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Editor's Preface

This volume contains the manuscripts of research lectures by the
twelve fellows of the summer program. The list of titles of these lectures
indicates both the broad range of topics touched upon during the program as
well as the central summer theme. The four postdoctoral fellows gave polished
lectures which probably will appear in journals soon. The eight predoctoral
contributions range from through work which already is of thesis caliber to

work which is just the first product of a novel idea.

These lecture reports have not been edited or reviewed in a manner
appropriate for published papers. They therefore should be regarded as
unpublished manuscripts. Readers who would like to quote or use the material

should write directly to the authors.

In addition to these volumes, which record the first pressed fruit
of the program, more cautious professional results invariably emerge from
the exchange of the summer. For this opportunity, we wish to thank the
Woods Hole Oceanographic Institution and the National Science Foundation for

encouragement and financial support.

Mary C. Thayer

Willem V.R. Malkus
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ON NONLI NEAR RAYLEI G+ TAYLCR | NSTABI LI TY
Phillip Colella

In (1), Wiitehead and Luther describe a set of experiments denonstrating vis-
cous Rayl eigh-Taylor instability. In these experinents, they float on top of a dense
viscous fluid a thin layer of |less dense viscous fluid, seal the container (which is
nmade of plexiglass) so there are no air bubbles, and invert the container, Initially
the interface between the two fluids is flat but this configurationis unstable,

After about thirty seconds, one sees spouts of light fluid welling up, surrounded by
downwel | i ng heavy fl ui d.

D
11\\! / D = regions of downwelling fluid
1J D

D
/J' '\‘D U = region of upwelling fluid (as seen from above)
D
The linear theory (which is outlined in an appendix to (1) predicts the magni-
tude of the wavenunber of the disturbance which grows the fastest, but does not de-
termne the shape. Witehead and Luther conjectured that one particul ar planform -
hexagon - has the greatest growth rate in the first nonlinear corrections to the
theory. A nethod is outlined here to determne which planform gives rise to the nax-

imumgrowh rate in the nonlinear theory for arestricted range of the physical para-
nmeters.

Scaline and Linear Theory
J
Q oy 1

==L

V¢ consider a systemof two inconpressible, inmmscible fluids of equal con-
stant viscosity « , separated by a boundary = =?(%,ul). FHuid | is of density @,
fluid IT of density 2+ &f, Aps0. The equations of meticn and the boundary con-
ditions are

‘[%"E‘E'F}_"'ﬂjferil';,_g‘—';;lflp-ﬂﬁij+f}f-'ﬂ'jy; IN REGN | (1)
{fg+ﬁP}%ysﬁﬁg—?f,ﬂ-f&*ﬂﬂ?af Yauw  INREQON II
PoU=0 U= le, s w)

[y;] =0 continuity of velocity across
-i-:iz the free boundary (2)



s
n o M = ) 3
[t 8 H]i =N © continuity ef tangenti al ()
stress across free boundary

[,,E_+5""—_ﬂ_.'_ﬂ? =0 (4)
- s =] i continuity of normal stress
Lh- 'ﬂ]h? LF]r-th] across free boundary (5)
dy +uﬂ~+v,‘?‘ ST where u, v, ware eval uated 6)
gt om P at z = (xy)
Y=0 AT 2a-Ly, ¥Y—042 —o0co (7
67 = a [22 4 g——t“ i THE RATE OF STRAIN TENSOR
iy =4 3_15' T
n = J r normal vector to z = % (%4
~- 1) 372— _1) ‘ ‘ ?
_';I
,,t" EJJ Oy ‘El‘n'.:’ . .
linearly i ndepen%ent t angent
3 vectors to z = m&y)
(0,1,3}) e
Vg ;’ 2=n =S the discontinuity of A across the surface z =w, the function
e vg‘lu

e at the point (x,y) is ‘qf.x l'.‘.l‘!. . We non-
di nensi onal i ze the equati ons writing do I’ hg m)nen(tx Iﬂﬁl]'ﬂy(ti‘@jl nearized

boundary conditions (the dimensional quant|t| es are starred).
ih= L M Ly
- 4 Voo
t,-ﬁf_%t Pa= A2X p-goz IN REGI ON |

L]
Yy 31—:1,15 P.,=ﬂl;’_lp~&-,+af}3: IN REGI ON II
dp gt 3
fi = JFE ~Tp+dv- 3,—,:(1{'?}}5 IN REGI ON | (8)
a A g 3 o _ a3y
(8% (£%)3r st =-proy- 48 ey wmwovn
Vy=0 IN BOTH REGI ONS
[v]. _ =0 (9)

~E=p



[+ 35 =0 a10)
Erut SR an
"i'aa%l_:ﬂ =[p),..~ ) (12
%%‘” (13)
UeO AT 2=-1, YU —0 A5 2 —>+oco (14)

W expand the solutions in %E‘l = £ , which we take to be small. We also
assume %{r= ﬂfE."J' or smaller. With this ordering, the time dependence of ’E‘ , F
is completely determined by the boundary conditions to order E,: , andf’l{-ﬂ'j"l__{' is
negligible to the same order. V¢ expand ']{,)F and ? in powers of £ about V=, P
and 7 identically zero for &=0-

Vet EW+EU+. ..

P=E +E_P,+E "'l-"'l

3= £

turn out to be zero, S|n IIE dgés not enter the €-equation. The E,"=

eaﬂatloﬁ% are

Ly = Ve, in both regions (15)
- =
satisfies the boundary conditions (9), (10), (11), and (14).
- Iw, oy
[3: ],_, A — 3 (16)
E:"'— w (2,y,6t) (17)

The reason for scaling the time is in Eqs.(16) and (17); it gives a very simple
form to the time dependence of #. and ¥~ in the linear theory, and, as we will see,
in the first nonlinear corrections as well.

To solve these equations, we assume
U= e F Gay) C o)
Pz P f ey C@
T = Flzy) G '-fu.‘.u',w'}
where )C satisfies -Tz'f,.— + E—h';‘— + k -F By taking the curl of

(15) twice, using the fact that ¢ - “L.-'ﬂ = 0, we see that 7 satisfies the biharmonic
[l

(D*-K*) ¥ Cf=o0 D= @ (18)

1A

1]

equation



g e

Differentiating the x-conponent of (15 wth respect to x, and the y-conponent of
(15) wth respect to y, adding them and using 7-v'= 0 we get

£ a5 R ¢
4 L (0%#") bw's p'C.{ (19)
nce ve determine w!', we know P using (19), then w, and ¥ , using (15) .
The general solution for W, is

; -k
Ao ¥  Bae™)fC = w INREGONIIL

(E ;inmﬁﬁ+1]+F1;,‘mh [’tH)-j: ":,-‘— L, IN REGION I.

The boundary conditions can be arranged to be a set of four |inear equations for

(A, B, B, B). [Wi],.o implies [W'la, G §=0 (20)
and [W(2) g0+ FE] =Ownichimlies

r : :

D], G4 =0 (21)

V¢ differentiate(9 wth respect to x, (10) with respect toy, and add them
'a-"'.l.q iy, 2 dw =AY :I s
+ + = =0
i E“d) 220

T ut © R\ 5x
fromwhich fol |l ows [{I]'+ k"} u.J'] Cl](’_ o o
Zzo
16) and (21) inpl
(16) nply [PJ :Lm [:.-F _ ':,4-. )
Schematical ly, Egs. (19-23) are of the form
cf{Ta=Cfe, (24)

where T is a 4 x 4 natrix depending on k, &= (A,B,E,F), and 8y = (0,5,0,1).
This systemof equations can be solved, and the results used in(17) to determne
the tine evol ution of ¥, = "fj(t)-F fn;i. and therefore of the whol e system

dﬂnqc (e, A= Cooth (6) + 1)+ K Tanh (k)| £ -1 T (25)
Foog $6+ At A{etorg Wm0 405 T

Nonl i near Anal ysi s
To order E3 , the equations are & X, = VP, in both regions (26)

.. 3] ™ @7

[H‘E_“*,,, A - ?*-[ 3_ (ﬂ‘u a"""')]am (28)



B+ 3, (38 - 3,
E 3 ﬂ]m' i *Ln[-‘* 2 -l (30)
U

V=0 AT 2=-1a U —0 45 32— 400 (323

Ve assure v, = Wil o, Gy pa=RalElf (%,4) Cy (& and
N = C.E) | (®y), where the 73 is the same as in the order £™ problem
)

|.-'|..-'.I.:|_ — A, e"“"-q. Bz_:_e_-k? IN REG ON ||
= E, simb(k (2+0) + F 2 gl (k(2+0)  INREGON |

As before, the boundary conditions ( = ) can be expressed as an equation for
s
A,, B, &, f of the form C.iTa, = C.i2.+ B (LC,),where T is the
sane as in (24), g = (A),Bafzﬁ)» and -E; is four-vector with a quadratic depen-
dence on C, . S

%

(ot T7e), + (T(B(FC D),
= CfA+ G (fC)
Ahere is the Ain (25). Using the expression in (31), we get
{%E{F{C;+G‘HC.)+£L{{-C~‘] (33)

wher e Gai-FC,)is a quadratic expressionin f C, arising fromthe last three terms
in (3.

Let us consider again (25) .ﬁ;'fll'_%r ""FA;Cz' Solutions to(25) and (33) are
iterative approximations to the equation

Ti{{[f:lﬂﬂ,j.l:ﬂr Glfc)+G, (52
¢ project this equation al ong _F :

1A,

T RN

AL oACEC who B=] | GG dndy

— L=
The planform F for which & is naxi mum shoul d correspond to the one observed in
the experiments in ().
Ref er ence

Wi tehead and Luther 1975 J.Geophys.Res. 80(5): 705-717.




GEOSTROPHIC ADJUSTMENT - THEORY AND EXPERIMENT
William A. Facinelli

Introduction

To provide some background for our work this summer, we first consider a
problem solved by Rossby (1938), which has since been referred to as the Rossbhy Ad-
justment Problem. This is best described by the following figure:

H‘ : @

- b, | |
d < AT A T i 7 5 S S G i

The fluid extends infinitely far to the left and right and into the plane of the
paper. Initially there is a velocity jet with uniform speed ¢, confined by the
dashed lines, with the free surface horizontal. The system is rotating with angular
velocity L . Rossby took the final state to be geostrophic, i.e., the velocity

is everywhere balanced by a pressure gradient due to a variation in the height of
the free surface. In calculating what the final state would be, he neglected fric-
tional and transient effects. The resulting free surface i s shown by the solid line
in the figure. The main velocity jet shifts a distance 4, to the right, and there
are weak countercurrents (directed out of the paper) on each side of the central
stream.

The second case which Rossby analyzed was a two-layer, stratified system,
with an initial velocity jet in the upper layer:

Ao 10
!

e Ui B et B e
S | W, ® | _TH
I i el (1S
2 e

| W

hd
Vi O AT T A T O

Assuming that the bottom layer remains motionless, he found the adjusted free sur-
face and interface to be as shown in the figure. Once again, the main jet moves to
the right a distance :5.1, , and there are weak countercurrents on each side of it.

The characteristic length scale of these problems (and those which follow)
is called the Rossby radius of deformation. Wha the system is two-layer, there
are actually two such parameters:

HI { \/(—H I g
=4 and A = /3H , where R s
‘;L'.' f £ ? 3 3 ﬂ
_.3"-., depends on the overall depth of the fluid, Hl , and is associated with the

"baratropic' mode of response. A is a function of the density contrast and the
depth of the upper layer. It is the length scale of the '"baroclinic'" mode, (These



ideas will be clarified later, when the nathenatical solution to a two-layer problem
i's presented.

To close this introductory section, mention will be made of work done by
Veronis (1956), in which he treated the reSEonse of the ocean to an applied w nd
stress. As a special case, he considered the process of 'quasi-static' geostrophic
adj ustment, and obtained a final state identical to that found by Rossby in the
first probl emabove.

Use of the Fundamental Eguations

The Rossby Adj ustnent Problemis characterized by discontinuous velocities
intheinitial state of the fluid. Qur work this sunmer had to do with fluid sys-
tens starting out with discontinuous depths. The first such problemto be discussed
here is the following:

T_O_

P R S A S L T

The fluid is inconpressible and extends to infinity to the left and right and into
the plane of the paper. It starts with height H+h, between y=0and y=L, and
height H everywhere else. The height in the final state is h(g). 'Phe »«-direc-
tion is positive into the paper.

In all that follows, the frictional terns will be ignored. There is no
pressure gradient (and height variation) in the x-direction, SO the first equation

of notion is:
3—%—7&/ =0 (1)

wher e F is the Coriolis parameter (here assuned constant). In the equation of
motionin the %—direction, we neglect —= conpared with the other terms, thus:
at 4
fur -3 (2)

This is the geostrophic relation. Finally, vertical integration of the equation of
continuity for an inconpressible fluid yields:

Sy 3k e
h;‘?-l_'BT_D (3]

When the bunp (ho) is small conpared with H , this can be approxinated by:

dv -, ohoy
H .gq =3 0. (4)
Then combining Egs.(), (3), and (4) gives a linear equationin h -
dh 9 h - | 3h
et qh ot =0 on apt 7 ="



In the region between ¥=1© and =L (call this region 1), the height goes from
H+h, initially to k at some later time, so integrating with respect to time

yields L y

dh_ | (hH-h)=0, inT. (6)
i‘ji l,:l'l' !

For Y =L (region II) and Ié‘-f-O(region 111), the height goes from H to h , SO

integrating (5) gives

f;z-;—(h-np 0, in T amd TI. 7
Taking into consideration the required symmetry about I—L'|= L_..._ and that h—H as
w' gives as the solutions for (6) and (7)
1: h- (Hah)a A {?)
11: h-H= Be’ 5"
II1: h=h = Be ™.

The boundary conditions are that h be continuous at gj=0 (and Y= L ) and that
""“%i‘%ﬂ be continuous at the same locations. This enables us to find A and B:

A= & hue—'n&:'.
hoe ™ simh Loy -

B =
Therefore: 7 s
I h-Heh, [I-€  eoth (45%)
. -k
11: h-H = hamh 5e” 7
‘ 4=
111: h-H = h,aimh Le ¥

The corresponding velocities are:

s e Taimh (551
s e S o

: BT T
11: us-4-e aimh o5
These "adjusted" heights and velocities look like the sketch on the following page.

This problem illustrates the concept of the geostrophic adjustment of an
initial imbalance in the height of a fluid, and also shows how the equations of
motion and continuity are sometimes sufficient to completely solve a problem.

This problem was tractable using only these equations because of the requirement
that h, < £ H , so that h==H in the equation of continuity. The reaulting dif-
ferential equation for h was linear. |[|f the "bump" is not very small, the differ
ential equation is nonlinear.
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The continuity equation is also nonlinear for a two-layer system in which the
initial height of the upper layer vanishes at some point, such as:

|
7 . 4

— = ,ﬁ PN~

" T e B T KT L S SR N T T
We shall give the solution of such a problem, using the conservation of potential
vorticity.
Conservation of Potential Vorticity

The only problem for which we obtained a complete analytical solution using
conservation of potential vorticity was the following:

L
7 A GO S G o i S 7 o i B

The initial depth of the top layer is H,, and it extends from y=0to ¢4 = m . The
bottom layer has depth H, for y>o and i, for gzo. The free surface for t} >0 is

b4 (where b = ﬁlﬂﬂ*ﬂ) higher than it is for ﬂ?_e_’O. This is so that the pressure

IS constant at any ’éiven depth in the bottom layer. (The extra head of fluid 1 on
the left compensates for fluid 1 being lighter than fluid 2.) The adjusted profile
is given by the solid lines in the figure.



The principle of conservation of potential vorticity - which holds for all
frictionless flows - is: i(’w‘ﬁ”‘

o3 Gl

where J is the relative vorticity and ¢ is the depth of the fluid layer. In the

problemat hand, this inplies that for 4y =@ for the top |ayer
¥Fop _du
' f

&y, L
h H'
and for positive ﬂ for the bottomlayer _
adiL
~dq _ f .
h

Himnating the velocities by means of the geoqétrophi c relation for each |ayer and
substituting h=h=h, yields two coupled differential equations for h' and h, :

{ |
hr:fjl - T (h' = r&;-HJI = Q

ah..d.ﬂ-u-bh,w- ﬁ} '[h‘i"HnJ= {:-:',.

ldﬁﬂi 11“"@}.

These equations can be nmade honogeneous by substituting
L h=Hi-bH, Na=h,~Hs = hy-H+aH-

The equations thus become

wher e

I
n"i':.'." = _:-‘l':{ﬂj' "‘I'p.}‘ o

i
ﬁ..r}jw-l-i:lrp,ﬁ' ¥ e =0

It is easiest to solve this systemusing nornal nmodes, which is essentially anot her
change of variabl es that decoupl es the systemof equations. Ve wll skip the mathe-
matical details (a description of the method is in Veronis and Stommel (1956), and
state the results. The differential equations are:

Rigy~RiRi=0, t=i2, (8]
wher e .

_
Ll fﬂ:= A

e Fa(ie 42

(Note that this ')( is identical to the one originally defined when H;HH,_ is very
small.) In the problemwe are considering, (8 is valid for Y = -4, only, so we
require that R; —0 as y-»e= . Therefore .

R’=,l'[:|JE _H-F?g



- ddtle
A
R.=A e
where A4, and A, are arbitrary constants. The expressions for 1']_' , A, , and h
interns of these normal nodes are:

- dtYs - AtYs
. \ Y H n
"= HAe t g-Ae
. PPl T;— rE_ e Jb;' "qae_ o

|1-=- H'l'—l"j-;ﬁe_#%?:-l- "::,_Il"qle._ A

Not e how each of these expressions involves a }\ term(the barotropic node) and a }g
term(the baroclinic node).

For y = O (initially) and (finally), conservation of potential vortic-
ity and the geostrophic relation y| el c?s a differential equationin R, al one:

| i
hy gy~ 3 (= 1) =0
In terns of #), as previously defined, this is:

|
Tigy = 55 (N +bH)= 0
Requi ring t hat i?l--}O as 4 ~o0 neans that the solutionis

0= —bH+Ae S5

V¢ now have four unknown constants: A A, A
. . ' 7 7
boundary conditions are necessary. These are: 2

continuity of Jql at Y= -H,
h=0at y= -y, .

conservation of fluid 1,
continuity of L,al y==iy,-

Using the resulting four equations to solve for the four constants conpl etes the
probl em

The nost interesting results of this analysis concern the formilas for ,,
and ., for bee<l !

. »and Yoo Hence, four

There are three inportant concl usi ons which fol | ow

1) Wen y+y,>>) (far away fromy, conpared with Xy, the baroclinic (&)
terns drop out, and we see that w, = w,. Thus the response far away fromthe posi -
tion of zero depth of the upper |ayer s barotroplc

2 Nunerical evaluation of t,and w, aty=-4, for val ues of the paraneters in our
experiments (wth hz<{) gives that wu,~ ﬁu;-



3) When “l‘.fi.“ﬂ“l:i and H‘,-/H_br' L-L_.""_bl'.ll.'
Experimental Problem

VW will now turn to an analysis of the problem done in our experiments. The
system again consists of two layers of densities £ and (5 , but results 2 and 3
above imply that when the bottom layer is much deeper than the upper layer, the
bottom i s nearly motionless. Incorporating the assumption of a motionless bottom
into our analysis of the experimental problem made it much more tractable.

Viewed from the side and from the top, the initial state and the final (ad-
justed) state of the system look like this:

As in the previous problem, the initial and final depths of the top layer are H
and h , respectively. The bottom layer starts with depths H, for O = =M and
H, for other . Its final depth is given by A, , with h, being the adjusted
height of the free surface.

In this problem, conservation of potential vorticity of the upper layer

implies that v e
Po -5y | £
h T H
Use of the geostrophic formulas for «, and V, then gives
!
hr:x". h"jfl'- ﬂ_‘ihiH} = C. 3]

V¢ now make the assumption of a motionless bottom, and set &, = @ in the geo-
strophic relation for the bottom layer

LI.‘!.——E—{-!L}‘”S* I:"IFI“_':I,:I

Therefore
ﬂ.l‘er + bh#j = 0



h,> h - i mpl i es _
l .::.Lh,tr+ lnh.,a—bhﬂ-o

huy = By
Smlarly, vy=o leads to b = b,
Now h, can be elimnated from(9 to give:
b (hx + h“]*#fh- )= 0 (10)

I

hus + hyy = 33 (h=H) = 0,

wher e ?‘: -@' -

Choosing the solution to(10) which is symetric about x = % and about Y= Mg_—) and
using the boundar @ conditions that h=9 at (0, %) and (% - -4y,) gives the fol | ow

ing solution for X: (8
a5 (e (23]

)
w th

_+§I. L
e conh (232, o = b gk
Thi s expression still contains the unknown 5, . This could be determned from con-

servation of nass: L - l,r,i‘f-"‘:d 4
H(T)(T] =) v doie) y r%

requiring nunerical integration. However, predictions for y can rather easily be
made for limting values of X g

A => L
- L - B
Solving far h at (—q—"ﬁa?_d settlngff%-j%= )+ﬁ; gi ves:
heg )= gaeh

This is the maxi rumdepth of the fluid. A lower bound for Y can be obtained by
using conservation of mnass: ©

HE D)

qLMs ';:,rL“:i (L+ 4.

gom (8 - 4) ~ S

LY SM, oy, s K (if M~ L)

=

: . : L
Equation (11) actually gives a |ower bound because the depth is less than ﬁ;—H
everywhere but at (’%‘_—J —/"'T),and because the upper |ayer does not extend out to Yy
uni formy across the channel .
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This shows that for very large A, the adjusted upper layer should extend
far out from where it was originally confined.
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In this case, we make use of the approximations
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and find the following expression for .IE; near I_(%.O%

heH(j -e57),
The x dependence has dropped out, and the solution is the same as that which we

have found (but not presented in this report) for the one-dimensional (no sidewalls),
motionless bottom problem. W have also found that in this problem

:'jdh: A/y

Thus for very small Al , the upper layer should almost remain confined to
the starting region.

With this analysis behind us, we can now turn to a discussion of the actual
experimental results.

Experiments

The experiments were done in a channel 160 an long by 8.0 an wide (L = 8.0cm).
The barriers which at first confined the upper layer fluid to the central region
were spaced 16.9 an apart M = 16.9 cm).

The channel was mounted on the large 2-meter diameter rotating table at the
Woods Hole Oceanographic Institution. This apparatus was well-suited for taking
photographs, for which we used a 16 mm movie camera.

For each experiment, we first inserted the barriers astride the center of the
trough, then poured in salty water of known density to a depth of 11 an (H; = 11 cm).
The table was spun up to the desired rotation rate &L . (f = 2q). At this point
fresh, dyed water was carefully siphoned atop the denser water in the center region,
until the top layer reached a depth H. When all was ready, the camera was turned on
and then the barriers were raised.

In every case, the dyed fluid at first moved rapidly away from the center re-
gion, and then slowed down considerably. The distance of spreading varied with A
as expected. (Distance down the channel was measured by strips of black tape, each
10 an long and spaced 10 an apart.)

Geostrophic adjustment is well illustrated by the frames selected from experi-
ments 2 and 3. In both cases, the flow of the dyed fluid had just slowed nearly to
a halt. In the first, the main body of the fluid extends about 5 an out from where

it was originally confined, and h'=3 cm. In the second, most of the dyed water is
within roughly 11 an of the starting region, with .’ = 7 cm. Both pictures show a
non-geostrophic flow down the channel in jets hugging the wall to their right.

Experiment #4 had A= 8.2, which was nearly the same as in #3. However, we
have selected from the #4 film a frame which was taken 26 sec further into the ex-
periment than the frame above it. Thus the flow is further down the channel, proba-
bly due to non-geostrophic, viscous effects. (The flow pattern is asymmetric be-
cause the right barrier was raised just before the left one.) Also, the upper layer
water was more darkly dyed in #4 than it was in #3 (and in #2), so the appearance of
the jets is greatly enhanced.
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In the #4 picture we see an instability breaking off fromthe left of the jet
inthe right side of the channel. These are the instabilities discussed by Jones
(1975) elsewhere in this volume. Unfortunately, our nain series of experinents did
not denonstrate such notions very well, but a prelimnary, unphotographed experinent
very clearly showed a succession of eddies breaking away froma jet.

The first frane from experinent #8 shows the flow after it had just slowed
down. Again we see that nost of the dyed fluid slows when it is approxinately
away fromthe starting regi on. The second photograph was taken nearly 100 sec |ater,
and illustrates howthe flow continues to slowy nove along as it is influenced by
viscosity. This displays a rather promnent instability breaking away fromthe jet
on the right.

Finally, we will discuss the #6 photograph. [In our experinents wth very
small A" , ageostrophic processes becane apparent much sooner than when A was on
the order of (. or larger. In this last picture, a large circular eddy in the left
part of the trough has nearly conpleted its flow across the channel, Its counter-
part on the right side has already done so. (The unfortunate asymmetry isS again,
apparent.) Thus the geostrophic adjustment is quickly swanped by viscosity when A
is very snall.

Concl usi on and Future Work

The tine-i ndependent and inviscid theory of geostrophi c adjustment presented
inthis report was at least qualitatively verified by the experinents. There is now
a basis for future work in this area, both theoretically and in the |aboratory. The
foll owi ng are some suggesti ons:

\}\% Apply the sanme concept of ideal geostrophic adjustment to other problens. This
|| probably invol ve use of a conputer.

2 Extend the theory to include transient and/or viscous effects.

3)b Performnore extensive and nore careful experiments simlar to those described
above, with the goal being the investigation of non-geostrophic processes.

The author would like to thank Dr. George Veronis for his inval uabl e guidance in

this project. | amalso grateful to Drs. Melvin Stern and John Witehead for several
hel pful suggestions, and to M. Robert Frazel for nuch technical assistance.
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A PRCOPCSED LABCRATCRY STUWDY (F PLANETARY VCRTI CES
Kirk S. Hansen

| nt roducti on

This report is concerned wth the feasability of generating vortex notions
inarotating fluid of variable depth. Such notions are called "planetary vortices"
because the depth variation introduces a 4 -effect anal ogous to that introduced by
variable Coriolis parameter on the 4-plane.

Interest in the |aboratory study of planetary vortices evolved froma geo-
physi cal dynamcs lecture by Alan Newell (1975) on nonlinear wave packets. Consider
a packet of slightly dispersive, slightly nonlinear waves grouped around wave nunber

. The normal -node sol utions to this problemare of two types. (ne set of sol u-
tions decay exponentially, as in the linear case. In addition, there are pernanent
waves called 'solitons'. Two such waves nay collide with each other and interact
in a nonlinear fashion, but once the collision is conpleted, each soliton retains
its initial identity alnost exactly. This ability toretaininitial identitiesis
the distinguishing feature of solitons fromother nonlinear wave types.

At the conclusion of Newell's lecture, the question was raised as to what
extent 'modons' behave like solitons. (A modon is a particular type of barotropic
vortex on the /2 -plane. Mdons have been studied by Stern (1974, 1975) in connec-
tion with their relation to md-ocean eddies.) Do nodons also retain their iden-
tities after interacting with one another or with other types of vortices? Is the
governing differential equation for nodons amenabl e to the methods of sol ution
described by Newell? The results of this discussion were inconclusive, and it was
suggested that a laboratory study of modons mght provide sone insight to the above
questi ons.

As a first step toward realizing the interaction of a modon with other vortex
motions in the laboratory, I wll investigate the possibility of generating a sin-
gl e modon of known characteristics.

Theoretical description of modops

The vorticity bal ance nai ntai ned by nodons i s between the nonlinear and
Coriolis termns:

V-VI+AaV=0 w

The velocity vector = (U,\/) where U is in the x-direction(eastward) and ' is
inthe y-direction(northward). The two-di nensional gradient operator is repre-

sented by 7 ¢ T = 3V x "E:'IU;'!_?,E is the vertical conponent of vorticity; and the
Coriolis parameter { is taken as a linear function of iy on the /3-plane f;:.l.thﬂ.rj}n}.

A modon is defined in part as an isolated barotropic disturbance in equili -
briumon the 8 -plane. Equilibriumrequires the modon to have a dipole structure,
with a cyclonic vortex to the north and an anticyclonic vortex to the south (Fig.1l).
I'solation requires the pressure perturbation and the velocity to vanish with in-
creasing distance r fromthe center of the disturbance. A large ¥ , therefore,
the first termin(l) is small to order \/*while the second termis snall only to
order Vv . The vorticity constraint cannot then be satisfied unless the far-field
vorticity equals zero. This requires a discontinuous change in T at sone distance
R , where T =0 for al r=%R.

A solution to the modon probl emnay be obtained following Sern (1975). The
conservation of absolute vorticity serves as a starting point:



Fig.1 Schematic representation of a modon(Stern, 1975).
_II]I_ ) = 2
£ {[+{-J 0 (2)
For a steady state, and with + = F°+B§J Eq.(2 becones:
V-v({+By)=0 (3)

S nce ?-"?=CI on the B-plane, the velocity may be witten in terns of a stream
function as |J= —Bwfa and W=TW5+ . The vorticity is then T =9*%, and Eq.(3

may be witten as .
LV(VY+gy) =0 (4)

which is equivalent to (). The quantity in parentheses nust be constant along a
given streantine, or equivalently, equal to sone function of % only.

7w+ By = FOv) ()
Boundary conditions are a free streaniine =0 across which the vorticity change is
di sconti nuous. Choose
¥(R,0)=0 (6)

where (r, 8) are polar coordinates defined in Fig.1 and F is the radius of the

streanil ne. A so, the isobaric boundary condition requires uniform pressure for
= f ., Applicarion of Bernoulli's equation along the free streamline Y =0 in-

dlcates that |V [“i's uniformon the streamine. Hence (7 WY is uniformon r=R

and g R 8) . -

dr o6
The problemis to pick F{wW)in such a rranner that 5 can be soI ved subj ect
to boundary conditions (6) and (7). Stern chose F W, where A > 0. The

governing differential equationis then



- 10 -

VW A=Ay (8)

A particular solution is "i]-"?-éi= "-"3—“;'15_-'“'& * The homogeneous solution l-'nr'-}':_i',,*l”rfﬂ'
that satisfies boundary condition (6) ‘can be written in terms of J, (r 4+ ) ,where T,
is the Bessel function of the first kind and order one. The total solution

- is given b Wyl

W= Jr.l, + 1",n g y (rA

[ -&“f@l[r--’? I}ﬁi (9)

Further, boundary condition (7) requires

T,(R2%) =0 (10)
Substitution of (9) into (8), with V= [, gives ( :‘I?E:I
JLr
. =2 ——
“ 4 PR T (R2%) (11)
for any value of R A satisfying (10). The root-mean-square vorticity provided
by (11) is R

L-n: VI (12)

More complicated functions F'[r'-;l-"} mey be chosen, but the particular Flf"Jf',!l
illustrated above gives the minimum value of ;P.r.,.,, for all possible solutions with-
in the circular region of area 7 ®*. The final defining property of a modon is
that its mms vorticity be the minimum possible value for a given class of solutions.
Thus the vorticity distribution (11) is a unique modon solution to Egs.(5) - (7).
Different modons may be generated, however, by choosing other shapes for the free
streamline ¥=C (that is, by choosing different boundary conditions (6) and (7)).

Modons are likely unstable to small perturbations so that the %E— term in
the vorticity equation becomes significant given enough time. For this reason
modons probably do not exist in the actual oceans. But their idealized vortex mo-
tion may prove to be useful in modeling (in a statistical sense) some features of
the more complicated vortex motions observed in the ocean. For example, if Coms
can be derived from observed data, then (12) can be used to estimate the mean eddy
radius.

Plan of attack

A pilot experiment was conducted in an attempt to generate a positive and
negative vortex pair resembling a modon in the laboratory. The experimental setup
is shown schematically in Fig.2. A rotating tank with flat bottom, but with depth
variation due to the parabolic shape of the free surface, was used. Water was the
working fluid. A pump was attached to the rotating table, with the source and sink
inserted into the fluid along a radial direction from the center of the tank as in-
dicated. The plan was to turn on the pump for a moment, allowing a positive (anti-
cyclonic) vortex to form around the source and a negative (cyclonic) vortex to form
around the sink. The pump could then be turned off, allowing the study of free
vortices on a " /% -plane'. The flow pattern was observed using a potassium permanga-
nate dye.

The results of this test were erratic, Often only one of the expected vortices
would form. In other cases, a vortex pair would form initially but dissipate almost
immediately. The difficulties with this experiment indicated that a simpler case,
for which the flow pattern can be accurately predicted, should be examined first.

The next section of this paper is a discussion of potential flow in a rotating
fluid of constant depth. Solutions have been obtained for both the interior flow and



Vertical Cross Section Plan View

Fig.2 Pilot experiment for generating modons.

the Ekman boundary layer transport. The remaining sections consider the progres-
sively more complicated cases of vortex motion in general in a variable-depth fluid
and, finally, the specific case of modons in the laboratory.

Rigid top

Consider a rotating fluid of constant depth bounded by infinite planes on the
top and bottom. A circular source and sink each of radius & are separated by a dis-
tance K as measured from their centers (Fig.3). The theory of source-sink flows

Fig.3 |Isobars (or streamlines) for interior flow of source-sink experiment.

such as this has been described by Greenspan (1968). The column of fluid beneath
the source is a high-pressure region, and the column beneath the sink is a low-pres-
sure area. For the appropriate parameter range, the interior flow will be geostro-
phic with a positive vortex around the source and a negative vortex around the sink.
Since the streamlines form closed contours around the high- and low-pressure centers,
the transport of fluid from source to sink cannot occur through the interior but must
be confined to the top and bottom Ekmen boundary layers.

The geostrophic relations for the interior flow are
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s, 00 poos oty AR
'} P oz L.rg 7 oy (13 a,b)

where £ is the fluid density and p is the pressure. The coriolis paraneter -f- is
a constant equal to2 <L , where £a is the rate of rotation, and (Uga"-"z) are in
the (x,y) directions as shown in Fig.3.

i &0— CIL Y
Taking an gl ves ‘g___l_ N
7 vy (14)
For steady, inconpressible, and two-di nensional flowthe continuity equation is
v.v =0 (15)
and for irrotational flow
VXV =0 (16)

Equations (15 and (16) define a problemin potential flow, and (16) substituted
into(14) vyields the relevant differential equation

Vp =0 (17)
wi th boundary conditions
p = P at the source and p= O at the sink. (18)

The solution to(17) and (18) may be deduced in the fol | owing manner. For a
point source located at the origin,, the pressure is proportional to fmr

oT p = =K4mn (’:{‘+ ﬁ"'}&-i- C.

For a point source and sink of equal and opposite strengths |ocated at (% ¥y ,0), t he

pressure is given by "
L)+ H‘F
P=FE&H[E1—GT+%‘J+E (19)

The isobars are circles with centers at (—F{%jn ,0) and radii of v F"%’:}-l
wher e F{EE:R]I‘ gﬁr_if}ﬂ =

Equation (19) may al so be used for the case of circular source and sink of
finiteradii by choosing ¥ and r3 so that the isobaric contours with centers at

(¥ R4.0) have radii = o, and pressure = £ 2/ +C.

E - Fl(E)n (20)
o= /FE)-1 en

Solving (20) and (21) for K and Kresults in
o (B -

(23)



Fiijnally, boundary conditions (18) are satisfied by picking the constant { equal to
/2 so that ( .
— i X+l +
= Kt | 24 &
o
where , and |-( are defined by (22) and (23).

