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E d i t o r ' s  Preface  

Th i s  volume conta ins  t h e  manuscripts  of  r e sea rch  l e c t u r e s  by t h e  

twelve f e l lows  of t h e  summer program. The l i s t  o f  t i t l e s  o f  t h e s e  l e c t u r e s  

i n d i c a t e s  both  t h e  broad range of t o p i c s  touched upon du r ing  t h e  program as 

we l l  a s  t h e  c e n t r a l  summer theme. The f o u r  pos tdoc to ra l  f e l l ows  gave p o l i s h e d  

l e c t u r e s  which probably w i l l  appear i n  j ou rna l s  soon. The e i g h t  p r e d o c t o r a l  

c o n t r i b u t i o n s  range from through work which a l r eady  is  of  t h e s i s  c a l i b e r  t o  

work which i s  j u s t  t h e  f i r s t  product  of a  novel i d e a .  

These l e c t u r e  r e p o r t s  have n o t  been e d i t e d  o r  reviewed i n  a manner 

a p p r o p r i a t e  f o r  publ i shed  papers .  They t h e r e f o r e  should be regarded  a s  

unpublished manuscr ip ts .  Readers who would l i k e  t o  quote o r  u s e  t h e  m a t e r i a l  

should w r i t e  d i r e c t l y  t o  t h e  au tho r s .  

In a d d i t i o n  t o  t h e s e  volumes, which r eco rd  t h e  f i r s t  p r e s s e d  f r u i t  

o f  t h e  program, more caut ious  p r o f e s s i o n a l  r e s u l t s  i n v a r i a b l y  emerge from 

t h e  exchange of t h e  summer. For t h i s  oppor tun i ty ,  we wish t o  thank t h e  

Woods Hole Oceanographic I n s t i t u t i o n  and t h e  National  Sc ience  Foundation f o r  

encouragement and f i n a n c i a l  suppor t .  

Mary C .  Thayer 

Willem V . R .  Malkus 
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ON NONLINEAR RAYLEIGH-TAYLOR INSTABILITY 

Phillip Colella 

In ( I ) ,  Whitehead and Luther describe a set of experiments demonstrating vis- 
cous Rayleigh-Taylor instability. In these experiments, they float on top of a dense 
viscous fluid a thin layer of less dense viscous fluid, seal the container (which is 
made of plexiglass) so there are no air bubbles, and invert the container, Initially 
the interface between the two fluids is flat but this configuration is unstable, 
After about thirty seconds, one sees spouts of light fluid welling up, surrounded by 
downwelling heavy fluid. 

D = regions of downwelling fluid 
D 

U = region of upwelling fluid (as seen from above) 
n 
Y 

The linear theory (which is outlined in an appendix to (1) predicts the magni- 
tude of the wavenumber of the disturbance which grows the fastest, but does not de- 
termine the shape. Whitehead and Luther conjectured that one particular planform - 
hexagon - has the greatest growth rate in the first nonlinear corrections to the 
theory. A method is outlined here to determine which planform gives rise to the max- 
imum growth rate in the nonlinear theory for a restricted range of the physical para- 
meters. 

Scaline and Linear Theory 

We consider a system of two incompressible, immiscible fluids of equal con- 
stant viscosity M , separated by a boundary 2. = ?  ( x ,  Fluid I is of density~ , 
fluid I1 of density 4 + A p  , n p>O. The equations o and the boundary con- 
ditions are 

f i  & ~ = P ~ v - o ( P - P ~ ~ ~ ) +  .., ()~*v)x IN REGION I (1) 

a 
[ f i t * p )  T ~ = ~ ~ ~ - ~ ~ p - ( ~ o + ~ ~ ) g & +  ~2 IN REGION I1 

continuity of velocity across 
the free boundary 



continvity of tangential 
stress acrass free boundary 

(41 

continuity of normal stress 
across free boundary (5 1 

where u, v, w are evaluated 
at z = 7 ( x , y )  

(61 

THE RATE OF STRAIN TENSOR 

N = ( 3- a,, -1) 
normal vector to z = 7 (x ,Y)  

linearly independent tangent 
vectors to z = q 

CA] is the discontinuity of A across the surface t rr , i .e, the function 
whose vhue at the point is A ( r r  y ,Yi&$) +) - A (Y ,Y 1 9  (y., v )  ) . We non- 
dimensionalize the equations writing down, for the moment, only the linearized 
boundary conditions (the dimen~ional quantities w e  starred). 

P*= @ p p - @ g t  IN REGION I 

C v  = 1, - a 9 - U  p,=f, p-h+~f')p)%z IN REGION I1 

L~ 
-+ -vp+by- $ 5 r [ y t ~ ) V .  IN REGION I 

2 a (?+ ( ~ f ) + ~ - - v p + n v ; -  $ ( V . D ) ~  #+ IN REGION 11 

v*y= 0 IN BOTH REGIONS 



We expand t h e  s o l u t i o n s  i n  = 2 , which we t ake  t o  be sma l l .  We a l s o  

assume &$-= O(&') o r  sma l l e r .  With t h i s  o rde r ing ,  t h e  t ime dependence of  I$ , f 
1 i s  completely determined by t h e  boundary condi t ions  t o  o rde r  c3 , and(v*~) ' l J  i s  

1 n e g l i g i b l e  t o  t h e  same o r d e r .  We expand x, P and )1 i n  powers of E about y,  
I and 33 i d e n t i c a l l y  zero f o r  & =0*  

'P ' + C p ,  + E ' V ; ~ .  

3 = &?*+ E'=p,+ * 

yo : A t u r n  out t o  be zero,  s i n c e  does no t  e n t e r  t h e  €-equat ion .  The c'- 
equat ions  a r e  

= PP, i n  both reg ions  (15) 

v * X ; = o  

?r; s a t i s f i e s  t h e  boundary cond i t i ons  (9), ( l o ) ,  (11) , and (14) .  

I The reason f o r  s c a l i n g  t h e  time i s  i n  Eqs.(16) and (17); it g ives  a  ve ry  simple 
form t o  t h e  t ime dependence of and 2J i n  t h e  l i n e a r  theory ,  and, a s  we w i l l  s e e ,  

I i n  t h e  f i r s t  nonl inear  c o r r e c t i o n s  a s  w e l l .  

To so lve  t h e s e  equat ions ,  we assume 

where f s a t i s f i e s  - a  xL By t a k i n g  t h e  c u r l  of 

(15) twice,  us ing  t h e  f a c t  t h a t  7 --v- = 0 , we s e e  t h a t  ;YI s a t i s f i e s  t h e  biharmonic 
- 1  

equat ion  1 

@A- h 2 )  C, f = o D= a 



Differentiating the x-component of (15) with respect to x, and the y-component of 
(15) with respect to y, adding them, and using v-T= O we get 

Once we determine W' , we know p' using (19), then U ,  and 1Jj , using (15) . 
The general solution for W, is 

-") $ C, = a, IN REGION I I. ~ 6 "  + +Dre 

The boundary conditions can be arranged to be a set of four linear equations for 

(A, B, E, F ) .  rgIE=. implies [~ ' l , , ,  C, f = 0 (20) 

+ 0 which implies and [ d (8) a 9  = o  

We differentiate (9) with respect to x, (10) with respect to y, and add them. 

from which follows 

E -'a 
C , f  - 0  

(16) and (21) imply 

Schematically, Eqs. (19-23) are of the form 

c,f Ta' = C, f z'/ 
3 A 

where T is a 4 x 4 matrix depending on k, a = (A,B,E,F), and eq = (0,0,0,1). 
This system of equations can be solved, and the results used in (17) to determine 
the time evolution of y e =  C (t)-f (xiy), and therefore of the whole system. 

Nonlinear Analysis 
3 

To order E , the equations are h = V p, in both regions (26) 



We assume y+= y;(z)/ ( r ,y )  C,ct) 9 p,= PA (t) f- (Z,LJ) C 2  (4) and 

q, = [ % j l ) ,  where the $ is the same as in the order 2" problem. 
I 

-"+ B2ze -k* 
I wk = A, e IN REGION I I 

I = E2 s~m4 (k [r+ I ) )  + r &n% (K (+-+?>) IN REGION I 

As before, the boundary conditions ( - ) can be expressed as an equation for 

A,, 4, 6 .  c of the form C,f T & =  Ca:rfZr+% (CC,),where T is the 
same as in (24), 4- (A>,@,, EL,&], and is four-vector with a quadratic depen- 

dence on C, f . So 

C=fA, = (c,$T-'~,$, + (r-'(C(f 
= C L f A  + G,( fC,)  

A here is the A in (25). Using the expression in (31), we get 

I 'C- = f A C A +  G,(+CI) + C , ( ~ C , )  f a x  (33) - - 

where G, (f C,) is a quadratic expression in f C arising from the last three terms 
in (31). 

I Let us consider again (25) 4 I = fA ,  C2. Solutions to (25) and (33) are 
I 

iterative approximations to the equatlon 

We project this equation along f :  
dc - - -Act  CC: w b s  G -  dt - 

The planform f for which 6 is maximum should correspond to the one observed in 
the experiments in (1). 

Reference 

Whitehead and Luther 1975 J.Geophys.Res. - 80(5): 705-717. 



GEOSTROPHIC ADJUSTMENT - THEORY AND EXPERIMENT 

W i l l i a m  A .  F a c i n e l l i  

I n t roduc t ion  

To provide some background f o r  our  work t h i s  summer, we f i r s t  cons ider  a  
problem solved by Rossby (1938), which has s i n c e  been r e f e r r e d  t o  a s  t h e  Rossby Ad- 
justment Problem. This  i s  b e s t  descr ibed  by t h e  fol lowing f i g u r e :  

The f l u i d  extends i n f i n i t e l y  f a r  t o  t h e  l e f t  and r i g h t  and i n t o  t h e  p l ane  of t h e  
paper .  I n i t i a l l y  t h e r e  i s  a  v e l o c i t y  j e t  with uniform speed U, confined by t h e  
dashed l i n e s ,  wi th  t h e  f r e e  s u r f a c e  h o r i z o n t a l .  The system i s  r o t a t i n g  with angu la r  
v e l o c i t y  -(L . Rossby took t h e  f i n a l  s t a t e  t o  be geos t rophic ,  i . e . ,  t h e  v e l o c i t y  
i s  everywhere balanced by a  p re s su re  g rad ien t  due t o  a  v a r i a t i o n  i n  t h e  he igh t  of 
t h e  f r e e  s u r f a c e .  In  c a l c u l a t i n g  what t h e  f i n a l  s t a t e  would be,  he neg lec t ed  f r i c -  
t i o n a l  and t r a n s i e n t  e f f e c t s .  The r e s u l t i n g  f r e e  su r f ace  i s  shown by t h e  s o l i d  l i n e  
i n  t h e  f i g u r e .  The main v e l o c i t y  j e t  s h i f t s  a  d i s t a n c e  Yo t o  t h e  r i g h t ,  and t h e r e  
a r e  weak countercur ren ts  (d i r ec t ed  out  of  t h e  paper)  on each s i d e  of t h e  c e n t r a l  
s t ream. 

The second case  which Rossby analyzed was a  two- layer ,  s t r a t i f i e d  system, 
wi th  an i n i t i a l  v e l o c i t y  j e t  i n  t h e  upper l a y e r :  

Assuming t h a t  t h e  bottom l a y e r  remains mot ionless ,  he found t h e  a d j u s t e d  f r e e  s u r -  
f a c e  and i n t e r f a c e  t o  be a s  shown i n  t h e  f i g u r e .  Once aga in ,  t h e  main j e t  moves t o  
t h e  r i g h t  a  d i s t a n c e  go , and t h e r e  a r e  weak coun te rcu r ren t s  on each s i d e  of i t .  

The c h a r a c t e r i s t i c  length  s c a l e  of t h e s e  problems (and those  which fo l low)  
i s  c a l l e d  t h e  Rossby r a d i u s  of deformation.  When t h e  system i s  two- layer ,  t h e r e  
a r e  a c t u a l l y  two such parameters:  ),,=m and h' =@, w h e r e  

C 
I 

3, depends on t h e  o v e r a l l  depth of t h e  f l u i d ,  H ,  , and i s  a s s o c i a t e d  with t h e  
"bara t ropic"  mode of response.  i s  a  func t ion  of t h e  d e n s i t y  c o n t r a s t  and t h e  
depth of t h e  upper l a y e r .  I t  i s  t h e  l eng th  s c a l e  of t h e  "ba roc l in i c "  mode, (These 



ideas will be clarified later, when the mathematical solution to a two-layer problem 
is presented. 

To close this introductory section, mention will be made of work done by 
Veronis (1956), in which he treated the response of the ocean to an applied wind 
stress. As a special case, he considered the process of "quasi-static" geostrophic 
adjustment, and obtained a final state identical to that found by Rossby in the 
first problem above. 

Use of the Fundamental Equations 

The Rossby Adjustment Problem is characterized by discontinuous ve1,ocities 
in the initial state of the fluid. Our work this summer had to do with fluid sys- 
tems starting out wjth discontinuous depths. The first such problem to be discussed 
here is the foll~wing: 

'rn 

The fluid is incompressible and extends to infinity to the left and right and into 
the plane of the paper. It starts with height H + h a  between Y =  0 and y = L , and 
height H everywhere else. The height in the final state is h (2) . The X -  direc- 
tion is positive into the paper. 

In all that follows, the frictional terms will be ignored. There is no 
pressure gradient (and height variation) in the X-direction, so the first equation 
of motion is: a& - - f v  at = o  (1) 

where f is the Coriolis parameter (here assumed constant). In the equation of 
motion in the Y-direction, we neglect - compared with the other terms, thus: a t  

(23  

This is the geostrophic relation. Finally, vertical integration of the equation of 
continuity for an incompressible fluid yields: 

When the bump ( h, ) is small compared with H , this can be approximated by: 

Then qombining Eqs. (1), ( 3 ) .  and (4) gives a linear equation in h : 

on a3'h I a h  = Q ,  -- 
a p t  7 at (5 I 



In t h e  r eg ion  between ?SO and 9 = L  ( c a l l  t h i s  reg ion  I ) ,  t h e  he igh t  goes from 
H + h, i n i t i a l l y  t o  4 a t  some l a t e r  t ime,  s o  i n t e g r a t i n g  with r e s p e c t  t o  t ime 
y i e l d s  

For L.J 7 L ( reg ion  11) and Y L 0 (region 111),  t h e  he ight  goes from H t o  , s o  
i n t e g r a t i n g  (5) g ives  - -- 

d u 2  2" 
;nTZmtl D' (7)  

d L Taking i n t o  cons ide ra t ion  t h e  requi red  symmetry about 3 = and t h a t  h + H  a s  

IY 1 gives  a s  t h e  s o l u t i o n s  f ~ r  (6) and (7)  

I :  h-  ( ~ + h , ) =  A 

11: h - H - B e  

The boundary cond i t i ons  a r e  t h a t  h be continuous a t  3 = 0 (and LJ = L ) and t h a t  

k s  --f be continuous a t  t h e  same l o c a t i o n s .  This  enables  u s  t o  f i n d  A and B:  

A = - h o e  - L ~ R  

Therefore:  

The corresponding v e l o c i t i e s  a r e :  

These "adjusted" he igh t s  and v e l o c i t i e s  look l i k e  t h e  ske t ch  on t h e  fo l lowing  page. 

This problem i l l u s t r a t e s  t h e  concept of  t h e  geos t rophic  adjustment  of  an  
i n i t i a l  imbalance i n  t h e  he igh t  of a  f l u i d ,  and a l s o  shows how t h e  equat ions  of  
motion and c o n t i n u i t y  a r e  sometimes s u f f i c i e n t  t o  completely s o l v e  a  problem. 
This  problem was t r a c t a b l e  us ing  only t h e s e  equat ions  because of  t h e  requirement  
t h a t  h, L 4 CJ , S O t h a t  h - q  i n  t h e  equat ion  of  c o n t i n u i t y .  The r e a u l t i n g  d i f -  
f e r e n t i a l  equat ion f o r  \7 was l i n e a r .  I f  t h e  "bump" i s  no t  very  sma l l ,  t h e  d i f f e r  
e n t i a l  equat ion i s  non l inea r .  



The c o n t i n u i t y  equat ion i s  a l s o  nonl inear  f o r  a  two- layer system i n  which t h e  
i n i t i a l  he igh t  of t h e  upper l a y e r  vanishes  a t  some p o i n t ,  such a s :  

!4e s h a l l  g ive  t h e  s o l u t i o n  of  such a  problem, us ing  t h e  conserva t ion  o f  p o t e n t i a l  
v o r t i c i t y .  

Conservation of  P o t e n t i a l  V o r t i c i t y  

The only  problem f o r  which we obta ined  a  complete a n a l y t i c a l  s o l u t i o n  us ing  
conserva t ion  of  p o t e n t i a l  v o r t i c i t y  was t h e  fol lowing:  

-10 

H 

The 
b o t t  

b H 

i n i t i a l  depth of t h e  t o p  l a y e r  i s  H, , and it extends from y = O t o  y = m .  The 
om l a y e r  has depth H, f o r  y > O  and N,  f o r  yLC? . The f r e e  s u r f a c e  f o r  3 >Q i s  

) h ighe r  than  it i s  f o r  7 d 0. This  i s  s o  t h a t  t h e  p re s su re  (where b : 
i s  cons tan t  a t  any i i v e n  depth i n  t h e  bottom l a y e r .  (The e x t r a  head of  f l u i d  1 on 
t h e  l e f t  compensates f o r  f l u i d  1 being l i g h t e r  than  f l u i d  2 . )  The a d j u s t e d  p r o f i l e  
i s  given by t h e  s o l i d  l i n e s  i n  t h e  f i g u r e .  



The principle of conservation of potential vorticity - which holds for all 
frictionless flows - is: 

where ,)@ is the relative vorticity and d is the depth of the fluid layer. In the 
problem at hand, this implies that for L j P O  for the top layer 

and for positive Ld for the bottom layer 

f .  - - 
h, - 

Eliminating the velocities by means of the geostrophic relation for each layer and 
substituting h =  h,-hL yields two coupled differential equations for h, and h2 : 

I - - (h,  - h % - - ~ )  = €2 h/YU A' 

where 

These equations can be made homogeneous by substituting 

The equations thus become 

It is easiest to solve this system using normal modes, which is essentially another 
change of variables that decouples the system of equations. We will skip the mathe- 
matical details (a description of the method is in Veronis and Stommel (1956), and 
state the results. The differential equations are: 

where 

1 
(Note that this -h is identical to the one originally defined when #/H~ is very 
small.) In the problem we are considering, (8) is valid for 3 > - only, so we 
require that R; -t 0 as y - ~ s s  . Therefore 

W+.l)o 
R, .Ale 



- a 
R,= A, e 2' 

where At and A, are arbitrary constants. The expressions for fl f i ,  , and h 
in terms of these normal modes are: 1 '  

I 
Note how each of these expressions involves a 2 ,  term (the barotropic mode) and a 
term (the baroclinic mode). 

For f.j 4 OCinitially) and g 4 -  . (finally), conservation of potential vortic- 
ity and the geostrophic relation yiel 9 s a differential equation in h alone: 

I 

In terms of 9, as previously defined, this is: 

Requiring that 7,-> 0 as Y+ -cc means that the solution is 
kq& q t =  -bH+A,e 2 

We now have four unknown constants : A ,  , A, , A, , and Y o  
. Hence, four 

boundary conditions are necessary. These are: 

continuity of at $j s - 2, 1 
I 

h=oat 2;-3,.  
conservation of fluid 1, 

continuity of LL, at y : -yo 
Using the resulting four equations to solve for the four constants completes the 
problem. 

The most interesting results of this analysis concern the formulas for Lc, 
and U2 for b l< I : 

-I"x. 
Hz -y=) " + m A l e  

There are three important conclusions which follow: 
/ 

1) When bj +ye >> A' (far away from 3. compared with h ) , the baroclinic ( A' ) 
terms drop out, and we see that u., = k, .  Thus the response far away from the posi- 
tion of zero depth of the upper layer is barotropic. 

2) Numerical evaluation of U,and U, at9r-$,for values of the parameters in our 
experiments (with b rL 1 )  gives that u1- - & LC, . 



3 )  when \ i / t j -+oand I H~/~, - - -+? ,  u r E - b ~ , *  
Experimental Problem 

We w i l l  now t u r n  t o  an a n a l y s i s  of  t h e  problem done i n  our  experiments .  The 
system again  c o n s i s t s  of two l a y e r s  of d e n s i t i e s  f i  and P, , bu t  r e s u l t s  2 and 3  
above imply t h a t  when t h e  bottom l a y e r  is much deeper than  t h e  upper l a y e r ,  t h e  
bottom i s  n e a r l y  motionless .  Incorpora t ing  t h e  assumption of a mot ionless  bottom 
i n t o  our  a n a l y s i s  of t h e  experimental problem made it much more t r a c t a b l e .  

Viewed from t h e  s i d e  and from t h e  top ,  t h e  i n i t i a l  s t a t e  and t h e  f i n a l  (ad- 
jus ted)  s t a t e  o f  t h e  system look l i k e  t h i s :  

A s  i n  t h e  previous problem, t h e  i n i t i a l  and f i n a l  depths of t h e  t o p  l a y e r  a r e  
and h , r e s p e c t i v e l y .  The bottom l a y e r  s t a r t s  with depths  Hz f o r  0 ydN\ and 
H, f o r  o t h e r  . I t s  f i n a l  depth i s  given by h, , with  h, being  t h e  ad jus t ed  

i! he igh t  of  t h e  r e e  s u r f a c e .  

In t h i s  problem, conserva t ion  of  p o t e n t i a l  v o r t i c i t y  of  t h e  upper l a y e r  
impl ies  t h a t  

- C 
h - H 

Use of t h e  geos t rophic  formulas f o r  U ,  and V, then  g ives  

We now make t h e  assumption of a mot ionless  bottom,and s e t  U,= 0 i n  t h e  geo- 
s t r o p h i c  r e l a t i o n  f o r  t h e  bottom l a y e r  

Therefore 



= h -  implies a h , !  + bh,!- bhy  = o 
h = bhy  

Similarly, v2= 0 leads to 
h,, = b h, . 

Now h, can be eliminated from (9) to give: 

where 2 - 9  @ 

M Choosing the solution to (10) which is symmetric about X = $ and about 3 = q, and 
using the boundar conditions that h 2 0  at ( 0 ,  G) and (h 7 -ye)  gives the follow- 
ing solution for & : 

= 
9 1 

with 

This expression still contains the unknown yo . This could be determined from con- 
servation of mass: 

H(+)(+) J ~ J ? ~ ~  dz , 
9 -9 lz) 

0 an h : O  

requiring numerical integration. However, predictions for 
Yo 

can rather easily be 
made for limiting values of h' : 

A' a> L 
C" Solving far h at ( q a n d  setting COlh I, ) + w, 7 %  2 K  

gives : 
C L a =  w H .  h k  2 )  

This is the maximum depth of the fluid. A lower bound for Y can be obtained by 
using conservation of mass: 

a'. YQ )>M, yo >>A' (if M -- L). 
L" 

Equation (11) actually gives a lower bound because the depth is less than FH 
everywhere but at (A 4), and because the upper layer does not extend out to 

2- J -Yo 
uniformly across the channel. 



This  shows t h a t  f o r  very l a rge  A' , t h e  ad jus t ed  upper l a y e r  should extend 
f a r  out from where it was o r i g i n a l l y  confined.  

In t h i s  ca se ,  we make use of t h e  approximations 

and f i n d  t h e  fo l lowing  expression f o r  h nea r  (-$-) 0 ) :  

The x dependence has dropped ou t ,  and t h e  s o l u t i o n  i s  t h e  same a s  t h a t  which we 
have found (but not  presented  i n  t h i s  r e p o r t )  f o r  t h e  one-dimensional (no s i d e w a l l s ) ,  
motionless  bottom problem. We have a l s o  found t h a t  i n  t h i s  problem . / 

y o =  A ,  
Thus f o r  very small  , t h e  upper l a y e r  should almost remain confined t o  

t h e  s t a r t i n g  r eg ion .  

With t h i s  a n a l y s i s  behind us ,  we can now t u r n  t o  a  d i scuss ion  of t h e  a c t u a l  
experimental  r e s u l t s .  

Experiments 

The experiments were done i n  a  channel 160 cm long by 8.0 cm wide (L  = 8.0cm). 
The b a r r i e r s  which a t  f i r s t  confined t h e  upper l a y e r  f l u i d  t o  t h e  c e n t r a l  r eg ion  
were spaced 16 .9  cm a p a r t  (M = 16.9 cm). 

The channel was mounted on t h e  l a r g e  2-meter diameter  r o t a t i n g  t a b l e  a t  t h e  
Woods Hole Oceanographic I n s t i t u t i o n .  This  appara tus  was we l l - su i t ed  f o r  t a k i n g  
photographs, f o r  which we used a  16 mm movie camera. 

For each experiment,  we f i r s t  i n s e r t e d  t h e  b a r r i e r s  a s t r i d e  t h e  c e n t e r  of  t h e  
t rough,  then  poured i n  s a l t y  water of known d e n s i t y  t o  a depth of  11 cm (Hi = 11 cm). 
The t a b l e  was spun up t o  t h e  d e s i r e d  r o t a t i o n  r a t e  . (f  = 2 ~ ) .  A t  t h i s  po in t  
f r e s h ,  dyed water was c a r e f u l l y  siphoned a top  t h e  denser  water  i n  t h e  c e n t e r  r eg ion ,  
u n t i l  t h e  t o p  l a y e r  reached a  depth H .  When a l l  was ready,  t h e  camera was turned  on 
and then  t h e  b a r r i e r s  were r a i s e d .  

In  every case ,  t h e  dyed f l u i d  a t  f i r s t  moved r a p i d l y  away from t h e  c e n t e r  Te- 
g ion ,  and then  slowed down cons iderably .  The d i s t a n c e  of spreading  v a r i e d  wi th  
a s  expected.  (Distance down t h e  channel was measured by s t r i p s  o f  b lack  t a p e ,  each 
10 cm long and spaced 10 cm a p a r t . )  

.I 

Geostrophic adjustment i s  well  i l l u s t r a t e d  by t h e  frames s e l e c t e d  from expe r i -  
ments 2 and 3. In both cases ,  t h e  flow of  t h e  dyed f l u i d  had j u s t  slowed n e a r l y  t o  
a  h a l t .  I n  t h e  f i r s t ,  t h e  main body of t h e  f l u i d  extends about 5 cm ou t  from where 
it was o r i g i n a l l y  confined,  and h '= 3  cm. In  t h e  second, most of  t h e  dyed water  i s  
wi th in  roughly 11 cm of  t h e  s t a r t i n g  r eg ion ,  wi th  = 7 cm. Both p i c t u r e s  show a  
non-geostrophic flow down t h e  channel i n  j e t s  hugging t h e  wal l  t o  t h e i r  r i g h t .  

Experiment #4  had 2 = 8.2 ,  which was n e a r l y  t h e  same a s  i n  #3.  However, we 
have s e l e c t e d  from t h e  #4  f i l m  a  frame which was taken 26 s e c  f u r t h e r  i n t o  t h e  ex- 
periment than  t h e  frame above i t .  Thus t h e  flow i s  f u r t h e r  down t h e  channel ,  proba- 
b l y  due t o  non-geostrophic,  v i scous  e f f e c t s .  (The flow p a t t e r n  i s  asymmetric be- 
cause t h e  r i g h t  b a r r i e r  was r a i s e d  j u s t  be fo re  t h e  l e f t  one . )  Also, t h e  upper l a y e r  
water was more dark ly  dyed i n  #4  than  it was i n  # 3  (and i n  #2 ) ,  s o  t h e  appearance of 
t h e  j e t s  i s  g r e a t l y  enhanced. 



Left fog: Experiment $2, 1 2  sec after bamiers raised. Left center :  W3, 17 see.  

Left bottom: #4, 43 see, Right top:  #8, 17 sec. Right Center :  W8, 116 see. 

Rigth bottom: # 6 ,  24 s e e ,  
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In the # 4  picture we see an instability breaking off from the left of the jet 
in the right side of the channel. These are the instabilities discussed by Jones 
(1975) elsewhere in this volume. Unfortunately, our main series of experiments did 
not demonstrate such motions very well, but a preliminary, unphotographed experiment 
very clearly showed a succession of eddies breaking away from a jet. 

The first frame from experiment #8 shows the flow after it had just slow$! 
down. Again we see that most of the dyed fluid slows when it is approximately h 
away from the starting region. The second photograph was taken nearly 100 sec later, 
and illustrates how the flow continues to slowly move along as it is influenced by 
viscosity. This displays a rather prominent instability breaking away from the jet 
on the right. 

Finally, we will discuss the # 6  photograph. In our experiments with very 
small 2' , ageostrophic processes became apparent much sooner than when was on 
the order of L or larger. In this last picture, a large circular eddy in the left 
part of the trough has nearly completed its flow across the channel, Its counter- 
part on the right side has already done so. (The unfortunate asymmetry is again, 
apparent.) Thus the geostrophic adjustment is quickly swamped by viscosity when h 
is very small. 

Conclusion and Future Work 

The time-independent and inviscid theory of geostrophic adjustment presented 
in this report was at least qualitatively verified by the experiments. There is now 
a basis for future work in this area, both theoretically and in the laboratory. The 
following are some suggestions: 

1) Apply the same concept of ideal geostrophic adjustment to other problems. This 
wfll probably involve use of a computer. 

2) Extend the theory to include transient and/or viscous effects. 

3) Perform more extensive and more careful experiments similar to those described 
above, with the goal being the investigation of non-geostrophic processes. 
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A PROPOSED LABORATORY STUDY OF PLANETARY VORTICES 

Kirk S. Hansen 

Introduction 

This report is concerned with the feasability of generating vortex motions 
in a rotating fluid of variable depth. Such motions are called "planetary vortices" 
because the depth variation introduces a /3 -effect analogous to that introduced by 
variable Coriolis parameter on the P-plane. 

Interest in the laboratory study of planetary vortices evolved from a geo- 
physical dynamics lecture by Alan Newell (1975) on nonlinear wave packets. Consider 
a packet of slightly dispersive, slightly nonlinear waves grouped around wave number 
k . The normal-mode solutions to this problem are of two types. One set of solu- 

tions decay exponentially, as in the linear case. In addition, there are permanent 

I 
waves called 'solitons'. Two such waves may collide with each other and interact 
in a nonlinear fashion, but once the collision is completed, each soliton retains 

I its initial identity almost exactly. This ability to retain initial identities is 
the distinguishing feature of solitons from other nonlinear wave types. 

At the conclusion of Newell1s lecture, the question was raised as to what 
extent 'modons' behave like solitons. (A modon is a particular type of barotropic 
vortex on the 1'3 -plane. Modons have been studied by Stern (1974, 1975) in connec- 
tion with their relation to mid-ocean eddies.) Do modons also retain their iden- 
tities after interacting with one another or with other types of vortices? Is the 
governing differential equation for modons amenable to the methods of solution 
described by Newell? The results of this discussion were inconclusive, and it was 
suggested that a laboratory study of modons might provide some insight to the above 
questions. 

As a first step toward realizing the interaction of a modon with other vortex 
motions in the laboratory, I will investigate the possibility of generating a sin- 
gle modon of known characteristics. 

Theoretical description of modops 

The vorticity balance maintained by modons is between the nonlinear and 
Coriolis terms: 

I $ . o r + p v = o  (1) 
I 3 

The velocity vector V = (v,v) where u is in the x-direction (eastward) and V is 

I in the y-direction (northward). The two-dimensional gradient operator is repre- 
sented by V ; '3 = av/,, - 3 U/av is the vertical component of vorticity; and the 
Coriolis parameter f is taken as a linear function of y on the a-plane (f=f,+Py), 

A modon is defined in part as an isolated barotropic disturbance in equili- 
brium on the @-plane. Equilibrium requires the modon to have a dipole structure, 
with a cyclonic vortex to the north and an anticyclonic vortex to the south (Fig.1). 
Isolation requires the pressure perturbation and the velocity to vanish with in- 
creasing distance 'f from the center of the disturbance. At large y , therefore, 
the first term in (1) is small to order v 2  while the second term is small only to 
order V . The vorticity constraint cannot then be satisfied unless the far-field 
vorticity equals zero. This requires a discontinuous change in 7 at some distance 
R , where 7 = 0 for all r > 7 .  

A solution to the modon problem may be obtained following Stern (1975). The 
conservation of absolute vorticity serves as a starting point: 



Fig.1 Schematic representation of a modon (Stern, 1975). 

For a steady state, and with $ = fo + ( 3 ~  Eq. (2) becomes: 

-r 
Since V S v = O  on the p-plane, the velocity may be written in terms of a stream 
function as U = -aV/a and V= aV/ar . The vorticity is then '( s g%T,  and Eq. (3) 
may be written as 

3. V ( V ' ~ + F ~ )  = O  (41 

which is equivalent to (1). The quantity in parentheses must be constant along a 
given streamline, or equivalently, equal to some function of Y only. 

