from the inequality (7). To the author's knowledge the present method has
not been applied to a damped simple harmonic oscillator with a random frequency
component. The only treatment of such a system hitherto carried out has been
done by Bourret (1971) using the so-called Bourret (1962) integral equation.
However this equation is not a self-consistent approximation for short correla-
tion times (Van Kampen 1974). W know from numerical studies that in the tur-
bulent regime the quantities x and z are both rapidly fluctuating in time. This
can be seen for example in the paper by Robbins (1977) dealing with the equa-
tions for the disk dynamo with a shunt, which can be transformed into the stan-
dard Lorenz form (1). w(t) is thus a rapidly Fluctuating zero-mean random pro-

cess. In order to calculatelZ> , we shall calculate<X > from equation (10).

Writing it in the form (8), we obtain

rx"ﬂl |'r|:_'] w B D 1

Falxt|, Lela -k |10 00, (W
[ | |
L ** | |0 2a -21- |

In order to apply equation (9), we have to calculate the quantity exp t-.+,
This can be done most easily in the following way. Observe that f = f, explert
is a solution of the set of ordinary d_ifferential equations
F=Laf - (15)
Seeking solutions proportional to exp st, we can calculate the eigenvalues §5 of
the system (15). They are given by
S=-t , fa-f*A , A= Harh. (16)

The general solution to the system (15) is then a superposition of these three

funcamental solutions: J[II ) -‘t_&t |':,.|'I|,_,. Sjltq- r:_.t"ltj (17a)

The corresponding expressions for fz and f3 follow from equation (15)
{Iidli,,:“rfe#.qf{h-{r,ﬁﬁﬁt-fh +41C0a7") (17b)
fat a2 O pn-2)Be" S (P etr-2)CaT) (i)

If the coefficients A, B, C are now eliminated in favor of fy{a), f (o}, fylo},
equations (17) can be written in the form f;(t) = S;J-fj(o), where S = exp Lot is

known. The following elements of S will be required in what follows:
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lis,ﬁ.n'“[Em*drﬂ.rinh At+{za+4") cosh at] (18a)
A5, 2554 ¢ 2 sink At b gash A ] (18b)
A5y w2 coshat-1] [18¢)
X5, = _a'ﬁ't{u_# (cosh At-1)+ o A sinh R t] (18d)
%551z e L e wa coch 2 ) (18e)
1‘5”:_L'H[—frf:g:hltar:lflsinh > t] (181

The quantity exp - Lyt is obtained by changing the sign of t in the above ex-
pressions. Evaluating the expression on the right side of equation (9) using

the results (14) and (18), we obtain finally the equations

d (xS =20%>
e (19a)
: [a+ &(& J<x>e[-ba, (
- dxiy=lar 3 (b (F-o) s hallcare[- ooy (Heueflenityr iy {19b)
-'iT{: P g:-{L&.E"-r[ﬂ'.iIJ- }n:..-}{.,'.\ﬁ']{x'}.-zn.{x:h.[ ‘er % (F-m LY, {19¢}
where i
ot :fdr?f?}euur,ﬁvcw?.:r}:‘.na, Atfa':']'n_-r:g {r), (20
) o o
and ?EJ:TJ is the autocorrelation function of the process w(t) defined by
Cwt)w () > 2 g lt-2) mn(T) (21)
We have again assumed that the process w(t) is stationary. In what follows we

shall assume thatw (t) has an autocorrelation function that falls off suffi-
ciently rapidly that the quantities = ’.r'd' , ¥ are well defined. As we are assum-
ing that the process x is also stationary we shall set the time derivatives of
the correlations equal to zero. From equations (19b) and {19¢) it then follows
that

[+ (8- )eng)] [b-Fa(8-=0)» (207 20+ b))t 2] = O- (22)
An examination of the definitions (20) suggests the approximation
ﬁ) T o, (23)
valid for correlation times that are short, but not too short, as observed in
the numerical results (Robbins 1977). 1t then follows that
=
o = aj (24)

is the condition required forstatistically stationary solutions. This condition

gives the "strength™ of the fluctuations, or the energy input required on average



to counterbalance the damping term. Thus (24) is an example of a fluctuation -
dissipation theorem for an equilibrium system. The other root of equation (22)
is negative and therefore unphysical. On substituting the condition (24) into
equation {19b) we find that in the stationary state

X"y = a<rts. (25)
This is the usual result that the mean kinetic energy is equal to the mean po-

tential energy.

We now apply these results to the calculation of certain statistical
k3 r
averages. Consider first the guantity ﬂdE{f’}rx’-{ 'i'ii":r,From equations (11) and
(25) we obtain

S =glr-1- 43z (26)
On the other hand, using equation (6), we find
= i SRR
ﬂﬂ:ﬂ_[r_r-‘ -{E:I"] [2?:'
W shall be interested in studying the quantities and defined by
<g@» -~
¢ = T-a% ¢ oA <1, (28)
and
¢<z> = (r=nN(1-%), 0o [ <1 (29)

From equations (26) = (29) we obtain the relation
;;: ﬂiﬂ‘/!fﬂ"—l+r’_‘|t,}r (30)
Licke (1976) has carried out numerical computations of certain statistical aver-
ages of the solutions to the Lorenz equations in the turbulent regime. His graph
of £ 2y against ¥ for @ = 10, and ¥ = 8/3, reproduced here as Fig.1, shows an
approximately straight line of slope slightly less than one. The slope of the
line for 30 < r << 150 is found to be 0.94, and it increases somewhat for larger
r . Equation (30), with S' = 0.06, and & = 10 then predicts that & = 0.23,
in excellent agreement with the numerical results shown here in Fig. 2. The cor-
responding agreement between the predicted graph of a,:O.78 ‘F-1 and Licke's
result shown here in Fig.3 is not quite so good. Liicke's results show the same

Rayleigh number dependence, but with a coefficient closer to unity.

Ve shall define the autocorrelation time T, of the process @ (¢) by the
relation «= i (8}T. . Substituting from equations (12}, (21) and (24) we now

obtain -
(el

> ; N 2 L
f’{"*'}‘*‘l’f T T’erl“:"'zl_:f"- o+ 1_AA-|. (r-ny* (1= 1 )2 (31)

or. using equation (30) to eliminate ; .
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A¥= (a*‘:r\l- _Le_fr-m::‘ ) —(ml'—lf'— {32)

S g® .\r- e T (r-1 )= a- )+ (e )™

Suppose that, as a first approximation, 5 is independent of r . (cf.Fig.1)
It then follows that A is independent of » , so that from (32) it is necessary
that l‘; r @2 , with Tc independent of » . Recall that . will turn out to
be a small number. Hence
1 =
[= e (o) (33a)
J'.'d_fT: [ 1}
alo) 11
nrzolr)f= e (=) (33b)
Qo+ T (o) 5
The graph $2,= ¥r=| is therefore well matched by
T, = o.048, = 0.0, D330, £
This is stil in good agreement with Lucke's results. Observe that the dimension-

less correlation time is indeed a small number, so that the short autecorrela-

tion time approximation required for the derivation of equation {(9) is indeed

satisfied.

Thus far we have been able to obtain good values of several quantities
given one numerical result. However, we have only used the equation for x in
terms of z. W shall now determine the correlation time -'-_..-_ self-consistently
by considering the equation for z in terms of x. W shall then have theoretical
results for all the four quantities T., [ , A and SL,. In order to do the
calculation we shall need to know the guantity -».,,f', which can be obtained

using the same method as used above.

Writing the equations for the five fourth-order moments in the form (8},

we obtain -
fr:‘.rr 6 4 © 0 ©O ]
1x? g - 3 o ©
¥ x*x*| L,= | e 24 -2¢ 2 © | (35a)
HJ-:": |O o Ja "3%’ !
L x4 Lo o @ fa ~4HE
!-E. a a o =]
-t O e & ©
| @ <aw 0 & ©
-5 | (35b)
& & ~Iw o 0
]_ 8 & O Nw O
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Again we have to calculate the matrix exp LoT° . Proceeding as before we find

that the eigenvalues 5 of Ly are given by

S==-2f, -Lb+r, -2f&2247

2 1 . .
where again As= t'_'r + 4a. The general solution is thus

t =21ni
t{'&j:j_zﬁr A+E_.Ekt-'rc.t-lt+ DJL,IR +Eg 13 Y,

(36)

(37)

with corresponding results Fﬂrilft}‘ v,om .F’. (t) obtained from the equation

‘F =L V¢ can write the result in the form
ot " T # - =2di}
AT 3;".. ; II:J'. L

f(1=07* 7T (4,85 €™, Da

where the matrix | has the rows

o

1 - i oga
+ 5, F Al b 2§ fAb it
Ty (Fat,FgartgbA-45t) - Tat v LA 46" - 447
.z (a -a'-rab'zLadis atv2ab LY 7L LPh5abn)

a)

W can now determine the constants A, B, C, D, E in terms of.Ff‘[ﬂJ (=1 ..

We obtain

Aa= el Lior=tz2ab fu(o)r (6b=raa)f (o1t 12t f f0)+ & fsto)

KB e(va*+2ab+ 1addlf (e (280 Han =10 b (0 +H-8 b ), (0)
(YA, (o) - HE (o)

XD e {ars :ah*n‘f-—; [f-’.l*-m‘.‘.lj Elele(bad+rdde2areant’ )4, (o)
+(36% Las3en)flo) + (a4 +a2) f, (o) + folo)

¢(A) = B(-2), E(a)y=D(-a).

(38)

(35a)
{39b)
(39c¢)
{394)
{39e)

5D

(+0al

(kob)

(hoc)

{kod)

The above relations determine the matrix exp Lot as the matrix of coeffieients

of ;,..',_liﬂ'l in the equations for $£ (‘f:) + In order to calculate the right-hand

side of equation (9), let

chi(tlexp LeT L (¢t -Thexp- L, T =n(TI¥ (T},

(41}

where & is a 5 x 5 matrix, and 3’1_ the autocorrelation function of the process

to . Ve shall be interested in the correlations £ %%} and <>'<"x"‘>.

From



equation (9) these are connected by the equations

Y .
de <X At (42a)
s ¢ Wy ol | & % w*
e i< (@t (TR (ThexYe(-64 [T ¥, (7)) <R
) L -
+(3+ AT, (D) <x ™. (42b)
-]
After a considerable amount of algebra the expressions for 3:” and 3’”, reduce
to =4 § - i =
a:‘;-?{mjth JJ-'-_H_ smh AT, ¥,=0 (43)
In the statistically stationary state 3‘“_ will not be required, Equations (42)
now give, using again the approximation (23), the relation
("’i’,’_"-a)(}(”} = 3Litarr. (44)
Using the stationariness condition (24), this finally becomes
a < x> s LX*RP Y (45)

From equations (la) and (4) it now follows that
(x’j"}{v Irfilt{_ﬁ‘u+1u"*+ 1|:|'a.-uj'[ra L:I{E‘:r.- ﬂ'I:u+. 2 oy 1}{2‘}] 1 (L6)

In order to estimate the autocorrelation time ff: of the process & | we

now return to equation (13), and write it in the form
FvVE=A(t)z& xx + X - V<E>, (47,

where 2 = 2~¢2» . Thus equation (47) is a Langevin equation with /q(‘t) being
a zero-mean rapidly fluctuating forcing term. From the formal solution to equa-

tion {(47), we find that
e - =) a3 fE=E" ) i s 2

@ [ (atat VIR AWAR D = 45 T <A, (48)
o s

where we have assumed that the forcing term A(t) has a short autocorrelation time,

P -t . . .
L. , and that the process # is statistically stationary. Thus

<™~ <2 23 [ (xrytr-vteay ) (49)

i
W shall suppose that the correlation times Lg and Te are comparable.  Then

using the definitions (28) and (29), and the result _.(156), we obtain
28% Tvii-a*sT, [1 + lifﬂ__—”—;il <E1.a"-|- :—;f:{:—{i}ﬂ;:if—: 1—{!'['.; E (507
Upon using the results (30) and (33) we obtain a quadratic equation for 1
The physically meaningful root of this equation can be obtained approximately
by setting

r;:-r‘?ﬂ", Tﬂg"’qiﬂ'i. ‘L';-,-?';_l)c‘?’f,?? 2. (51)
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Although these conditions are not strictly satisfied for the values of the para-
meters used in Lucke's numerical calculations, they do give the correct order of

magnitude for the correlatlon time. W obtain

~ [l i, T
L G (0 s 5 () =

for o= 10, V = 8/3. e see now that the correlation time does have a weak Ray-
leigh number dependence; it varies between 0.1 'f',_ > 0.02 for 50£ r & 200. This
is in satisfactory agreement with the results (34) deduced on the basis of the
present theory and one numerical result. W have thus shown that an entirely self-
consistent theory follows from the application of stochastic differential equa-
tions to the Lorenz equations, one that not only predicts the correct functional
dependence on the Rayleigh number of various statistical averages, but that also
predicts quite well the numerical values of the quantities ; , 4O and ﬂgchar—
acteristic of the solution in the turbulent regime. Moreover there is some evi-
dence for the decrease of the correlation time with increasing F in Licke's
numerical calculations. For example, the curve af<# » vs. r in Fig.l deviates
upwards for large  from the straight line defined for smaller values of ¥ .

More convincingly perhaps, the approximate formula

AT al. 5
&~ T T (53)
shows that A decreases with increasing ¥ . Indeed, Fig.2 shows a decrease con-

-l
sistent with the ¥ "% behavior. W also predict that for large F , the curve

of £, vs. ¥ should have a slope that falls below unity.

>
Let us now turn our attention to the quantityﬂ & also calculated by

Licke. By definition

_ﬂ.i _ ¢ 25 o Fs :{"ai"} Pl
* T clr-gzyt> AT <= ar (54)

Using the results (28) and (46), the quantity (54) can be written in the form

e

_f":.i‘_ﬂl[.,l-*f,+—-‘:|u'-,_lu‘+1?+1.l]+ =5 () 52 s35 WVeigegusaa)  (55)

]

Substituting for & and <> from equation {11) and (29), and using the result

(30), we obtain the result

1 f
_'f'}.i.f-—-(“hffzﬂ'"'r :l'1.|+1u",'|+ﬂ__:+&,_ \r-i). (56)
Since @< &%« | , it follows that for large enough r
oy {
Lz =(==) /reT, (57)
essentially independently of the correlation time TC . For ¢" =10 V = 873,

Licke finds numerically that ﬁ.-i- 1.77 . . . Jr . Equation (57) on the other
hand predicts a slope of 8/9 = 0.888 - exactly half of Llicke's value. We have



been unable to find the reason for this discrepancy. W note here that the re-
sult (57) predicts that Sigz ( p =37/ = 10.5 in agreement with Lucke's curve and

the mode-coupling calculation that he carried out for values of & in this re-
gion. It is at least certain that the formula for the slope in terms of & and

! "
Vo, 'ﬂiz-%-!'l’- 2 , suggested by Lucke cannot be correct.