The flow rate & from source to sink may be related to the pressure difference
EF as follows. Consider the Ekman boundary layer equations

au
~[v= - J,% B‘%ﬂ + V5o (25
a‘-
‘}”:’%??Ej'*ﬂ“f'agﬂ- (26)

It i s convenient for this problem to work along the axis of symmetry =8 so that
o F'be =0 . The z-axis points vertically upward with 2= O at the bottom boundary.
Bounda¥y conditions are:

(LVv)= (0, V) at 2= oo (27)
(UVW)= (6.0) ot =<0 (28)
The addition of (25) and (26) XL yields
v ﬂ r 'tu._E = J'% g‘% (29)
where ¥ = U+i.\/. The solution of (29) satisfying boundqry conditions (27) and (28) is
V= iVy-i VZ{EN(H 1% (30)

Where§=}g——a is the boundary layer thickness.

Only the x -component of flow contribures to the transport from source to
sink, as the Y -component is parallel to the geostrophic contour. The local trans-

co o
port | is therefore equal to H(L.'d.?_--,or f Re Vd & Evaluation using ¥ from
(30) gives © s .

The total flow rate § equals 2 FT‘*-? » Where the factor 2 is due to the
-
presence of both top and bottom boundary layers. From (31)

o~fr[BE),.. %

and using the expression for FI given by (24), q_-_i}_ﬁf . This may be written as
9= Big, (33)

where ﬂ is the total resistance to the flow encountered between source and sink:
E'ﬂd'- E—lllﬁl-_qﬂ-'l-

A convenient means of measuring F and @ in the laboratory, without sophis-
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ticated instrumentation, is the simple spin-down experiment illustrated in Fig.4.

Consider first the case where the fluid
in the tank is water and the "primed"

L
He fluid is air ( A ==>F"). Suppose there
exists a pressure head 4 at timet= 10,
=1 —4—-|-h=0 say, so that ‘E;’FEH' As fluid is
L H/z transported from source to sink, the flow
- t di i ly i tab-
— I PANGE haCHRERBITVLoHEIL T 5 e
(P-})o) — J,-*qm%— flow rate by (33):
l S f H= §& (35)
| P | NG
| Pl One may in principle make H

large enough to easily measure provided
Fig.4 Spin-down experiment with large flow rates can be tolerated with-
reduced gravity. out introducing large Rossby numbers.

Let the Rossby number be given by

el ot (36)

where the quantity in parentheses is a typical velocity. With ¥ = 10-Zem®sec-],
f = 1 sec-1
which is probably the largest tolerable value without drastically altering the pre-

,R=20om a=1om and Q = 1 ecm3sec-1, the Rossby number i s order one,
dicted flow pattern. Use of the same numerical values in (35) results in Ha 1,}-2,___“1_
which is too small to be of practical value in the laboratory.

The value of H may be magnified, however, by using a reduced gravity effect.
Let the rotating tank contain salty water, and let the primed fluid be fresh water.
For this case P =Ffd*H and
¢ H= GR
. Par (37)

5 [
where the reduced gravity g‘ﬂ{% :,Iﬁ_ If P= 1.001 £ , then %’*-'Iﬁﬁa and His of
order 10 cm, which is a convenient value.

The only remaining requirement is that the appropriate time constant T for

this experiment be large compared with the spin-up time T,P . Let the pressure
head at time t be represented by 24 so that
. O&
1k = T (38)
The time-dependent flow rate i s given by
Q =—fja*d A " + (39)
. . : 2 b .
Substitution of (38) into (39) and integration as~ "'u}/h'-L _LGET#: At yields
H "y 1 ﬂ-ﬁa,
h= ;‘I;'-E-"FF— ok o (40)

where T is the < -folding time constant and

—_ Rila*
For L sufficiently large, P (or, equivalently h ) can be related to & merely by
recording the value of h at two different times. Equation (39), with Yel¢ approx-



imated by ﬂ%‘t then be used to evaluate 4 . The corresponding value of h

mey be taken as —-—”—MJ) These experimental values of G‘ and h can be checked for
theoretical agreement through (38). With % = |0 3 and other parameters as before,
the value of T is about 10 sec. The spin-up time is{;, = * , where Il is the
depth of the fluid. For a depth of 10 m,ﬁpmﬂm'm:-:-f. Thus the proposed spin-down
experiment, even with reduced gravity, fails to satisfy the requirement of large T.

Generation of a positive and negative vortex pair using a source-sink flow
therefore requires a strictly steady state to be maintained by continuously adding
fluid at the source and withdrawing fluid from the sink, Experiments of this nature
were performed by Buzyna (1967).

The working fluid used by Buzyna was water. The experimental geometry was
shown in Fig.3, with the origin of the coordinate axes located at the center of the
rotating tank, & = 14.5 cm, and a. = 0.65 cm. The flow rates considered by Buzyna
were 0.1 to 0.3 cm3sec-1, and was varied from 0.3 to 1.4 sec-1. Evaluation of
the Rossby number using (36) indicates that Buzyna was working with & of order 0.1
to one.

The qualitative features of the interior flow agreed with the streamline pat-
tern indicated in Fig.3, and the transport from source to sink was largely confined
to the Ekmen boundary layers. Buzyna made no attempt, however, to measure the pres-
sure difference F as a function of & . The fact that Buzyna was able to reproduce
the expected flow pattern, even for Iarge Rossby numbers, is probably due to the
potential character of the problem. For potential flow, I' is identically zero and
the.|_=|:*..-r 'E_{'j term drops out of the vorticity equation independently of the value
chosen for g .

Details of the interior and boundary layer flows were more complicated than
predicted by theory, however. The column of fluid beneath the source became larger
with time and did not always remain located directly beneath the source. Below the
sink region, fluid moved from the bottom toward the surface in a spiral pattern
rather than in a simple column. In the Ekmen layers, there was a certain amount of
recirculation and mixing near the source. At the higher flow rates, instabilities
were observed in the boundary layer flow.

Free-surface experiments

For rotating fluids with a rigid, flat bottom and a free upper surface, depth
increases in the radial direction as shown in Fig.5.

e The total depth ish= Hi-hc For a steady
I state, and ignoring lateral friction, the
\\h__ i P ort vorticity equation is¥» ‘E’f-\-{fﬁv »0C.
i j:th:" ecall that for the rigid-top case v.ﬁ,‘.i'
N ﬂ but with the free surface 'I.','.?.',,."- r;i‘ from
| | the continuity equation and
| V7T =f %%v’ (42)
ek s As a consequence of shallow-water theory,
Fig.5 Shape of free surface for W' varies linearly with depth and

fluid in a rotating tank
E%g_- = a%i $



_ Vvh-W

Here W has been assumed |arge with respect to h. so that h=H, and W is the
Ekman suction velocity. Substituting (43) into (42) and nondi mensi onal i 2| ng all of

the variabl e yi el ds .
e(V.vt)=BV.vh-E" (44)

where € (as before) is the Rossby nunber, Eis the Ekman number, and /8 is a scale
factor for the ,3-effect. H gher-order terms in € and E have been negl ect ed.

Buzyna (1967) al so conducted source-sink experinments for the free-surface
case. Al experinents were perforned with the sane val ue of fi , and the depth
was varied froma fewcmup to about 20 cm. For shall ow depths, the spatial varia-
tionin h was large and the ensuing flow pattern was very conpl icated. For large
depths, the relative variationin depth fromcenter to edge of tank was small, and
the flow pattern was qualitatively simlar to the constant-depth experinents de
scribed in the previous section. The only significant difference was a shift in
the streamine pattern (Fig.6)so that the line of synmetry was no | onger orthogonal
to the line joining source and sink.

Since this result was not observed in
any of the experinments with the rigid top,
it |sI|ker due to the 7 -effect. |If

ﬁ_.lg £<< E™, then by (44 3 nust scale as

a1

E%10 bal ance the vorti ¢i ty constraint.

Eval uating this vorticity balance in di men-
sional quantities, V«@h -Wg = 0 or, ig-
noring adjustments in the free- surface el eva-
tion due to the geostrophic flow

V21 _ 2 [0 (45)
vwhere (V,v) are in the (I, 9) directions.

Fig.6 Streamines for interior flow
infree- surface case (Buzyna 1967)

Wth I' ‘U’F and U= ',F!_r Sp B4 (45) becones
7p 4 u:::ap 0 (46)
where@ =25 s a positive constant. It would be useful to solve(46) subject to
98
t he boundary conditi ons.
p=0at the sink and = f at the source (47)
and conpare the result with Buzyna's experiment. Equations (46) and (47) have not

been sol ved, but their qualitative effect may be understood fromthe fol | owi ng ther-
mal anal ogy.

Consider a rotating fluid moving past cold and hot heat sources fixed in the
inertial frame of reference (Fig.7). The thermal diffusion equation is

2T 9 1=
1 ol I

i T= KT

and for a steady state



For the experinent presented in Fig.7

Vertical Oross Section Pl an Vi ew
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L

this reduces to
(48)

Wth w=-w Eq(48) nay be witten as
Vi T+ & ?g“a_ 0 (49)

wher e U-:',f'r is a posmve constant. FEquation(49) has the anal ogous formas (46) .
Wth rotatlon in the w*direction, the thernmal wake will cause the isotherns to
orient thenselves as shown in Fig.7. This is identical to the orientation of the
i sobars in Buzyna's experinent (Fg.6).

Al though the vorticity bal ance represented by (45 apparently explains the
experinental result in a qualitative sense, there is reason to believe that it nay
not do soin derail. This is because the derivation of (45) assumes £ == E¥& where-

as the paraneter range explored by Buzyna was € > E*2

Mbdons in the | aboratory

Al though the modons studied anal ytically by Stern (1974, 1975) were free
vortices, it may be possible to generate a modon In the [aboratory by using a con-
tinuous source-sink flow Inagine the source and sink to be located in just the
right place and to have the required shapes so that their outer edges correspond

to isobars of a modon(Fg. 8}. . 1a

Fig.8 A modon in arotating tank.



The fluid located outside the imediate vicinity of the sink or source does not

know whether it is part of a free vortex or if it is being forced by a source-sink
flow Soif the fluid beneath the source and sink is neglected, a vortex pair forced
by the above flow shoul d behave |ike a modon.

Also, in the laboratory there will be no free streamine W= . This does
not matter, as long as the viscous termin(44) is able to balance the far-field
velocity. For a modon, scale /& as € >> £%. The nondi nensional vorticity equation

is then - R, - i
e(V-VI-V:Th)e—E™T (50)
wi th boundary conditions

p=L at the source and p= —=F at the sink. (51)

Near the center of the modon, the principal balance is on the |eft-hand side (LHS
of Eq. 50. For ¥ = R, the first termon the LHS becones small to order % and
the second termis snall only to order 3y . The balance for ¥ > K is therefore be-
tween the & and viscous terns.

Solutions to (50) for boundary conditions(51) nay or may not exist, and
the possibility of their existence needs to be nore thoroughly exam ned before at -
tenpting to generate a modon in the laboratory. Niler (1966) has solved(51) in
his study of w nd-driven ocean circulation, but for different boundary conditions.
If solutions do exist for the |aboratory problem then the source and sink shoul d
be arranged along the radial direction(as in Fig.2), and with the sink closest to
the center. This is because shallowwater in the |laboratory nodels is northward in
direction on the /3 -plane.

SUSITATY

Vortices on the f-plane that behave as predicted in a qualitative sense have
been generated in the laboratory by Buzyna (1967) using source-sink flows. Theoreti-
cal work still needs to be done on the problem however. The effects of the side-
wal | boundary |ayers, especially those surrounding the source and sink, should be
studi ed, and the Ekman layer instabilities need to be anal yzed.

Sol ution of Eq.(46) would aid in understanding the results of Buzyna's
experinents on the /g -plane. Equation(50) nust be sol ved before nodons can be

model ed in the |aboratory. Even if solutions do exist, there is still a question
as to whether it is experimental |y possible to realize the appropriate paraneter

space.
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CGRAVI TATI ONAL TIDES IN THE EARTH S CORE
Howard C. Houben

The notions within the Earth's liquid core are an inportant subject of in-
quiry mainly because they are nost certainly responsible for the generation of the
geonagnetic field. However, in some ways our understandi ng of these notions has
grown worse over the last twenty years, A that time it seened clear that convec-
tion in the outer core would give rise to dynanmo action. Wiile this conviction
still has not been disproved the followi ng difficulties nust be net:

1) The sinplified convection nodel of Bullard and Gel | man (1954) apparently does
not give rise to dynamo action as previously thought (G bson and Roberts 1969).

2) More conplex and detailed convective nodel s, which do apparently give rise to
a magnetic field, have not yet been worked out for the precise physical state and
geonetry of the Earth's core (Busse 1975).

3) The lowefficiency of a thermal engine operating in the Earth's core woul d
require a large heat flux to maintain the geodynano (Stacey 1969). The source of
this energy is unclear. Indeed the possibility that Mercury has a magnetic field
of simlar originto the Earth's (Ness et ¢z. 1975) is a serious enbarassment since
t he cosnochenical arguments which indicate that the Earth coul d have substanti al
radi oactive heat sources inits core would exclude this possibility for Mercury
(Lew s 1971).

4) The possibility that the |unar-solar precession could drive the dynamo (Mal-
kus 1968) does not have the same problemwi th energetics and has recently been
favored by many authors (Stevenson 1974).

The core paradox.

The physical properties of the Earth's core may be such as to excl ude con-
vection. On the assunption that the inner core is solid, current studies of the
physi cal properties of nolten iron(at high pressure) would indicate that the tem
perature gradient in the outer core should be shallower than the adiabatic gradient
(Hggins and Kennedy 1971; Kennedy and H ggi ns 1973; Stacey 1975), rendering the
core stably stratified. Convection would be possible in only the innernmost part of
the fluid core and the instabilities due to the precessional force would be inhi-
bited. These results would require all dynanmo theories to be reexani ned.

In light of the above it is of interest to study a different source of core
motions - the lunar and sol ar tides. The total energy dissipated within the Earth
by the tides is ~ 3 x 1019 ergs/sec. Al though this dissipation takes place |argely
within the oceans, it is quite possible that on the order of a percent of this is
actual |y dissipated in the core - probably enough to drive the geomagnetic dynano.
The general effect of the tides is to distort the core, i.e. the container of the
fluid, into an ellipsoid. Thus a periodic radial velocity is inposed on the fluid
at the boundaries, The previously-nentionedcore stratification which would tend to
inhibit radial motions is not operative here because the radial velocity is exter-
nal Iy inposed. Indeed the effect of the stratification is to enhance notions in
the other directions. The magnitude of the radial notions is about 10 cm(as wll
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| ater be derived) and for the tidal frequency of about 10-%sec-! this gives a vel oc-
ity of 10-3 cm/sec. For an assuned core conductivity of 3 x 10-6 enmu, the resultant
nmagnetic Reynol ds nunber = 4TI@ VL is ~-10, indicating that the tidally-forced
motions are something to be reckoned with inrelation to the magnetic field. It
shoul d al so be noted that the tidal and precessional forces, having simlar origins,
are about equal in nmagnitude and so it is quite natural to consider the two together,
i ndependent of the question of core stratification.

The tidal potential at position I due to the Mon may be expressed as (Chap-
man and Li ndzen, 1970) e "
’ m (_r ,
Y==6 St ealm) P (w0t @)
where ® is the angle between the observer and the Mon as seen fromthe center of
the Earth. The 7, are the Legendre polynonials. Inturn @ can be witten(in
terns of ordinary spherical coordinates) as

o @= 036 toa A+ Sim B alm A cen [P fE)

where & = the colatitude of the Mon andf = Q_IT/lunar day = fl-tup where
S =17T/sidereal day and wp=27/sidereal month. Now A itself varies with fre-
quency wig(as well as slower tine dependences) and so the tides may be separated
into forces with a large variety of frequencies (Bartels 1957). (The solar tides
may be simlarly analyzed.) The nost inportant tidal conponents for our study will
be .

M, the lunar quasi-senidiurnal tide o F,{*028) coma(p+ft).This tide has
t he Rarges{ anplitude and is the one nost evident in ocean tides.

2) K, the lunisolar senidiurnal tide e Py(era)ess2(§+0Le), The exact semi-
diurnal tife dependence comes fromthe conbination of the time-dependent |atitude
and longitude terns in the expression for o> @ . This conponent may be expected
to excite a resonance in the rotating fluid core.

3) & the lunisolar diurnal tide :::F;{me)&}n[{p:rﬂj].ﬂm exact diurnal dependence
cones abolt in the same way as for the previous conponent, This termhas the sane

ti me dependence as the precessional force(in the rotating frane) and al so nay ex-
cite a natural resonance in the core.

The response of the core boundary to the tidal potential is a displacenent
equal to - h—q)(MJnk and MacDonald 1960) where his a Love nunber of order unity.
The anplitude(neglecting angular factors) of these displacements is thus

mﬂ ﬁ- — - =g
h[ﬁ{ﬂ Fe —\h'{:rc WM E~r2%10
and the resul tant velocity is-fg-%‘tﬂmQ.th\/(3 ot |g"‘;ml.f5f¢ as previously given.

V& have now establ i shed he boundary condition for our tidal analysis and will
turn to the equation of motion. W wish to wite thisin afrane attached to the
Earth which is precessing and rotating. In additionto the coriolis and centrifugal
forces there is the transverse force which nust be considered. It is equal to

v_\}r\‘} ¥ £ where the time derivative is evaluated in the rotating frame i =fxw

ere w is the precessional vector about which 2 rotates in the clockw se(retro-
grade) direction. (Since ws is fixed in space, inour rotating frane it apparently
rotates with frequency S% .)

The equation of notion is
Dy

20XV (D WNIY L g ayx g ()
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wher e and p are the fluid density and pressure, % is the sumof self-gravita-
tional, centrifugal and tidal potentials, and [L, is the deviatonic stress. For com
pl eteness it woul d be necessary to include the Lorentz force in Eq.(1). V¢ wll do
this later in the analysis when the formof nagnetic field which our tidal velocity
field may sustain is found.

V¢ will non-di mensionalize Eq.(1) with the help of the velocity scaling de-
rived fromour tidal analysis. Replacing dimensional variables wth dinensional
quantities(in brackets) times non-di nensional variables:

Vv = [296rly
= [gndt
== ['i"r&]‘f
> [er
=>» [F.ﬂ rd
Xt A 3[or] (e )
Caealp] (Free)
Bed > [agr (F+ e¢)
= (1)t
> [ngw
In the above, the overbars refer to tine average quantities. Equation(l) becones
[0t o) PL+ ey gy + [Hote o) Ry s [20*e w) (K x w)xr +
*[3] F:Ep‘ V(F+E¥)+ [ﬂ]?ﬁ* Ex')= [JI'LE- 'b]é’f&]?' L
Equating the terns of order g
-gq_‘ﬁ'ﬁ + Y% =0, (3)

which is the equation of hydrostatic equilibrium V& can sinplify the renaining
portion of (2 with the follow ng definitions:

Js wfr._:;’ﬁ. e 1072

E=v/inkt~ 07"

£ N Y .o 2 € = K &
n

(2]

Then
§evep) o+ Selreed) g gy + Slpved Ruy+ £ (Frep)isxwlir +

(4)
+Q P PR+ (e ) n'= SE(Fred )0 L

The order &° term ( E assuned hi gher order) becones
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¥
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g af-+§er+%[h:nu_ﬁ];:+%?#"+ %-Eiwﬁ?l’:ﬂ (5)
whi ch is the Boussinesq equation of notion. \
. . L L (mp+st)
Vé will wite all quantitiesas « &
The higher order equationis .
5 4k da %W’f rdBVTY = "’EE pv-L (6)

Equation (6) is inmportant in solving for the time-average azi muthal velocity.
The bal ance here is
V.UV = EJ,,FE_ YA, (Ba)

For boundary conditions(values of Kk ) in which there is a phase lag between the
boundary response and the instantaneous response of the perfect fluid(signified by
an imaginary part of h ), there will be a correlation between vel ocity conponents
and the left-hand side of (6a) wll be a non-zero tine average. If @& is the size
of this correlationthe magnitude of the nean flow % is

v .rSEdL_
so ¥ can be quite |arge even for very small val ues of . It is always in the
sense of a westward drift of the core material with respect to the mantle. The
above bal ance nmay be adjusted somewhat by |arge-scal e steady notions.

V¢ can sinplify Eq.(5) a bit by the introduction of an equation of state (a
rel ation between 4‘ and e’ ). Ve my wite

L Dp _ ¥ Do (7)
£ Dt f Dt
where ¥ is an adiabatic exponent. The basic state may be witten as

5 VF = $vp. (8)
A rising parcel of core material, always in pressure equilibriumwth the sur-
roundi ng nedi umwi || become denser than the external matter if # =% , whichis the
criterionfor stability. The equation of notion of such a parcel is

i 3;'-'3' i -
F+T%.E?IT‘ 0

so the buoyancy frequency is defined by
L - =
e BLEEgX.
The Boussi nesq approxination is obtained for &—=e< which however is not appropriate
inthe Earth's core where the anbient pressure is a reasonable fraction of the bul k
modul us.

A reasonabl e approximation to the density run in the core is given by

F=Re ™ with G=125gen and b:-.2 sothat VB/F = -.2r . V& my
simlarly wite 4 = g_;-':'v" with Eo: f.5x%x106%cqs and a = ,4. ThenZjwz 3.
The val ue of ¥ depends on the tenperature gradient in the core(and the G uneisen
paraneter) and is a subject of sone controversy as sited above. The resulting

val ue of i';—“r (via the Adans-WIlianmsonrelation) is —XT&Mwhere & is the dif-
ference between the real value of Guneisen's parameter and the val ue whi ch woul d

make the core adiabatic (% 1] . So L Ak P I



W can non-di mensi onal i ze /¥ as
/Vz"‘:> [ ‘] =0 'i?.i Foso =2 L(:lh':.-II"I-IITSEaF ﬂ_ﬂ::l
Al'so approximately ¥ Xe< ¥, so N«x v%(I ndeed N%=z0 near the inner core boundary.)

In(5) we assune tine dependences of the form e** Efor all quantities where
s=1for K, tide, % for K, tide, and == .97 for M, tide. Using(7) we wite

e . 4 ¥ _ ¥-¥% oy g
B 7 % )
The buoyancytermin(S) is then(with the help of (3)

T L
-t b T B Lok s b ELops AL VR o
V¢ are left with
isve Bxv+ 4 (Kaw)xr +§—vfﬁr+3{’)+ oL f‘?ﬁ*%ﬁ"’rF =0 (103

g wL
Witing &#* for M ** and @ for %( +}\ijl

|;g+-ﬂ"lfu r‘}I+H1v+~E{Exw‘i"+ V& -/" [EQ‘I‘] r= (11)
The conponents in spherl cal coordinates are
; 3 ; e+ ) .
i5Vg =208 8V =-'_r%_% [mamfa-nﬂ - ca3 Bam (9| (12)

& ¢ ' '.ﬁ
isvp+ 8Va* SMBY, = = by B (4F usbom (e *T

wher e E:?me-éﬁme;x is the angl e between L and 7\< and

we=w [Pe(s-<)e! @) _Gsim(p )+ iheot (e @A)

Equations (12) give rise to another tine-average azinuthal velocity forced by
precessi on.

V= um[m—:;-’.m B log sim 6 +3met (o @+ 85im Ej:i from

B = wr[ cons sim® g sim 6 4 simat (sirn 0006+ 6 i)

The velocity is too small to account for the westward drift and of uncertain direc-
tion(due to the l|atitude dependence).

Sol ving for the velocity corrponents(ln the case S# L)

A= .IE{rf-f,:H-—:—t—fE - 0™ 6)
(13)
B B 58] om0 38) |
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Vo= (5+ 2) (725 3§~ 2 38)+ smoleno [P 3] -2 ai)/
B (10 15tz Thor 5 3B)ois im (-4 58 -
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The s =4 equations also contain terns proportional to ¢J . These equations nust
be solved in conjunctionwith the continuity equation

1D F__*F_ = 1) \hi
3 ii_ +0.V= 3% o +V.v=0 whi ch reduces to
[E_:.ﬁﬁ[&-i_.xﬂ]i._‘_%iu +Fr V=0, (15}

(In the Boussinesq approximation: ¥—+*oo , this reduces to V'Y =0)
A so there is Poisson's equation for x o

i i {2
TA'=p' » TA+ ¥ f—l LT eV,
This has the boundary condltlons ~ WV
#*'= (|Tk; ) Win) at boundaries i =12 . is another Love nunber of order

unity). V¢ nay al so restate the V. boundary cond|t| ons which are

Vi =-1s ?—w[n y==i5h; m—h‘ai' I =42 Since we are assum ng 34"'- V¢
thus have two conplicated coupl ed equatl ons for the potentials ¢ and £ .
(e substitutes from(13) to (19).

In the case W =0, the continuity equation (¥-¥) results in a hyperbolic
differential equation for the potential & , whereas the boundary conditions are
those appropriate to an elliptic equation. The result of this is that the sol ution
for g does not have the sane analytic format all points. In particular we get
the zones of strong shear evident in the experiments of Ml kus and Suess (1970).

The presence of the stratificationrenders the equation elliptic in at least part
of the domain of interest. The hope is that the boundary layers are then nere
Stokes layers which are stable at the rel evant |ow Reynol d' s nunber of about 1.
(See Davis 1975 and Robi nson and McEwan 1975.) |If this is the case we can obtain
| am nar solutions to the equati ons.

Note that in Eq. (13), the derivatives of & do not contribute to ¥, when
is of the form Ar*sim Gess & (which is aPproprlate for the K, tide). OJr equa-
tions are then approxi mately sol ved by the bal ance 4 X(though this is not an
exact sol ution of (19). Now X “zz(14k) W and W =3 r*sim@em S, (The 3 cones
fromthe normalization of the Legendre polynomals.) So A is given by

A== 3(1+k]/§ ~ 10°,

V¢ see that the velocities in the neridional and azimuthal directions can be quite
large (though this calls into question the stability of the Stokes |ayers which now
have a Reynol d's nunber ~- 103). So we have ‘=~ ff%; Vyp ~ 103 The velocity fields
are given by

Vo= -21Av sim(g+th)
Vp = 2fhres 6 wn (@4 b)) .

The streamines look |ike large scale hurricanes on the planet.



V& now turn to consideration of the magnetic field. The dynamo equation is
AT = UX(VXB) whie A= YyTe~ie? (21)

Hon-dimensionalizing

98 _ A e,
22 - A 0'5 - cox(veB)
%E— -Em7'B = E7%x(VX E) where the magnetic Ekman number

J,"_-'m= lf:.nr':'.--...- 15"
W divide the magnetic field into two parts
B=E+B whee B is the time average. V¥ do the same with V=V + V"

Then ;ﬂfi=£1;rx(&7xﬁrj+ ETx (v B)
EJi.TE-!—vK.[T':"'ﬂ Er'l' 'n-"”!:' EJ anmnd —ﬂié:-g-mvx {'l,,.l"'";p{ E‘lj
and -V'B = Ry Pu[v'x £ Wx ['.?n’E'q-v’; B}

where the magnetic Reynolds number R,,= E,{;Mﬂ 30

-9 B2 o[ OB} 7m0

! . . : .
V¢ require V ~10% for regeneration. This balance in magnitude of terms is not
enough to insure regeneration, but it is a step in the right direction.

So we have shown that it is plausible that a magnetic field of the right form
could be maintained by the oscillating tidal flows. Note that a toroidal field
would undoubtedly arise from the advection of the poloidal field by a mean flow.

In conclusion, it seems a possibility that rapid time varying flows can be
adequate to explain the Earth's long-term magnetic field. |t has not conclusively
been shown, however, that it is the laminar flow due to the tides which does this.
It will be necessary to further investigate the instability of the boundary layers,
and the possibility that the resultant internal waves generate a field in the man-
ner shown above.
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THE INSTABILITY - A BAROCLIN C BOUNDARY JET IN A ROTATI NG FLU D
St ephen Jones

| ntroducti on

Thi s study was notivated by certain observations nade on an experinental in-
vestigation of geostrophic adjustnment. (1,2). This consisted of a |ong, narrow tank
nmounted on a rotating turntable. The tank was divided into two sections by a bar-
rier, one section(the Ionger one) consisting of a single layer of cool (saline)
water, and the other section consisting of a thin layer of warm(fresh) dyed water.

After spin-up was conplete, the barrier was removed and the lighter fluid be-
gan to nove out from behind the position where the barrier had been, Rotational
constraints forced the fluid to nove towards the |eading edge of the tank, where it
formed a jet travelling along the side boundary. This jet became unstable in a num
ber of instances, breaking away fromthe side boundary at regular intervals down-
stream and fornlng a nunber of eddles extendlng across the w dth of t he tank.
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This instability is very striking and is relatively easy to observe in the
| aboratory. Consequently, it would be of great value to our understanding of the
dynamcs of rotating, stratified fluids to determne what type of instability is
bei ng observed. The question we woul d nost |ike to answer is what type of insta-
bility is operating. Is it a geostrophic instability, or an instability of an (in-
viscid) ageostrophic nature, or is it a viscous-domnated instability?

Unfortunately, very little reliable quantitative data is available from
whi ch we can gain, via scaling argurments, sone idea of the effect of viscosity on
the instability. W Facinelli (2 is doing experinents on the geostrophic adj ust-
ment problemin which the instability manifests itself, and it is hoped that these,
and other experiments in the future, will provide the necessary data to gauge the
effect of viscosity on the instability. Therefore, in this report, we shall neglect
the effect of viscosity entirely and concentrate attention prinmarily on the stabil -
ity, or otherw se, of the baroclinic boundary jet to geostrophic perturbations.
Throughout, it will be assumed that the basic flowin the jet is geostrophic.

The Basic State

Before formulating the stability problem we shall look at the formof the
basi c state in order to gain a better idea of howto set up the problem \¢ shall
assune that the effect of the far side boundary is small, thereby picturing a side
boundary jet in a sem-infinite fluid. The diagramrepresents a cross section of
the fluid, showi ng two layers, the top(and lighter) layer being in notion, and the
bottomone being static. The basic state is assuned to be i ndependent of y, the
downst reamor di nat e.

The nonent um equati ons for the geostrophic jet reduce to the single equation
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wher e 5’: Qﬁ.j & ¢ being the density difference between the two |ayers, and £ is the

F
average density.
=4 _ I'f the mass fl ux
JA s i el e
_ : Q= ( hVe %
rr.c.ul.ﬂ'ﬂ .ot
layey xVe) Thfﬂ i's assuned constant, the geostrophic bal ance
L equation inplies
Satie i 2 %
\ayer /[Zﬁ",““ \l\; il‘a {.hn - H ;':-H:'
h(e)=h " L ,
h(EZmiH In addition to the nomentum equati on,
Fig.2. (Qo0ss section conservation of prﬁenfial vorticity inplies
of boundary j et TtV | o
!,..I H
Solving for N and V' gives
h=H+ -F'E_.F E:w{:-.-
Vs _ﬂ__ EJ‘.-'"-:L
Hae
whers .= I@# is the radius of deformation.

If we perturb this basic state, whilst keeping the bottomlayer at rest, it
can be shown (3,4) that the necessary condition for unstable geostrophic distur-
bances is that the gradient of the basic potential vorticity nust change sign sone-
where in the region of interest. However, the basic potential vorticity gradient
is zero everywhere, and therefore we conclude that the jet is stable to geostrophic
di st urbances whi ch confine thensel ves to the upper |ayer.

The basic state derived above al so presents seme grave mathenatical difficul-
ties in that any stability analysis wll consist of equations with exponentially
varying coefficients. To sinplify the analysis, we shall consider the sinplest jet
possible, i.e. a constant velocity jet confined to a distance L of the wall (by geo-
strophy, this inplies that the layer thicknesses in the jet vary linearly).

Rayl eigh Instability Oriterion for two | ayers

- It is possible to derive a
T h ~— [ square-i ntegrabl e condition for
I @ the stability of geostrophic dis-
- — =0 turbances in a two-layer system
by o e under certain conditions. A sim-
+5 l e = ilar type of criterion was derived
l = " by Olanski (5 for a related prob-
L W lem therefore we shall only sketch

A S T - an outline of the proof here.

Again we consider two sem-infinite |ayers of inconpressible honmgeneous
fluid in arotating coordinate systemw th constant Coriolis parameter £ . The
motion in both layers is hydrostatic and independent of vertical coordinate =
and satisfies conservation of potential vorticity:

dfitt) o ()
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alt ha
wher e i = uﬁ"“’“";

die & rud rug }Cona
and (uy, V) are the velocities in the (¥h layer.
V¢ shal |l now expand the system about the basic state by setting

I R4
up = o
Ve = Wi+
h, = h, +h!
h‘ = J"I;.n+h'1
J'l - h,' h:.

and linearizing. The equations then becone, upon dropping primes

wher e M= ih;r’-‘-
= - f+fwm
g has

The quantities -, and I, are the basic potential vorticity of the top and bottom
| ayers respectively.

| f we assune that the disturbance is quasi-geostrophic, it follows that we

can wite _
{L.l:,\/é) = ‘{?‘{—H.'qﬂ: ]-_-"_;;]
wher e Fi = h,
L = F A& a2
and p ‘ﬁ:hn"’ Z, h

In addition, we assunme the solution takes the wave-like form

P = polx)Rnp {[a (y- -:1.‘}}

The governing equations then becone

T (0 % 41) o+ £ (pop) = © (3)
Lh- (e gn E)P- ET ()= 0 4)
wher e g = %g‘ﬂ

W are interested in the case where 'k{_:@ i n which case



et f
= Frphee Tt

The basic state satisfies the geosfrophic balance equations

Y= % hyy = % (h=F+hH":|

and
":'=_?_ [:__:_ h.'r.:."‘ _Eh?ﬂ) i( h axt h:m:i}
If we scale the horizontal length scale by L, the velocity scale by VvV, and
define
H = LO
R.= 1 a Rossby number
R: = JFH,_ s a Richardson number
M= fL
o= \/(!5‘
we can write
= v+
Y Yy

oo M1+ i)
b, = H (| _L_’:L_"lﬂ_)

where H,, H.. are the mean depths of the top and bottom layers respectively. |t now
follows that

. £ [1tRH
e (A

M, = Hae (J_ £ ﬁ.h_ﬁﬂ‘

< Fe (RIR Ty (1t Rohp))
[ﬁf K U+ h/RROTT

o B )
g (f-%i"— h’ﬁ.ﬁ )
and the equations become

"ai':‘}!?"-"*[#‘w;-—:ﬁﬁ‘w"ﬁ 5(%%)}]“ i![%ﬂ(ﬁ'ﬂj (5)
- St e b (R 2

and
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wher e R=TR, H'——gﬁr—

If we now assume Eg <= "R, and approxi nate —f'; by unity, the equations can
be approxi nated by 2

o %‘ﬁt-[y**zﬁ ) RGP ©

Note that in deriving Eqgs{7) and (38), R, is taken to be very small at the
outset, because we are |ooking at geostrophic disturbances.

If we multiply (7) by H, t:,"'" , and (8 by Hye *  add the resul ting equa-

tions and integrate over , using the boundary conditions that F'I‘Vi'.- vani sh at
rs=2 and =0, we arfive at the integral constraint
- -EL & I:il- k-4
— Ho [2LB s
_gﬂ( h:i*]i:-*H" d.n ;]ﬂlr:"

J llpf| + Haig Py .:la"_r}

‘“')[ I%”“’ “’“ = Eohs |

-RR {:ﬂ.!‘ﬂar— (FB+PER)) dy

Witing ¢,=c.3 Le¢; , and taking the |rrag| nary part of the integral con-
straint yields . + |
o I
ch I: [ fp-l® -IF’I'I |rl [Pl ir:" o

It follows that if ¢! is to be non-zero, we require the quantities
|:1F|WI- R ‘f?”l,J) and R %9 to have opposite signs in the region of integra-
tion. Therefore, the necessary condition for instability if that the interface dis-
pl acement nust be such as to allow
ﬁ‘]'?-;l‘ﬂulh'? 20 arrd. “1"-,‘.]:‘_, o
Somewhere in the range — & < 5 <0 . It shoul d be noted that this criterionis

simlar to that obtained by Olanski (5.