Boundary conditions are a free streamline v= 0 across which the vorticity change is 
discontinuous. Choose 

( 6 )  

where (k,  8) are polar coordinates defined in Fig.1 and R is the radius of the 
streamline. Also, the isobaric boundary condition requires uniform pressure for 
r 71. ApplLc%tion of Bernoulli's equation along the free%streamline Y =  0 in- 
dicates that I V  ( is uniform on the streamline. Hence (V y) is uniform on r = R 
and a'yr(R. 0) ; , 

3r a 6' (7  1 

The problem is to pick F(q')in such a manner that (5) can be solved subject 
to boundary conditions (6) and (7). Stern chose F(v] z-3-V , where A '7 . The 
governing differential equation is then 



A p a r t i c u l a r  s o l u t i o n   is^--&=-/- P- 7 \ +  The homogeneous s o l u t i o n  f o r d $ ~ ~ V j l = O  
t h a t  s a t i s f i e s  boundary condi t ion  (6) can be w r i t t e n  i n  terms of  JI (f 2 "l ) ,where & 
i s  t h e  Bessel func t ion  of t h e  f i r s t  kind and order  one. The t o t a l  s o l u t i o n  

y -  % +  Th i s  given by 

Fur the r ,  boundary condi t ion  (7) r e q u i r e s  

T,(R A") = O  
a 

S u b s t i t u t i o n  of  (9) i n t o  (8), with P v =  r , gives  

[= -pRm;ne 
J, (.a&) 
J, (R AYa) (11) 

'4. 
f o r  any va lue  o f  R h s a t i s f y i n g  (10) .  The root-mean-square v o r t i c i t y  provided 
by (11) i s  B R  r r m r -  \15 (12) 

More complicated func t ions  /=(I#) may be chosen, bu t  t h e  p a r t i c u l a r  F 6 ~ )  
P 

i l l u s t r a t e d  above g ives  t h e  minimum va lue  of ifms f o r  a l l  p o s s i b l e  s o l u t i o n s  with-  
i n  t h e  c i r c u l a r  reg ion  of a r e a  R.' . The f i n a l  de f in ing  p rope r ty  of a  modon i s  
t h a t  i t s  rms v o r t i c i t y  be t h e  minimum p o s s i b l e  va lue  f o r  a  given c l a s s  of  s o l u t i o n s .  
Thus t h e  v o r t i c i t y  d i s t r i b u t i o n  (11) is  a  unique modon s o l u t i o n  t o  Eqs . (5)  - ( 7 ) .  
D i f f e r e n t  modons may be genera ted ,  however, by choosing o t h e r  shapes f o r  t h e  f r e e  
s t r eaml ine  y=C ( t h a t  i s ,  by choosing d i f f e r e n t  boundary cond i t i ons  (6) and (7)), 

Modons a r e  l i k e l y  uns t ab le  t o  small  pe r tu rba t ions  so t h a t  t h e  -2-L term i n  
t h e  v o r t i c i t y  equat ion becomes s i g n i f i c a n t  given enough t ime.  For t h i s  reason  
modons probably do no t  e x i s t  i n  t h e  a c t u a l  oceans. But t h e i r  i d e a l i z e d  vo r t ex  mo- 
t i o n  may prove t o  be u s e f u l  i n  modeling ( in  a  s t a t i s t i c a l  s ense )  some f e a t u r e s  of  
t h e  more complicated vo r t ex  motions observed i n  t h e  ocean. For example, i f  {,,= 
can be der ived  from observed d a t a ,  then  (12) can be  used t o  e s t ima te  t h e  mean eddy 
r a d i u s .  

Plan of  a t t a c k  

A p i l o t  experiment was conducted i n  an at tempt  t o  gene ra t e  a  p o s i t i v e  and 
nega t ive  vo r t ex  p a i r  resembling a  modon i n  t h e  l a b o r a t o r y .  The experimental  s e tup  
i s  shown schemat ica l ly  i n  F ig .2 .  A r o t a t i n g  tank wi th  f l a t  bottom, but  wi th  depth 
v a r i a t i o n  due t o  t h e  p a r a b o l i c  shape of  t h e  f r e e  s u r f a c e ,  was used.  Water was t h e  
working f l u i d .  A pump was a t t ached  t o  t h e  r o t a t i n g  t a b l e ,  wi th  t h e  source  and s ink  
i n s e r t e d  i n t o  t h e  f l u i d  along a  r a d i a l  d i r e c t i o n  from t h e  c e n t e r  of t h e  tank  a s  i n -  
d i c a t e d .  The p lan  was t o  t u r n  on t h e  pump f o r  a  moment, a l lowing a  p o s i t i v e  ( a n t i -  
cyc lonic)  vo r t ex  t o  form around t h e  source  and a  nega t ive  (cyc lonic)  v o r t e x  t o  form 
around t h e  s i n k .  The pump could then  be turned  o f f ,  a l lowing t h e  s tudy  of  f r e e  
v o r t i c e s  on a  " f 3  -p lane t1 .  The flow p a t t e r n  was observed us ing  a  potassium permanga- 
n a t e  dye. 

The r e s u l t s  of t h i s  t e s t  were e r r a t i c ,  Often only  one of t h e  expected v o r t i c e s  
would form. In o t h e r  ca ses ,  a  vo r t ex  p a i r  would form i n i t i a l l y  but  d i s s i p a t e  almost 
immediately. The d i f f i c u l t i e s  wi th  t h i s  experiment i nd ica t ed  t h a t  a  s impler  ca se ,  
f o r  which t h e  flow p a t t e r n  can be a c c u r a t e l y  p red ic t ed ,  should be examined f i r s t .  

The next  s e c t i o n  of  t h i s  paper i s  a  d i scuss ion  of p o t e n t i a l  flow i n  a  r o t a t i n g  
f l u i d  of  cons tan t  depth .  So lu t ions  have been obta ined  f o r  bo th  t h e  i n t e r i o r  flow and 



V e r t i c a l  Cross Sec t ion  Plan View 

Fig .2  P i l o t  experiment f o r  genera t ing  modons. 

t h e  Ekman boundary l a y e r  t r a n s p o r t .  The remaining s e c t i o n s  cons ider  t h e  progres-  
s i v e l y  more complicated cases  of vo r t ex  motion i n  genera l  i n  a va r i ab l e- dep th  f l u i d  
and, f i n a l l y ,  t h e  s p e c i f i c  case  of  modons i n  t h e  l abo ra to ry .  

Rigid top  

Consider a r o t a t i n g  f l u i d  of  cons tan t  depth bounded by i n f i n i t e  p l anes  on t h e  
t o p  and bottom. A c i r c u l a r  source and s i n k  each o f  r ad ius  CL a r e  s epa ra t ed  by a d i s -  
t ance  77 a s  measured from t h e i r  c e n t e r s  (F ig .3 ) .  The theory  of  source- s ink  flows 

X 

Fig .3  I sobars  (or  s t r eaml ines )  f o r  i n t e r i o r  flow of  source- s ink  experiment.  

such a s  t h i s  has  been descr ibed  by Greenspan (1968). The column of  f l u i d  beneath 
t h e  source i s  a h igh- pressure  reg ion ,  and t h e  column beneath t h e  s ink  i s  a low-pres- 
s u r e  a r e a .  For t h e  app ropr i a t e  parameter range,  t h e  i n t e r i o r  flow w i l l  be  geos t ro-  
ph ic  with a p o s i t i v e  vo r t ex  around t h e  source and a nega t ive  vo r t ex  around t h e  s i n k .  
Since t h e  s t r eaml ines  form c losed  contours  around t h e  high-  and low-pressure c e n t e r s ,  
t h e  t r a n s p o r t  of f l u i d  from source t o  s ink  cannot occur  through t h e  i n t e r i o r  bu t  must 
be confined t o  t h e  top  and bottom Ekman boundary l a y e r s .  

The geos t rophic  r e l a t i o n s  f o r  t h e  i n t e r i o r  flow a r e  



where p is the fluid density and p is the pressure. The coriolis parameter is 
a constant equal to2 51, , where is the rate of rotation, and(U \I ) are in 
the (x,y) directions as shown in Fig.3. 2 '  4J 

Taking &$%%- 
a n  4 gives 

I 2- 
= P (14) 

For steady, incompressible, and two-dimensional flow the continuity equation is 

0 - 7 - 0  (15) 

and for irrotational flow 

vxc: - 0  

Equations (15) and (16) define a problem in potential flow, and (16) substituted 
into (14) yields the relevant differential equation 

v2p = 0 (17) 

with boundary conditions 

p I f at the source and p = 0 at the sink. (18) 

The solution to (17) and (18) may be deduced in the following manner. For a 
point source located at the origin,, the pressure is proportional to & Y  

or p = -rte,(*"LJyt C .  
For a point source and sink of equal and opposite strengths located at (7 Vo ,0), the 
pressure is given by 

,- 

The isobars are circles with centers at (- F(?) ro ,o) and radii of J-?, 

where 

Equation (19) may also be used for the case of circular source and sink of 
finite radii by choosing K and so that the isobaric contours with centers at 
(T R/!p) have radii = a. and pressure = 2 .E/! +C, 

Solving (20) and (21) for & and results in 
d X i  r. " 5 

K s  L' 



F i n a l l y ,  boundary condi t ions  (18) a r e  s a t i s f i e d  by p ick ing  t h e  cons tan t  C equal  t o  
f'/z so  t h a t  

( x+Y)% P =  - ~ h  [ e +  v 2 ] + ~ / ,  (24) (7-3 + j  
where re and k a r e  def ined  by (22) and (23) .  

The flow r a t e  Q from source t o  s ink  may be r e l a t e d  t o  t h e  p r e s s u r e  d i f f e r e n c e  
f a s  fo l lows .  Consider t h e  Ekman boundary l a y e r  equat ions  

I t  i s  convenient f o r  t h i s  problem t o  work along t h e  a x i s  o f  symmetry X = 0  so  t h a t  
The z- axis  p o i n t s  v e r t i c a l l y  upward with e =  0 a t  t h e  bottom boundary. 

(27) 

The a d d i t i o n  of  (25) and (26) y i e l d s  

P ax  (29) 

where V= U+ i V. The s o l u t i o n  of (29) s a t i s f y i n g  boundary cond i t i ons  (27) and (28) i s  

V= CVg - ' V  e - ( I  + ; l q 6  
9 (30) 

where 6.y i s  t h e  boundary l a y e r  t h i ckness .  

Only t h e  X -component of flow con t r ibu res  t o  t h e  t r a n s p o r t  from source t o  
s ink ,  a s  t h e  )r -component i s  p a r a l l e l  t o  t h e  geos t rophic  contour .  The l o c a l  t r a n s -  

00 

p o r t  i s  t h e r e f o r e  equal  t o  u d t  , o r  J m R e ~ d  3 Evaluat ion us ing  from 
(30) g ives  0 

S 
3 

T=-Vcj 7 (31) 

The t o t a l  flow r a t e  Q equals  2 rTby. where t h e  f a c t o r  2 i s  due t o  t h e  
-01 

presence of both t o p  and bottom boundary l a y e r s .  From (313 

(32) 
=o 

and us ing  t h e  express ion  f o r  p given by (24). q = m. This  may be w r i t t e n  a s  

Q= el& P-C 
(33) 

where @ i s  t h e  t o t a l  r e s i s t a n c e  t o  t h e  flow encountered between source  and s ink :  

A convenient means of measuring 1 and Q i n  t h e  l a b o r a t o r y ,  without  soph i s -  



t i c a t e d  ins t rumenta t ion ,  i s  t h e  simple spin-down experiment i l l u s t r a t e d  i n  F ig .4 .  

1 P' t Consider f i r s t  t h e  case  where t h e  f l u i d  

Let t h e  Rossby number be given by 

'?I' 

where t h e  q u a n t i t y  i n  parentheses  i s  a t y p i c a l  v e l o c i t y .  With 3 = 10-~crn~!sec- l ,  

f = 1 sec ' l ,  R = 20 cm, a = 1 cm, and Q = 1 cm3sec-1, t h e  Rossby number i s  o r d e r  one, 

which i s  probably t h e  l a r g e s t  t o l e r a b l e  va lue  without d r a s t i c a l l y  a l t e r i n g  t h e  pre-  

i n  t h e  tank i s  water  and t h e  "primed''  
f l u i d  i s  a i r  ( P > > f') . Suppose t h e r e  
e x i s t s  a  p re s su re  head )-) a t  t ime t= 0, 
say ,  so  t h a t  f : ,Pg H . A s  f l u i d  i s  

- H/2 
t r anspor t ed  from source t o  s i n k ,  t h e  flow 
p a t t e r n  d iscussed  p rev ious ly  i s  e s t a b -  

/ 

(7' f) 

d i c t e d  flow p a t t e r n .  Use of  t h e  same numerical va lues  i n  (35) r e s u l t s  i n  HGS 10-~crn,  

i t '  I -. l i s h e d ,  and t h e  head is  r e l a t e d  t o  t h e  

which i s  t o o  small  t o  be of p r a c t i c a l  va lue  i n  t h e  l abo ra to ry .  

- - - - h = O  

w 

"7- - - -  

l a r g e  enough t o  e a s i l y  measure provided 
Fig .4  Spin-down experiment with l a r g e  flow r a t e s  can be t o l e r a t e d  witb- 

reduced g r a v i t y .  ou t  in t roducing  l a r g e  Rossby numbers. 

* ' 91Lb Gab flow r a t e  by (33) : 

The va lue  of  may be magnified, however, by us ing  a  reduced g r a v i t y  e f f e c t .  
Let t h e  r o t a t i n g  tank con ta in  s a l t y  water ,  and l e t  t h e  primed f l u i d  be f r e s h  water .  
For t h i s  case  P = y/-/ and 

Q@ 
H = PQ* (37) 

- - 

P ' ~ 4 - 7 - 4  I ' I  I I ' 
I ! I )  

- 0 

I J-'')~. I f  P =  1.001)' , then  $=Io\ and H i s  o f  where t h e  reduced g r a v i t y  $ = (-ir 
orde r  10 cm, which i s  a convenient va lue .  

ti= ,9 Q R  (35) 

One may i n  p r i n c i p l e  make H 

The only remaining requirement i s  t h a t  t h e  app ropr i a t e  t ime cons tan t  7 f o r  
t h i s  experiment be l a r g e  compared with t h e  spin-up t ime Tap . Let t h e  p r e s s u r e  
head at time t be represented  by 2 5 so  t h a t  

The time-dependent flow r a t e  i s  given by 

Q=-iin2dh/dt t (39) 

S u b s t i t u t i v n  of (38) i n t o  (39) and i n t e g r a t i o n  as - 'h/h= 1 -* d t y i e l d s  
0 R-q L L  

h = M / 2 . w P  - t/r (40) 

where T i s  t h e  e - fo ld ing  t ime cons tan t  and 

For s u f f i c i e n t l y  l a r g e ,  f (or ,  e q u i v a l e n t i y  h ) can be r e l a t e d  t o  Q merely by 
record ing  t h e  va lue  of  h a t  two d i f f e r e n t  t imes .  Equation ( 3 9 ) ,  with  dh/dt approx- 



imated by ~bt ,  may then be used t o  eva lua t e  Q . The corresponding va lue  of  h 
may be taken a s  q3. These experimental  va lues  of q and h can be checked f o r  

t h e o r e t i c a l  agreement through (38).  With g* = I O - ~ ~  , and o t h e r  parameters  a s  be fo re ,  

t h e  va lue  of  i s  about 10 s e c .  The spin-up t ime isr -r , where D i s  t h e  = P -  qw 
depth of  t h e  f l u i d .  For a depth of  10 cm,xps=2fi~))T. Thus t h e  proposed spin-down 

experiment,  even with reduced g r a v i t y ,  f a i l s  t o  s a t i s f y  t h e  requirement  of l a r g e  . 
Generation of  a p o s i t i v e  and nega t ive  vo r t ex  p a i r  u s ing  a source- s ink  flow 

t h e r e f o r e  r e q u i r e s  a s t r i c t l y  s teady  s t a t e  t o  be maintained by cont inuous ly  adding 
f l u i d  a t  t h e  source and withdrawing f l u i d  from t h e  s i n k ,  Experiments of  t h i s  n a t u r e  
were performed by Buzyna (1967). 

The working f l u i d  used by Buzyna was water .  The experimental  geometry was 
shown i n  Fig.3,  wi th  t h e  o r i g i n  of  t h e  coord ina te  axes l oca t ed  a t  t h e  c e n t e r  of  t h e  
r o t a t i n g  tank ,  R = 14.5 cm, and d = 0.65 cm. The flow r a t e s  cons idered  by Buzyna 
were 0 . 1  t o  0 . 3  cm3sec-1, and f was v a r i e d  from 0 . 3  t o  1 .4  sec-1.  Evaluat ion of  
t h e  Rossby number us ing  (36) i n d i c a t e s  t h a t  Buzyna was working wi th  6 of o rde r  0 . 1  
t o  one. 

The q u a l i t a t i v e  f e a t u r e s  of t h e  i n t e r i o r  flow agreed wi th  t h e  s t r eaml ine  p a t -  
t e r n  i n d i c a t e d  i n  F ig .3 ,  and t h e  t r a n s p o r t  from source t o  s ink  was l a r g e l y  conf ined  
t o  t h e  Ekman boundary l a y e r s .  Buzyna made no a t tempt ,  however, t o  measure t h e  p r e s -  
s u r e  d i f f e r e n c e  f a s  a func t ion  of  4 . The f a c t  t h a t  Buzyna was a b l e  t o  reproduce 
t h e  expected flow p a t t e r n ,  even f o r  l a r g e  Rossby numbers, i s  probably due t o  t h e  
p o t e n t i a l  c h a r a c t e r  of  t h e  problem. For p o t e n t i a l  flow, i s  i d e n t i c a l l y  zero and 
t h e  €(V V r) term drops out of  t h e  v o r t i c i t y  equat ion independent ly o f  t h e  va lue  
chosen f o r  . 

D e t a i l s  of  t h e  i n t e r i o r  and boundary l a y e r  flows were more complicated than  
p red ic t ed  by theo ry ,  however. The column of f l u i d  beneath t h e  source  became l a r g e r  
with t ime and d i d  not  always remain loca t ed  d i r e c t l y  beneath t h e  sou rce .  Below t h e  
s ink  r eg ion ,  f l u i d  moved from t h e  bottom toward t h e  s u r f a c e  i n  a s p i r a l  p a t t e r n  
r a t h e r  than  i n  a simple column. In t h e  Ekman l a y e r s ,  t h e r e  was a c e r t a i n  amount o f  
r e c i r c u l a t i o n  and mixing nea r  t h e  source .  A t  t h e  h ighe r  flow r a t e s ,  i n s t a b i l i t i e s  
were observed i n  t h e  boundary l a y e r  flow. 

For r o t a t i n g  f l u i d s  wi th  a r i g i d ,  f l a t  bottom and a f r e e  upper s u r f a c e ,  depth  
i n c r e a s e s  i n  t h e  r a d i a l  d i r e c t i o n  a s  shown i n  Fig.5.  

The t o t a l  depth i s  h t~+b For a s t e a d y  I 

s t a t e ,  and ignor ing  l a z e r a l  f r i c t i 2 n ,  t h e  
v o r t i c i t y  equat ion  i s  V-v r+/ (v.v) , 0. 

e c a l l  t h a t  f o r  t h e  r i g i d - t o e  case  v P T o ~  
bu t  wi th  t h e  f r e e  s u r f a c e  Q. v;-:* from 

I t h e  c o n t i n u i t y  equat ion  and 

u j  
Fig.5 Shape of f r e e  su r f ace  f o r  

f l u i d  i n  a r o t a t i n g  tank 

A s  a consequence of shallow-water t heo ry ,  
v a r i e s  l i n e a r l y  wi th  depth  and 



Here H has been assumed large with respect to hc so that h = H ,  and WL is the 
Ekman suction velocity. Substituting C43) into (42) and nondimensionalizing all of 
the variable yields 

~ ( c . ~  5 )  = /3Qbvh- €"I (44 I 

where E (as before) is the Rossby number, E is the Ekrnan number, and 13 is a scale 
factor for the /3 -effect. Higher-order terms in E and E have been neglected. 

Buzyna (1967) also conducted source-sink experiments for the free-surface 
case. All experiments were performed with the same value of , and the depth 
was varied from a few cm up to about 20 cm. For shallow depths, the spatial varia- 
tion in )I was large and the ensuing flow pattern was very complicated. For large 
depths, the relative variation in depth from center to edge of tank was small, and 
the flow pattern was qualitatively similar to the constant-depth experiments de- 
scribed in the previous section. The only significant difference was a shift in 
the streamline pattern (Fig.6)so that the line of symmetry was no longer orthogonal 
to the line joining source and sink. 

Since this result was not observed in 
any of the experiments with the rigid top, 
it is likely due to the -effect. If 
E 4< E , then by (44) /3 must scale as 
F~ to balance the vorticity constraint. 

Evaluating this vorticity balance in dimen- 
sional quantities, ?*v h -WE = 0 or, ig- 
noring adjustments in the free-surface eleva- 
tion due to the geostrophic flow 

Fig.6 Streamlines for interior flow where ( U, V )  are in the ( I, 8) directions. 
in free-surface case (Buzyna, 1967). 

With 3; 6 d.P and ), €q. (45) becomes 
a P v'p + o C m = O  (46 1 

where a = 'nL is a positive constant. It would be useful to solve (46) subject to 
96 

the boundary conditions. 

P.0 at the sink and $I= 1 at the source (47) 

and compare the result with Buzyna's experiment. Equations (46) and (47) have not 
been solved, but their qualitative effect may be understood from the following ther- 
mal analogy. 

Consider a rotating fluid moving past cold and hot heat sources fixed in the 
inertial frame of reference (Fig.7). The thermal diffusion equation is 

and for a steady state 



For the experiment presented in Fig.7 

Cross Section Plan View 
1 

Fig.7 Thermal wake in a rotating fluid, 

this reduces to w aT D'T- o 
1 

With uJ-' -03 Eq . (48) may be written as 

I 
where W / K  is a positive constant. Equation (49) has the analogous form as (46) . 
With rotation in the m'-direction, the thermal wake will cause the isotherms to 
orient themselves as shown in Fig.7. This is identical to the orientation of the 
isobars in Buzynals experiment (Fig.6). 

Although the vorticity balance represented by (45) apparently explains the 
experimental result in a qualitative sense, there is reason to believe that it may 
not do so in derail. This is because the derivation of (45) assumes € < < E P %  where- 
as the parameter range explored by Buzyna was € > 

Modons in the laboratory 

Although the modons studied analytically by Stern (1974, 1975) were free 
vortices, it may be possible to generate a modon in the laboratory by using a con- 
tinuous source-sink flow. Imagine the source and sink to be located in just the 
right place and to have the required shapes so that their outer edges correspond 
to isobars of a modon (Fig. 

p=-_P 

Fig.8 A modon in a rotating tank. 



The fluid located outside the immediate vicinity of the sink or source does not 
know whether it is part of a free vortex or if it is being forced by a source-sink 
flow. So if the fluid beneath the source and sink is neglected, a vortex pair forced 
by the above flow should behave like a modon. 

Also, in the laboratory there will be no free streamline y = O  . This does 
not matter, as long as the viscous term in (44) is able to balance the far-field 
velocity. For a modon, scale 13 as E >> E%. The nondimensional vorticity equation 
is then 

with boundary conditions 

p- e at the source and p = -E at the sink. (51) 

Near the center of the modon, the principal balance is on the left-hand side (LHS) 
of Eq. 50. For r =- R ,  the first term on the LHS becomes small to order \/% and 
the second term is small only to order V . The balance for Y > Bi) is therefore be- 
tween the and viscous terms. 

Solutions to (50) for boundary conditions (51) may or may not exist, and 
the possibility of their existence needs to be more thoroughly examined before at- 
tempting to generate a modon in the laboratory. Niiler (1966) has solved (51) in 
his study of wind-driven ocean circulation, but for different boundary conditions. 
If solutions do exist for the laboratory problem, then the source and sink should 
be arranged along the radial direction (as in Fig.2), and with the sink closest to 
the center. This is because shallow water in the laboratory models is northward in 
direction on the /3 -plane. 

Vortices on the f-plane that behave as predicted in a qualitative sense have 
been generated in the laboratory by Buzyna (1967) using source-sink flows. Theoreti- 
cal work still needs to be done on the problem, however. The effects of the side- 
wall boundary layers, especially those surrounding the source and sink, should be 
studied, and the Ekman layer instabilities need to be analyzed. 

Solution of Eq.(46) would aid in understanding the results of Buzyna's 
experiments on the 4 -plane. Equation (50) must be solved before modons can be 
modeled in the laboratory. Even if solutions do exist, there is still a question 
as to whether it is experimentally possible to realize the appropriate parameter 
space. 
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GRAVITATIONAL TIDES IN THE EARTH'S CORE 

Howard C, Houben 

The motions within the Earth's liquid core are an important subject of in- 
quiry mainly because they are most certainly responsible for the generation of the 
geomagnetic field. However, in some ways our understanding of these motions has 
grown worse over the last twenty years, At that time it seemed clear that convec- 
tion in the outer core would give rise to dynamo action. While this conviction 
still has not been disproved the following difficulties must be met: 

1) The simplified convection model of Bullard and Gellman (1954) apparently does 
not give rise to dynamo action as previously thought (Gibson and Roberts 1969). 

2 )  More complex and detailed convective models, which do apparently give rise to 
a magnetic field, have not yet been worked out for the precise physical state and 
geometry of the Earth's core (Busse 1975). 

3)  The low efficiency of a thermal engine operating in the Earth's core would 
require a large heat flux to maintain the geodynamo (Stacey 1969). The source of 
this energy is unclear. Indeed the possibility that Mercury has a magnetic field 
of similar origin to the Earth's (Ness et aZ. 1975) is a serious embarassment since 
the cosmochemical arguments which indicate that the Earth could have substantial 
radioactive heat sources in its core would exclude this possibility for Mercury 
(Lewis 1971). 

4) The possibility that the lunar-solar precession could drive the dynamo (Mal- 
kus 1968) does not have the same problem with energetics and has recently been 
favored by many authors (Stevenson 1974). 

The core paradox. 

5) The physical properties of the Earth's core may be such as to exclude con- 
vection. On the assumption that the inner core is solid, current studies of the 
physical properties of molten iron (at high pressure) would indicate that the tem- 
perature gradient in the outer core should be shallower than the adiabatic gradient 
(Higgins and Kennedy 1971; Kennedy and Higgins 1973; Stacey 1975), rendering the 
core stably stratified. Convection would be possible in only the innermost part of 
the fluid core and the instabilities due to the precessional force would be inhi- 
bited. These results would require all dynamo theories to be reexamined. 

In light of the above it is of interest to study a different source of core 
motions - the lunar and solar tides. The total energy dissipated within the Earth 
by the tides is - 3 x 1019 ergs/sec. Although this dissipation takes place largely 
within the oceans, it is quite possible that on the order of a percent of this is 
actually dissipated in the core - probably enough to drive the geomagnetic dynamo. 
The general effect of the tides is to distort the core, i.e. the container of the 
fluid, into an ellipsoid. Thus a periodic radial velocity is imposed on the fluid 
at the boundaries, The previously-mentioned core stratification which would tend to 
inhibit radial motions is not operative here because the radial velocity is exter- 
nally imposed. Indeed the effect of the stratification is to enhance motions in 
the other directions. The magnitude of the radial motions is about 10 cm (as will 



later be derived) and for the tidal frequency of about 10-~sec-l this gives a veloc- 
ity of 10-3 cm/sec. For an assumed core conductivity of 3 x 10-6 emu, the resultant 
magnetic Reynolds number = 4 7 0- v L is - 10, indicating that the tidally-forced 
motions are something to be reckoned with in relation to the magnetic field. It 
should also be noted that the tidal and precessional forces, having similar origins, 
are about equal in magnitude and so it is quite natural to consider the two together, 
independent of the question of core stratification. 

The tidal potential at position r due to the Moon may be expressed as (Chap- 
man and Lindzen, 1970) m Go 

y = - G  -$- D m a  z (~JP' [a@) 
where @ is the angle between the observer and the Moon as seen from the center of 
the Earth. The P, are the Legendre polynomials. In turn a can be written (in 
terms of ordinary spherical coordinates) as 

where = the colatitude of the Moon andf = 2$/lunar day =fi-uJ where 
SL =23/sidereal day and Ldg= 2~lsiderea month. Now itself varies with fre- 
quency Wp (as well as slower time dependences) and so the tides may be separated 
into forces with a large variety of frequencies (Bartels 1957). (The solar tides 
may be similarly analyzed.) The most important tidal components for our study will 
be a 

1) M2, the lunar quasi-semidiurnal tide o( PL(* 0) C&z((~+ft). This tide has 
the largest amplitude and is the one most evident in ocean tides. 

2) K,, the lunisolar semidiurnal tide o( P;(WB) w l ( q t f i t ) .  The exact semi- 
diurnal time dependence comes from the combination of the time-dependent latitude 
and longitude terms in the expression for ca 8 . This component may be expected 
to excite a resonance in the rotating fluid core. 

3)  K,, the lunisolar diurnal tide d P~(COS 6) $h ((p+nt).~he exact diurnal dependence 
comes about in the same way as for the previous component, This term has the same 
time dependence as the precessional force (in the rotating frame) and also may ex- 
cite a natural resonance in the core. 

The response of the core boundary to the tidal potential is a displacement 

equal to - $Y) (Munk and MacDonald 1960) where h is a Love number of order unity. 
U 

The amplitude (neglecting angular factors) of these displacements is thus 

h($&o$-c 5 her, w h  E - ~ x I ~ '  

and the resultant velocity is - $- $0 2 R h E r, nJ I O - ~ C W I / S ~ C  as previously given. 
0 

We have now established the boundary condition for our tidal analysis and will 
turn to the equation of motion. We wish to write this in a frame attached to the 
Earth which is precessing and rotating. In addition to the coriolis and centrifugal 
forces there is the transverse force which must be considered. It is equal to 
& x where the time derivative is evaluated in the rotating frame 4 = n x  cL, 
where @ is the precessional vector about w h i c h a  rotates in the clockwise (retro- 
grade) direction. (Since & is fixed in space, in our rotating frame it apparently 
rotates with frequency SL .) 

The equation of motion is 
DY --+2Qxy+ nxw)x)xy+ 
~t (-- +nv+ox=eag.  



where f and I, are the fluid density and pressure, is the sum of self-gravita- 
tional, centrifugal and tidal potentials, and & is the deviatonic stress. For com- 
pleteness it would be necessary to include the Lorentz force in Eq.(l). We will do 
this later in the analysis when the form of magnetic field which our tidal velocity 
field may sustain is found. 

We will non-dimensionalize Eq.(l) with the help of the velocity scaling de- 
rived from our tidal analysis. Replacing dimensional variables with dimensional 
quantities (in brackets) times non-dimensional variables: 

In the above, the overbars refer to time average quantities. Equation (1) becomes 

d 
Equating the terms of order & : 

which is the equation of hydrostatic equilibrium. We can simplify the remaining 
portion of (2) with the following definitions: 

d .- ~ n ' 6 / ~  - 10-' 
Then 

J ( ~ + E ~ ~ ) $ ~ J ~ ( ~ + c ~ ) ) ~ , ~ ~  - + ~ c ~ e p ' ) i x ~ + & ( ? + & t ) l y ~ u ) * ~  + 

The order 6' term ( assumed higher order) becomes 



which is the Boussinesq equation of motion. 
L ( m g + s t )  

We will write all quantities as d e 
The higher order equation is 

Equation (6) is important in solving for the time-average azimuthal velocity. 
The balance here is 

v *  v v  = IF/& TJcp (6a) 

For boundary conditions (values of h~ ) in which there is a phase lag between the 
boundary response and the instantaneous response of the perfect fluid (signified by 
an imaginary part of h ) ,  there will be a correlation between velocity components 
and the left-hand side of (6a) will be a non-zero time average. If $I is the size 
of this correlation the magnitude of the mean flow is 

- 
so can be quite large even for very small values of 0 . It is always in the 
sense of a westward drift of the core material with respect to the mantle. The 
above balance may be adjusted somewhat by large-scale steady motions. 

We can simplify Eq.(5) a bit by the introduction of an equation of state (a 
relation between lo' and ' ) We may write 

where is an adiabatic exponent. The basic state may be written as 

A rising parcel of core material, always in pressure equilibrium with the sur- 
rounding medium will become denser than the external matter if '4 7'2fi , which is the 
criterion for stability. The equation of motion of such a parcel is 

so the buoyancy frequency is defined by 

The Boussinesq approximation is obtained for Zf -00  which however is not appropriate 
in the Earth's core where the ambient pressure is a reasonable fraction of the bulk 
modulus. 

A reasonable approximation to the density run in the core is given by 

P = g e  -bra with rb c 121.5 --3 and b =  . A  so that V P / P  = - .l r . We may 
similarly write -p = e-&"' with p, s 3,5x ro tacqs and a = .6 . S Then%= 3 -  
The value of 2f depen s on the temperature gradient in the core (and the Gruneisen 
parameter) and is a subject of some controversy as sited above. The resulting - 

(via the Adams-Williamson relation) is -6 f where 5f is the dif- value of - Y 
ference between the real value of Gruneisen's parameter and the value which would 

' d - L . l .  make the core adiabatic ( S  I )  . So --Lg 



We can non-dimensionalize /f as 
~ ' 3  [qn] 9 E X  r 50 /v- ,2(inrun;t54 ~ n ) .  

Also approximately V X c i  t+, so N 2  r: (Indeed N&O near the inner core boundary .) 
c's t In (5) we assume time dependences of the form e for all quantities where 

S =  I for Kz  tide, % for I(,  tide, and s=: .97 forM,tide. Using (7) we write 

The buoyancy term in (5) is then (with the help of (3)) 

We are left with 

9- 1. Writing V* for /'f /r and $ for - ! - ($+T')  
-9. . S 

i s 1  + -$$ (\lor)r + B x ~ r 4  ( a ,  @)x _r+ V +  - - r n * [ ~ g - x ' l  r = (111 

The components in spherical coordinates are 

4 f i  n 4 n 
where K t  r ctn 8- @Om 8 ; H is the angle between & and k and 

Equations (12) give rise to another time-average azimuthal velocity forced by 
precession. 

The velocity is too small to account for the westward drift and of uncertain direc- 
tion (due to the latitude dependence). 