Finally, there appears to be no way of calculating the quantity

a _ LXT?
1, 2 LX)

lated above.

, also plotted by Liicke, using only the fourth order moments calcu-

I1l. Variational approach and the statistical mechanics of the Lorenz Model

Ever since the pioneering paper of Howard (1963), variational methods have
assumed great importance in the study of turbulent convection. As the Lorenz equa-
tions are a truncation of the model expansion of the equations for the Bénard prob-
lem, it is of considerable interest to apply these techniques to this simpler sys-

tem in the hope of testing their convergence and accuracy.

Howard maximized the heat flux transported by the fluid between two hori-
zontal surfaces subject to two power integrals derived from the equation of mo-
tion by Malkus (1954), with the useful property that they led to a separable varia-
tional problem. In this way he was able to obtain upper bounds on the heat flux

in terms of the Rayle&igh number, but independent of the Prandtl number.

In the present case we are interested in finding bounds on the total heat
flux, both convective and conductive, given in terms of the Lorenz variables by
SUY T V< ®». The power integrals are obtained by taking moments of the Lorenz
equations. The first nontribial variational problem arises from the following

three constraints:

E:«{:H::.:f=l:r‘[‘*“'_f'""":f‘1:’.] (58a)
u;.:.nj@.:r: rﬁ"-'-j,?—-f.lj"'h-{i-.jw:- {(58b}
or €2Ey == V€ BY> 4 2 wye? {58¢c)

W wish to maximize the functional -uf. given by
L= cxypeviers Jl.,[{'.c.q-}a qx'}] + ?-,_Ir-u.-j&a 4% gxy n}]ﬂ},[{ujl-}- 1-"5'!?] A (59)
where;f,, Ag oy lz ate three Lagrange multipliers. The Euler-Lagrange equations

are - =
%ﬁ’;is.k]tﬂ'-i-l,""]ﬂ‘lhlﬁ E::'i'?‘.]:"jl O ':"En[la]'
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=f + 2,4 Aar)¥=1%y = (A - Ay Yxa =0 (60b)

ot wilgs

il Y

==(A-Axy 2w+ = e (60c)

L

From Eqs.{60a) and {60b) and the constraint (58a) we find that

'-'.'=|:':J h|=.>l‘2- (61}
From the constraints (58b) and (58c) it then follows that
'_:-.:':Lj"': Ve = V(Y’—f) (62}
with the corresponding Lagrange multipliers
o 5 31 - 2
A = 3-,_-‘1-‘1_..- = (63)

The result (62) is of course the steady convective solution to the Lorenz
equations (x =y = z = 0). Hence the maximum heat flux, 2%y (v -1), is attained
in steady convection, and in nonsteady (turbulent) convection (within the Lorenz
model) the heat flux transported by the convection must be less. This is in
agreement with Eg.{6). What appears to be happening is that the optimal solution
becomes unstable at large enough Rayleigh numbers, resulting in slightly reduced
heat flux (c.f. Egs. (29) and (34)). 1t is as if the system were in fact trying
to maximize the flux but was being prevented from doing so by an intrinsic insta-
bility.

Because the heat flux is globally bounded by the steady convection, an
improved bound on the nonsteady convection cannot be achieved by adding more con-
straints - all the infinity of constraints derivable from the Lorenz equations by

taking higher moments are identically satisfied by the steady solution.

Two alternative approaches suggest themselves: either bounding from below,
or using alternative constraints to begin with. In what follows we shall adopt
the latter approach, since it leads naturally to a new and interesting way of

looking at the Lorenz model.

The choice of constraint is dictated by the desire that the 'steady solu-
tion not be the whole story. W therefore introduce constraints quadratic in x,
y, Z, so that the corresponding Euler-Lagrange equations are now time-dependent.
Let .
D N L R L E TS L TP o Y P PR S

'{'ji“' XTI+ Ty CLUTS 2P TR :,:.uul-”]*},z[:_ 2 a-peats

R (64)

where -—“I.', iy .-’Lj. are three Lagrange multipliers. The Euler-Lagrange equations



d ek Y 3L g (65)
4t \ag4; / ag;
can be written in the form
- P o (66a)
i g x "
A i = - 2
:tj 2y [BGb)
AgE = - ZL (66c)
where

ﬁ.r'{x,u.r,ijz{n-"ﬂ.l.-ﬁ.“j.:’.L_{I.-;h,cl"'iui'r?n]xﬂ{-{ﬂ,q-ﬁ Ay)its Ay Ky
VB & 13u‘;’_: rihaxz +2 (A~ VAR YA ¢+ Ag HE23 (67)

Thus the Euler-Lagrange equations contain no dissipative terms, and form a
Hamiltonian system describing the motion of a particle in a complicated poten-
tial V(x,y,z). The potential V is of sufficiently high order in x,y,z that we
may expect the kind of chaotic behavior of a particle in this potential that is
described by the Kolmogorov-Arnold-Moser theory for such systems. W may there-
fore attempt to describe the statistical mechanics of particles in such a poten-
tial. Since it is known that the bounding solutions (such as the steady convec-
tion) are not bad bounds for the unsteady convection, we may hope that the pre-
sent system approximates the Lorenz attractor quite well. By understanding the
equations (66) it is hoped to gain some understanding of those features of the

attractor that do not depend on the details of its topology.

Multiplying Egs. (66) by x, y, Z respectively and adding, we find that the
system (66) has a first integral

Elx um)z 7\’;'("'4- Ay L'j"-o- 7\3'221— vz, 4, 2): K (a tonstanT ) (68)
If we now average Eq. (67) and use the constraints, we find that
l[l,-ﬂi:fi-‘+]'«3¢4-lj'1?+13€i'l‘}1'—'Hq--r:.‘.rlj}-r-,,J{z} (69)

This can be considered to be the analog of the virial theorem, and is a general
property of the Euler-Lagrange equations for constraints of the form

<xtpE E<x"yak>.
In order to compute the Lagrange multipliers, we take x,y,z moments of Eqs.(66a) -
(66-c) respectively and use the assumed stationariness of the solution to observe
that {#% % =-<i‘> etc. Solving the resulting equations and using the constraints
we obtain
A S I :

- & Vi . | P -
2 A0 {'{ o {nﬂ}] " {{ o -t 2> [: s T -r Lutale Cnydd (70a)

1,2 T lniad 4 Cuy ) = <Hyd ¢y (708)
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2h [ <xaa)-vexyry] = <y (70c)
In order to study the statistical mechanics of particles moving in the

potential V{(x,y,z), we define the probability distribution function
. e o - -
plrye;x,g,2)=a? ) ldr o4, (71)

where " is the 6-dimensional phase space, and ﬁ is the inverse of a "tempera-

ture'™ that can be related to the Rayleigh number r by the relation

JE.-"’MJP c K 3 3 (72)
Ja~?€dp T 28

The probability distribution p is well defined only when the ™" kinetic energy"
and the potential are both positive definite. It is therefore important to eval=-

uate the Lagrange multipliers (70), by using the prescription
I -AE - A E
cooy s fdr (o) fdra# (73)

The resulting multipliers are then functions of‘,g ; Eq.(72) shows thatﬁ is
known if the constant of motion K is known. This can be obtained from Eq. (69)

by evaluating the averages in (69) using the prescription (71) and the results
for the Lagrange multipliers. Equations (69) and (72) are thus an integral equa-
tion for /3 in terms of the parameters of the Lorenz model, in particular the
Rayleigh number r. Unfortunately it appears that K cannot be unambiguously deter-
mined from the steady convection solution because of divergence in the Lagrange
multipliers. These arise because the constraints become meaningless for the steady
convection. The next step in the calculation is the investigation of the exis-
tence of a possible phase transition at some critical ﬂ (corresponding to a
critical Rayleigh number) by means of the usual thermodynamic relations (Landau

and Lifshitz, 1353:’(&_#“) . ( N o
= QV§T_=0, (T=47), (74)

av
where the ""pressure' p has to be calculated from the free energy F given in terms

of the partition functionZSJ’A"&EdP by
F:—é$ﬂ% (75)

Unfortunately due to the difficulty of calculating the partition function
and other ensemble averages (73) arising from the high degree of the potential V
we have thus far been unsuccessful in carrying through this program. This diffi-
culty is inherent in the problem because lower order potentials will not have the
stochastic behavior predicted by the Kolmogorov-Arnold-Moser theory. [t is also
possible that the bounding equations are too poor at low Rayleigh numbers, so that
no discontinuity in the statistical properties is required by the sudden appearance

of the strange attractor in the Lorenz system.
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IV. Discussion

In this paper we have seen that some systems with strange attractors,
such as the Lorenz model, can be treated by standard statistical methods that
are used in treating "noisy! systems. W have seen that these methods predict
the correct functional dependence of certain statistical averages on the Rayleigh
number r, as well as giving the correct amplitude to a good accuracy. In this
way we have shown that strange attractors and '"noisy" systems, while apparently
dissimilar, can have a good deal in common if one is interested only in their
statistical properties. Indeed it is likely that the origin of many stochastic
systems lies in hidden nonlinear systems with strange attractors, and it is
therefore necessary to know that the details of the process producing the fluc-

tuations are irrelevant for the gross properties of the system.

In the second part of the paper we have suggested a new way of looking at
the Lorenz model and related systems with strange attractors. Although we have
thus far been unable to carry out the details of the calculations, we have seen
that such systems can be approximated by conservative systems for which the whole
machinery of equilibrium statistical physics can be employed. In this way it ap-
pears possible to calculate an approximate probability density distribution F’:-"_".-".-
which can be used to calculate any desired statistical property. Thus a wealth
of new statistical properties could be investigated that is inaccessible to both

numerical analysis, and the method described in the first part of this work.

In conclusion we discuss the implications of the calculations presented
here for the Lorenz model to real turbulent convection. The first question that
is well illustrated by the Lorenz model is whether the heat flux in convection is
maximized by a laminar flow (Busse 1969, 1970; Howard, 1972). This thus far un-
resolved question has important consequences because it appears that in astrophy-
sical situations the optimal heat fluxes are never realized. The question then
arises whether due to instabilities of the laminar solutionsa finite gap is

created between the maximal heat flux and that achieved by turbulent motions.

A promising aspect of the discussion in section 111 lies in its applica-
tion to Bénard convection, described by the equations
a_L:+E.U&+%?F~HjTE=J?1% (76}
Vew:=0 (77)
ET‘ = 5 - 5
o L-VT =KV T, {78)

F -

s
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where T%* =T + T?, }’ is constant, and the remaining symbols have their usual

meanings (Howard 1963). The boundary conditions are T*(o} = Tg, T={d] = To-AT,

w(o) = u(d) = 0 . From Egs. (76) - (78) the following two-dimensionless con-
straints may be derived
Ci*> s RCTar) (79)
.{'i'i}="’:'in;n-G’TP+{'j‘wb+{'T'u.:-;r{T-_L,u}_c'l."urTw? (80)
where u has been scaled by H‘."-ﬂl. k by d:."r'f{ , Tbhy & T, and
1
T = v, A = iﬂi:_s_d'-_r (81)
1

Here e is the vertical convective velocity, and the angular brackets denote an
average over the whole convecting layer, while the horizontal overbar indicates
a horizontal average. In what follows we shall find it useful to include in both
averages also time averages. W note here the appearance of the parameter & I
rather than just R as in the variational problem considered by Howard (1963). This
appears to be the first time that it may be possible to obtain rigorous bounds on
the heat flux as a function of the Prandtl number ¢ , a result that would be of

considerable importance, particularly for astrophysical convection. For maximum

Nusselt number Nz 1+ €T (82)

we obtain the Euler-Lagrange equations

zllﬁ_l.,_;“% = 0 (83a)
:?.,{}-11‘3‘%% = 4 (83b)

an0r~n,T fiI+T'{— ATR+M RS Tm}-h:ﬁr}'*
T{-142; €T -2y Tew) =0 (83c)

-ﬂ-zf + A, ';% E%'?T}**':'l:j'rrﬂ—?'1';‘1{‘[.”}"'1"1‘:”‘}+

s 142 6Tud -2 Tw) ¢ 2, -7T = 0 {83d)
The Lagrange multipliers are given by
AT H[{ "j‘:.}"’;ur'f?ﬂur'r?- {w?u‘-—'.l.:}- fw".l."}]<u_r'i‘;r
= - e:LuT}[-L‘?";n CwTrcwTs - {u.r"l'—'mjj'.b v cwT)) {84a)
}-_1[{ The swTrcwTri- cwrTw TracwTr] s 2<wT, (BUb)

Equations (83) can be combined to give

- s . A T g
[a—tq-y_.. 7 aThe B2 a wTen,e Twr-a Tl = 0, (85)



which can be written in the current conservation form

[%+£,g]¢=g. (36)

Thus the problem of convection is not too different from the Lorenz model, al-
though the presence here of partial differential equations greatly complicates

the calculation.
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Appendi X
The Lorenz model is a special case of a particle moving according to the

C1d
az’

equation ” .
q X+ {(T+1JxL 3 =

(a1}
where V is a fourth order potential in x, with coefficients that obey an equation
of the form
A+xdzqlx), (A2)
so that the system is provided with a feedback {Spiegel, 1978). The generic (in

the sense of Thom fourth order potential is
A e > .
Vedah-Lax -k (A3)
The Lorenz model can be shown to be equivalent to the above with K20, Itis of

some interest to know whether the methods described in section 11 can be applied

to the generic potential (A3).

In this case Eq. (10} becomes
:l-l!:-r-{'lv-ﬂ']'.'.{. “l"["‘a-"'w(t)JX

3
-
=

Wow <% > no longer vanishes; writing (A%) in the form

::l'.l’.-c| AVEY
= | i
2% k3 {ﬂ. o ] %/ +.' 1’-1., {A5)

and proceeding as before, we obtain

il
-

{H.‘-'-r'r-"'*-j:—i“:]'fﬁ? 1-[ - —f"'-u-."]' nc:l..'-—g_' ] - X F {AG}

For a stationary system, with the approximation (23)
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L&.-ff]f:x;- =% - (A7)

Similarly the second moments satisfy the equations

(2a+b)este x>z "rfr.lhf.'!n{}{ (8)
{f,;r_‘;..+in..— 2#.{ Ry = (A9)

One can now proceed as before; and get a necessary condition for stationariness
by eliminating r_:;é‘} , {%x%> and <X > from the above equations. That condition

is now much more complicated than the condition (24), and does not lead to a sim-
ple quadratic equation for< 2% like Egq.(3!). Nevertheless the method can be

relatively straightforwardly adapted to this generic case.
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INVISCID EQUILIBRATION
Joseph Pedlosky

This seminar first briefly reviewed the general nature of the weakly
nonlinear, finite amplitude dynamics of unstable waves.. A general distinction
was drawn between two classes of problems. In the first for a given spatial
wavenumber, the linear stability threshold of the basic state is given by a
critical parameter Pc which represents the point where energy extraction by
the instability just balances dissipation acting directly on the unstable mode.
The slightly nonlinear extension of linear theory then gives the Landau equation

for the disturbance amplitude A, as

P 3
i::.f'.'_‘" a ﬂ'.-"q.—.r'lrpﬂ
dt

where &F is the linear growth rate and Np is a number (in general complex)
determined by the theory (see Stuart (1960) and Watson {1960)). The amplitude
evolution equation is not reversible in time and if Real (N) 0 the amplitude

evolves monotonically to a steady state.