For the sinple case of a finite region(the boundary jet) near the wall, where
1?1 is a linear function of N this condition is satisfied. Therefore, such a sim
ple jet may be unstable to quasi-geostrophic disturbances; the next step should be to
determne If this is indeed so, and to see i f any such |nstab|||t|es if they exist,
can hel p explain the observed instability in the boundary jet.



The Constant Velocity Boundary Jet

In the | aboratory experiments, the lighter fluid in the jet was initially
(before it becane unstable) confined to a |ayer near the wall, while the fluid in
the interior of the tank was honogeneous throughout its depth. This suggests that
the interface between the lighter and heavier fluid hits the surface at the edge of
the jet,

Such a systemis simlar to Olanski's polar front model (6) in which he in-
vestigated the stability of an idealized front, represented by the interface be-
tween two fluids of slightly different density, In the basic equilibriumstate,
the front (or interface) hits the top and bottomboundaries of the fluid; the main
difference between Ol anski's model and the above picture of the jet, is that the
interface associated with the jet does not nmeet the bottomboundary. Thus, although
the formulation of the stability probl emassociated with such a jet will be simlar
to Olanski's fornulation, the two problems should be sufficiently different as to
require a separate treatnent for the jet. Unfortunately, the vanishing of the upper
| ayer thickness at the edge of the jet presents sone difficulties which we should
like to avoid, if possible, at this stage,

Therefore, we shall first look at the stability of a baroclinic jet in which
the upper |ayer thickness is always finite, W shall also assune that the motion
of the free surface will have little effect on the stability of the jet, and inpose
arigidlidon the system while still allow ng pressure differences al ong the up-
per boundary of the fluid.

Now the jet is bounded on one side by a rigid boundary (the side wall) and
on the other side by a free boundary, To sinplify the mathematics, we shall re-
place this free side boundary by a rigid boundary; the notivation behind this lies
In the result Olanski achieved for very |long waves (quasi-geostrophic disturbances?)
in which the growth rate was found to follow a curve very close to that derived by
Eady (7) for his continuously stratified, baroclinic, quasi-geostrophic model. This
seened to suggest that the same growth rate is obtained regardl ess of whether the
side boundaries are free or rigid. In addition, following Olanski, we shall for-
mul ate the probl emfor general ageostrophic disturbances; we shall nake the geo-
strophi c assunption further on in the problem

The constant vel ocity boundary jet with rigid lid.
A, Ageostrophic formulation with rigid side boundaries.

sible fluid in arotating coordi nate system

Hy
T with constant Coriolis paraneter f. The

P \_l?—_»\-—x—x— V% consider two layers of incompres-
v

LS
H W motion in each layer is hydrostatic and in-
I B h .

dependent of the vertical coordinate 2 , and

Hy
L N l L — the two fluids are bounded above and bel ow
= = by rigid horizontal planes at #= 0 and

<

Y

g

o | = H, , and to the side by rigid vertica
Fig.3 Rigid Side Boundary Mdel, granes

at x=t4L. Inthe equilibrium
state, the upper layer is in notionwth
velocity V, and the lower layer is at rest; the depths of the upper and |ower |ayer
at the md-point of the jet are H, and H, respectively. It can be easily shown
that the height of the interface ~, in t he equilibriumstate is

-y _REV
m; Hl WI_ [A-1)
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/ Ve are interested in the perturbationto this equilibriumstate. Let
Vo= u.‘.' v:') represent the horizontal perturbationvelocity in the upper |ayer
Q—\) and the 1 ower layer (j =2 . The perturbation pressures ﬁ and p* are
gi ven at =0 and 2=H, respectively. The equations governing this rmdel whi ch
satisfy the dynamc and Ki nematic conditions of 2 =6, 44_ and H, are, after |inear-
i zation, as fol |l ows:

ou, du, R :
SV ﬁ-?m--ﬁﬁx (A-2)
L ! i i
?&—z"" U%*“ “—-"‘—JIF'L'Id (A-3)
Ty | izl
It =N FIFE':I: (A-4)
= i
%Ei P - ‘TP‘?! (4-5]
GV WA, = (=R, wyr v ) = © -
£l y! 2 mﬂ,x i { | P """l-ud}_ (A-5)
-':n' 1‘."1H I I: i ! ﬂ E-ﬁ-‘?]
et Maytba = Ly + "':'-lj)*
/ / f
B-P=(Rlghs (A-8)
wher e hl: is the perturbation to ‘H,_, the height of the interface.
[f we substitute fflfld-t't}

i
(whovy, +hy)=(W,Viap hile

into the above equations, then Eqs.(A-2) - (A5) allowthe velocity fields to be ex-
pressed in terms of the pressure fields, i.e.,

- it [£p+(v-0) FE]
R[] (-9
£ 98+ Cv-p,
G2 (-]

o)

. $ 4B _gep,
. BT~ eet] (A 12)

V= (A 10)




It then follows that Eqs.(A-6) and (A7) vyield the two coupl ed equations

| i Iil:h i
L—dgiﬂ (B F}' 'EEL*'[. EJﬁ Lff“'f?‘fh'ﬁ*ﬂ‘ff_]liﬁ,&'fr’?'\] =0  [(A-13)

F E3(v-c* AR~ (v-c)2]
and
: d
e g o i [e-c 8] . e ﬂuf(ﬁﬂ, &,) _
(013 {Fl Fi‘} g ‘pﬂ'—ftci:l t 7 E‘J =0 [A-14)
W& can non-di mensional i ze the coefficients of these equations by defining
T Ly (A-15)
C = LV[T+]) (A-16)
Fe= g—vf- (A-17)
PR
f= g (19
'l.L'i-
Fas 2R fidgHa (A-19)
Flo y
K= v (A-20)

Then Egs. (A 13) and (A14) becone
T [ R e e B (i (0 55)- R iR (R ipe) o
.i‘;ﬁ [N] Rs R"]p,_-F‘R'l{a%{l} %ﬁ—ﬂ’iﬁ"ﬁ P;}:—; AR R (A-23)

where we have approximated —§—~ by unlty in the second equation. It should be
noted that setting Fi = i ama F R~'=| in these equations gives Olanski's equa-
tions, with ® being Olanski’ s Ri chardson Nunber .

Now, the boundary conditions on these equations are that there be no nornal

and

motion at the side boundaries, i.e., W, , W, vanish at ¥ =t ¥L . [|n non-dinensional
terns, these becone
TI?},' = L al’  n=t)| (A-24)
d-g_.. o B af  n=x+| (A-25)

These equati ons describe ageostrophi c di sturbances in general, the ageo-
strophy comng inwith the terns in curly brackets, W are interestedin the
quasi - geost rophi ¢ regi ne where any ageostrophic effects can be considered small,
and shal | expand the solution and its eigenvalue " about the quasi-geostrophic
state in terns of some ageostrophic:parameter. TO Set up this perturbation scheneg,

we define F°‘= F F.
g = F*R™
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Re= TE
ReR = K

and

where K is the non-di mensi onal downstreamwave nunber of the disturbance, such that
H!f{L

The systemof equations and boundary conditions then become

%' [T:'EJT *K}]Fn“:ri E["Tj{f":"&ﬂfﬁ' %[j,% ( %&}'H‘yﬁy = 0 (A-26)
d:lu_-—[ fH‘!P-? ‘EF:L[} T“{ﬁ“ & _][:F’-\ Fr"} -E%Ef;r— I{J;] %Eﬂ'}- Jrl:."-[,;I P:.-_I! = (A-27)
vher e € IE- If: P, at 9= 4l (A-28)

el |
edn. B

V¢ now nake an expansion in & as foll ows:

o h=4) [(A-29)

4]
peilrep’ Pty
@ |
P1=PL+EF1}+E1P:}+_'.
Tt Bpa Wy obp . o

V¢ can now wite down the nt" order probl emin netric form

o_fﬁ =f N=Clydy 00 (A-30)
wi th boundary conditions
Efﬂ;'= -s-l:"l"'l:' : i :ﬂ.}]h‘l.’ 3 v {.I’L—E].:I
wher e tﬂ“ :
4 = ,,p, 2y T (A-32)
= TR A [J": +xF ?3_1]
-E{ﬂ}' - Hfﬂ:l
= F:L‘M
and _-Eh:', _3_{1'1'? are functions of Ecﬂ 9 P Fl _Em_

The Zeroth Order Probl em
The zeroth order systemis sinply the homogeneous probl em

L8 [orsr, S 4R <o

eln>




(el . &
th'—-[H+;,'—':T—5—‘] Pa + 4 FF'.']= 0 (A-34)

d N A gy )
wi th boundary conditions
Pfﬂ‘.l o al N=e x| (A-35)
P = o ot b=z (A-36)
The boundary conditions inply a solution of the form
_E"] = R [qula} A sm T g} (A-37)

Substituting (A-37) into(A33) and (A34) gives
- i =2
il 1 =) S L ')-—a
XF, -k wp, Tzt
For a non-trivial solution, the determ nant of the coefficients nust vanish,
and this result in the follow ng equation for T
(F +Far2 k)T 0 (F-F)T" (F+F -2k =0

with sol ution
ro_ (R-R)e24/(i-FY)

J:I » F‘ &+ 1 k:'.l; [-’L-EE:‘
and - fa)
- &K, T+1
B= Lt (A-39)

|
It can be seen that instability is assured for all non-zero currents when F exceeds

the critical value a e
=K, =K=1i

This is asimlar result to that found by Pedl osky (8 for the equal depth |ayer
case.

For unstabl e disturbances, it can be easily shown that the maxi mum grow h
rate occurs at sone small, but finite value of K The small ageostrophy of the
flowwll presumably add a correction to T° , and hence the growth rate Re;

This will then shift the critical value of the wave nunber K away fromthe geo—
strophic value. It was decided to take the expansion to higher order in & in order
to determne the first non-trivial correctionto T

However, before this had progressed very far, an experimnment was perforned by
W. Facinelli in the basenent of VW&l sh Cottage at the Wods Hol e Cceanographic I n-
stitution in which this instability was observed, and some crude measurenents were
made of the relevant paraneters. These were

%F—:O.OOS, H, = 3/4 cm H, = 11% cm F=1rzd.g!

and the critical downstreamwavel ength of the instability was approxi mately 15 cm
The width of the boundary jet was approximately 2 - 3 cm For these val ues

£210
=y~ = ——
F=VFRF, e
The conclusion is that such ajet is stable to geostrophic disturbances;
this suggests either that the instability is not a geostrophic instability, or the

r-—u-‘;r-t: b



rigid side boundaries are too great a constraint, and need to be relaxed. It wll
be seen later that this second possibility is probably correct.

The above results indicate that the ageostrophic perturbation problemfor
rigid side boundaries is irrelevant to the boundary jet instability we are inter-
ested in. However, an outline of the perturbation analysis is in order, because it
could be relevant to larger scal e probl ens.

Formul ation of the integral constraint for the nth order probl em

The first and higher order systens in & are in general inhonmogeneous, and
the possibility exists of secularities occurring. Therefore we nust seek an inte-
gral condition on the nth order systemin order to allow a sol ution to exist.

It can be shown that the correspondi ng honogeneous adjoint probl emassoci a-
ted with (A30) and (A31) is
(A30) (A31) 2Ty =0 ( A 40)

w th boundary conditions

af n=t| (A41)

=0
wher e v uf* ,.;
E_Lff' _ ( |1* Ip)
43
b a

If we define the scalar product of two vectors aand b
"'fﬂ. E}l ﬂ-f ll:' + Oy I:I-
then, starting fromthe integral equation

Tep™ LTwydn=0

integrating by parts, and using the boundary condition on E“"’ we arrive at the
required integral condition that (A-30), (A31) possess a sol utlon i.e.,

S £ B >dn+ [« p™) 20w

as foll ows:

. lSl‘nC}eli_E?ha{]d EWIJWM are known, it remains only to speci fy 'J#' It can
e easi
Yy shown (ha | .
y =(E¢)Mﬂ7 (A-43)
wher e -
Y= 50 (A-44)

Equatlon (A-42), Wnen expanded out, can be easily seen to be an equation determ n-
ing vt ) the ntN order correctionto T

The first order problem
The first order systemtakes the form

lrtl I:d] IIJ

4 g ' ET 8
ey [HH:L TTI*'EP, LRA- (% G500 2 ) Lo o pl”)

i i {'l.;' | FT{U 1

[-*Ji i EEH'{?.fﬁr]HI'J ';'FNFW-TJT‘:&

with boundary condi tions 1 o
g, TE dp® N =%
F: dn



o)t dpf
F".L = F2 a‘g 'ﬂ-t f]".'l'-lI
The integral constraint, with n =|, yields the result

=0
Therefore, we need to go to the second order problem to calculate the lowest order
correction to

It is possible to show, after a lot of algebra, that the solution to the
first order system is

(H{") (IE]EM"‘T"{&I )mﬂ?gﬂr }Ewijﬁkrﬁ(wlj-ﬁmﬂp?ﬁl}j{lrfmnﬁ (A-45)

R
where
A
= a7 (B-%)
ue - oy
R
i (@ -)ecsh K
b By ST R
g
2] [é51)(=w* H] ElF+R)
'[ FE KD iFE KT ]p'
g=fam F-'.:I F+F)
6,= [( HE"H o f-‘nF;jK:]

and 5 is an arbitrary constant.

The Second Order System
The second order system takes the form

ﬂ,] K n P +EE;.—FF¢?+§_FTET—|}? }

4

(LR T 8 R
iﬁ [ ’J 10, %Eén}v Ll B p0s R TR

and the boundary conditions are

pr= T2 ‘*,; at =zl
- e dpl .
il Fa d:il ak n= x|
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The integral constraint on this system gives the following expression f.:-rTw'-:

[?F?m' AT = LR (B-NTA [pr*% - - 1JJ+~P [(1#-FD%+

2o-em Ko -2y Ak 'J A=k [ 37 % LT KE-30 A
T raTr? {‘l 1 E E b TT™ LI {2 k"-‘;l

k* \ R Fe

0

srvfﬂKs./Fﬁ’“}][ H~5;mgk,,¢,.wr{fﬁ) T enuh ¥ - ) NLEEWS P

[ fonte o, F
—al [{rf L)k, + féi (T )b, ] - "'-;_;é [T 2@t (T ) (A-46)

B. Geostrophic formulation with rigid-free side boundaries.

LY N — S _ W consider much the same
‘ A kind of model as in A, with the
|
|
\
|

® following modifications. The ori-
gin has been shifted to the right
P boundary which remains a rigid
L J boundary, and the left boundary at
i . . — ey )lgoundlérg?swljl(teﬁnfIrSP(Ija?ai?e%lr?gfgge
N - the left of this. This relaxation
Fig.4 Rigid-free side boundary model. of the left-side boundary follows
from the possibility arising out
of the previous section that a rigid left-hand boundary stabilizes the geostrophic
disturbances we are interested in. The mean depths H, and H, are taken to be the
equilibrium depths of the layers to the left of the free boundary at x = =L, i.e.
outside the jet. As in section A, in the region-L< X < O, the upper layer is in
motion at velocity V and the lower layer is at rest. From the outset, we shall be
considering geostrophic disturbances, and variations in the interface height in the
equilibrium state will be considered small.

If we set F. i w. (B-1)
Fe= ¥, (B-2)

it can be easily shown that
':-a% +V 5 [’-::' IF-F{'F"E-F:I-&T'I (9, -1 }] {IFI:FHI;;H th =0 (B-3)

ar el o
57 % e (We)]- R A ¥iy=© (84

Note that in the region x <-L, ¥=0.

N we can set .
= qt’-': 2xp iLg E-a{-cﬂj

and the equations become
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T D0 oy vee 0 [erngm (% 8= 0
i
[

't _ 4" s all &
i -t GEATEN
V¢ can non-di nmensi onal i ze these equations to sone extent by defining
L

b=
[l
s
~— -3

B o=
F‘ |'F1|—1-
I (A-FigH,
_Fafa b>
(B-F)gHs

5

pa il

thus yielding the fol |l owing set of equations

L (k- 382)4,+ Rt =0 65

Foi ~(P-R YV RE -0 (8-6)
where we have nade the approxination -'g— ~ |,
kS
The boundary conditions on these equations require (i) the velocities to be
conti nuous across the free side boundary, (ii) the nornmal velocity to vanish at the
rigid side boundary, and (iii) the velocities to vanish very far away, i.e.,

g ¢’£g continuous at me=l, =102 (B-7)
¢, =0 at peo,l=l3 (B-8)
¥y Py = 0 at  f==e2, 12,2 (B-9)

Region I: np<=-1, V=0
T (k1 )4 +F 4,0
d'te (kL E) 4, +RE =0

dn
o,
(o) = (22)e
'd:'_:_ By
Fok R E =0
g —~R-f

V¢ set

L

for a non-trivial solutionto exist.

The solution of this equation is
}naSkL> F!"'F;'*‘kﬂ-

For the solution A,=k , ve have a,=a,
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and for 7\2.—.\.;['ﬁ+|:;+k{:| we have @, = = -ll?_ﬂ'l

The boundary condition(B9) inplies that the solutionin Region | is

(1) B)orngy) o e

Region I: -l Cn =D, V- constant
o 5:’:&'—_ {PS*E ?-:;':_}¢I "'F; {PL S
Dby - ((“F%5) gy + R 8, = 0

\] I; ;
Lln'-i.

#—H’-h'?f—c R ;
F Moo Ry Mg |0

W set

The sol ution of this equation is
%

J'U'.I"IH-‘-'I- k-F T%-L_Et_vl:;c_

For the solution ,.'-1=,.IJ,=R , We have
[# :——-J—.

T Vac Q,‘
and for #Ffﬂaaimf{ﬁ%+gi-ﬂnJ
I___
By=

The sol ution for d:l . ¢‘ can be witten

(o) Galsihmns (G oty +{ei)Basiomssay + A PRLFSVR)

The boundary condition(B8) inplies that Bz = By = 0 except when

R —;;E?+ Fi'“';“ = p, inwhich case By = -Bj.

However, in this case Ma=im; . Therefore, without |oss of generality we shall
take B, = B4 = 0, and

" ' | : | ¥
L PAR R

provided i, # iy,. (see later).
Ve now match the solutions at fj==| ; this yields the set of four equations:



ﬁ|+HI*B|w'h ..IL"'I r Eq_a:ﬂ'f'.-‘-"'-‘, - L'I:'

A= E2fy= £ By simh o, + B XS Basimp, = 0
I

MR RLA = By conh o, -, Facse il = 0

?'Hﬁ.-%ﬁlﬁl‘l“ %EIEMMJ- %P:’._:L—E E‘- E"ﬁ-l""'.-"!;-t=ﬂ

c

A non-trivial solution exists if the determinant of the coefficients vanishes.
If we define the following
F= L

F|
SI:II-'L!}= mh%
Slaty)= sam pa
"'-."':.-'t"l'.-:I = T-C‘QJ'-'“.-‘-"-:
CG#:T'—' ol AL 5

this condition becomes

(1+) f;ﬂ% [,u.,u, Clee,) Clata) apas A, C0ADS (uta ) + Piahls S e, ) Ol + 3 A, sgu,jsc’,u,ﬂ—
- (8= 5500 [1208a C () Clptad pt D €St i SPiIC A 0 (4,1 (a2, ] +

+ AR Y- L) sl 0050, Clats) - auald, =2 ) (e Clpan] = O (B-12)

In analogy with the corresponding problem with rigid side walls, where a sine
function was fitted into the jet region so that it vanished at both boundaries, we
can put Mo = 2T

thereby implying

fie+ RGehtam

and Cland =1 Slua) =0

If we substitute these values into (B-12) we should obtain some condition for
the " free-rigid side boundary'" problem to have the same structure as the '"rigid-rigid
side boundary' problem. This results in

27 k [ﬁ (148) & Clu)=Ur+p) p= = C )+ Sfu )+ ale -g-rl,%;m-m] +
FaTA S8 (BY + ALY - o
Since Jlu,i= s.-l.rrJ'r,ul = umhk =R+.k|-t?r...it follows that one root of this
equation is K = O»

This suggests that the "free-rigid side boundary' problem may have the same
structure as the "rigid-rigid side boundary™ problem if the downstream wavelength is
zero, Therefore, it is not altogether surprising that Orlandki derived a growth
rated curve for very long downstream wavelengths very close to the one Eady calculated.
It also points to the error in our intuition in assuming that the "rigid-rigid" side
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boundary probl emcoul d illumnate the nature of the boundary jet instability ob-
served; rather, placing two rigid side boundaries on the jet appears to place too
great a constraint on geostrophic disturbances.
V¢ shal | now redefine
= =
:"‘:a{’!".l"f:: .".-E,: b E vch -k
A=Pam (5 +FRas kY

and, usingﬂrulﬁk; , EQ.(B-12) can be rewitten

(1463 { 8% [Ra € IRIC () KE(H)SC) + AUSTR)C i)+ RAS (IS (ui)] -

— (- S [ (R C )+ #AC (RS () 5 lear S(R)C (e BAS(K)S )+

+Bla%- %) [nlr-R)Sh € ) - w (R-2)5 () (R)) = © (B-13)
uere ¢ (K= coth ke, & ()= simh
C[;,U.}at cos bty 5 ()= HMJ.LL

V¢ now assume that | 44| is small; the notivation behind this is that u=2T,
i.e. 0(1), leads to stability for the laboratory scales considered. Wth this

assunption, we can approxi mate
Clae)=2 |

S () m AL
and Eq.(B- 13) becomes
% 5
MR (1+A1(8 Y& w0 tR)+ASR)+ £ls (Ke (k)4 150 )) -
-k(2p- [T“-_E +p7 "'E"’]‘}{MEK‘H sth))} =0 (B-14)
V¢ shall treat the two solutions to this equation separately.
Case 1.
Here we have {=0 which can be rewitten as
(FHE+R) ™ GE+K)Ves RV 20

The solution of this eauation is

2Pt k> r*-4E R _
# w[i'i'-‘.:ﬁu WY - 3(F+F, + n:;] (Bl=a5)

Thi s node possesses unstabl e sol utions provided
HE R »RY (B-16)
which states that the jet is unstable to long wavel engths, a concl usi on whi ch we
expect physically.
If condition(B-16) is satisfied, the growth rate is

= YEVHER-kY) B-17
k-:L# 2k F+ F, [ ]




Case 2.
Here, the quantity in curly brackets in Eq.(B-14) is equal to zero; this can

be rewritten Ae*— 9BVe + Det= O
where
A = kO+Ri+A7 (e )+ S LK)
B = @ k(1+2)(1+A)(c i+ 8 (r)

D=p[(kephe k= pRNC (Rs(kAsBIN I kESTR

The solution of this equation is

B { +ﬂt§i%§"v/{r+iﬂitfﬂ.l+ﬁ }1;

Cit Ailelha+ SCR)
I't is apparent that this mode is always unstable; the corresponding growth
rate is )
ﬂeu & @‘K"JE 1/"{]-1-.]{](*'::{#]--!-3 i%] (B=18)
LTl (+a)cik)+5 (R0

The quantity under the square root sign is very close to unity for all values
of k, and consequently, this branch implies a growth rate which increases linearly
with k. This branch appears to be an unphysical one. Indeed, if we approximate

ﬂ=(—|‘_€1—+i—f%}f

EHLFVCEO

it follows that

This means that ,uz_L,u It will now be shown that this leads to a trivial result.
When g4 _,u 2, and B,_ are not independent, and the solution in Region II is
not given by (B 11), instead it is

¢, | : A
(m); (# Bisind “**(—ﬁlﬂa“"’*‘”?

Matching the solutions at IR -] gives
A+A + B simh kK- BeeshK=0 (B-19)
A~ A= vie Bisimh Kr 55 Byapsh K =0 (B-20)
MAF A A -kBenhKsKsinh kB, = 0 (B-21)

AA-BHA+ SKB snhK- SEBumbK=0  (B-22)

Eliminating B, and EJ_l from Egs. (B-19) and (B-20) yields

WA+ (v -B)A =0
Similarly, (B-21) and (B-22) give
?‘uﬁlﬂp* }'*ﬂi '.'E..: _.H‘EJF'm:D
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from which we have ."51,5 J'qf“ 0. Equations (B-19) and (B-21) then imply Bx =0= 33-

Therefore it appears that this second branch, with growth rate given by (B-18),
is very close to a trivial solution to the system. At first it was thought that this
suggested that the mode of physical interest is the first case. More will be said
about this in the next section.

The Growth Rate.
W have seen that the growth rate of unstable geostrophic disturbances in

case (i) is given by -
VkJ/(4F B~ k")
2(R+FR+k*)

W now seek the value of .I" at which this attains a maximum; this critical
value of k satisfies the equation

kc: =

k4 3(FaEIRY + 4R LR -y E R (FR+ R )= 0 (B-23)
For the experimental observations quoted above, (f = 1 s-1, = 0.005,
Hy = 3/4 cm, Hz = 11% cm, L = 2 cm.) the values of F1 and Fp are
Fy = Iy ==Y

and (B-23) can be approximated by
yrt + 12k + k*=1 = 0

An approximate solution to this equation is frtes Vq Therefore, the critical value
of the downstream wavelength is approximately 24 cm, which compares well with the
observed wavelength of 15 cm, considering the crudeness of the experiment and the
measurements.

V¢ can understand physically why (i) the disturbance seeks a large, but
finite downstream wavelength, and (ii) it is more likely to be stable with two
rigid side boundaries than with one rigid side boundary, for the following reasons:
It is a well-known result in theoretical physical oceanography that the relative
proportion of available potential energy to kinetic energy in a rotating, strati-
fied flow depends on the ratio of the length scale of the flow to the internal
radius of deformation; for a given amount of kinetic energy in the flow, larger
scale flows possess more available potential energy than small scale flows. Now in
the baroclinic boundary jet, the system i s expected to seek a mode with as large a
levelling off in the interface as is physically possible, i.e., a disturbance flow
possessing a lot of available potential energy. Therefore, the system will favour
large scale flows over small scale flows. Contrariwise, the system would not be ex-
pected to favour flows of too great a scale, because the kinetic energy would be-
come trivial in the limit of infinite scale. Therefore, there must be a finite,
optimum length scale at which the disturbance manifests itself.

In the case of a jet with two rigid side boundaries, if the width of the jet
is small enough, the disturbances will be attempting to assume a length scale con-
siderably larger than the width of the jet, but will be "seeing™ the constraining
second rigid wall far too soon. Consequently, they are much more likely to be
damped than if this rigid barrier were not there, i.e., the "interior" side boundary
was free.

Nw although growth rate in case (i) gave a critical wavelength which agreed
remarkably with experiment, the solution 44=0 gives rise to some grave difficulties.
At a late date in the program, it was noticed by the author that the exact root =0



presents the following difficulty: in the solution (B-11), the second termis trivia
and the set of equations in A, A,, and By may be inconsistent. This difficulty had
not been resolved at the time of witing. It is thought that a closer |ook at the
original condition(B13) may be inorder. In addition, the difficulty previously
mentioned with the case (ii) 'Tﬁx not be as bad as it |ooked at first: the ¢; of case
(ii) is not exactly equal tol/#% V/(1+4), and the sol ution may approach the trivia
sol ution but never actually reach it. One suggested approach is to set i = E(f)where

€ is small, and solve for € . |f these approaches do not resolve the difficulty,
it may be that the probl emhas been ill-posed.

Concl usi ons and suggestions for future work

This project contains both success and failure. W& have attenpted the study
of the stability of a baroclinic boundary jet in arotating fluid. Experinment teaches
that such a jet is unstable under cetain circunmstances. Assumngthe jet is geo-
strophi c, one-dinensional and confined to the upper layer, the Rayleigh criterion for
rotating, geostrophic flows inplies

(i) 1f geostrophic disturbances are confined to the upper |ayer, the jet is
al ways stabl e provided the basic potential vorticity gradient does not change sign
and (ii) for ajet that is w de enough and sl ow enough, geostrophic disturbances (in
both |ayers) may be unstable if the non-di mensional displacement h of the interface
is such that 4-4,7,7,)_ R"’h,;l and f-.,) have opposite signs sonewhere.

The stability of a constant velocity boundary jet with a free interior side
boundary has two branches. One branch, case (1), was found to give an instability
for small enough K_, the downstream wavenunber, and possesses a growth rate,

VRA(YFR-KY)
2(F+ Rt k)
The critical wavenunber K. was found to agree fairly well with an observed val ue in
the |aboratory. However, this branch, defined by s¢=0 , | eads to an inconsistency
in the original condition equation, probably | eading to trivial result.

The second branch | ooks, in the light of this, to be the only non-trivial
branch. To first order, it gives a growh rate which grows linearly with & ; this
soon breaks down as R —/ and the original assunption || small is violated. A
much closer ook at this branch is in order.

The above difficulties are somewhat disconcerting, since on physical grounds,
we can expect a geostrophic instability at a wavel ength somewhat |arger than the
width of the jet. No definite conclusions can be made regarding the stability of
the jet to geostrophic disturbance until these difficulties are clarified.

In future work, of first priority is the clarification of the above diffi-
culties. After this, it would be desirable to investigate the effect of ageostrophy
on the instability. A so, some quantitative statement of the stabilizing or desta-
bilizing effect of viscosity would be very desirabl e.

Acknowl edgnent s

| would like to thank Drs. George Veronis and Melvin Stern for suggesting
this problemto ne, and to themand Drs. Joseph Pedl osky and Stephen Davis for their
many hel pful discussions. | would also like to extend thanks to the National Science
Foundation for their financial support during an active and stinulating sumrer.

Ref er ences

() Saunders, KD 1971 "On the formation of the North Atlantic Bottom Water" in
G F.D. Fellowship Lectures, vol.II: 61-71.



(2) Facinelli, W. 1975 "Geostrophic adjustment: theory and experiment' in G.F.D.
Fellowship Lectures, Vol.II.

(3) Pedlosky, Joseph 1964 'The stability of currents in the atmosphere and ocean,
Part I', J.Atmos.Sci., 21: 201-219.

(4) Pedlosky, Joseph 1964 '"The stability of currents in the atmosphere and ocean,
Part I1'', J.Atmos.Sci., 21: 201-219.

(5) Orlanski, |. 1969 "The influence of bottom topography on the stability of jets
in a baroclinic fluid™. J.Atmos.Sci., 26: 1216-1232.
(6) Orlanski, |. 1968 '"Instability of frontal waves'. J.Atmos.Sci., 25: 178-200.

(7) Eady, E. 1949 "Long waves and cyclone waves". Tellus 1: 33-52.
(8) Pedlosky, J. 1970 " Finite Amplitude Baroclinic Waves'. J.Atmos.Sci. 27: 15-30.

Footnote: During the lecture on this problem at Walsh Cottage, it was pointed out
by Joseph Pedlosky that the free boundary condition in the free rigid side boundary
problem is incorrect in the sense that there is a discontinuity in the streamlines.
The proper boundary condition can be obtained by integrating the equations across

the jump in V, thereby giving some kind of jump condition across the free boundary.

CONVECTION WAVES
Mark Koenigsberg

1. Introduction

The surface of the earth is in continual motion, and over millions of years,
the pattern of continent and ocean has been gradually changing. This movement of
continents, and the formation and destruction of oceanic plates is the surface ex-
pression of convection in the mantle. The nature of this convection is insuffi-
ciently understood. Classical theories of convection in a layer of fluid heated
from below or within have been applied, but little insight has been gained in under-
standing the particular nature of the convection occurring in the earth. It is the
purpose of this paper to modify the classical theory of convection in a way sug-
gested by the pattern of motion on the earth and to explore the consequences of the
theory.

Consider an infinite homogeneous fluid confined between two horizontal planes.
Let the fluid be Boussinesq, and appropriate for the earth, let the fluid be charac-
terized by an infinite Prandtl number. As a basic state there will be motionless
conduction that is supplied heat from below when the heat flux through the layer ex-
ceeds a certain critical value, steady cellular motion replaces the conductive
state. The numerical value of the critical heat flux depends on the type of bound-
ary conditions imposed on the velocity and temperature above and below the fluid.

In what follows, there will be a stress-free, isothermal bottom boundary. The top
boundary will also be stress free. However, the condition on the temperature of
the top boundary will be altered in a way that may be representative of the earth.

Continental material has a much greater concentration of radioactivity than
either oceanic basalt or mantle rock. This excess heat source produces horizontal
gradients of temperature that lead to motion. But, interestingly, the consequent
motion changes the distribution of the variable heating, so that a feedback mechan-
ism between the temperature on the upper boundary and the interior motion is created.
This interaction of a movable heat source and the motion it produces was analyzed by
Howard, Malkus, Whitehead (1970), and Whitehead (1972). They found that a floating
heater can propel itself through a fluid if its heating is sufficiently great, and



they suggested this mechanismas an explanation for continental drift. Their analy-
sis involved a discrete non-deformabl e heater, and the drift was produced by a non-
linear self-interaction of the heat source.

As a natural extension of the problemof a single heat source, we will con-
sider aninitially uniformdistribution of heat source that is floating on the upper
surface of a motionless fluid which is heated frombel ow. The question is asked In
what manner woul d such an initial state become unstable. It will be found that when
convection sets in, a horizontally varying distribution of heat source results. If
the floating heat source has a sufficiently large heat flux, the entire convective
pattern, including the differentiated heat source, will drift along with the wave.
The convection w |l appear stationary in a frame nmoving along with the wave, and the
upwel 1ings and downwel [ings will tilt in the direction of notion. The physical ba-
sis of this phenormenon is the interaction of the surface heating and the heating
frombel ow The heat flux entering fromthe bottomof the fluid is responsible for
differentiating the heat source, and the surface heating leads to the drift of the
entire convective field. This drift that is produced is the result of linear inter-
actions between heat source elenents at different parts of the fluid.

It should be noted that the continents can act as an insulating shield to the
heat coming frombel ow, as well as provide radioactive generation of heat. This
mechani smwas suggested by H der (197). The effect is simlar to the continents
acting as heat sources and will be considered as such.

In Section II, both the equations of notion of the fluid and of the heat
source wll be presented. Then, the boundary condition describing the heat source
modi fication of the tenperature will be derived, and its physical inplications wll
be di scussed. The boundary condition that will be analyzed will be seen to be only
a particul ar exanple of a nore general class of problens that possess simlar in-
teresting features. Section III will be devoted to the linear problem The in-
fluence of the nodified boundary condition will be taken as small so that to | ow
est order, the problemw || be identical to the one anal yzed by Rayleigh. The
second order solution will nodify the spatial structure of the first order sol ution,
and if the heat source is sufficiently great, the conplete solution will nmove with
tinme. Section IV wll present the results of solving the conplete |inear problem
by the nmethod of Fourier Series. It will be valid for all ranges of the paraneters
and reproduces the results obtained by the. perturbation nethod. In SectionV, pre-
limnary nonlinear results will be obtained. By means of power integrals that re-
sult fromthe full nonlinear equations of motion, it will be shown that travelling
wave sol utions have a greater heat flux than the standing wave solutions. So, there
is a nonlinear mechani smfor selecting which of the two types of tine-dependent
solutions will be preferred in finite anplitude. Finallyin Section VI, there is a
general discussion of this type of convection and howit nmay relate to continental
drift on the earth.

II. The Equations of Mtion and the Heat Source-Tenperat ure Boundary Conditi on.

Because continental material is so nuch lighter than surrounding material,
it is located near the upper surface of the earth, and its notion is confined pri-
marily to the horizontal direction. So, let there be an initial horizontally uni-
formdistribution of heat source located at the upper surface of a fluid. Let it
be localized in the vertical at one depth so that 1ts dependence on depth is a
delta function. Al so consider a |ayer of material |ying above the heat source.
The upper |ayer, which will not be allowed to convect will serve as the earth's
thernmal boundary layer - the |ithosphere. The |ayer bel owthe heat source serves
as the earth's aesthenosphere. The upper surface of the fluid at z = =& will be
taken as stress-free for mathenatical convenience.
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The notion of the heat source will be due to advection by the fluid bel ow
and diffusion of the heat source away fromlarge concentrations. The equation of
conservation of the heat source is

2 {. S
'_’-;i_t-.. 3'-:5': [u5]+ﬂ, 'L.f,;]s. K’(aw"‘ Sy (1)

The heat source is subject to moverment by only the horizontal velocity field. Since
the total velocity field for a Boussi nesq flurd has zero divergence,

+ 2Y =0, (2

E_I..l_.-+
92 3}"
the heat source is advected by an equival ent veI ocity field with a non-zero diver-

gence. This will tend to produce concentrations of heat source over downvellings
and depl etions of heat source over upwellings.