Solving for the velocity components (in the case S # 4) 
iv2 A =  is(/-sa)+ 4 [P-CQ'B) 



The S = equations also contain terms proportional to W . These equations must 
be solved in conjunction with the continuity equation 

A&-  + v . v r L  + v * V =  0 ( )  which reduces to 
P D* r p  at 

(In the Boussinesq approximation: x+ oo , this reduces to 'y j! = 0 ) 
1 4 Also there is Poisson's equation for %- : 

- 0  - " E ' g - 2 3 Q p \ / r  v % x i = p t  + oaxi+ + e x 1  - - 
-F a P i s r  

This has the boundary conditions - N'J V~ 

X I =  (1 + k;) ly (q ) at boundaries i = 1.2 ( k ;  is another Love number of order 
unity). We may also restate the \/r boundary conditions which are 

( i = - i h  d I ' S I . ~  since we are assuming vp 1-13 34 '. We 
81 6' 

thus have two complicated coupled equations for the potentials @ and X . 
(One substitutes from (13) to (15)). 

In the case f l =  0 , the continuity equation ( 7 -  ) results in a hyperbolic 
differential equation for the potential @ , whereas the boundary conditions are 
those appropriate to an elliptic equation. The result of this is that the solution 
for 9 does not have the same analytic form at all points. In particular we get 
the zones of strong shear evident in the experiments of Malkus and Suess (1970). 
The presence of the stratification renders the equation elliptic in at least part 
of the domain of interest. The hope is that the boundary layers are then mere 
Stokes layers which are stable at the relevant low Reynold's number of about 1. 

] (See Davis 1975 and Robinson and McEwan 1975 .) If this is the case we can obtain 
laminar solutions to the equations. 

Note that in Eq. (13), the derivatives of 9 do not contribute to vr when 
is of the form ArZ& cobs 0 (which is appropriate for the K ,  tide). Our equa- I tions are then approximately solved by the balance 6 5  c X' (though this is not an 

exact solution of (15)). Now X'Z ( I+  k) l/J and ly W 3 va h 9  M& 8. (The 3 comes 
from the normalization of the Legendre polynomials.) So A is given by 

A = 3 ( I+K)/& l o 3 .  
We see that the velocities in the meridional and azimuthal directions can be quite 
large (though this calls into question the stability of the Stokes layers which now 
have a Reynold's number - lo3). So we have \ /8-10'; M 10'. The velocity fields 
are given by 

v,= -2 iA- t -  iim(cp+t/L) 

The streamlines look like large scale hurricanes on the planet. 



We now t u r n  t o  cons ide ra t ion  of t h e  magnetic f i e l d .  The dynamo equat ion  i s  

aB ZT - A V ~ B =  W ( V X  8) &nq. A =  Y ~ ~ T - I O ~  (21) 

- Emv20 = X (v X 13) where t h e  magnetic Ekman number 

We d iv ide  t h e  magnetic f i e l d  i n t o  two p a r t s  - 
= + R' where 3 i s  t h e  time average.  We do t h e  same wi th  V = V + V'e 

Then $; E V X  ( V X  B Y +  ( v ' x g )  

and 

where t h e  magnetic Reynolds number R,= &kC- 30 

I 
We r e q u i r e  V & I  0' f o r  r egene ra t ion .  This  balance i n  magnitude of  terms i s  no t  
enough t o  i n s u r e  r egene ra t ion ,  bu t  it i s  a s t e p  i n  t h e  r i g h t  d i r e c t i o n .  

So we have shown t h a t  it i s  p l a u s i b l e  t h a t  a magnetic f i e l d  of  t h e  r i g h t  form 
could be maintained by t h e  o s c i l l a t i n g  t i d a l  f lows.  Note t h a t  a t o r o i d a l  f i e l d  
would undoubtedly a r i s e  from t h e  advect ion of  t h e  po lo ida l  f i e l d  by a mean f low.  

I n  conclusion,  i t  seems a p o s s i b i l i t y  t h a t  r a p i d  t ime va ry ing  flows can be 
adequate t o  exp la in  t h e  E a r t h ' s  long-term magnetic f i e l d .  I t  has  no t  conc lus ive ly  
been shown, however, t h a t  it i s  t h e  laminar flow due t o  t h e  t i d e s  which does t h i s .  
I t  w i l l  be  necessary t o  f u r t h e r  i n v e s t i g a t e  t h e  i n s t a b i l i t y  of  t h e  boundary l a y e r s ,  
and t h e  p o s s i b i l i t y  t h a t  t h e  r e s u l t a n t  i n t e r n a l  waves gene ra t e  a f i e l d  i n  t h e  man- 
ne r  shown above. 
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THE INSTABILITY OF A BAROCLINIC BOUNDARY JET IN A ROTATING FLUID 

Stephen Jones 

Introduction 

This study was motivated by certain observations made on an experimental in- 
vestigation of geostrophic adjustment. (1,2). This consisted of a long, narrow tank 
mounted on a rotating turntable. The tank was divided into two sections by a bar- 
rier, one section (the longer one) consisting of a single layer of cool (saline) 
water, and the other section consisting of a thin layer of warm (fresh) dyed water. 

After spin-up was complete, the barrier was removed and the lighter fluid be- 
gan to move out from behind the position where the barrier had been, Rotational 
constraints forced the fluid to move towards the leading edge of the tank, where it 
formed a jet travelling along the side boundary. This jet became unstable in a num- 
ber of instances, breaking away from the side boundary at regular intervals down- 
stream and forming a number of eddies extending across the width of the tank. 

\ \ \ \ \ \ \ Z L 

Fig.1 Plane sketch of observed boundary jet instability. 

This instability is very striking and is relatively easy to observe in the 
laboratory. Consequently, it would be of great value to our understanding of the 
dynamics of rotating, stratified fluids to determine what type of instability is 
being observed. The question we would most like to answer is what type of insta- 
bility is operating. Is it a geostrophic instability, or an instability of an (in- 
viscid) ageostrophic nature, or is it a viscous-dominated instability? 

Unfortunately, very little reliable quantitative data is available from 
which we can gain, via scaling arguments, some idea of the effect of viscosity on 
the instability. W. Facinelli (2) is doing experiments on the geostrophic adjust- 
ment problem in which the instability manifests itself, and it is hoped that these, 
and other experiments in the future, will provide the necessary data to gauge the 
effect of viscosity on the instability. Therefore, in this report, we shall neglect 
the effect of viscosity entirely and concentrate attention primarily on the stabil- 
ity, or otherwise, of the baroclinic boundary jet to geostrophic perturbations. 
Throughout, it will be assumed that the basic flow in the jet is geostrophic. 

The Basic State 

Before formulating the stability problem, we shall look at the form of the 
basic state in order to gain a better idea of how to set up the problem. We shall 
assume that the effect of the far side boundary is small, thereby picturing a side 
boundary jet in a semi-infinite fluid. The diagram represents a cross section of 
the fluid, showing two layers, the top (and lighter) layer being in motion, and the 
bottom one being static. The basic state is assumed to be independent of y, the 
downstream ordinate. 

The momentum equations for the geostrophic jet reduce to the single equation 



- 

where CJ: 9, P being the density difference between the two layers, and is the 

average density. 

If the mass flux 

Q =  ( O  h V d r  
rnavrN3 J- oe 

layer XV40 1 hix) 1 is assumed constant, the geostrophic balance 
equation implies 

8aTic ,t 

layer E% &$(I,:- H%)--cQ 
h C 4  =ha 
h(-oo)=H In addition to the momentum equation, 
. . 
Fig.2. Cross section conservation of potential vorticity implies 

of boundary jet - -  C+vz . 5 
4 

Solving for h and V gives 

If we perturb this basic state, whilst keeping the bottom layer at rest, it 
can be shown (3 ,4)  that the necessary condition for unstable geostrophic distur- 
bances is that the gradient of the basic potential vorticity must change sign some- 
where in the region of interest. However, the basic potential vorticity gradient 
is zero everywhere, and therefore we conclude that the jet is stable to geostrophic 
disturbances which confine themselves to the upper layer. 

The basic state derived above also presents Some grave mathematical difficul- 
ties in that any stability analysis will consist of equations with exponentially 
varying coefficients. To simplify the analysis, we shall consider the simplest jet 
possible, i.e. a constant velocity jet confined to a distance L of the wall (by geo- 
strophy, this implies that the layer thicknesses in the jet vary linearly). 

Rayleigh Instability Criterion for two layers 

Again we consider two semi-infinite layers of incompressible homogeneous 
fluid in a rotating coordinate system with constant Coriolis parameter 4 . The 
motion in both layers is hydrostatic and independent of vertical coordinate t , 
and satisfies conservation of potential vorticity: 

n f \  

It is possible to derive a 
square-integrable condition for 

e, the stability of geostrophic dis- 
turbances in a two-layer system 

1, 
\ \ \ \ \ \ \ \ \ \  * an outline of the proof here. 

t?z 
^ 

hl 
under certain conditions. A sim- 
ilar type of criterion was derived 
by Orlanski (5) for a related prob- 
lem, therefore we shall only sketch 



where 7 

and ( ) are the velocities in the jbh layer. 

We shall now expand the system about the basic state by setting 
/ r; = r l o +  r; 

I-&', s u: 
/ v; = vt4vi 

h, = h,. + h: 
h,  = ha, 4- h: 
h = h,- h, 

and linearizing. The equations then become, upon dropping primes 

where 

/ The quantities 1 1 ,  and f12 are the basic potential vorticity of the top and bottom 
layers respectively. 

If we assume that the disturbance is quasi-geostrophic, it follows that we 
can write 

(u; 9 vi) 2 $ (-ply 9 pix 

where PI = h,  

and p t  = A h , +  *h, 
f!l P2 

In addition, we assume the solution takes the wave-like form 

p; = p i ( ~ , m p  (i.tcv - c t ) }  

The goverping equations then become 

d" +- (t'+ v,-c a) A X  P, + $5, ( P ~ - P , ~  = a 

where 

We are interested in the case where 0 in which case 



and 

The b a s i c  s t a t e  s a t i s f i e s  t he  geosfrophic ba lance  equat ions  

If we s c a l e  t h e  h o r i z o n t a l  l ength  s c a l e  by L ,  t h e  v e l o c i t y  s c a l e  by V ,  and 
d e f i n e  . = L7 

- 9 a Rossby number 
R e -  $L 

R; = a Richardson number 

p= e L  

c = ve* 
we can w r i t e  

where #,, H,, a r e  t h e  mean depths  of  t h e  top  and bottom l a y e r s  r e s p e c t i v e l y .  I t  now 
fo l lows  t h a t  

R a,= f H Z ~  (I-e&-)" c Hz@ R*Rt 

*+.[,*-- (R ,~u~) - ' $$ ,  ( I+  R ~ + , )  
I+&/ R L  

and 

and t h e  equat ions  become 



where 

P If we now assume L C ? ,  and approximate $ by unity, the equations can 
be approximated by 

and 

Note that in deriving Eqs . (7) and ( 8 ) ,  R6 is taken to be very small at the 
outset, because we are looking at geostrophic disturbances. 

If we multiply (7 )  by He P: , and (8) by .: , add the resulting equa- 

? B tions and integrate over , using the boundary con itions that 7 vanish at 
rjz-a and 9 s  0 , we ar ive at the integral constraint PI*\ 2 

Writing C,  = C, 3 i C ; , and taking the imaginary part of the integral con- 
straint yields 

J 

It follows that if C I  is to be non-zero, we require the quantities 

[ %,7 
- R - '  4'l1 ) and R'' h7 to have opposite signs in the region of integra- 

tion. Therefore, the necessary condition for instability if that the interface dis- 

placement must be such as to allow 

Somewhere in the range - m  4 7 1 0  . It should be noted that this criterion is 

similar to that obtained by Orlanski (5). 

For the simple case of a finite region (the boundary jet) near the wall, where 
6 is a linear function of 9 , this condition is satisfied. Therefore, such a sim- 

ple jet may be unstable to quasi-geostrophic disturbances; the next step should be to 
determine if this is indeed so, and to see if any such instabilities, if they exist, 
can help explain the observed instability in the boundary jet. 



The Constant Velocftv Boundary Jet 

In the laboratory experiments, the lighter fluid in the jet was initially 
(before it became unstable) confined to a layer near the wall, while the fluid in 
the interior of the tank was homogeneous throughout its depth. This suggests that 
the interface between the lighter and heavier fluid hits the surface at the edge of 
the jet, 

Such a system is similar to Orlanski's polar front model (6) in which he in- 
vestigated the stability of an idealized front, represented by the interface be- 
tween two fluids of slightly different density, In the basic equilibrium state, 
the front (or interface) hits the top and bottom boundaries of the fluid; the main 
difference between Orlanski's model and the above picture of the jet, is that the 
interface associated with the jet does not meet the bottom boundary. Thus, although 
the formulation of the stability problem associated with such a jet will be similar 
to Orlanski's formulation, the two problems should be sufficiently different as to 
require a separate treatment for the jet, Unfortunately, the vanishing of the upper 
layer thickness at the edge of the jet presents some difficulties which we should 
like to avoid, if possible, at this stage, 

Therefore, we shall first look at the stability of a baroclinic jet in which 
the upper layer thickness is always finite, We shall also assume that the motion 
of the free surface will have little effect on the stability of the jet, and impose 
a rigid lid on the system, while still allowing pressure differences along the up- 
per boundary of the fluid. 

Now the jet is bounded on one side by a rigid boundary (the side wall) and 
on the other side by a free boundary, To simplify the mathematics, we shall re- 
place this free side boundary by a rigid boundary; the motivation behind this lies 
in the result Orlanski achieved for very long waves (quasi-geostrophic disturbances?) 
in which the growth rate was found to follow a curve very close to that derived by 
Eady (7) for his continuously stratified, baroclinic, quasi-geostrophic model. This 
seemed to suggest that the same growth rate is obtained regardless of whether the 
side boundaries are free or rigid. In addition, following Orlanski, we shall for- 
mulate the problem for general ageostrophic disturbances; we shall make the geo- 
strophic assumption further on in the problem, 

The constant velocity boundary jet with rigid lid. 

A. Ageostrophic formulation with rigid side boundaries. 

T 
HI ' 

1 :  
\ \  , , , . \ .  by rigid hori zontal planes at 3 = 0 and 
+---- k-  3 s  H, , and to the side by rigid vertical 

Fig.3 Rigid Side Boundary Model, planes at x = f 4 l_ ,  In the equilibrium 
state, the upper layer is in motion with 

velocity V, and the lower layer is at rest; the depths of the upper and lower layer 
at the mid-point of the jet are H, and H, respectively. It can be easily shown 
that the height of the interface w, in the equilibrium state is 

. . \  . . . . ,  We consider two layers of incompres- 5 / sible fluid in a rotating coordinate system 
with constant Coriolis parameter f. The 

I 

9, 
-. 

f motion in each layer is hydrostatic and in- 

I H, +----id 4' 
dependent of the vertical coordinate Z , and 
the two fluids are bounded above and below 



I We are interested in the perturbation to this equilibrium state. Let 
V' = u 1  ) represent the horizontal perturbation velocity in the upper layer 

I (j = I) and the lower layer CJ' = 2) . The perturbation pressures p '  and pZ are 
given at Z= 0 and Z= HI respectively. The equations governing this model, which 
satisfy the dynamic and kinematic conditions of = 0 , % ,  and H I  are, after linear- 
ization, as follows: 

where hi  is the perturbation to , the height of the interface. 
If we substitute 

/ 1 ;e(y - c t )  
( v ,h)= (%Yi> P;, h,\e 

into the above equations, then Eqs.(A-2) - (A-5) allow the velocity fields to be ex- 

I pressed in terms of the pressure fields, i .e., 

(A-9) 

(A-10) 

(A-11) 

(A- 12) 



It then follows that Eqs.(A-6) and (A-7) yield the two coupled equations 

and 

We can non-dimensionalize the coefficients of these equations by defining 

(A- 17) 

(A-18) 

(A- 19) 

Then Eqs. (A-13) and (A-14) become 

e where we have approximatzd +- by unity in the second equation. It should be 
noted that setting 6 = b2 an2 lf'-'= in these equations gives Orlanski's equa- 
tions, with 77 being Orlanski's Richardson Number. 

Now, the boundary conditions on these equations are that there be no normal 
motion at the side boundaries, i.e., U, , &vanish at X =  f: 4 ~ .  In non-dimensional 
terms, these become 

(A- 24) 

These equations describe ageostrophic disturbances in general, the ageo- 
strophy coming in with the terms in curly brackets, We are interested in the 
quasi-geostrophic regime where any ageostrophic effects can be considered small, 
and shall expand the solution and its eigenvalue T about the quasi-geostrophic 
state in terms of some ageostrophic~parameter. To set up this perturbation scheme, 
we define 

F', F, F, 
E = FAR-' 



and 

where K is the non-dimensional downstream wave number of the disturbance, such that 

!<-+4L 
The system of equations and boundary conditions then become 

where 

We now make an expansion in E as follows: 

We can now write down the nth order problem in metric form 

with boundary conditions 

where 

& = - 

The Zeroth Order Problem 

The zeroth order system is simply the homogeneous problem 



with boundary conditions 

The boundary conditions imply a solution of the form 

Substituting (A-37) into (A-33) and (A-34) gives 

For a non-trivial solution, the determinant of the coefficients must vanish, 
and this result in the following equation for T ~ )  

(6 + F,~ZK:)T'"'~-~(F,F;)T'"+ (F;+F,-3 K:) = 0 

with solution 

and 

It can be seen that instability is assured for all non-zero currents when F exceeds 
the critical value 

This is a similar result to that found by Pedlosky (8) for the equal depth layer 
case. 

For unstable disturbances, it can be easily shown that the maximum growth 
rate occurs at some small, but finite value of K. The small ageostrophy of the 
flow will presumably add a correction to , and hence the growth rate @ C L  . 
This will then shift the critical value of the wave number K away from the geo- 
strophic value. It was decided to take the expansion to higher order in 6 in order 
to determine the first non-trivial correction to ?r . 

However, before this had progressed very far, an experiment was performed by 
W. Facinelli in the basement of Walsh Cottage at the Woods Hole Oceanographic In- 
stitution in which this instability was observed, and some crude measurements were 
made of the relevant parameters. These were 

0.005, H, = 3/4 cm, Hz = 11% cm, $ = 1 rd.$-I, 

and the critical downstream wavelength of the instability was approximately 15 cm. 
The width of the boundary jet was approximately 2 - 3 cm. For these values 

The conclusion is that such a jet is stable to geostrophic disturbances; 
this suggests either that the instability is not a geostrophic instability, or the 



I 
rigid side boundaries are too great a constraint, and need to be relaxed. It will 
be seen later that this second possibility is probably correct. 

1 

The above results indicate that the ageostrophic perturbation problem for 
rigid side boundaries is irrelevant to the boundary jet instability we are inter- 
ested in. However, an outline of the perturbation analysis is in order, because it 
could be relevant to larger scale problems. 

Formulation of the integral constraint for the nth order problem 

The first and higher order systems in E are in general inhomogeneous, and 
the possibility exists of secularities occurring. Therefore we must seek an inte- 
gral condition on the nth order system in order to allow a solution to exist. 

It can be shown that the corresponding homogeneous adjoint problem associa- 
ted with (A-30) and (A-31) is 

(A-40) 

I 
- 

with boundary conditions 
U/ = o  (A-41) 

where 

I 
If we define the scalar product of two vectors a and b as follows: 

I - 
< a h > =  a7 b,+Orb, 

then, starting from the integral equation 

S 

integrating by parts, and using the boundary condition on , ~ ( d  we arrive at the 
required integral condition that (A-30), (A-31) possess a solution, i.e., 

A-42) 

since&@) and P(n)q=t, are known, it remains only to specify - . It can 
be easily sh&n that 

3 (A-43) 

I where I-i if= (3 (A-44) 

Equation (A-42), when expanded out, can be easily seen to be an equation determin- I ing + (n) , the nth order correction to r . 
The first order ~roblem 

The first order system takes the form 

with boundary conditions 



The i n t e g r a l  c o n s t r a i n t ,  with Y1 " 1 ,  y i e l d s  t h e  r e s u l t  
.--(I)- 0 
l. - 

Therefore,  we need t o  go t o  t he  second o rde r  problem t o  c a l c u l a t e  t h e  lowest  o rde r  
c o r r e c t i o n  t o  2$ . 

I t  i s  p o s s i b l e  t o  show, a f t e r  a  l o t  of a lgeb ra ,  t h a t  t h e  s o l u t i o n  t o  t h e  
f i r s t  o rde r  system i s  

where 

+I= A((%-+-) 

and Ij i s  an a r b i t r a r y  cons t an t .  

The Second Order Svstem 

The second o r d e r  system t a k e s  t h e  form 

and t h e  boundary cqnd i t i ons  a r e  



The i n t e g r a l  c o n s t r a i n t  on t h i s  system gives  t h e  fo l lowing  express ion   for^'^: 

2fl Ks, I=,+& 44" 
% 

+ ( F. ) ( ~ + ~ ) s j r d k  - Y R + , ( ~ ) & " Q ~ K -  4-1 I<- 
K t  )=, 

B .  Geostrophic formulat ion with r i g i d - f r e e  s i d e  boundaries .  

If we s e t  

\ \ \  \ \ \ L .. \ We cons ider  much t h e  same 

it can be e a s i l y  shown t h a t  

I 0 .: Ha I 
I 

Note t h a t  i n  t h e  reg ion  X c -L , v =  0. 

\ 

kind of model a s  i n  A ,  wi th  t h e  
\ 

fo l lowing  mod i f i ca t ions .  The o r i -  
g i n  has been s h i f t e d  t o  t h e  r i g h t  

Now we can s e t  
= +( wp ji! i Y - c t ) }  

and t h e  equat ions become 

H, 
I 

I boundary which remains a  r i g i d  

I, 1 
IL boundary, and t h e  l e f t  boundary a t  

I x = - L  has  been rep laced  by a  f r e e  
v '  ' V 

\ \ k . boundary, wi th  f l u i d  ex tending  t o  
< L 

> t h e  l e f t  of t h i s .  This  r e l a x a t i o n  
F ig .4  Rig id- f ree  s i d e  boundary model. of t h e  l e f t - s i d e  boundary fo l lows  

from t h e  p o s s i b i l i t y  a r i s i n g  out  
of t h e  previous s e c t i o n  t h a t  a  r i g i d  le f t- hand boundary s t a b i l i z e s  t h e  geos t roph ic  
d i s tu rbances  we a r e  i n t e r e s t e d  i n .  The mean depths Ho and H2 a r e  taken t o  be t h e  
equi l ibr ium depths of  t h e  l a y e r s  t o  t h e  l e f t  o f  t h e  f r e e  boundary a t X  = - L a  i . e .  
ou t s ide  t h e  j e t .  A s  i n  s e c t i o n  A ,  i n  t h e  r e g i o n - L < x &  0 ,  t h e  upper l a y e r  i s  i n  
motion a t  v e l o c i t y  V and t h e  lower l a y e r  i s  a t  r e s t .  From t h e  o u t s e t ,  we s h a l l  be 
cons ider ing  geos t rophic  d i s tu rbances ,  and v a r i a t i o n s  i n  t h e  i n t e r f a c e  he igh t  i n  t h e  

I equi l ibr ium s t a t e  w i l l  be considered smal l .  



We can non-dimensionalize these equations to some extent by defining 

thus yielding the following set of equations 

/ 

6' where we have made the approximation - 
P? c5 I *  

The boundary conditions on these equations require (i) the velocities to be 
continuous across the free side boundary, (ii) the normal velocity to vanish at the 
rigid side boundary, and (iii) the velocities to vanish very far away, i.e., 

O l  4k9 continuous at q = - I >  L s  $ 2  (B-7) 

Q i =  0 at g =  0 , L =  I,2 ( B - 8 )  

4 45, = 0 at q =  -a L 2 I,Z (B-9) 

Region I: K)C-I, V = O  

We set 

for a non-trivial solution to exist. 

The solution of this equation is 
k", FI t F ; + k L  

For the solution A ,  = k , we have a,= 0, 



F, a, 
I and for h2 = 'J(6 + c+ka) we have 0.2 = - F, 

I 
The boundary condition (B-9) implies that the solution in Region I is 

Region a: -I C Y) L o f  j/ = constant 

f We set 

4 Then, for a non-trivial solution, we require 

The solution of this equation is 
C v-c 

For the solution = k , we have 
a%= - a, v-c 

# 

and for )J 511u1- - L ~ ( F , A - + E * - ~ % ) .  V- C 

a& = F 
c 

The solution for 4 , ,  4, can be written 

The boundary condition (B-8) implies that Bg = B4 = 0 except when 

c 
6- + % = 0, in which case B4 = -B3 .  

However, in this case = . Therefore, without loss of generality we shall 
take Bg = Bq = 0, and 

provided p, ip, . (see later). 

We now match the solutions at 9.-) ; this yields the set of four equations: 



A n o n - t r i v i a l  s o l u t i o n  e x i s t s  i f  t h e  determinant  of t h e  c o e f f i c i e n t s  van i shes .  
I f  we d e f i n e  t h e  fol lowing 

t h i s  condi t ion  becomes 

In analogy with t h e  corresponding problem wi th  r i g i d  s i d e  wa l l s ,  where a  s i n e  
func t ion  was f i t t e d  i n t o  t h e  j e t  reg ion  s o  t h a t  it vanished a t  bo th  boundar ies ,  we 
can put  p, = 2T 

thereby  implying 

and c @ ~ )  = I  S ( , P i l  = 0 
If we s u b s t i t u t e  t h e s e  va lues  i n t o  (B-12) we should o b t a i n  some cond i t i on  f o r  - 

t h e  " f r e e - r i g i d  s i d e  boundarytt problem t o  have t h e  same s t r u c t u r e  a s  t h e  " r i g i d - r i g i d  
s i d e  boundaryt' problem. This  r e s u l t s  i n  

Since S@J= &)A =&k; =lg+hk:...it fol lows t h a t  one r o o t  of t h i s  
equat ion i s  k, s O L  I 

This  suggests  t h a t  t h e  " f r e e - r i g i d  s i d e  boundaryt' problem may have t h e  same 
s t r u c t u r e  a s  t h e  " r i g i d - r i g i d  s i d e  boundary" problem i f  t h e  downstream wavelength i s  
zero ,  Therefore,  it i s  no t  a l t o g e t h e r  s u r p r i s i n g  t h a t  Orlandki  de r ived  a  growth 
r a t e d  curve f o r  very long downstream wavelengths very  c l o s e  t o  t h e  one Eady c a l c u l a t e d .  
I t  a l s o  p o i n t s  t o  t h e  e r r o r  i n  our i n t u i t i o n  i n  assuming t h a t  t h e  " r i g i d - r i g i d "  s i d e  



boundary problem could illuminate the nature of the boundary jet instability ob- 
served; rather, placing two rigid side boundaries on the jet appears to place too 
great a constraint on geostrophic disturbances. 

We shall now redefine 
/ U = / L L L = F ( & + F ; * - ~ ~  
~ = ? . - J f i + ~ ? + k l )  

and, using/u,=a,= 19 , Eq. (B-12) can be rewritten 

where c (k)= 4 14) S ( & ) = A h  k 

We now assume that )A) is small; the motivation behind this is thqt,LL=2-r[, 
i.e. 0(1), leads to stability for the laboratory scales considered. With this 
assumption, we can approximate 

c (p,, I 
S W ) z @  

and Eq. (B- 13) becomes 

I We shall treat the two solutions to this equation separately. 

Case 1. 

Here we have , U = O  which can be rewritten as 

1 (6 + ~ , t  kL)c'= (IF,+ k W C +  F&'= 0 

The solution of this eauation is 

This mode possesses unstable solutions provided 

which states that the jet is unstable to long wavelengths, a conclusion which we 
expect physically. 

If condition (B-16) is satisfied, the growth rate is 



Case 2 .  

Here, t h e  q u a n t i t y  i n  c u r l y  b racke t s  i n  Eq.(B-14) i s  equal  t o  zero;  t h i s  can 
be r e w r i t t e n  

where 

A = k(l+U(/+&(cCh)+ SCkl) 

The s o l u t i o n  of t h i s  equat ion i s  

I t  i s  apparent  t h a t  t h i s  mode i s  always uns t ab le ;  t h e  corresponding growth 
r a t e  i s  

The q u a n t i t y  under t h e  square r o o t  s i g n  i s  very c l o s e  t o  u n i t y  f o r  a l l  va lues  
of k ,  and consequent ly,  t h i s  branch impl ies  a growth r a t e  which i n c r e a s e s  l i n e a r l y  
wi th  k.  This  branch appears  t o  be an unphysical  one. Indeed, i f  we approximate 

it fol lows t h a t  
v- c, = 0 F * + F =  c 

This  means t h a t  p2= ip, . I t  w i l l  now be shown t h a t  t h i s  l eads  t o  a t r i v i a l  r e s u l t .  
When h,=i,&, , B1 and 13, a r e  not  independent,  and t h e  s o l u t i o n  i n  Region I1 i s  
not  given by (B-11); i n s t e a d  it i s  

Matching the  s o l u t i o n s  a t  7 = - I  g i ves  

A,+A, + B,& I<- B , ~ K =  0 

El imina t ing  B, and BJ from Eqs. (B-19) and (B-20) y i e l d s  

v - A ,  v- l! + (h -/)A,= 0 

Simi l a r ly ,  (B-21) and (B-22) g ive  

47% A, .  L(*-,~B)A 9 : 0 



from which we have A,=A ,= 0 Equations (8-19) and (8-21) then  imply B, = = B1a 
Therefore it appears t h a t  t h i s  second branch, with growth r a t e  given by (B-18), 

i s  very  c l o s e  t o  a t r i v i a l  s o l u t i o n  t o  t h e  system. A t  f i r s t  i t  was thought  t h a t  t h i s  
suggested t h a t  t h e  mode of phys ica l  i n t e r e s t  i s  t h e  f i r s t  ca se .  More w i l l  be  s a i d  
about t h i s  i n  t h e  next  s e c t i o n .  

The Growth Rate.  

We have seen t h a t  t h e  growth r a t e  of uns t ab le  geos t rophic  d i s tu rbances  i n  
c a s e  ( i )  i s  given by 

kc; = 
vk JWF, 6 -h4i  
215+%+tk') 

We now seek t h e  va lue  of a t  which t h i s  a t t a i n s  a maximum; t h i s  c r i t i c a l  
va lue  of k s a t i s f i e s  t h e  equat ion 

k L + 3 ( ~ + ~ ) k ~ +  45/=%hs-  ~ t F t ( f j +  5). 0 (B-23) 
I 

For t h e  experimental observa t ions  quoted above, ( f  = 1 s -1 ,  = 0.005, 
Ho = 3/4 cm, H2 = 11% cm, L x ,  2 cm.) t h e  va lues  of F1 and F2 a r e  

I 6 1 ,  /<- !4& 
and (B-23) can be approximated by 

4 k 6 +  / 2 h 4 +  k " - l  = 0 

An approximate s o l u t i o n  t o  t h i s  equat ion i s  ks" 4. Therefore,  t h e  c r i t i c a l  va lue  
of  t h e  downstream wavelength i s  approximately 24 cm, which compares we l l  wi th  t h e  
observed wavelength of 15 cm, cons ider ing  t h e  crudeness of t h e  experiment and t h e  
measurements. 

We can understand phys i ca l ly  why ( i )  t h e  d is turbance  seeks  a l a r g e ,  bu t  
f i n i t e  downstream wavelength, and ( i i )  i t  i s  more l i k e l y  t o  be  s t a b l e  wi th  two 
r i g i d  s i d e  boundaries than wi th  one r i g i d  s i d e  boundary, f o r  t h e  fo l lowing  reasons :  
I t  i s  a well-known r e s u l t  i n  t h e o r e t i c a l  phys i ca l  oceanography t h a t  t h e  r e l a t i v e  
p ropor t ion  of a v a i l a b l e  p o t e n t i a l  energy t o  k i n e t i c  energy i n  a r o t a t i n g ,  s t r a t i -  
f i e d  flow depends on the  r a t i o  of t h e  length  s c a l e  of t h e  flow t o  t h e  i n t e r n a l  
r a d i u s  of deformation; f o r  a given amount of k i n e t i c  energy i n  t h e  f low,  l a r g e r  I s c a l e  flows possess  more a v a i l a b l e  p o t e n t i a l  energy than small  s c a l e  f lows .  Now i n  
t h e  b a r o c l i n i c  boundary j e t ,  t h e  system i s  expected t o  seek a mode wi th  a s  l a r g e  a 

I 
l e v e l l i n g  o f f  i n  t h e  i n t e r f a c e  a s  i s  p h y s i c a l l y  poss ib l e ,  i . e . ,  a d i s tu rbance  flow 
possess ing  a l o t  of a v a i l a b l e  p o t e n t i a l  energy. Therefore,  t h e  system w i l l  f avour  
l a r g e  s c a l e  flows over small  s c a l e  f lows.  Cont rar iwise ,  t h e  system would not  be ex-  
pec ted  t o  favour flows of t o o  g r e a t  a s c a l e ,  because t h e  k i n e t i c  energy would be-  
come t r i v i a l  i n  t h e  l i m i t  of i n f i n i t e  s c a l e .  Therefore ,  t h e r e  must be a f i n i t e ,  
optimum length  s c a l e  a t  which t h e  d is turbance  mani fes t s  i t s e l f .  

In  t h e  case  of a j e t  with two r i g i d  s i d e  boundaries ,  i f  t h e  width of t h e  j e t  
i s  small  enough, t h e  d i s tu rbances  w i l l  be a t tempt ing  t o  assume a l eng th  s c a l e  con- 
s i d e r a b l y  l a r g e r  than  t h e  width of t h e  j e t ,  bu t  w i l l  be "seeing" t h e  c o n s t r a i n i n g  
second r i g i d  wal l  f a r  t oo  soon. Consequently, they  a r e  much more l i k e l y  t o  be 
damped than  i f  t h i s  r i g i d  b a r r i e r  were not  t h e r e ,  i . e . ,  t h e  " i n t e r i o r "  s i d e  boundary 
was f r e e .  