In the second class the linear stability threshold is determined by a
balance between a stabilizing inviscid constraint and the destabilizing inviscid
mechanism associated with the instability. In this case the energy extraction
is proportional to the rate of change of the disturbance amplitude rather than
the amplitude itself. The generic form for the supercritical inviscid amplitude

evolution equation is then

dh

dT?
where again, ¢ is the linear growth rate. B{A) is a quadratit Function of A
and N| is the inviscid equilibration coefficient. For an example of meteorologi-

cal importance see Pedlosky (1970).

An example of thermal convection in the absence of dissipation was dis-
cussed. The convection is inhibited entirely by a uniform, horizontal magnetic
field B, and for the purposes of illustration the convective motion was assumed
to occur in rolls oriented at right angles to the mean field (although rolls

along the field would in fact be unaffecited by the field). If

o
r= PEYEEYS
where By is the mean field, L the layer depth, ﬂp,"'&r the unstable mean gradient,
and AL the magnetic permeability, then the critical value of T for acell of

wavelength IT‘..-"'H is



where m is the vertical mode number. For slightly supercritical states

I'-T.(i-A

the amplitude of the convective cell was shown to satisfy

|.l| Lj . ] " il 2
_:‘:-5:_-' - o B+ ﬂl-"E'q.!l'-:'| = |E;""'r']'-‘l =4

where
i 5
o _..f..".".;..._
[R5 i %)
Y e Loy . ¥ b B
N2 —=8 __ m*" T 3Im =K Q=B
[t m* ™) \ ]2 810 ".:!tm.'."

so that the magnetic field of both the mean and the perturbation undergo long
period oscillations if M= 0 (k*< 3m %),

The presence of a small amount of dissipation was shown to lead to a
third order set of equations, which it was pointed out, can be transformed to
the set first discovered by Lorenz (1963) and which allow both stable limit

cycles and persistent aperiodic motions.
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MAGNETIC FLUX ROPES AND CONVECTION
Michael R.E. Proctor

in order to understand the observed intermittency of the magnetic flux
structures (usually called ropes or bundles) that tread the solar convection
zone, it is necessary to take account of the mutual interaction between fields
and flows. The kinematic aspects of flux concentration by persistent inexora-
ble motions are well understood (Weiss 1966, 1977; Busse 1975): the. flux is ex-
pelled from regions with_ closed streamlines and concentrated in their boundary
layers of B thickness R,‘;J B , Where RM': Ul{':t”! is the magnetic Reynolds number
U and L are velocity and length scales for the convection =t and ¥ is the
magnetic diffusivity). Since flux is conserved in the concentration process,
the peak field B,; in the ropes is of order B4Ry, where B, is the mean vertical

field. Such strong fields are certainly dynamically important: indeed, near the



surface of the photosphere B* appears to be so strong as to be approaching the
upper limit E’p”lri_j.-l_]:.‘;- (where A+ is the permeabifity and P2 the external pres-
sure) set by consideration of normal stress across the edge of the flux rope.
Deeper down in the convection zone, though, pressure differences between the
rope and its surroundings are less significant and another type of dynamical
effect is possible. The Lorentz ﬂ__lﬂ_Eﬁ forces, where 4 is the current density,
can act to impede the flow near the flux rope, so that the local magnetic Rey-
nolds number (and so the amplification of the fluid) is less than for weak
fields. It seems possible that the rate of amplification will decrease so fast
with increasing flux that the peak field cannot exceed some global maximum Em
as a function of the flux. To invegstigate this, Galloway, Proctor and Weiss

(1978) considered a simple problem for an axisymmetric cylindrical geometry

in which a basic incompressible flow is confined to a cylinder of height & and

radius of order,d and is driven by a prescribed body force. If there is no
field i-l;II ‘—y,,. and the configuration is defined by the two dimensionless para-
t gL
meters \
| NP _-_I"'-I_I;'J_|I|-_ Erd s ——m—
Mgy = '1 #'F:I__rnh

Ls

where L is of the same order andJo is the density and Y the kinematic vis-
cosity of the fluid. Rm is large and the flow is such as to concentrate flux

at the base = of the cell is a measure of the amplification in the kinematic

3
limit (& ?':E-'l). The problem can. be solved exactly in this limit since the axi-
symmetric flux rope formed on the axis only affects the flow in its immediate
vicinity provided that %4 is not so large that the rope is no longer thin.
The main result of the analysis is an explicit form for B* the peak field at

3:0 , the base of the rope, na:nely 4z 4 ..:.'-L.’,.-",n.
B+ B Rt 5 & A 5 faly)e -7 dy

°

A L - . : .
where ;-:-‘.’}E -51',.1 and -I:‘-:{'-j- is the basic vertical flow on the axis of sym-

metry.

From this it can be seen that B reaches its maximum B, as a function
of % when &= O -i ll_.f-f*n RW;/L. These results, while paving the way for the
solution of more complicated problems (see elsewhere in these notes), can also
be used to give rough estimates of the sizes of field to be expected at various

depths of the convection zone. (Galloway, Proctor, and Weiss 1977.)
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A CONVECTIVELY DRIVEN DYNAMO (Lecture #1)
Andrew Soward

There are reasons to believe that the geodynamo is the result of ther-
mal convection in the Earth's liquid core. Perhaps the simplest model which
isolates the influence of rotation on convection, is that of a Boussinesq fluid
confined in a plane layer of width L, rotating with angular velocity £{_ about

a vertical axis, heated from below and cooled from above. When the Ekman number,

£
T b i

l =
TR AP TFEF g i r A R F

where ¥ is the kinematic viscosity, is small, the onset of instability is char-

acterized by convection cells with short horizontal length scale of order
£ :E.r-ri L. Owing to the two length scale separation (e L ), this model pro-
vides a convenient starting point for the analytic development of a hydromag-

netic dynamo.

With a suitable choice of boundary conditions the linear solution de-
scribing steady convection can be represented as the sum of N-rolls, for which

the vertical velocity takes on the simple form
I:I't':""':r_

ud I:'I d e 5 -y I Cos) 1|'
or=na wr'™ ain f-'l_gE"_ + c.c. {lE l““c,'

Here 3 is the vertical coordinate, k(") is a horizontal wave number, k. is
the critical wave number describing the onset of instability and c.c. denotes
the complex conjugate of the expression preceeding it. Finite amplitude solu-
tions of this type together with their stability have been discussed by Kippers

and Lortz (1969) for the case of infinite Prandtl number.



When the fluid is electrically conducting the development of a skewed,

horizontal magnetic field '3 ..x___,.: is governed by the dynamo equation

48 s a [ a B
LSIE SERANEL S

A
where t is the time, a is the unit vector in §-dlrect|on, " is the magnetic

diffusivity and the components of the tensor &£ are

==

g iy r-\,.”-:l .
ot s I (S R ) R R fain 2T

)
Here H '3in 1“1 is the contribution made by the nth roll to the horizontal
average of the helicity ug.curl u. In our model, the boundaries are supposed to
be perfectly conducting and so the dynamo equation is solved subject to

lLEﬂdﬁaﬂ and Sljﬂfé:jﬂu on 3= 0, L.

Provided that there is more than one roll (N > 1) and that the motion is suffi-
ciently vigorous magnetic field regeneration is possible. The results of Childress
and Soward (1972) and Soward (1974) indicate that, once the influence of the
ensuing weak Lorentz force is taken into account, the preferred mode of convection
is a roll whose axis is normal to (wave vector-ﬁ is parallel to) a weighted
3—average of By. The resulting o4 -effect tends to regenerate new magnetic field
in the direction perpendicular to the original field (i.e. in the directiongxﬁ' ).
Consequently the crientation of both the magnetic field and the most vigoroffs]y
convecting rolls tends to rotate on the magnetic diffusion time scale. In this

way the system operates as an efficient dynamo.

In a limited parameter range corresponding to very weak magnetic fields
Soward (1974) demonstrated the existence of stable hydromagnetic dynamos. For
stronger magnetic fields, however, Childress (1976) has found that the dynamo is
unstable. The reason can be traced to the well-known result that, when the mag-
netic field is uniform, the critical Rayleigh number Rs for the onset of convec-
tion in a rapidly rotating system initially decreases with increasing field
strength. For the hydromagnetic dynamo problem the implication is that as mag-
netic field grows so does the vigour of the convection. Consequently the — -effect
becomes more intense and the magnetic field grows at an ever-increasing.rate. One
may speculate, therefore, that the dynamo can only equilibrate when the Coriolis
and Lorentz forces are comparable. By contrast, Busse {1975) has developed a
similar dynamo model in an annulus rather than a plane layer in order to represent
more faithfully geometrical constraints imposed by the spherical shape of the
Earth's liquid core. In this case R. initially increases with increasing magnetic

field strength and so the stability of the dynamo is assured for weak magnetic

fields.
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A KINEMATIC THEORY OF LARGE MAGNETIC REYNOLDS NUMBER DYNAMOS
(Lecture #2)

Andrew Soward

When a magnetic field permeates an incompressible, perfectly conducting
fluid, the field lines are frozen to and move about with the fluid. If initially
the magnetic field at position X is b{x), then later when the fiyja particle
has moved to E[JLJ' the magnetic field is

£.6.9% ()
If instead the fluid has large but finite electrical conductivity, the above re-
sult only provides a correct first approximation for a limited time, since the
error increases indefinitely. To avoid this secular behaviour it is necessary
to allow the reference field h to evolve slowly on the magnetic diffusion time
scale. Any rapid development of the field caused by the advection of the field
lines is accommodated by the strain tensor Ei"l-fax-,rn (1). A further general-

isation of this Lagrangian description is made by introducing a reference fluid

velocity ulx) so that the actual fluid velocity at X% is
w=dEfar+ w.PX, (2)

Here :)'(', w (as well as b) depend on both X and time t. As a result of the

transformations, the magnetic induction equation becomes

E‘é‘f"&t:?r(ng}+fv;ﬂ“—f?xé, (3a)

where # is the magnetic diffusivity,
EE‘EIFE,':“IILP A.,o)‘-']"'!" LRl b s (3b)
-ﬁxn*?l -oXx fﬂ‘j- (v.cé‘-':rl,»’a:l:J 3) (3c.d)

and ¥ denote*s'ﬂ'the gradlent With rejspect to
Thisformulation provides an especially convenient method for considering

Braginsky's (1964 a,b) nearly axisymmetric dynamo model (see Soward (1972),



Moffatt {1978)). In essence we consider an axisymmetric reference flow,

weUP + € Uy (e <<)) (4a)
where 53\ denotes the unit vector in the azimuthal direction and the suffix M
denotes the meridional component. Asymmetries of the real flow are accommodated
by the small displacement, o~
€7 = X-x, (k)
of fluid particles from their mean trajectories, which according to the assumed
form (ka}) are almost circular. Direct substitution of (4) into (3) shows that

the reference magnetic field is almﬂost axisymmetric and has the form
| 3 - |
t=Bp+E b, +0ERT) (5)
Here the asymmetric part of b is represented by the error term and R is the mag-

netic Reynolds number which is assumed to be large.

On the basis of the scaling in (&), we may take the # -average of (3)
and legitimately neglect all averages of products of fluctuating quantities with

the exception of

Eg=-1B, (6a)
where 2 a0, -
-7 el | Bk )
PR, A i iR — == Bhb]
F=-37 ) \7¢ Vig 3g/d9 i
and .44 is the distance from the axis of symmetry. Provided,
e¥= ofR™")

there is the possibility that the resulting =£ -effect is sufficiently large to

prevent the otherwise inevitable collapse of the meridional magnetic Field.

It should be:emphasized that u, differs significantly from the ¢ —average
of the actual (as opposed to the reference) meridional flow velocity. Indeed
when the latter average is zero, we may identify u, with the systematic meridional
flow of fluid particles (this is the phenomena of Stokes drift). The difference
between the averages of actual and reference quantities accounts for Braginsky's
(1964 a,b) use of "effective' variables, which are simply U and Emintroduced
in [ha) and (5).
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A STRANGE ATTRACTOR
Edward A. Spiegel

This discussion, based on work done with C. Marzec and with J.-P.Poyet is

aimed at exploring aperiodic behavior in the solutions of the dynamical system

am _ .a.!illl g
X == 3% -EuXx (1}
where x = x(t) and the potential is a polynomial:
: PO AL -
V= VX iA)==X aEIm,._m] . {2)

The differentation of V in (1) is for fixed A ; but ﬁ.. has time dependence
which may be specified explicitly or implied by a differential equation. W

consider the specific form

i:-—e[?ﬁgfi}], (3)

with constant € and 4¢ . It then remains to furnish then{hu}an-:l 9 (x).
A particular choice corresponds to the model studied by Lerenzl. Here, we con-
centrate on the examp1e2’3

a{i:,jl.rﬂf;t 8= consT.,S:}{-xS,/,Lm:I. (&)

The equilibrium surface ::':""-"'/31:9 plays an important role in the dyna-
mics. In the case of (4) this describes a pleated surface? in (X,l,é‘) space.

The projection of the pleat onto the ;{—-Eplanu is delineated by the cusp,
-3
}.;_si.ﬁ'ﬁ"‘l;fg a2 . this shows the interest in the parameter? B =/3 A & &

Equation (1) can be replaced by the two equations, irf,}'f=—vx'e/ui~
The flow divergence,a?;'i.'ln,,x -rﬁ'i;fati + -El?ll.l'la.;q. . has the constant value -=£ . Swamms
of representative points in -f:(,hl.:"l) - space will condense down to zero volume
exponentially in time. The sets of points onto which these swarms ultimately
condense are called attractors. Attractors may be stable critical points or
stable limit cycles, for example. When they are sufficiently complex they are
called strange, to use the term suggested by Ruelle and TakensS. Normally,
strange attractors associated with QDE's are found by numerical integration.

But astronomers know that you do not need an ephemeris to study the form .of an



orbit; it is often valuable to get the time out of the problem.