The fluid under a concentration of heat source will get hotter and the fluid
under a depl etion of heat source will get cooler. This, however, is contrary to
the sense of the tenperature perturbation that created the upwel ling and downwel I'ing
inthe first place. It is imediately apparent that the critical Rayleigh nunber
for the onset of convection will be elevated as a result. In addition, however,
there is created a mechani smfor the possible oscillation of the tenperature and
velocity fields in the fluid. First, a dowwelling occurs where there is a nega-
tive tenperature perturbation and this concentrates the heat source thereby pro-
duci ng an excess tenperature. The fluid can now becone hotter where it was col der,
so that a standing oscillation or travelling wave can result.

The equation describing the evol ution of tenperature is

2L u wT= K 7 T+ 88 (2-d), (3)

where K- Ls the coefficient of thermal diffusivity. The Navier-Stokes equations
in an infinite Prandt| nunber Boussinesq fluid are

O=-TP+otgTRa YV (4)
where = is the thernal expansion coefficient, ¥ is the kinematic viscosity, and

¥ the unit vector in the vertical direction. V¢ are considering a notionless
basic state with an inposed tenperature gradient of - ﬂ—ﬂfl , and a uni form heat

source S5, . The equations governing perturbations anay fromthis solution are
aﬁ= = Hs EHIE 2=d_ (5)
26 - -ﬂi W+E.vg=ﬁf'€?"&+$5ft-lﬂ (6)
6 = ~YP+oegOR &+ YT U (7)

V-4=0 (8)



If the tenperature equation(6) is integrated across the heat source inter-
face, there results,

- . A
KT[%(Z=¢='+]=%&=A—~;J+E={J (9)

The upper boundary at z=0+h is maintained at 0°C by the ocean so that Blzad+h) = 0.
Since h is nuch iess than <. , the tenperature profile in the upper layer will al-
ways be linear wth depth.

a8 fo -2 . :
nt’:i.r.-::lil-}:; % (10]
The boundary condition for the tenperature at #=d now becones,
o8 - "
E= —E:{S—HT F}i ged - (11)

For conveni ence, the equations of nmotion are non-di nensionalizedwth the
foll owi ng scal es.

distance : d
velocity : Ke/d
tine : f-"-:’f.lc_r

heat source: $5a

Analysis will be restricted to two-dinensional notion, so a streamfunction B is
introduced to satisfy the continuity equation(8.

U—:%; 'Ip".."r:.-u.-'ﬂ-

Taking & .77 x(Eq. 7), the full nonlinear problemcan be witten as fol | ows:

E}++ww,=~:?‘9-f'+;-9,-% &y ) (12)
Ty = 8, (13)
Lp-_-'..r,-tieﬂ =0, 2=0 (14]

v =.I+II'II.‘= I:.'I'.* 51;"‘""":"& = TSJE.'#._{‘PI-S:I_ :E:ffrjﬂﬁ'—.ﬁ.‘} 2=l (15]

”
where R = ""J}(%L“’ is the Raylei gh nunber, r;:f'ﬂ‘l'.is the ratio of the surface
Tt

heat source fTUx to the heat flux entering the fluid frombel ow, &= —E-‘—, and—fﬂhz"ld'
T

In this nodel the effect of heating due to the continents is localized at a
specific depth, and for convenience, is treated as a boundary condition. A dis-
tribution wth depth of the heat source can easily be incorporated. For instance,
consi der a heating source whose vertical structure is naintained on a tinme scale
shorter than the convective tine scale, by erosional processes at the surface of
the earth and chem cal processes beneath the surface. The magnitude of heat source
concentration would be a function of only tine and horizontal position, producing
results simlar to that presented above. 1In this way the heat source can provide
its own heating from bel ow and an external supply of heat woul d be unnecessary. As
a further generalization, the vertical structure of the heat source can be left as
unspecified. Al that is required to produce effects simlar to those dealt with in



this paper, is that there be produced an aggl oneration of heat source in regions of
downwel ling. It is enphasized that the model studied herein is chosen to closely
depict the situation on the earth and to be sinple enough to facilitate the demonstra-
tion of the interesting phenomenon.

III. Linear Problem - Perturbation Sol ution

A convective node that can mgrate with tine is produced by the above feed-
back boundary condition between heat source and tenperature (15). The heat source
is advected by the fluid thereby nodifying the tenperature structure. The (£nRs)
termis the one that yields the interesting effect. The (-#@&g) nerely represents
the boundary condition for a fluid with a boundary of finite conductivity. Its ef-
fect is toslightly lower the critical Raylei gh nunber at which convection occurs,
and to increase the preferred scale of motion. This conduction termdoes not alter
the time dependence of the conduction-convection transition. For this reason and
mat hematical clarity, the (—£&a3termwill be neglected. Indeed this approxima-
tion is valid inthe limt £+& , £y - finite. Inthis section, the analysis wll
be carried out by neans of an expansion infm . As €5 goes to zero, the classical
problemtreated by Rayleigh is produced. In Section |V, the problemfor arbitrary

€y Wil be solved. The full problemwith the conplete boundary condition (15)
wi T not be done at this tine.

The equations to be solved are:

B+ Ry = VB -(Habu- ) (16)
E"'w=£-', (17)
R et NS s (18)
V=Wop=0, St W, 205, — (w,5) + 6={yrS, 22 (19)

The heat source variable, S, can be elimnated fromthe upper surface boundary con-
dition, so that condition(19) becores

B+ EnR Yy = o8- (4H8), . 2= (20)

The problemrepresented by (16 - 20) is nonlinear. The linear problemis obtained
by dropping the nonlinear terns.

Yo Upe=0, B0 Bux=—lnRY,,

a+ R =06
Ty =8y

W=, ,=68:=0
Sol utions of these equations are sought in the form
{w,@}=ﬂa{eﬁm*h’”4‘&}~9{;‘;] .
where W{z)and &{z)can be conplex functions of = . The systemof equations nowis
LwB+ R Yy =78 (21)
Vi =8, (22)
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As £ approaches zero, the boundary condition on temperature reduces to an isother-
ma ctndition @ =0, 2=/ . Since the modified boundary condition will be treated as
small, the solution of the linear problem is obtained by consecutively taking into
account higher order corrections to the boundary conditions. For 1'?'1:]:0 , the con-
vection is steady and the solution can be written as

¥ wi i
L P (25)

"t e t] .p
g, = Ll o laxoutl opm 12 (26)

where the subscript corresponds to the order of the modified boundary condition.This
problem is self-adjoint and requires that

G

s
The minimum value of which
- =t
Rm;“ = %_T ]
is attained at s f
1

There is no time dependence to this order, so that
, =0

However the time dependence is included in (25) and (26) so that higher order cor-
rections can later be incorporated.

Nov consider the first order correction due to the modified boundary condition.

LW 8t R, W, = V78, R W, (27)
T8, (28)
W= W= 5=0, #e=C (23)
z = — LRy (~Laysora?) .
V2™ 2, & = * ,,_,‘1+ rlz.q_q.- q’::lx'! v ==l (30

This linear inhomogeneous problem for W 6 has the same linear operator as the
previous order problem, so if solutions ate fo exist at this order a certain solva-
bility condition must be satisfied. The inhomogeneous terms that appear in the
above equations together with the terms resulting from the boundary conditions must
be orthogonal to the adjoint solution of the first order problem. This requires

- —B_
lw, Loy + R 4w y=-8._6 (221, (31)
where -> and T+  denote a volume average and horizontal average, respectively,
< g g p y

and ¥ denotes the complex conjugate. The third term arises from the modified bound-
ary condition. The boundary condition on &, can be substituted from (30) to obtain,

(w,{EL8y+R, (6 W)= -;ﬁ;ﬂ'c;r{-imﬁruj O W,y o (221)- (32)



This expression can be evaluated using the zeroth order solutions (25 - 26), yield-
ing areal and an inaginary condition. The inaginary condition is:

a g ¢ a Bl = oo
'f-u.L{u_:T+ o oat)- 'l',ff_'?%_l =0 (33)

The real conditionis: i_{"?ﬁ_‘nr{ltﬂp

Condition (33) has two alternatives: .
L . &
L =0 gl U.-:'?.+|j_ ﬂ‘.#= 2l Rea M (35]
1 {’ai-_r. T 1]!-

B
If 0J =0 then R, = M

Fak
If w#0 then R = ofa®m™)"

The solvability condition at this order deternmnes the time dependence of the
previous order solution. The time dependent sol ution cannot exist unless dfp is
sufficiently great to overconme the effect of a non-zero . Aso, if the tine de-
pendent sol ution can exist, it wll have a | ower Raylei gh nunber than the steady
solution. This is because the build-up of heat source is always out of phase with
the downvel ling, and rather than forestall convection, the phase shift allows a
time dependence. The difference between the two cases is accentuated for g°=¢, in

whi ch case = . Vo (36)
W= Gl (289 R)"™, Rizo

This indicates the inportance of the parameter {aﬁ'g".l"‘". and if higher order cor-
rections are desired, the frequency shoul d be expanded in£_ne-half power s of .
Since the frequency appears in the boundary condition as &5 (for #=0), the func-
tion can be evaluated at the nost unstable wavel ength a® = 534, .

w,=VE T (£g)% . (37)

Now that ), and R, are known, the Y, and &, fields can be cal cul ated.
Himnating &, fromthe problemgives an equation for 4 for the caseus#o,o=0.

j
THY - RWyy = L uafats Peldx ety e (38)
W= Hae® Yiaawa =0, 2 w0 (39)
Ws r!i=u' I‘Hq-_';ni _M‘LH:.‘ 3 2=, I:-'-'II:I:I

et

It can be seen that ¥ wll be proportional to strnfa_x-rmr}whereas W, is propor-
tional to &{mx+wt). The effect of the non-zero frequency w4 , is to produce
this out-of-phase solution. The vertical structure of the zeroth order sol ution

is unchanged at this order. If either o #& or the (-£86,) boundary termis in-
cluded in the analysis, there will be a correctionto the vertical structure of the
zeroth order solution. The solution can be witten as the sumof a particul ar and
a homogeneous sol uti on.

W = im (axrut)[ £o2 0 T# + 2 Re(Asimb §.2)] (41)

wher e
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4 = g4 (g

g, ﬁa"|a—t+TE+{I+T}}

g J_ 14 T+T?* = l:l'-I-ID
={4L,}ﬂ

The boundary conditions ¥, = ¥ 2= =¥ i:3z= O are identically satisfied by (41).
Applying the boundary condltlons at 2=/ gives,

“ + 1Re (Asimhg)=0 (42)
@i 4+ 2Re (Aq simhq) =0 ) (43)
-BI + 3Re (Aq¥simhq) = ~E00eTE (44)

(3

These three boundary conditions must be satisfied by the three parameters Ay, A,,

td; . The value of 4 was chosen such that a solution is guaranteed to exist, so
the third boundary condition (44) can be considered redundant. After some algebra
there is obtained:

A s w,[l,'r{nu“+ﬂ']+ﬁ:§}mh1|55“1= f@ﬂﬂnﬁ;.mb_l {45)
: b TasITT (sim 'y, +5imy.)

Fﬁl= ML{EE-?"FH":'# E;E}ﬁmhﬁgm%l- h?n“r“"hQ‘Fﬂmqrﬁ} (46
b1 a™3 T (sim htg o+ g}

The solution for Y is now

= enr(axsat e Sm(arestt) [ (5 B 00T 1A sinhgeenguashppthg psimgs] (47

The solution for & is obtained in an identical manner.

0= ST P sinasutlsine + osloveats) A8 o g 42300k R

where
E.M“*“ﬁtﬁﬂﬁhmw &feinkgtnta] Tf:‘ﬂﬂm (sinhqpageronhtBings) o0
e ey Gy X OREE

s el et 1y SE deambg oes 0§ 0*Temhg 90 5] | b alponbymqusing,

FRaTTE lanh g 5y kg

The expressions Aj, Ay, By, B, evaluated at n.cTTI;‘,'_ are



A= L0308 {-E'::}jﬁ
A,z-.0211 @) Ve
B, =-.2% (Eg}"""
Bys -3/67 (£n)"™
so that the solution is
W = conlarswt)sim e 1-(3*;?14‘;1::1{“;“1}[,%3; coa T+ .06lbsimp 1882 ten ). 52+
+.0422 cesh 3,88250m |, H'IJ (51)

8= 494 5m (e wit) [90.0 2T 2~.592 s 3. 992 o e
+ 2,94 oosh D88 2 i | u*-] (52)

To see the effects of the out-of-phase solutions, contour maps of W and &
are presented bel ow for H’rﬂlﬁ-- 0 and 1 for the travelling wave solution.
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motion of wave




It is seen that for 'Eljl':ll:O, the streantines tilt in the direction of notion
of the wave and that the isotherns penetrate to the surface. The heat source concen-
tration for @=0is nmaxi numwhere the horizontal velocity is maxi numin the propaga-
tion direction at the surface, and a mni numwhere the horizontal velocity is mni num
in the propagation direction. Since the boundary conditionused is &@=€na&, the
hottest part of the fluid at the surface is in phase with the heat source. The nax-
imumof the heat flux leaving the fluid is pushed fromdirectly over the upwelling
to a region behind the upwel i ng.

The contours for the standi ng wave woul d show the magni t ude of convection
periodically stopping and growing. A so, the direction of the tilt of the cells
oscillates as the nmagnitude of convection goes up and down. The contours for the
steady convection show the heat source located directly over the downwel | ings, and
as aresult the isotherns and streaniines are pushed away fromthe upper surface.

V. Linear Problem - Fourier Series Sol ution

The conpl ete linear problemas represented by (21-24) can be sol ved by expand-
ing the unknown functions in terns of a & T2 series. This method can be used to
sol ve general convection problens wth conplicated boundary conditions (see Jeffreys
and Jeffreys, 1946, p.442) . The result for o-#Q@is given by the follow ng two sum
mati on conditions.

i . oy |
L R (tomiic ﬂ.‘?-ﬂ'a.",f_r a.."% i Ti+ ) I:G (53)
A= D nzl -l-:' =
e F L~k :! a
e =
i 3 Fimy

. L
where D= (e ey -Fal) + wr(nt ™ at) .

These two summations can be sol ved sinultaneously for ¥ and Win terns of & and
g= , and the mnimumvalue of ® as a function of ¢ can be determned. As an
approxi mation, consider only the n=/ term For the case w= 0,

R = m;ir‘f,r 2égR 7 (55

=l Ay

For the case w=# 0,
- 2 s o™ ,
wioe al. “?L“"_L{a.f;ﬂ] (56)

K = (a®12P, a{ats A (57]

ar

This reproduces the results obtained in Section III. A'so, this nethod can
be used to sol ve the probl emwith {—4?.51,‘: included in the boundary condition on
t enper at ure.

V. Nonlinear Theory

It was shown that if the surface heat source is allowed to diffuse, two dif-
ferent nodes are possible: stationary convection and tine dependent convection. The
time dependent convection can exist at a |ower Rayleigh nunber than the steady con-
vection, so linear theory says the tine dependent solution wll occur first. The
subcritical structure for these solutions has not been fully studied. But since the



difference in Rayl ei gh nunbers for the two types of solution can be nade |arger as
om—+0, it is believed that there is a paraneter range where the time dependent
convection will be preferred in finite anplitude. The planform that will occur

wi |l also be determned by nonlinear interactions.

There remains the question as to whether a standing or travelling wave will
be the preferred formof time dependent convectionin finite anplitude. It wll be
dermonstrated that (with the negl ect of the possibility of subcritical instabilities)
inthe [imt of vanishing the travelling node has a greater heat flux than
t he standi ng node. Since sol?m ons of the Rayl eigh probl emwth maxi mum heat fl ux
are preferred up to order €* , and we are considering £ it is expected
that the travelling convective mode will be the most stable and "therefore most pre-
ferred solution.

First, the travelling wave solutionw |l be examned. The travelling wave
appears steady in a frame moving with U=aw, so in what follows, horizontal aver-
ages are identical to time averages. Wite,

B= Acer fot+wl)eim Tz (5&)
W= Best fex+wt)gim Tz (58]
A= =L Baim (ax+wtyeos T2 (60)

The value of (£€r) is thought of as being small so that only the zeroth order sol u-
tion is considered. However both the anplitude and tinme dependence of this sol u-
tionis taken into account.

Take the horizontal average of the full tenperature equation,

Ti= Taa- (8], (61)
If (L8), is conputed using (58-60),there results,
'i_:fig——li*ﬁﬁmiﬂa. (62]
The solution of (62) is _ A
A= Tps-R=LE cos 277 (63)

The power integrals for the full nonlinear equations are derived by multi-

pl yi ng Eq. §4) by 4 and Eq.(12) by & and then integrating over volune and one
perio
{GW}‘= = E&'?m-’-_-*} (64)
Eﬁﬁ"-"ﬂ"}r— -EE?“E} (65]

where §_ } is an average in space and tine. Substituting(58-60, 63) in rela-
tions (64-65) produces the followi ng relations between the anplitudes A, B:

2
B %}—E" (66)
AB(R-A8)= Ao %) (67)

The heat flux through the layer is from(63).



e R *‘}iﬁ (68)

Wth (68), Eq.(67) becones

AB(H- 248 4% (a"s ) (69)
Now (66) and (69) can be conbined to yield ;
w3

AB=£(H- L2 (70)

The maxi numheat flux is attained at @z T in which case (68) and (70) give

_ H.z. 2R i 71
Nussel t nunber = S 3 _RJ for the travelling node (71)

when R = R, the Nusselt nunber is one and when R— cothe heat flux increases as 3 K.
Simlar calculations can be done for the standing wave case. Consi der

6=/T Heppwlecharsingz (72)
W=/2 Blews utess an sim e (73)
t.i_'-"%ﬁ Efs.-br‘- wt cimax coa e (74)

The factor of JZ appears so there is the same amount of energy in both the travel-
ling and standing waves. The equation for the mean tenperature is

Ty = Toa- TA'B (14 000 200t )J5in 2712 (75)

Conparison of (75 wth(62) shows that the tine average of 'T', for the standing
wave i s the same as the tine i ndependent Tz for the travelling wave. The sol u-

tion of (75 is o
-p T,=.ﬁ-Afmm[H%maﬁ—;ﬂ] (76)

*lane

m

wher e

tam ¢ = ;:Tf

If relations(72-74, 76) are substituted in (64-65), and the sane nani pul ations are
carried out as for the travelling wave, there results,

{Nusselt} <]+ (-L"‘I:ﬁif I'r’j Ej(f ¥ I:H[%_‘ﬂﬁ)_ 22.: (77)

Relation (77) differs from(71) because the standing wave convects a tine
varying nean tenperature gradi ent, whereas the travelling wave convects a time in-
dependent mean tenperature gradient. As tu—0 (77) reduces to

{Nusselt} > _g_ r%% for the standing node. (78)

The maxi num time averaged heat flux obtained by convection with one vertical node,
inthe [imt (‘.fﬁ,]_,o, Ly =0 , 1S reduced for the standing wave sol ution.



VI. D scussion

The main enphasis of this paper has been the appearance of a travelling con-
vective solution in a convection problemthat classically has time independent sol u-
tions. The nodification was obtained by abstracting a situation that possibly ex-
ists on the earth. [If the heating associated with the continents is inportant dy-
nanically, the continental drift that is observed may be a manifestation of tine de-
pendent convective sol utions as discussed above. OF course, the notion on the earth
I's not one sole travelling or standing convective wave. Due to the variation of
vari ous parameters and different initial conditions, different parts of the earth's
surface can be the realization of different solutions. A great deal of chemistry
that may be inportant has been ignored, so exact correlations with the earth are im
possi ble. Since sonme of the heat produced by the differentiated heat source is con-
vected downwards it is not unreasonable to expect notion on the earth's surface even
where there is no continental material nearby.

It is interesting to conpute the velocity of drift fromEgq.(35). Using a

value for ¥ of | , and a value of ¢ of ifs , and a value of & of | , the value
of the drift velocity is the same order of magnitude as the convective velocity.

One of the puzzling features of continental drift is the asymetry of the
downwel ling regions. It is seen that in the above nodel, because of the drift of
the notion, the convection cells are tilted in the direction of mption. As a result,
both the upwel Iings and downwel | ings are rendered asymmetric. The concentration
of heaf source is |ocated just behind the downwel |ing region which penetrates be-
neath the "continental area”. It is possible that the asymretry of the downwel |ings
inthe earth reflect the fact that the convective notion as a whole is drifting.

The direction of the downwel |ing should point opposite to the direction of the pro-
pagation of the wave. By further studying this and simlar nmodels greater under-
standing of the convectionin the earth may be achieved.

| would like to extend special thanks to Dr. Willem Mal kus and Dr. John
Wi t ehead for encouragenent and assistance in this study.
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PLATE MOTI ON AND THERVAL | NSTABI LI TY I N THE ASTHENOSPHERE
H. Jay Mel osh

| nt roducti on

This paper investigates the effect of a strongly tenperat ure-dependent
stress-strainrelation on the thermal structure of the asthenosphere. Laboratory
measurenents and theoretical considerations concur in predicting that the stress-
strainrelation for a hot crystalline material such as ol ivine(Which is probably
a maj or constituent of the earth's mantle) Isegjpékhe form

[ =l —RT—
Eéj = Bo ':'1__5 e (1)

Were €;; is the strainrate tensor, a3j is the deviatoric stresspor= 4 Tv (o) 030
is the second invarient of 07; , and 8 is a constant. In the exponential, £* and

\/* are activation energy and vol une, respectively. F is pressure and T is the
absol ute tenperature.

Equation (1) displays. the exponential tenperature dependence of £€.; . As
the tenperature increases, Ei} increases so that a hot crystalline solid flows
nore readily as its nelting point is approached. Equation(l) does not apply above
the solidus tenperature. Note that increasing pressure tends to decrease &;; ,
so that tenperature and pressure work agai nst one another. This conflict between

P and T yields the rheological stratification of the earth which is responsible
for plate tectonics. Near earth's surface P and T are lowand the material of
the crust is far belowits nmelting point, so that the crust and uppernost mantle
respond to stresses as elastic solids. This portion of the earth is the Iithosphere.
As we descend further into, the earth both P and T rise, but the T riseis nore
significant. Eventually &;; reaches a maxi mumfor given @7y . A greater depths
T increases nore slowy and the F effect takes over. The region containingthe
maxi mum g.:. is known as the asthenosphere and the nantle material is nost fluid
inthis reé;l on. It lies at depths ranging from100 to 200 km dependi ng upon the
| ocal ity.

This picture of the upper mantle, which allows the rigid |ithospheric plates
to slide over the fluid asthenosphere, involves a fundanental instability stemm ng
fromthe tenperature dependence of Eq.(1). The 50-100 kmthick |ithospheric plate
Is an excellent insulator, having a thernal time constant of the order of 100 Mr.
On the other hand, shearing of the asthenosphere generates heat in the anmount

= 3 _ . If this heat is not conducted away through the |itho-
sgﬁ‘b?éf“l‘h'éntae’/%@rat W& in the ast henosphere nust rise. But then &£, increases
( 0% held constant), the heat generation increases still nore, and thernmal runaway
occurs, ceasing only when @44 is relieved or when tenperatures reach the solidus
and Eg. (1) no longer applies. This phenonenon was first studied by I.J.Grundfest™
who was investigating the sudden(expl osive) failure of rocket engines.

The purpose of this paper is to investigate the significance of this insta-
bility for plate notions. W shall see that shear heating of the type descri bed
above is not an inportant factor in determning the thermal structure of the astheno-
sphere under normal conditions. |f, however, the applied shear stress exceeds a
critical value (og) then thernmal runaway becones inevitable and the nmantle nust ad-
j ust sonehow, either by reducing the shear stress or by generating a |arge amount of
melt in the asthenosphere. This critical stress @« is associated with a critical
velocity 1/ , which |ikew se represents an upper limt to the velocity at which a
pl ate can move wi thout causing thermal runaway. |If ", is assuned to exceed 10 cni
year (the velocity of the fastest observed plates), then &z cannot exceed a few



tens of bars. The stresses required to move lithospheric plates over the astheno-
sphere are thus remarkably small.

These conclusions are in strong conflict with those of C. Froidevaux and C.
Schubert™ who studied a similar problem numerically. These authors found that the
thermal structure of the asthenosphere i s strongly controlled by the velocity of
the plate, and that there is no upper limit to the plate velocity. We shall show
that this disagreement i s due to the existence of two sets of solutions to the equa-
tions, and that Froidevaux and Schubert's choice of initial conditions was such as
to put them onto the "unphysical' branch of solutions. This branch has the proper-
ty that a decrease of shear stress leads to higher plate velocity (a fact noted by
Froidevaux and Schubert), with the logical consequence that reduction of the shear
stress to zero implies infinite plate velocity! It is this property which leads us
to call this set of solutions "unphysical".

The present approach is analytical, and we shall use several approximations
in order to make the problem tractible. W can show, a posteriori, that these ap-
proximations are excellent, and that the results obtained are good to 10%or better.
Our approach is to study the idealized problem of an infinite half-space of material
governed by Eq.(1). W apply a shear stress @«e to the half-space and seek the dis-
tribution of temperature with depth, T{a}). The problem is simplified by seeking
only steady solutions, —%—E=5 (the question of time scales will be discussed later).
In all of this work we ignore the advective transfer of heat. In the real earth
it i s possible that the asthenosphere could be cooled by convection in the mantle
below (although this is contrary to the usual picture of a monotonic increase of
temperature with depth). Such cooling of the asthenosphere is unlikely to be so
efficient as to cause much modification of the model parameters, and we thus neglect
it for the present.

: L .
z Ti=
-3
Y o
Fig.1

coordinates

Neglecting advection, the relevant equations are

" py*
aT T A8 "Eﬂ;i%‘r
Rl R T @)
heat shear volumetric
conduction heating heat production

where K is the thermal conductivity, @ is density, and Cp is the heat capacity of
the mantle material. His a volumetric heat production, and must be included to
produce a zone of maimum &€i; , hence a zone at depth where shearing takes place.

H need not represent an actual radiogenic heat production - it may simply be
taken as an empirical parameter describing the curvature of T (%) v +2.

Equation (2) cannot be solved analytically even for the case Where%[’ffi"—' c.



The main difficulty is the &Tray factor in the exponential. Qur first approxina-
tion is thus to expand this termabout sorme tenperature T, , which will be taken to
be the tenperature in the zone of nost intense shearing. V& shall show |ater that
this yields an excel | ent approxi mation, since the shear heating termis large only

. : . vy
inthis zone. V& thus wite Be" r:;_r Iyﬁ CE_:I:_*_-} (3)
wher e '-%E;'P-"F"J/L
C = Be * (4)
R
- 5
Taz E, (5]
A A (6]

F, is the pressure at the surface of the earth, and we shall set it equal to zero
for our purposes. W& introduce a dinensionless rheol ogical potential tenperature

fie)a %_l:&.. -3 (7)

Equation(2 becones G ':::'+pe"":‘3-ub (8]
L]

wher e p= -1_‘7.—:;:!— (9)

9= Kn (10)

The paraneter § describes the effect of shear stress, while 4 prescribes a curva-
ture(hence a maximum for f (2), even in the absence of shear stress. £ conbines
both tenperature and pressure effects on €;j , such that when £ (@) reaches a max-
imum ¢ j is maxi numal so (G_ij fixed).

Equation(8) is the nmaster equation for the remainder of this work. In the
next section we find solutions of Eq.(8) in terns of a non-elenentary integral, and
exam ne several special cases of the solution. W then use several approximations
tothis integral to solve the general problemin regions of geologic interest.These
approxi mate sol utions are applied to a nmodel of plate motions, and inportant deduc-
tions about the stress-velocityrelation for plates are obtained. Finally, we pre-
sent several numerical models for the earth, and showthat the stresses responsibl e
for plate notions can be no lorger than a fewtens of bars. A discussion of tine
scal es shows that, while it is not certain that a steady state has been attained in
the earth, the critical stress cannot be exceeded by a |arge amount (by a factor of
two or nore) without thermal runaway occurring on a very short tinescale(a fewtens
of Myr). Thus, the relation between stress and vel ocity deduced fromthe steady
state assunption is probably not far fromthe correct rel ation.

The Mat hemati cal Probl em

Equation(8 can be reduced to a first order differential equation by use of
the integrating factor ﬁ- . Theresult is

'ﬁ_ - tfz{P{E;”'E"tm* %(ﬁ'n'ﬁ?»} (11)




- l
The constant has been determ ned by requiring that ﬁﬁ‘—:-ﬂ when + =4, the
maxi mum potential tenperature. |f the maxi mum {(?)occurs ati.?:;gm , then the sol u-
tion can be witten

O PR £
[ e} e
E"!ml i'lf -n;.-‘:[fi.—- I {%P(:m_ ] Tl_r_l"' ;{Eﬁl) |3.E_'|
where I (=4,3) is a non-elenentary integral , Is
I(xp)s

(e ST
The properties of I (e«,(3)are described in Appendix I.

Fquation(12) inplicitly deternines £{=)in terms of the two arbitrary con-
stants $ and =& . If these constants were known then our task woul d be conplete,
However, in the geol ogical problem we nust consider these constants to be the re-
sul't of applying other boundary conditions. In particular, we shall specify the
surface tenperature T(e) (hence L(s;, and the heat flux (hence 4£-) at some depth

z, Which lies far bel owthe depth of significant shearing., W then ask what are
the val ues of f» and 2s for given p , %,and fixed {3, %| . In this way we
shal | find that solutions exist only for & finite range of p: = ~

Let us look at two special cases of the solution(12):
(D) p= 0 case (no shear stress)

This is the case of pure conduction, given +.e; and %| Since
T (a,8)=2 " Eq.(12) yields .

(13)

. . . 2
5 -f@ =1t (2-20) (14)

this is exactly the formexpected for pure conduction. |f we define ;“!if ==b 3
then the boundary conditions inply '

¥ o _ b 15
Ern !b "15 I: _-,I
¥ -

{-m = {-EI?}-I- —;LEIF_J (167

The superscripts on Ex and -F:ﬁ are to indicate that they are solutions to the pza
(no shear stress) problem

ol o , . on
Not e that ?Iijeb nust be negative in order for a maximumin 4 ¢z) to occur

[%L > o). However, this does not inply %zb": O as EQ.(7) shows. W

merely require a4
d'_Tj | / : -
AT £
The maximum 1n -F(z)_occu_rs when —ggly ® % Thus the condition for a zone of max-
amum fluidity to exist is sinply

d g Bw d.'aL
In the earth %ﬂ—h 03 - 267 /km , while at great depth %} is near the adia-
Z2= .

batic gradient, .3 - 1°C/km. It is readily found that T..ﬁ./z, p3 [-4°C , so that a
zone of maxi mum fluidity nust exist between the surface and the region of adiabatic
t enperat ure gradient,

(18)



=

(9 g=0 case(no heat generation)

In this case ={—==o and Eq.(12) can be integrated exactly. Solving the result
for f(z)we obtain the exact solution

[ o o
f-fm o 2 ém {mﬁh[ - (2 ;2,,,.,“1:]} (19)
If 2, >>%,,, then %L; - deternines fm;
fp=dm 3'-;— (20
from whi ch 2., can be deternined i f [¢s)is fixed;
=1 L .
2 = 2 £ aeth { =5 V| (21)

There are two sets of solutions, one set correspondingto 2, > o (shearing zone lies
within the mantle), the other corresponding to z.,< ¢ (shearing zone above surface -
no maximum §¢z)occurs within the nantle). Since the argument of ceaki™ must be
greater than 1 for a solution to exist, we find an upper Iimt p, on p :
=
pE P = Lt (22)

I n ot her words, L]
= _T- LS|
Gl O = [1}; e “‘"“"] (23)

The correspondi ng vel ocity can be determned by substituting }ﬂt}in Eq. (1)
and integrating fromz = soto 2 =0 . Theresulting differential velocity can be
expressed as

™ LT
L. L [11 - ﬁ} } (24)
wher e
v Kb (25)

e
The two sol utions in Eq.(24) correspond to the two sets of solutions in Eq.(21).
Most of the differential velocity between the bottomof the shear zone (z — <) and
the top of the shear zone (a— =&a) occurs in a thin |ayer of width w =44 cen-
tered about == ®gm. In the case 2,<@, the surface velocity v-is a small fraction
of tlhe velocity for 23>0 , since the zone of maxi numshear does not occur in the
mant| e.

The branch of solutions for =, > corresponds to the (+) sign in Egs.(21)
and (24). Equation(24) shows that as s — 0 ,u4. — oo Wth €54 1 == const ant
for gy« <« gz . This state of affairs, in which a decrease in shear stress |eads to
an increase in velocity is physically absurd, and we |abel this set of solutions the
"unphysical" set. Al solutions with v/z > 1 belong to this set.

The 2y = @ branch of solutions if "physical™ in the sense that as
Tog — 0 , Vi Oxe which is the correct limt for |ow shear stress
wher & the t hérmal ™ st r uct Sre 5/ thd mantl e i s not affected by shear heating. Al phy-
sical solutions have v/ ¢ 1,

These two sets of solutions coincide for ==z . To interpret the unphysi-
cal set of solutions, note that as o-— ¢, 2,—sc@for this set. In this case
£ =0 fromthe surface down to ®m, so that the fluidity of the mantle increases
owwvard until either ®m or the solidus tenperature i s reached. These sol utions
thus correspond to a mantle which overlies a fluid stratum and in which the fluidity
i ncreases nmonotom cal |y with di stance down to the stratum Such a mantle has no



asthenosphere. Shear stress applied to this mantle would actually result in motfon
over the fluid substratum rather than in a zone of shearing within the much less
fluid mantle, so that such solutions are mathematical fictions (i.e., they imply a
violation of the approximations which led to Eq.(8)). It is thus highly unlikely
that this set of solutions has any relevance to the real earth.

The physical set of solutions has %50 , SO that the fluidity of the mantle
decreases with depth. In this case shearing is confined to the upper layers of the
mantle, and solutions for p—©0 do not violate our initial approximations. As F
increases toward B, , 2, approaches 2 =0 , reaching it when g= g

Both sets of solutions are plotted in Fig.2.
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Fig.2 Solutions for the 4= 0 case

Neither of these two sets of solutions coriﬁspond very well to the earth's
mantle. The trouble with the g=0 case is that is constant in the absence of
shear stress, so that the fluidity of the mantle must either increase continuously
with depth (unphysical solutions), or decrease continuously with depth (physical
solutions). In the latter case, the maximum fluidity occurs at the surface.

Current ideas, however, require a zone of maximum fluidity at some finite
depth (100-200 km). W& are thus led to consider cases where ¢ #0 . The solution
for pure conduction has made it plain that $¢2! may have a maximum L., at depth &,
when p=0. We thus expect shearing at small p to begin in this region, which lies
at a controlled depth below the surface. W can examine solutions for larger p to
see hov more intense shearing modifies $#p, and 2= from the conduction solution.