Now al though growth r a t e  i n  ca se  ( i )  gave a c r i t i c a l  wavelength which agreed 
remarkably wi th  experiment,  t h e  s o l u t i o n  / A =  0 gives  r i s e  t o  some grave d i f f i c u l t i e s .  
A t  a l a t e  d a t e  i n  t h e  program, it was no t i ced  by t h e  author  t h a t  t h e  exac t  r o o t , U - 0  



presents the following difficulty: in the solution (B-ll), the second term is trivial 
and the set of equations in A1, A2, and B1 may be inconsistent. This difficulty had 
not been resolved at the time of writing. It is thought that a closer look at the 
original condition (B-13) may be in order. In addition, the difficulty previously 
mentioned with the case (ii) may not be as bad as it looked at first: the C; of case 
(ii) is not exactly equal to lfi V/(I +/3 ) , and the solution may approach the trivial 
solution but never actually reach it. One suggested approach is to set,& = ~Ck)where 

E is small, and solve for E . If these approaches do not resolve the difficulty, 
it may be that the problem has been ill-posed. 

Conclusions and suggestions for future work 

This project contains both success and failure. We have attempted the study 
of the stability of a baroclinic boundary jet in a rotating fluid. Experiment teaches 
that such a jet is unstable under cetain circumstances. Assuming the jet is geo- 
strophic, one-dimensional and confined to the upper layer, the Rayleigh criterion for 
rotating, geostrophic flows implies 

(i) if geostrophic disturbances are confined to the upper layer, the jet is 
always stable provided the basic potential vorticity gradient does not change sign 
and (ii) for a jet that is wide enough and slow enough, geostrophic disturbances (in 
both layers) may be unstable if the non-dimensional displacement h of the interface 
is such that 4 999 - R-'  and fi have opposite signs somewhere. 

'9 
The stability of a ~onstant~vel~cit~ boundary jet with a free interior side 

boundary has two branches. One branch, case (I), was found to give an instability 
for small enough )Q , the downstream wavenumber, and possesses a growth rate, 

The critical wavenumber kc was found to agree fairly well with an observed value in 
the laboratory. However, this branch, defined by,U=O , leads to an inconsistency 
in the original condition equation, probably leading to trivial result. 

The second branch looks, in the light of this, to be the only non-trivial 
branch. To first order, it gives a growth rate which grows linearly with /f ; this 
soon breaks down as k -+ / and the original assumption 1 small is violated. A 
much closer look at this branch is in order. 

The above difficulties are somewhat disconcerting, since on physical grounds, 
we can expect a geostrophic instability at a wavelength somewhat larger than the 
width of the jet. No definite conclusions can be made regarding the stability of 
the jet to geostrophic disturbance until these difficulties are clarified. 

In future work, of first priority is the clarification of the above diffi- 
culties. After this, it would be desirable to investigate the effect of ageostrophy 
on the instability. Also, some quantitative statement of the stabilizing or desta- 
bilizing effect of viscosity would be very desirable. 
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CONVECTION WAVES 

Mark Koenigsberg 

1. In t roduc t ion  

The s u r f a c e  of t h e  e a r t h  i s  i n  cont inua l  motion, and over  m i l l i o n s  of y e a r s ,  
t h e  p a t t e r n  of con t inen t  and ocean has been g radua l ly  changing. This  movement of  
con t inen t s ,  and t h e  formation and d e s t r u c t i o n  of  oceanic  p l a t e s  i s  t h e  s u r f a c e  ex-  
p re s s ion  of convect ion i n  t h e  mantle.  The na tu re  of t h i s  convect ion i s  i n s u f f i -  
c i e n t l y  understood.  C l a s s i c a l  t h e o r i e s  of convect ion i n  a  l a y e r  of  f l u i d  hea ted  
from below o r  w i th in  have been appl ied ,  bu t  l i t t l e  i n s i g h t  has been gained i n  under-  
s tanding  t h e  p a r t i c u l a r  n a t u r e  of t h e  convection occurr ing  i n  t h e  e a r t h .  I t  i s  t h e  
purpose of t h i s  paper  t o  modify t h e  c l a s s i c a l  theory  of convect ion i n  a  way sug- 
ges ted  by t h e  p a t t e r n  of motion on t h e  e a r t h  and t o  explore t h e  consequences of t h e  
theory .  

Consider an i n f i n i t e  homogeneous f l u i d  confined between two h o r i z o n t a l  p l anes .  
Let t h e  f l u i d  be Boussinesq, and appropr i a t e  f o r  t h e  e a r t h ,  l e t  t h e  f l u i d  be  charac-  
t e r i z e d  by an i n f i n i t e  P rand t l  number. As a  b a s i c  s t a t e  t h e r e  w i l l  be mot ionless  
conduction t h a t  i s  suppl ied  hea t  from below when t h e  hea t  f l u x  through t h e  l a y e r  ex-  
ceeds a  c e r t a i n  c r i t i c a l  va lue ,  s teady  c e l l u l a r  motion r e p l a c e s  t h e  conduct ive 
s t a t e .  The numerical va lue  of t h e  c r i t i c a l  hea t  f l u x  depends on t h e  type  of  bound- 
a r y  condi t ions  imposed on t h e  v e l o c i t y  and temperature above and below t h e  f l u i d .  
In  what fo l lows ,  t h e r e  w i l l  be  a  s t r e s s - f r e e ,  i so thermal  bottom boundary. The t o p  
boundary w i l l  a l s o  be s t r e s s  f r e e .  However, t h e  condi t ion  on t h e  temperature of 
t h e  top  boundary w i l l  be a l t e r e d  i n  a  way t h a t  may be r e p r e s e n t a t i v e  of t h e  e a r t h .  

Cont inenta l  ma te r i a l  has a  much g r e a t e r  concen t r a t ion  of  r a d i o a c t i v i t y  than  
e i t h e r  oceanic  b a s a l t  o r  mantle rock.  This  excess  h e a t  source produces h o r i z o n t a l  
g rad ien t s  of  temperature t h a t  lead  t o  motion. But, i n t e r e s t i n g l y ,  t h e  consequent 
motion changes t h e  d i s t r i b u t i o n  of t h e  v a r i a b l e  hea t ing ,  so  t h a t  a  feedback mechan- 
i s m  between t h e  temperature on t h e  upper boundary and t h e  i n t e r i o r  motion i s  c r e a t e d .  
This  i n t e r a c t i o n  of  a  movable hea t  source and t h e  motion it  produces was analyzed by 
Howard, Malkus, Whitehead (1970), and Whitehead (1972). They found t h a t  a  f l o a t i n g  
h e a t e r  can propel  i t s e l f  through a  f l u i d  i f  i t s  h e a t i n g  i s  s u f f i c i e n t l y  g r e a t ,  and 



they suggested this mechanism as an explanation for continental drift. Their analy- 
sis involved a discrete non-deformable heater, and the drift was produced by a non- 
linear self-interaction of the heat source. 

As a natural extension of the problem of a single heat source, we will con- 
sider an initially uniform distribution of heat source that is floating on the upper 
surface of a motionless fluid which is heated from below. The question is asked in 
what manner would such an initial state become unstable. It will be found that when 
convection sets in, a horizontally varying distribution of heat source results. If 
the floating heat source has a sufficiently large heat flux, the entire convective 
pattern, including the differentiated heat source, will drift along with the wave. 
The convection will appear stationary in a frame moving along with the wave, and the 
upwellings and downwellings will tilt in the direction of motion. The physical ba- 
sis of this phenomenon is the interaction of the surface heating and the heating 
from below. The heat flux entering from the bottom of the fluid is responsible for 
differentiating the heat source, and the surface heating leads to the drift of the 
entire convective field. This drift that is produced is the result of linear inter- 
actions between heat source elements at different parts of the fluid. 

It should be noted that the continents can act as an insulating shield to the 
heat coming from below, as well as provide radioactive generation of heat. This 
mechanism was suggested by Elder (1967). The effect is similar to the continents 
acting as heat sources and will be considered as such. 

In Section 11, both the equations of motion of the fluid and of the heat 
source will be presented. Then, the boundary condition describing the heat source 
modification of the temperature will be derived, and its physical implications will 
be discussed. The boundary condition that will be analyzed will be seen to be only 
a particular example of a more general class of problems that possess similar in- 
teresting features. Section I11 will be devoted to the linear problem. The in- 
fluence of the modified boundary condition will be taken as small so that to low- 
est order, the problem will be identical to the one analyzed by Rayleigh. The 
second order solution will modify the spatial structure of the first order solution, 
and if the heat source is sufficiently great, the complete solution will move with 
time. Section IV will present the results of solving the complete linear problem 
by the method of Fourier Series. It will be valid for all ranges of the parameters 
and reproduces the results obtained by the. perturbation method. In Section V, pre- 
liminary nonlinear results will be obtained. By means of power integrals that re- 
sult from the full nonlinear equations of motion, it will be shown that travelling 
wave solutions have a greater heat flux than the standing wave solutions. So, there 
is a nonlinear mechanism for selecting which of the two types of time-dependent 
solutions will be preferred in finite amplitude. Finally in Section VI, there is a 
general discussion of this type of convection and how it may relate to continental 
drift on the earth. 

11. The Equations of Motion and the Heat Source-Temperature Boundary Condition. 

Because continental material is so much lighter than surrounding material, 
it is located near the upper surface of the earth, and its motion is confined pri- 
marily to the horizontal direction. So, let there be an initial horizontally uni- 
form distribution of heat source located at the upper surface of a fluid. Let it 
be localized in the vertical at one depth so that its dependence on depth is a 
delta function. Also consider a layer of material lying above the heat source. 
The upper layer, which will not be allowed to convect will serve as the earth's 
thermal boundary layer - the lithosphere. The layer below the heat source serves 
as the earth's aesthenosphere. The upper surface of the fluid at z = d will be 
taken as stress-free for mathematical convenience. 



The motion of the heat source will be due to advection by the fluid below 
and diffusion of the heat source away from large concentrations. The equation of 
conservation of the heat source is 

The heat source is subject to movement by only the horizontal velocity field. Since 
I the total velocity field for a Boussinesq fluid has zero divergence, 

the heat source is advected by an equivalent velocity field with a non-zero diver- 
gence. This will tend to produce concentrations of heat source over downwellings 
and depletions of heat source over upwellings. 

The fluid under a concentration of heat source will get hotter and the fluid 
under a depletion of heat source will get cooler. This, however, is contrary to 
the sense of the temperature perturbation that created the upwelling and downwelling 
in the first place. It is immediately apparent that the critical Rayleigh number 
for the onset of convection will be elevated as a result. In addition, however, 
there is created a mechanism for the possible oscillation of the temperature and 
velocity fields in the fluid. First, a downwelling occurs where there is a nega- 
tive temperature perturbation and this concentrates the heat source thereby pro- 
ducing an excess temperature. The fluid can now become hotter where it was colder, 
so that a standing oscillation or travelling wave can result. 

The equation describing the evolution of temperature is 

where K is the coefficient of thermal diffusivity. The Navier-Stokes equations 
in an inlinite Prandtl number Boussinesq fluid are 

I 
where d is the thermal expansion coefficient, $ is the kinematic viscosity, and 

the unit vector in the vertical direction. We are considering a motionless 
basic state with an imposed temperature gradient of- 9 , and a uniform heat 
source So . The equations governing perturbations away from this solution are 

-. 
a - K,v,:s 

"-so* - t = d  
a t -  (5 ) 

X -  =w+ u.vg = ~ , v ' ~ + s J ( r  -4 
a* 4 - ( 6 )  



If the temperature equation (6) is integrated across the heat source inter- 
face, there results, 

L(, 1% ( a  = d+i 

The upper boundary at Z = d + is maintained at oOC by the ocean so that ~(?=d+h) =o. 
Since h is much less than o!. , the temperature profile in the upper layer will al- 
ways be linear with depth. 

The boundary condition for the temperature at P = d now becomes, 

For convenience, the equations of motion are non-dimensionalized with the 
following scales. 

distance : $ 

velocity : ~ , /k  
time : dyK7 
temperature : 

heat source: So 
Analysis will be restricted to two-dimensional motion, so a stream function is 
introduced to satisfy the continuity equation (8). 

u = p- u,, Vv=--p$(. 
Taking 2 * vs V x (Eq. 7) , the full nonlinear problem can be written as follows : 

where = is the Rayleigh number, 9 = Sed is the ratio of the surface 
KT 

heat source flux to the heat flux entering the fluid from below, 6; -& , and 4 s  'Id4 

In this model the effect of heating due to the continents is localized at a 
specific depth, and for convenience, is treated as a boundary condition. A dis- 
tribution with depth of the heat source can easily be incorporated. For instance, 
consider a heating source whose vertical structure is maintained on a time scale 
shorter than the convective time scale, by erosional processes at the surface of 
the earth and chemical processes beneath the surface. The magnitude of heat source 
concentration would be a function of only time and horizontal position, producing 
results similar to that presented above. In this way the heat source can provide 
its own heating from below and an external supply of heat would be unnecessary. As 
a further generalization, the vertical structure of the heat source can be left as 
unspecified. All that is required to produce effects similar to those dealt with in 



this paper, is that there be produced an agglomeration of heat source in regions of 
downwelling. It is emphasized that the model studied herein is chosen to closely 

I depict the situation on the earth and to be simple enough to facilitate the demonstra- 
tion of the interesting phenomenon. 

111. Linear Problem - Perturbation Solution 

A convective mode that can migrate with time is produced by the above feed- 
back boundary condition between heat source and temperature (15). The heat source 
is advected by the fluid thereby modifying the temperature structure. The (4 ~ R S )  
term is the one that yields the interesting effect. The (-e@=) merely represents 
the boundary condition for a fluid with a boundary of finite conductivity. Its ef- 
fect is to slightly lower the critical Rayleigh number at which convection occurs, 
and to increase the preferred scale of motion. This conduction term does not alter 
the time dependence of the conduction-convection transition. For this reason and 
mathematical clarity, the (-l@~) term will be neglected. Indeed this approxima- 

! tion is valid in the limit ?-+O , { J  = finite. In this section, the analysis will 
be carried out by means of an expansion in f!~ . As ev  goes to zero, the classical 
problem treated by Rayleigh is produced. In Section IV, the problem for arbitrary 

1 will be solved. The full problem with the complete boundary condition (15) 
will not be done at this time. 

The equations to be solved are: 

The heat source variable, S, can be eliminated from the upper surface boundary con- 
dition, so that condition (19) becomes 

I The problem represented by (16 - 20) is nonlinear. The linear problem is obtained 
by dropping the nonlinear terms. 

Solutions of these equations are sought in the form 

where v(t.)and 8(=) can be complex functions of t . The system of equations now is 

i w e t  R It; =o% (21) 

vYyi = 8, ( 2 2 )  



A s  I!? approaches zero, t h e  boundary condi t ion  on temperature reduces t o  an i s o t h e r -  
mal c  n d i t i o n @ = O ,  t = /  . Since t h e  modified boundary cond i t i on  w i l l  be t r e a t e d  a s  
sma l l ,  t h e  s o l u t i o n  of t h e  l i n e a r  problem i s  obtained by consecu t ive ly  t ak ing  i n t o  
account h ighe r  o r d e r  co r r ec t ions  t o  t h e  boundary cond i t i ons .  For  t7 = 0 , t h e  con- 
v e c t i o n  i s  s t eady  and t h e  s o l u t i o n  can be w r i t t e n  a s  

where t h e  s u b s c r i p t  corresponds t o  t h e  order  of  t h e  modified boundary condi t ion .This  
problem is  s e l f  -ad j  o i n t  and r e q u i r e s  t h a t  

R e =  
(a?+ iiq3 

a2 

The minimum va lue  of which 

i s  a t t a i n e d  a t  

There i s  no time dependence t o  t h i s  o r d e r ,  s o  t h a t  

L\j, -0 

However t h e  t ime dependence i s  included i n  (25) and (26) s o  t h a t  h i g h e r  o r d e r  co r-  
r e c t i o n s  can l a t e r  be incorpora ted .  

Now cons ider  t h e  f i r s t  o rde r  c o r r e c t i o n  due t o  t h e  modified boundary cond i t i on .  

This  l i n e a r  inhomogeneous problem f o r  W , 8, has  t h e  same l i n e a r  opepator  a s  t h e  
previous  o rde r  problem, so  i f  s o l u t i o n s  a r e  t o  e x i s t  a t  t h i s  o r d e r  a  c e r t a i n  s o l v a-  
b i l i t y  condi t ion  must be s a t i s f i e d .  The inhomogeneous terms t h a t  appear  i n  t h e  
above equat ions  toge the r  wi th  t h e  terms r e s u l t i n g  from t h e  boundary cond i t i ons  must 
be or thogonal  t o  t he  a d j o i n t  s o l u t i o n  of  t h e  f i r s t  o r d e r  problem. This  r e q u i r e s  

where ( .  > and 7 denote a  volume average and h o r i z o n t a l  average,  r e s p e c t i v e l y ,  
and * denotes  t h e  complex conjugate .  The t h i r d  term a r i s e s  from t h e  modified bound- 
a r y  condi t ion .  The boundary cond i t i on  on Q1 can be s u b s t i t u t e d  from (30) t o  o b t a i n ,  



This expression can be evaluated using the zeroth order solutions (25 - 263, yield- 
ing a real and an imaginary condition. The imaginary condition is: 

The real condition is: 

I If w , # O  then R,=  ~ ~ ~ Q + ~ a ) G  

I 
The solvability condition at this order determines the time dependence of the 

previous order solution. The time dependent solution cannot exist unless a:, is 
I sufficiently great to overcome the effect of a non-zero tr. Also, if the time de- 

pendent solution can exist, it will have a lower Rayleigh number than the steady 
solution. This is because the build-up of heat source is always out of phase with 
the downwelling, and rather than forestall convection, the phase shift allows a 
time dependence. The difference between the two cases is accentuated for T=0, in 
which case 

This indicates the importance of the parameter ( J ~ ) % ,  and if higher order cor- 
rections are desired, the frequency should be expanded in one-half powers of -eg . 
Since the frequency appears in the boundary condition as (for C z  0 ) , the func- 
tion can be evaluated at the most unstable wavelength =  TI^^* 

W ,  =8 ~ ' ( 4 ~ ) ' "  + (3 7 I 
Now that CA), and R, are known, the y, and 8 ,  fields can be calculated. 

I Eliminating 6, from the problem gives an equation for yI for the case u,# O , r =  0. 

It can be seen that will be proportional to sh(ax+&t)whereas Y' is propor- 
tional to Wb%+u)t) . The effect of the non-zero frequency U, , is to produce 
this out-of-phase solution. The vertical structure of the zeroth order solution 
is unchanged at this order. If either o +O or the (-48.) boundary term is in- 
cluded in the analysis, there will be a correction to the vertical structure of the 
zeroth order solution. The solution can be written as the sum of a particular and 
a homogeneous solution. 

W,--snin(ax+d+)[$s m ~ i z + 1 ~ e ( ~ & ~ ~ i + ) ]  (41) 

where 



The boundary cond i t i ons  v, = v, 22 F WI ZatE= 0 a r e  i d e n t i c a l l y  s a t i s f i e d  by (41) . 
Applying t h e  boundary condi t ions  a t  ? : I  g i v e s ,  

-%+ &Ti l ~ e  ( ~ s ; n R ~ ) = o  (42) 

These t h r e e  boundary condi t ions  must be s a t i s f i e d  by t h e  t h r e e  parameters  A1, A 2 ,  
w, . The va lue  of Ir-', was chosen such t h a t  a  s o l u t i o n  i s  guaranteed t o  e x i s t ,  s o  

t h e  t h i r d  boundary cond i t i on  (44) can be considered redundant .  A f t e r  some a l g e b r a  
t h e r e  i s  obta ined:  

The s o l u t i o n  f o r  i s  now 

y= m(~x+~t)&nZt  &(U*L&) [$$- * ~ ~ + ~ ~ 1 S i r n h ~ , ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ d d h ~ , j 2 ? * h $ r ~  (47) 

The s o l u t i o n  f o r  9 i s  obtained i n  an i d e n t i c a l  manner. 

where 

  he express ions  A l ,  A 2 ,  B1, B2 eva lua t ed  a t  a'' fl% a r e  



so that the solution is 

+.or a2 d 3.  B R Z ~  I ,  4 +g (51) 

e S  Q ~ . ~ & ( M ~ + u T )  q 0 . 0  tma t - . r q 2  h A  3 . 8 8 2  M /.LA-?+ I 
=+ 2.34 C#h 3 , B B t h  LLgd 152) 

To see the effects of the out-of-phase solutions, contour maps of y and 
are presented below for (eq)k=  0 and 1 for the travelling wave solution. 

L 
motion of wave 



It is seen that for ep if 0 ,  the streamlines tilt in the direction of motion 
of the wave and that the isotherms penetrate to the surface. The heat source concen- 
tration for T=O is maximum where the horizontal velocity is maximum in the propaga- 
tion direction at the surface, and a minimum where the horizontal velocity is minimum 
in the propagation direction. Since the boundary condition used is 8 = ! q R S ,  the 
hottest part of the fluid at the surface is in phase with the heat source. The max- 
imum of the heat flux leaving the fluid is pushed from directly over the upwelling 
to a region behind the upwelling. 

The contours for the standing wave would show the magnitude of convection 
periodically stopping and growing. Also, the direction of the tilt of the cells 
oscillates as the magnitude of convection goes up and down. The contours for the 
steady convection show the heat source located directly over the downwellings, and 
as a result the isotherms and streamlines are pushed away from the upper surface. 

IV. Linear Problem - Fourier Series Solution 

The complete linear problem as represented by (21-24) can be solved by expand- 
ing the unknown functions in terms of a & 7e series. This method can be used to 
solve general convection problems with complicated boundary conditions (see Jeffreys 
and Jeffreys, 1946, p. 442) . The result for 0-# 0 is given by the following two sum- 
mation conditions. ,,k ,,qti--n?li a ~ j - ~ * ) +  2 

D ns  I 
(53) 

= I  

3 Z I f  
where a= ( ( n 2 7 t  a') -Rd) + w*(nzg*+ a'.) 

These two summations can be solved simultaneously for and W in terms of a and 
6 , and the minimum value of R as a function of CL can be determined. As an 
approximation, consider only the n=/ term. For the case w s  0, 

For the case cl, 4 0, 

This reproduces the results obtained in Section 111. Also, this method can 
be used to solve the problem with (-+c?gs) included in the boundary condition on 
temperature. 

V. Nonlinear Theory 

It was shown that if the surface heat source is allowed to diffuse, two dif- 
ferent modes are possible: stationary convection and time dependent convection. The 
time dependent convection can exist at a lower Rayleigh number than the steady con- 
vection, so linear theory says the time dependent solution will occur first. The 
subcritical structure for these solutions has not been fully studied. But since the 



difference in Rayleigh numbers for the two types of solution can be made larger as 
c+ 0 ,  it is believed that there is a parameter range where the time dependent 
convection will be preferred in finite amplitude. The planform that will occur 
will also be determined by nonlinear interactions. 

There remains the question as to whether a standing or travelling wave will 
be the preferred form of time dependent convection in finite amplitude. It will be 
demonstrated that (with the neglect of the possibility of subcritical instabilities) 
in the limit of vanishing 47 , the travelling mode has a greater heat flux than 
the standing mode. Since solutions of the Rayleigh problem with maximum heat flux 
are preferred up to order E %  , and we are considering ( 5 7  -+ 0 , it is expected 
that the travelling convective mode will be the most stable and therefore most pre- 
ferred solution. 

First, the travelling wave solution will be examined. The travelling wave 
appears steady in a frame moving with U = Q W ,  so in what follows, horizontal aver- 

t ages are identical to time averages. Write, 

The value of ((7) is thought of as being small so that only the zeroth order solu- 
tion is considered. However both the amplitude and time dependence of this solu- 
tion is taken into account. 

Take the horizontal average of the full temperature equation, 

If ( is computed using (58-60), there results, 

The solution of (62) is - P P - 4  T R  Y 2nr+ 

I The power integrals for the full nonlinear equations are derived by multi- 
plying Eq. (4) by U and Eq. (12) by 9 and then integrating over volume and one 

I 
period in time. 

(64) 

where L is an average in space and time. Substituting (58-60, 63) in rela- 
tions (64-65) produces the following relations between the amplitudes A, B: 

The heat flux through the layer is from (63). 



With (681, Eq. (67) becomes 

AO(H - y ) = ~ ' ( a ' +  nL) 
Now (66) and (69) can be combined to yield 

The maximum heat flux is attained at d= 7% in which case (68) and (70) give 

Nusselt number = 4 = 3 -  for the travelling mode 
R R (71) 

m e n  R = R, the Nusselt number is one and when R j w t h e  heat flux increases as 3 R .  
Similar calculations can be done for the standing wave case. Consider 

The factor of a appears so there is the same amount of energy in both the travel- 
ling and standing waves. The equation for the mean temperature is - 

T+ = T,,- ~ A ' B ' ( /  + rn 2 d ) h  25% (75) - 
Comparison of (75) with (62) shows that ths time average of Ts for the standing 
wave is the same as the time independent TZ for the travelling wave. The solu- 
tion of (75) is - - p  5 Tr=-%- & ' ~ ~ T T P  h+ + (76) 

where 

If relations (72-74, 76) are substituted in (64-65), and the same manipulations are 
carried out as for the travelling wave, there results, 

YL { u s s e t  1 +(ST) 'Is )="+ 
Relation (77) differs from (71) because the standing wave convects a time 

varying mean temperature gradient, whereas the travelling wave convects a time in- 
dependent mean temperature gradient. As W - 0  (77) reduces to 

[~usselt) , 4 - Y & for the standing mode. (78) 
R 

The maximum time averaged heat flux obtained by convection with one vertical mode, 
in the limit rer), 0 ,  w + 0 , is reduced for the standing wave solution. 



VI. Discussion 

The main emphasis of this paper has been the appearance of a travelling con- 
vective solution in a convection problem that classically has time independent solu- 
tions. The modification was obtained by abstracting a situation that possibly ex- 
ists on the earth. If the heating associated with the continents is important dy- 
namically, the continental drift that is observed may be a manifestation of time de- 
pendent convective solutions as discussed above. Of course, the motion on the earth 
is not one sole travelling or standing convective wave. Due to the variation of 
various pwameters and different initial conditions, different parts of the earth's 
surface can be the realization of different solutions. A great deal of chemistry 
that may be important has been ignored, so exact correlations with the earth are im- 
possible. Since some of the heat produced by the differentiated heat source is con- 
vected downwards it is not unreasonable to expect motion on the earth's surface even 
where there is no continental material nearby. 

It is interesting to compute the velocity of drift from Eq.(35). Using a 
1 value for of / , and a value of 4 of Ho , and a value of of I , the value 
i of the dri 7 t velocity is the same order of magnitude as the convective velocity. 

One of the puzzling features of continental drift is the asymmetry of the 
1 downwelling regions. It is seen that in the above model, because of the drift of 

the motion, the convection cells are tilted in the direction of motion. As a result, 
both the upwellings and downwellings are rendered asymmetric. The concentration 
of heaf source is located just behind the downwelling region which penetrates be- 
neath the "continental area". It is possible that the asymmetry of the downwellings 
in the earth reflect the fact that the convective motion as a whole is drifting. 
The direction of the downwelling should point opposite to the direction of the pro- 
pagation of the wave. By further studying this and similar models greater under- 
standing of the convection in the earth may be achieved. 

I would like to extend special thanks to Dr. Willem Malkus and Dr. John 
Whitehead for encouragement and assistance in this study. 

References 
t 

Elder, J. 1967 Convective self-propulsion of continents. Nature 214:657-660, 750. 

Howard, L. N., W.V.R.Malkus and J.A.Whitehead 1970 Self-convection of floating 
heat sources : A model for continental drift. Geophysical Fluid ~ ~ n a m i c s ,  
I: 123-242. 

1 - 
Jeffreys and Jeffreys 1946 Methods of Mathematical Physics, Cambridge University 

I Press. 
I Whitehead, J.A. 1972 Moving heaters as a model of continental drift. Physics of 

the Earth and Planetary Interiors 5: 199-212. 
7 



PLATE MOTION AND THERMAL INSTABILITY IN THE ASTHENOSPHERE 

H. Jay Melosh 

Introduction 

This paper investigates the effect of a strongly temperature-dependent 
stress-strain relation on the thermal structure of the asthenosphere. Laboratory 
measurements and theoretical considerations concur in predicting that the stress- 
strain relation for a hot crystalline material such as olivine (which is probably 
a major constituent of the earth's mantle) is of the form 

-&EX+ PV 
6. .  RT 

V (1) 

Where iij is the strain rate tensor, C t j  is the deviatoric stress,dcr= $ T y  (qjo-jk) 
is the second invarient of cj , and B is a constant. In the exponential, E* and 

V* are activation energy and volume, respectively. P is pressure and T is the 
absolute temperature. 

Equation (1) displays. the exponential temperature dependence of & cj  . As 
the temperature increases, E i j  increases so that a hot crystalline solid flows 
more readily as its melting point is approached. Equation (1) does not app!y above 
the solidus temperature. Note that increasing pressure tends to decrease G;j , 
so that temperature and pressure work against one another. This conflict between 

p and T yields the rheological stratification of the earth which is responsible 
for plate tectonics. Near earth's surface P and 7 are low and the material of 
the crust is far below its melting point, so that the crust and uppermost mantle 
respond to stresses as elastic solids. This portion of the earth is the lithosphere. 
As we descend further into,the earth both P and TL rise, but the T rise is more 
significant. Eventually E * *  reaches a maximum for given clj . At greater depths 
T increases more slowly ai!l the P effect takes over. The region containing the 

maximum €ij is known as the asthenosphere and the mantle material is most fluid 
in this region. It lies at depths ranging from 100 to 200 km, depending upon the 
locality. 

This picture of the upper mantle, which allows the rigid lithospheric plates 
to slide over the fluid asthenosphere, involves a fundamental instability stemming 
from the temperature dependence of Eq.(l). The 50-100 km thick lithospheric plate 
is an excellent insulator, having a thermal time constant of the order of 100 Myr. 
On th? other hand, shearing of the asthenosphere generates heat in the amount 

0 ; 8 c x 0  m9/&,3 - a . If this heat is not conducted away through the litho- 
sphere, the temperature in the asthenosphere must rise. But then &,, increases 
(G,held constant), the heat generation increases still more, and thermal runaway 
occurs, ceasing only when CTx,is relieved or when temperatures reach the solidus 
and Eq. (1) no longer applies. This phenomenon was first studied by I.J.~rundfest~" 
who was investigating the sudden (explosive) failure of rocket engines. 

The purpose of this paper is to investigate the significance of this insta- 
bility for plate motions. We shall see that shear heating of the type described 
above is not an important factor in determining the thermal structure of the astheno- 
sphere under normal conditions. If, however, the applied shear stress exceeds a 
critical value (q) then thermal runaway becomes inevitable and the mantle must ad- 
just somehow, either by reducing the shear stress or by generating a large amount of 
melt in the asthenosphere. This critical stress is associated with a critical 
velocity Vc , which likewise represents an upper limit to the velocity at which a 
plate can move without causing thermal runaway. If V, is assumed to exceed 10 cm/ 
year (the velocity of the fastest observed plates), then cannot exceed a few 



t e n s  of b a r s .  The s t r e s s e s  r equ i r ed  t o  move l i t h o s p h e r i c  p l a t e s  over  t h e  astheno-  
sphere a r e  thus  remarkably smal l .  

These conclusions a r e  i n  s t r o n g  c o n f l i c t  with those  of C .  Froidevaux and C .  
~ c h u b e r t ( ~ '  who s tud ied  a  s i m i l a r  problem numerical ly .  These au tho r s  found t h a t  t h e  
thermal s t r u c t u r e  of t h e  asthenosphere i s  s t r o n g l y  con t ro l l ed  by t h e  v e l o c i t y  of  
t h e  p l a t e ,  and t h a t  t h e r e  i s  no upper l i m i t  t o  t h e  p l a t e  v e l o c i t y .  We s h a l l  show 
t h a t  t h i s  disagreement i s  due t o  t h e  ex i s t ence  of two s e t s  of s o l u t i o n s  t o  t h e  equa- 
t i o n s ,  and t h a t  Froidevaux and Schube r t t s  choice of i n i t i a l  cond i t i ons  was such a s  
t o  put  them onto t h e  "unphysical" branch of s o l u t i o n s .  This  branch has t h e  proper-  
t y  t h a t  a  decrease  of shea r  s t r e s s  leads  t o  h ighe r  p l a t e  v e l o c i t y  (a  f a c t  noted by 
Froidevaux and Schuber t ) ,  with t h e  l o g i c a l  consequence t h a t  r educ t ion  of t h e  s h e a r  
s t r e s s  t o  zero impl ies  i n f i n i t e  p l a t e  v e l o c i t y !  I t  i s  t h i s  p r o p e r t y  which l e a d s  us  
t o  c a l l  t h i s  s e t  of s o l u t i o n s  "unphysical".  