Let A be taken as independent variable: X {t:}= E [:‘L'],
t=j _dA_

A+gqlx) (5)
Then if prime denotes differentiation w.r.t. A , (and we drop the tildes) we
e -:;1|_ﬂﬁ+ ﬁ«]n*x”ﬂ- (=pe)(M e )"+ 9x (A + )" | s = S,T"::' : (6)
W obtain a standard-looking problem in matched asymptotic expansions whose
study reveals much about the role of g(x) in these affairs. Unfortunately, the
inner problem is not easy; in one of the simpler casesl (6) reduces to the equa-
tion for the 2nd Painlevé€ transcendant. This is just the way to describe the
transition from one trough to another in V in terms of nonlinear turning point

theory (the inner equation is a nonlinear version of Airy's equation).

The traditional asymptotic methods, such as the method of averaging or
two-timing, are also very enlightening. For & £< 71 the method of averaging for
the example (4) describes periodic orbits 3. When § < 62 these are stable but
they lose stability when ) increases through .62, to be replaced by quasiperi-
odic orbits. When Cy increases through .75, the method no longer works easily

but by combining it with results from (6) we may be able to extend it.

The "transition" at 5 = .62 suggested by the asyrnptotics is reflected in
a corresponding change in the character of the numerical solutions. As d is
increased through .62 the period of the limit cycle starts a series of doublings
corresponding to what are called pitchfork bifurcation®s. When d reaches .625
this doubling is over and the behavior seems genuinely aperiodic; a strange at-
tractor seems to have formed. In fact, the object which corresponds to the at-

tractor appears to exist even for §< .62, but it is not their attractor.

W have studied the form of the attractor mainly in (E, B, s)-space, where

2=/, B= A (3/s)"™ E<38™ (%% +V)- 7)

To examine the solutions, we construct a Poincaré map, or surface of section, in

which successive crossings of the E-B plane with §7 0 are marked by a point, and
many such points are accumulated. For d = .625 the surface of section is that
shown in Fig.] for all initial conditions we have tried, apart from differences
in transients. |If we look at the very tip of one of the "leaves" dangling from

the attractor shown in Fig.l and magnifyit manyfold, we obtain Fig.2. The numer-

ical integrations available thus far are not sufficient to warrant another blowup,
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A blowup of the tip of one leaf of Fig. 1,

showing fine structure.



but we conjecture that this would only show a repeat, on a finer scale, of the
structure of Fig.2. In other words we presume that the attractor has the struc-
ture of a Cantor set in one of its dimensions, much as Henon's/ well-known

model does.

The asymptotic study of the case (4) revealed that in (E,B,2)-space
the curve defined by ¥ = 0, s = o, seemed to play a special role. This is true
also for the appearance of strange behaviour in the numerical solutions. These
statements find a congenial expression in the language of catastrophe theory4.

We may introduce a superpotentlal1
T .mn.. {3.1! k-i‘

X
U= m+ | 2 .*.['_rﬁ.-r'l]' =m 5;( (8)

where f is to be thought of as a parameter on the same footing as A . Now

the condition aU,-";i‘:r_ =0 s easily seen to be equivalent to 8:.‘\/‘, hence we
have also that¥ = 0 and E'r"fa;'- =[l.These two conditions define the catastrophe
set4 of U which, for m =4, is called a swallow tail. W find that motion of a
system point through the catastrophe set generally involves erratic behavior
even when there is not a strange attractor. When there is one, the attractor

lies near the catastrophe surface, as in Fig.3, where the attractor's surface
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Fig.3. Same as Fig.l but showing the catastrophe set of L"
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of section in the E-B plane is shown with the catastrophe set of 1 for the ex-
ample of {(4}. The tip of the swallow-tail is at B = 2/3, which defines the ca-
tastrophe set of V. These results seem not to depend sensitively on g, provided

that the choice of g is not trivial.

Ve believe that the system (1)} - (3) provides a class of strange attractors
when the osciliation in .-"1 engendered by (3) takes the system near the catas-
trophe set of V. A guide to the behavior also seems to involve the superpotential

U. Examples in GD are discussed in these proceedings by Childress and Pedlosky.

The potential V has m-2 parameters and we have made them all depend on A
W could add more free parameters and in addition to (3) we could introduce m-3
additional equations of this form. A variety of interesting examples may be con-

structed in this way.

Of course, one of the main interests in the present kind of study is the
possible clarification of turbulence that it may provide. To approach this pro-
blem systematically, we wish to extend the highly truncated Fourier analysis of

] and related investigations are haacda'g.

the fluid equations on which Lorenz's
W obtain equations like (1) - (3), with additional terms of a form not included
there, but also where X becomes a vector. For this reason, the important gen-
eralizations correspond to similar equations with more degrees of freedom. Al-
ready with two degrees of freedom we can study in a given system an illustration
of KAM thv:—:ory]0 when & = 0 and a strange attractor, when € # @ . How do the two

problems come together? That is a problem we are trying to understand at present.

Is the bearing on turbulence theory of this kind of study more direct than

these vague analogies suggest? To look into this, suppose that at t = 0, X = a.

I
©

Consider a swarm of system points with only one system point at each X at t
Let the initial velocity field be such that orbits do not cross for a nonzero in-

terval of time. The orbit of any system is x =X {t‘,ﬂ-'!l-
D‘:.:..-‘J:Dt = ‘L"Ef,ﬁ-]l-

For some time, according to our assumptions, we can solve for . =.=’~.-':I'-',1'1an:j hence
3 i}
may write V/t,a.f?:'l.-"{'rt,-"ﬂ-':f-x},"-“ wix,t). Equations (1) - (3) become, with =Tt

n

Now X Efﬁll’-"lﬁt]n_ :F_.‘l.l-:‘

Duw  du A ] '
TE T Be YWy =-3%—E,#H s)
%}_ s 2y ulk - —€g-eX (10)

This is a sort of Burgers description of convection = not unlike one contemplated



many years ago by D.W.Moore - and has many of the features of the usual Burgers

description. It generalizes readily to two or more dimensions. In that case,

it may pay to consider using some modern methods of diffraction theoryll.

Let 3¢ H'If
I = ﬁ} ‘}"':_'5..1.:-_' |:l:|
Suppose also that
&Jh=akl+~b#) “2:'
where &y and bk are constants. Then we find N
2 - P - m-a.
- +33p)reusrv=-) - (13)
k-1
The equation is less edifying, But the qualitative impression is that

the complex nature of certain caustics12 may have a family relation to the struc-

ture of strange attractors.

=

1.
12.

[ RN + TR =« i R A B Y o (N — i
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MAGNETOCONVECTION
Nigel 0. Weiss

Discrete ropes of flux seem to be characteristic of magnetic fields in
the sun's convection zone, and these flux ropes should be included in any de-
tailed dynamo model for the solar cycle. As a preliminary, we can study Bous-
senesg convection in the presence of an externally imposed magnetic field.
Numerical integration of the nonlinear equations makes it possible to explore

the dynamical interaction between magnetic flux ropes and convection.

For simplicity let us consider two-dimensional convection with the ve-
locity and the magnetic field confined to'the xz-plane and independent of v,
where the z-axis points upwards. W assume that the boundaries of the region
{uqx{hd ; 0c2<d}are stress-free and that the total flux is equal to that
for a uniform vertical field B;. Then a particular configuration is character--
ized by the Reyleigh number R, by the parameter & = B:'df-"::.i_r.-_:-v}l y, by the Prandtl
numbers pj = Hf_;;_, py = ].-':,rf:rl. and by the aspect ratio A (cf. Chandrasekhar 1961,
Weiss 1977). Other useful parameters are P3 = )t‘.-"l-t and ll.-"n_].. (which, likeR,
contains X and + in the denominator). In all the computations pj = 1.

A = 1 except where stated otherwise.

If P3 £ 1 convection sets in as a direct instability, when
R= R, R‘-rx‘ﬂm{;H

where Rc = E‘I‘.’i" is the critical Rayleigh number in the absence of a# magnetic
field. For Q>3 p3 »7> 1 (the astrophysically relevant case) convection first
appears as an overstable mode when E=H':'J'-"='-'T'l1'-‘i,."'p= and there is a transition
from oscillatory to direct modes at J = H{'.J"-'I?r"'t‘i,-"i,:} Busse (1975) showed that
for p3 = = 1 and Q sufficiently small, finite amplitude steady convection first
appeared when

R - Rm;n = R;‘I" e LG E'::I;F‘Jﬁ}yf

The nonlinear results for P37 1 show finite amplitude oscillations when
R=> F-'."'- For 1 =< G‘I.-'Ilp_.r I"'r"‘;":. 100, steady convection appears at the Rayleigh num-
ber predicted by Busse. The field is concentrated into ropes with a Gaussian pro-
file and the horizontal velocity varies tinearly across these ropes. When
Q> Py Y+ the situation changes: motion is excluded from the flux ropes, which

are almost stagnant. The value of Ry, is close to Rl and independent of P3



for P3 >% 1. Within the rope the field is nearly uniform, with a narrow current

sheet separating the flux rope from the convective eddy.
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Sketch showing the Nusselt number Ny as a function of R for @»» p3>> 1.
The shaded region shows the peak value of Nu for oscillatory convection.
The unstable steady solution branch from Ryjn to RY®! is conjectural.
Calculations with R = 104 and different values of Q show that steady
convection in the dynamic regime is possible for p3R = Q= p31-"ngF-"3_ The
transition from a dynamic to a kinematic (weak field) regime occurs when the
concentrated field is no longer strong enough to exclude the motion from the
flux rope (Galloway, Proctor and Weiss 1978). At higher Rayleigh numbers nar-
rower cells are preferred; for R = 105, square cells broke up into cells with
,:J'L- 1/2. In the dynamic regime a second solution appears, with most of the flux
concentrated on one side of the convective cell. Symmetrical cells are appa-

rently unstable to perturbations which develop into these lopsided cells, though

the latter transport slightly less heat.

The dynamical importance of flux ropes is clear from these numerical ex-
periments. There are also indications that a few large ropes may be preferred
to many small ones. Galloway and Moore (1978) have obtained similar results for
axisymmetric cells, where flux concentration is much more potent. On the other
hand, nonlinear thermohaline convection (Huppert and Moore, 1977) apparently

shows no analogue of the high Q dynamical regime.
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HYDROMAGNETIC PLANETARY WAVES
Willem V.R. Malkus

The secular variations of the earth's magnetic field appear to be wave-
like processes in an underlying dynamo. Models of the geodynamo suggest that
there is a strong toroidal field (approximately 100 gauss). Here we discuss
several aspects of global hydromagnetic oscillations in rotating systems both

stratified and unstratified.

In an early paper, Malkus (1967), an idealization was found in which atT
the modes of a hydromagnetic oscillation of a rotating spheroid could be deter-
mined. By good fortune, the choice of a gnfform electric current to define
the basic magnetic field led to a modified Poincaré eigenvalue problem. Due
to the work of Cartan (1922}, Roberts and Stewartson (1963 a,b,c) and Greenspan
(1964, 1965), many of the properties of the Poincare problem are understood.
Here several dispersion relations are established determining that in the hy-
dromagnetic case, modes of the system have phase velocities both East to West.
For small rotation rates the lowest non-axisymmetric modes are unstable == for
rotation rates of geophysical interest all normal modes are stable. It is
found that the zonal phase velocities of fast magneto-hydrodynamic and slow hy-
dromagnetic waves can be of either sign. From the unstable normal modes o f
this problem, it was consluded that selective excitation of the observed west-
ward motion may be a consequence of shear or buoyancy instability. More recent
studies by Acheson (1972) confirm that most unstable modes of the large scale
siow hydromagnetic sort do move towards the West. However, an important class
of ""shellutar" modes was found (Malkus (1967}, Stewartson (1967) to move to the
East. The addition of stratification added a whole new class of interesting
problems including that of magnetic buoyancy. Recent studies by Parker (1977)
and Acheson (1978) discuss the various instabilities of rotating magnetic sys-
tems which could lead to westward phase velocities. Perhaps the most interest-
ing of these has to do with the destabilizing effects of ohmic, thermal and
viscous diffusions. The criteria for these instabilities are derived and

Tabulated.
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M N - SYMPCSl UM ON MAGNETCHYDRCDYNAM CS AND DYNAMD THECRY
Abstracts of Semnars

MAGNETI C PRCBING CF EARTH S LIQU D CCRE
Edward R Benton

Consideration is given to the followi ng question: Wat can be
inferred, theoretically, about earth's liquid core using neasurenents of
only the geonagnetic field at earth's surface: W discuss how, in principle,
the following four quantities of interest can be obtained froma primtive
"first order™ nodel of the earth.

(@) Depth or radius of the liquid core(a recent result of Hde)

(b Depth at which substantial vertical nmotion and intense electric

current begin to flow

(0 Horizontal fluid motion adjacent to the core-mantl|e boundary

(d Rate of increase with depth of the azinuthal field at the surface

of the core;
Consi stent with the present state of geonmagnetic observations rel evant to
this problem we adopt only a sinple nodel of the earth based on the fol | ow
ing physical assunptions:

(i) The mantle is a snooth spherical annulus wthout ellipticity or
t opogr aphy.

(ii) The mantle is either an insulator or at nost a weak spherically
symmetric conduct or.

(iii) On the decade tine scale the core fluid noves |ike an inviscid
Boussinesq liquid of nearly uniformdensity and perfect con-
ductivity, stirred by radial gravitational forces(thernal,
conposi tional, or phase-change in origin).

The data needed for practical applicationto this work (not presently
avai | abl e i n adequat e form) consist of global neasurenents of the three-
conponent vector geonagnetic field of internal origin as seen at earth's
surface for two different epochs separated by a few decades in time. Ater-
natively, use could be nmade of B and B(secular variation) at a single
epoch but this is regarded as nore difficult, observationally, and is also
the harder to utilize.

It is essential for these purposes to devise schenmes that fit the
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data not so as to best reproduce field values at specified | ocations, but
rather inversely to give nost accurate | ocations at which the field takes
on prescribed values (i.e. contour curves of the field need to be accurately
located). The classic(forner) problemis linear in the Gauss coefficients,
the latter, highly nonlinear, so interesting devel opments are to be expect ed.

The results obtained can al so be used to provi de new constraints on

secul ar vari ati on nodel s.
Ref er ence
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MAGNETOHYDRODYNAM C MODELS OF PLANETARY DYNAMOS
Friedrich H Busse

There are two reasons for the study of the magnet ohydrodynam ¢ dynano
probl emin order to understand the origin of planetary magnetism First,
ki nemati ¢ dynamo nodel s do not provide sufficient informationto isolate a
particul ar dynamo nechanism Wdely different velocity field can give rise
to the same observed nagnetic field. Secondly, the kinematic dynano probl em
does not determne the equilibriumanplitude of the nagnetic field whichis
the nost inportant paraneter of physical interest. Mreover, the systematic
variation of the strength of the magnetic field of different planets provides
the most stringent test for any theory of planetary dynanos.

The anal ysi s of the nagnet ohydr odynam ¢ dynano probl emis conplicated
by nunerous nonlinear effects that can occur, some of which are di scussed on
the basis of dynano nodel s of Busse (1973, 1975).