Specification of %Lh" -b for 7, #»®, allows us to neglect pef(®el ;.
Eq. (11) which thus yields

S'm--F{E.p‘;.- _I?“‘—;l{.ﬁ (26)

V¢ determine #, - 2. from (12), using (26) to eliminate + (24) :

T P ( 2pef™ | b‘—zpe‘ﬂ‘"’> (27)
21 E"'jPﬁ'FH 11:
W can always choose ¥} sufficiently deep so that b*=> 2 pe  , and (27) becomes

- e
R A = @

e



Above 2. we use Eq(12) againtorelate Z.to fL= :

- Fre
SONE TS )
Thus, the problem is to use Eqs,(27) and (29) to determine &, , in terms of
Jtey, ﬁ.ﬁ. = —p for given P, 4 . Once £y, 2, are known, - can be determined by

equati ng the surface heat flux to the energy dissipated by shear heating,a 7~ , plus
the heat flowing into the bottomat =y and the heat generated by the g termin(8).
Since all quantities are known except -, we find:

Ve KR /2 [plebn - %) 1 q (£, - o)) - g (2 - £} (30)

Equations (27) and (29) are too conplex to be solved anal ytical |y without
approxi mations. Equation(28) is a valid approximationto(27) in all cases, where-
as (29) can be well-approximated in two regions. For sinplicity we adopt nondimen-
sional variabl es:

~b
A= 'ﬁ-}{- (31]
p= Pef” (32)
N= hm-feed (33)
In terms of these variables Eqs.(28) and (29) becone
a'lgim%‘i,ﬂ-r“f:T'Peql (34)
|d||:h
28 3w = ‘rTI[:% ; "i"“::' (35)
The two cases are
a) T =FLoiz=p =27 |
Equation(35) is, for .-Eﬁiﬁi-q-tl (which we shall denonstrate is the case).
%
TG tm = 27-1 (I- ) p e’ (36
Conbi ning (36) and (34), and realizing that v =4, we obtain
N -s= (1= s ) e 7

In general this nust be solved iteratively for n s however, it is easy to show that
solutions exist only for ~</A where

B.= LA Vi *3"” (38)
i
] =
R i 3
P {rﬂ?_ﬁ] e (39)

for ¢=2043H = and we recover the conductive solution. For large .. ,‘i':f‘,uq--—'-
so that #e and AL differ only slightly, as previously assuned (if 44 i'S not >z |
then n*is not =>1! and the entire approximation fails, so this result is consistent).
Mor eover, b

el 8* _ i
F’?" < ﬁ?: T e | (4m

Thus, this approximation is self-consistent for AL==|. In practice, it works



well for g¢Z 2. This condition will hold for nearly all earth models of interest,
so this solution IS very useful.

b) frp -1 =n*<< |
Equation (35) is well approximated by
a4
sy = 41
125 2m = o e
which, together with (34) yields
2+ el % abbre (42)
this equation is readily solved only for 44 =0, in which case
Pe = ,292

(43}

J;: = 0l
Thus, q:‘iﬂf-las required. Again, g and r']: must be determined by iteration forpfﬁ_-

Once and are determined, all quantities of interest can be expressed in
terms of them:

o ¥ 2+ /50 pe'l (44)
Lo = Jo f.'*g ,#} (45)
- S
a;l = (_E._] s (48]
v _ o[ dfe li-e" )1y s
v "'{vr AT (1-e")+ 1T ,U-J. )
where L
ﬂ: A [ ﬂ _";ll"ll F\]ﬁ*l [45]
v, = @{d@ﬂq‘fl—ﬂ'q:}w: -,u.} (49)

Furthermore, by expanding T (o, b) about z,, to get -?(2“) near -F,.-.., , then integrating
EL in that region, we find that v () behaves like an error function near . , and
IS appreciable only over a zone of total width

§ = 2 m
W= .|| 1PE Py (50)

which is valid for \o -fﬂl (as it isin all cases). As p-»0 , we define the
width w®=Jamn/g, in time of which

-]
AL= VT EW:% (51)
Thus, AL>>1 implies that the width of the zone of shearing i s much less than its
depth. In the pe=0case, 27,20 and the region of maximum fluidity lies at the sur-
face when p-—0 . The most striking conclusion to be drawn from these equations
is that even at @ =g, the thermal structure of the asthenosphere is only slightly
different from the @ =0 case. Thus,
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2 23 = '”'*: W (52
:F:""fi"’—“"’?:"ﬂ“ig | ﬁ.,. w7 | (53]

Si nce em<<| for all a4, and |ikew se 1;1,:—.1-4!"'»‘: 1 for all A4, we see that
the depth of the zone of maxi mumshearing increases by only a small fraction of its
width (.26 for 4iL< ¢, decreasing to .03 for &t =5 . The mximumis-{. £ 1
so that the tenperature difference between the state wth &= and that with g=g

is at nost T« - a matter of 20 - 80°C for estinmated mantle paraneters.

Thus, as long as ¢ « g (hence ‘U =[] shear heating has no profound in-
fluence on the tenperature structure of the mantle. It is only when g==a; or
=V, that effects of shear heating can becone appreciable.

To meke this point clear, and to denonstrate some solutions to Egs.(37) and

(42), we plot -rfuy versus aoefor m=3in Fig.3. W again see that there are
two sets of solutions to Eqs.(37) and (42), one set (the '"unphysical' set) with
Ve s 3_"'-" < O, while the other set (the "physical” set) has 'J;'cg‘,%g »0.
Only the pﬁyai:al set is connected to the ¢ =0© conduction solution through a con-
tinuous sequence of states with increasing o~ . The physical and unphysical sets
of solutions coincide at 5~ = @2 . The unphysical set of solutions (which have
large ® =7, 1 do inply profound alterations of the mantle's thermal structure, with

—eoas o—+ 0, As before, however, the 2% <= 0 property has the absurd implica-
tion thatw-—se2as o~ —» 0, SO that we reject the physical existence of such sol u-
tions. Only the 'physical™ set of solutions yields the expected -r~-g="g dependence
of velocity on shear stress for gfs < < 0% .

T

sl
Infact, for guaecdy , = A+ (fir-3@ie"m ...vhen =2y,

/
e ¥
Substitution gives the expected result v 2 3pe — Sret— . ", » but only for the

physi cal set of solutions).

V¥ thus conclude that only the "physical™ set of solutions may be applied to
the earth's nmantle, hence wr="%in all cases. These solutions do not involve sig-
ni ficant changes in the thermal structure of the mantle, even when o =gz . |If

g =0 , however, no steady sol utions exist and the tenperatures in the zone of
most intense shearing nust rise until new cooling mechani sms or physical processes
come into play. The actual values of g7 and - are thus of fundanental inportance
for plate tectonics, since they mark the boundary between a regime of sinple shear-
ing without marked thermal di sturbance and a regi ne where shear heating nust omi-
nate the thermal structure of the mantle.

Applicationto Plate Mtion

The previous section has shown us the inportance of the critical shear stress
g and critical velocity v to plate motion. The nunerical values of these two
quantities decide the nature of the asthenosphere; if <, = = shear heating has
little influence on the thermal structure of the asthenosphere, whereas if g3, = o=
the entire structure of the asthenosphere nust alter in order to avoid thermal run-
away .

It is a straightforward exercise to devise nodel nantles for given val ues of
Tees, 513?"% and heat production H Assigning | aboratory values to the constants
in Eq.(1), the equations given in the last section suffice to determne =z, W, 1§
gz , etc. for each of these nodels. The detailed description of six nmodels is
given in Appendix II, where the thermal structure of the models is described in some
detail. One clear result of this nodel building is that 4+ =<1 in all geologically
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Fig.3 Shear stress - velocity relation for various thermal nodels of the
ast henosphere. Curves are included forae =0, 3, 5 as well as for
t he exact g=0 sol ution.

reasonabl e nodels. (This is alnost obvious, since «c=0inplies 2., =0 yet we do not
want to attribute the maximumfluidity zone of the upper mantle to the surface. W
nust thus require AL# 0, and we will nearly always find ¢=>1.)

Even in the case that ;4 >>»]1 , the equations for g and "W are conplicated,
and their relations to each other and to the other inportant parameters is obscure.
I't is therefore useful to derive crude approximate expressions for oz and 1% ,
accurate to 20%or so, which express the dom nant rel ationshi ps. such expressi ons



are the only ones likely to be useful in evaluating geological data, since the vari-
ous input parameters cannot be measured with any great precision.

Table 1.B. indicates a sort of inverse relationship between ¢, and ;. |If

o is large, g is small, and vice versa. This suggests thatg,uz may not be as
dependent upon the input parameters as &7 and " above. This suggestion is borne out
in Eq.(49), where we see that

Y e %
vos = {13 KT [VRe™ (1-e™ ) ? —u) (54)
using Eg. (39) for r'?i""ti , and expanding Eq. (38) for r, when i3, we find that
o= EAL 55)
which is valid to ca. 5%for 4L =Y. Noting that sie —}'1-:“. we obtain the useful
formula ©T
V= =t (56)
2

Since we can estimate a lower bound on g for the earth, 12 [0cm/yr (Suppos-
ing that the fastest observed plate motions are below the critical velocity), we ob-
tain an upper bound on the shear stress responsible: (%)

T, (K
= #* -
e (bav) = lo4 F LRI U (e o) (57)
(where we have put K= .008 cal/cmzrrS-l::l:—Dk:I. Taking = cm/yr, T = 50°k, and
2 = 100 km, we obtain a strict upper limit
g; £ 472 ban (58)

Depending on the model chosen, T, and =% may each be varied by as much as a factor of
2, (although larger =z, , by requiring larger T(zm)implies larger Ty , so that Te /2w
does not vary as much as each individually). Such variation from model to model, how-
ever, does not alter the basic conclusion that the shear stress acting on the 1itho-
spheric plates must be less than a few tens of bars in order to avoid thermal insta-
bility.

The product wga; is not sensitive to the theological parameters of the mantle
in any direct way. The value of g% (hence U ) above is, however, much more depen-
dent upon these parameters. This dependence can be readily seen by substituting Eq.
(39) into Eq.(48), expanding ¥ie .in terms of AL , and keeping only the leading terms
for m>>1. Note that e™& = efe~fled oo 45~ ¥910 a factor ). The error by
a factor & is reduced in taking the [/fi+mn) root of € . Rearranging, we obtain the
simplified expression

K Te r
VL '] Al

T o=

c

9

IL.iE'E_ AL || (=)
_ EmPVT .

where the denominator e o i s just the coefficient relating I.E.;j andu‘“"'df_;
in Eq. (1) for the temperature and pressure prevailing in the zone of shearing. This
expression is good to about 30%or better for AL24 and F1=3. W see that the major
uncertainty in evaluating this expression for a given earth model is the value of
the dtenor{linator, which can change by an order of magnitude for a change of 100%
in T (@ml

Finally, it is useful to define an effective viscosity Y. for the shear zone
at a stress @ . By definition,



= £ ]
Y, = Tw (60)

hence, using(56) and (59), we obtain _ E:;iu"

%)
This equationis valid to only about 40% for 44 = 4, N=3; however, it is useful for a
rough first approxi mation.

The Question of Tine Scal e

Al though the time dependent version of Eq.(2) is too conplex to solve anal yt-
ically, we can get a rough idea of the tine scales involved by neans of the Grundfest
parameter G | .J.Grundfest®! defined a dimensionless ratio of the two tinme scales
rel evant to the thermal instability guestion: the time for thermal conduction ¢+, ,
and the time for the tenperature to diverge for zero thernmal conductivity, t.. . Thus,
G= te (62)

Too
If @=z1then t..= t. and the tenperature rises uncontrollably until new cooling
mechani sms come into play. If G < 1, then conduction suffices to remove the heat
generated, and steady solutions to the tenperature field exist.

The thermal conduction tine scale can be estimted by the usual neans, and
we find 2

t.a 5]
kpee

where the distance scale is taken to be 2. , the depth to the zone of heat pro-
duction.

To’eStimate the tinme scale for thermal runaway, we nust use Eq.(2), neglect-
ing the conduction term Let the initial tenperature correspond to a steady
state characterized by stress paraneter @, . To this steady state tenperature
T ( e, =) add a smal | time dependent part & (=,t). Suppose that & Is suddenly
changed to p . Then the tine evolution of T(z,t) = T’(p,2) + G{t,2)is given by:

(63)

i up
g? " “—F'rgr—eT' *'{Pe:’%—l?"]' (64]

This equation is very difficult tointegrate unless p*=0. For small & ,B<<T.,

the tenperature behaves |ike 0 o
96 = KT + — g -
P fte I'L[F p*)+ L) (65)
where ve have written L L -Fo%) Upon i nt ti ith &(a,0):=
" T B (2). pon;gegralon,w 8,8]=0.
) t‘:
elta ,M[EP ‘ret-q (66)
Te P
The tine scal e over which B changes by T, is thus of order
te = &% € (67)
=T kT e '

This is alsothe time required for B to divergeif p°=Q in Egq. (64), so that it is
the appropriate time scale. Note that as ¢'p becones larger, the tenperature di-
verges nore rapidly (t,, decreases).



The QG undfest paranmeter is thus o
_ St £ (2:' ;
G = B, ope (68)

It is easy:to check that for 6p-= . (the largest g allow ng steady sol utions),
and ete® = efm | we obtain G = Jufet,-;-,v{ifn,:.uﬂ. Qur results are thus consis-

tent with Gundfest's.reasoning, since we find no steady solutions for &=+ . Nar-
rowi ng the shear zone adds stability in the sense that steady sol utions exist for
larger & as 4t increases. Note that for the unphysical solutions pef' is general -
ly larger than p.e 79;1, so that & =1 for all such solutions. The physical sol u-
tions have Fe'F’ less than g aﬁ-:n , SO that &< lin the physical region.

Equation (66) provides even nore evidence for the non-existence of the unphys-
ical solutions. This .equation shows that a sudden increase of p invariably causes
the tenperature torise at all depths (for either set of solutions). This tenpera-
ture change is in the right directionto get to the larger b steady state tenpera-
ture distribution for the physical solutions. The unphysical solutions, however, re-
quire that an increase of ) yields |over tenperatures at all depths (see, e.g. Fg.2).
Thus, if the mantle were in a state described by an unphysical solution, and the
stress were suddenly changed, the tenperatures woul d rise, noving away fromthe
steady state solution for the newstress. It is thus plausible that the new steady
state is unattainable. A prelimnary linear stability analysis for the unphysi cal
sol utions shows that they may be marginally stable to infinitesinal slow tenpera-
ture perturbations for stresses close to the critical stress. It seens unlikely
that they are stable for finite anplitude perturbations, but this work is still in
progr ess.

In any case, it is clear that the time required to reach a steady state sol u-
tionis of the order of the thermal conduction time constant t, . This i s supported
by the nunerical calculations of |.J.6rundfest™ and of N. Fijii and S. Uyeda, where
steady states were attained after a time t. had el apsed (when steady states were
possible). This tine constant depends upon the depth of the zone of nost intense
shearing. Sanple val ues for depths of geoghysi cal interest are given in Table |

(where we have taken k = .008 cal/cm?-sec-Yk].
Table |
Dept h of Ther nal
Shear Zone Ti me Const ant
m tc
30 km 36 Mr
50 99
70 194
100 400
150 890

Time constants of the order of 100 Myr are thus to be expected in the earth.
Since nuch of the ocean floor is younger than this, it is not necessary that the
actual tenperature profile of the earth follows one of the steady state profiles
derived in this paper. However, if the stresses acting on the |ithospheric plates
of the earth were much in excess of the critical stress, thermal runaway coul d occur

on a much shorter tine scale than t.. Infact, since t.~lp on £ _, ™ Vo "%,
we can concl ude that thermal runaway occurs on a tine scal e of roughl y
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Thus for m=3 , applying a stress =2z , thermal runaway is reached int./ /& , or
about 5 Myr. |f the possibility of thermal runaway is excluded in the earth, then
Stresses nust be close to oz , even though a steady state has not been attained.
Hence, even in this casecz(and w;) play an inportant role in marking the boundaries
between different regi mes of plate notion.

Concl usi on

\\¢ have examined the equations describing the motion of the Iithosphere over
the asthenosphere when shear heating is taken into account. There are two classes
of steady sol ution, which we have |abel ed the '"physical'" and the "unphysical' sol u-
tions. The physical solutions exhibit a stress-strain relation which at |ow stress
is simlar to that for no-shear heating, but which deviates fromthe |ow stress sol -
ution as a critical stress ¢ is approached. There are no steady solutions of any
kind for stresses greater than@> . The velocity correspondingto o is finite, and
has a value v, The velocity of the plate is less than v, for all physical solu-
tions.

The unphysi cal solutions all have velocities greater than v, , ranging from
V.(at gy, =07 ) t0 co(at oz, =0 ). Velocity and stress are inversely related for
these solutions, Udyxz 2~ constant, which |eads to rather bizarre mechanical behavi or
Such solutions appear to be unstable(or only marginally stable in certain specia
circunmstances), and so are unlikely to be of any inportance to the earth

The physical solutions inply only slight nodifications of the thermal struc-
ture of the mantle, evenfor a3 =gz . Thus, as long as gz4 <07, the heat gen-
erated by shearing can be neglected. However, if o7, exceeds &z , the tenperature
must inevitably rise until new physical processes come into play.

These new processes include the production of large amounts of melt in the
ast henosphere (which nodifies the stress-strain relation) and rel axation of the ap-
plied stress. 0.L Anderson and P.C.Perkins® have suggested the association of ther-
mal runaway Wi th volcanism This process could lead to cooling of the asthenosphere
by the extension of basalt, and a new sort of steady solution mght be attained by
this means. |In any case, if o3, >0z the physics of the asthenosphere nust be dom
inated by the need to get rid o? the excess heat devel oped by shearing.

Assuming that the present plates are moving at velocities less than v, , we
obtain a strict upper limt on gz of a fewtens of bars. The stresses driving the
pl ates nust then be very small (corresponding to viscosities of ca. 1019 poise in
the asthenosphere). The actual stresses in the earth mght be sonmewhat higher than

oz , Since the time required to reach a steady state is of order 100 Myr. However,

i f The stresses are nore than a few tines &= , thermal runaway occurs on tine scal es
of order 10 Myr or less, and the thermal structure of the asthenosphere must be dom
inated by the need to avoid this divergence.

The paraneters @z and v, thus mark the boundaries of a regime of plate no-
tion in whichthereis little shear heating of the asthenosphere. |f stresses or
velocities greatly exceed these critical values, then an entirely new physics nust
come into play in order to dissipate the excessive anmounts of heat generated.



Table II

Mbdel Mant!les
A Mdel Input Parareters
Surface Adi abatic Depth to Depth to Rheol ogi cal
Model Tenp. Tenp. top of bot t om of scal e
# QG adi ent QG adi ent transition transition wei ght
q zone zone
/i ¥ Ze a0 3
1 139C /km . 3OC km 100 km 200 km 1500 km
2 13 o3 L0 200 500
3 13 .3 50 200 1500
4 13 .3 50 200 500
5 20 + 3 50 100 1500
& 20 .3 50 100 500

& have taken T (&) =0C for all nodels. The stress-strainrelationis assuned to
be of the form E*®. Py

» - 3 =
£y = 4.2x10 ToeT AT

where E® = 125 k cal/mole, and W¥=11.9 crd/nole ( I = 1500 km. or 35.6 cn/nol e
(& =500 k. The thermal conductivity k = .008 cal/em?-sec-Ok,

B. Mdel Rheological Results

Model Depth of Wdth of Tenp. Tenp. -%;’; Oitical Oitical Efective
# shear shear in shear para- at#s stress velocity viscosity
W ey vk YU,
1 190 km 63 km 2229°%  79.1% 1. 5Kkm .33bar 1405F  5x1017 poise
2 168 61 2163 74.5 4.3 1.8 26 1x1019
3 184 63 1831 53.4 1.0 1.4 23 1x10%?
4 157 61 1766 49.7 3.5 12 3.0  8x1020
5 98 28 1778 50.3 1.2 1.5 38 4x1018
6 92 28 1764 49.5 3.5 4.7 12 4x1019
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Appendi x 1; The structure of I (,(3).
Definition
T (o,8) = ‘[ ... <
ffi-u-nﬁ[_l e*‘”]
In general, o= T(af)<lfor 211 w20, g20
Aplot of Lfet,2):

Approxi mations to I (=£,/A3);
I (=, 0)=
T (=,8cc )= ',i'__l&_].a
I (1) = 2(vived -Vt 225
I(t,ee) = 2 (Ve - V&)

I{E].,r‘i}: i
Tloce,B)E 2 +at[1-€" - /T & erf VA"
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Tlxwr1,e0) =

Appendi x 1I: The construction of rheol ogical nodels of the earth.

In this section we show how to determne the parameters &%, 1., etc. which
are needed to calculate theT4 vs - relation for plates. Gven these paraneters,
we can use the equati ons of the second section of this paper to conpute such quan-
tities as w0y 1, , and gz . It is possible to sinply specify these paraneters,
and assune that the thermal structure of the upper mantle i s such as to realize

them However, it is useful to see what values for 2% , 4t , etc. plausible ther-
mal models yield, and that will be our motivation in thefollowlng wor k.

It is quickly found that thernmal nodels with constant heat generation g do
not yield a good representation of conditions probably existing in the asthenosphere.
At great depths the tenperature gradient is probably near the adiabatic gradient,
whereas near the surface the tenperature increases with depth at a higher rate. W




thus approach the probl emby assuming a linear tenperature gradient (4,2 ©) down to

a depth 2, The gradient is & /r , where Qs is the surface heat flux. Between

depths 2, and 24 is a transition zone where g#& . A depths greater than 2 the

tenperature gradient is again linear (4,=0Q , and is equal to the adiabatic gradient
¥ . Inthe transition zone g is determned by requiring that the tenperature prc-

file is continuous, and has a continuous first derivative. The heat production

s thus ficticious, and we only use it to enforce the curvature of the tenperature

profile, and thus to localize the shear zone. The val ue of 4 IS

i) é—r)
(e Al (A.1)
hence from w®= /1T/g,
W = of 21 T (Eape)
W )/ Y (A.2)

The tenperature profile in this model is given by

z.{z.,;a,,_t
The upper zone with g=o has no effect on the boundary conditions of the probl em
except to change the apparent tenperature at m=ofrom T(e)toTys (0 ) , where
Tagpted = Tty = (£-7) —’f—h : (A.4)

5 (o) may be negative. Except for this change, the calculation of the thernal
structure of the shear zone goes through as before. W define paraneters B, C
by means of

T(z) = T%f (o) + B2 - Ca* [A.5)
The zone of initial shearing is |ocated where
v T
—E—f:— = {ﬁ = fi__',__-.T L) = J—?Uﬂ . (A.6)

where T = E;’F V¥is a sort of rheol ogical scale height. Since V is very poorly
known, . we performthe model cal cul ations for

_ﬂ 1500 km fE“T- 119K ':ﬂll.l'llm.t'lﬂ J".-"'*= rrlq'}ﬂ'lj_;"llrhﬂl.!,}

and T =500 km (E"=1ask calimele | V™2356 er¥/mole).
Equation [A.G) yields a quadratic equation for =z, ,

— 1
2= Brafc-|{B+27c) + 40 Tpelol=1B)
w= Brilc '.EE* L )y 05§ 1 (4. 7)

once Emis deternined, T{=2y)is conputed from(A 5. This allows |, /z, , T.

w® and u =M a;,-"w. to be found. The equations of the second section ¢an Thén
be used to determne az and v; . The Via,) relation can be calculated by iter-
ation the appropriate equations.

This |abor has been performed for six thermal nmodels of the earth, and the
results appear in Table II. The results clearly show the rough inverse relation of
v, and @z , and all but Mdel 4 yield g conpatable with present plate velocities,
Al “nodel s |nd| cate that the shear stress reqU|red to maintain the plate notions is
very small (ten bars or less). The data on the stress-strain relation is derived
fromthe laboratory data of D.L.Kohlstedt and C.Goetze™ The results of the nodels
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The results of the nodels are unfortunately quite sensitive to this poorly-known
stress-strainrelation

Many different thermal nodels are possible, so that Table II only provides a
small sanpling. The rough fornulae foroz and Vg in section 3 are thus likely to be
of more value than the detailed model s considered here. It is, however, conforting
to see that many nodel s exist which give results consistent with what appears to be
occurring in the earth.
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THE DEVELCPMENT OF THE THERMAL STRACTURE OF THE PLATES
Barry Parsons

1. Introduction

The depth of the oceans, and al so the heat flow neasured at the ocean
floor, behaves in a very sinple way when considered as a function of the age of the
ocean floor. For instance, the depth is observed to initiallyincrease linearly as
JE' , where ¢ is the age of the ocean floor, but for ages greater than 60 ny.

Thi s rel ationship breaks down and as the age increases further, the rate of increase
in depth continues to dimnish. An exanple of this behavior, taken from Parsons and
Sclater (1975), is shown in Fig.1l. Al though heat flow neasurenents are somewhat sus-
pect in regions near ridge crests, in older, generally well-sedinented areas, they
are nore reliable and in these areas al so show a tendency to approach a constant

val ue for large ages. A thermal nodel for the plates put forward by McKenzie in 1967
(Fg.2) has since been found to describe the variations in heat flow and depth rea-
sonably well. The depth data can certainly discrimnate between this and ot her
nodel s that have been proposed. This nodel is certainly sinplein its construction,
and the ease with which resulting properties can be cal cul ated. However given that

it describes the data well, one m ght expect the actual thermal structure of the
plates to be closely simlar to that of the nodel, and in that case it is not so

obvi ous how such a picture is physically maintained. As an exanple, in the ol der
ocean basins, where on the basis of the flattening in the heat flow and depths a

cl ose approach to thermal equilibriumseens to be indicated, the thermal nodel inplies
a constant supply of heat flux at the base of the plate. Because it does not seem
possi bl e to supply this heat by conduction wi thout inplying tenperatures well in ex-
cess of the melting point in the upper mantle, convection on a smaller horizontal
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Fig.1 Plot of the nean depth in netres versus the square root of the age in
mllion years (m.y.) for the North Pacific.
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Fig.2 Geonetry and boundary conditions of a thernmal nodel (McKenzie, 1967)
for the plates.

length scale than the pl ates thensel ves has been proposed to provide an efficient
means of vertical heat transport in the upper nmantle (R chter 1973, R chter and
Parsons 1975). McKenzie and Viss (1975) give other argunents for the existence of
a small scale flow in particular the overwhel mng tendency of all flows studied
nunerically to be unstable to snal |l er scal e di sturbances.

The purpose of this study is to suggest a way in which the idea of the small-
scal e convective flow can be devel oped to provide a mechani smfor naintaining a
physical picture with the essential features of the plate nmodel. In other words,
two features must be explained. How are the isothernal boundary conditions on the
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side and bottomboundary in Fig.2 naintained? Secondly, what determnes the thick-
ness of the plates and hence the age at which the linear relation between depth and
JE breaks down?

The schene to be tested is illustrated in Fig.3. Mterial is assuned to as-
cend adiabatically at the ridge crest, and if we neglect the small adiabatic gra-
dient this provides the isothernal side boundary condition. As the plate noves
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Fig.3 Sketch of the schene to expalin the departure fromthe < relationship
at 60 m.y.

away fromthe ridge crest, the material cools conductively, the upper tenperature
being fixed at 0°C. Because of the very rapid variation of viscosity with tenpera-
ture, it is assumed that the plate can be divided into two regions: an upper cold
region which is essentially rigid, and a | ower region which behaves approxi mately

as a uniformy viscous fluid. It is proposed that at an age of 60 m.y. the cooling
has proceeded sufficiently for the |ower thermal boundary |ayer to become unstable.
This is the point at which snall-scal e convection begins to devel op. For ages |arger
than 60 m.y., material at the base of the plate i s continuously being replaced in
the thermal boundary |ayer. The bottomof the thermal boundary |ayer stays at the
mean tenperature produced when the smal | -scal e convection reaches equilibriumwth
the heat sources within the mantle. The plate thickness is sinply the sumof the
mechani cal and thernal boundary |ayers. Both are included as the definition of plate
t hi ckness based on the topographi c observations nust extend to a depth above which
are included significant nean tenperature, and hence density differences relative to
the tenperature profile under the ridge crest.

The difficulty with the proposal is to test whether the idea of an instability
at this point is reasonable. In principle the stability of any two-di mensional flow
coul d be exam ned exactly (e.g. Busse 1967). In practice, for this system the cal-
cul ation woul d be very difficult because of the variation of viscosity with tenpera-
ture. 1In any case, we do not know what the |arge-scale flow,consisting of the
plates and a return flow, really |ooks like. Wat | propose to do is to apply a
| ocal stability criterionto the thermal boundary layer in Fig.3, and showthat it is
not unreasonable to expect an instability to occur. Secondly, | shall showthe re-
sults of sonme experinents, which again cannot directly prove the above assertion, but
denonstrate enough simlarities to provide confidence that the idea is a reasonable
one.

2. Use of a boundary layer stability criterion.

a Application to high Rayleigh number convection with internal heat sources.

The starting point is a scheme suggested by Howard (1966) as in sonme average
sense equivalent to turbul ent Rayleigh-Bénard convection. This is adapted to the




case of convection driven by internal heat sources, a node of heating nore appro-
priate in the earth, and conﬁari sons wll be nade with nunerical results for free-
free boundary conditions. The steady state for such convection produces a nean
tenperature profile which is essentially isothermal fromthe bottomof the |ayer up
to a thin boundary |ayer across which the tenperature drops raPi dly to match the
zero tenperature boundary condition on the upper surface. Follow ng Howard (1966)
we assume this situation can be nodelled in a time-averaged sense by starting with
a conpl etely isothernal |ayer, tenperature T = Ty, and at time £ = 0 inposing an
upper boundary condition T = 0, (Fg.4). An upper boundary |ayer devel ops by con-
ductive cool ing, the tenper at‘lIJ_re bei ng gi ven by

T
- —__ﬁ];
T 'L-_la
! [t t'., T‘
W /

z : : 2 L
Fig.4 Model designed to reproduce, in a tine-averaged sense, characteristics
of convection driven by internal heat sources.

T=erf (e (1)
Thi s boundary |ayer becomes unstable at a time U= Ee given by a local stability
criterion T &
Ny -

s R, (2)
wher e Is gravitational acceleration, <« the thernal expansion coefficient, I« the
thermal diffusivity, and v the kinematic viscosity. The boundary |ayer thickness
s taken to be

g =2 KE, (3)

i .e,, the thermal diffusion length scale at = [,. When the boundary |ayer be-
cones unstable, the fluid in the boundary layer is replaced in a time short com
pared to t, (Howerd 1966) so that the initial state is restored and the process
repeats itself. The average heat flux over the period (o, Elis

T
Fe= et (4)

where & is the thermal conductivity. |In fact, inthe internal heating problem it
is F that is specified and “T; adj usts until a balance is attained with the internal
heat sources. From(2 and(4 a relation between F and T, can be obt ai ned

laga Tyx 035 log, F = 0.25 log, {h: (ecp) Kozt e

with @ the density and Cp the specific heat. MKenzie et al.(1974) obtained a
simlar relation based on their nunerical cal cul ations

logis T, » 0.76 loy,F + 3.58 (&)

Thus we see that the sinple time-averaged nodel gives the correct formof the rel a-
tion, and if we equate the constants in(5 and (6), using the val ues of the physi-
cal paraneters given by McKenzie et a7, (1974), a value of R.is obtained that is
to be applied to the stability of the boundary |ayer:
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R =443 (7)

Al though the nodel is very crude, the val ue of R. obtained provides sone reassurance
that reasoning based on the local stability of the boundary |ayer can give sensible
results. The critical Rayleigh nunber for free-free boundariesis R, =658 with a
constant tenperature specified on the bottomboundary, and R.= 385 with constant
flux on the bottom boundary.

by Applicationto the initiation of small-scale convection.

The scherme to be tested was illustrated in Fig.3. The decision to divide the
devel oping |ithosphere into two regions, one rigid, the other uniformy viscous, is
based on the very rapid variation of viscosity with tenperature. The Nabarro-Her-
ring diffusion nechani smgives an expression for the viscosity

= mmh.l::, Eﬁp{_};—“} (6)

where here k is Boltzmann's constant, o the nmean grain radius, P« the reference
constant in the diffusion coefficient, =, the mass of an oxygen ion, £ an activa-
tion energy and \V an activation volunme, T the absolute tenperature and g the pres-
sure. In the upper 100 km the pressure effect is small; the tenperature variation
is shown in Fig.5, using the follow ng val ues:

fog,7
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-
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Fig.5 Mot of [09,°q where v is the viscosity given by the Nabarro-Herring
di ffusi on frechani sm for the terrperat ure range expected in the plates.

Doz 5eratg”!



The value of the grain size to be used is subject to a great deal of uncertainty.
The uniform temperature at the ridge crest is assumed to be

71, = 1200°C (10)

Decreasing the temperature by 300°C produces four orders of magnitude change in vis-
cosity. To begin with, a temperature drop across the thermal boundary layer has to

be guessed. | have picked 960°C as the temperature at which the behaviour goes from
rigid to viscous, i.e. -/
— =08 (11)
|
The initial temperature distribution is still given by (1) so that the thickness of
the mechanical (rigid) boundary layer grows as
l.&JrE (123
The temperature drop across the thermal boundary layer is obviously
LT = 1200 - 960 = 240°C (13)

A thickness for the thermal boundary layer has to be defined somehow, and somewhat
arbitrarily 1 have chosen "

- -

1

to define the bottom of the thermal boundary layer. The thickness of the thermal
boundary layer grows as

= 0.97 (14)

|_'::I-'I I.l-?- 'JFE (15)
Again a local stability criterion 5
8T | g o g (16)

L'

can be applied to the thermal boundary layer. Rather than ask at what time I, this
occurs given v , let us assert that the instability occurs at F, = 60 m.y. as ob-
served and ask what i s the value of  needed to satisfy (16). With the values

4= |0Comsg™

¥ i

ol 3,007 (17]
W= 806 omts

this gives a value for the viscosity of
V =11.10°" stokes (18)

This is reasonable judging by the values plotted in Fig.5. Using this value of 1 ,
a check can be applied on the value O4 fixed as the temperature drop across the

20

boundary layer. In the steady state AT and the heat flux are related as in (5)
and (6). |If we use the relation of McKenzie et al.,(1974), but include the fmplicit
dependence on viscosity we have

loq, AT= 0.75 log, F+ 2.58+ 0.25 |¢3p,:_%j (19)

where AT isin° and F in w,,'.,“. They used a reference viscosity
v, = 2.102%1 stokes

in which case for V=1, (19) reverts to (6). Substituting the value given in (18)
with F = 5.8 107 % we find that

1

AT = 220°C (20)
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Hence the initial guess on the temperature drop across the thermal boundary layer
turns out to have been quite close. From (12) and (15), when the instability occurs,
the thickness of the mechanical boundary layer is 71 km, and that of the thermal
boundary layer 49 km. The aum of these is 120 km which is the total plate thick-
ness, consistent with the value of 115 kn obtained by fits to the variation of depth
with age. Thus the occurrence of such an instability explains the departure from
the J& behaviour at 60 m.y. and the observed thickness of the plate. For larger
ages the amplitude of the small-scale flow increases to match the heat flow require-
ments of the cooling plate.

The last point we must demonstrate is that the temperature of the material
intruded near the ridge crest is essentially that maintained in the main isothermal
(adiabatic) part of the small-scale flow. In other words in moving from the region
where the small-scale flow i s established to the ridge crest the temperature change
produced by the internal heat sources must be small. The observed heat flux is
equivalent to uniform internal heating at a rate of 8.36x10-7 erg s~lem=3 distri-
buted in the upper mantle. The maximum temperature change these sources can produce
in 120 m.y. in any given volume of material is less than 100° C even if no heat is
lost from that volume. As the large-scale flow transports material from under the
steady state portion of the plates to the ridge crest, there is little temperature
change, and hence the temperatures on the side and bottom boundaries of the plate
model can be considered identical.