The p re sen t  approach i s  a n a l y t i c a l ,  and we s h a l l  use  s e v e r a l  approximations 
i n  order  t o  make t h e  problem t r a c t i b l e .  We can show, a  p o s t e r i o r i ,  t h a t  t h e s e  ap- 
proximations a r e  e x c e l l e n t ,  and t h a t  t h e . r e s u l t s  obtained a r e  good t o  10% o r  b e t t e r .  
Our approach i s  t o  s tudy  t h e  i d e a l i z e d  problem of an i n f i n i t e  h a l f - s p a c e  of m a t e r i a l  
governed by E q . ( l ) .  We apply a  shea r  s t r e s s  Ct t o  t h e  ha l f - space  and seek t h e  d i s -  
t r i b u t i o n  of temperature with depth ,  J(z). The problem i s  s i m p l i f i e d  by seeking  
only s t eady  s o l u t i o n s ,  % = O  ( t h e  ques t ion  of  t ime s c a l e s  w i l l  be  d i scussed  l a t e r ) .  
I n  a l l  of t h i s  work we ignore  t h e  advec t ive  t r a n s f e r  of h e a t .  I n  t h e  r e a l  e a r t h  
i t  i s  p o s s i b l e  t h a t  t h e  asthenosphere could be cooled by convect ion i n  t h e  mantle  
below (although t h i s  i s  con t r a ry  t o  t h e  usua l  p i c t u r e  of  a  monotonic i n c r e a s e  o f  
temperature with dep th ) .  Such cool ing  of t h e  asthenosphere i s  u n l i k e l y  t o  be  s o  
e f f i c i e n t  a s  t o  cause much modi f ica t ion  of t h e  model parameters ,  and we thus  n e g l e c t  
it f o r  t h e  p r e s e n t .  - a s  

O'% 

Fig .  1 
coord ina tes  

Neglect ing advec t ion ,  t h e  r e l e v a n t  equat ions  a r e  

hea t  shear  
conduction hea t ing  

volumetr ic  
hea t  product ion  

where K i s  t h e  thermal conduc t iv i ty ,  p i s  d e n s i t y ,  and C p  i s  t h e  h e a t  c a p a c i t y  of  
t h e  mantle m a t e r i a l .  t? i s  a  vo lumetr ic  hea t  product ion,  and must be  included t o  
produce a  zone of maximum 6;;  , hence a  zone a t  depth where shea r ing  t a k e s  p l a c e .  

need not  r ep re sen t  an a c t u a l  rad iogenic  h e a t  product ion - it may simply be 
taken a s  an empir ica l  parameter desc r ib ing  t h e  curva ture  of T( ,z )v+~ .  

Equation ( 2 )  cannot be so lved  a n a l y t i c a l l y  even f o r  t h e  c a s e  where %(F$)= 0. 



The main difficulty is the I/RT C t )  factor in the exponential. Our first approxima- 
tion is thus to expand this term about some temperature T;; , which will be taken to 
be the temperature in the zone of most intense shearing. We shall show later that 
this yields an excellent approximation, since the shear heating term is large only 
in this zone. We thus write L_ 3 

Be 7" (3) 

where .- 2 E*+ Po v* 
C s  Be R To 

Po is the pressure at the surface of the earth, and we shall set it equal to zero 
for our purposes. We introduce a dimensionless rheological potential temperature 

Equation (2) becomes 

where 

q,' & 
The parameter describes the effect of shear stress, while % prescribes a curva- 
ture (hence a maximum) for f (2 )  , even in-the absence of shear stress. f combines 
both temperature and pressure effects on  EL^ , such that whenf(s) reaches a max- 
imum, 2 d j  is maximum also ( fixed). iJ  

Equation (8) is the master equation for the remainder of this work. In the 
next section we find solutions of Eq.(8) in terms of a non-elementary integral, and 
examine several special cases of the solution. We then use several approximations 
to this integral to solve the general problem in regions of geologic interest.These 
approximate solutions are applied to a model of plate motions, and important deduc- 
tions about the stress-velocity relation for plates are obtained. Finally, we pre- 
sent several numerical models for the earth, and show that the stresses responsible 
for plate motions can be no lorger than a few tens of bars. A discussion of time 
scales shows that, while it is not certain that a steady state has been attained in 
the earth, the critical stress cannot be exceeded by a large amount (by a factor of 
two or more) without thermal runaway occurring on a very short timescale (a few tens 
of Myr). Thus, the relation between stress and velocity deduced from the steady 
state assumption is probably not far from the correct relation. 

The Mathematical Problem 

Equation (8) can be reduced to a first order differential equation by use of 
the integrating factor 3 . The result is 

J 2 ~ p ( e ~ - e ~ ~ ) +  
L a  ~ ( f n  - fi43 (111 



The constant has been determined by requiring that when F =fm, the 
maximum potential temperature. If the maximum f (?)occurs at z : z m  , then the solu- 
tion can be written 

8 (f w i  

where 1 (d,p) is a non-elementary integral , d s  

The properties of 1 (d,P)are described in Appendix I. 
Equation (12) implicitly determines $(=)in terms of the two arbitrary con- 

stants $., and + . If these constants were known then our task would be complete, 
However, in the geological problem, we must consider these constants to be the re- 
sult of applying other boundary conditions. In particular, we shall specify the 
surface temperature T(o.  (hence J LO), and the heat flux (hence -$$- ) at some depth 
z b  which lies far below the depth of significant shearing We then ask what are 

the values of fm and for given p , g and fixed f LO), &, In this way we 
shall find that solutions exist only for a finite range ofp. 

Let us look at two special cases of the solution (12): 

(1) p =  0 case (no shear stress) 

This is the case of pure conduction, given C C a )  and -$-$I since 

I (a,p) = 2 Eqs (121 yields = b  

114) 

this is exactly the form expected for pure conduction. If we define 
then the boundary conditions imply 

0 
The superscripts on S: and 4, are to indicate that they are solutions to the pro  
(no shear stress) problem. 

I Note that 91 must be negative in order for a maximum in 7 (z) to occur * *b  (%lo > 0 ) . However, this does not imply 6 0 as Eq. (7) shows. We 
"b 

merely require 

' 0% bcJ- =* (17) 

The maxmum in $(&)occurs when ~--$&,lZw= A Thus the condition for a zone of max- 
Imum fluidity to exist is simply 

dt Y 

In the earth xFI " I 3  - ? O @ C / K ~ ,  whlle at great depth $1 is near the adia- 
z=o 

=b batrc gradient, - 3  - 1°c/km. It is readily found that Tx/zt .= I - ~ O C  , so that a 
zone of maximum fluidlty must exist between the surface and the region of adiabatic 
temperature gradient, 



(2) 8 = 0 case (no heat generation) 

In this case o(-oo and Eq.(12) can be integrated exactly. Solving the result 
for {(E) we obtain the exact solution 

Jm- f L*) = 2 j~ -Zm)) 1 (19) 

If t b  >7tm, then = - b determines fm ; d? t b  

2P 
from which Eh can be determined if $(a) is fixed; 

Zm = 2 L 4-1 
b e""v2 j \. 

There are two sets of solutions, one set corresponding to t , 7 O  (shearing zone lies 
within the mantle), the other corresponding to Z , L O  (shearing zone above surface - 
no maximum f h) occurs within the mantle). Since the argument of 4' must be 
greater than 1 for a solution to exist, we find an upper limit p, on p : 

In other words, 

The corresponding velocity can be determined by substituting 5 (2)in Eq. (1) 
and integrating from% = @to h = O  . The resulting differential velocity can be 
expressed as 

where 

we 
The two solutions in Eq.(24) correspond to the two sets of solutions in Eq.(21). 
Most of the differential velocity between the bottom of the shear zone (t --+ co ) and 
the top of the shear zone (a -+ roo ) occurs in a thin layer of width W = 4/b cen- 
tered about P=: Sm. In the case iZmL0, the surface ve1ocity-u-is a small fraction 
of the velocity for Z m 7 0  , since the zone of maximum shear does not occur in the 
mantle . 

The branch of solutions for E m > O  corresponds to the (+) sign in Eqs.(21) 
and (24). Equation (24) shows that as q e  -+ , vhc -4 cs with q,'l/ constant 
for q s d ~ 6 E r T h i s  state of affairs, in which a decrease in shear stress leads to 
an increase in velocity is physically absurd, and we label this set of solutions the I 

I1unphysical" set. All solutions with V/V, > 1 belong to this set. 

The zW L O  brqnch of solutions if "physicalI1 in the sense that as 
a + 0 , tF/y, - 8  / ')' which is the correct limit for low shear stress 

where the thermal structure of tfie mantle is not affected by shear heating. All phy- 
sical solutions have v / Z &  C 1. 

These two sets of solutions coincide for T=6,. To interpret the unphysi- 
cal set of solutions, note that as C--, 6 ,  -;l,-+a for this set. In this case 
-$-$ > 0 from the surface down to om, so that the fluidity of the mantle increases 
downward until either Zm or the solidus temperature is reached. These solutions 
thus correspond to a mantle which overlies a fluid stratum, and in which the fluidity 
increases monotomically with distance down to the stratum. Such a mantle has no 



asthenosphere.  Shear s t r e s s  appl ied  t o  t h i s  mantle would a c t u a l l y  r e s u l t  i n  motfon 
over  t h e  f l u i d  substratum r a t h e r  than i n  a zone of shear ing  witfiin t h e  much l e s s  
f l u i d  mantle,  s o  t h a t  such s o l u t i o n s  a r e  mathematical f i c t i o n s  ( i . e . ,  t hey  imply a 
v i o l a t i o n  of t h e  approximations which l e d  t o  Eq . (8 ) ) .  I t  i s  t hus  h igh ly  u n l i k e l y  
t h a t  t h i s  s e t  o f  s o l u t i o n s  has any re levance  t o  t h e  r e a l  e a r t h .  

The phys i ca l  s e t  of s o l u t i o n s  has Sc o , so  t h a t  t h e  f l u i d i t y  of t h e  mantle  
decreases  with depth .  In  t h i s  case  shear ing  i s  confined t o  t h e  upper l a y e r s  of t h e  
mantle ,  and s o l u t i o n s  f o r  p+-0 do not  v i o l a t e  our  i n i t i a l  approximations.  A s  P 
i nc reases  toward , t ,  approaches P = Q  , reaching it when p = p, 8 

Both s e t s  of s o l u t i o n s  a r e  p l o t t e d  i n  F ig .2 .  

F ig .2  So lu t ions  f o r  t h e  $ = O  case  

Neither  of  t h e s e  two s e t s  of s o l u t i o n s  cor  espond very  we l l  t o  t h e  e a r t h ' s  
If mantle .  The t r o u b l e  wi th  t h e  q,=Ocase i s  t h a t  i s  cons t an t  i n  t h e  absence of 

shea r  s t r e s s ,  s o  t h a t  t h e  f l u i d i t y  of  t h e  mantle must e i t h e r  i n c r e a s e  cont inuous ly  
with depth (unphysical s o l u t i o n s ) ,  o r  decrease  cont inuous ly  wi th  depth  (phys ica l  
s o l u t i o n s ) .  In  t h e  l a t t e r  case ,  t h e  maximum f l u i d i t y  occurs  a t  t h e  s u r f a c e .  

Current i d e a s ,  however, r e q u i r e  a zone of maximum f l u i d i t y  a t  some f i n i t e  
depth (100-200 km). We a r e  t hus  led  t o  cons ider  ca ses  where c&#O . The s o l u t i o n  
f o r  pure conduction has made i t  p l a i n  t h a t  $(st\ may have a maximum $; a t  depth  3: 
when p r  0 .  We thus  expect  shear ing  a t  small  p t o  begin i n  t h i s  r eg ion ,  which l i e s  
a t  a con t ro l l ed  depth below t h e  s u r f a c e .  We can examine s o l u t i o n s  f o r  l a r g e r  t o  
s e e  how more i n t e n s e  shea r ing  modif ies  $, and t w, from t h e  conduct ion s o l u t i o n .  

S p e c i f i c a t i o n  of &\,= -b f o r  eb 7>i.,,, al lows US t o  n e g l e c t  pe Sleb)  in 
E q .  (11) which thus  y i e l d s  

&-F (EL') s h9-lp eZm (26) 

We determine zb - 2,  from (12) ,  us ing  (26) t o  e l imina te  $ ( s b )  : 

z b  - 't-YP = J ( 2 , b 5 ; p d r n )  
"9, bL-2pefm '?I 

We can always choose t b  s ; f f ic ien t ly  deep so  t h a t  b5 > > 2 pePw , and (27) becomes 



Above ;zM we use Eq. (12) again to relate t, to : 

equating the surface heat flux to the energy dissipated by shear heating,c'V-. , plus 
the heat flowing into the bottom at zb and the heat generated by the 9 term in (8). 
Since all quantities are known except v ,  we find: 

Equations (27) and (29) are too complex to be solved analytically without 
approximations. Equation (28) is a valid approximation to (27) in all cases, where- 
as (29) can be well-approximated in two regions. For simplicity we adopt nondimen- 
sional variables: 

In terms of these variables Eqs. (28) and (29) become 

J l g . t m  s z , u + q p e q L  

The two cases are 

Q )  f,.,, -$LO) = %>? / 
V L  Equation (35) is, for 1 (which we shall demonstrate is the case). 

7 
9% 

(36 

Combining (36) and (34), and realizing that r )  %f i ,  we obtain 

In general this must be solved iteratively for 1 ; however, it is easy to show that 
solutions exist only for P L k  where 

I 
for P = O  5 =,u and we recover the conductive solution. For large ,u ,I&",&+- 
so that qc a n d A  differ only slightly, as previously assumed (if& is not 7 7 1  
then v J a  is not > > I  and the entire approximation fails, so this result is consistent). 
Moreover, 

Thus, this approximation is self-consistent for /cc>>/. In practice, it works 



wel l  f o r  ~2 2 .  This  condi t ion  w i l l  hold f o r  nea r ly  a l l  e a r t h  models of  i n t e r e s t ,  
s o  t h i s  s o l u t i o n  i s  very u s e f u l .  

b 1 f, - + C O ?  = q24< I 

Equation (35) i s  wel l  approximated by 

which, t oge the r  with (34) y i e l d s  

2 , . u + ~ ~ e ~ ' ~  A+ l+pe 7% 

t h i s  equat ion i s  r e a d i l y  solved only f o r , u = O ,  i n  which case  

Thus, $LL 1 a s  r equ i r ed .  Again, f) and 9 must be determined by i t e r a t i o n  f o r  pck*  
Once and a r e  determined, a l l  q u a n t i t i e s  of i n t e r e s t  can be expressed  i n  

terms of them: 

where 

Furthermore, by expanding %(A,  b) about it, t o  g e t  $(z) near  fm , t hen  i n t e g r a t i n g  
gi; i n  t h a t  reg ion ,  we f i n d  t h a t  v(?) behaves l i k e  an e r r o r  f u n c t i o n  nea r  f, , and 
i s  apprec iab le  only over a zone of t o t a l  width 

(50) 

which i s  v a l i d  f o r  p @<< f (as  i t  i s  i n  a l l  cases)  . A s  p j 0 , w e  d e f i n e  t h e  
width W' = Jm i n  tlme of which 

f i =  JSi -& w0 (51) 

T h u s , / U > - I  impl ies  t h a t  t h e  width of t h e  zone of  shear ing  i s  much l e s s  than  i t s  
depth .  In  t h e  /U=Ocase ,  2",0 and t h e  reg ion  of maximum f l u i d i t y  l i e s  a t  t h e  s u r -  
f a c e  when p-0 . The most s t r i k i n g  conclusion t o  be drawn from t h e s e  equa t ions  
i s  t h a t  even a t  p =?,the thermal s t r u c t u r e  of  t h e  asthenosphere i s  on ly  s l i g h t l y  
d i f f e r e n t  from t h e  p = O  case .  Thus, 



Since e":< < I for all /M , and likewise $-A'. f. 1 for all /U , we see that 
the depth of the zone of maximum shearing increases by only a small fraction of its 
width (,26 for ,M= Q , decreasing to .03 for f i  = 5 . The maximum $> - f $ 6 3 
so that the temperature difference between the state with p=pe and that with ,D=O 
is at most T* - a matter of 20 - 80°C for estimated mantle parameters. 

Thus, as long as cc6, (hence V LK) shear heating has no profound in- 
fluence on the temperature structure of the mantle. It is only when O - ? q  or 
v > V e  that effects of shear heating can become appreciable. 

To make this point clear, and to demonstrate some solutions to Eqs.(37) and 
(421, we plot 'V/* versus 5/6 for M = 3 in Fig. 3. We again see that there are 
two sets of solutions to Eqs. (37) and (42), one set (the "unphysical" set) with 
V >Vb 33 .d 0 , while the other set (the "physical" set) has -fr?~, a$ 7 0. 
Only the pRysical set is connected to the o- = O conduction solution through a con- 
tinuous sequence of states with increasing . The physical and unphysical sets 
of solutions coincide at Lf = CG . The unphysical set of solutions (which have 
large > % )  do imply profound alterations of the mantle's thermal structure, with 

-+ as a - 4  0 . As before, however, the & .C 0 property has the absurd implica- 
tlon thatw+cS as r--+ 0 ,  so that we reject the physical existence of such solu- 
tions. Only the "physical1' set of solutions yields the expected (LJ-C$~ dependence 
of velocity on shear stress for qp c L G .  

I 
In fact, for P ; % < c q  , 1)^.&CL+(h?-91ep> ... when 2 7 1 ,  

k?+ P vX ' 
Substitution gives the expected result W G  2 D e -  R T ~  o-,nwe , but only for the 
physical set of solutions). 

We thus conclude that only the "physical" set of solutions may be applied to 
the earth's mantle, hence /yGvGin all cases. These solutions do not involve sig- 
nificant changes in the thermal structure of the mantle, even when CY s r, . If 
c ,c , however, no steady solutions exist and the temperatures in the zone of 

most intense shearing must rise until new cooling mechanisms or physical processes 
come into play. The actual values of v, and Zr, are thus of fundamental importance 
for plate tectonics, since they mark the boundary between a regime of simple shear- 
ing without marked thermal disturbance and a regime where shear heating must ami- 
nate the thermal structure of the mantle. 

Application to Plate Motion 

The previous section has shown us the importance of the critical shear stress 
r, and critical velocity VG to plate motion. The numerical values of these two 

quantities decide the nature of the asthenosphere; if q, 5 shear heating has 
little influence on the thermal structure of the asthenosphere, whereas ifr37,>6, 
the entire structure of the asthenosphere must alter in order to avoid thermal run- 
away . 

It is a straightforward exercise to devise model mantles for given values of 
6 )  and heat production H Assigning laboratory values to the constants 
in E q . ( l ) ,  the equations given in the last section suffice to determine a,, W ,g , 
6, , etc. for each of these models. The detailed description of six models is 
given in Appendix 11, where the thermal structure of the models is described in some 
detail. One clear result of this model building is t h a t h  in all geologically 



Fig.3 Shear stress - velocity relation for various thermal models of the 
asthenosphere. Curves are included for&= 0, 3, 5 as well as for 
the exact %= 0 solution. 

reasonable models. (This is almost obvious, since ,U-0 implies 2; = 0 yet we do not 
want to attribute the maximum fluidity zone of the upper mantle to the surface. We 
must thus require / ~ f  0 ,  and we will nearly always find,u>l.) 

Even in the case that&=.>] , the equations f o r ~ l ~  and Vc are complicated, 
and their relations to each other and to the other important parameters is obscure. 
It is therefore useful to derive crude approximate expressions for and Ve , 
accurate to 20% or so, which express the dominant relationships. Such expressions 



a r e  t h e  only ones l i k e l y  t o  be u s e f u l  i n  eva lua t ing  geo log ica l  d a t a ,  s i n c e  t h e  v a r i -  
ous inpu t  parameters  cannot be measured with any g r e a t  p r e c i s i o n .  

Table I . B .  i n d i c a t e s  a  s o r t  of i nve r se  r e l a t i o n s h i p  be tween6,  and W . I f  
r, i s  l a r g e ,  % i s  smal l ,  and v i c e  v e r s a .  This  sugges ts  thatrc?/-,  may not  be a s  

dependent upon t h e  input  parameters a s  and Zr; above. This  sugges t ion  i s  borne out  
i n  Eq. (49) ,  where we s e e  t h a t  

qr, = KT, ~ J p , e ~ : ( ~ - e - " ~ ) t  i : ' -~ )  (541 

us ing  Eq. (39) f o r  fink , and expanding Eq. (38) f o r  9, when I , we f i n d  t h a t  

. I z ' T  v,G' 
2P 

(553 

which i s  v a l i d  t o  ca .  5% f o r  /A 24. Noting t h a t p = E 2 k ,  we o b t a i n  t h e  u s e f u l  
formula 

UT ILL r 2  = 
~ " y n  ( 5 6 )  

Since we can e s t ima te  a  lower bound on f o r  t h e  e a r t h ,  '&Z lDcm/yr (suppos- 
i n g  t h a t  t h e  f a s t e s t  observed p l a t e  motions a r e  below t h e  c r i t i c a l  v e l o c i t y ) ,  we ob- 
t a i n  an upper bound on t h e  shear  s t r e s s  r e spons ib l e :  

Q; (bar) 5 104 T-i PK) 
2% (km) q (~rrn/y-$ 

2 (where we have pu t  k = .008 cal/cm -sec-Ok) . Taking Zr; 7, cm/yr, T* = 50°k, and 
zh, = 100 km, we ob ta in  a  s t r i c t  upper l i m i t  

q < G2 bOh (58) 

Depending on t h e  model chosen, T* and z k m a y  each be v a r i e d  by a s  much as a  f a c t o r  of  
2 ,  (although l a r g e r  zh, by r e q u i r i n g  l a r g e r  T l s m )  impl ies  l a r g e r  T* , s o  t h a t  %/om 
does not  vary a s  much a s  each i n d i v i d u a l l y ) .  Such v a r i a t i o n  from model t o  model, how- 
eve r ,  does not  a l t e r  t h e  b a s i c  conclusion t h a t  t h e  shear  s t r e s s  a c t i n g  on t h e  l i t h o -  
s p h e r i c  p l a t e s  must be l e s s  than  a  few t e n s  of  b a r s  i n  o r d e r  t o  avoid  thermal  i n s t a -  
b i l i t y .  

The product V,G is  not  s e n s i t i v e  t o  t h e  t h e o l o g i c a l  parameters  of t h e  mantle  
i n  any d i r e c t  way. The va lue  of  (Tt (hence V c )  above is ,  however, much more depen- 
dent  upon t h e s e  parameters .  This  dependence can be r e a d i l y  seen  by s u b s t i t u t i n g  Eq. 
(39) i n t o  Eq.(48),  expanding Y k  i n  terms o f &  , and keeping only t h e  leading  terms 
forb , ,  1 .  Note t h a t  eeMT 5 'efh'-J 'o) L- e l % -  fCD) t o  a  f a c t o r  62 ) . The e r r o r  by 
a  f a c t o r  e i s  reduced i n  t ak ing  t h e  f / (r t f i> r o o t  of  e . Rearranging,  we o b t a i n  t h e  
s i m p l i f i e d  expression , 

r ; ~  v" - rn) where t h e  denominator b e  i s  j u s t  t h e  c o e f f i c i e n t  r e l a t i n g  C L  andan- 'qJ-  
i n  E q . ( l )  f o r  t h e  temperature and p re s su re  p r e v a i l i n g  i n  t h e  zone of  shea r ing .  Th i s  
express ion  i s  good t o  about 30% o r  b e t t e r  f o r p > q  and n=3. We s e e  t h a t  t h e  major 
u n c e r t a i n t y  i n  eva lua t ing  t h i s  express ion  f o r  a  given e a r t h  model i s  t h e  va lue  of  
t h e  denominator, which can change by an o rde r  of  magnitude f o r  a  change of  10oOk 
i n  T ( 3 ~ 3 -  

F i n a l l y ,  i t  i s  u s e f u l  t o  d e f i n e  an e f f e c t i v e  v i s c o s i t y  *c f o r  t h e  shea r  zone 
a t  a s t r e s s  . By d e f i n i t i o n ,  



9- 
hence, using (56) and (59), we obtain 

(is e Yc = k T* 

This equation is valid to only about 40% f o r p a  4, Y)= 3; however, it is useful for a 
rough first approximat ion. 

The Question of Time Scale 

Although the time dependent version of Eq.(2) is too complex to solve analyt- 
ically, we can get a rough idea of the time scales involved by means of the Grundfest 
parameter G. I .~.~rundfest(') defined a dimensionless ratio of the two time scales 
relevant to the thermal instability question: the time for thermal conduction t, , 
and the time for the temperature to diverge for zero thermal conductivity, t, .Thus, 

tc G z  - 
t a b  

(62) 

If G 2 1 then & G tc and the temperature rises uncontrollably until new cooling 
mechanisms come into play. If GL, 1 , then conduction suffices to remove the heat 
generated, and steady solutions to the temperature field exist. 

The therpal conduction time scale can be estimated by the usual means, and 
we find 

where the distance scale is taken to be 5+,, , the depth to the zone of heat pro- 
duction. 

To estimate the time scale for thermal runaway, we must use Eq.(2), neglect- 
ing the * conduction term. Let the initial temperature correspond to a steady 
state characterized by stress parameter P, . To this steady state temperature 
7' ( pa, a) add a small time dependent part 6' (2 ,  t) . Suppose that P, is suddenly 
changed to p . Then the time evolution of T(n,t)  = TO(p,.t) + @ ( t , ~ )  is given by: 

f a  - A 

This equation is very difficult to integrate unless p*: 0. For small e , Od&Tr I 

the temperature behaves like o 

-4 a t  t C p  

To where we have written - - 3 

T* 
- ( 3 .  Upon integration, with 8 ( 2 , 0 )  r 0, 
33t 

kT' 4; e lti4 , a0 [, Pm- e 
P 

(66) 
T* 

The time scale over which @ changes by 7, is thus of order 
-$O - e c p  

tee- kT* F~ 

This is also the time required for 0 to diverge if pO= 0 in Eq. (64), so that it is 
th'e appropriate time scale. Note that as 6 p  becomes larger, the temperature di- 
verges more rapidly (t-decreases). 



The Grundfest parameter is thus 

tr = £:̂ ,6pe F 4 2  ) 

It is easy to check that for 6 p =  P, (the largest f) allowing steady solutions), 

and eyer) = ef' , we obtain G = , L L / ~ ~ ( @ , U > > J  . Our results are thus consis- 

tent with Grundfest's. reasoning, since we find no steady solutions for & 2'1 . Nar- 

rowing the shear zone adds stability in the sense that steady solutions exist for 

larger G as A increases. Note that for the unphysical solutions pefO is general- 
-PC ly larger than p,e V , so that G > 2 for all such solutions. The physical solu- 

qe tions have ?efa less than P, e m , so that & 6 1 in the physical region. 
Equation (66) provides even more evidence for the non-existence of the unphys- 

ical solutions. This.equation shows that a sudden increase of invariably causes 
the temperature to rise at all depths (for either set of solutions). This tempera- 
ture change is in the right direction to get to the larger steady state tempera- 
ture distribution for the physical solutions. The unphysical solutions, however, re- 
quire that an increase of p yields lower temperatures at all depths (see, e.g. Fig.2). 
Thus, if the mantle were in a state described by an unphysical solution, and the 
stress were suddenly changed, the temperatures would rise, moving away from the 
steady state solution for the new stress. It is thus plausible that the new steady 
state is unattainable. A preliminary linear stability analysis for the unphysical 
solutions shows that they may be marginally stable to infinitesimal slow tempera- 
ture perturbations for stresses close to the critical stress. It seems unlikely 
that they are stable for finite amplitude perturbations, but this work is still in 
progress. 

In any case, it is clear that the time required to reach a steady state solu- 
tion is of the order of the thermal conduction time constant t, . This is supported 
by the numerical calculations of I. ~.~rundfest(') and of N. Fijii and S. Uyeda, where 
steady states were attained after a time 't, had elapsed (when steady states were 
possible). This time constant depends upon the depth of the zone of most intense 
shearing. Sample values for depths of geophysical interest are given in Table I 
(where we have taken k = .008 cal/crn2-se~-~k). 

Table I 

Depth of Thermal 
Shear Zone Time Constant 

c 
36 Myr 
9 9 
194 
400 
890 

Time constants of the order of 100 Myr are thus to be expected in the earth. 
Since much of the ocean floor is younger than this, it is not necessary that the 
actual temperature profile of the earth follows one of the steady state profiles 
derived in this paper. However, if the stresses acting on the lithospheric plates 
of the earth were much in excess of the critical stress, thermal runaway could occur 
on a much shorter time scale than t, . In fact, since t, - I/p M. t, V r n "  , 
we can conclude that thermal runaway occurs on a time scale of roughly 



Thus for Yt=3 , applying a stress C= 2~ , thermal runaway is reached in t, l i b  , or 
about 5 Myr. If the possibility of thermal runaway is excluded in the earth, then 
Stresses must be close to , even though a steady state has not been attained. 
Hence, even in this c a s e q  (and u,) play an important role in marking the boundaries 
between different regimes of plate motion. 

Conclusion 

We have examined the equations describing the motion of the lithosphere over 
the qsthenosphere when shear heating is taken into account. There are two classes 
of steady solution, which we have labeled the "physical" and the "unphysical" solu- 
tions. The physical solutions exhibit a stress-strain relation which at low stress 
is similar to that for no-shear heating, but which deviates from the low stress sol- 
ution as a critical stress C, is approached. There are no steady solutions of any 

I kind for stresses greater than rc . The velocity corresponding to CTc is finite, and 
has a value W,. The velocity of the plate is less than Uc for all physical solu- 

f 

tions. 

The unphysical solutions all have velocities greater than 2/', , ranging from 
Vc (at qa = r q  ) to  at CT;;, s 0 ) . Velocity and stress are inversely related for 
these solutions,'V~, w constant, which leads to rather bizarre mechanical behavior. 
Such~solutions appear to be unstable (or only marginally stable in certain special 
circumstances), and so are unlikely to be of any importance to the earth. 

The physical solutions imply only slight modifications of the thermal struc- 
ture of the mantle, even for qa =c . Thus, as long as O;;? 5 , the heat gen- 
erated by shearing can be neglected. However, if q,exceeds 6~ , the temperature 
must inevitably rise until new physical processes come into play. 

These new processes include the production of large amounts of melt in the 
asthenosphere (which modifies the stress-strain relation) and relaxation of the ap- 
plied stress. 0 .  L .Anderson and P .c .  perkins") have suggested the association of ther- 

I ma1 runaway with volcanism. This process could lead to cooling of the asthenosphere 
by the extension of basalt, and a new sort of steady solution might be attained by 
this means. In any case, if a;; >cq the physics of the asthenosphere must be dom- 
inated by the need to get rid 0% the excess heat developed by shearing. 

I 

Assumipg that the present plates are movivg at velocities less than V, , we 
obtain a strict upper limit on ~ r ,  of a few tens of bars. The stresses driving the 
plates must then be very small (corresponding to viscosities of ca. 1019 poise in 

1 the asthenosphere). The actual stresses in the earth might be somewhat higher than 
cr, , since the time required to reach a steady state is of order 100 Myr. However, 
if the stresses are more than a few times , thermal runaway occurs on time scales 
of order 10 Myr or less, and the thermal structure of the asthenosphere must be dom- 
inated by the need to avoid this divergence. 

The parameters and Vc thus mark the boundaries of a regime of plate mo- 
tion in which there is little shear heating of the asthenosphere. If stresses or 
velocities greatly exceed these critical values, then an entirely new physics must 
come into play in order to dissipate the excessive amounts of heat generated. 



Table I1 

Model Mantles 

A. Model Input Parameters 

Surface Adiabatic Depth to Depth to Rheological 
Model Temp. Temp . top of bottom of scale 

# Gradient Gradient transition transition weight 

O h  '6 zone zone 
2e *a 3 

We have taken T (0 )  = O'C for all models. The stress-strain relation is assumed to 
be of the form 

where F" r 125 k cal/mole, and v'- 11.9 cm3/mole ( 5 = 1500 km) or 35.6 cm3/mole 
( 5 = 500 km). The thermal conductivity k = .008 ~al/cm~-sec-~k. 

B. Model Rheological Results 

Model Depth of Width of Temp. d7 Temp. dr Critical Critical Effective 
# shear shear in shear para- at+, stress velocity viscosity 

zone zone zone meter 
c2 '4 at G 

tbm w b  T Ct,) T* T,/L~ 3, 

1 190 km 63 km 222g0k 79. 1°k 1.5 K A ~  .33 bar 140 9 5 x 1 0 ~ ~  poise 

2 168 6 1 2163 74.5 4.3 1.8 2 6 1 x 1 0 ~ ~  

3 184 6 3 1831 53.4 1.0 1.4 2 3 lXlol9 

4 157 6 1 1766 49.7 3.5 12. 3.0 8 x 1 0 ~ ~  

5 9 8 2 8 1778 50.3 1.2 1.5 3 8 4 x 1 0 ~ ~  

6 9 2 2 8 1764 49.5 3.5 4.7 12 4x10~9 



Appendix I: The structure of I (d, (3). 

Definition 

In general, O~T(o!,/rj)~2for all d 2 0 , p a ~ .  
A plot of I l d , ~ ) :  

Approximations to I (d,/3) : 

Appendix 11: The construction of rheological models of the earth. 

In this section we show how to determine the parameters z R ,  /u, etc. which 
are needed to calculate t h e G *  vs W- relation for plates. Given these parameters, 
we can use the equations of the second section of this paper to compute such quan- 
tities as ~ ( a ; , ) ,  IJ,,, and . It is possible to simply specify these parameters, 
and assume that the thermal structure of the upper mantle is such as to realize 
them. However, it is useful to see what values for 2: , ,u , etc. plausible ther- 
mal models yield, and that will be our motivation in the following work. 

It is quickly found that thermal models with constant heat generation q, do 
not yield a good representation of conditions probably existing in the asthenosphere. 
At great depths the temperature gradient is probably near the adiabatic gradient, 
whereas near the surface the temperature increases with depth at a higher rate. We 



thus approach the problem by assuming a linear temperature gradient (%= 0 )  down to 
a depth ZA The gradient is Q s / ~  , where Qs is the surface heat flux. Between 
depths T;e and is a transition zone where % # O .  At depths greater than Ze the 
temperature gradient is again linear ( $ z  0) , and is equal to the adiabatic gradient 

. In the transition zone % is determined by requiring that the temperature prc- 
file is continuous, and has a continuous first derivative. The heat production C$ 
is thus ficticious, and we only use it to enforce the curvature of the temperature 
profile, and thus to localize the shear zone. The value of 9, is 

hence from W' = m, 
The temperature profile in this model is given by 

The upper zone with %=0 has no effect on the boundary conditions of the problem 
except to change the apparent temperature at 2 = D from T(0) to Tq (o ) , where 

Tli ( 0 )  may be negative. Except for this change, the calculation of the thermal 
structure of the shear zone goes through as before. We define parameters B, C 
by means of 

T ( t ) = T  %f ( 4 + B t - C t "  (A. 5) 

The zone of initial shearing is located where 

* 
where 3 = € l / p g  V* is a sort of rheological scale height. Since j/ is very poorly 
known,. we perform the model calculations for 

and 5 = 500 km (E*- I ~ ( K  d / m o l e ,  v*: 357 6 cr/n3/mole). 