(I) Lenz' rule: The normal effect of the nonlinear Lorentz force is
to alter the velocity field (nmainly by decreasing its anplitude)
such that the growth of the nagnetic field is termnated and an
equi libriumanplitude i s achieved, at least in the tine average
sense.

(2 The Lorentz force may enhance dynano action and equilibrium
anpl i tudes for the magnetic field may be found for |ess than the
initial value of the magnetic Reynol ds nunmber (Busse, 1977).

(3 Wen the equilibriumsolution is unstable, nonlinear oscillations
can occur. This situation occurs, for exanple, when the oX-effect
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decreases w th increasing magneti c Reynol ds nunber. This property
I's caused by flux expul sion fromthe velocity eddi es (Roberts

1972, Busse 1973) and is typical of dynanos with nearly steady
not i on.

(9 The Lorentz force nay rel ease dynamc constraints, in particul ar
the constraints of the Coriolis force. It is this effect whichis
t he basi c physical reason for the generation of magnetic fields
inrotating planetary cores. The opinions only differ on the
particular way in which this rel ease is acconplished. Since there
are no dynano nodel s with strong Lorentz forces avail abl e, the
subj ect is specul ative. (ne such speculationis that an upper
bound on the nagnetic field provided by the condition for the
exi stence of the hydrodynam c branch of convective solutions in
t he annul us nodel (Busse, 1975},

1 LY
B, = Str, fl\—"—f -—j —I::L:‘

when B, is the field strength in the planetary core, £ , r. and
2 are rotation rate, radius and density of the core. A and
= are nagnetic and thernal diffusivities, and /u,is the nagnetic
perneabi lity. is ageonetric factor of the order 1/2 and &
is the typical wavenunber of the convection colums in the core
based on the radius r. as length scale. Wsing a | ower bound on e
of the order 10 suggested as a condition for dynanmo action by the
nureri cal experinents of Bullard and Qubbi ns (1977) the upper
bound (*) appears to give renarkably good fit to the observed
anpl i tudes of planetary nagnetic fields(Busse, 1976).
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A FRALIMINARY REFCRT OK PROGRESS IN MCDHING THE SO.AR DYNAMO
Peter A. Gilman

For the past several years, we have been developing a numerical model
for a full M dynamo in a rotating spherical shell. The motions responsible
for the induction are convective flows, driven by uniform heating at the
bottom of the shell, together with the differential rotation these motions
drive. The motivation for the model is the solar dynamo, although the mode
physics is still considerably simpler than the solar case.

Our strategy has been first to develop a model for convection and
differential rotation, which produces surface differential rotation much
like that of the sun, even in quantitative terms. VW¢ then study the dynamo
properties of this "best" solution. The full j x B feed-backs of the induced

field on the flow are included.

Briefly, the model physics is as follows:

1. Boussinesq fluid

2. Linear diffusion of temperature, momentum, and magnetic field

3. Central gravity (1/r2)

4. Stress free top and bottom, constant heat flux bottom, constant
temperature top

5. Perfect electrical conductor bottom, radial magnetic field or
perfect conductor top (no potential field)

6. Shell depth arbitrary

The solution technique is:

1. All dependent variables are expanded in fourier series in
longitude

2. Resulting amplitude functions are solved for on an energy con-'
serving, staggered grid in the meridian plane.

3. Leap-frog time differencing is used

4. Pressure is found by solving Poisson type equation from

divergence.



- 131 -

5. Two components of the induction equation are solved, plus
¥V " B = 0, with the third used as a check.
6. The calculation is currently started froem random numbers in the
temperature field, and in the seed toroidal field.
So far, a small number of limited experiments have been performed, with 13
points in the radial direction, 61 points from pole to pole, and between 2
and 11 wave numbers in longitude (always including wave number 0 for the
axisymmetric flow and field). No symmetries about the equator are assumed,
because we wish to look for any tendency for symmetry selection.

W have most extensively studied the case with Rayleigh number
= 8 X 104, Taylor number = 2 x 105, Prandtl number P = 1 with shell depth
1/3 of the outer radius. For this case we get the following preliminary
results.

1. Dynamo action is sustained for magnetic Prandtl number
PM= “,-"'lrf 0.25 for 2 mu-dus.ﬂ,.-'g 4 0.2 for 11 modes, so convergence
seems good. These 'FM'S corréspond to internal magnetic Reynolds
numbers in the range 150-200.

2. The feed-backs on the motion are quite large if F,, is much below
the critical value. For example, differential rotation energy can
be reduced by a factor of two, before statistical equilibrium is
reached, compared to the same case without magnetic fields.
Approximate equipartition between the field and flow is rather
easily achieved.

3. W do get field reversals, whose period is not sharply regular.
The typical period is shorter than for the sun by a factor of
20-30, for surface differential rotation of the same size as the
sun has. Migration of torodial fields both toward the poles and
equator is seen, so the "butterfly diagram" for the model would be
more complex than on the sun.

4. Nb clear symmetry selection mechanism has been found so far. That
is, symmetric (quadripolar) and antisymmetric (dipolar) magnetic
fields have roughly equal amplitudes, on the average. This is
despite the fact that the motion fields turn out to be strongly
biased towards symmetry about the equator (meaning east-west and
radial motions are symmetric). |t is possible that the model has
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to be run longer (at least from random numbers) to establish this
property.

5. For this case, the dynamo appears to be more Mo om like, rather
than " o - wa" like, in that the maintenance of the axisymmetric
toroidal field is due primarily to induction by the nonaxisym-
metric convection, rather than due to shearing of the axisymmetric
poloidal field by differential rotation.

Both the short period of the model compared to the sun, and the
dominance of convection rather than differential rotation in maintaining the
toroidal field, may be explained by the fact that the helicity of the con-
vection is two or three orders of magnitude larger than has been previously
assumed in simpler dynamo models in order to get the right solar period. In
other words, convection sufficiently influenced by rotation in the model to
drive the right differential rotation for the sun has much more helicity
than apparently is felt by the solar magnetic field. Reducing the rotational
influence (reduced Taylor number, or increases Rayleigh number) to get the
right magnitude helicity does not work, because the equatorial acceleration
is lost. W doubt that the addition of compressibility to the model will
help, because it would have to destroy most of the helicity of the convec-
tion, while still retaining its Reynolds stresses to maintain the right
differential rotation.

Instead, we suspect that the ability of the solar magnetic fields to
concentrate into tight flux tubes, around which the plasma mey flow, is
crucial. The model shows some tendency to do this. That is, we find a
greater fraction of magnetic energy is in the high wave numbers than for the
kinetic energy and the toroidal field is more highly structured than the
differential rotation. Unfortunately, the cost of computing with much
higher resolution makes it very difficult to represent the concentration
mechanism very well. n the sun, perhaps the concentration of the field
into small flux tubes we see at the surface extends throughout the convection
zone, with convective flows, and differential rotation, slipping around the
tubes. This should reduce the net helicity felt. The period of reversal
then may be a nonlinear function of the fraction of the total volume
occupied by flux tubes. The magnitude of the reaction of the field upon the
global flow should also be reduced for flux tubes occupying a small fraction

of the volume.
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If these concentration effects are fundamental to the sol ar case then
a serious problemfor the future is howto represent such a snall scal e pro-
cess accurately in global dynano nodel s i n which the hydrodynamcs is
explicitly cal cul ated.

Inthe light of our results, albeit prelimnary, recent "success™ by
Yoshimura i n nodeling the solar cycle and its envel ope using effects of
gl obal convection and differential rotation, is probably the result of
fortuitously conpensating over-sinplifications of the hydrodynam cs, induc-
tion, and nonlinear feed-backs, which have resulted in enough free paraneters,
when allowed to take mutual |y i nconsistent val ues, to '"model" al nost any
nonl i near system

TURBULENT D FFUSI ON G- MAGNETI C FI ELDS
Edgar Knobloch

In studying the turbul ent diffusion of nagnetic fields, we are
interested in calculating the statistical properties of the magnetic field
B (%, t)interns of the statistical properties of the turbul ent
velocity field w( ¥ ,t ). Ingeneral this problemleads naturally to non-.
l'inear coupl ed stochastic differential equations. Here we shall restrict
oursel ves to the discussion of the diffusion of passive nagnetic fields by a
prescribed (in a statistical sense) inconpressible turbulent velocity field
in the high nagnetic Reynol ds nunber regi me appropriate to the sun. Inthis
case the probl emreduces to the study of the stochastic induction equation,
whi ch nay be witten in the general form

;r;%*l-h_-t]]?{a.tﬁﬂ (1)
where L (= ,¢ ) is a stochastic operator, independent of £ . This equation
can be solved for the ensenbl e average of f , <§x or £ , by elimnating £,
the fluctuating part of + , fromthe equation(Knobloch, 1977). |If we assune
that at time £ =0, £() =10, or that it is uncorrel ated subsequently with
the velocity field, the exact solution can be witten as the integro-
differential equation

~]= k- S i & ey
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where L=< Ly, U= L-T, U, is the Green's operator for the equation

L:!-E 4 L].[l
and A4 is a projection operator that takes an ensemble average of everything
following it. The subscript 0 on the exponential indicates a time-ordered
exponential. In what follows we shall restrict ourselves to homogeneous
turbulence, and shall therefore assume that <it> = 0. In the high Reynolds
number |imit the diffusion term in the induction equation may be omitted, so

that nov L = 0 and W,= 1. In this case equation (2) may be cast into a
differential equation for -F

_.'f_ F’ ] ) (3)
where the operators X, involve m -\ integrations over the cumulants of { |

For this reason, the result (3) is an expansion in powers of the auto-
correlation time L of the stochastic operator L (Van Kampen 1974, Terwiel
1974). The incorrectly time-ordered terms in the cumulants correct for the
memory effects lost in pulling -?(t') from under the integral signs in
equation (2).

The simplest approximation arises when the autocorrelation time Tc of
the turbulent velocity field is short. Then the first term on the right
side of (3) dominates, and the approximate equation mey be written as

'_” [j;'._t: L { :-T."].?d'i'.‘"*;:gﬂ-tl (4)
=
The resulting equation for E becomes for isotropic helical turbulence
R (06) - va B (1) e 1L OB (0 ®
where as o

N 5-: (x t)- ?kul::l E-T)2d T, 7 - g[ L thulxt-ThrdT. (6)

a
Here the subscript denotes the coefficient of V , and the superscript the
number of velocities entering in the definition. Equation (5) in the usual
dynamo equation; the first term on the right side represents the ot-effect,
responsible for field amplification by helical turbulence. It represents
the statistical effect of the term [3., + ¥ & in the induction equation. The
coefficient 1" is the turbulent diffusivity ,¥ and is positive in this
approximation.

For longer autocorrelation times the result (4) gives rise to the
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expression
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The inclusion of each higher term in the cumulant expansion has two distinct
effects. First, a term with a higher derivative of E is introduced; such
terms are negligible when the mean magnetic field is large-scale. Second,
each cumulant adds a contribution to each of the preceding transport
coefficients. As a result the transport coefficients ney be said to be
renormalized by tr;e higher order terms:

a2
...;:5;-;?:1 1{,-53:2':_1,1"1___,. (&)
Each transport coefficient is an infinite series in powers of R = "-:TL .'"If .
where 4 is of order A , the Taylor microscale (Knobloch, 1978). In sta-
tianary turbulence, Hr{ﬂﬂl.-rih)[u,l_._"u;ly}uﬁfv, where L is the eddy
correlation length ("typical" eddy silze), and the eddy correlation time is
approximately L./ for realistic turbulence. Here ii is the r.m.s. tur-
bulent velocity and R, is the turbulent Reynolds number. For fully
developed turbulence the transport coefficients therefore formally diverge,
but their value could be estimated using, for example, Pad#& approximants.
The condition that the dynamo equation be valid (i.e. that the higher deri-
vative terms are negligible) iskz aT, &k < = 1 when # is the wavenumber

-

of B . This condition is equivalent to fgaw L7,

The above Eulerian results can be shown to be formally identical with
the Lagrangian results of Moffatt (1974). The divergence of the expressions
(8) is related to the use of a Taylor expansion when converting Lagrangian
variables to Eulerian ones.

Because of the presence of the term 1;’:' in equation (7), the
diffusion of the magnetic field will differ from that of a scalar field. To
lower order in T. the diffusion of a scalar and magnetic field by non-
helical turbulence is the same. However, for realistic turbulence these
higher order terms may not be neglected, and since both If:_ and 11_’: (related
to meen square shear and helicity, respectively) provide negative contribu-
tions to the aum, the possibility arises that the turbulent diffusivity of
the mean magnetic field could be negative (Kraichnan, 1976). This may be
related to the steepening of gradients (and the expulsion of flux in the
presence of small molecular resistivity) by eddies with long correlation



times (Weiss, 1966). n the other hand, for small T: an eddy would have no
time to affect such an expulsion and when it was replaced by an uncorrelated
one, any such tendency would be on average reversed. Such a situation would

correspond to a positive eddy diffusivity, as in equation (6).

For a more complete statistical description of the diffusing magnetic
field, the above method mey be adapted to calculating higher moments of the
field. For example, the mean magnetic energy < Ea} IS an important quantity,
particularly if 4B is indeed negative.
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NEGATI VE DI FFUSI VI TY
Robert H Kraichnan

In this talk the origin of the negative diffusivity which turbulence
in a conducting fluid can exert on wesk magnetic fields when ther are sub-.
stantial fluctuations of helicity about a zero meaen is reviewed, and some
speculations are given about the persistence of this phenomenon into the

strong-magnetic field regime.

Turbulence exerts a positive diffusivity on a passive scalar field
advected by the motion in consequence of the random walk executed by fluid
elements. More complicated and intuitively surprising things happen when a
magnetic field is frozen in a moving, conducting fluid because the magnetic ~
field is changed in direction and intensified by stretching as well as dis-
placed.

Following Moffatt, the time derivative of the scalar or magnetic

field, after averaging over ensemble, can be expressed as an infinite expan-
sion involving ascending space derivatives of the field and ascending
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s J3F =

cunul ants of the distribution of fluid-element displacenents. This follows
formal |y fromCauchy's integral solution of the advection equations and
suitabl e spatial Tayl or expansions. For times of evolutionsuch that a
typical fluid element mgrates a distarnce whichis snall conpared to the
"scal eof spatial variation of the nean scalar or nmagnetic field, the expan-
sions are domnated by terns containing only first and second space
derivatives of the nean field.