3. Experiments

These were all performed in a convection tank based on the design of Chen
and Whitehead (1968) and actually built to carry out the experiments described by
Richter and Parsons (1975). The convection was observed by a shadowgraph technique,
so that in the photographs shown below dark regions represent hot, upwelling fluid
and, correspondingly, bright regions represent cold downwelling fluid. The layer
of fluid is bounded above and below by horizontal glass surfaces which are main-
tained as isothermal boundaries to a good approximation. These are separated by
machined spacers which control the depth of the fluid layer. The working fluid is
in all cases a Dow Corning 200 silicone oil with a Prandtl number of 8,600, the
large Prandtl number |imit being appropriate for application to mantle convection.
Values of the ghysical parameters of this oil are # = 0.971 g em~3, v = 10 o s-1,
o= 9.6x10-4 UC-1, and K = 1.16x10"3cm?s"1. The viscosity is to a good approxi-
mation independent of the temperature.

a) Transient experiment cooling from above.

This type of experiment has been explored previously, particularly in con-
nection with the cooling of the surfaces of oceans and lakes. However, it seemed
worthwhile to repeat it once or twice to check on the stability criterion used
above, and also to obtain an idea of the form of the convection that occurs. Two
runs were performed in which both boundaries were maintained at 400 C for a time
greater than the thermal time constant, ::f.':..-f’.h{ , of the tank, where d. is the depth of
the layer. This produces an initially isothermal layer of fluid. The heating of
the bottom boundary was stopped at the same time as the temperature on the upper
boundary was rapidly reduced. The bottom boundary temperature varies very slowly
subsequently compared to that of the upper boundary, so that essentially the fluid
was being cooled from above with zero heat flux at the bottom. The instability
occurs in the cold upper boundary layer, cold (bright) fluid breaking away and form-
ing concentrated downwellings. The boundary layer thickness at this point was esti-
mated from the thermal diffusion length scale, J:j_.,ﬁ:':'—*. where £, is the time
from the initiation of cooling to the onset of the instability. This gave values
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whichwere al ways smaller than the depth of the fluid layer (12 cmand 5 cmrespec-
tively). A rough value of the local Rayleigh nunber for the boundary |ayer at the
onset of the instability was cal cul ated using ¢ and the mean tenperature difference
over the interval (=, ) between the initial tenperature and that of the upper
boundary. This gave 3

Ra == 2.10 (22)

Fig.6 Example of the formof convection produced by cooling from
above. Note the predominance of localized cold downwellings
{bright regions).
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agai n justifying considering only the stability of the boundary |ayer. The form of
t he convection that follows al ways consists of |ocalised downwellings; no |ocalised
dark upwel Iing regions were observed so that the upwel ling nust occur over a diffuse
area. A typical exanple of the devel oped formof the convection is shown in Fig.6,
wel | before what is obviously a transient state begins to decay. This formof con-
vection i s observed in the numerical experiments for internal heating of McKenzie et
al. (1974), and contrasts with Raylei gh-Bénard convection where upwelling and down-
welling fluid occur symetrically. Hence in the mantle we m ght expect the convec-
tion to occur inthe formof localised dowwellings falling fromthe base of the

pl ate.
b) |Interaction between Rayl ei gh-Benard convection and forced convection

Fig,7 Steady state flows fOr a Rayleigh mmber of 5.10%. Proceed-
ing clockwise fromthe top left the forced flowhas 6T = 0, 1, 2,
and 3,4 respectively, Mote the region in which no Rayleigh-Bénard
convection OCCUrS near the pipe, which is the dark linear feature
at the right of =ach phot ograph,



One woul d like to do an experinent exactly duplicating the situation being
explored, i.e. forcing a flow by noving boundaries apart fromeach other at the sane
time as producing a small-scal e convection with some appropriate nmode of heating.
This did not seempossible at the time, but it was possible to look at the inter-
action between another kind of forced flow and smal|-scal e convection. The small -
scal e convection is represented by Rayleigh-Bénard convection driven by an adverse
vertical tenperature drop between the horizontal boundaries. The forced flowis
produced by placing a copper pipe horizontally in the fluid. Hot water can be cir-
cul ated through the pipe, and this heating forces a flow. The Rayleigh-BEnard con-
vection is characterised b¥ the Rayl ei gh nunber, R To specify the forced flow, the
tenperature difference d T"between the pipe and the nean tenperature between the
hori zontal boundaries is nondinensionalised with respect to the vertical tenperature
droo AT' across the tank. Wite this as

§T= 4 T/aT’ (23)

The aspect ratio of the tank was 20, (the actual depth equalled 5 cm, and the pipe
ran parallel to one side. It should be enphasised that the dynam cs of this forced
flow are different fromthe one we would really like to explore. However the fea-
ture in common can be seenin Fig.7. Wen there is a forced flow produced by heat -
ing fromthe pipe, there is a region near the pi pe where no Rayleigh-Bénard small -
scal e convection occurs. The hot fluid produced in the forced convection must |ose
sufficient heat before it becones unstable and cold fluid descends into the |ayer.
On the other side of this boundary small-scal e convection proceeds normally, with
virtually no sign of any influence fromthe forced flow. Increasing the heating of
the forced flow pushes the boundary between the two regi ons sonewhat further from
the pipe. Simlar behaviour is observed at a hi gher Raylei gh nunber (Fg.8). The
poi nt at which the downwel | ing occurs is still a definite distance fromthe pipe
and noves further away as the heating rate is increased. However, here we note
that instabilities produced by heating on the bottomboundary are able to penetrate
the forced flow. In the earth internal heating nay be the nore appropriate node of
heating for the small-scale flow so that these effects due to heating from bel ow

m ght not be so inportant. The conmon feature to be noted and conpared to the
scheme illustrated in Fig.3is the finite region in which no dowwellings occur un-
til the fluid circulating in the forced fl ow has cool ed sufficiently at the top
boundary to become unstable, and then the small-scale flowstarts to devel op.
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| NERTI AL CONVECTI ON AT LON PRANDTL NUMBER
M chael Proctor

The properties of thermal convection at |ow Prandtl number ( = kinematic vis-
cosity/thermal conductivity) are of great interest in the study of the convectfve
regions of the sun and stars, where the effective thernmal conductivity of the stel-
lar material is greatly enhanced by radiative processes. The Earth's liquid core
is also largely metallic, and hence likely to be a good thermal conductor; Prandtl
nunbers there are thought to be rather less than unity. This type of convection is
characterized by |arge Reynol ds nunbers (inertial forces becone Inportant) except
at very low anplitudes, and appears easily to beconme turbulent owng to instabili-
ties of the shear-flowtype, Qur understanding of turbulenceis very limted, al-
t hough Mal kus, Busse and ot hers have made progress towards a full er understanding
of thermal turbul ence by considering its onset as a series of discrete transitions
and instabilities, Oher authors have chosen the opposite path - to ignore the in-
stabilities (usually by suppressing three-dinensional notions) and to study the re-
sulting laninar flow, both in order to elucidate the processes that drive to con-
vection and limt its anplitude, and to obtain some rdea of the macroscopic order
that exists evenin a fully-devel oped turbul ence, Promnent anong these are the
numerical studies of More and Wiss (1972) and Jones, More and Weiss (1975), who
solve the full equations for the layer heated frombelow by finite difference neth-
ods. The first study is restricted to two-dimensional rolls, and the second to
flows with symretry about a vertical axis, Comparison of these papers shows a
striking contrast between the Prandt| nunber dependence of the evol ved steady flow
inthe two geonetrfes, especially near to critical Rayleigh nunber for the onset of
convection. In Fig.1l we show sketches of the dependence of Nusselt nunber against

M-l

Fig.1 Sketches of Nusselt no.as a func-
e tnon of g@=for(a) Rolls and (b)
Cylinders: R, is bel owthe 'second
critical nunber' and ®, and ®a
are above it,

0 () &
A |
. T
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e Ex ﬂ |
ITY) a-
Fig.1

the Prandt| nunber ¢~ in the two cases. \& notice that whale for rolls the g=-de-
pendence is very weak, for cylinders the efficiency of convection is significantly
Inhibited for small ¢=. Further, bel ow a certain Rayl ei gh nunber greater than the
critical value to Nusselt nunber falls to 1 as g=—+® , indicating that convection
is suppressed in this limit. Another item of interest is that modified perturba-
tion theory (e.g. Mal kus and Veronis 1958), al though satisfactory at all @=for the
rol| solutions, remains valid only for (N - 1) = 0(¢® for the cylinders at smallg¢”
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These resul ts suggested the possibility that for @ = & there was some sort of
asynptotic limt in which inertial constraints played a domnant role. The discrep-
ancy between rolls and cylinders could then be explained by noting that for rolls the

inertial equation
%(y.vU)=0 (1.1}

is identically satisfied by the linear eigensolution, while for cylinders(1.1) is
not satisfied, so that inertial adjustnents becorme inportant at much |ower anplitudes.
Jones et 41, deponstrated that a closed problemcould be formulated in the limt
N—1, o~ (N-1)"2 — 1., in mhich(]“1% was satisfied to | eading order. Their problem
as posed was highly nonlinear, and they did not attenpt to solve it directly. It is
our purpose here to fornulate two simlar problens in which this nonlinear systemis
exactly soluble, so as to show how this problemdiffers fromthe conventional stabil-
ity problem In the next two sections we describe these probl ens and give sone de-
tail ~of their solution; in a conclusion we evaluate the results and assess their
applicability to real turbulent convection and their relation to other types of

probl em

2. The forced convection probl em
2.1 Formulation —

Fig.2, A sketch of the geonetry and boundary conditi ons.

V¢ consi der two-di nensional notions of an inconpressible fluid in a cylinder
of nondi nensional radius 1 with its axis along the y axis of a Cartesian coordinate
system(F g.2). $ and ¢ are pol ar coordinates as shown, gravity is in the = direc-
tion. The cylinder wall is supposed fixed, and the tenperature of the wall is held
fixed at the nondi nensi onal tenperature

8 =cor"d+T, (2.1)

is that tenperature increases to the right. The nondinensional equations of steady
motions are, in the Boussinesq approxi mation

o UV +Vp =REE+TU
Ve =U.78 (2.2)

v.u=0

wher e



U=xfal, 6=4T¢, p= XL g, Nean®

ATal?
_ﬂ*ﬁy})':{, R:iﬂ}l—u’ (2.3)

and = is the coefficient of thermal expansion and A is the thernal conductivity,
y the kinematic viscosity, and a typical length scale, (the radius of the cylinder),
g the gravitational acceleration, and &7 the maxi numtenperature contrast at the
boundary. &= is the Prandtl nunber and R is the Rayl ei gh nunber. W& also define a
stream function ",lf{s?,d?) by U 5% VI Iy
3 7 5= S 24 (2.4)

t he boundary conditions are now

‘=3T" 20, B=conthen § = (2.5)

It is easily seen that (2.2) admts no solution unless motion occurs. In this re-
spect it differs fromthe Rayleigh-Bénard probl emdiscussed in g 3. As the tenper-
ature gradients drive the flowdirectly, this motion is known as fixed convecti on,
and it has been studied by nmany authors in various limts. Here we give the standard
perturbation treatnent for the limt R—0, ¢ ' finite, and contrast it with the
solutionin the(apparently new limt of ® —@,® ® 50 which brings the inertial
forces into predon nance.

2.2 The Viscous Limt: | =»a 77 R.
Since Ris small, we expand all quantities in powers of Rto give
B=8,+RE,+* R G, + - -
ete
LJ:'H‘QJ*"H"‘"L,I:!*- men

where 8,, U, , etc, may depend on& . By substituting in(2.2) and equating powers
of R we nay sol ve a sequence of linear problens. The first equationis
V'6.=0; 6= o (3ammd+corid)al S = (2.7)

and this has the sol ution

(2.6)

6 =¥ (35 c0a g+ ’un 2 ) (2.8)
at 0(R), we then have .
Vg =& 2+9%y, (2.9)
and this gives
P [a[n gt 5 =1)- (sPe 2%y 5% ) can 4 .:p] (2.10)

Note that the terma‘"ﬁ‘fg.-‘i’ Y) is small conpared to the terns already considered
inthis limt. V¢ may measure the vigour of the notion by the kinetic energy
E,=-2 W™y}, where § } denotes an integral over the cylinder and unit length

in*the' y-direction. (2.10) “gives
I bl
E.= 5545 * %2 (2.11)
i ndependent of g~ . Ve may continue the process by finding & from
726, =, V8, (2.12)
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and then evaluating L, from | . - 2
o (VU +0p, =8 B+ W U, (2.13)

Now, however, since ‘Eﬂ,l[y,-?g,)io (as can be verified), _f-_-"L will be proportional to
o-~! to leading order L&s g %> | ). Our expansion for the energy E will therefore
take the form P -

® -
E=R'E+¢ REy+~0 RE+.. - (2.14)

where E,, Eg, etc. are independent of oo leading order. Although each term in the
series is smaller than the last, it seems likely that the radius of convergence of
the series tends to zero asg==—+F, and hence that (2.14) gives an extremely inac-
curate estimate of E as this limit is approached. When R*>>» ¢ (2.14) can give no
information about E, even though R«< |, and we must seek an alternative formulation
that enables us to escape from the constraints that are imposed by the perturbation
approach, and to enter the regime in which inertial forces play a decisive role.

2.3 The Inertial Limit; | >> & 3=

As noted in® 1, it is possible in some geometries to find steady flows for
which the inertial forces are irrotational everywhere. Our geometry is one such,
and this fact enables us to find a solution even though the kinetic energy and the

Rayleigh number are small. The solution is not uniformly valid in the limit K—0
for fixed ¢ , but only in the (more restricted) limit
Rfﬂ } (2.15)
oR —0

If we define W= a*R , Wwe can expand all quantities in powers of R as before, and

obtain
Rie Yt N P '“:E g +v) 1 (2.16)
V'8, = '
to leading order; similar equations hold at hlgher orders in R. If we also expand
in powers of }i; s 50 that
Mz bot YU+ .0 . ate. 12.17)
then to leading order in ¥ we must have
Uy 7Y, 20 (2.18)
in terms of the streamfunction, this may be written
URTAER AT (2.19)

where f is arbitrary. Equation (2.19) states that streamlines and vorticity con-
tours coincide to leading order. W determine f by noting that if we integrate (2.2)
around any closed streamline C(Yy) we obtain, (Batchelor 1956)

Rﬁﬁc§ia¢3+iv‘y-ﬂ =0 (2.20)

so that (2.20) does not contain the inertial terms - these only serve to redistribute
energy around a streamline. (2.20) expresses the balance between thermal driving

and viscous dissipation that must hold for each streamline. To leading order in R
and @ , (2.20) gives

E}u!-. ﬁi+§ ‘:}' U, gs =0, where Cj; are the streamlines of U,,. (2.21)

and this can, in principle, be used to determlne-{: lr.*'-l'"I.:.ﬁ and hence the flow field.
This problem i s analogous to the one formulated but not solved analytically by Jones
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et ¢7. The difficulty is that the streamines depend on the solution in general, so
that the problemis highly nonlinear. However, in this geonetry the solutionis ren-
dered extrenely sinple by the fact that the only solutions to (2. 19) (which is second
order) with the full viscous boundary conditions are of the form

Y=, (), U= V() E (2.22)

so that all the streamines are circles independently of the formof f. Since the
equation for .. is unaffected, giving the solution (2.8),(2.21) vyields

(1345, =0 (2.23)

where the % comes fromthe streaniine integration(reduced to a ¢ integration) and
L
e ! —‘i-l,.{.r".l-bncethe art of &, proportional to ced didrives the flow,
=4 P prop

= ds2T s
whil e that proportional tocsa2¢ has no effect, Hence V¥, takes the form
W | fae*_ ¥ ) _—
Y, = o (e (2= 1)) (2.24)
and hence that the the kinetic energy to |eading order wll be
- &
1% Fpag Leuss)

just under 2%less than in(211). This change nmay not be striking to the eye, but
It is extrenely inportant for a convergent representationof the solution. For it
i's now possible, as long as y << R*", to continue the expansion in powers of R ap-
plying the anal ogues of (2.18) and (2.21) at each order, to produce a series for E

that is independent of & ; . W
E=RE,+ R E,+.- . (2. 26)

Hence we have isol ated an asynptotic linmt as o°-—— © , and all quantities are 0(1)
except the inertial forces which are o{f 1. This is clearly a nuch better repre-
sentation of the solution as ¢—>0© than the previous one, since it is validin a
nmuch larger region of paraneter space. Figure 3 shows the dependence of E on R for
any forced @ . For R«< &{mthe curve lies near the viscous lint; for R »>0(@)it
lies near the inertial limt. Between two linmts is a transition zone in which

= ol and the v expansion nust be taken into account. It is hoped to treat the
n expansion in the near future.

E

H.‘l-
Fig.3 Qaph of R? against Efor the forced convection problem
_____ =viscous limt, . __ . _ = inviscid limt.
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3. The }t:t:,'leigh-ﬁérnard problem.
3.1 Formulation.

For this problem, the geometry and scaling is exactly the same as in § 2,
except that the temperature boundary condition is now given by

- - i @ (3.1)

so that the fluid is heated from below and cooled from above. It is easily verified
that (2.2) then has the static solution
U=0, 6 =-2 (3.2)

and the problem then becomes one of the stability of the static state, Such a prob-
lem has been studied in many geometries by many authors, starting with Bénard (1900);
Chandrasekhar (1968) gives a particularly full account. 1t was the recent study of
Jones et al. (1975) that prompted the present work as in 1. Asin 5 2, the equa-
tions may be attached in the two limits | =»>a~ ==& and | >> £ »»o , where £ is a
typical flow amplitude.

3.2 The viscous limit: [==a =2 €,

In this limit the problem may be attacked by the methods of modified pertur-
bation theory, first applied to convection by Makus and Veronis (1958). If we ex-
pand all quantities in powers of a small amplitude factor &€ , so that

Ue €U +E UL+ o o =

ReaF,+ERy+ « s ¢ (3.3)
Boe - 48 + « « » (
and normalize € by setting, {5 L, ét =1, EL 6, 4, ‘|'..|:|, n=+¢0 ,thenR can be
determined as a function of &€ . To leading order’in & , the equations are

(3.4)

=R, 8 & +7*U)
TG =~ Uy 2 f
since o="'¢ (Y,+YU,] may be neglected to leading order in this limit. With the bound-

ary conditions
’ VedVi=6=0 at 5=l
this i s an eigenvalue problem for R, . |t appears that (3.4) possesses a varia-
tional principle (cf. Chandra, q.v.). R, can be found as the minimum of the func-
tional i u
R(uU]= ?EJ] (3.5)

amang all ¥ such that W= 0that satisfies the boundary conditions, & being
determined formally from (3.4b). Unfortunately it is not possible to solve (3.4)
except as an infinite series, since the equations are not separable in § and cb
However, we may obtain an upper bound for the lowest eigenvalue by using a trial
function ¥, in (3.5); such an upper bound should be a good one since R, is an
extremal. The lowest eigen mode i s one that has circulation round the centre of the
cylinder. The best estimate for the eigenvalue so far obtained is

R, £ 380 (3.6)



using a truncated lii expansion and Bessel function S -dependence. W do not give
the details here, since (3.6) is probably fairly crude, and serves only to give an
order of magnitude for R, . The most accurate method of determining R.is probably
numerically using finite difference methods, In any case, our concern isS not prin-
cipally with this problem but with the inviscid one below, W note, though, that
since Y depends on qn , We have that

7 (Y. VU O (3.7)
asin#& 2 It follows that if we determine R., E,+ , etc. by the standard methods
we shall find that -

R=F+Eag R +~~+- (3.8)

to leading order in -:E"_', where R, is positive and independent of @ . Hence, as in
= 2, (3.8) gives an accurate representation only for & <«<<¢, and that for €=0(z7
or larger the inertial terms must dominate the dynamics. Looked at another way, the
nonlinear solution moves away from the eigen solution very rapidly in € space due
to the inertial terms. (3.8) clearly implies that €*can rise only very slowly with
increasing R ; the inertial forces act to limit the amplitude of the system.

W treat the inertial limit below, The techniques used there are the same as
in< 2, but the results are even more remarkable: for the inertial Iimit gives rise
to an eigenvalue problem different from (3.4) and hence gives rise to a 'second
critical eigenvalue' greater than R_ , as noted by Jones et aZ., and independent

of o~ .

3.3 The inertial limit: | 99E& >>g.

As in é 2, in this limit we can define a small parameter

Nn=oe” (3.9)
and consider € —» 0, —> O together. |f we expand all quantities in powers of &
and n: Mgt g

e gy a6 Wi 0% (5.10)

L J*

Then to leading order in & , (2.2) gives
T 2 A
Uer T+ %, = LR G4y, ] | (3.11)
IGLEM‘ -urr'g /

Then to leading order in YE , We have
I L
v l;_'L",.,,' Ic"-“umhj =0 -'1!'::: = -w:n ['5}* 202 Vie U'I:I "i‘ (3.12)

as in (2.22). W determine ¥, by making use of (2.20); since the streamlines are
circular in this case also, the integration is again trivial and we obtain

W A B )
R"II 5'|¢,g."§'d¢'+£ E? ﬂib"@d'#‘ (313)
where gﬁ,gi. = =My, g (3.14)
Now, Lo is given by (3.12) so that U,-# -;'..:‘{:}m ¢ Hence, iquué,cfillm b
(3.14) becomes n
ol g = - Vie (3.15)

e

where & is defined as in (2.23). The integrals in (3.13) can now be evaluated to
give
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ﬁms.'l.-"'m = -0 o 5=l (3,16}

and (3.15), (3.16) are to be solved subject to the boundary conditions.
It is easily verified that, up to arbitrary constants, the solution is given by

-lsm = g [-:-_1,’:.] iy
V)o = o7, (4s) }
(3.17)
J(£) = 0y =3.82
Ruaz 20t ~ 4312 }

This system, then, is much simpler in structure and in solution than the full eigen-
value problem. At leading order, the fluid is constrained to move in circles by
the inertial forces. Since this is not the optimum mode for turning thermal into
kinetic energy, the unstable temperature gradient needed will be greater than that

given by R, . Masis independent of @ and thus represents an asymptotic limit of
the equations. Although the system cannot attain this limit for forced o~ , it can
appear to have become unstable at R=R_,if £ is not too small. It is possible to
find

=R{E,T"| by standard methods in this limit. W give some details here of
the & expansion, but only touch on the }1 one, since it is not straightforward.
As for &2, we hope to consider this more fully at a later date.

I f we suppose q{:Ei'and continue the £ expansion we find that, to leading
order in 7

Voo = Voo U, Wy, = 1, (6D (3.18)
The analogues of (3.13) give

Ry {Bu2-8+dg+ Rl B.28d04 [V 00 80 20 REREED

+

and N

ki 21 . o |"
i'i,'“Ir Emé"ﬁd‘#*‘ﬂm‘[ B2 ?dtp*— Rﬁ J‘I,

/

and we have the thermal equations
=
E E’E=--|dlq._g‘§ LE H.I-ll '?Em‘
Ve, -Uys B4l V8, + U, VS,

(3.20)

Taking (3.20a) first, we see that the inhomogeneous term can be written
i _4 4
- 77 (5) udm ¢

so that, since 'l:;'w'i = L_J“EFM ¢ , ©, has two parts; the part proportional to
cea ¢ can be absorbed into &,, without *oss of generality, i f we also absorb Y,,
into Y,, and&_el_t R, = 0 . It can be checked easily that the part of 2ae pro-
portional to does not enter (3.19a), so that this procedure is self consis-

tent.
If we now write



'g:.u - B:

and P = a:nrn

Wi = "-";E‘I

we obtain the followi ng ordinary differential system
Juﬁin:-%‘—"mﬁfﬁ‘-fj -H'"

LEBe = - Vi, + #]’J (ets) §:.n Ij (3.22)

'q-h ) F] g =
2 St 3" é'-'m-""ﬂ'" I""Isn":'

1 (3.421)
)

W now fix R.4by the requirenent that (3.22) possess a sol ution. After some mani pu-
lation and use of the equations satisfied by V,, , &, we find

rl‘ * o= ] P
_‘EHS., 4 sds "J: 8, d [:j,— T, (e3) éu_] (3.23)
and the integral on the right-hand side can be witten
s § ko
i![%g",f sels >0 (3.24)

so that 5?.1, is positive and 0(1). W therefore conclude that there is no subcriti-
cal instabilfty inthis Iimt. (It can be independently established that the prin-
ciple of exchange of stabilitiesis valid for the eigenval ue problem (3.16); and

R,, is the mnimumof (3.5 anmong flows with circular streanines, so this is to
be expected.) Hence

ReRee +€ M, % 4 o - (3.25)
Ve may now sketch the expansionin ¥ . The equationfor 4  is, from(3.11)
MotV U+ H o Vi +ve,= Foa 8, i" + V*bhe (3.26)
and LU is given by -
' 7 6,s ~U B (3.27)

i f we suppose that €x , etc. can be neglected. Once(3.26) has been solved for gu’
the change in & may be calculated fromthe energy bal ance equation

RﬂIEE“' um‘i} + un{ﬁ| riﬂ" g} +iui| * ﬂfgmr ump?j‘]‘]“} =1 [3.28)]

which is (2.20) integrated over all streamines, W have not solved this as yet, but
it seems plausible that R,, = @. |If this is the case, the expansion of < for small
Eandl?isgivenby l

R-Rgy = ETR,,+TE" R, (3.29)

and this is sketched in Fig.4. The departure fromthe straight line £ = ngﬁ occurs
when o= a(&?)so that as long as € <= it takes place well within the region of
validity of the inertial limt, (3.29) with (3.8), then give a qualitative picture

of R=R{&l)for small o at all small &. This pictureis alnost identical to the
one found by Jones et «Z. in their cylindrical geometry (with a vertical cylinder),
and it is clear that they were correct in supposing that their solutions reflected
such a limt as the one here descrfbed.

4, Concl usion

I'n previous sections we have denonstrated vigorously the existence of an
asF/nptoti.c solution to the probl emof steady convectionin the limt & —7 O . This
solutionis formally nonlinear (although the equations in our particular geonetry
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Fig.4 Gaph of Ragainst & for the Rayleigh-Beénard probl em
(Note that Roo - Ry = 0(1).

reduced to linear ones) and enables sol utions to be obtained well outside the region
of validity of normal perturbation theory. Physically, this Iimt is domnated by
inertial constraints, so that the systemacts as a 'flywheel'. The |ower order
viscous and diffusive terns serve to keep the flywheel in motion. In the Raylelgh
Bénard problem this neans that effective convection cannot occur until B = R, »
yielding a criterion quite different fromthe normal narginal condition. The theory
al so explains why the very strong ¢~ dependence shown at |ow anplitudes does not
persist to higher ones. V¢ believe that this limt may be relevant to any convec-
tive systemwhere the flow pattern can be chosen so that inertial forces are irro-
tational everywhere. Certainly cellular convection between free boundaries seens

to have the required freedomin general. If such a basic flow cannot occur, then
the probl em becones nore conplicated, and it then seens likely that R, woul d go
toinfinity inthe small g— limt. This work conpl ements and ]UStIerS “the work of
Jones et «Z., by basing their speculations on a sounder mathenatical footing, and
the results show a renmarkable simlarity with the nonlinear o -effect dynamo nodel s
of Mal kus and Proctor (1975), for which a very simlar dichotony occurs in the basic
eigenvalue problen1depending on whet her nmagnetic or viscous effects tend to zero nost
ra idly. Heed F| ht have bg 8 haken directly from t hat apeF This. su
gests that the type I| t propounded here may occur in-a variety o si tuafions.
The exi stence of such alimt in situations which exhibit subcritical instabilities
woul d be particularly fascinating.

One last word shoul d be said on the inportance of this limt inthe realistic
situation where the flowis highly unstable. The experinments of Rossby (1969) show
that, as in the lamnar case, there is strong initial o dependence of the Nusselt
nunber at | ow anplitudes which becones insignificant at higher anplitudes, suggesting
that such a transition to alnost inertial-domnatedflowis occurring. There have
been very few attenpts to find such a transition by examning slightly supercritica
flows, but Rossby (1962) in this sumver programusing nercury did find that the
Nussel t nunber gradient went through a sharp transition at a Rayl ei gh nunber about
50% above critical. V¢ reproduce his figure here as Fig.5. The band at the top of
the diagramrepresents the scatter of his experiments; | have narked the 'second
critical nunber' to aid understanding. This picture is so like Fig.4that it would
seemnost desirable to attenpt to repeat his experinents, since if they are not in
error they would seemto go a long way to confirmng the physicality of the work
di scussed here.
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PARTI AL DERI VATI VES CF LOVE NUMBERS AND

RELAXATI ON SPECTRA CF THE EARTH
Masanori Saito

| ntroduction

Love nunmbers are a nondi nensional triplet which describes elastic deforma-
tion of the earth subject to static external forces. Assuming the earth to be a
non-rotating, self-gravitating, elastic sphere with spherical symetry, we can cal -
cul ate theoretical Love nunbers for given earth nodel s using the standard technique
found in literatures(Longman, 1963; Farrell, 1972; Saito, 1974), which will be
described briefly.

Vi seek the solution of the elastic-gravitational deformation of the earth
inthe followng form

ur=Y, (r)¥n (8:) Yo -y (r) g g = 4 () 22 Y%s )
Y =y tr)¥n(6,¢)
wher e
v, 6, 0) : pol ar coordi nat es
Vo(e,¥) - spherical harnonic of degree #.
':ur »UgsYUy) : displacenent
W : gravitational potential perturbation

denotes the sumof the disturbing potential such as the tidal potential and the
otential due to the deformation of the earth. In the follow ng we nornalize

in such a way that the disturbing potential has a unit anplitude on the surface,
ie., Vit (e, 9,9 = Yq(e,go). Ve further assume the followi ng forms for stress
Oro+Oge) and 8W/ ar .

Grres (7)Y 9,¢) To: Y1 B STy (0 21

BE-tmGpu,+ By = 4, (r)Yn (6,0)

’
L2)

where (3 is the gravitational constant and ©(r)the density. Wth these defini -
tions the equations of equilibriumare witten as

YAy (3)
where Y = [y «euqy, ,undy/dr, and @ is a6 x 6 matrix dependent on density

and elasticity. The 'éifﬁTi cit dependence will be found in the references
The boundary conditions at the surface are given in terms of Y, vy, andy,.
Vi consi der three independent cases.

(1) Tide: Inthis case the only external force is a tidal force. Thus the
disturbing potential is Wyia = (v/aT ¥n(8 ¢) and the earth's surface is free
(6rr= ﬂ.tﬂﬁ-,.:O). '

(ii) Load: A mass load on the surface exerts force in two ways: normal stress
on the surface {a%,#%J and the gravitational body force. W normalize the sur-

face mass load so that Wy = (r/ai Y. (6,%) inside the earth.
(iii) Shear: This type of external force has not been considered hitherto, but



| found it necessary to carry out the following analysis. W assume Gy, =10 but
nonzero @yg& and ::r“'w- . Note also ¥jy;s+ =0 is this case,

Boundary conditions in terms of Ys: Yy and y for the three cases are
summarized in the following table, o

Table 1. Boundary conditions for three cases.

) fili i (i}
H‘l{nr:l g | i g e
Yy @) o |-Gn+lale)/fenGa (zn+Dala)/[4TG an (el
ye(a) | (an+ia (i) o o o

Here ?j(v) denotes the gravity.

Given an earth model we can integrate Eq.(3) to get a solution % that meets
one of the three sets of boundary conditions. Once y {¥) has been obtained, Love
numbers will be computed from 'j',ﬁ:l.} v Yy la) and . J_.fq..'.l for each case using the

following table. b |
Table 2. Definitions of Love numbers.
o R i) (w iy
gledy s | hy ' An
g{ﬂly;{ﬂ;i' L, ' | 83(
yg (2) H_aftan | R ) -ﬂp_" _

Nine Love numbers are defined in this table, but it will be shown below that only
six of them are independent,

The Love numbers depend on density and elasticity structures in the earth.
Although the dependence i s completely described by Eq.(3), it is by no means clear.
The problem we are concerned in this study is as follows: to what extent a particu-
lar Love number depends on one particular parameter, More, explicitly, we wish to
establish quantitative relationships between variations of physical parameters and
the corresponding variations in Love numbers.

Principle Equation (3) and the boundary conditions (Table 1) are equivalent to the

following variational equation: o

.;5.{ |: FEH.H,EHr—;F*y{n.J};g (4)
vy T

where ¥ = [ Y, Wy, Hs], B stands for a set of physical parameters, and £ the im-

posed Eoundlz{ry A ATHAS F(. v, 4)is aquadratic homogeneous in - and i .

The Euler equation to this variatiohal equation i s given by -

S Ev-Fv (s)

and the boundary condition i s
Fir=§ (6)

Fuas®

In another word, Eqgs.(5) and (6) are equivalent to Eq.(3) and Table 1 respectively,
Taking another set of solutions w = [x,,x,,¥] of Eq.(3), we find



‘é-{wﬁ-}:ﬁ-fﬁﬂ“ﬂ—' f?f w-Fir+u Fur
and integrating from ¥=0to a , we get
H_-'f'-l.-""] _L &fﬂ;l{'. E]dﬁ? (7)
a
where i .
Glu,p)= @ Evr+u v (8)

Because Fl:},"'.l"'.ﬂj is a homogeneous quadratic, it follows
Gluy, )= 2F (. £)
Glr,w p)= Glu, v )

{""‘""‘" f‘h"[:‘flif, E.:I
G_._u, {1:":*.'5-.1";]' = Fi (v, p)
and so on.

Now, suppose L and 1/ are solutions to Eq.(5) for particular choice of % .
If we change & byzg , then these solutions will also change, say, by d4s and &y~
Hence from Eq. (7) we get after some manipulation

(4 6Fp-Fu-8y) [ = [Go sz )-dp(dr

to the first order. Here Fin = Fak (L, &, 2.): The important point is that the
variations in the solutions, s and dar, due {d dp have disappeared except for the
boundary values.

Variations in the elastic Love numbers.

The variational equation for the free oscillation of the earth has been
given by Pekeris and Jarosch (1958). By setting frequency equal to zero, and using
Eq. (8), we find

GO, )= (A+24)7 % G, + ATE Ve AT Xe A+ ) X Y +
+ nim+p %—Eﬂ_ - n[’ﬂ."-—l}fnur:t}#xs Y= PY I"I,l'l"r-

~PITY A+ ()P r (2, Ys+ Aoy, ) = A0 +1) £ F(Rp Yyt )+
NIRRT (10)
A= 2%, -n (n+i)x, Y= 1'ﬂ,~?1{11+r}'53

ﬂ.‘[—ﬁj H: n.fn_—rr}:l:_,y*, T Ch E:I-EL_,;HJP-& = -[ﬂ'& fy._ ¥, -Er"] d r [11]

o [f;(, By =Xa By, )+ R (1) 2y d Yy — 2y Syy i (4 rrt{]"{::ﬁjrl'.t?g,-ﬂhm -
=Jhﬁpf$.‘£1"ﬁi-{?ir (12)



where %; and y; are two sets of solutions of Eq. (3), A () and ,4«{r)are Lame's el as-
tic paraneters, and g=[A,4e =] . Intaking variationof & , one should be care-
ful about which xi and Y. are to be taken to be independent. In the original
variational equation (4), vy, , y, and % are independent variables, and %,

and vy, are defined in ternms of 4?hem Therefore, I n calculating derivatives of& ,
dependence of 2, and s on 4 , for instance, shoul d be taken into account, Al so,
dependence of g on o should be taken into account.