Equation (Ae6) yields a quadratic equation for 2, , 

L,, t o t 2 i c - , , / ( @ + 2 3 ~ ) * +  ~ C ( T ~ , ( O ) - ~ B ) '  
2 C  (A. 71 - 

once Em is determined, T( 3,) is computed from (A. 5) . This allows l+ /z++ , Tw , 
we, and ,U =fl 2 ; / ~ .  to be found. The equations of the second section can then 

be used to determine q and v, . The V'(q*) relation can be calculated by iter- 
ation the appropriate equations. 

This labor has been performed for six thermal models of the earth, and the 
results appear in Table 11. The results clearly show the rough inverse relation of 

W, and , and all but Model 4 yield Vc compatable with present plate velocities, 
All models indicate that the shear stress required to maintain the plate motions is 
very small (ten bars or less). The data on the stress-strain relation is derived 
from the laboratory data of D.L.Kohlstedt and c,~oetze!=' The results of the models 



The results of the models are unfortunately quite sensitive to this poorly-known 
stress-strain relation. 

Many different thermal models are possible, so that Table I1 only provides a 
small sampling. The rough formulae f o r G  andVC in section 3 are thus likely to be 
of more value than the detailed models considered here. It is, however, comforting 
to see that many models exist which give results consistent with what appears to be 
occurring in the earth. 
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THE DEVELOPMENT OF THE THERMAL STRACTURE OF THE PLATES 

Barry Parsons 

1. Introduction 
m 

The depth of the oceans, and also the heat flow measured at the ocean 
.) floor, behaves in a very simple way when considered as a function of the age of the 

ocean floor. For instance, the depth is observed to initiallyincrease linearly as 
, where '6 is the age of the ocean floor, but for ages greater than 60 my. 1 This relationship breaks down and as the age increases further, the rate of increase 

in depth continues to diminish. An example of this behavior, taken from Parsons and 

I Sclater (1975), is shown in Fig.1. Although heat flow measurements are somewhat sus- 
pect in regions near ridge crests, in older, generally well-sedimented areas, they 
are more reliable and in these areas also show a tendency to approach a constant 
value for large ages. A thermal model for the plates put forward by McKenzie in 1967 
(Fig.2) has since been found to describe the variations in heat flow and depth rea- 
sonably well. The depth data can certainly discriminate between this and other 
models that have been proposed. This model is certainly simple in its construction, 
and the ease with which resulting properties can be calculated. However given that 
it describes the data well, one might expect the actual thermal structure of the 
plates to be closely similar to that of the model, and in that case it is not so 
obvious how such a picture is physically maintained. As an example, in the older 
ocean basins, where on the basis of the flattening in the heat flow and depths a 
close approach to thermal equilibrium seems to be indicated, the thermal model implies 
a constant supply of heat flux at the base of the plate. Because it does not seem 
possible to supply this heat by conduction without implying temperatures well in ex- 
cess of the melting point in the upper mantle, convection on a smaller horizontal 



Fig.1 Plot of the mean depth in metres versus the square root of the age in 
million years (m.y.) for the North Pacific. 

Fig.2 Geometry and boundary conditions of a thermal model (McKenzie, 1967) 
for the plates. 

length scale than the plates themselves has been proposed to provide an efficient 
means of vertical heat transport in the upper mantle (Richter 1973, Richter and 
Parsons 1975). McKenzie and Weiss (1975) give other arguments for the existence of 
a small scale flow, in particular the overwhelming tendency of all flows studied 
numerically to be unstable to smaller scale disturbances. 

The purpose of this study is to suggest a way in which the idea of the small- 
scale convective flow can be developed to provide a mechanism for maintaining a 
physical picture with the essential features of the plate model. In other words, 
two features must be explained. How are the isothermal boundary conditions on the 



side and bottom boundary in Fig.2 maintained? Secondly, what determines the thick- 
ness of the plates and hence the age at which the linear relation between depth and 
f i  breaks down? 

The scheme to be tested is illustrated in Fig.3. Material is assumed to as- 
cend adiabatically at the ridge crest, and if we neglect the small adiabatic gra- 
dient this provides the isothermal side boundary condition. As the plate moves 

11 a(@ fsa 6 0  f l y  I l2 p "'Y rsp m y  

Fig.3 Sketch of the scheme to expalin the departure from the € relationship 
at 60 m.y. 

away from the ridge crest, the material cools conductively, the upper temperature 
being fixed at O'C. Because of the very rapid variation of viscosity with tempera- 
ture, it is assumed that the plate can be divided into two regions: an upper cold 
region which is essentially rigid, and a lower region which behaves approximately 
as a uniformly viscous fluid. It is proposed that at an age of 60 m.y. the cooling 
has proceeded sufficiently for the lower thermal boundary layer to become unstable. 
This is the point at which small-scale convection begins to develop. For ages larger 
than 60 may., material at the base of the plate is continuously being replaced in 
the thermal boundary layer. The bottom of the thermal boundary layer stays at the 
mean temperature produced when the small-scale convection reaches equilibrium with 
the heat sources within the mantle. The plate thickness is simply the sum of the 
mechanical and thermal boundary layers. Both are included as the definition of plate 
thickness based on the topographic observations must extend to a depth above which 
are included significant mean temperature, and hence density differences relative to 
the temperature profile under the ridge crest. 

The difficulty with the proposal is to test whether the idea of an instability 
at this point is reasonable. In principle the stability of any two-dimensional flow 
could be examined exactly (e.g. Busse 1967). In practice, for this system, the cal- 
culation would be very difficult because of the variation of viscosity with tempera- 
ture. In any case, we do not know what the large-scale flow,consisting of the 
plates and a return flow, really looks like. What I propose to do is to apply a 
local stability criterion to the thermal boundary layer in Fig.3, and show that it is 
not unreasonable to expect an instability to occur. Secondly, I shall show the re- 
sults of some experiments, which again cannot directly prove the above assertion, but 
demonstrate enough similarities to provide confidence that the idea is a reasonable 
one. 

2. Use of a boundary layer stability criterion. 

a) Application to high Rayleigh number convection with internal heat sources. 

The starting point is a scheme suggested by Howard (1966) as in some average 
sense equivalent to turbulent ~ a ~ l e i ~ h - ~ g n a r d  convection. This is adapted to the 



case of convection driven by internal heat sources, a mode of heating more appro- 
priate in the earth, and comparisons will be made with numerical results for free- 
free boundary conditions. The steady state for such convection produces a mean 
temperature profile which is essentially isothermal from the bottom of the layer up 
to a thin boundary layer across which the temperature drops rapidly to match the 
zero temperature boundary condition on the upper surface. Following Howard (1966) 
we assume this situation can be modelled in a time-averaged sense by starting with 
a completely isothermal layer, temperature T = Ti, and at time k = 0 imposing an 
upper boundary condition T = 0, (Fig.4). An upper boundary layer develops by con- 
ductive cooling, the temperature being given by 

t & t C 
Fig.4 Model designed to reproduce, in a time-averaged sense, characteristics 

of convection driven by internal heat sources. 

This boundary layer becomes unstable at a time k =  t* given by a local stability 
criterion 

where 9 is gravitational acceleration, d the thermal expansion coefficient, lo( the 
thermal diffusivity, and v the kinematic viscosity. The boundary layer thickness 
is taken to be 

6 sm> (3)  

i . e, , the thermal diffusion length scale at b= r*. h e n  the boundary layer be- 
comes unstable, the fluid in the boundary layer is replaced in a time short com- 
pared to t, (Howard 1966) so that the initial state is restored and the process 
repeats itself. The average heat flux over the period ( 0 ,  t-,) is 

where \< is the thermal conductivity. In fact, in the internal heating problem, it 
is F that is specified and T, adjusts until a balance is attained with the internal 
heat sources. From (2) and (4) a relation between F and l, can be obtained 

with p the density and Cp the specific heat. McKenzie et aZ. (1974) obtained a 
similar relation based on their numerical calculations 

Thus we see that the simple time-averaged model gives the correct form of the rela- 
tion, and if we equate the constants in (5) and (6), using the values of the physi- 
cal parameters given by McKenzie et aZ. (1974), a value of R, is obtained that is 
to be applied to the stability of the boundary layer: 



Although the model is very crude, the value of R, obtained provides some reassurance 
that reasoning based on the local stability of the boundary layer can give sensible 
results. The critical Rayleigh number for free-free boundaries is R c =  658 with a 
constant temperature specified on the bottom boundary, and RE = 385 with constant 
flux on the bottom boundary. 

b) Application to the initiation of small-scale convection. 

The scheme to be tested was illustrated in Fig.3. The decision to divide the 
developing lithosphere into two regions, one rigid, the other uniformly viscous, is 
based on the very rapid variation of viscosity with temperature. The Nabarro-Her- 
ring diffusion mechanism gives an expression for the viscosity 

where here k is Boltzmann's constant,& the mean grain radius, Da the reference 
constant in the diffusion coefficient, m, the mass of an oxygen ion, E an activa- 
tion energy and V an activation volume, T the absolute temperature and the pres- 
sure. In the upper 100 k p  the pressure effect is small; the temperature variation 
is shown in Fig.5, using the following values: 

'. b I L t I * 
200 YO0 600 ;O 1005 1100 /4'00 

7OC 
Fig.5 Plot of log,,  , where V) is the viscosity given by the Nabarro-Herring 

diffusion mechanism, for the temperature range expected in the plates. 
a = 5. / o'%m (9 1 
D a +  



The va lue  of t h e  g r a i n  s i z e  t o  be used i s  s u b j e c t  t o  a g r e a t  d e a l  of  u n c e r t a i n t y .  
The uniform temperature a t  t h e  r i d g e  c r e s t  i s  assumed t o  be 

7; = 12oo0c (10) 

Decreasing t h e  temperature by 300°C produces fou r  orders  of magnitude change i n  v i s -  
c o s i t y .  To begin  wi th ,  a temperature drop ac ros s  t h e  thermal boundary l a y e r  has  t o  
be guessed. I have picked 960°C as  t h e  temperature a t  which t h e  behaviour  goes from 
r i g i d  t o  v i scous ,  i . e .  T '  - = 0.8 (11) 

-6 
The i n i t i a l  temperature d i s t r i b u t i o n  i s  s t i l l  given by (1) s o  t h a t  t h e  th i ckness  of  
t h e  mechanical ( r i g i d )  boundary l a y e r  grows a s  

t ,8Kt  (1  2 1 
The temperature drop ac ros s  t h e  thermal boundary l aye r  i s  obviously 

AT = 1200 - 960 = 240 '~  (13) 

A t h i ckness  f o r  t h e  thermal boundary l a y e r  has  t o  be def ined  somehow, and somewhat 
a r b i t r a r i l y  I have chosen 

T " - = 0.97 (14) 
TI 

t o  d e f i n e  t h e  bottom of t h e  thermal boundary l a y e r .  The th i ckness  of  t h e  thermal  
boundary l a y e r  grows a s  

8 =  1 ~ 2 4 ~  (15) 

Again a l o c a l  s t a b i l i t y  c r i t e r i o n  
C ~ A T ~ ~  = 

H V  

can be app l i ed  t o  t h e  thermal boundary l a y e r .  Rather than  ask a t  what t ime \';, t h i s  
occurs given v , l e t  u s  a s s e r t  t h a t  t h e  i n s t a b i l i t y  occurs  a t  k, = 60 m.y. a s  ob- 
served and ask what i s  t h e  va lue  of v needed t o  s a t i s f y  (16) .  With t h e  va lues  

t h i s  g ives  a va lue  f o r  t h e  v i s c o s i t y  of 

V =11.10*~ s tokes  (18) 

This  i s  reasonable judging by t h e  va lues  p l o t t e d  i n  F ig .5 .  Using t h i s  va lue  of  v , 
a check can be appl ied  on t h e  va lue  04  f i x e d  a s  t he  temperature drop ac ros s  t h e  
boundary l a y e r .  In  t h e  s teady  s t a t e  A T  and t h e  hea t  f l u x  a r e  r e l a t e d  a s  i n  (5) 
and (6 ) .  I f  we use t h e  r e l a t i o n  of  McKenzie e t  aZ.,(1974),  bu t  i nc lude  t h e  f m p l i c i t  
dependence on v i s c o s i t y  we have 

where AT i s  i n  OC and F i n  ~ 6 ~ .  They used a r e f e rence  v i s c o s i t y  

V, = 2 . 1 0 ~ '  s t okes  

i n  which case  f i r  V =  \T, (19) r e v e r t s  t o  ( 6 ) .  S u b s t i t u t i n g  t h e  va lue  given i n  (18) 
with F = lo- w;: we f i n d  t h a t  

A T  = 220°c (20) 



Hence the  i n i t i a l  guess on t h e  temperature drop ac ros s  t h e  thermal boundary l a y e r  
t u r n s  out t o  have been q u i t e  c l o s e .  From (12) and ( I S ) ,  when t h e  i n s t a b i l i t y  occurs ,  
t h e  th ickness  of t he  mechanical boundary l aye r  i s  71 km, and t h a t  of  t h e  thermal  
boundary l a y e r  49 km. The sum of t h e s e  i s  120 km which i s  t h e  t o t a l  p l a t e  t h i c k -  
n e s s ,  c o n s i s t e n t  with t h e  va lue  of  115 km obtained by f i t s  t o  t h e  v a r i a t i o n  o f  depth 
wi th  age. Thus t h e  occurrence of such an i n s t a b i l i t y  expla ins  t h e  d e p a r t u r e  from 
t h e  6 behaviour a t  60 m.y. and t h e  observed th ickness  of t h e  p l a t e .  For l a r g e r  
ages t h e  amplitude of t h e  sma l l - sca l e  flow inc reases  t o  match t h e  h e a t  flow r e q u i r e -  
ments of t h e  cool ing  p l a t e .  

The l a s t  p o i n t  we must demonstrate i s  t h a t  t h e  temperature of  t h e  m a t e r i a l  
i n t ruded  near  t h e  r idge  c r e s t  i s  e s s e n t i a l l y  t h a t  maintained i n  t h e  main i so thermal  
( ad i aba t i c )  p a r t  of t h e  sma l l - sca l e  f low.  In o t h e r  words i n  moving from t h e  r eg ion  
where t h e  sma l l - sca l e  flow i s  e s t a b l i s h e d  t o  t h e  r i d g e  c r e s t  t h e  tempera ture  change 
produced by t h e  i n t e r n a l  hea t  sources must be sma l l .  The observed h e a t  f l u x  i s  
equ iva l en t  t o  u n i f ~ r m  i n t e r n a l  hea t ing  a t  a r a t e  of 8 . 3 6 ~ 1 0 - 7  e r g  s - l ~ m - ~  d i s t r i -  
buted i n  t he  upper mantle.  The maximum temperature change t h e s e  sources  can produce 
i n  120 m.y. i n  any given volume of ma te r i a l  i s  l e s s  than  100' C even i f  no h e a t  i s  
l o s t  from t h a t  volume. As t h e  l a r g e - s c a l e  flow t r a n s p o r t s  m a t e r i a l  from under t h e  
s t eady  s t a t e  p o r t i o n  of t h e  p l a t e s  t o  t h e  r idge  c r e s t ,  t h e r e  i s  l i t t l e  tempera ture  
change, and hence the  temperatures  on t h e  s i d e  and bottom boundaries  of t h e  p l a t e  
model can be considered i d e n t i c a l .  

3 .  Experiments 

These were a l l  performed i n  a convect ion tank based on t h e  des ign  of Chen 
and Whitehead (1968) and a c t u a l l y  b u i l t  t o  c a r r y  out  t h e  experiments desc r ibed  by 
R ich te r  and Parsons (1975). The convection was observed by a shadowgraph technique ,  
s o  t h a t  i n  t h e  photographs shown below dark reg ions  r ep re sen t  h o t ,  upwell ing f l u i d  
and, correspondingly,  b r i g h t  reg ions  r ep re sen t  cold downwelling f l u i d .  The l a y e r  
of  f l u i d  i s  bounded above and below by ho r i zon ta l  g l a s s  s u r f a c e s  which a r e  main- 
t a i n e d  a s  i so thermal  boundaries t o  a good approximation. These a r e  s epa ra t ed  by 
machined space r s  which con t ro l  t h e  depth of t h e  f l u i d  l a y e r .  The working f l u i d  i s  
i n  a l l  cases  a Dow Corning 200 s i l i c o n e  o i l  wi th  a Prandt l  number of  8,600, t h e  
l a r g e  Prandt l  number l i m i t  being appropr i a t e  f o r  a p p l i c a t i o n  t o  mantle  convect ion.  
Values of t h e  phys i ca l  parameters of t h i s  o i l  a r e  f, = 0.971 g ~ m - ~ ,  v = 10 cm2 s - l ,  
d = 9 . 6 ~ 1 0 - 4  O C - ~ ,  and k = 1 . 1 6 ~ 1 0 - ~ c m ~ s ~ ~ .  The v i s c o s i t y  i s  t o  a good approxi-  

mation independent of t h e  temperature.  

a )  Trans ien t  experiment cool ing  from above. 

This  type  of experiment has been explored previous ly ,  p a r t i c u l a r l y  i n  con- 
nec t ion  with t h e  cool ing of  t h e  s u r f a c e s  of oceans and l akes .  However, i t  seemed 
worthwhile t o  r epea t  it once o r  twice  t o  check on t h e  s t a b i l i t y  c r i t e r i o n  used 
above, and a l s o  t o  ob ta in  an i d e a  of  t h e  form of t h e  convect ion t h a t  occu r s .  Two 
runs were performed i n  which both boundaries  were maintained a t  400 C f o r  a t ime 
g r e a t e r  than t h e  thermal t ime cons t an t ,  d y j  , of t h e  tank ,  where d i s  t h e  depth  of 
t h e  l aye r .  This  produces an i n i T i a l l y  i so thermal  l a y e r  of f l u i d .  The h e a t i n g  of 
t h e  bottom boundary was stopped a t  t h e  same time a s  t h e  temperature on t h e  upper  
boundary was r a p i d l y  reduced. The bottom boundary temperature v a r i e s  very  s lowly  
subsequent ly compared t o  t h a t  of t h e  upper boundary, so  t h a t  e s s e n t i a l l y  t h e  f l u i d  
was being cooled from above with zero h e a t  f l u x  a t  t h e  bottom. The i n s t a b i l i t y  
occurs  i n  t h e  cold upper boundary l a y e r ,  cold ( b r i g h t )  f l u i d  breaking  away and form- 
ing  concentrated downwellings. The boundary l a y e r  t h i ckness  a t  t h i s  p o i n t  was e s t i -  
mated from t h e  thermal d i f f u s i o n  length  s c a l e ,  & s l-, where t, i s  t h e  t ime 
from t h e  i n i t i a t i o n  of cool ing  t o  t h e  onse t  of t h e  i n s t a b i l i t y .  Th i s  gave va lues  



whichwere always smaller than the depth of the fluid layer (12 cm and 5 cm respec- 
tively). A rough value of the local Rayleigh number for the boundary layer at the 
onset of the instability was calculated using 8 and the mean temperature difference 
over the interval ( o a k s )  between the initial temperature and that of the upper 
boundary. This gave 

~ ~ - 1 . i ~ ~  (22) 

F i g - 6  Exaxple of the  form of  convection produced by cooling from 
absve, Note t h e  predsmnnance of  localized cold dswnwellings 
(b r igh t  regf~ns), 



I 
again justifying considering only the stability of the boundary layer. The form of 

I the convection that follows always consists of localised downwellings; no localised 
dark upwelling regions were observed so that the upwelling must occur over a diffuse 
area. A typical example of the developed form of the convection is shown in Fig.6, 
well before what is obviously a transient state begins to decay. This form of con- 
vection is observed in the numerical expe5iments for internal heating of McKenzie et 
aZ. (19741, and contrasts with Rayleigh-Benard convection where upwelling and down- 
welling fluid occur symmetrically. Hence in the mantle we might expect the convec- 
tion to occur in the form of localised downwellings falling from the base of the 
plate. 

b) Interaction between Rayleigh-Benard convection and forced convection. 

Fig ,  7 Steady state flows for a Rayhigh number of 5 . 1 0 ~ ~  Proceed- 
ing clockuise fron the top left the  forced flow has 8 T  = 0, 1, 2, 
and 3,4 respectively, Mote the regiaw in which no ~ayleigh-~6aard 
eonveetisn occurs neay the pipe, which 4s the  da rk  Binear feature 
a t  the r i g h t  of each photograph, 



One would like to do an experiment exactly duplicating the situation being 
explored, i.e. forcing a flow by moving boundaries apart from each other at the same 
time as producing a small-scale convection with some appropriate mode of heating. 
This did not seem possible at the time, but it was possible to look at the inter- 
action between another kind of forced flow and small-scale convection. The small- 
scale convection is represented by ~a~lei~h-~e'nard convection driven by an adverse 
vertical temperature drop between the horizontal boundaries. The forced flow is 
produced by placing a copper pipe horizontally in the fluid. Hot water can be cir- 
culated through the pipe, and this heating forces a flow. The ~a~leigh-~gnard con- 
vection is characterised by the Rayleigh number, R. To specify the forced flow, the 
temperature difference JT'lbetween the pipe and the mean temperature between the 
horizontal boundaries is nondimensionalised with respect to the vertical temperature 
d r o ~  AT' across the tank. Write this as 

The aspect ratio of the tank was 20, (the actual depth equalled 5 cm), and the pipe 
ran parallel to one side. It should be emphasised that the dynamics of this forced 
flow are different from the one we would really like to explore. However the fea- 
ture in common can be seen in Fig.7. When there is a forced flow produced by heat- 
ing from the pipe, there is a region near the pipe where no Rayleigh-Bsnard small- 
scale convection occurs. The hot fluid produced in the forced convection must lose 
sufficient heat before it becomes unstable and cold fluid descends into the layer. 
On the other side of this boundary small-scale convection proceeds normally, with 
virtually no sign of any influence from the forced flow. Increasing the heating of 
the forced flow pushes the boundary between the two regions somewhat further from 
the pipe. Similar behaviour is observed at a higher Rayleigh number (Fig.8). The 
point at which the downwelling occurs is still a definite distance from the pipe 
and moves further away as the heating rate is increased. However, here we note 
that instabilities produced by heating on the bottom boundary are able to penetrate 
the forced flow. In the earth internal heating may be the more appropriate mode of 
heating for the small-scale flow so that these effects due to heating from below 
might not be so important. The common feature to be noted and compared to the 
scheme illustrated in Fig.3 is the finite region in which no downwellings occur un- 
til the fluid circulating in the forced flow has cooled sufficiently at the top 
boundary to become unstable, and then the small-scale flow starts to develop. 
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INERTIAL CONVECTION AT LOW PRANDTL NUMBER 

Michael Proctor 

The properties of thermal convection at low Prandtl number (5 kinematic vis- 
cosity/thermal conductivity) are of great interest in the study of the convectfve 
regions of the sun and stars, where the effective thermal conductivity of the stel- 
lar material is greatly enhanced by radiative processes, The Earth's liquid core 
is also largely metallic, and hence likely to be a good thermal conductor; Prandtl 
numbers there are thought to be rather less than unlty, Thls type of convection is 
characterized by large Reynolds numbers (inertial forces become important) except 
at very low amplitudes, and appears easily to become turbulent owing to instabili- 
ties of the shear-flow type, Our understanding of turbulence is very limited, al- 
though Malkus, Busse and others have made progress towards a fuller understanding 
of thermal turbulence by considering its onset as a series of discrete transitions 
and instabilities, Other authors have chosen the opposite path - to ignore the in- 
stabilities (usually by suppressing three-dimensional motions) and to study the re- 
sulting laminar flow, both In order to elucidate the processes that drive to con- 
vection and limit its amplitude, and to obtain some rdea of the macroscopic order 
that exists even in a fully-developed turbulence, Prominent among these are the 
numerical studies of Moore and Weiss (1972) and Jones, Moore and Wefss (1975), who 
solve the full equations for the layer heated from below by finite difference meth- 
ods. The first study is restricted to two-dlmenslonal rolls, and the second to 
flows with symmetry about a vertical axis, Comparison of these papers shows a 
striking contrast between the Prandtl number dependence of the evolved steady flow 
in the two geometrfes, especially near to critical Raylelgh number for the onset of 
convection. In Fig,l we show sketches of the dependence of Nusselt number agalnst 

c Figrl Sketches of Nusselt no,as a func- tnon of -for (a) Rolls and (b) 
Cylinders: Rg 1s below the 'second 
critlcal number' and ?, and Ra 
are above it, 

0 (Q-) 
0.- 

Fig. 1 

the Prandtl number rTin the two cases. We notice that whale for rolls the 6"-de- 
pendence is very weak, for cylinders the efflcnency of convection is significantly 
inhibited for s m a l l r *  Further, below a certain Rayleigh number greater than the 
critical value to Nusselt number falls to 1 as r+O, indicating that convection 
is suppressed in this limit, Another ntem of ~nterest is that modified perturba- 
tion theory (e,g, Malkus and Veronis 1958), although satisfactory at all sf for the 
roll solutions, remains valid only for (N - 1) = O(sL) for the cylinders at small C' 



These results suggested the possibility that for C 3 O t h e r e  was some sort of 
asymptotic limit in which inertial constraints played a dominant role. The discrep- 
ancy between rolls and cylinders could then be explained by noting that for rolls the 
inertial equation 

is identically satisfied by the linear eigensolution, while for cylinders (1.1) is 
not satisfied, so that inertial adjustments become important at much lower amplitudes. 
Jones et aZ. demonstrated that a closed problem could be formulated in the limit 
N -;+ 1; 6 (N-1)-4 -+ l., in which (1.1) was satisfied to leading order. Their problem 
as posed was highly nonlinear, and they did not attempt to solve it directly. It is 
our purpose here to formulate two similar problems in which this nonlinear system is 
exactly soluble, so as to show how this problem differs from the conventional stabil- 
ity problem. In the next two sections we describe these problems and give some de- 
tail~ of their solution; in a conclusion we evaluate the results and assess their 
applicability to real turbulent convection and their relation to other types of 
problem. 

2. The forced convection problem. 

2.1 Formulation n 

Fig.2, A sketch of the geometry and boundary conditions. 

We consider two-dimensional motions of an incompressible fluid in a cylinder 
of nondimensional radius 1 with its axis along the y axis of a Cartesian coordinate 
system (Fig.2). S and $ are polar coordinates as shown, gravity is in the zi direc- 
tion. The cylinder wall is supposed fixed, and the temperature of the wall is held 
fixed at the nondimensional temperature 

8 = m 3 $ + 7 ,  (2.1) 

is that temperature increases to the right. The nondimensional equations of steady 
motions are, in the Boussinesq approximation 

o'e = g . o a  

where 



and 4 is the coefficient of thermal expansion and X is the thermal conductivity, 
2) the kinematic viscosity, and a typical length scale, (the radius of the cylinder), 
g the gravitational acceleration, and A T t h e  maximum temperature contrast at the 
boundary. C is the Prandtl number and R is the Rayleigh number. We also define a - 
stream kunction ~ C S ,  b)  by 

C2 4) 

the boundary conditions are now 
3 aw 0 ,  e = m + m  8 = I  Y - r -  (2.5) 

It is easily seen that (2.2) admits no solution unless motion occurs. In this re- 
spect it differs from the ~ a ~ l e i ~ h - ~ g n a r d  problem discussed in 6 3. As the temper- 
ature gradients drive the flow directly, this motion is known as fixed convection, 
and it has been studied by many authors in various limits. Here we give the standard 
perturbation treatment for the limit 7130 , 6-' finite, and contrast it with the 
solution in the (apparently new) limit of K -0, 6 'R-& 0 which brings the inertial 
forces into predominance. 

2.2 The Viscous Limit: 1 7 7  C 7 7  R. 
Since R is small, we expand all quantities in powers of R to give 

where 0, , g, , etc, may depend on C . By substituting in (2.2) and equating powers 
of R we may solve a sequence of linear problems. The first equation is 

I v2Qe=0; e =  ( 3 c a + + c a 3 4 ) 0 *  s = I  (2.7) 

and this has the solution 

~ , = L [ ~ S M + + S ' W ~ + )  -Y ( 2 . 8 )  

at O C R ) ,  we then have 

and this gives 

Note that the term ~ ' R ' ( u , - v  g,) is small compared to the terms already considered 
in this limit. We may measure the vigour of the motion by the kinetic energy 
E,s -f  [y 0'~) , where 1 denotes an integral over the cylinder and unit length 
in the y-direction. (2.10) gives 

E, - X L ,  4L 
20q8 60 (2.11) 

independent of 6 . We may continue the process by finding 8, from 

0'0, =y,. o e. (2.12) 



and then  eva lua t ing  @, from z 

6-' ( U I * v u , ) t  vp2 = GI 3 - + p  _U, 

Now, however, s i n c e  U, .T;I l), f 0 (as can be v e r i f i e d ) ,  gL w i l l  b e  p ropor t iona l  t o  
c - ' t o  lead ing  o r d e r  I- a s  &-f>71 ' ) .  Our expansion f o r  t h e  energy E w i l l  t h e r e f o r e  

t ake  t h e  form 

where E 4 ,  Eg, e t c .  a r e  independent of o;' t o  lead ing  o r d e r .  Although each term i n  t h e  
s e r i e s  1s sma l l e r  than  the  l a s t ,  it seems l i k e l y  t h a t  t h e  r a d i u s  of  convergence of 
t h e  s e r i e s  tends  t o  zero a s  -sR, and hence t h a t  (2.14) g ives  an extremely inac-  
c u r a t e  e s t ima te  of E a s  t h i s  l i m i t  i s  approached. When U a > > 6  (2.14) can g ive  no 
information about E ,  even though Red/, and we must seek an a l t e r n a t i v e  formula t ion  
t h a t  enables  u s  t o  escape from t h e  c o n s t r a i n t s  t h a t  a r e  imposed by t h e  p e r t u r b a t i o n  
approach, and t o  e n t e r  t h e  regime i n  which i n e r t i a l  f o r c e s  p l ay  a  d e c i s i v e  r o l e .  

2 .3  The I n e r t i a l  L i m i t :  1 >> R >>U- 

A s  noted i n  6 1, it i s  p o s s i b l e  i n  some geometries t o  f i n d  s t eady  flows f o r  
which t h e  i n e r t i a l  f o r c e s  a r e  i r r o t a t i o n a l  everywhere. Our geometry i s  one such,  
and t h i s  f a c t  enables  us  t o  f i n d  a  s o l u t i o n  even though t h e  k i n e t i c  energy and t h e  
Rayleigh number a r e  smal l .  The s o l u t i o n  i s  not uniformly v a l i d  i n  t h e  l i m i t  x 3 0  
f o r  f i x e d  6 , b u t  only i n  t h e  (more r e s t r i c t e d )  l i m i t  

I 
I f  we def ine  37 r b R -  , we can expand a l l  q u a n t i t i e s  i n  powers of  R a s  be fo re ,  and 
ob ta in  L 

t o  lead ing  order ;  s i m i l a r  equat ions hold a t  h igher  o rde r s  i n  R .  I f  we a l s o  expand 
i n  powers of 

U - 1  = - 1 0  U + 7 4 , t .  l . A- 12.17) 

then  t o  leading o rde r  i n  7 we must have 

i n  terms of t h e  s t reamfunct ion ,  t h i s  may be w r i t t e n  

where f  i s  a r b i t r a r y .  Equation (2.19) s t a t e s  t h a t  s t r eaml ines  and v o r t i c i t y  con- 
tou r s  co inc ide  t o  lead ing  o r d e r .  We determine f  by no t ing  t h a t  i f  we i n t e g r a t e  (2.2) 
around - any c losed  s t r eaml ine  C(y) we o b t a i n ,  (Batchelor  1956) 

so  t h a t  (2.20) does not  con ta in  t h e  i n e r t i a l  terms - t h e s e  only s e r v e  t o  r e d i s t r i b u t e  
energy around a  s t r eaml ine .  (2.20) expresses  t h e  ba lance  between thermal d r i v i n g  
and viscous d i s s i p a t i o n  t h a t  must hold f o r  each s t r eaml ine .  To leading  o rde r  i n  R 
and , (2.20) g ives  

&I @,b $ @ 6_5+ A,, vegIlD @ t 0, where C l l  a r e  t h e  s t r eaml ines  of  C/,, . (2.21) 

and t h i s  can, i n  p r i n c i p l e ,  be used t o  determine 4 (yo) and hence t h e  flow f i e l d .  
This  problem i s  analogous t o  t h e  one formulated bu t  no t  solved a n a l y t i c a l l y  by Jones  



e t  aZ. The difficulty is that the streamlines depend on the solution in general, so 
that the problem is highly nonlinear. However, in this geometry the solution is ren- 
dered extremely simple by the fact that the only solutions to (2.19) (which is second 
order) with the full viscous boundary conditions are of the form 

v u,,= yoCr)6 d (2.22) 

so that all the streamlines are circles independently of the form of f. Since the 
equation for €3, is unaffected, giving the solution (2.8), (2.21) yields 

$ -t d a y o  = 0 (2.23) 

where the + comes from the streamline integration (reduced to a @ integration) and 
& C d .  dlE =%c - - - l/j: Hence the part of 8. proportional to cal $ drives the flow, s ds 

while that proporti~nal to CBL~  @ has no effect, Hence Y/;, takes the form 

and hence that the the kinetic energy to leading order will be 

just under 2% less than in (2.11). This change may not be striking to the eye, but 
it is extremely important for a convergent representation of the solution. For it 
is now possible, as long as )7 t< R Z n ,  to continue the expansion in powers of R, ap- 
plying the analogues of (2.18) and (2.21) at each order, to produce a series for E 
that is independent of a- ; 

E = R'€,,+ R ~ E , , +  % e (2.26) 

Hence we have isolated an asymptotic limit as T--+ O , and all quantities are O(1) 
except the inertial forces which are 0 ( Q ) .  This is clearly a much better repre- 
sentation of the solution as C-70 than the previous one, since it is valid in a 
much larger region of parameter space. Figure 3 shows the dependence of E on R for 
any forced C . For Rc< 0(r )  the curve lies near the viscous limit; for R ?7 O(T) it 
lies near the inertial limit. Between two limits is a transition zone in which 

= OCI) and the 1 expansion must be taken into account. It is hoped to treat the 
Q expansion in the near future. 