In the scal ar case, these |leading terns give
WP LYl -k()V NS (x,t) 2 0, k(th=gd (EF)dE )
where ¢ @&(X,t}» is the nean scalar field, §; is the displacenent of the
fluid elenent which arrives at x, € , and for sinplicity inwiting we take
i sotropic turbul ence. The displacenent is neasured fromtine £ = &, when

the turbul ence is switched on. |n the nagnetic case
BB | _ o (t)un (Bl t)r+ p(E1VLB (x,t)7 (2)
wher e , at |
w(t)=drltifdt,  r(t)s<E, 38>,

p (&)= K(tred E'd? {(E:‘ %—éﬁﬁ[?-‘fﬂ]t}*

and 5, is the initial position of the fluid element which arrives at =, T .

If the turbulence is statistically stationary, ¥ (t)is a positive
constant for tines long conpared to the turbul ence correlation tine. =({£i
is zeroif thereis no helicity and approaches a constant (either sign) if
there is a constant nmean helicity everywhere. Inthe latter case, the final
term [Y(t)]z in(3 grows like t* . But an alternative, Eulerian cal cul a-
tionof n (&), accurate for short enough turbul ence correlation tine, shows
that R (&3 also approaches a constant, positive value for helical turbu-
lence with sinple statistics. It follows that, for helical turbulence,

AR WEDS:
becomes negative and grows like ~&* for t |arge conpared to the correlation
tine. This final fact is the origin of the negative diffusivity for
turbul ence with zero mean helicity.

Suppose now that the turbul ence has zero mean helicity but that there
are fluctuations of helicity such that the helicity keeps the sane si gn over
regi ons which are several correlation lengths of the turbul ence i n extent
and sever al c\orrel ationtimes in duration. Since the mean helicity is zero,
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T (£ )vanishes. But for times short enough that a typical fluid particle
does not migrate out of the region of helicity fluctuation in which it
starts, the ¢ ft _5_51__

b By
term in (3) is nearly unaltered in value from what it would be if the
helicity were uniformly nonzero. Since that term goes negative regardless
of the sign of helicity, so does H. (#). Clearly we can make Fl {t}as
negative as desired by making the helicity fluctuations sufficiently exten-

sive and persistent.

All the properties inferred above have been verified by computer
simulations, and by analytical model cases (Kraichnan, Parker).

If the magnetic field is strong, how do Lorentz forces affect the
phenomenon of negative diffusivity? In the extreme strong-field case, the
turbulence is replaced by random Alfven waves propagating on the lines of
force, Preliminary analysis suggests that the negative diffusivity pheno-
menon persists, with the typical Alfven period playing the role of effective
turbulence correlation time.
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A NEW THEORY OF THE SOLAR CYQE
David Layzer

Following Cowling, nearly all modern workers attribute the cyclical
variation of sunspot fields to the quasi-periodic reversal of a submerged
toroidal field, from which the surface fields are assumed to derive through
some kind of hydromagnetic instability. It is also generally agreed that
the toroidal field is generated by differential rotation acting on the
poloidal component of a wesk large-scale field. The real difficulty lies in
understanding the origin of the wesk poloidal field and the mechanism for
reversal of the toroidal field derived from it. In regenerative-dynamo
theories the poloidal field is derived from the toroidal field itself through
processes i n which helical turbulence (or convection) and turbulent diffusion
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play crucial roles. The regenerated poloidal field changes sign every half-
cycle. In the alternative theory sketched in 'V, V, the nonconvective
core of the Sun contains an irregul ar | arge-scal e magnetic field. The
toroidal field is generated by torsional oscillationsin atransition |ayer
between the unifornmy rotating, nonconvective, nmagnetized core and the non-
uniformy rotating, nonnmagnetized convective envel ope. The subnerged field
is the remmant of a much stronger, irregular field that was generated during
t he pre-nai n-sequence phase of sol ar evol ution and nedi ated the process of
spi ndown.

I n conparing the two hypot heses we may conveniently distinguish three
sorts of questions: those relating to internal consistency and the validity
of specific mathematical or physical assunptions; those concerning the
ability of each hypothesis to provide an adequate framework for interpreting
observations of solar nmagnetic fields; and those concerning the rel ation of
each hypot hesis to the broader problemof the origin of stellar and inter-
stellar magnetic fields.

Internal consistency. The theoretical cornerstone of regenerative
dynanmo theory i s the dynamo equation (3 4). Al though this equationis valid
for flows with | ow Reynol ds nunber, we have seen ( & III & ) that the
approxi mations on which it rests are not valid under conditions prevailing

in the solar atnosphere. Under these conditions the coefficients and

are given either by formally divergent expansi ons(Knobl och 1978b) or by
oscillatory integral s whose convergence in the linit Z— =cis probl ematica
(Mffatt 1974). There is no known theoretical or experinental basis for the
assunption (Parker 1971) that the turbulent diffusivity of a passive
magnetic field has a wel | -defined val ue conparable to -- or even with the
sane sign as -- the turbulent diffusivity of a passive scalar field {(£1IIc).
Finally, we have argued (& IIId) that turbul ent-dynano theories do not
correctly describe the way in which differential rotation and turbul ent
motions jointly act on the magnetic field. Mathematical nodel s of e
dynamos unjustifiably omt terns that describe the interaction between
differential rotation and the fluctuating conmponent of the magnetic field.

The alternative hypothesis (§ % 1Iv,V) does not invoke rapid nerging
of small-scal e magnetic fields. It does postulate (a.) that certain kinds
of large-scale flows occur during a critical period of solar evolution, (&)



that a rermant of the strong, .irregul ar, |arge-scale, nmagnetic field
generated by these notions woul d have persisted to the present day, and ( &)
that a nonuniformy rotating, nagnetized |ayer separates the uniformly
rotating, convective envel ope. These postul ates seemto be consistent wth
present physical and astronom cal know edge but need to be nade nore precise
and secure by detailed studies.

Interpretation of observed solar nagnetic fields. The dynano theory
evol ved during a period when observational evidence seenmed to indicate that
the Sun has a weak pol oidal field that reverses quasi-periodically. A
present there is no direct observational evidence for the existence of such
a physical field. Leighton(1964) has argued that an average pol oidal field
results fromthe breakup of sunspot fields and random horizontal notions of
their conponents. But there are no known theoretical or observational
reasons (apart fromthe requirenents of the dynamo theory) for asserting
that the residual sunspot fields nerge to forma |large-scale field, rather
than remai ning fragnented throughout their decay (Senflo 1976). Finally,
the absence or near absence of sunspots during extended periods (Eddy 1976)
presents a serious and as yet unnet chal |l enge to turbul ent-dynano theori es.
The normal nodes of a regenerative dynano are exponential. Wiile it is easy
to understand how the anplitude of an exponentially grow ng node can be
limted by nonlinear effects, there is no obvious reason why an exponential ly
decayi ng node shoul d not di sappear altogether. Leighton's (1969} nunerical
simul ations suggest that this is indeed what happens to such a node.

The alternative theory relates the variability of the solar cycle to
the variable rate at which magnetic flux in the radiative core penetrates
t he convective envel ope. The observed correl ation between the rise-tine of
t he sunspot nunber and the total sunspot nunber in a given half-cycleis
expl ained by the fact both quantities increase nonotonically with the thick-
ness O r of the transition |ayer.

Solar and stellar magnetic fields. The dynano theory does not
explain the origin of alarge-scale solar magnetic field; it postul ates that
alarge-scale field was present in the material fromwhich the Sun forned.
The only known process for the spontaneous generation of |arge-scal e nagnetic
fields under astronomcally rel evant physical conditions is Biermann's
mechani sm which operates in any differentiallyrotating, partially ionized
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gas-cloud. Thus large-scale magnetic fields ney be expected to develop
spontaneously in gaseous protostars as well as in larger self-gravitating
gas-clouds which spin up as they contract. Soon after the Biermann field

has begun to grow in a contracting gas-cloud, it will be amplified by fluid
motions ( & IV). The resulting complex fields mediate the transfer and loss
of angular momentum, enabling protostars to contract to stellar dimensions.

The subsequent evolution of the magnetic field depends on the extent
and disposition of convective regions in the star. |n stars with convective
envelopes' the convection zone tends to exclude the submerged field, but
also interacts with it in a more or less narrow transition layer. W suggest,
as a working hypothesis, that this coupling between the submerged magnetic
field and the overlying convective envelope has two observable effects:

(1) It mediates the outward transfer (and eventual loss) of angular momet
tum. (2) It gives rise to torsional oscillations of the transition layer
which produce strong toroidal fields.

In stars whose outer convection zone is weak or absent the submerged
field will penetrate the visible layers. W suggest that the fields of
magnetic A stars mey be interpreted in this way. A complete theory along
these lines would, of course, need to explain other conspicuous properties
of the magnetic A stars -- in particular, their slow rotation. These and
related questions |ie outside the scope of the present discussion. The
existence of stars with large-scale but distinctly irregular magnetic fields
does however bear directly on the present. theory, which predicts that such
a field is present in the Sun's nonconvective core.

*From a paper submitted to the Astrophysical Journal. References in
the text are to this paper.

SFECULATIONS ON THE THERMAL STATE OF THE CORE
David E. Loper

It is argued that the most plausible source of power for the geodynamo
is gravitational energy released by the growth of the solid inner core.
Results of model calculations by Lopes (1978a} show that the power available
to drive the dynamo by this mechanism is linearly related to the density
jump at the inner-outer core boundary and can be as large as 1.25 Xx 1012V\l if

Hp = 2,63 X 103kg/m3. This can sustain a toroidal field as large as 103,
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gauss.

The thernal regimes of the outer core which are possible if the
dynamo is gravitational |y powered are studied. The regines are defined by
the ordering of the magnitudes of the gradients of the adi abat T,-’-"'.“' t he

liquidus ’-'1' and the conduction tenperature Trf . It is argued that regines
. I — - | — . . .
L i 47; < T- and '[ ~ :T; < :;{ are not possible since they result in
bt w - ¥ 4 = . .
asolid outer core. The regine for which #”,:;, ¢ Te =l L: I's the sinplest

and possesses no unusual features. The second regine with ‘T}{ <V £ 7¢
is simlar to the first except that a slurry layer nust occur at the bottom
of the outer core. The thermodynamics of such a slurry have been studied by
Loper and Roberts (1978). In each of these regimes the fluid is both ther-
mal |y and conpositional ly unstable. This is in contrast to the third regi e,
T 2 Ta L'-'*h' , inwhich thernmal gradients tend to stabilize the fluid.
However, it assuned that overturning is driven by the stronger conpositional
buoyancy. This introduces the possibility that heat nay be transported
radially inward by the convection driven by conpositional buoyancy.
Consequently there is no direct relation between the rate that heat is con-
ducted outward in the outer mantle and the rate of heat transfer to the
mantle. The fourth regine, ¢’ = T, * T4 + allows conposi tional Iy driven
convection provided the thermal conductivity is sufficiently |arge that

";"L' T T e Ty where Tis the actual tenperature gradient.

Thi s possibility appears to have been overl ooked by Higgins and Kennedy
(1971). It is argued that a slurry in the bulk of the outer core as

envi saged by Busse(1972) and Ml kus (1973) is inconpatible wth overturning
because transport processes produce both thermal and conpositional gradients

which tend to stabilize the fluid.

-

—

The possibility that the core fluid nay be less netallic than the
eutectic as Bragi nsky (1963) suggested is considered and it is shown that a
| ayer of variable conposition nust format the bottomof the outer core.
Dfficulties associated with the renoval of heat fromthis layer leads to
the concl usion that a netal -poor conposition for the core is unlikely. The
thernmal evolution of the earth is discussed and it is noted that if F.!}i/: T;:f.
the heat transfer problens for the core and nantle are decoupl ed w th con-
ditions inthe core leading to a prescribed tenperature at the base of the
mantl e and the nantle in turn prescribing the heat flux which nust enanate
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fromthe core. It is found that if TA*S TL' , asignificant flux of heat
may flowfromthe core to the nantle with virtually no change in tenperature.
For detailed discussions of these i deas see Loper (1978b).
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ELECTROHYDRODYNAMICS AND NAGNETCHYDRCDYNAM CS
James R Ml cher

Beginning with a brief reviewof the contrasts between electroquasi-
stati c and magnet oquasi static approxi nations, and between the electric and
nmagnetic force densities, a pair of case studies are developed that illustrate
anal ogi es between phenonena in the two areas. Von Quincke's rotor consists
of an insulating cylindrical rotor having radius b and pernittivity gy
immersed inaliquid having permttivity £, and ohmc conductivity & .

P ane el ectrodes on either side of the rotor inthe liquid inpose an el ectric
field £{t) that is uniformfar fromthe cylinder and directed perpendi cul ar
to the axis of rotation. The equations of notion, which are useful in under-
standi ng convection i n nany el ectrohydrodynanm cs systens, have a formwhi ch
inthe limt f3 iff.i,* Eq}_*'r-'izp ¢,) — [ are the same as for a-6-c convection.
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Here, Su is the rotor angular velocity and ¥, and Fy are proportional to the
pol ari zations per unit length in the x and y directions. Variables are
normal i zed so that

-H’HTE‘:-E_.-_-: 2hTN T Px

e F[,:r'" B 3]
Anal ogous to the Rayl ei gh nunber is the square of the el ectric Hartnann
nunber, H,(the square root of the ratio of the charge relaxation tine T, to
an el ectroviscous tine) while the role of the Prandt! number is played by

(the ratio of the charge rel axation time to a viscous diffusion ting).
1 i
H = _E%t'ﬂ g F‘!= IFEII.'IIIEI.'{-E-:I

e 7

Here, I and B are respectively the rotor nonent of inertia per unit length
and vi scous danpi ng coefficient per unit length. If Iis therotor inertia
al one. I: b7 F,.":.L while(for conplete viscous diffusionin a liquid
extending to infinity) , B= 47 b’n where 4 and p are viscosity and mass
density respectively. Thus, H;'gt’e,-"r” i 1ﬂ-|f£a; ornd b Ty /T,;
Ty % pbian. ¢

There are famliar magnet ohydrodynam ¢ phenonena having features in
conmon with this rotor model. A limting formof one of these is discussed
to notivate a conti nuumnodel for instabilities observed in liquid netals as
they are shaped or levitated by high frequency alternating magnetic fields.
The rotor nodel consists of a conducting shell wth an inposed hi gh frequency
magnetic field that is uniformfar fromthe cylinder. Incipience of
instability is governed by a parameter M = B:..-me( B, and w the peak mag-.
netic flux density of the applied field and its angul ar frequency respec-
tively) whichis the reciprocal of the nmagnetoviscous tine-frequency product.
It is found froma conti nuumtheory based on magnetic stresses averaged on
the tine scale ',LJ'}-'.:- that a planar liquid |ayer supporting a uniformskin
current and peak surface magnetic pressure B:'/H, , is unstablefor M=67 .
Thermal convection terns are added to the rotor nodel to notivate explana-
tions of why the predicted incipience of instability correlates with
experiments, but the growth rate predicted by the theory is far | onger than
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that observed.