Interesting relations are derived fromEq.(11). Interchanging Z; and i
and using the symetry :‘;‘:’13,1;-’#‘15 5{1_;-;}5._2_), we find

'i’lifrng;mj.h nine DX, 4y ~Xudu) + (10 G (XY, -2 45 reaz O (13)

The left-hand side of this equation can be wittenin terms of inposed boundary con-
ditions and Love nunbers (Table 1 and 2. Let us wite 5‘-"'? y.* and u:® for the
solutions of case (i), (ii) and(iii) respectively. |If we choose

E H;T and i = 44" in Eq.(13) we find
[+ k= Fy = ,I+.ﬁ_:1 (14)
and anot her choice gives relations
"
ﬁ::fﬂuﬁhhﬂi (15)

Validity of Eq.(14) is denonstrated in the follow ng table where Love nunbers are
taken fromFarrell (1972) and Saito (1974). (Rather, consistency in their calcu-
lations is denonstrated by this table.)

4
Table 3. Conparison between ﬁ,-ﬁ“and '/ﬁm

#
gn #E.ﬂ_ —ﬁﬁ i ﬁn‘ﬁﬁ ]
2 0.6114 0. 3040 0.3075 0,.3074 1=
Farrell
3 0.2891 0.0942 0.18950 0,19449 -
s 0.60547 0.30028 0.308189 0.30819 sy
Salto
3 0.29145 0.09310 0.19835 0, 19835

It seenms no one has ever noticed these relations. Fromgqgs.(14) and (15) it fol-
lows that only six of nine Love nunbers are independent,

Simlarly if we introduce any two of the three solutions into Eq.(12), we
wi |l have variations of Love nunmbers on the left-hand side and wei ghted integral
of &% ontheright. Calculations are sumarized in Table 4. In this table the
first™col urm i ndi cates particular solutions used in the calculation; thus L, T im

ly & |nE dafa)is the variation in the surface gravit
gs)s/ocfat Ea vmt% the vari aﬂl(on)ln denﬂS| ty, Hence it is witten as : y
55{':1.32 _‘r':TIE_{w;-p{rjr’ir (16)

This termmy be incorporated with the right-hand si de integral .

_ Cal cul ation of the right-hand side of Eq.(12) is also straightforward, even
i f cunbersone, The result is shown in Eq.(17).
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Table 4. Left-hand side of Eq.(12).

Xe syl left-hand side of (12) nultiplied
by —".I'ﬂ{;f.?.nﬂ“]@
Tad dhn

T L | Slk-tha)e by 232

. / r inla.
_ il Efnf[inaifnﬁﬁ iﬂ%}
i i 5 fag
G ® s (FF2 T2 X rat 2 Y)

s ainfm?ﬁ (ray 5 KKYOFYa= 3 KY J4ndne) %’:‘h’ * (17)
+n(n-){n+1ixyys

E_F Ef‘ﬂ,-r- IJP‘ I:-’Ilﬂ._i.—“" I;';IJ'Hﬁ"H'l]?‘lf:[a':l:"'l-‘r'.ﬂ'g"ﬁ-s'“":-x'ﬁ"H.V‘
—r"'{/x,-j‘,“'fﬂ-tr,-_j,]—ﬁlﬂﬁ f"'jmﬂ{r'jfrl?* Hlx :I‘:{P*

rf

where K is the bul k nodul us
K=d+2u

Here we have chosen If'H”-uJP) as an independent set of parameters. Equations (12)
and (17), and Table 4 together with relations (14) and (15) conpletely determ ne
variations of nine Love numbers in terms of dK, gu & and .,5;? , ";fih and y;5 . The
variations will be witten, for exanple, as

= .
EL d hy By

"Partials" such as g#n ﬁl“{. bei ng functions of depth, are neasures of dependence
of Love nunmbers on each parameter at each depth.

To compute partial derivatives one nust first solve Eq.(3) to get yj% .



But as seen in Eq.(17), the partials at the surface ¥ = & can be obtained using

available values of L9ve numbers. Since [ﬁ;’.ﬂ o , k. have not been computed, only
partials of %y, An, ®s and A}, are obtainable. The results follow.
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It is interesting that the surface bulk modulus has the greatest effect on
f-l.,_while the effect of the rigidity is small. However it should be emphasized

here that the partial derivatives given above are evaluated at the surface. Whether
they increase with depth or not is left for future study.

Extension to non-elastic problems.

Peltier (1974) has shown that the visco-elastic response of the earth after
the retreat of glacier could be solved using the corresponding principle (see also
lecture note). The governing equation is identical to Eq.(3) except that A and
M are to be replaced respectively by

Ab+klufn)  gmd _A4A
+Cas/r) 4+ (ar /)
where y is the viscosity and 4 is the Laplace transform variable. In this problem
#', 15 the most interesting quantity because it is related to post-glacial uplift

of the earth's surface. Thus E-ﬁ,-," g together with observation of ;1 would give
us some information on the viscosity distribution in the earth.
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ON THE FLU D DYNAM CS CF RI DGE CRESTS
John N Skil beck

| ntroduction

Using a sinple constant thickness plate model and inposing tenperatures on
its boundaries, McKenzie was able to calculate the mean uplift of the ocean floor
due to thermal expansion of the lithosphere (Ref.1). This theoretical curve is a
good fit to data fromboth fast- and sl ow y-spreading ridges except for a region
about 10 kmeither side of the axis.

For ridges spreading at half-rates of 2.5 ecm/yr or less (with the exception
of the anonal ous Reykj anes Ri dge south of Iceland), one observes an axial depres-
sion in this region on the order of 1.5 km For ridges spreading at 3 cm/yr or
more, there is nuch snoot her topography and possibly an axial horst in this region
on the order of 200 m In the latter case there is some dispute as to whether this
horst is a distinct feature or whether McKenzie's thermal nodel adequately expl ains
the topography all the way to the axis of faster-spreading ridges (Ref.2).

The problemto which this work is addressed is that of explaining how an
axial valley can be formed and, if possible, why it is not there for faster-spread-
ing systems. There have been several attenpts already to explainthis feature
(Ref.3,4,5,6), although most of theminvol ve rather conplicated and sonetines un-
realistic models fromwhich it is difficult to extract the essential physics. The
direction | have chosento go in this problem notivated by the nature of this sum
mer school, is to look at the possibilities for a sinple fluid dynam cal explana-
tion of these observations.

Al though a maj or concern of plate tectonics for the moment is the season for
a driving mechanismfor plate motions, it is unlikely that this will be reveal ed
until we understand clearly the things we observe at the surface. W know t hat
plates are created at ridges and destroyed at trenches so that it woul d seem nost
Inportant to try to understand features associated with these. It is tothis end
and with this philosophy that the work described here was undertaken.

1, issumptions and tarameters

The physical paraneters involved in this work are the nmean nantle viscasity,
A, and the density contrast between mantle material and sea water, @ . Taking
mean val ues of 3.3 g/cc and 1.0 g/cc as the density of nantle and sea water res-

pectively, we get
P % A.ﬂgfc'c

M T B | 6™ eon®/ sac .

Inplicit in the above commrents is the assunption that the upper mantle behaves as a
Newt oni an fluid (i.e. its properties can be described by a Newt oni an viscosity).

Al though this may wel | be unreasonabl e, such behaviour ought to be understood be-
fore these effects are included.

A further assunption, based on the large value of 44/ , is that the flowis
of | ow Reynol ds nunber, i.e. viscosity terms in the Navier-Stokes equation are dom
inant over inertiaterms. Wth the additional assunption of two-dinensionality
(which is reasonable as ridges are quite linear features), this equation reduces to
the bi harnoni ¢ equation for the streamfunction Y :

§7HTV =0



This can be solved for a variety of boundary conditions and the stresses in-
duced by the flow can be derived. The topography is calculated on the following
assumptions (see Appendix). These flow stresses act in particular on the whole
length of the underneath part of the plate. Although, for forces spread over a dis-
tance small compared with its thickness, the plate may be regarded as rigid, for
forces spread over much larger distances, the plate will simply bend to accommodate
them (Ref.1). This calculation is only valid if the distortion of the surface is
small enough not to affect the flow significantly.

2. Simplest Model of a Spreading Centre

(Vad .p_r.ul U}ECLY
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Fig.1l Simplest model of a spreading centre-Vconstant.

Figure 1 illustrates this idea. The fluid is semi-infinite in extent and
symmetric about the line 8 = 0. This means that the stream function W (v,6) must
be antisymmetric in angle &

A simple similarity solution can be obtained if Vv is regarded as constant
(see Appendix) and it is:
¥(re)=-Hrome

The non-hydrostatic part of the normal stress (again see Appendix) is‘—‘ir:é‘r—"' cou &
which vanishes on the upper surface &=+ Ty (except possibly at the origin). Con-
sequently the upper surface does not deform.

This simple model clearly does not demonstrate the required features. A
more general approach i s now taken to look at the effect of a smooth transition in
the horizontal velocity across the ridge axis and also the effect of considering a
bottom boundary.

3. General Solution using Fourier Transforms
—Hevigorran VElociTy (s Ue (Bl z-0 ¢

z

BV — Lﬂ_rﬁ'-am 2=8
Fig.2 Diagram for solution using Fourier Transforms
Figure 2 shows the region considered. |In the first place, d. is taken to be
infinite and finite d is accounted for later.

The biharmonic equation i s solved by taking Fourier transforms in the x-
directian, Such velocity boundary conditions as step-functions can be treated



using the theory of generalised functions (Ref.7). Using a sine transform(as
is antisymmetric), w (,2) the x-Fourier transformof W {x,#) then satisfies:

B2 L -
E—d‘:: -2 K %-¥+ k" =0
whose general solutionis:

W (k,2) = ARy Be MR Czek®s Dee™ ™™

The boundary conditions are:

Yol =0, %{x.a}-ﬁﬂiﬂ (Gyfk)is BT of walx))

and that ¥ is finite at &= 1=="
The solution is then: ~
Vel G,ae""®

The pressure F. T. due to the shear stresses of the flowis given by:

vE = m 7 d

. A ~ =K
and yields: P, = —2aLKue .

The non-hydrostatic part of the normal stress on a plane z = const. has a F.T.8{k2),

wher e A Lol
Alre)eaun i, ze

and this vanishes identically on the upper surface z = 0. There is consequently no
t opogr aphy.
Ef fect of Bottom Boundary

The sane anal ysis can now be applied to include the effect of a bottom |f
one is to nodel the plate as a constant thickness slab (equivalent to applying
boundary conditions on a horizontal upper surface) the above indicates that such
shoul d be taken into account. The bottomboundary condition on the velocity is
that both conponents vani sh (no-slip)

The analysis is Iengthy though not difficult and the result can be witten:
Y (k)= Gy (A gimb ke 3 Co aimb k3 + D conhy ne)
The non-hydrostatic part of the normal stress on a plane z = constant has F.T.
Biral=-20auk*[(A+Cs) ooah ka s De simh rv]
(n the upper surface, z = 0, this has the form
Alrol=-2u K AL,

_ =d’k
where the constant A = ou T ke

The kernal of the expression for Alwo)is:
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WK kd) = o eaea

FYre.a

" {("HEF-1




For infinited, IK(kd)z Oand the result reduces to the previous one.
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This function goes very rapidly to zero (as e'“d) as kd. increases above 1 and so
we would only expect the bottom to have an effect on features whose linear scale is
of order & . If we consider a depth ¢ to be that of the upper mantle (d=700 km),
we would expect to see no effect on topography of dimensions 30 km. There iS no
evidence for putting the effective boundary at 30 kn depth as it would require the
viscosity to change by several orders of magnitude there.

In conclusion, one feels justified in neglecting the bottom in further
analysis though this means that we must model the plate by other than a horizontal
boundary. The following model is an attempt to do this.

4. Wedge Model of Plates near a Spreading Centre

glfﬂ
Fig.4 Diagram of Wedge Model for plate near spreading centres.
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This ideais illustrated in Fig.4 A solution to the biharmonic equation for
t hese boundary conditions can be obtained using Mffatt's simlarity solution(see

Appendi x) with W (y-8)=-Y(r8)and the plate velocity, v , constant. This solu-

tion is:
V(r8z=rviA sm8&-DOcm &)

-
wher e A . 2 sm’ et

- 2
T (W-zec-gimact)

Dot = Sifm et

and D= [

Streantines for wedge angles of 5%, 15% and 40° are shown in Figs.S, 6 and 7.
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Fig.5 Streamines for wedge angle « = 5°. Contours are of
non-di nensi on stream functi ons.
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Fig.6 Streamines for wedge angle <« = 15°. Contours at each
i nterval of non-di mensional stream function.
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\

Fig.7 Streamlines for wedge angle o< = 40°. Contours are of
the non-dimensional stream function.

Again from the Appendix, the perturbation to the pressure due to the shear stresses
of the flow is:

_ = jay Dees 6
-'FI - r 3

1 i
and on the surface & = - (bottom of the IW { Y= rosael
wedge) this is e gy
P, = = v llang > — MvDsyn Zoc. (1)

Y-

If we assume that the plate is rigid and transmits this force to the upper surface,
(Ref.1), it will deform the upper surface until this force is balanced by the hydro-
static pressure. W can now calculate this deformation. From the Appendix it is

given by: —Po—P, = 0

With y measured vertically upwards

Po=—p3Yy
50 Pgy + ﬁg?ﬂm' 2 . n

and hence - : 5
Ay = Ay SAm Aot (2]
pg (r-2et-gim 26

These surfaces are hyperbolae.

For very small x , the pressure p, and hence the deformation u become large.
Since the plate has only finite strength it will break when the force on it exceeds
some critical value and the solution is not valid thereafter.

Definition of eC

Figure 8 illustrates a possible definition of the wedge angle o . As the
plate spreads from the axis it cools and thickens - it's thickness being proportion-
al to the square root of it's age, provided this is < 60 my. After 60 ny the plate
thickness becomes roughly constant. It is unlikely that an @z based on this thick-
ness at 60 ny will be a good representation,as the observations considered here are
highly local to the ridge axis (60 ny is equivalent to 1200 kn for a 2 cm/yr spread-
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Age =0 Age = 1 ny = time for plate to
% become a thickness of or-
j\f der the scale of the fea-
< ture considered.

C — /O km > (15 km)
w0 ' B
= L.-"l:rn'.'mlﬂlljr"]
15 km
e
Thermal 'Illhuundn.rld R
of plate

Fig.8 Suggested Definition of Wedge Angle o<

ing rate). A more sensible definition of @ is that it is the angle from the ridge
crest to the point where the plate i s 15-20 kn thick - the scale of our axial val-
leys. Either the thermal thickness (defined by the coding curve proportional to
age) or the mechanical thickness (somewhat |less than this) would be a reasonable
choice. Since we have calculated the topography on the assumption of plate rigidity
(up to a given breaking stress), the mechanical thickness is probably the more
appropriate.

Figure 8 shows that the thermal thickness ~15 km at 1 my. As an estimate,
let us assume that the mechanical thickness at a given age is half the thermal
thickness, so that we have:

tamec = 34y (Vim cmﬁjr‘r

V¢ use this expression in the following estimation. Note that in the limit as
of =+ (0, EQ.(2) becomes %y =0 which implies 4= 0O except'at =0 , Thisis the
result of the spreading centre model of Section 2.

Estimation of Topography

Equation (2) gives the shape of the deformed upper surface as a hyperbola.
The infinity at the origin is not realistic as the plate has finite strength and
one can calculate the depth, , at which ”::HI exceeds some critical value, pr‘-"'"".
| take p,*"'* = 100 bars (Ref.8

-B—= P, =0 (from Appendix)
and hence pqy. =~ f*”
and using values from Section 1, this gives: ]
'j: T -Hidwm
| take this point to define the edge of the axial valley.
Equation 1 then tells us the half-width, "X, , of the axial valley

wm— AV DEm Jee
Py
and with po and P, in cgs units and V in cm/yr and ‘l’amd'-%v this becomes:



[:ﬂ':llﬂ'ﬂ- =20
X = pan sz * 10 KM

vitm/yr) | of (nearest degree) Ee LK)
1 3, 37 48,6
1.5 | 26 39,1
_E 20 34.0
10 2B.3
| 8.5 5 I

This model predicts an axial depression at all spreading rates with widths,
P shown in the previous table. As can be seen, for v < 2.5 cm/yr, these values
are too big by a factor of about 2, although this is readily accounted for by the
uncertainty in the viscosity s . |f we take a viscosity one-half of that suggested
in Section 1, then x.agrees well with observations. The associated gravity anomaly
can then be calculated up to the edge of the valley and is negative and of the same
order of magnitude as Lambeck's positive anomaly (Ref.9) (see Fig,9 and Appendix).
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Fig.9 Gravity Anomaly for spreading rate 2cm/yr with 4% _ 1.5x1021cm? fsec.
Compare Fig.7 (Ref.9). See Appendix. -

This is encouraging as there is no observed gravity anomaly associated with ridges.

For the faster spreading rates, the topography is one or two orders of mag-
nitude too big. If such a dip does exist in this case then to show no gravity
anomaly it must be of linear dimension much less than the sea depth. (Under such
conditions the sea attenuates the effect strongly and no anomaly will be observed.)
This requires a valley width of only a few hundred meters. |f this were so nothing
would be observed topographically as such a small depression would be quickly filled
with sediment. To get such small topography from this model, a much reduced (by 1
or 2 orders of magnitude) viscosity would be needed for faster spreading ridges.

Such an assertion is not altogether unreasonable. Faster spreading ridges
are more likely to be able to support magma chambers as material upwells and moves
out before it has a chance to cool and solidify. The viscosity in this case would
easily satisfy this avove requirement. There is evidence for and against this idea.
Against it there is geochemical work. |f there are megma chambers under faster
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spreading systems and not under slower ones, one would expect to see a difference
in the constitution of the rocks which reach the surface in the two places. So far
no difference has been detected. However, there is recent seismic evidence of a
low velocity zone under the fast spreading ridge of Baha, California (Ref.10) while
such a structure has not been found by workers on the slowly spreading mid-Atlantic
Ridge, it is by no means an automatic conclusion that this structure is a magma
chamber though it could perhaps be so. In addition to this, the anomalous Reyk-
janes Ridge south of Iceland hints at the possible connection between such struc-
tures and the topography. This ridge is slowly spreading and yet has no axial
valley which might lead one to suggest (in the light of this model) that, because
of the frequent magnetic eruptions around lceland, magma chambers lower the effec-
tive viscosity there.

Conclusions

The effects of modelling the plate as having a constant thickness with a
horizontal lower boundary have been shown to produce insignificant topography of
the scale being considered (— 30km) unless the lower boundary is at a depth of
order 30 kn also. There is' no evidence for this as it would require a large change
in viscosity there. To get out of this difficulty account was taken of the fact
that the plate thickens with distance from the ridge axis (as it cools) and the
wedge model proposed.

This model predicts an axial depression at all values of the spreading rate.
For reasonable values of the viscosity the width of this depression i s in the range
15-25 kn (for v< 2.5 cm/yr) which is in good agreement with observations. There
i s an associated negative gravity anomaly of roughly the same size as Lambeck's
positive one. This is encouraging as no anomaly is observed in these regions.

At higher velocities, the topography is 1-2 orders of magnitude too big. An
explanation for this difference is suggested with reference to recent work though
it is mentioned that there is evidence against it.

This model is very simple yet gives the desired result and as such is possi-
bly a better starting point for further work than some of the more complicated
earlier models.

Appendix
A solution to o ot e
V=0
can easily be obtained in polar coordinates
if the velocity on boundaries =6, and 8= &,
is given and constant. It is due to Moffatt \
(Ref.11) and is: =6, B=8,
Yer& (o)

Substitution shows ® ® satisfies Lo 4
E'ﬁ_ - ?'% 4 e 0
the general solution to which is:

B =Asn® +Boai @+ (G sime+ Do tn &

McKenzie (Ref.12) shows that for this form of stream function the deviatoric stress
tensor is:



e 7y 4 (580 )

and the perturbatlonto the pressure fromthis shear stress is;

Pf‘%('{@@' * E:‘;.T%}

In particular, the equation determning the surface deformation (provided it is
smal | enough not to distort the original fromsignificantly) is:

“%'H:O
where ps IS the hydrostatic pressure.

Wth reference to the gravity anomaly shown in Fig.9, a viscosity one-half
that suggested in Section 1 is used. For a spreading rate of 2 cm/yr the elevation,
y, at distance, x, fromthe axis is given by:

Y= g ki (where 715 in Kwm)

The gravity anomaly &g is approxinately equal to 42pynyals. as an infinite slab
1 kmthick of density% gm/cc gives an anomaly of 42 rlf'jgal s. Wth p as suggested
in Section 1,
a9 #-% mgals.  (xim km)

which is plotted in Fig.9.
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SUBCRI Tl CAL | NSTABI LI TY I N STELLAR SEM CONVECTI ON ZONES
Allen M Waxman

1. Introduction

A star of initially uniformchem cal conposition evolves to a state in which
conmposition gradients do exist and it may do so in a variety of ways. In the core
of a star nucl ear reactions occur which fuse lighter nuclei into heavier ones and
therefore the possibility of conposition gradients can be realized. The cores of
stars more massive than a few sol ar masses, tend to be convectively unstable and so
one may expect the core itself to be honbgeneous. However, this poses the question
of the stability of the region imediately outside the convective core where a dis-
continuity in conposition may then exist. This problemwas considered by Ledoux
(1947) who showed that a discontinuity in conposition was not possible and instead
the star woul d set up a narrow zone of continuously varying conposition. By consider
ing an adi abatic displacenent of a parcel of gas through a zone of varying tenpera-
ture conposition and the resulting buoyancy of the fluid, Ledoux took into account
the stabilizing effect of the conposition gradient.

Schwar zschi | d and H&rm (1958) discuss the formation of a zone of varying
conposi tion and draw the distinction between the processes responsible in | ow and
hi gh mass stars; (the division between |ow and high nass being at about 10 sol ar
masses). For stars of |ow mass the boundary of the convective core shrinks(in mass
fraction encl osed) as hydrogen is depleted at the center |eaving behind a 'frozen in'
conposi tion gradient. The conposition at a given point would correspond to the hono-
geneous core conposition at the time the boundary passed that point. [In massive
stars the radiation pressure lowers the effective gravity in the region outside the
core hence lowering the local adiabatic tenperature gradient. Thus this region tends
to be nore unstable and one finds that the convective core grows (in nass fraction)
with tine. Schwarzschild and Harm argue that one cannot have a discontinuity in
conposi tion at the boundary of this outward-moving core if electron scattering is
the dom nant formof opacity, (as is the case for massive stars). As a gram of hy-
drogen outside this boundary has nmore electrons than a gramof heliumon the inside
of this boundary, a discontinuity in conposition would be acconpanied by a junp in
the opacity. The larger opacity outside the core would raise the tenperature gra-
dient there and convection would set in joining this region to the convective core.
The convection would mx in enough heliumto |ower the opacity (and therefore the
tenperature gradient) just enough to naintain a marginally stable state; hence, they
coi ned the phrase 'sem convection zone'. Unlike Ledoux, however, they do not account
for the added stability of conposition gradients.

The question still remains as to what is the correct criterion for stability
in the presence of conposition gradients. The various methods for handling convec-
tionin regions of varying conmposition in evolution calculations are summarized by
Stothers (1970). He states that a sem convection zone which joins the convective
core to the radiative envel ope nust exist though he is undecided about the stabiliz-
ing effects of a conposition gradient.

The probl emof convection in the presence of composition gradients is a faml-
iar one in the thernohaline problemof the oceans (Veronis, 1964, 1968). V¢ will use
this work as a guide to our investigationof the stability of these zones of varying
composition. W will restrict the analysis to a special case which admts sone sim
plifications in the governing equations and so makes the problemnore tractable.
Though we will consider the problemin the context of the Boussinesq approximation
we will explore the effects of a tenperature and conposition-dependent conductivity
as is relevant to the stellar case. W will also carry the analysis into the non-




linear reginme via the techniques of nodified perturbation theory and explore the
possibility of subcritical instability. The results obtained add sone Insight to
the stabilizing effects of conposition gradients in seniconvection zones though the
question of 'the correct stability criterion' still remains open.

11. The Governi ng Equations

The configuration to be studied is shown in Fig.1. Here we have a fluid

| ayer heated frombelow. The |ower bounding plate is maintained at tenperature

and composition 44, while the top plate is maintained at T, == T, and AL, <4 ¢
Ve wi |l consider the bounding surfaces as perfect conductors of heat and 44+ . & is
the mean nol ecul ar wei ght of the fluid and represents the nunber of atonic nass
units per particle of fluid and hence reflects the conposition. W will restrict
oursel ves to studying the stability of two-dinensional disturbances, i.e. rolls.
Gavity is downwards as shown. We will also exclude the possibility of heat sources
within the fluid as energy generation is essentially negligible in sem convection
zones. The fluid between the plates is primarily a hydrogen plasma with a gradient
of ionized helium If the fluid between T My
the plates were to represent the entire
sem convection zone, the conposition a
could vary frompure heliumat the |ower = H B
boundary (4 =443 to al nost pure hy- x |
drogen at the top (A4 = ¥z). However, if
we restrict ourselves to a smaller re- L
gion of the zone we can take advant age T, A
of sone sinplifications that will becone Fig.1
apparent. One major assunption is that
of the Boussinesq approximation. As the fluid is conpressible we nmust take into
account the density stratification of the fluid inits hydrostatic state. The
Boussi nesq equations are discussed by Ml kus (1964) and by Spi egel and Veronis
(1960) for a conpressible fluid with a hombgeneous conposition. The resulting
equations of motion and continuity are

F

|'} i P P -y
'I%'*E‘vﬁﬂ_?;v'p'ﬁjpm'h+y?}f (1)
Vo= 0. (2)

In Eqs.(1) and (2) % is a perturbation velocity on the basic hydrostatic state.
2 is the nean density of the fluid layer and #”and _*" are perturbations in the
pressure and density respectively. The basic hydrostatic state has been subtracted
from(d). The kinematic viscosity y has been taken as constant here and we feel
this justified because the diffusion of nomentumis so small conpared to the dif-
fusion of heat. That is to say we are dealing with a very low Prandt|l nunber fl uid.
Ve will now derive the heat equation for an ideal gas with gradients in the chem -
cal conposition.

Consider a mxture of two gases. V& can wite the first [aw of thernodyna-
mcs for this mxture as ) _ :
dg = C,dT-Fjp dp=- M ydn —tdn, (3)

where AL, and A4y are the chemcal potentials of components 1 and 2 in one gram of
the mxture. p is the nunber of particles of type 1 per gramof mixture and if
¥, is the mass of a particle of type 1 then n,m, is the mass fraction of type 1
per gram In (3), Cye Tis the differential change in internal energy per gram of
m xture and 0?"@ is adifferential of heat added to a gramof mxture. As there are
no sources or sSinks of fluid we nust have



A, M+ n,M,=1- (4]

Defining the concentration of type 1 as ¢ =i and utilizing(4) we my rewite

(3) as ﬂ'-i =CydT - Bfrdp - phypn el (5)
where the relative chemcal potential is s
A = ""f??‘ _%;: )

[f we nultiply (5 by_e and note that the energy added per unit time per unit
vol une is due to viscous dissipation , . inthe fluid and the divergence of the
heat fl ux vector__j:- we may wite (5) as

E.l.-r. ?i Gﬂ IIT e _,% Tt 'ff"”e.l-.rm _I;.j; (6]

(where we have made use of the substantial derivative TDJD—L.-- 3‘1 +W+Vas we are fol -
lowing a particular element of fluid). Ve wll now define the mean nol ecul ar wei ght
via the equation of state for an ideal gas (which is applicable to seniconvection

Zones) . P rkT
Ad W

In(7) ‘ﬁ-_ is Boltzman's constant and rriziS a proton nass. V¢ may associate the
pressure F in(7) wththat in(6 if we assume that radiation pressure is negligi-
ble in the region of interest. This is a fair approximation for stars Iess than
about 10 sol ar masses. W will adopt this assunption for the analysis. If 2 is the
mass fraction of hydrogen, % the fraction of helium and 2 =/=2{-" is the fraction
of the remaining 'heavy elenents' we may express 4 as (Chandrasekhar, 1939)

[7)

B '
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W will assume that 2 is constant throughout the fluid layer as 2 is only a few
percent in the regions surrounding heliumcores. Solving(8 for ™ in terns of 4t

ives
g ﬁ: ::.rr'-.!"':.'r‘lf--g_\rr

whi ch can be inserted into (7). Taking the logarithmc derivative of (7) and sub-
stituting this expression for ;é-$ in(6) gives

s DT P _ & PRT D 3
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In(9 we have associ ated helrumwrth the type 4 particle, i.e., =Y . VW may sim
plify (9 by noting that <& =g (€p=C,where Cp and C, are the specific heats at

constant pressure and vol ufre respectively and both are at constant composition. The
Bussi nesq approxi mation allows for further sinplification in that we may replace the

I'F t erm by w%ﬁ ==Wpg where w/ is the z-conmponent of velocity and F is the basic

hydrostatlc pressure field. \& may also replace the heat flux vector by K, ,¥T where
Hewd 1S the radiative conductivity which donminates any mol ecul ar heat transport
processes due to tenperature or concentration gradients(Landau and Lifshity, 1959;
d§ W may al so neglect the viscous dissipation termas conpared to the heat con-
uction termin the context of the Boussi nesq approximation(their ratiois

D/scale height x Prandt| nunber <<1)
and in addition we eval uate the density and heat capacities at sone nean reference
point inthe fluid. W wll, however, take the conductivity as variable. Incorpo-
rating these sinplifications in(9 we obtain the follow ng heat equati on:
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In (10) we have replaced "{ by its expression in terms of A and have redefined the
conductivity as X = ;:éi . W have also allowed ourselves to evaluate the coeffi-
cient of _E %g at the reference point. This i s because we expect the ratio of the
relative chemical potential to the thermal energy per proton to be small. This is

reasonable as the relative potential represents the change in electrostatic energy

of a gram of fluid when a proton (and its electron) is removed and a helium nucleus
(and its two electrons) are added. This energy i s small because at stellar densities'
ions are surrounded by Debye spheres and hence, their charges are shielded from other
ions (Landau and Lifshitz, 1958;44 24 and 74). An important assumption in the justi-
fication of the Boussinesq approximation is that the depth of the fluid layer be

much less than an adiabatic scale height. This scale height for uniform composition
is given by Hg= —C'E_T'r"— and may be obtained from

ds _ 3 d7 g\ dP |
E o #}F QTL‘-‘- _’EJ'_JT.-]I_] =0
and from the hydrostatic pressure balance. This yields -ﬁ Fll.ad_; —E;EP and thus the

scale height H, . In zones of varying composition we often have the depth D of
order 1/2 Hs and a fairly constant gravity as well. Hence we will take g as con-
stant and proceed with confidence that D;"Hj <<l is satisfied.

W also need an equation which describes the diffusion of helium through the
fluid. We will assume that the diffusion of helium is driven only by concentration
gradients and take the diffusion coefficient as constant. This is a good assumption
as diffusion in stars is essentially negligible compared to any convective mixing.
Even the original gradient outside the core i s dominated by evolutionary effects and
not diffusion. However we are limiting our discussion to a very narrow region at
the onset of convection and so will make use of the following diffusive equation.

LY . . 11
5t = k7Y (i)
As we are more interested in the mean molecular weight we may replace’Y by its ex-
pression in terms of 4 and obtain .
-#-E't lhf?ﬁﬂnlh?ﬁx?#-?}b- (12)
D
Let us divide (12) by .4dm (the reference p4) and expan'd;('x in a Taylor series about
I'f we scale variations in 44 by £.44% U -4, and define the small quantity

M _
?,_ %__"f, equation (12) becomes
™ 7#=?MTﬁ-iyihyﬂﬁ.?ﬁ+ Oyl (13)
where fﬂgﬂ?ﬁ\’-ﬂhlf we divide through (13) by 7 and consider the limit of
?—>EI\Aeobtain D 2 (14)
—& = K 4
or y VA

having multiplied by .E'.I,.l.d- All we have done is linearized the right-hand side of the
diffusion equation for A4+ (the nonlinear advective term is still contained in -“F; )
however, this is not unlike the small parameter expansion procedure used by Maﬁ<us
(1964) to justify the use of the Boussinesq approximation for homogeneous fluids.

Ve will make use of (14) in our study.

Equation (1) still contains the density perturbation and so we must provide
an equation of state which governs these density fluctuations. The equation of
state governing these fluctuations may be obtained by expanding the ideal gas law(7)



around a reference density and keeping only first order terns. The influence of
pressure perturbations on the density is of |ess inportance than tenperature pertur-
bations if DA, <=1, (see Spiegel and Veronis, 1960). Keeping within the Boussinesq
limtations we must have the variations of denS|ty, tenperature, and concentration
between the plates small conpared to their nean values. Therefore we my wite the

equation of state as .
pr pll-L + 45) (15)

ri

Equations (1}, (2), (10), (14), and (15 conplete our set of governing equa-
tions, however, we must still specify the forms of the transport coefficients. The
ki nematic viscosity in(1) may be expressed in terns of the dynam cal viscosity,

¥ = "/, Where 7 has a contribution fromboth the gas and the radiation field. Ve
may apprOX|nate the gas's viscosity by that of a pure hydrogen plasma whose nonentum
transport is dom nated by the Coul onb interaction. The formas given by Spitzer is

i w4
- e -ﬂ'-*.‘rr"rmﬂ' [*TJ P
I:".Epj = E*E’?’} "'I‘J'_.:'.'I (16)

where the Debye length iz given by

and =" is the magnitude of the charge on the electron. The nomentum transfer by
radiative stresses in a noving fluid may be expressed in terns of a radiative vis-

cosity given by (Thonmas, 1930) -
?md L % ,_?;.g_p ' (17}

(For a nore transparent discussion see Ledoux and Walraven, 1958, &49,8.) In(17)
k is the opacity and for our discussionwe will use the el ectron scattering opacity.
For pure scattering the coefficient in(17) should be 8/27 (Masaki, 1971). In terns

of the mass fraction of hydrogen
K oa9{1+X)

or using the relationship between 2.y and Z and Eq(8 we may write
= 019 [242 + 450, (18)

Diffusion in stars is discussed by Aller and Chapnan (1960) and a formfor the
diffusion coefficient relevant to stellar interiorsis given there. Though the coef-
ficient can be nodified i f a substantial part of the pressure is due to radiation
it is still many orders of nagnitude snmaller than the conductivity. Typically it is
about 1/100 of the gaseous kinematic viscosity which is itself ~ 1/10 the radiative
ki nematic viscosity.

To obtain a radiative conductivity we refer to the relationship between the
radiative flux (integrated over all frequencies) and the corresponding radiative
stresses (Chandrasekhar, 1939, Y and M). V& may wite

v(%aT")= ~5£
where %& = Stefar-Boltzman radiation constant and ‘¢’ is the speed of light. [If we

express the flux in terns of a tenperature gradient and a conductivity fromthe
above rel ation we obtain

rad



The dependence of}!-%ﬁ-@'—- on the composition is evident from (18) and (19). To
investigate the effects of a conductivity given by (19) we proceed as follows: W
expand X in a Taylor series around a reference point and truncate the expansion
after the second derivatives in o ,7 , 4 and their cross derivatives. W obtain
the derivatives from (19) and use (15) to eliminate .# . As the range of A iS be-
tween 4/3 and 1/2 we will takee 1. Furthermore, we separate the 7 and/u.
fields into their unperturbed and perturbed parts, e.g. T= 1;4.1" and write T=Tw+ T,
where T. now represents the variation of T around its mean value. W then scale
T. » T and X by AT= Ti=T, and L = /ML M, respectively. |If we define the
two small parameters

E.% . —‘i&& (20)
we may write the conductivity as
.4
X £1+ 30T+ %M 088 TF = 2P ALY T, oy T Tag+ £ T+%8 2.0 -

1 [ 2 S To 4 N ] 0 28 (T Il 28T (21)

W can make use of the equation of motion in its more convenient form by
eliminating the X and § components of (1) as well as P’ . By taking 24z of the
divergence of (1], utilizing (2), and subtracting from that the Laplacian of the
z-component of (1) we obtain

(V7)W= g (Ll - &40 4 )0, (22)

where 3* ; '
L= 3 (00 . FT009)- 243 9W)

In (22) we have replaced ,p: with Eq. (15), written the velocity components as

1 =fwvw) and defined fia= =— + % . For two- dlmenS|onaI rolls v=0 and

=0 . (Equation (22) has the unscaled quantities 7' and AL’ which are scaled
in (21).) Before going on to scale the governing equations and discuss their solu-
tion we will obtain from them the stability criteria of Ledoux and Schwarzschild.