Fig.3 Graph of R~ against E for the forced convection problem. 

- - - - -  = viscous limit, - - -  - = inviscid limit. 



3. The ~ a ~ l e i ~ h - ~ e f i a r d  problem. 

3 .1  Formulation. 

For t h i s  problem, t h e  geometry and s c a l i n g  i s  exac t ly  t h e  same a s  i n  5 2 ,  
except t h a t  t h e  temperature boundary condi t ion  i s  now given by 

€ 3 = - & +  (3.1)  

s o  t h a t  t h e  f l u i d  i s  heated f r ~ m  below and cooled from above. T t  i s  e a s i l y  v e r i f i e d  
t h a t  (2.2) t hen  has t h e  s t a t i c  s o l u t i o n  

g E  0 ,  Go 2-2 (3 .2)  

and t h e  problem then  becomes one of t h e  s t a b i l i t y  of t h e  s t a t i c  s t a t e ,  Such a prob- 
lem has been s tud ied  i n  many geometries by many au tho r s ,  s t a r t i n g  wi th  ~ k n a r d  (1900); 
Chandrasekhar (1968) gives a p a r t i c u l a r l y  f u l l  account .  I t  was t h e  r e c e n t  s tudy  of  
Jones e t  aZ. (1975) t h a t  prompted t h e  p re sen t  work a s  i n  5 1. A s  i n  5 2 ,  t h e  equa- 
t i o n s  may be a t t ached  i n  t h e  two l i m i t s  l >>CT and l > r  C >>cr , where 6 i s  a 
t y p i c a l  flow ampli tude.  

3.2 The v iscous  l i m i t :  1 >>C >> 6. 
In t h i s  l i m i t  t h e  problem may be a t tacked  by t h e  methods of  modified p e r t u r -  

b a t i o n  theory ,  f i r s t  appl ied  t o  convection by Malkus and Veronis (1958).  I f  we ex- 
pand a l l  q u a n t i t i e s  i n  powers of a small  amplitude f a c t o r  15 , s o  t h a t  

A 

and normalize E by s e t t i n g ,  u, \ = 1 ,  0,  y , f I= 0 2 n .f. 0 , t hen  R can be 
determined a s  a f u n c t i ~ n  of E . To leading  o rde r  i n  E , t h e  equa t ions  a r e  

s i n c e  Q='E (glb Y? U,) may be neglec ted  t o  lead ing  o rde r  i n  t h i s  l i m i t .  With t h e  bound- 
a r y  condi t ions  

t h i s  i s  an eigenvalue problem f o r  R, . I t  appears t h a t  (3 .4)  possesses  a v a r i a -  
t i o n a l  p r i n c i p l e  ( c f .  Chandra, q , v . ) .  31, can be found a s  t h e  minimum of t h e  func-  
t i o n a l  

amang a l l  such t h a t  v* U s  O t h a t  s a t i s f i e s  t h e  boundary c o n d i t i o n s ,  @ being  
determined formally from (3 .4b) .  Unfor tuna te ly  it i s  no t  p o s s i b l e  t o  so lve  (3.4) 
except a s  an i n f i n i t e  s e r i e s ,  s i n c e  t h e  equat ions  a r e  not  s e p a r a b l e  i n  5 and 4 . 
However, we may ob ta in  an upper bound f o r  t h e  lowest e igenvalue by us ing  a t r i a l  
func t ion  Yr  i n  ( 3 . 5 ) ;  such an upper bound should be a good one s i n c e  R, i s  an 
extremal .  The lowest e igen  mode i s  one t h a t  has  c i r c u l a t i o n  round t h e  c e n t r e  of t h e  
c y l i n d e r .  The b e s t  e s t ima te  f o r  t h e  eigenvalue s o  f a r  ob ta ined  i s  

R, 4 380 (3.6) 



us ing  a  t r u n c a t e d  expansion and Bessel f u n c t ~ o n  S -dependence. We do n o t  g ive  
t h e  d e t a i l s  h e r e ,  s i n c e  (3.6) i s  probably f a i r l y  crude,  and s e r v e s  only t o  g ive  an 
o rde r  of magnitude f o r  R, . The most accu ra t e  method of determining R , i s  probably 
numerical ly  u s ing  f i n i t e  d i f f e r e n c e  methods, In  any case ,  our  concern i s  no t  p r i n -  
c i p a l l y  with t h i s  problem bu t  with t h e  i n v i s c i d  one below, We n o t e ,  though, t h a t  
s i n c e  depends on , we have t h a t  

a s  i n  6 2 .  I t  fo l lows  t h a t  i f  we determine R,, R q  , e t c .  by t h e  s tandard  methods 
we s h a l l  f i n d  t h a t  

K =  R*+ E%cT-~R,+ (3  . 8) 

t o  lead ing  o r d e r  i n  C-I, where R,is p o s i t i v e  and independent of  O- . Hence, a s  i n  
@ 2, (3.8)  g ives  an accu ra t e  r e p r e s e n t a t i o n  only f o r  4<6 , and t h a t  f o r  E =O(T) 

o r  l a r g e r  t h e  i n e r t i a l  terms must dominate t h e  dynamics, Looked a t  another  way, t h e  
nonl inear  s o l u t i o n  moves away from t h e  eigen s o l u t i o n  very  r a p i d l y  i n  E space due 
t o  t h e  i n e r t i a l  terms.  (3.8) c l e a r l y  impl ies  t h a t  e Z c a n  r i s e  only  very  s lowly wi th  
inc reas ing  R. ; t h e  i n e r t i a l  f o r c e s  a c t  t o  l i m i t  t h e  amplitude of  t h e  system. 

We t r e a t  t h e  i n e r t i a l  l i m i t  below, The techniques  used t h e r e  a r e  t h e  same a s  
i n  -$ 2, bu t  t h e  r e s u l t s  a r e  even more remarkable: f o r  t h e  i n e r t i a l  l i m i t  g ives  r i s e  
t o  an eigenvalue problem d i f f e r e n t  from (3.4)  and hence g ives  r i s e  t o  a  'second 
c r i t i c a l  e igenvalue '  g r e a t e r  than  I?,, , as  noted by Jones e t  aZ., and independent 
of 0- . 

3 . 3  The i n e r t i a l  l i m i t :  \ 9 9 E >>6. 
As i n  4 2, i n  t h i s  l i m i t  we can d e f i n e  a  small  parameter  

q =  r€ - l  (3.9) 

and consider  Q4 0, q-3 0 t o g e t h e r .  I f  we expand a l l  q u a n t i t i e s  i n  powers o f €  
and 7 : 

Then t o  lead ing  o rde r  i n  G , (2 -2 )  g ives  

Then t o  lead ing  o rde r  i n  1 , we have 

V, ( u , ~ ' v ~ , , ) E O  i yd =yo (A)> Q i b c  Vlo c s \  $ (3.12) 

a s  i n  (2.22).  We determine V,, by making use  of (2 ,20 ) ;  s i n c e  t h e  s t r eaml ines  a r e  
c i r c u l a r  i n  t h i s  case  a l s o ,  t h e  integration is  aga in  t r i v i a l  and we o b t a i n  

~ ~ f ~ @ , ~ & $ d  4. la"(v^u "10 $ A $  (3.13) 

where A 
0 ~ 0 , ~  s - &'% (3.14) 

a 
^e (J)& 44-a Now, il,o i s  given by (3.12) so  t h a t  ~ , , . 3  5 yb(i)Cw Hence, i f  q,= ,, 

(3,14) becomes 
(3.15) 

where d i s  def ined  a s  i n  (2.23) .  The i n t e g r a l s  i n  (3.13) can now be eva lua ted  t o  
g ive  



and (3 .15) ,  (3.16) a r e  t o  be solved(  s u b j e c t  t o  t h e  boundary c o n d i t i o n s .  
I t  i s  e a s i l y  v e r i f i e d  t h a t ,  up t o  a r b i t r a r y  cons t an t s ,  t h e  s o l u t i o n  i s  given by 

This  system, then ,  i s  much s impler  i n  s t r u c t u r e  and i n  s o l u t i o n  than  t h e  f u l l  e igen-  
va lue  problem. A t  l ead ing  order ,  t h e  f l u i d  i s  cons t ra ined  t o  move i n  c i r c l e s  by 
t h e  i n e r t i a l  f o r c e s .  Since t h i s  i s  no t  t h e  optimum mode f o r  t u r n i n g  thermal  i n t o  
k i n e t i c  energy, t h e  uns t ab le  temperature g rad ien t  needed w i l l  be g r e a t e r  t han  t h a t  
given by R, . K,,is independent of 0- and thus  r e p r e s e n t s  an asymptot ic  l i m i t  o f  
t h e  equat ions .  Although t h e  system cannot a t t a i n  t h i s  l i m i t  f o r  f o r c e d  O- , it  can 
appear t o  have become uns t ab le  a t  R= R,if i s  not  t o o  smal l .  I t  i s  p o s s i b l e  t o  
f i n d  R =  R ( E , q )  by s tandard  methods i n  t h i s  l i m i t .  We g ive  some d e t a i l s  he re  of 
t h e  63 expansion, bu t  only touch on t h e  one, s i n c e  i t  i s  no t  s t r a i g h t f o r w a r d .  
As f o r  g2 , we hope t o  cons ider  t h i s  more f u l l y  a t  a  l a t e r  d a t e .  

I f  we suppose r(<<€%and cont inue t h e  & expansion we f i n d  t h a t ,  t o  l ead ing  
order  i n  7 

y m  = ~ M ~ ' ) ,  w~~ = xo O) (3.18) 

The analogues of (3.13) g ive  
1 il A A %hi ~ , b ~ ~ t d ~ + ~ o . f i i @ 2 . r _ f d ~ + ~ o ' ~ , -  z o  (3.19) 

and ,a A n n A 

RaO,( 8 , D & 4 d ~ + ~ 1 0 i  8,;s g d #  R, 
0 

and we have t h e  thermal equat ions  

Taking (3.20a) f i r s t ,  we see  t h a t  t h e  inhomogeneous term can be w r i t t e n  

- $ T? ( d ~ )  &m # 
s o  t h a t ,  s i n c e  ulo ' 2  = U,, ew # , 8,, has two p a r t s ;  t h e  p a r t  p r o p o r t i o n a l  t o  
m can be absorbed i n t o  8,, without  l o s s  of g e n e r a l i t y ,  i f  we a l s o  absorb Y, 

i n t o  U_,, and s e t  I?,, = 0 . I t  can be checked e a s i l y  t h a t  t h e  p a r t  o f  pro-  
p o r t i o n a l  t o  &+ does not  e n t e r  (3.19a) ,  s o  t h a t  t h i s  procedure i s  s e l f  cons i s-  
t e n t .  

I f  we now w r i t e  



and 

we obtain the following ordinary differential system 

We now fix Ruby the requirement that (3,22) possess a solution. After some manipu- 
lation and use of the equations satisfied by \J,b , el, we find 

and the integral on the right-hand side can be written 

(3.24) 
1 ' 1  

so that 1(10 is positive and O(1). We therefore conclude that there is no subcritf- 
cal instabilfty in this limit. (It can be independently established that the prin- 
ciple of exchange of stabilities is valid for the eigenvalue problem (3'16); and 
R.,,is the minimum of (3.5) among flows with circular streamlines, so this is to 

be expected.) Hence 
I?= Roo + E  Rx0+ . • (3.25) 

We may now sketch the expansion in . The equation for U is, from (3.11) - !I 
U I A * ~  k o +  L1 - 10 vQ,+VploS b@,,f + v z U  -- 10 (3.26) 

and ,, is given by 
if we suppose that CG can be neglected. Once (3.26) has been solved for u,) r 
the change in Y may from the energy balance equation 

which is (2.20) integrated over all streamlines, We have not solved this as yet, but 
it seems plausible that Ro, 0 ,  If this is the case, the expansion of i? for small 
P and 7 is given by 

R- R.. = E'R,.+u- E" R,, (3,29) 
R - R m  

and this is sketched in Figo4, The departure from the straight line e = -- occurs 
when C= o ( E ' )  so that as long as C C-= ( it takes place well within the region of 
validity of the inertial limit, (3.29) with (3.81, then give a qualitative picture 
of R r R  for small C at all small E . This picture is almost identical to the 
one found by Jones et aZ. in their cylindrical geometry (with a vertical cylinder), 
and it is clear that they were correct in supposing that their solutions reflected 
such a limit as the one here descrfbed. 

4 ,  Conclusion 

In previous sections we have demonstrated vigorously the existence of an 
asymptotic solution to the problem of steady convection in the limit 0- -7 0 . This 
solution is formally nonlinear (although the equations in our particular geometry 



Fig. 4 Graph of R 
(Note that 

a, R 
against eZ for the ~a~lei~h-~e'nard problem. 
Roo - Ro = O(1). 

reduced to linear ones) and enables solutions to be obtained well outside the region I of validity of normal perturbation theory. Physically, this limit is dominated by 
inertial constraints, so that the system acts as a 'flywheel'. The lower order 

1 viscous and diffusive terms serve to keep the flywheel in motion. In the Rayleigh- 
I 

Bdnard problem, this means that effective convection cannot occur until R 2 R,  9 

yielding a criterion quite different from the normal marginal condition. The theory 
also explains why the very strong cr dependence shown at low amplitudes does not 
persist to higher ones. We believe that this limit may be relevant to any convec- 
tive system where the flow pattern can be chosen so that inertial forces are irro- 
tational everywhere. Certainly cellular convection between free boundaries seems 
to have the required freedom in general. If such a basic flow cannot occur, then 
the problem becomes more complicated, and it then seems likely that R,, would go 
to infinity in the small cr limit. This work complements and justifies the work of 
Jones et aZ., by basing their speculations on a sounder mathematical footing, and 
the results show a remarkable similarity with the nonlinear oC -effect dynamo models 
of Malkus and Proctor (1975), for which a very similar dichotomy occurs in the basic 
eigenvalue problem depending on whether magnetic or viscous effects tend to zero most 

1 rapidly. Indeed, Fig.4 might have been taken directly from that paper. This sug- 
, gests that the type of limit propounded here may occur in a variety of situations. 

The existence of such a limit in situations which exhibit subcritical instabilities 

I would be particularly fascinating. 

One last word should be said on the importance of this limit in the realistic 
situation where the flow is highly unstable. The experiments of Rossby (1969) show 
that, as in the laminar case, there is strong initial O- dependence of the Nusselt 
number at low amplitudes which becomes insignificant at higher amplitudes, suggesting 
that such a transition to almost inertial-dominated flow is occurring. There have 
been very few attempts to find such a transition by examining slightly supercritical 
flows, but Rossby (1962) in this summer program using mercury did find that the 
Nusselt number gradient went through a sharp transition at a Rayleigh number about 
50% above critical. We reproduce his figure here as Fig.5. The band at the top of 
the diagram represents the scatter of his experiments; I have marked the 'second 
critical number' to aid understanding. This picture is so like Fig.4 that it would 
seem most desirable to attempt to repeat his experiments, since if they are not in 
error they would seem to go a long way to confirming the physicality of the work 
discussed here. 



Fig.5 From Rossby, 1962. 
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PARTIAL DERIVATIVES OF LOVE NUMBERS AND 

I RELAXATION SPECTRA OF THE EARTH 

Masanori Saito 

I Introduction 

Love numbers are a nondimensional triplet which describes elastic deforma- 
tion of the earth subject to static external forces. Assuming the earth to be a 
non-rotating, self-gravitating, elastic sphere with spherical symmetry, we can cal- 
culate theoretical Love numbers for given earth models using the standard technique 
found in literatures (Longman, 1963; Farrell, 1972; Saito, 1974), which will be 
described briefly. 

We seek the solution of the elastic-gravitational deformation of the earth 
in the following form: 

I up = y, ( p )  YN ( @ A  0) u e  d Pn a ~ n ,  

I 
UY = Ys ('1 ,am sarp (1) 

I 
I 

where 

y; Q, (D) : polar coordinates 

%(@> ?) : spherical harmonic of degree h 
I , u , u ~ )  : displacement 

74 : gravitational potential perturbation 

I) denotes the sum of the disturbing potential such as the tidal potential and the 
potential due to the deformation of the earth. In the following we normalize )Y 
in such a way that the disturbing potential has a unit amplitude on the surface, 
i.e. ,v& (& ,  0 Q) = Y n  ( 8 , ~ ) .  We further assume the following forms for stress 
, * 9 q )  and a'Y/dr : 

q , . = y 3  (4 Yn Ie, y)  a Y* 8 Y~ %I y+(p) cv r  ='Ju(~) e e a p  

where 6 is the gravitational constant and p(r)  the density. With these 
tions the equations of equilibrium are written as 

P 

Y = & Y  
rW .&.r 

where lj = ry,, . . . ,xja],$= d l / d  r ,  and fi is a 6 x 6 matrix dependent on 
and elayticity. The explicit dependence will be found in the references 

defini - 

(3)  

density 

The boundary conditions at the surface are given in terms of LJ,qYy and y6. 
We consider three independent cases. 

li3 Tide: In this case the only external force is a tidal force. Thus the . . 
disturbing potential is 7 Y h  = (r/a)hyn(~aq) and the earth's surface is free 
( G ~ =  ~e = q y =  0)* 

(ii) Load: A mass load on the surface exerts force in two ways: normal stress 
on the surface ( c Y Y + O )  and the gravitational body force. We normalize the sur- 
face mass load so that vu = ( T / ~ Y  Yw (63,  q )  inside the earth. 

(iii) Shear: This type of external force has not been considered hitherto, but 



I  found f t  necessary  t o  c a r r y  out t h e  fol lowing a n a l y s i s .  We assume q,- s o  b u t  
nonzero Cre and a"Y . Note a l s o  ?&is+ = 0 i s  t h i s  c a s e ,  

B~unda ry  condi t ions  i n  terms of 3 % )  yy and Y6 f o r  t h e  t h r e e  cases  a r e  
summarized i n  t h e  fol lowing t a b l e ,  

Table 1. Boundary condi t ions  f o r  t h r e e  cases .  

Here 3 (y) denotes  t h e  gravi ty .  

Given an e a r t h  model we can i n t e g r a t e  Eq.(3) t o  g e t  a  s o l u t i o n  xY t h a t  meets 
one of t h e  t h r e e  s e t s  of boundary cond i t i ons .  Once q.(r) has  been obta ined ,  Love 

nx. 
numbers w i l l  be computed from y.,(q.) , Y, (0.) and [a) f o r  each case  us ing  t h e  
fol lowing t a b l e .  73- 

Table 2 .  De f in i t i ons  of  Love numbers. 

3 )  / 1, 1 I , el: 

Nine Love numbers a r e  def ined  i n  t h i s  t a b l e ,  b u t  i t  w i l l  be shown below t h a t  on ly  
s i x  of them a r e  independent ,  

The Love numbers depend on d e n s i t y  and e l a s t i c i t y  s t r u c t u r e s  i n  t h e  e a r t h .  
Although t h e  dependence i s  completely descr ibed  by Eq . (3 ) ,  it i s  by no means c l e a r .  
The problem we a r e  concerned i n  t h i s  s tudy  i s  a s  fo l lows:  t o  what e x t e n t  a  p a r t i c u -  
l a r  Love number depends on one p a r t i c u l a r  parameter ,  More, e x p l i c i t l y ,  we wish t o  
e s t a b l i s h  q u a n t i t a t i v e  r e l a t i o n s h i p s  between v a r i a t i o n s  of  phys i ca l  parameters  and 
t h e  corresponding v a r i a t i o n s  i n  Love numbers. 

P r i n c i p l e  Equation (3) and t h e  boundary condi t ions  (Table 1 )  a r e  equ iva l en t  t o  t h e  
fol lowing v a r i a t i o n a l  equat ion:  ,& 

V 

where IJ = L3, 9 , ,j5-J, s tands  f o r  a  s e t  of phys i ca l  parameters ,  and f t h e  i m -  
posed boundary cond l t l ons .  F ( y, &, 2 )  i s  a  q u a d r a t i c  homogeneous i n  v and 2 . 

e 

The Euler  equat ion t o  t h i s  v a r i a t i o n a l  equat ion  i s  g iven  by 

and t h e  boundary cond i t i on  i s  

In  another  word, Eqs.(5)  and (6) a r e  equ iva l en t  t o  Eq.(3) and Table 1 r e s p e c t i v e l y ,  

Taking another  s e t  of s o l u t i o n s  u ; L X , ,  x , ,  of  Eq. ( 3 ) )  we f i n d  -.. 



and i n t e g r a t i n g  from 0 t o  Q. , we ge t  

- 
where 

Because F i s  a  homogeneous quadra t i c ,  it fo l lows  

c(y,y , , )= h. 2 F ( ~ , * i f )  

c ()C,U) e ) s  G(uJlt,e, 

I 
tw"% - _ F v ( Y , ~ ,  e) 

I and s o  on. 

Now, suppose $ and y a r e  s o l u t i o n s  t o  Eq.(5) f o r  p a r t i c u l a r  choice o f  .~p_ . 
I f  we change 6 by a& , then these  s o l u t i o n s  w i l l  a l s o  change, s ay ,  by 6% and Jg, 

I Hence from Eq . (7 )  we g e t ,  a f t e r  some manipulat ion 
4, (L, 

( 3 a b ~ - & * ~ ) /  O = ( G . p ( ~ l y , k ) * @ ( r . l d r  - (9) 

t o  t h e  f i r s t  o rde r .  Here F~L = E& (9, -&, @). The important  p o i n t  i s  t h a t  t h e  
v a r i a t i o n s  i n  t h e  solutions2% and Cv, due t o  d& have disappeared except f o r  t h e  
boundary va lues .  

Var i a t ions  i n  t h e  e l a s t i c  Love numbers. 

The v a r i a t i o n a l  equat ion f o r  t h e  f r e e  o s c i l l a t i o n  of t h e  e a r t h  has been 
I given by Peker i s  and Jarosch  (1958). By s e t t i n g  frequency equal  t o  zero ,  and us ing  

E q .  ( 8 ) ,  we f i n d  
I 

G(*>y)g)= ( h + z & ) i i , ; J ,  + ~ r l , Y + h r $ , X + ( ~ + , u )  x y + 
I 



where SC; and 3; are two sets of solutions of Eq. ( 3 ) ,  h (p) and p.(r) are Lame's elas- 
tic parameters, and p =CA,,u,p3 . In taking variation of G , one should be care- 
ful about which X ;  and Y L  are to be taken to be independent. In the original 
variational equation ( 4 ) ,  y, , y,, and yr  are independent variables , and y, , &y , 
and Y, are defined in terms of them. Therefore, in calculating derivatives o f G  , 
dependence ofX,, and 9,4 on ,a , for instance, should be taken into account, Also, 
dependence of 3 on p should be taken into account. 

Interesting relations are derived from Eq.(ll). Interchanging 5,' and y; 
and using the symmetry G tUI8 11 P ) = G (v u P), we find - r r )  0 r r )  F J &  

~'[(~,.d.-~~~~*n(n+~l(xJy,-r,y,)t(~n~~'~;rzy,-x~y~~ rzt% = O  113) 

The left-hand side of this equation can be written in terms of imposed boundary con: 
ditions and Love numbers (Table 1 and 2). Let us write f l iT yiL and 9;' for the 
solutions of case (i), (ii) and (iii) respectively. If we c f, oose 

xi 2 y? and . y ~ =  +gib in Eq.(13) we find 

and another choice gives relations 
11 I &;=& =R,+R* 

Validity of Eq.(14) is demonstrated in the following table where Love numbers are 
taken from Farrell (1972) and Saito (1974). (Rather, consistency in their calcu- 
lations is demonstrated by this table.) 

4 
Table 3 .  Comparison between Rn-k, and - k, 

It seems no one has ever noticed these relations. From Eqsa(14) and (15) it fol- 
lows that only six of nine Love numbers are independent, 

Similarly if we introduce any two of the three solutions into Eq.(12), we 
will have variations of Love numbers on the left-hand side and weighted integral 
of $_p on the right. Calculations are summarized in Table 4. In this table the 
first column indicates particular solutions used in the calculation; thus L, T im- 
ply X ;  a yi, ~i S Y ~  in Eq. (12). $9 (a) is the variation in the surface gravity 
associated with the variation in density, Hence it is written as 

'0 
This term may b,e incorporated with the right-hand side integral. 

Calculation of the right-hand side of Eq.(12) is also straightforward, even 
if cumbersome, The result is shown in Eq.(17), 



Table 4. Left-hand side of Eq.(12). 

where I( is the bulk modulus 

K = a + + @  

I 

'' ' 5  

Here we have chosen (K,P, p) as an independent set of parameters. Equations (12) 
and (17), and Table 4 together with relations (14) and (15) completely determine 
variations of nine Love numbers in terms of $ K  , &, &p and yT , y;L and y j s  . The 
variations will be written, for example, as 

left-hand side of (12) multiplied 

by - ~ ~ G / ( ~ Y I + I ' )  a, 

"Partials" such as ahh / a ~ ,  being functions of depth, are measures of dependence 
of Love numbers on each parameter at each depth. 

To compute partial derivatives one must first solve Eq. (3) to get v i  b . 



But a s  seen  i n  Eq.(17),  t h e  p a r t i a l s  a t  t h e  s u r f a c e  'rs a can be obta ined  us ing  
a v a i l a b l e  v a l u e s  of Love numbers. Since (A;, 4; , k: have n o t  been computed, only 
p a r t i a l s  of  kh, h,, N', and h; a r e  ob ta inab le .  The r e s u l t s  fo l low.  

I t  i s  i n t e r e s t i n g  t h a t  t h e  su r f ace  bulk modulus has t h e  g r e a t e s t  e f f e c t  on 
$I.: while  t h e  e f f e c t  of  t h e  r i g i d i t y  i s  smal l .  However it should be emphasized 

he re  t h a t  t h e  p a r t i a l  d e r i v a t i v e s  given above a r e  eva lua ted  a t  t h e  s u r f a c e .  Whether 
t hey  i n c r e a s e  wi th  depth o r  not i s  l e f t  f o r  f u t u r e  s tudy .  

Extension t o  n o n- e l a s t i c  problems. 

P e l t i e r  (1974) has shown t h a t  t h e  v i s c o - e l a s t i c  response of t h e  e a r t h  a f t e r  
t h e  r e t r e a t  of g l a c i e r  could be solved us ing  t h e  corresponding p r i n c i p l e  ( see  a l s o  
l e c t u r e  n o t e ) .  The governing equat ion  i s  i d e n t i c a l  t o  Eq.(3)  except  t h a t  and 
/u_ a r e  t o  be rep laced  r e s p e c t i v e l y  by 

~ , b +  AA KWY;~) (ynd 
+(&/Q) =m$ 

where ? i s  t h e  v i s c o s i t y  and A i s  t h e  Laplace t ransform v a r i a b l e .  In  t h i s  problem 
&i s  t h e  most i n t e r e s t i n g  i t  i s  r e l a t e d  t o  p o s t -  l a c i a l  u p l i f t  
of t h e  e a r t h ' s  su r f ace .  w i th  observa t ion  of would g ive  
us some information on i n  t h e  e a r t h .  

References 

Longman, I,M, 1963 J.Geophys.Res., - 68: 485-496. 

P e l t i e r ,  W.R .  1974 R e v . G e o ~ h y s . S ~ a c e  Phvs.,  - 12: 649-669. 

S a i t o ,  M, 1974 J .Phys .Ear th ,  - 22: 123-140. 



ON THE FLUID DYNAMICS OF RIDGE CRESTS 

John N. Skilbeck 

Introduction 

Using a simple constant thickness plate model and imposing temperatures on 
its boundaries, McKenzie was able to calculate the mean uplift of the ocean floor 
due to thermal expansion of the lithosphere (Ref.1). This theoretical curve is a 
good fit to data from both fast- and slowly-spreading ridges except for a region 
about 10 km either side of the axis. 

For ridges spreading at half-rates of 2.5 cm/yr or less (with the exception 
of the anomalous Reykjanes Ridge south of Iceland), one observes an axial depres- 
sion in this region on the order of 1.5 km. For ridges spreading at 3 cm/yr or 
more, there is much smoother topography and possibly an axial horst in this region 
on the order of 200 m. In the latter case there is some dispute as to whether this 
horst is a distinct feature or whether McKenzie's thermal model adequately explains 
the topography all the way to the axis of faster-spreading ridges (Ref.2). 

The problem to which this work is addressed is that of explaining how an 
axial valley can be formed and, if possible, why it is not there for faster-spread- 
ing systems. There have been several attempts already to explain this feature 
(Ref.3,4,5,6), although most of them involve rather complicated and sometimes un- 
realistic models from which it is difficult to extract the essential physics. The 
direction I have chosen to go in this problem, motivated by the nature of this sum- 
mer school, is to look at the possibilities for a simple fluid dynamical explana- 
tion of these observations. 

Although a major concern of plate tectonics for the moment is the season for 
a driving mechanism for plate motions, it is unlikely that this will be revealed 
until we understand clearly the things we observe at the surface. We know that 
plates are created at ridges and destroyed at trenches so that it would seem most 
important to try to understand features associated with these. It is to this end 
and with this philosophy that the work described here was undertaken. 

1, Assumptions and Parameters 

The physical parameters involved in this work are the mean mantle viscasity, 
&, and the density contrast between mantle material and sea water, P . Taking 
mean values of 3.3 g/cc and 1.0 g/cc as the density of mantle and sea water res- 
pectively, we get 

p + r.sg/cc 

Implicit in the above comments is the assumption that the upper mantle behaves as a 
Newtonian fluid (i.e. its properties can be described by a Newtonian viscosity). 
Although this may well be unreasonable, such behaviour ought to be understood be- 
fore these effects are included. 

A further assumption, based on the large value oEu/p , is that the flow is 
of low Reynolds number, i.e. viscosity terms in the Navier-Stokes equation are dom- 
inant over inertia terms. With the additional assumption of two-dimensionality 
(which is reasonable as ridges are quite linear features), this equation reduces to 
the biharmonic equation for the stream function : 

p"y = 0 



This  can be so lved  f o r  a  v a r i e t y  of boundary cond i t i ons  and t h e  s t r e s s e s  i n -  
duced by t h e  flow can be der ived .  The topography i s  c a l c u l a t e d  on t h e  fol lowing 
assumptions ( see  Appendix). These flow s t r e s s e s  a c t  i n  p a r t i c u l a r  on t h e  whole 
length  of t h e  underneath p a r t  of t h e  p l a t e .  Although, f o r  fo rces  spread  over a  d i s -  
tance  small  compared wi th  i t s  th i ckness ,  t h e  p l a t e  may be  regarded as r i g i d ,  f o r  
f o r c e s  spread over  much l a r g e r  d i s t a n c e s ,  t h e  p l a t e  w i l l  s imply bend t o  accommodate 
them (Ref .1) .  This  c a l c u l a t i o n  i s  only v a l i d  i f  t h e  d i s t o r t i o n  of t h e  su r f ace  i s  
small  enough n o t  t o  a f f e c t  t h e  flow s i g n i f i c a n t l y .  

2 .  Simplest  Model of a  Spreading Centre  

LP **id year 

I r ';I 1 1 ( Y ,  8) p o l a r  coo rd ina t e s  

F i g . 1  Simplest  model of a  spreading c e n t r e - V c o n s t a n t .  

F igure  1 i l l u s t r a t e s  t h i s  i d e a .  The f l u i d  i s  s e m i - i n f i n i t e  i~ e x t e n t  and 
symmetric about t h e  l i n e  8 = 0 . This  mearls t h a t  t h e  s t ream f u n c t i o n v  (I-,@) must 
be antisynvnetric i n  angle  8 . 

A simple s i m i l a r i t y  s o l u t i o n  can be obta ined  i f  V i s  regarded a s  cons tan t  
( see  Appendix) and i t  i s :  

y r ( y , ~ )  - &reca iB  
ll 

The non- hydros ta t ic  p a r t  of t h e  normal s t r e s s  (again s e e  Appendix) i s  -% W @ 

which vanishes on t h e  upper s u r f a c e  @=A  except p o s s i b l y  a t  t h e  o r i g i n ) .  Con- 

sequent ly  t h e  upper s u r f a c e  does no t  deform. 

This  simple model c l e a r l y  does not  demonstrate t h e  r equ i r ed  f e a t u r e s .  A 
more genera l  approach i s  now taken t o  look a t  t h e  e f f e c t  of  a  smooth t r a n s i t i o n  i n  
t h e  h o r i z o n t a l  v e l o c i t y  ac ros s  t h e  r i d g e  a x i s  and a l s o  t h e  e f f e c t  o f  cons ide r ing  a  
bottom boundary. 

3 .  General So lu t ion  us ing  Four ie r  Transforms 

~ Y I ? O N T A L  VEIOCITY ;S L6(X)_ t=o 

I _ _  L 5&0m r= c k  - 

Fig.2 Diagram f o r  s o l u t i o n  us ing  Four ie r  Transforms 

Figure 2 shows t h e  reg ion  considered.  In  t h e  f i r s t  p l a c e ,  d i s  taken t o  be  
i n f i n i t e  and f i n i t e  d i s  accounted f o r  l a t e r .  