A natural electrohydrodynamic dynamo is the thunderstorm. The film
"Electric Fields and Moving Media" is used to show electrohydrodynamic
dynamos involving falling water drops. These are the "Kelvin Dripper" and
the Euerle 3-phase dynamo.

THE OXYMORONIC ROLE OF MOLECULAR DIFFUSIVITY |IN THE DYNAMO PROCESS
H. Keith Moffatt

The delicate question concerning the behavior of the regeneration
coefficient &€ and the turbulent diffusivity,é inthelimit of vanishing
molecular diffusivity “f —5 @ ) in helical turbulence is discussed, in the
light of an exact result of Bondi & Gold (1950) viz., that when }?=Othe
external dipole momat of a current distribution in a sphere is permanently
bounded.

1 The oxymoron |'s a figure of speechshich embodies an apparent con-.
tradiction; e.g. creative destruction, relaxed tension, devastating
triviality, etc. The oxymoronic role of molecular diffusivity !fl',-(-"- ;-'-t,‘ﬂ-‘}
is this: that while non-zero diffusivity ( # >0 ) is directly responsible
for the natural ohmic processes of dissipation and decay, it is also
indirectly responsible for the means of regeneration of the magnetic field;
the dynamo process may be described as a process of 'regenerative decay' or
perhaps better 'reinvigorating dissipation®.

2. Consider the dipole moment it {+} associated with a current distribu-
tion JJ (. B)= ml'w , B in aconducting sphere V:r<gq . Thisis
given by various alternative expressions:

(4= . : =2{x(8B:-nid8, (]
Fﬂ#-.fhﬂtji’ﬁniﬂ‘f’iijugﬂw 3% f, 2]
where ++ is the surface r=a ; and its rate of change is given by
7 de | @ Y 3 (2)
E——d‘% ﬂf):ﬁ‘dv-_i'LEAEJdSI
With E =-ud,B +nV.,E ,and w.n=00m 5, thisgives
T ; -n(na (V. , (3)
.j_ituiufg BldS-n [na (V.B1dS

The first term on the right describes the mechanism identified by Bondi &
Gold (1950) for increase of the dipole moment; field sweeping towards the
magnetic poles (defined by the instantaneous direction of the vector i+ )



can increase Jm] , but, as emphasised by Bondi & Gold, this mechanism is
strictly limi‘ll‘:ed when ¥ = & , since |;L| then attains a finite maimum
when all the flux of E_ is concentratedlat opposite ends of a diameter of
the sphere (as in an elementary bar magnet). To see this explicitly from
the above equations, |et .7, denote those parts of 5 on which n - = or

<. 2, respectively, and let

I
x5y ), E(n Blds (4)
s0 that 44 = 4e,+ it ., N then have
I ' k| k] - [5)
pde e ® s P e d
where
' N _
=) tn.Bids =~f-;_fﬂ'i'§,id5. (6)

Now, when =0, $ is constant, since flux through every closed material
circuit is conserved, and so
| y | | | = ] & Fl
|"E'LIE.|H*!+§"H"|_ 47 ‘§T )
the maximum being attained only when the flux is entirely concentrated at

the poles, as mentioned above.

3. There can therefore be no doubt that, when n=o , exponential
increase of the dipole moment is impossible, no matter what the complexity
(laminar or turbulent) of the velocity field in ¥ may be. The situation is
transformed i f w20, because then diffusive increase in the dipole moment

(represented by the second term of (3) is possible, provided the velocity
field is such as to maintain a field with a suitably negative gradient near

the boundary ¥' = a. .

4. The impossibility of'sustained dynamo action (in the sense of an
exponentially increasing external dipole moment) applies equally to such
basic systems as the homopolar disc dynamo. If the disc conductivity is
infinite, then the magnetic flux across it cannot change with time, and
exponential growth of the magnetic field associated with the device is
impossible no matter hov fast we rotate the disc or how ingeniously we twi st

the wire, and whatever conventional wisdom mey tell us to the contrary. In
terms of growth rate, if, in general, E &, ept , then b must depend on the
disc Reynolds number in the manner indicated in Fig. 1. |t is reasonable

to conjecture that fluid dynamos also must behave in this manner.
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Fig. 1. Possible dependence of ¥ on ﬁmfnr homopolar disc dynamo.
(a) wire resistance zero; (b) wire resistance non-zero.
In either case, p~ € as Rqp—* oo,

S, Consider mov the situation in mean-field electrodynamics, in which,
in convectional notation,

&;!‘(tﬂ:’n b_}.l_='ﬂ":;_f Baj"'f&ijkaapjllllllaihf Lo e o (8]
where E,fx t) = ¢ B(x t))> is the large-scale (mean) field, and

. B Under first-order smoothing theory (Moffatt 1978 -
hereafterre e‘FFed to as M - chap. 7) we have the results
 Larsia s b ff JEERS)
ﬁia?‘#g&"'j '1.{"!: {a"-ﬁ-ll‘l'.‘f thm, l-:_;']
i R E(au)
e f d
BE T Eu Bijn=% 1) E-T;gﬁLH d ke d w; (10
where F l':.H.,W) , E {k.,w) are the helicity and energy spectrum functions
of the random w -field. |If
F(k,w) = o), E (kw)=D(w") aa w0, (11)

then clearly ‘ )

Hoarody Ry F-Gon ae 0, (12)
where ¢| and /3, are in general non-zero constants {f/j: >0). Thisis
clearly the situation when the w -field is a field of random waves with no
zero-frequency ingredients. In this case, the regenerative process normally
associated with the pseudo-scalar & vanishes as ¥ —» 6, consistent with
the remarks of §1. It mey be noted that the theory of Braginskii
(M. chap. 8) gives an expression for the regenerative coefficient very
similar to (93, and again with the property & =—'i‘-'ﬂ"'|u' as h—+0.

6. Difficulties arise however if the w -field has non-zero spectral
density at w» = O, as is +he case for conventional turbulence. The zero-



frequency ingredients of the turbul ence are precisely those that are

responsi bl e for the dispersion of particles in a turbulent flow and they

are of vital inportance alsoin the field-line - stretching context. It

nust be noted however that results such as <,§,1> ~ 2D ¢ for therelative

di spersion of two particles separated by vector distance ¥ (#)is ultinately
l[imted by the physical dinensions of the fluid domain; and care nay then be

needed i n carrying over asynptotic results fromstrictly honogeneous

turbul ence to turbulence in a finite domain, particularly when these results

are sensitivetothe linting ( £ —> <) behavior.

7. Ween ¥ = O, there is an alternative approach to the determnation
of the coefficient & and & using Lagrangi an averages. |f at sone instant
t =0 ,thew and £ fields are uncorrelated, then e« and /4 are
functions of t (which clearly vanishat £ =& ). The Lagrangi an proccdure
(M, § 7.10) leads to the expressions

t
iz =4 [ Cw(8) Upay (01> d T, (13)

% g L3
;3{1}=.J_£ Lylt) -y (T)>dT+ j-e:-t (el {T2dT,
Lff . " (14
*:L{{E[t}-mfﬁr?ﬂ_ o (T-e () Yy (TN Y (L0 d? d T )
where ¥ (¢} is the velocity of the fluid particleinitially at position & .
The difficulty here is to determne how t hese expressions behave for a
typical field of homogeneous turbul ence as £ — oo . Kraichnan(1976 a, b)
has argued that, in the case of turbul ence wth non-zero helicity,

ot (E) s oty s F(t)~Fe an t—v o2, (15)

the apparent positive divergence in the second termof (14) being cancel |l ed
by an equal negative divergence in the third term(which involves the awk-
ward triple Lagrangi an correlations). Kraichnan's argunents rest in part on
conparison with the results of first-order snoothing theory in situations
wher e bot h approaches (first-order snoothing and Lagrangi an) nay be expected
to be valid, and in part on nunerical eval uation of = (¢)and /3 {kifor
velocity fields with prescribed Eulerian statistics. Further nunerical
experinentation i s needed however, before the results (15 can be regarded
as absolutely and definitively established. Let us neverthel ess accept (15),
and pursue the consequences in the context of <“. ande< w-dynano nodel s.
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8. For an oci—dynemo in asphere ¥ < a (M. chap. 9), the growth rates
have the form "",t
e
FIR) (16)
where 7, = n+ B ,and
Raz|=|a™/n,, (17)

and dynamo action occurs when = (¢R_]J3@. This generally occurs for the
simplest mode of dipole symmetry when
E:-: ? F-"n-:c. i (18)

where H.:u: is a positive number of order unity which depends on the precise
assumption made about any large-scale variation of & throughout the sphere.
Let us suppose that, as i-'||:-—>0, the relevant behavior of = andJ.G (cf. 15)
is

muacﬂ,_/:?hﬁp ah MO (19)
\°’0|ﬂ-‘-

Fa

The condition R_ * R__ is certainly satisfied if a is large enough,
and then p tends to a strictly positive value as §—=© , implying exponen-
tial increase of the mean field, and in particular of the external dipole
moment. This appears to be in fundamental conflict with the Bondi § Gold
result (7), which applies when ¥ =0 whatever the complications of the.
velocity field, and whether laminar or turbulent.

Then (16) becomes

Fw _.If_.i F['E-H}J ﬁ"" =

(20}

The conflict does not arise under the alternative limiting behavior
(12). In this case,

’"J'-.'*Iﬂ:I - ([ﬂ:| a*

F-ﬂ.-" - ffrﬁ:)_}ﬂm FE—-'FE' I:.Ll::l

and the dipole moment does not grow exponentially in the limit ¥ —0

9. For dynamos of « ew -type, growth rates are generally given by
[H]ﬁﬁ-j 9
F:%L{-FEHJ I=q;—* (22)

where & is a measure of the shear associated with differential rotation.
The condition for dynamo action is now of the form

X2 X, (23)



where X.. is nodel -dependent, but generally of order unity. Again under
the behavior (19), as n —© ,

Y —r ";{" - J"'l" If:n‘.‘j/‘ﬂ: ’ (24]
and i e cp =
p~L5f (X )>0 if X =X, (25)

and we encounter the sanme fundanental conflict with the Bondi 4 Gld result.

Under the alternative behavior (12),

o %A o 1GiGa
P 7o F a0y

{26)

To determne the behavior of p as f—+o , we need to know the behavi or
of F(Klas ¥X— o= . If F(X)= e(f)as X —p o2 , then p—e
as IE-—> @, and conflict wth Bondi & Gld is avoided. The asynptotic
behavior of F (X)as % — o= does not appear to have been investigated
for e« w -dynamos in a spherical geonetry. A clue is however provided by the
results for an otw -dynamo in a Cartesian geonetry(nodelling the galactic
disc). For this case, which can be sol ved conpletely M. & 9.9),

F (X}~ fog i as X — e=, (27)
and so p—@ as § —>0 asrequired,

10. It is hard to escape the conclusionthat the result (19 cannot be
correct, or that, if it is correct i n honogeneous turbul ence, it is, for
sone deep reason, not applicabl e when the turbulenceis confined to a finite

region(see the renarks of 4 6).
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A ALUX-LINE METHOD FOR NUMHERCAL STUDIES OF KINBEMATIC DYNAMOS
Peter Olson

The sprectrum of the geomagnetic field and its rapid secular varia-
tion suggests that large magnetic Reynolds number conditions exist in the
earth's core. ( FRm= #7evw L., ¢ =conductivity, U and L are
velocity and length scales). However, there exists at present no acceptable
method for solving the induction equation under these conditions.

A method useful at large Rmis developed and applied to some likely
flows. A new feature is the use of random walks to simulate the diffusion
of magnetic field due finite electrical conductivity. The method is based
on a solution to the vorticity equation proposed by Chorin (1973). Given
the induction equation

ﬂ;"?#
gt

inwhich B (x,t = 0) and v (x,t) are specified; the solution B at

=
A=

E}i—l/lﬂ.vﬂvig (1)

A

some later time t is required.

First, the initial data B (x,0) is partitioned into a number of
slender flux ropes, idealized as curves locally parallel to the field, the

density of curves proportional to the field's intensity. These curves are
then represented by a number of sample points J_E" along their length, the
distance between adjacqnt sample points ll, , and the average field inten-
sity between points B*

At each t|me step, & f.‘, the sample points are advanced according to
X (t40t)= ,p:{_ﬁj..,. ,Ig'(x tyolt’ + n"h"l[D 2140t/Rm] + Bavio, 28t/ Rwm) (2]

where N is a normally distributed random variable with zero mean and
, , a :
standard derivation 3% , and L and D are unit vectors along the
wm

curve's principal norma and binormal.

The field intensity between each point is then recomputed using

. . i
B'(t+AL) = B (t) 1_"-'{-;*;;;_?? 3)
s
The first term on the right hand side of (2) solves {_ﬂ-_ = Vx (UX 8) while
the second and third terms in (2) solve Ea—— I/Rm ‘E' by exploiting

the formal connection between random walks and diffusion from a line source.
Because of the random component in (2), the value of B at a point becomes
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uncertain; however, dynamo calculations usually require knowledge of global
functionals only, such as spherical harmonic coefficients.

The alogrithm defined by (2) and (3) applied to a large number of
curves permits these average quantities to be computed as a function of
time, to within a statistical error. The difficulties associated with
finite difference representations of the Laplace operator are avoided, and
in addition the sample points tend to accumulate i n those regions where the
greatest computational effort i s needed.

As an application, induction by the nearly-geostrophic flow proposed
by Busse (1975) is studied. This flow is characterized by a primary geo-
strophic circulation about columns erected parallel to the rotation axis,
with Ekmen suction providing flow along the columns and with it a non-zero
helicity. The domain is taken to be an isolated conducting sphere in which
eight columns (4 pairs) are arranged in a ring centered about the axis. The
initial field is an axial dipole.

With no helicity, the dipole field decreases with time for all
investigated ( Rm= 100 to 1000, based on the sphere radius). The mean
field in the core of each column decreased rapidly toward zero, a result
which mey be interpreted as "flux expulsion.”