III. The Ledoux and Schwarzschild Limits

The stability criteria used by Schwarzschild and Ledoux were obtained from
simple buoyancy arguments concerning the adiabatic displacement of a blob of fluid.
For adiabatic motion we replace all the transport coefficients by zero. Equations
(10), (14), and (22) become

w9 Te Lwe g (19 4 ) L Z5=0 (23)

L .
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Equation (24) eliminates the %;‘— term from (23). W replace the varlables 7 and

A+ by the sum of their unperturbed plus perturbed parts, e.g. T= T + T e
then linearize (23) - (25) and remembering that

el ® —E,-"E'_, we obtain



!
3 *Wf% E_J J*ﬂ' ’ %’ﬁ'-*w-ﬂ‘;‘w (26) (27)
@

and
» ~F VW =g 22l _ %ﬂ# (28)
W assume that w, T , and 4t can be witten in the form
P - VoA =|:|‘f - -u'T;
Talye Jt['r.:p, ALz :F[";_tv_.lrh W T W e €, )

where the plan form f- satisfies E}--P-f:ﬁ-ro}; I .e. closel ked

p (%47 T e =0 ,( .e. closely packe
cell's of horizontal wave number 'a'). Substitutioninto(26) through (28) vyields

whi ch can be conbined into the one equation

L acall 8 oS0 ) [ S A T A R 1 1 __r_d#-]

goa* fﬁ‘ ﬂ‘)w‘" W[Tm d®*  Tm %.?Lf P < 128)
Al marginal st ability the growth rate o= 0(disregarding any overstability). In
general W # 0 and therefore the square bracket in(29) nust vanish at e==@. |f

we choose the reference point at the position of the displaced bl ob we obtain the
Ledoux criterion for marginal convective instability,

AT T A oo

For a honogeneous fluid %"&i 0 and we obtain from(30) the Schwarzschild
criterion.

V. Scaling the Equations and the Basic State

The governing equations in dinmensional formare (2), (10), (14), and (22
with the conductivity % scaled by %, in(21). A this point it is convenient to
scal e the equations by taking (dinensionless quantities are capped)

0,0 «DRFE), taft, w=Fp D wexnf,

T=(am)F, = (2p)fh, PR, 9DF, %= | - - H T

The di mensi onl ess nunbers which are relevant to the problemare then the thernal

A 53 o Qp S
2 7 D” | the concentration Ray! ei gh nmherﬁﬂﬂl%;-%—- ,
the Prandtl nunber @ =% and the ratio of concentration to heat diffusivities
T = Hr,&m. In terns of these scaled quantities the equations become (dropping

t he caps)

Rayl ei gh number R, =

& B V)V W= ELgyt RedaT -Rubyu (31)



7-1=0 (32)

aa!
(= - TWaa-yvu (33)

&—t+1r-'ﬁ“|' ‘ﬁ“w-i{l*'-}fr ““Eit%#‘—lnfﬁ._ Fe -7 (XVT)=0- (34)

In Eq. (31) we have replaced the scaled perturbations T’ and/u’ by T =T+ T and

= stp+al as T, and A4, are only functions of 2 while &3 is an (x,Y)differential
operator. As it stands now there is not much that can be done with Eq. (34), how-
ever we can simplify it even more i f we assume that

3/5. .

Let us consider the dimensionless product Er I which appears in (34). If we write
its equivalent in unscaled variables and make use of the ideal gas law we find

32| 2y B G4, Gu P . A4 T P Hme,
|EP;T'_'§;$—T,.,Q¢H># W RGBT S A BT & T Cp

As variations of 2 , AL, and T must be small compared to their mean values we may
approximate them by 2, a4, and T, . AsH®ju,m ~ ¢, (within a factor of 2) we
- P =p
use (20) to find 1o B .
lr;-l.—l E: }ff; <
by assumption. As this expression is so small while the coefficient ¥ of the Yw

term in (34) is of order unity for a system in laminar convection, we feel that it
is justified to evaluate the entire coefficient of %— at the reference point. W

define _
H#=f;:%-fl+3‘éﬂﬁw:1 e (35)

and rewrite (34) as

E'-.r a " ! . 1
E'HW*H#“'J%'E {:?E'FT:+E'["FT+F}¢_?,¢.U:E} (36]
As mentioned above we will consider roll solutions to the equations, there-
3=
fore 4,7 —3.,{—1. . In addition we will restrict our attention to steady convection

only and therefore ﬁﬂﬂ'. Though it is known from the thermohaline problem that
the fluid i s unstable to oscillatory modes at a lower ™ o than for non-oscillatory
modes we will restrict the analysis to steady modes only. Kato (1966) has shown
that mixing can occur by overstability when dealing with an isolated fluid region,
however Auré (1969) has shown that overstable convective modes are damped by the
radiative envelope in B stars departing from the main sequence. W feel that this
justifies the study of steady modes only. Moreover we will be looking for the
possibility of a subcritical steady mode which the star might lock into before any
oscillatory modes may develop. However we can not rule out the possibility of
overstable modes in the Iimit of vanishing frequency as these set in at Rayleigh
numbers lower than critical. In the limit of this study the governing system of
equations becomes

Y 3* 3" f .
VW Ry gza T Ru 5=t = -7 Loy ()

TPL=1Tu =10 (38}



P T+¥W-U (TT# K ) + D¢ [(x-1) 9T ] =0 (40)

together with (21). W might mention that typical values for o= and T° in semicon-
vective zones are g==fo~% T~ 15"%.

Equations (37) - (40) and (21) still contain the basic state temperature and
composition profiles which we may solve for now before going on to the perturbation
problem. |f we take the mean quantities Tm and A4 mto be the average of those
values on the plates,we have the following scaled boundary conditions on the basic

state Tp= T+ To omd Abps b= ids 5
Te= (20K omd a=(2)¥ at 22(9). (41)

As the basic state is hydrostatic and z-dependent,only the governing equations
reduce to M

L7 N (42)

d T
(e )= 0 (43)
with X, given by the first six terms in (21). Egs.(42) and (43) may be integrated
directly with (41) to give
Moz Vo (1-22) (44)
and Xa ii;' = constant. (45)

As X, makes (45) nonlinear, it is to our advantage to make use of the smallness of
d and % . V¥ can obtain an approximate solution by expanding Ts in a series of
powers of gand'i*, and require each order ind and % to satisfy (45) separately.
We must also adjust our boundary conditions. We may write

Croy il o P
T =§E Pl B (46)
and T (2) K ot 2 () (47)

T2 0 v [mim)# (0,0) ot g,{?j 5

Substituting (21) and (46) into (45) and considering the expansion through second
order in small quantities,we obtain the following set of equations for T,

lo ey
iTe = constant
2
4]
T‘{lrﬂ Ly e A_T -
%.'z_ + 3T, 42 = constant
d__rura.f] dTﬁHRJ

-1 1.%_‘,1.1_ - constant

e : *
d_T,F"J__,t q T."-""'] |:I|_'|"..t + 3T;Ur°) d.-r.l'.'ﬂ:'l; F TE"." dwT'mﬂ: constant

d= 5 au dz * dz
.Tfﬂ'. r,-_q,-,:l °\'_'-l-lﬂ
di.; 2 %;_ - &l ‘::; = constant

L £ ¢l ) [
T, v o T
AT;— + 3T % +37T, d; + 3 M .“T:*ﬂ*ﬁ;,ﬂ:"""ﬂg constant




The solution subject to (47) is
T.= la(i-22)+ 2202+ 42 (-2)7 - feE(-2)-22) 51—.,:,—&{.“?}:“!-.1&}"&1-"

—E--f.!-fl'{r-z‘.;}é?+ —_— (48)

Ve may nowv substitute (48) into (21) to obtain the final form of  which we will
use in the perturbatlon problem. Letting T and Ae in (37)-(40) be written as
TeTot T*T ‘and =it ik Subtracting the basic ‘state from (37)-(40), and dropping
the prlmes on perturbation quantities we obtain the set of equations governing the
perturbations.

Vive R 52T Ru _;'E;#=f L) (49)
Ly B [w(eem e (5 + B)w
E":' == %“' (50)
Vit = VU (51)
T T+ (¥4 Ko —w -i"i—i- +Ve [{Irﬂl??’* (x-x) iL--EEJF".':i" [V Ts b T (52)

(e-D= R (ag)ds § (1-28)p+ 2 (Lre-)d = deli-2aPp + -5 7+
+ T8+ S (1=10) 5% 3 (1-22)83 ) #4703 % 4T % -
AP (e d (a0 d 7 ]G uOIF 095
LTRSS R Py P, g, . (53)

In (53) we have already expanded the perturbation quantities in powers of & and
This will be part of the general expansion procedure we will use to study the non-
linear system (49)-(53). W may mention that in the derivation of the s -diffusion
equation we made a similar expansion and threw out higher order terms while we have
retained them here. W have done this because of the dependence of F..d4 on T and
AL as implied by (19). The dependence on these variables is rather strong and we
can imagine ourselves creating new small parameters which reflect this strong de-
pendence. For example if Krad ~T"then we can expand T about T, and create the
small parameter ”ﬂfwhlch emphasizes the dependence through % . In our casen= 3
so we have absorbed n into the coefficients of (x-1). W will use equations (49)-
(53) as a model for our system and we will study this model within its limitations.

V. The Perturbation Problem

Ve will study the perturbation equations (49)-(53) for both perturbations of
infinitesimal amplitude and for small but finite amplitude. To do so we will make
use of the modified perturbation techniques used by Malkus and Veronis (1958) to
study Rayleigh-Bénard convection at finite amplitude. The justification of the
approach i s elaborated on in terms of Taylor expansions in a parameter space by




Millman and Keller (1969).

In addition to the two expansion paraneters 4 and 7 which we have been using
we will also nmake use of the perturbatlon arrplltude & . W wll expand the pertur-
bations T, o, w, and u as T £ & Trmiet gMah and similarly for u ,w , and 1t

fap M ll-

V¢ then substitute these expansi ons |nto Eqgs. (49)-(53) and solve themat each order
of =, &, and Useparately. Thus {(#wn) = (1,0,¢) Wll yield the linearized hono-
geneous problemand for other values of {&wnw) we Will obtain additional inhomoge-
neous terms. For a solutionto exist the equation nust satisfy certain solubility
conditions. That is the inhomogeneous terms must be orthogonal to the adjoint sol u-
tion to the honogeneous problem In general this will not be the case and so we will
expand the eigenval ue as well and choose it so that this condition is net. For the
stellar case we may consider the conposition as given and so keep the concentration
Rayl ei gh nunber Fufixzed. W will expand the thernal Rayl ei gh nunber as
RT‘EDEMI‘JG é‘m-,zh

mzso

To elimnate the arbitrary addition of the Formgeneous solution to the solution of

hi gher order (£wa=) # (1,000 we will define £ by an orthogonality relation to be

gi ven bel ow. V\é will also refer to fm-l,;:'”" whi ch wi Il depend on the index £ of the
perturbations which appear in(53).

Ve will require the perturbations inT and s to vanish at the boundariesislﬁ')
as we have assuned the plates to be perfect conductors of heat and helium As fix-
ing any sort of boundary conditions on the gas notions in a star is sonewhat artifi-
cial we feel that stress-free boundaries are nore realistic than rigid boundaries.

The vani shing of the shear stress E_—*f at a=(¢)for all % ) conbined with (50 vyields
z0at 2=(F)and with the requirenent that there be no net mass flux throue([;h t he
plates inplies w=¢at ==(7). As a convenience fromnowon we will let D= .

.\.—-'_’Ifﬁ,'*nj e I:rn'JE'.EI,I

Upon substituting the expansions given above into Eqs.(49)-(53) the equations
we obtain may be witten as

= 2, 60 1
(Dra win-a" ROV 2 Ry - 0 (54)
3 ]
fn‘—a‘},u,“”"-» “— =0 (55
(=) T4 (e 1 Ku) w2 0 (56

V¢ have chosen a periodi c x-dependence of wavenunber 'a' to achieve a separation of

variables. W will restrict our attention to solutions at all orders of €, ¢,% which
have a periodicity of £ jn the x-direction. This inplies that the x-dependence at

each individual order wll be a harnonic of the fundamental wavenunber 'a'. Taki ng

(D%~a jof (54 we may conbine (54)- (56) into one equation.

(D= aT W, ﬂ;p TR haad ﬂﬁ,ﬁ,_.] & w0 (57)
as T w9l 0 gt 2] Eq(54) inplies (D% W, vanishes as well at 2=(7).
This is the well-known Rayl ei gh equation with the expreSS| on in square brackets being

the eigenvalue. The z-dependence of the solution nust be & nTlz a5 seen from taking
D*of (57) and using the boundary conditions over and over again. The eigenval ue

o & 3
wll then be "rﬂ+‘:ﬂﬂ|— and will take on its mninumval ue of 2444— at otz Ty«
V¢ may use the solution for wf“‘ in (55), (56), and (50) to obta|n expressi ons



for ", Ti%and 1, . The solution to this linearized problemat the eigen-
val Ue 'mi ni mumi s -
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fa el ’
T, = & ;1:11-;.."«* L) T e azx (58]
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and 'Fip["“ = (i".’ 73 /i:.ﬁ'-hl ; I';u_:l

V@ note that the & -expansion is valid onIy wi thin some radius of convergence. For
£ =1 we have ignored the nonlinear terns in the equations. As can be seen from
(490 and(51) thisis only valid for £<<¢-and &€«=T . This is a severe restriction
asg-and 7* are very small for stars. R is the critical Rayleigh number for the
probl em According to the solution of the linearized problemthe systembecones un
stable to |nf| nitesiml disturbances for ®e > ®JS¥. For Raylei gh nunbers |o

t han F5** the disturbances decay while for Rayl ei gh numbers greater than Mg

t hey grow exponentially. V@ will see fromthe finite anplitude corrections that this
is not the case. Before going on to those corrections |et us see what effect the
tenperature - conposition dependent conductivity has on the eigenval ue.

At this point let us define & by the follow ng relation,
M, I
€= —“ﬁ'f dy. | da (W™ w). (59)

W al so note that the general Rayleigh operat or [w* -t‘.‘”’“’\ ] (vhere €. *%is the
expression in the square brackets of (57)), together W|th Dh’e hormogeneous boundary
conditions at = (4) and the & periodicity in % constitutes a self-adjoint

[+
oper at or.

{"f}m: ﬂ.}‘_" fl‘-i IF u:]
At this order of & , & , we are still concerned with the linearized form
of Egqs.[48)-(52), however the first order effects of the tenperature dependence of
will cone in. Again we may choose the planform of the variables to be ~eosax
as this now appears in the inhonogeneous ternms. The equations become

I i ol
I:DL_ﬂ-lifﬂmfhﬂ}_ ﬁlﬂjlﬂ -rlll"l.lL a? R:‘ ﬂIfl}ﬁL'r &la‘ljuf"r = I_“IE.I:IJ
(-]
(-a)us W7 -0 (61)
3 i
[©=a2T T+t b, M= 304 24 )/~ 2 B Tre covon
v A (e 1 +hu) os T om0 (62)

Taking(.ﬂ‘-ﬂq) of (60), we may combine (60) {62) and using(58) obtain
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5 {ma‘m&‘#.ll:}“*i*&m‘li}ﬂ’ﬂ“?+ 1;;1‘(1:’+ir&;jm‘li'ij- (63}

i@ I8
As T ué™L 9. ot 2«(%) we find from (60) that D*wj""= © as

W W 0 at -a-(o)— From (63) we see that w ) ~~ oy aX « Multiplying (63)

by the adjoint of -..-.-"'"-'“?' and integrating by parts we obtain as the solubility con-

dition of (63) that 'R<r ﬁ-o To satisfy the boundary conditions on w4 % we will
need to make use of the complimentary solutions of the homogeneous equation (57).
If we let the solutions of (57) have the dependence e*% we obtaln the algebraic

equat|0n 8,
Ir.-lil q_‘;l Céfﬁ'ﬂ j E ﬂ] it .__-- I

- = |-., q
The six roots are A, = (W, 2, _‘iﬂ.bf}i{if'ﬁfﬂ}]ﬂ.p;f?h S md H_i=31.-' :
2 Y T
where (*) means complex conjugate. |f we define
A= a1k (s TH) 04 u’_‘,ﬂ (64)
we may write the complete solution of (63) as
WP W e a

where W% = AZL4mT2 + At el 2 + Ay BPONTTE+ A ook T + A 2”0y

"'HE.E- +Flw5}"‘-.'qgf. B A UmTE, (65)

The first three coefficients in (65) come from the particular solution and are
given by o, d)

[~
JﬂH: W [J.Ei tfﬂ‘*‘".'"ﬂ' E_f:lﬁi—gﬁ{ﬂl-’-’%')]’
ALs -?T‘Ta:t (Yo 2+ ku), Ay* "ﬂ'

To satisfy the six boundary conditions on Wi 'fg;,v\e may adjust the six free con-
stants. However the 4dm 1 2term cannot affect the boundaries implying that at most
only fire of the boundary conditions are linearly independent. By setting up the
6x6 matrix equation for the coefficients and performing the usual row operations we
find that the matrix has a rank of five and at the same time obtain the solution for
the coefficients. The matrix equation, off of which the solutions may be read is

(RN ) s o - 0 A,
@stle™+ 1) AL 0 0 0 Ar
(158 O (*-3R) 0 o || A | =

(€”+) (e7+1) (€%1) (e7- /\ Hn
| I |



2 (27 2 4 X*UTA+A,) +8TA,\

2N NA + A

= 2 (ThA+ A (66)
]
fa) -

The coefficient A7p in (65) is determined by the orthogonality condition (59). The

solutions to (61) and (62) may be written as u ™= w9y cos ax u-nd_ﬁ“i']:ﬂ{ijﬂ-ﬂhﬂi

where %= m Lf.rql+ ﬂ!‘La} Az )R 4imTTE + A BemTe-AfunTe =

_(ﬂ_ ﬁt_hﬁl“‘]mﬂi_hlf iy ﬁl___ l':ﬂ.‘_.,!]f";lﬁt.l.’ﬁl*) m‘nl]_

ot et (% a®
—h o -:,.f'l
- (PENAE ) s (e +AET )t
+aqqﬂbﬁh1'!-+ﬂ|hm}mh am (67)

(v L o T 2
and TG =Tl haufy - SER (azdain Tz 4 Rl (v-5% ) uora -

—atih a® + (cacha + cotha)aimh .u] : (68)

The coefficients Ag and A, are chosen to make 44, satisfy its boundary condi-
tions. W see that to first order in & though the structure of the eigenfunctions
is certainly modified, the critical eigenvalue is not. Also, as the (1,1,0) solu-
tions are all proportional to e#& o.x they do not affect the mean fields (the hori-
zontally averaged . and T fields). W need not write down the form of . * but
only say that it is obtained from u.f'*“:- _puug{’ﬁm ax Physically, the fields
themselves are given by the real parts of (65), %67)‘, and (68). As we are consider-
ing solutions near the critical eigenvalue we would expect the horizontal wavenumber
to remain very close toa = TA% . This was shown to be true for the Rayleigh-
Bénard problem at finite amplitude by Malkus and Veronis (1958).

(’Z»'mm) = {JJ 01)

The r%sults of the (1,0,1) problem are very similar to the (1,1,0) results.
W find 7?5" = O and eigenfunctions of the same form as those of the (1,1,0) case,
Hence to first order in both § and "Z the critical Rayleigh number i s unaffected.

f.f,m.n): fa’, 2,0)

By the time we get to second order in § the equations become very unmanaga-
ble, however it is at this order that we first encounter corrections to the criti-
cal eigenvalue. . Let us consider one ;.-aijticular term to demonstrate the point, To
eliminate ".I',":""“"al from Eq. (49) for wi™* we will have to take Y2 2of (49) and in-
troduce (52) for T ™® into that equation. Thus the equation will contain the
following terms dué to the w %{l term in (52):

ﬂ.ﬁ E‘J“ﬂu (WJ i “Jﬂ 'jr;f.'.ll:'_* W,th} T I:'FI-.F:.:'J .




- 137 -

: - " : : £a, 0
These terms will be multiplied by .oun/1 2 and integrated over & to determ ne Ra

Upon doing so we find that the w;™®DT, % term does not contribute, however the
wi T D T,M® termdoes. This can be seen by considering only the first termin
(65).  The integration over x does not vanish as both W% and W, 0 2ot gy The

2 integration will be=-f (sbn7a)(aainma)fi-22)#0,

A .
W woul d al so expect nonvani shing Rf‘”and .Y as R,“"ﬁ"-ﬁﬂ. Thus t he
critical Rayleigh nunber is nodified at second order in the small quantities & , % .
w

(£,mn)=(2,00)

For #=12 the governing equations wi |l contain additional inhomgeneous terms
reflecting the nonlinear terns on the right-hand sides of (49-(52). As Lig1e)in
(49) will "always contain the factor Wbr B% of an order of w already knom;r{‘%mhl ch
satisfied certain boundary conditions) it will not affect the boundary conditions of
a higher order W . As can be seen for £z2, L¢syycontains W and D%, both of which
vanish at 2=(%). AsT, and 4, nust vanish onthe boundaries as well as g and D*w,
we nust have D¥W,vanish there also. This same argunent applies for all higher or-
ders of W and so fromnow on we can take as our boundary conditions at

2=(9) M=T=wapw= 'w = 0.
A (4, ,mn ) =(2, 0, 0 the equations becone
#ot0e) e g R o leet 3% o el 3,y (a0
VW R E TR R S T g ite T 0
fo,
(ol W T .

?]ﬁm'ﬂ* (o |+ sl '-‘""":muj o =a1|‘fa_lr|-l_f+ |+ Fp [“-f-l']miﬁi'

Vi note that the inhomogeneous terns are independent of # and so will not enter
into the 7*wy*¥equation. Taking v* of the Wi®?equation, elininating T2®* and
%% and using the expression for T,*we find that choosing a cos@x dependence for

L R
who ' yields y i N o () S a8 plos
(vt | (¥4 1+ Kl Re™- Et'-&]ﬂ- W% )+ Ku) TR G iz =00,

Ml tiplying by wiayand integrating by parts we find that we nust choose rR™=0:
If we do so we see that the equation and boundary conditions that wifa®imust satisfy
and they are the sane as those for w ®*(see (5)) and so by the orthogonality con-
dition (59 we must choose wQ"%¥=0. The equations for it 4"and T,"* may then be
sol ved gi ving

faa} iR —| 7 .
Ay % lﬁ't""{rfha.‘-'.i gt ATTR (69)
'Tlfn_lﬂ-] __-'I_Fw-'_ r\g ,l-r ﬁ“{ oy ] Tr?
and > ® Inemeeray L°Y f+T ,a]n-.—rﬂi . {70}

as ees” and T, are independent of x we see that the first effect of the non-
linear terms is to modify the horizontally averaged fields. Eqs.(69) and (70) show
that the convection nixes the fluid into a nore uniformstate. As wi®® 20O, Eq.(50)
inplies that wi**is independent of x . If we go back to Eq.(1) and consider the

x-conponent for the steady state we find that 288

ﬁdufﬁw%—%— -



If T f* were nonzero we woul d have a horizontal pressure gradient which was
linear with x and hel;nce woul d diverge as x—o=. This is clearly unphysical and so
we must have T®*e,™ o o0, or w™'=a2 + 5 with 'a' and 'b' constants. The vani sh-
ing of the shear stress at the boundaries inplies o =0 |eaving a constant horizontal
velocity of the system As this may be transformed away by a constant translation

of the origin we may set tey*™%= O without any |oss of generality.

[..f,m‘.nll = I':.I'._, 11'9}

At this order we find that all the inhonogeneous terns in (49)-(52), except
for the ®“* term are proportional to epazax or, as in(51) and (52), are inde-
pendent of x . The equation we obtain for wstu® is of the form

(0 LTS w4 ROV g oo 20w + R PP (wy Lon ax = hgyest 2a% -

Mil tiplying by w,t® | requiring wsytle& to have an harmonic period of & in the
x-direction, and integrating over a period of & inx and from 2=@&— we find
Ri% e p . Thisis then also true for R %4 as the equations at ( # .r ,n )=
'f.i,oal) have the sane formas here. As the equations for _,..-'I.-'I.,_t"“ and To*"* have
i nhonogeneous terns which are functions of  only, we find that the horizontally-
averaged fields are now nodified by the & and % terns in the expansion, The fields
will al so have conponents proportional to egs 2a%. This applies to .44,* and
-ritv;-i also. If we go on to higher orders of & and? we wll find that

ﬂ,“"ﬂ'ﬁ a Rf"'&: Rf"ﬁs G as well.
Al inhonogeneous terns, at any order of & and? for €=2,vill be formed either by
products of .£=] terns or by products of an £=2 termwith a termfromthe basic
state. This will always yield inhonogeneous terns in the sixth order equation for
weo ™) which are proportional to eetZaxand So will not nodify the Raylei gh num
ber. W may conclude that R,z ¢ for all (rn,n),

(€mn=(3,0.8)
A this order Egs.(49)-(53) yield the follow ng sixth order equation,

fanl S '8, /
(v*-C, 'ﬁ_#”ﬁf“‘f R‘i 10V )+ Kulalm e conan =

(71)
., & . ¢
=R w3 5_%&‘}“’““““*‘"‘““'“?'&—% [f+f+%{l+tifﬁ}mﬂmaﬂtmnx‘

As above, we multiply (71) by wit** and integrate choosing T« =* so as to renove
any secular terns. W find

tme) | ] - reay]- 3:4_"!} . 72
R e {mmﬂ (41 B (e T3] - €723
The dependence of Ra™™ on Fecis given in (58). W also note that for a stabiliz-
ing conposition gradient (R 0)the formof =."**inplies that (v+t+ku) >0 for
& T near or larger than the negative of the adiabatic gradient. Though the signs
are consistent for & T<=Jks it is not possible to convect as there is no poten-
tial energy available to dri::/‘e) any notion. Therefore for (¥4 1+ Kw)>0 (72) and (58)

give us a condition for Ry™* «’& . It nay be witten as
R =214 F1] » 2021+ F) R
where ~ F = _elltTl L3

Tl e il
As Ku~T<0 for AT>0 and (¥+/+Ku) =0 we have F< 0. As T <] ve have
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o
[1=T*1+F)]>0 and therefore we obtain 'Rh < 0 for

271 4 Ko (14T )+ (P14 KuT™ _
Fu 3 [ w1+ K T (7% 1T KL ) (74

As Psu and T are both very small numbers we conclude that instability to finite am-
plitude perturbations sets in below critical for almost any Fuw & ©-

It can be shown that as T </ the right-hand side of (74) becomes negative for

L ; *
(ae1) I+T+ 12 =T

This would imply the possibility of a subcritical instability even for Ru<l. But
for Bu< @ and F==>0 both the temperature and concentration fields are "f:ztabil:i.zing
A small but finite kick will homogenize the system and as 7< | the thermal field
will be reestablished first. This would leave the system less unstable than before
because we would have destroyed the destabilizing concentration field. Hence a sub-
critical |nstab|I|ty for Bae <0 is unphysical and the analysis i s applicable only

for Hff"'”c."t

with R,.“® determined we can solve (71) for W,_'f' o find
is.)
mol _ Ry dar{Tri+ku)
ws = rq‘ﬂ“-ﬁﬂ.i}" frl*ﬂj.}'!- Mjﬂzmal {;,!5.]
and £o.c) o)
Uy 8 = £ D™ admax.

.,u;"q’ and '.I';'.E”} will have terms ~um3 T saay, and ~emn T % Their coeffi-
cients are unimportant for now.

As the first finite amplitude results were obtained at (Z ,n':]- aﬂ_]lthe de-
pendence of # on T andf can change things only slightly but as o?:-: | and g <<
they cannot remove the subcriticality. Therefore, as in the thermohaline case we
conclude that stellar semiconvection zones are subcritically unstable as well.

It is of some interest to consider even rygher order terrms 51 the expansion.
If we go on to (£, #m)=fe,0)we find that Fs™* = 0 and thatwy ™ waming vt 24%
and ~ qim #4712 f-niu. In addition the mean flelds of a4 and T are modified by terms
A 4MLT# andeoin #TT% . W see that these higher order terms bring out more
structure of the effects of convection on the horizontally averaged fields. The re-
sults of the previous orders may then be applied at{m,p)=&6,6) to obtain 7+fs,e}
In deriving ﬁ.;f*'” we drop some terms that are clearly smaller than others by sever-
al orders of T . The expression we obtain is

(o) T Jod o bl
?E'!" ﬁ'ffﬂi-“ju-}{'ﬂ"* Teleha (e 4t 3T 3J| W[{:‘;}(ﬁ'ﬂ*&{hl o F,JJ.P.
CH g . e
+[es 1ot (lersr ] B ) 4 Tl (STrd -5, E g3) j 76)
Here : R‘“"ﬂ 3 03 Y4 L)

T TR4a - (n s a1

Remembering that the results were valid only for —-'i‘!ﬂ-r < T and that |Kul = l¥l _?/ﬁ."
ve see for [¥1 of order unity ¢/§ ~T *or Eu'-T*ﬁ-r and that as we are in the
neighborhood of critical R+ ~(-’L—".F,—Ti”+ 'E.r.i.ﬁ‘ /(3"1' I+ Kga) . With this ordering in



mind we may write approximate relations for 7?6“'“"=I , ﬁa‘r"’d » and EHH‘“}. W obtain
. fa,0) ¥
(gr1+ ) R = 2717 o T 5 0

4 l!lﬂlﬁ _"5“. __I .
t"l"l'r FW-E" b mrﬂ f- Ca [T"._]

fag) L 1'% ad "-"?g«- e B |
(e 1= H) Ry “""'[ G) ey <P

G o™
fo.0)
As a*=T% and R.t:ﬂ“-_f f%a)-l- E‘EJ- we find
ft‘+|+5u}ﬁ'-;"""g G5+ —i‘—" -6 %“JE':L]+ e* :,—g -?ji*jfﬁ.ff. (78)

Since 'R,u’v’f"we see that (78) is convergent for & <=T which was a restriction on
the exBansion procedure, If we minimize ®R+™"" with respect to & we find that

+#¥ takes on a minimum at
a _ped .

min=mﬁff*

outside the limit of our radius of convergence. |If applicable, this implies

(F+1+ Kin) Rt 22 657+ Rufer (79

Let us go back and consider Egs.(50) and (52). Let us also add the basic state
temperature to the perturbation temperature and the basic state 4. to the perturba-

tion 44 , Taking note of (43) we obtain

g. - )
= = B (807
and ‘?'{I vT) -r‘il’w-}g"-[?‘]'ﬂ-lﬁu?,u]=ﬁ. (81)

Averaging (80) over the x-direction (either one period of =?7"——:'--or the infinite
domain) yields %-‘_f-: @ or W = constant. (An overbar means horizontal average.)

As W must vanish at #2=[(f] we have W=0. As (80) states that W-"y= 0 we can re-
place ¥»V~in (81) by V.(yT)and similarly for 7= 7 ‘' =4 T~2n averaging (81)

over X gives _ —WT- KuewWitle=0

i[ d (82)

de 2
Separating T and ALinto its horizontally averaged components (which includes dis-
tortions due to the convection) and its fluctuating components by T= T+ and
M= K +,.El and noting that‘f}'—zo vi&can rewrite (Bias

- T+l } 0 83

Ll *as tWwi+ Kuwil)= )
Integrating (83) over 2 we find

N&--iﬂﬂ‘_+WT + Far WAL [84)
where .""b"u..is a constant of integration and therefore i s independent of & . If we

integrate (84) over & again (denoting the & integration by brackets) we obtain



Nm:{-—?izﬂl_'%}*{ﬁ}*{'*\#m}' (85}

To order {m, m)=(e0) we have =1 and we see that (85) is the heat flux nondi nension-
alized by a linear tenperature gradient{& T/} , that is(85) is the Nusselt nunber.
Substituting in the £ -expansions for the variables of order (viin)=[ga),noting that

wiyfa® = o'and that w, @*# is orthogonal to T,“®* and & t® we find to order &
that

Mwel+ E—_" [(:v_i:w Fr:m]} » K {'r‘-‘:‘:"'m/gy"' ﬂ}]_'_ E*qu:h:;;ﬁ%n}'f Hﬂ{ﬂmaﬁjw}:ﬂr (86)

AL contributes to the heat flux because the exchange of an H nucleus with a He
nucl eus via diffusion inplies the removal of two particles (HT + e=) with the addi-
tion of three particles (He*> + 2e~), i.e., the ions drag their free el ectrons

al ong.

Substituting in the eigenfunctions and performng the integrations we find
Nu=+€*[35 (2e1) [ir gy (e~ - €0 Cerd[in it (oo om)

From(87) we see that the restriction that '—:r(ﬁg <0 js consistent with a Nusselt
nunber always = 1, (renenber that Hu<0Oas kw~7¥). V¢ can solve for &*in terns
of the known quantities B ™, Ry™®! Ryl*e and the specified R4, The sol u-
tion of the quadratic equation is

] > . Va
i 5 | Gy el o el
E.rﬁ'l = 5 R‘H-' * —n_l-_zﬁ_'f“ [Eﬁ T+ “R“ { -HT F-".- J‘] ’

For R. »Ra™* we nust choose the (+) sign while for Ry < R we have two val ues
for & ., The heat flux is proportional toAuRpand we find that the slope of the

heat flux vs. Ro** curve at R, is

ol (wurs”) dty d€ )y Rplie) [33°
T'I-
at R-,-r""]—. R ps R s we have slopes of | & "-'5"[-.—:.*“}“!:]-

The general shape of the ‘curve 1s given in Fig.2.

Pl

[[']’-H-I- i) E—T-“t}'“v"u__] /:;?5__ convection sol ution

Fig. 2 e conduction sol ution
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Though we have consi dered only steady solutions to the equations we woul d
expect the lower branch of the convective solutions to represent steady finite
anpl i tude convection which itself is unstable to infinitesiml perturbations. This
i s because for a prescribed Rayl ei gh nunber the |ower branch sol utions convect |ess
heat than those on the upper branch. As we woul d expect the fluid to convect in
the node which rel eases the nost potential energy the fastest (Mi kus and Veronis,



1958) we suspect that the upper branch is the physically realized solution.

VI Concl usi on

V¥ have investigated the stability of finite anplitude two-di mensional dis-
turbance in a conpressible fluid layer with a stabilizing gradient of solute and a
destabilizing tenperature gradient. W have considered only steady convective sol u-
tions and have made an attenpt to take into account the tenperature and composition
dependence of the conductivity. W have found that the steady convective sol utions
bifurcate fromthe conductive solution in a subcritical manner and that the variable
conductivity does not renove this subcritically. Though we have restricted our
investigationto a very special ordering of the relevant paraneters we feel that the
qualitative nature of the instability is demonstrated even though the mininumin the
heat flux vs. Ry curve was outside the radius of convergence of the & -expansion

Wth reference to stellar sem convection zones we would like to determne with
somewhat nore confidence the mninumRy for which there exists a convective sol ution
Because of the parameter range we were working in, we found that the subcriticality
did not change things very much, however we feel that this woul d not be the case in
stars. It is still unclear whether the Ledoux or the Schwarzschild stability cri-
terionis the nore realisticin the stars. |n some sense our results indicate that
t he Lﬁdoux criterionis too restrictive while Schwarzschild sis not restrictive
enough.
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