With helicity, growing fields occured for R = 250, although the
computations have yet to be carried out sufficiently far in time to show
true exponential behavior.
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MAGNETOCONVECTICN AT HIGH MAGNETIC REYNCLDS NUMBER
Michael R. E. Proctor

This paper investigates steady finite amplitude solutions of the
equations of a Bussinesq fluid heated uniformly from below in the presence
of an imposed vertical magnetic field. Several previous studies have con-.
centrated on the linear stability problem [Chandrasekhar 1961, Danielson
1561}, in which all quantities are only slightly perturbed from the basic

state. Thus the magnetic Reynolds number Ripa = ”ﬂf"r]_ is small, where U and



[

- 152 =

L are vel ocity and length scales and ¥ is the magnetic field is pushed
into flux ropes and sheets as the convection becomes nore vi gorous and
becomes | arge(Veiss, 1966). The dynamcal effect of this intermttent
flux structure is then quite different fromthe snall case in particul ar,
the dynamcal effect of two-dimensional flux sheets is quite different from
that of axisymmetric ropes, although the |inearised problemis i ndependent
of the convection planform. Busse (1975) has investigated the two-

di nensi onal probl emwhen the total flux threading the system(neasured by

Q= Bl L_if{._uftjﬂ vhere [B,is the nmean vertical field, 4 the per-
meability and » and ) the density and ki nematic viscosity) is small. He
finds that finite anplitude convection can occur for val ues of the Rayl ei gh
nunber [F(neasuring the tenperature difference across the |ayer) much |ess
than that necessary for linear instability. Proctor and Galloway (1978)
have investigated the anal ogous problemin an axi syrmetric geonetry. The
analysis is sinplified considerably conpared to the two-di mensional case,
chiefly due to the fact that the axi symmetric flux rope that forns only
exerts a very localised dynamcal effect. The analysis can be perforned for
all & for which the flux rope remains thin. This gives a lint of order

R £n R,0r &, whichis not severe. The nethods used are those of
Gall%vé, Proctor, and V&iss(1978) (see also Proctor, these notes). The
resul ts have sone rather unusual features. In particular, the finite
anpl i tude solutionis supercritical for very small & , but becones sub-
critical for all sufficiently large & ! It is alsointerestingthat R is
close to Rﬂ , the value for a set of instability in the absence of a magnetic
field, even for large values of & . The results suggest that there nay be
a region of steady finite anplitude behavi our even when |inear they woul d
suggest that instability woul d appear as oscillations; although no firmcon-
cl usions can be drawn within the confines of the anal ysis.
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A VON KAEMAN DISK DYNAMD
Key A. Robbins

The homopolar disk dynamo with shunt exhibits nonperiodic reversals
which resemble those of the earth's field. In this model the distortion of
an initial poloidal field by the moving disk gives rise to a toroidal field
(7). The poloidal field is reinforced by an equivalent alpha effect supplied
by a shunt resistance. As the fields grow the Lorentz force slows the disk,
and the fields decay when ohmic dissipation dominates the driving forces.

The Lorentz force then decreases, the disk speeds up and the fields grow.
Reversals occur when the toroidal and poloidal fields are out of phase.

Studies of disk dynamos are suggestive, but cannot determine whether
this mechanism i s responsible for oscillations and reversals in fluid.
dynamos. This abstract describes some initial efforts in modeling this
phenomenon in a fluid dynamo. A major difficulty is the dominance of Coriolis
and Lorentz forces over inertial forces. Consider an infinite conducting
disk of thickness L which is in contact with a conducting fluid (figure 1).
The disk is free to rotate under a local applied torque E;Tr"’. The motion
of the disk is opposed by the Lorentz force due to the currents in the disk.
Viscous stresses may also be added. A mechanism for oscillation similar to
that of the disk dynamo is thus provided (figure 2). Let the magnetic field
in the fluid, - B = vaT + rb @ + cg and the velocity & = ru ™ + rr$+w5

A . .
where a, b, ¢, u, v, w, depend on z. . s P are unit vectorsin a

A 4
cylindrical coordinate system. Similarly in the disk E= ré r +ry bz,

The equations can then be written
Ly = vte Sl = oy [agc -2 b‘:ll,.":{ peL) & Viigg
Ve T - .l_:t.l-r'l‘b."-l' Wui-jl- Llahq-:l:-i_]‘;"rfp,q_...ﬁq. TRV
a,= ~Ewu.—ur.-|-m'h131* Mo ga
b, = cva-wh, |:II'.'.I'I11:I‘ + hbyg

c, = =3a wa =—21uw

where an alpha effect, a, has been assumed to provide poloidal field

regeneration. Subscripts are used to denote partial differentiation.



In the disk

N, =T T"’J (hg_-gh,}d®, g,= A9 4 he 1:1“ haz =28
£ is the angular veIOC|ty of the disk and figzis the r_otatlon rate of the
fluid at infinity. = is the fluid viscosity. A andA are the magnetic
diffusivities of the fluid and disk respectively.

At the disk fluid interface:
Lews0,v=0,2xf,bzyg cch, Fag=Fha gp, = 085
At the disk-insulator interface: f = g =0. Atinfinityusza=b=0,
V = £, . Theinsulating boundary conditions at infinity have been chosen
to insure that all dynamics occur near the disk.

Linear Steady State

Following Loper (5) we can write:
ﬂ:ﬂaflrﬁ]; V= .IJ.,EJ'-.LE'...-}‘, 1'“':5"*’-“4['1-';’.11{,‘&“, u=E,u
3--5‘-8@(‘:'13_,}5#0'&, hFEE,{U.ﬁ;‘I“ b, ¢= Bo'i'&'Bo Vuae
fzeB(vn)"uet, 93 B, (wn)™uoqg, b= B+ £B, Yuurh
z=(va =g, n(8 r:r,rfzpnu TaeTal, £, ¢,

¢ =7, )% e, 62 PE(0,[v) .-'fp,ar: =|[':uﬂd‘.u o .

If prime and dot denote differentiation with respect to and respectively,
then to zeroth order in & :
P+an@'+ 2iPr0
P-lae@+ @ =0
R=o0
where
P= u-iv 5, g =a-ib, R=f- [3 and & is assumed to be constant.

For small & the solutions are

At ik —:L.c. -2, 8 :
i , @2 J'LI" +il e :H“'Lﬂu{j’*r\]: n=-%T¢ g, »

Paie
acle FJ”[’*‘*‘” Jo* [Ti"l‘r+ﬁz.]w‘1.:[.r‘|1.ﬁf_]hﬂ'{—nn'ﬁ‘ﬁ]‘r&‘

as —a(iem/Anel ).

Thus for each T and each value of the disk velocity, a steady state value of
B, is determined. For a unique steadysolution a nonlinear balance similar
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to that given for the outer solution of Chawla (3) or Loper (63 must be
assumed. The appearance of two rates of exponential decay in the magnetic
field indicates a two layer structure to the solution. Wha & — Othe second
term in the & expression approaches a constant. Then c;zﬂgijoo,d £r~0()
as 7 —<, This also indicates that there is an outer IayeI’Which provides
a transition between the Ekman-Hartmann |ayer and the inviscid, current-free
fluid at &= . This outer nonlinear layer is the magnetic diffusion region
(MDR) discussed in (4, 2, 4). A more complete description of the possible
steady states and the important question of whether or not such a model can
exhibit reversals will be addressed in future studies. The model is kine-
matic in the sense that the alpha effect is specified rather than derived
from dynamical considerations. To complete the connection between the
idealized modd and the geodynamo, a plausible poloidal regeneration mech-
anism, such as that furnished by an underlying small scale turbulent velocity
field, is needed.
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DIFFUSVE INSTABILITIES IN MAGNETOCONVECTION
Paul H. Roberts

It is mow well established that even a uniform magnetic field can
facilitate thermal convection in a rapidly-rotating fluid. A non-uniform
field can, however, introduce a new class of 'magnetic instabilities®* which
are driven by curvature of the field lines, variation in magnetic intensity,
or both. It is of interest to study the interrelation between such magnetic
modes and the better understood ‘convective instabilities?.

If diffusion effects are ignored a sufficient condition for convective
instability is that Rfj‘dﬂfﬂt'rﬂi
attain some 0{1) value. Here 3 is the acceleration due to gravity, ,»’-'l is
the Alfvén velocity, = the coefficient of volume expansion, & T the tem-
perature contrast, and d the length-scale. Once diffusive effects are
added, the criterion is changed to " = 0(1) where

R = E"-“'q:-".'l T/ X,
JL is the angular velocity and * the thermal diffusivity which we suppose
small compared with noy the magnetic diffusivity. (Viscosity is ignored
except in thin boundary layers.) V\frmﬁ"f.lﬂx:-}] , as is for example true
in the Earth's core, R,-{-Q & and convection occurs first through the action
of diffusion. If &T is fixed, the A minimuzing the critical value, 'ﬂc ,



of R at which convection first occurs is characterized by £=0(!),
where £=A Va0 7
is the Elsasser number.

For simplicity, magnetic instabilities are usually studied in the
absence of buoyancy forces, and typically in the context of the westward
drift of the main geomagnetic field. |If diffusion effects are ignored a
sufficient condition for magnetic instability is that

d = (A/20d)”
attains some 0(1) value. Once diffusive effects are added, this criterion
mey be changed to £ =@ (1), as recent work by Roberts and Loper (1978)
shows. When 7 /2 £ d*e= 1, as is for example true in the Earth's core,
.pf: << £ and magnetic instability occurs first through the action of

diffusion.

A particularly interesting example is Malkus' (1967) model as genera-
lized by Eltayeb and Kumar (1977). A uniform current flows through a con-
ducting sphere of radius d. parallel to the axis 0, of rotation, so that the
magnetic field B is zonal and proportional to distance s from 0,; to provide
buoyancy, a gravitational field directed towards, and proportional to dis-
tance r from, 0 is added together with a uniform distribution of heat
sources, 0 being the centre of the sphere. Quantities such as Ry, R, € ,

are computed using equatorial values of g, A and temperature gradient
AT/, Roberts and Loper (1978) found that, although no purely magnetic
instabilities occurred, magnetic instability could be promoted by the addi-
tion of a bottom-heavy density distribution, i.e. by making & negative.
Very recent numerical results by Fearn (to appear in 1979) exhibit this and
are shown on the following figure, in which m is the preferred zonal wave-
number. His results strongly resemble those of Soward's (1978) plane layer,
curved field line, model. The physical explanation of the paradoxical role
of buoyancy on the magnetic mode is still lacking.
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NONLINEAR ASFECTS OF GONVECTION W TH STRONG MAGNETIC FIELDS
Andrew M. Soward

An electrically conducting Boussinesq fluid, conductivity g= , kine-
matic viscosity V , density p is confined between two horizontal planes
distance d. apart. The fluid is permeated by a strong uniform horizontal
magnetic field @o and the entire system rotates rapidly about a vertical
axis with angular velocity £L . The fluid is heated from below and cooled
from above so that in the absence of motion there is an adverse temperature
/3 across the layer. The boundaries are rigid and perfect conductors of
both heat and electricity. Attention is restricted to small values of the
Ekmen number £ and the ratio g of the thermal and magnetic diffusivities M
and ? respectively; ’

E-v/nd el *~'-‘[,=H/i';-'{ﬂ+'.

In this parameter range marginal convection is steady and its character
depends upon the relative sizes of the Coriolis and Lorentz forces, which
IS measured by L .*-"for-:r E’:'-
For order one values of A , the critical Rayleigh number is large,
specifically E"-!j'“:f? L;‘:ff'i.-;'}f . CJ.{E_IJ ,
where g is the acceleration due to gravity and = is the coefficient of
expansion. W A > '1;"'{‘3’ , motion consists of a single roll, whose axis
is perpendicular to the applied magnetic field. O the other hand, when

P 1;,.-"? , two distinct rolls are possible: the axis of each roll lies
oblique but makes an equal angle to the applied magnetic field. Only the
latter case is discussed here.

The above linear results are well known (see Eltayeb (1972}, Roberts
and Stewartson (1972)). For the particular case of slippery boundaries, the
stability of a set of oblique rolls to perturbations of the other set has
also been considered by Roberts and Stewartson (1975). Wmn "I« << 1, they
found that both sets of rolls are unstable in the approximate range

1.0796 g A > ;-l.-'l.-"?.
The objective of the present analysis is to clarify the nature of the
instability by considering the case of rigid boundaries. Though the con-

vection rolls themselves are largely uneffected by this modification, any
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geostrophic flow alighed with the applied magnetic field, which was pre-
viously arbitrary, is nowdamped by Ekmen suction. The latter effect is
central to our treatment of the finite amplitude stability problem.

As the Rayleigh number is increased above its critical value, only
one of the two sets of single rolls remains stable. The amplitude of the
stable rolls increase with J& until a second critical Rayleigh number is
reached at which the system becomes unstable to unidirectional geostrophic
flow. Whether the instability sets in as a steady or oscillatory shear flow
depends on the importance of damping by Ekmen suction. [Note that, as a
result of approximations based upon small 4 Alfven waves have been
filtered out). In either case, the roll amplitude remains largely unaltered
to further increase in the Rayleigh number with the consequence that the
geostrophic flow is stabilised. On the other hand, the amplitude of the
shear flow increases with [ in a way which ensures the stability of the
convection rolls. For the particular case of a steady geostrophic flow, a
third critical value of & is isolated at which this shear becomes overstable
to small amplitude perturbations.
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THE STRUCTURE AND STABILITY OF VORTEX HLAMENTS
Sheila E. Widnall

Sore models for the structure of a vortex filament are reviewed.
Several physical processes that result in vortex filaments are discussed and
some experimental measurements of vorticity distribution within a vortex
ring are shown (ref. 1).

The self-induced motion of vortex filaments is discussed and it is
shown how the method of matched asymptotic expansions can be used to remove
the logarithmic singularity in the classic cut-off formula for self-induced
motion of a curved filament to obtain the correct result for a filament with
arbitrary distribution of swirl and axial velocities (ref. 2).
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V. (9) = ]* [__r_ 3,xdj,
A
- ]

where £ is chosen such that o
fn I_.E = __Erl-—2ﬂ'-1-r —-A—{:
where
L ~» VOortex core size

v/a A ~ swirl parameter

e o [ Ferdrdoeie

v, = nondimensional swirl velocity; (if vorticity is uniform A = %)

and o

G = a%' J r wh dv -~ the nondimensional axial momentum £lux
o

A vortex filament with axial flow "slows down" (A U) until the Kutta-

Joukowski lift force pf{Aulfis sufficient to balance the axial momentum flux

in the curved filament.

Several configurations of vortex filaments exist such that the self-
induced motions preserve their form. Examples are the ring, the helix, and
various combinations of line filaments. W have investigated the stability
of several of these self-preserving forms to long bending wave disturbances.
(The asymptotic result for self-induced motion can be used for long waves).
The Helical filament is unstable, ref. 3, the vortex pair is unstable, ref.
4, 5. The instability of the vortex ring is more difficult since the
observed instability is a short-wave with a complex modal structure in the
core. This instability has been extensively discussed (ref. 2, 6, 7) as has
the corresponding instability for the single straight line filament in the
presence of a straining flow (ref. 8). The physical mechanism of the insta-
bility of both the long and short wave is similar: vortex filaments see a
background flow that corresponds to a straining or stagnation point flow;
displacements along the diverging part of the flow in this field will diverge.
Self-induced rotation is a stabilizing effect enabling the vortex to move
into converging (stable) portions of the strain. |f self-induced rotation
is wek (long waves) or absent (short waves at critical values of wavenumber)
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bendi ng wave di spl acenent s di verge exponential | y.

The presentationincluded a | ecture demonstration of an unstabl e
vortex ring in a water tank nade visible by hydrogen bubbl es.
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