The biharmonic equat ion  i s  solved by t a k i n g  Four i e r  t ransforms i n  t h e  x- 
d i r e c t i a n ,  Such v e l o c i t y  boundary condi t ions  a s  s t e p - f u n c t i o n s  can be t r e a t e d  



using the theory of generalised functions [Ref.?). Using a sine transform (as 
is antisymmetric), ?p ( tc, z) the x-Fourier transform of V (x,z) then satisfies : 

whose general solution is: 

$ ( k , ~ )  - beka+ B i K %  Cseki+ D Z G ~ *  

The boundary conditions are: 

d" G(K,o)=o,  -&(K,D)=&CK)  ( & ( K \ ~ s  F.7:duo(~)) 
4 

and that ly is finite at Z + G O *  

The solution is then: 

The pressure F.T. due to the shear stresses of the flow is given by: 
06, =r*v2B 

A A -kz 
and yields: P I  = - I + K U ~ ~  

h 

The non-hydrostatic part of the normal stress on a plane z = const. has a F .T .D(K,~) ,  
where 

and this vanishes identically on the upper surface z = 0 .  There is consequently no 
topography. 

Effect of Bottom Boundary 

The same analysis can now be applied to include the effect of a bottom. If 
one is to model the plate as a constant thickness slab (equivalent to applying 
boundary conditions on a horizontal upper surface) the above indicates that such 
should be taken into account. The bottom boundary condition on the velocity is 
that both components vanish (no-slip) . 

The analysis is lengthy though not difficult and the result can be written: 

The non-hydrostatic part of the normal stress on a plane z = constant has F.T. 

B ( K , Z ~ ~ - ~ & U ~ ~ [ ( A + C Z )  d ~ t +  Dt s h h  

On the upper surface, z = 0, this has the form 

n" tk,0)=-2,i.~@A G p  
where the constant A = - d'k 

CMsd u - d' U '1 
h 

The kernal of the expression for A (K,o) is : 



For i n f i n i t e  d, IJ((k,d)z Oand t h e  r e s u l t  reduces t o  t h e  previous  one. 

F ig .  3 Take d t o  be l o3  km 

-2 k d  
This  func t ion  goes very  r a p i d l y  t o  zero (as  e ) as    din creases above 1 and s o  
we would only expect  t h e  bottom t o  have an e f f e c t  on f e a t u r e s  whose l i n e a r  s c a l e  i s  
of o rde r  d . I f  we consider  a depth d t o  be t h a t  of t h e  upper mantle  (d=700 km) , 
we would expect t o  s e e  no e f f e c t  on topography of dimensions 30 km. There i s  no 
evidence f o r  p u t t i n g  t h e  e f f e c t i v e  boundary a t  30 km depth a s  it would r e q u i r e  t h e  
v i s c o s i t y  t o  change by seve ra l  o rde r s  of magnitude t h e r e .  

In  conclusion,  one f e e l s  j u s t i f i e d  i n  neg lec t ing  t h e  bottom i n  f u r t h e r  
a n a l y s i s  though t h i s  means t h a t  we must model t h e  p l a t e  by o t h e r  t han  a  h o r i z o n t a l  
boundary. The fol lowing model i s  an at tempt  t o  do t h i s .  

4. Wedge Model of P l a t e s  near  a  Spreading Centre  

F ig .4  Diagram of Wedge Model f o r  p l a t e  near  spreading  c e n t r e s .  



This idea is illustrated in Fig.4 A solution to the biharmonic equation for 
these boundary conditions can be obtained using Moffatt's similarity solution (see 
Appendix) with ( r  - 0 )  =-\Y(r,@)and the plate velocity, v , constant. This solu- 
tion is: 

v ( r , e ) = r v l A , h ~ - - n s m e )  

where A = . 2Stn2& and D= 1 1 
( T - ~ O C - S . ~ ~ O ~ C C )  $ ~ - m - & x )  

Streamlines for wedge angles of So, 15' and 40' are shown in Figs .S, 6 and 7. 

Fig.5 Streamlines for wedge angle d =  5O. Contours are of 
non-dimension stream functions. 

Fig.6 Streamlines for wedge angle oC = lSO. Conto~~rs at each 
interval of non-dimensional stream function. 



Fig .7  Streamlines f o r  wedge angle oC: = 40'. Contours a r e  of 
t h e  non-dimensional s t ream f u n c t i o n .  

Again from t h e  Appendix, t h e  p e r t u r b a t i o n  t o  t h e  p re s su re  due t o  t h e  shea r  s t r e s s e s  
of t h e  flow i s :  

7, = 
-2wvDw 8 

r 

and on t h e  s u r f a c e  8 = %-a (bottom of t h e  X z  rwd, 
wedge) t h i s  i s  

2 l r v D . m ~ ~  , - ,u vD& Z Q ~  -Pi5- - X 
(1) 

r 

I f  we assume t h a t  t h e  p l a t e  i s  r i g i d  and t r ansmi t s  t h i s  f o r c e  t o  t h e  upper s u r f a c e ,  
(Ref.11, i t  w i l l  deform t h e  upper su r f ace  u n t i l  t h i s  f o r c e  i s  balanced by t h e  hydro- 
s t a t i c  p re s su re .  We can now c a l c u l a t e  t h i s  deformation.  From t h e  Appendix it i s  
given by : 

- P a - P I  = 0 

With y measured v e r t i c a l l y  upwards 
* Po= - p9 y 

and hence 

These su r f aces  a r e  hyperbolae.  

For very  small  x , t h e  p re s su re  ? , a n d  hence t h e  deformation Y become l a r g e .  
Since t h e  p l a t e  has only f i n i t e  s t r e n g t h  it w i l l  break when t h e  f o r c e  on it  exceeds 
some c r i t i c a l  va lue  and t h e  s o l u t i o n  i s  no t  v a l i d  t h e r e a f t e r .  

De f in i t i on  of OC 

Figure 8 i l l u s t r a t e s  a  p o s s i b l e  d e f i n i t i o n  of  t h e  wedge angle  d, . A s  t h e  
p l a t e  spreads  from t h e  a x i s  it cools  and th i ckens  - i t ' s  th i ckness  be ing  p ropor t ion-  
a l  t o  t h e  square r o o t  of  i t ' s  age ,  provided t h i s  i s  L, 60 my. A f t e r  60 my t h e  p l a t e  
th ickness  becomes roughly cons t an t .  I t  i s  u n l i k e l y  t h a t  an GC based on t h i s  t h i c k -  
ness  a t  60 my w i l l  be a  good r e p r e s e n t a t i o n , a s  t h e  obse rva t ions  considered he re  a r e  
h ighly  l o c a l  t o  t h e  r i d g e  a x i s  (60 my i s  equ iva l en t  t o  1200 km f o r  a  2 cm/yr spread-  



Age = O  Age = 1 my = t ime f o r  p l a t e  t o  
I become a  t h i c k n e s s  of  o r -  
% 
2 d e r  t h e  s c a l e  of t h e  f e a -  
T - /ou I<m . t u r e  cons idered .  

> (15 km) 
h 

v(cm/yr) 

15km 

Fig .8  Suggested D e f i n i t i o n  of Wedge Angleoc 

ing  r a t e ) .  A more s e n s i b l e  d e f i n i t i o n  of CL i s  t h a t  it i s  t h e  angle  from t h e  r i d g e  
c r e s t  t o  t h e  p o i n t  where the  p l a t e  i s  15-20 km t h i c k  - t h e  s c a l e  of our  a x i a l  v a l -  
l e y s .  E i t h e r  t h e  thermal th ickness  (def ined by t h e  coding curve p r o p o r t i o n a l  t o  
age) o r  t h e  mechanical th ickness  (somewhat l e s s  than t h i s )  would be a  r ea sonab le  
choice .  Since we have ca l cu la t ed  t h e  topography on t h e  assumption o f  p l a t e  r i g i d i t y  
(up t o  a  given breaking s t r e s s ) ,  t he  mechanical t h i ckness  i s  probably t h e  more 
appropr i a t e .  

F igure  8 shows t h a t  t he  thermal t h i ckness  -15 km a t  1 my. As an e s t i m a t e ,  
l e t  us  assume t h a t  t h e  mechanical t h i ckness  a t  a  given age i s  h a l f  t h e  thermal  
t h i ckness ,  so  t h a t  we have: 

We use  t h i s  express ion  i n  t h e  fol lowing e s t ima t ion .  Note t h a t  i n  t h e  l i m i t  a s  
d 4 0, Eq. ( 2 )  becomes X Y  = 0 which impl ies  = 0 except ' a t  X = O . Thi s  i s  t h e  

r e s u l t  of t h e  spreading cen t r e  model of Sec t ion  2 .  

Est imation of Topography 

Equation ( 2 )  g ives  t h e  shape of t h e  deformed upper s u r f a c e  a s  a  hyperbola .  
The i n f i n i t y  a t  t h e  o r i g i n  i s  not  r e a l i s t i c  a s  t he  p l a t e  has  f i n i t e  s t r e n g t h  and 
one can c a l c u l a t e  t h e  depth,  , a t  which ) P,I exceeds some c r i t i c a l  va lue ,  p:y'f, 
I t ake  p , ~ * ' ~  = 100 b a r s  (Ref 

-Po- P, c 0 (from Appendix) 

- and hence pg y, - - pfyit 
and us ing  va lues  from Sect ion  1, t h i s  g ives :  

Y C  i -r/20m 

I t ake  t h i s  po in t  t o  de f ine  t h e  edge of t h e  a x i a l  v a l l e y .  

Equation 1 then  t e l l s  us  t h e  ha l f - wid th ,  X ,  , of t he  a x i a l  v a l l e y  

PI 3 and with ,u and p, i n  cgs u n i t s  and V i n  cm/yr and tWn  M-gV t h i s  becomes: 



This  model p r e d i c t s  an a x i a l  depress ion  a t  a l l  spreading  r a t e s  with wid ths ,  
x c ,  shown i n  t h e  previous t a b l e .  As can be seen ,  f o r  v L, 2 .5  cm/yr, t h e s e  va lues  
a r e  too  b i g  by a  f a c t o r  of about 2, although t h i s  i s  r e a d i l y  accounted f o r  by t h e  
u n c e r t a i n t y  i n  t h e  v i s c o s i t y  )A . I f  we t ake  a  v i s c o s i t y  one-half  of t h a t  suggested 
i n  Sec t ion  1, then  X,agrees we l l  wi th  obse rva t ions .  The a s s o c i a t e d  g r a v i t y  anomaly 
can then  be  c a l c u l a t e d  up t o  t h e  edge of t h e  v a l l e y  and i s  nega t ive  and of t h e  same 
o rde r  of magnitude a s  Lambeck's p o s i t i v e  anomaly (Ref.9) ( see  F i g , 9  and Appendix). 

F ig .  9 Gravi ty Anomaly f o r  spreading  r a t e  2cm/yr with 1 . 5 ~ 1 0 ~ l c m ~ / s e c .  
Compare F i g . 7  (Ref .9) .  See Appendix. 7 = 

This  i s  encouraging a s  t h e r e  i s  no observed g r a v i t y  anomaly a s s o c i a t e d  with r i d g e s .  

F o r  t h e  f a s t e r  spreading r a t e s ,  t h e  topography i s  one o r  two o rde r s  of  mag- 
n i tude  t o o  b i g .  I f  such a  d i p  does e x i s t  i n  t h i s  case  then  t o  show no g r a v i t y  
a n ~ m a l y  i t  must be of  l i n e a r  dimension much l e s s  than  t h e  s e a  dep th .  (Under such 
condi t ions  t h e  s e a  a t t e n u a t e s  t h e  e f f e c t  s t r o n g l y  and no anomaly w i l l  be  observed.)  
This  r e q u i r e s  a  v a l l e y  width of on ly  a  few hundred meters .  I f  t h i s  were s o  noth ing  
would be observed topographica l ly  a s  such a  small  dep res s ion  would be  qu ick ly  f i l l e d  
with sediment.  To g e t  such small  topography from t h i s  model, a  much reduced (by 1 
or  2 o rde r s  of magnitude) v i s c o s i t y  would be needed f o r  f a s t e r  spreading  r i d g e s .  

Such an a s s e r t i o n  i s  no t  a l t o g e t h e r  unreasonable.  F a s t e r  spreading  r i d g e s  
a r e  more l i k e l y  t o  be a b l e  t o  support  magma chambers a s  m a t e r i a l  upwells  and moves 
out be fo re  i t  has a  chance t o  cool  and s o l i d i f y .  The v i s c o s i t y  i n  t h i s  case  would 
e a s i l y  s a t i s f y  t h i s  avove requirement .  There i s  evidence f o r  and a g a i n s t  t h i s  i d e a .  
Against it t h e r e  i s  geochemical work. I f  t h e r e  a r e  magma chambers under f a s t e r  



spreading systems and not  under slower ones,  one would expect  t o  s e e  a  d i f f e r e n c e  
i n  t h e  c o n s t i t u t i o n  of t h e  rocks which reach t h e  s u r f a c e  i n  t h e  two p l a c e s .  So f a r  
no d i f f e r ence  has been de t ec t ed .  However, t h e r e  i s  r e c e n t  se i smic  evidence of a  
low v e l o c i t y  zone under t h e  f a s t  spreading r idge  of Baha, C a l i f o r n i a  (Ref.10) whi le  
such a s t r u c t u r e  has not  been found by workers on t h e  s lowly spreading  mid-At lan t ic  
Ridge, it i s  by no means an automatic  conclusion t h a t  t h i s  s t r u c t u r e  i s  a  magma 
chamber though i t  could perhaps be so .  In  add i t i on  t o  t h i s ,  t h e  anomalous Reyk- 
janes Ridge south  of Iceland h i n t s  a t  t h e  p o s s i b l e  connect ion between such s t r u c -  
t u r e s  and t h e  topography. This  r i d g e  i s  slowly spreading  and y e t  has  no a x i a l  
v a l l e y  which might lead  one t o  suggest  ( i n  t h e  l i g h t  of t h i s  model) t h a t ,  because 
of t h e  f requent  magnetic e rup t ions  around Ice land ,  magma chambers lower t h e  e f f e c -  
t i v e  v i s c o s i t y  t h e r e .  

Conclusions 

The e f f e c t s  of modelling t h e  p l a t e  a s  having a  cons t an t  t h i ckness  wi th  a  
h o r i z o n t a l  lower boundary have been shown t o  produce i n s i g n i f i c a n t  topography of 
t h e  s c a l e  being considered (- 30 km) un le s s  t h e  lower boundary i s  a t  a  depth of  
o rde r  30 km a l s o .  There i s '  no evidence f o r  t h i s  a s  it would r e q u i r e  a  l a r g e  change 
i n  v i s c o s i t y  t h e r e .  To g e t  out  of t h i s  d i f f i c u l t y  account was taken  of t h e  f a c t  
t h a t  t h e  p l a t e  th ickens  with d i s t a n c e  from t h e  r idge  a x i s  (as  it c o o l s )  and t h e  
wedge model proposed. 

This  model p r e d i c t s  an a x i a l  depression a t  a l l  va lues  of t h e  spreading  r a t e .  
For reasonable va lues  of  t h e  v i s c o s i t y  t h e  width of t h i s  depress ion  i s  i n  t h e  range 
15-25 km ( f o r  v 5  2 .5  cm/yr) which i s  i n  good agreement with obse rva t ions .  There 
i s  an a s soc i a t ed  nega t ive  g r a v i t y  anomaly of roughly t h e  same s i z e  a s  Lambeck's 
p o s i t i v e  one. This  i s  encouraging a s  no anomaly i s  observed i n  t h e s e  r eg ions .  

A t  h igher  v e l o c i t i e s ,  t h e  topography i s  1-2 o r d e r s  of magnitude too  b i g .  An 
explana t ion  f o r  t h i s  d i f f e r e n c e  i s  suggested with r e f e rence  t o  r e c e n t  work though 
it i s  mentioned t h a t  t h e r e  i s  evidence aga ins t  i t .  

This  model i s  very  simple y e t  gives t h e  des i r ed  r e s u l t  and a s  such i s  p o s s i -  
b l y  a  b e t t e r  s t a r t i n g  p o i n t  f o r  f u r t h e r  work than  some of t h e  more complicated 
e a r l i e r  models. 

Appendix 

A s o l u t i o n  t o  
v4v=o  

can e a s i l y  be obta ined  i n  p o l a r  coord ina tes  
i f  t h e  v e l o c i t y  on boundaries  0=9, and Q= 0, 
i s  given and cons t an t .  I t  i s  due t o  Moffat t  
(Ref.11) and i s :  a= @, 

y - - u o c ~ )  
S u b s t i t u t i o n  shows @ @ s a t i s f i e s  

t h e  general  s o l u t i o n  t o  which i s :  

@ ( @ l = A ~ @ + B c a s 8 t C ~ & # + ~ s - ~ e  
McKenzie(Ref.12) shows t h a t  f o r  t h i s  form of s t ream f u n c t i o n  t h e  d e v i a t o r i c  s t r e s s  
t e n s o r  i s :  



da@ where TL = < (- -+ @) 
and the perturbation to the pressure from this shear stress is; 

PI 
In particular, the equation determining the surface deformation (provided it is 
small enough not to distort the original from significantly) is: 

-Po- PI = 0 

where Po is the hydrostatic pressure. 
With reference to the gravity anomaly shown in Fig.9, a viscosity one-half 

that suggested in Section 1 is used. For a spreading rate of 2 cm/yr the elevation, 
y, at distance, x, from the axis is given by: 

- 713- hM Y =  -7 (where  Xis in KW) 

The gravity anomaly A 5  is approximately equal to 42 py mgals . as an infinite slab 
1 km thick of density 1 gm/cc gives an anomaly of 42 mgals. With P as suggested 
in Section 1, 

which is plotted in Fig.9. 
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SUBCRITICAL INSTABILITY IN STELLAR SEMICONVECTION ZONES 

Allen M. Waxman 

1. Introduction 

A star of initially uniform chemical composition evolves to a state in which 
composition gradients do exist and it may do so in a variety of ways. In the core 
of a star nuclear reactions occur which fuse lighter nuclei into heavier ones and 
therefore the possibility of composition gradients can be realized. The cores of 
stars more massive than a few solar masses, tend to be convectively unstable and so 
one may expect the core itself to be homogeneous. However, this poses the question 
of the stability of the region immediately outside the convective core where a dis- 
continuity in composition may then exist. This problem was considered by Ledoux 
(1947) who showed that a discontinuity in composition was not possible and instead 
the star would set up a narrow zone of continuously varying composition. By consider 
ing an adiabatic displacement of a parcel of gas through a zone of varying tempera- 
ture composition and the resulting buoyancy of the fluid, Ledoux took into account 
the stabilizing effect of the composition gradient. 

Schwarzschild and ~ g r m  (1958) discuss the formation of a zone of varying 
composition and draw the distinction between the processes responsible in low and 
high mass stars; (the division between low and high mass being at about 10 solar 
masses). For stars of low mass the boundary of the convective core shrinks (in mass 
fraction enclosed) as hydrogen is depleted at the center leaving behind a 'frozen in' 
composition gradient. The composition at a given point would correspond to the homo- 
geneous core composition at the time the boundary passed that point. In massive 
stars the radiation pressure lowers the effective gravity in the region outside the 
core hence lowering the local adiabatic temperature gradient. Thus this region tends 
to be more unstable and one finds that the convective core grows (in mass fraction) 
with time. Schwarzschild and Hgrm argue that one cannot have a discontinuity in 
composition at the boundary of this outward-moving core if electron scattering is 
the dominant form of opacity, (as is the case for massive stars). As a gram of hy- 
drogen outside this boundary has more electrons than a gram of helium on the inside 
of this boundary, a discontinuity in composition would be accompanied by a jump in 
the opacity. The larger opacity outside the core would raise the temperature gra- 
dient there and convection would set in joining this region to the convective core. 
The convection would mix in enough helium to lower the opacity (and therefore the 
temperature gradient) just enough to maintain a marginally stable state; hence, they 
coined the phrase 'semiconvection zone'. Unlike Ledoux, however, they do not account 
for the added stability of composition gradients. 

The question still remains as to what is the correct criterion for stability 
in the presence of composition gradients. The various methods for handling convec- 
tion in regions of varying composition in evolution calculations are summarized by 
Stothers (1970). He states that a semiconvection zone which joins the convective 
core to the radiative envelope must exist though he is undecided about the stabiliz- 
ing effects of a composition gradient. 

The problem of convection in the presence of composition gradients is a famil- 
iar one in the thermohaline problem of the oceans (Veronis, 1964, 1968). We will use 
this work as a guide to our investigation of the stability of these zones of varying 
composition. We will restrict the analysis to a special case which admits some sim- 
plifications in the governing equations and so makes the problem more tractable. 
Though we will consider the problem in the context of the Boussinesq approximation 
we will explore the effects of a temperature and composition-dependent conductivity 
as is relevant to the stellar case. We will also carry the analysis into the non- 



linear regime via the techniques of modified perturbation theory and explore the 
possibility of subcritical instability. The results obtained add some insight to 
the stabilizing effects of composition gradients in semiconvection zones though the 
question of 'the correct stability criterion' still remains open. 

11. The Governing Equations 

The configuration to be studied is shown in Fig.1. Here we have a fluid 
layer heated from below. The lower bounding plate is maintained at temperature 

and compo~ition,&~ while the top plate is maintained at 7,  4 7' and/tCu(/U~' 
We will consider the bounding surfaces as perfect conductors of heat a n d p  . ,4 is 
the mean molecular weight ofthe fluid and represents the number of atomic mass 
units per particle of fluid and hence reflects the composition. We will restrict 
ourselves to studying the stability of two-dimensional disturbances, i.e. rolls. 
Gravity is downwards as shown. We will also exclude the possibility of heat sources 
within the fluid as energy generation is essentially negligible in semiconvection 
zones. The fluid between the plates is primarily a hydrogen plasma with a gradient 
of ionized helium, If the fluid between - 

Iu P u  
the plates were to represent the entire A 

semiconvection zone, the composition 
could vary from pure helium at the lower 
boundary (" = 4h) to almost pure hy- 

.1% . 
drogen at the top (P = v2), However, if 1 
we restrict ourselves to a smaller re- 
gion of the zone we can take advantage 
of some simplifications that will become Fig.1 
apparent. One major assumption is that 
of the Boussinesq approximation. As the fluid is compressible we must take into 
account the density stratification of the fluid in its hydrostatic state. The 
Boussinesq equations are discussed by Malkus (1964) and by Spiegel and Veronis 
(1960) for a compressible fluid with a homogeneous composition. The resulting 
equations of motion and continuity are 

In Eqs.(l) and (2) is a perturbation velocity on the basic hydrostatic state. 
p, is the mean density of the fluid layer and P' and 9' are perturbations in the 
pressure and density respectively. The basic hydrostatic state has been subtracted 
from (1). The kinematic viscosity ')) has been taken as constant here and we feel 
this justified because the diffusion of momentum is so small compared to the dif- 
fusion of heat. That is to say we are dealing with a very low Prandtl number fluid. 
We will now derive the heat equation for an ideal gas with gradients in the chemi- 
cal composition. 

Consider a mixture of two gases. We can write the first law of thermodyna- 
mics for this mixture as 

d$ = c,d7-?/p2 d p - / u , d n , - ~ 2 d h ,  

whire/(l, and,Uz are the chemical potentials of components 1 and 2 in one gram of 
the mixture. Y1, is the number of particles of type 1 per gram of mixture and if 
mt is the mass of a particle of type 1 then n,m, is the mass fraction of type 1 
per gram. In ( 3 ) ,  C y  d r i s  the differential change in internal energy per gram of 
mixture and d'' is a differential of heat added to a gram of mixture. As there are 
no sources or sinks of fluid we must have 



Defining the concentration of type 1 as C =n,Yn, and utilizing (4) we may rewrite 
( 3 )  as it2 = Cy d7 - P/p'dp -/+,hem d~ (51 

where the relative chemical ~otential is 

If we multiply (5) b y p  and note that the energy added per unit time per unit 
volume is due to viscous dissipation p,,, in the fluid and the divergence of the 
heat flux vector f we may write (5) as 

D a (where we have made use of the substantial derivative pt= ay+?C.vas we are fol- 
lowing a particular element of fluid). We will now define the mean molecular weight 
via the equation of state for an ideal gas (which is applicable to semiconvection 
zones). 

n 

In (7) # is Boltzman's constant and is a proton mass. We may associate the 
pressure in (7) with that in (6) if we assume that radiation pressure is negligi- 
ble in the region of interest. This is a fair approximation for stars less than 
about 10 solar masses. We will adopt this assumption for the analysis. If X is the 
mass fraction of hydrogen, Y the fraction of helium, and 21 -X-Y is the fraction 
of the remaining 'heavy elements' we may express p a s  (Chandrasekhar, 1939) 

We will assume that Z is constant throughout the fluid layer as Z is only a few 
percent in the regions surrounding helium cores. Solving (8) for Y in terms o f p  
gives 

which can be inserted into (7). Taking the logarithmic derivative of (7) and sub- 
stituting this expression for f $ in (6) gives 

In (9) we have associated helium with the type -1 particle, i .e . , C =y. We may sim- 
plify (9) by noting that -$- =P(Cp-C,) where Cp and C v  are the specific heats at 
constant pressure and volume respectively and both are at constant composition. The 
Bussinesq approximation allows for further simplification in that we may replace the 

term by w G  = - W p g  where VJ is the z-component of velocity and is the basic at d~ 
hydrostatic pressure field. We may also replace the heat flux vector by KyOdV T where 

IfvLd is the radiative conductivity which dominates any molecular heat transport 
processes due to temperature or concentration gradients (Landau and Lifshity, 1959; 
458). We may also neglect the viscous dissipation term as compared to the heat con- 
duction term in the context of the Boussinesq approximation (their ratio is 

D/scale height x Prandtl number 4 4 1 )  
and in addition we evaluate the density and heat capacities at some mean reference 
point in the fluid. We will, however, take the conductivity as variable. Incorpo- 
rating these simplifications in (9) we obtain the following heat equation: 



In (10) we have rep laced  Y by i t s  express ion  i n  terms of p and have r e d e f i n e d  t h e  
k,*d conduc t iv i ty  a s  3( s p,~, . We have a l s o  allowed ourse lves  t o  e v a l u a t e  t h e  c o e f f i -  
. . 

c i e n t  of  $ a t  t h e  r e f k e n c e  p o i n t .  This  i s  because we expect  t h e  r a t i o  of  t h e  
r e l a t i v e  chemical p o t e n t i a l  t o  t h e  thermal energy pe r  pro ton  t o  be s m a l l .  T h i s  i s  
reasonable  a s  t h e  r e l a t i v e  p o t e n t i a l  r e p r e s e n t s  t h e  change i n  e l e c t r o s t a t i c  energy 
of a  gram of f l u i d  when a  proton (and i t s  e l e c t r o n )  i s  removed and a  hel ium nucleus  
(and i t s  two e l e c t r o n s )  a r e  added. This energy i s  small  because a t  s t e l l a r  d e n s i t i e s '  
ions  a r e  surrounded by Debye spheres  and hence, t h e i r  charges a r e  s h i e l d e d  frdm o t h e r  
i ons  (Landau and L i f s h i t z ,  1958;44 24 and 74) .  An important assumption i n  t h e  j u s t i -  
f i c a t i o n  of  t h e  Boussinesq approximation i s  t h a t  t h e  depth of t h e  f l u i d  l a y e r  be  
much l e s s  than  an a d i a b a t i c  s c a l e  h e i g h t .  This  s c a l e  he igh t  f o r  uniform composi t ion 

C 7 i s  given by H6= >" and may be obta ined  from 

z - $/cp and t h u s  t h e  and from t h e  h y d r o s t a t i c  p re s su re  ba lance .  This  y i e l d s  - 

s c a l e  h e i g h t  HC . In zones of varying composition we o f t e n  have t h e  depth  D of 
o rde r  1 / 2  HJ and a  f a i r l y  cons tan t  g r a v i t y  a s  w e l l .  Hence we w i l l  t a k e  
s t a n t  and proceed with confidence t h a t  D/H, L L  1 i s  s a t i s f i e d .  3 as 

We a l s o  need an equat ion which desc r ibes  t h e  d i f f u s i o n  of hel ium through t h e  
f l u i d .  We w i l l  assume t h a t  t h e  d i f f u s i o n  of  helium i s  dr iven  only by c o n c e n t r a t i o n  
g r a d i e n t s  and t a k e  t h e  d i f f u s i o n  c o e f f i c i e n t  a s  cons t an t .  Th i s  i s  a  good assumption 
a s  d i f f u s i o n  i n  s t a r s  i s  e s s e n t i a l l y  n e g l i g i b l e  compared t o  any convect ive  mixing,  
Even t h e  o r i g i n a l  g rad ien t  ou t s ide  t h e  core  i s  dominated by evo lu t iona ry  e f f e c t s  and 
not  d i f f u s i o n .  However we a r e  l i m i t i n g  our  d i scuss ion  t o  a  ve ry  narrow r e g i o n  a t  
t h e  onse t  of convect ion and so  w i l l  make use  of t h e  fo l lowing  d i f f u s i v e  equa t ion .  

- 

As we a r e  more i n t e r e s t e d  i n  t h e  mean molecular  weight we may r e p l a c e W y  by i t s  ex- - 
pres s ion  i n  terms o f p  and o b t a i n  

a= k y ~ b - ~ k ~ ~ ~ ~ 4 ~ ~ ~  
Dt- 

Let u s  d i v i d e  (12) b y / &  ( the  r e f e r e n c e p )  and expaid& i n  a  Taylor  s e r i e s  about 

,urn. I f  we s c a l e  v a r i a t i o n s  in,.& by D&Z&-l,-/CI,,and d e f i n e  t h e  smal l  q u a n t i t y  

- &, equat ion  (12) becomes 7 -  r-w & L , ~ K ~ D ' $  - i Z L k Y v + . v $ +  0($) 7 P t  (13) 

h.  

where ( A J J ) ~ ~ / G ( ~ I ~  we d iv ide  through (13) by $7 and cons ide r  t h e  l i m i t  o f  . - 2 4 0 we ob ta in  

having mul t ip l i ed  by A p .  A l l  we have done i s  l i n e a r i z e d  t h e  r igh t - hand  s i d e  of  t h e  
d i f f u s i o n  equat ion f o r &  ( the  non l inea r  advec t ive  term i s  s t i l l  conta ined  i n  & ) 
however, t h i s  i s  not  un l ike  t h e  small  parameter  expansion procedure used by Malkus 
(1964) t o  j u s t i f y  t h e  use of  t h e  Boussinesq approximation f o r  homogeneous f l u i d s .  
We w i l l  make use  of  (14) i n  our  s tudy .  

Equation (1) s t i l l  con ta ins  t h e  d e n s i t y  p e r t u r b a t i o n  and s o  we must provide  
an equat ion  of s t a t e  which governs t h e s e  d e n s i t y  f l u c t u a t i o n s .  The equa t ion  of 
s t a t e  governing t h e s e  f l u c t u a t i o n s  may be  obta ined  by expanding t h e  i d e a l  gas  law(7) 



around a reference density and keeping only first order terms. The influence of 
pressure perturbations on the density is of less importance than temperature pertur- 
bations if g/k, << I , (see Spiegel and Veronis, 1960). Keeping within the Boussinesq 
limitations we must have the variations of density, temperature, and concentration 
between the plates small compared to their mean values. Therefore we may write the 
equation of state as 

-1 

(15) 

Equations (I), (2), (lo), (14), and (15) complete our set of governing equa- 
tions, however, we must still specify the forms of the transport coefficients. The 
kinematic viscosity in (1) may be expressed in terms of the dynamical viscosity, 
3 = '2hm where 7 has a contribution from both the gas and the radiation field. We 

may approximate the gas's viscosity by that of a pure hydrogen plasma whose momentum 
transport is dominated by the Coulomb interaction. The form as given by Spitzer is 

and is the magnitude of the charge on the electron. The momentum transfer by 
radiative stresses in a moving fluid may be expressed in terms of a radiative vis- 
cosity given by (Thomas, 1930) 

(For a more transparent discussion see Ledoux and Walraven, 1958, 4 4 9 P  .) In (17) 
k is the opacity and for our discussion we will use the electron scattering opacity. 

For pure scattering the coefficient in (17) should be 8/27 (Masaki, 1971). In terms 
of the mass fraction of hydrogen 

K oe19(1t'X) 

or using the relationship between x;y and and Eq, (8) we may write 

Diffusion in stars is discussed by Aller and Chapman (1960) and a form for the 
diffusion coefficient relevant to stellar interiors is given there. Though the coef- 
ficient can be modified if a substantial part of the pressure is due to radiation 
it is still many orders of magnitude smaller than the conductivity. Typically it is 
about 1/100 of the gaseous kinematic viscosity which is itselfr~1/10 the radiative 
kinematic viscosity. 

To obtain a radiative conductivity we refer to the relationship between the 
radiative flux (integrated over all frequencies) and the corresponding radiative 
stresses (Chandrasekhar, 1939, V - and VI). - We may write 

where 9 = Stefar-Boltzman radiation constant and 'c' is the speed of light. If we 
express the flux in terms of a temperature gradient and a conductivity from the 
above relation we obtain 



The dependence of  3: %- on t h e  composition i s  ev ident  from (18) and (19) .  To 
i n v e s t i g a t e  t h e  e f f e c t s  of a conduct iv i ty  given by (19) we proceed a s  fo l lows:  We 
e x p a n d 3  i n  a Taylor  s e r i e s  around a re ference  p o i n t  and t r u n c a t e  t h e  expansion 
a f t e r  t h e  second d e r i v a t i v e s  i n  p ,7 ,p and t h e i r  c ros s  d e r i v a t i v e s .  We o b t a i n  
t h e  d e r i v a t i v e s  from (19) and use  (15) t o  e l imina te  +P . A s  t h e  range o f / u  i s  be-  
tween 413 and 1 /2  we w i l l  t ake  ,!+,= 1 . Furthermore, we s e p a r a t e  t h e  7 and& 
f i e l d s  i n t o  t h e i r  unperturbed and per turbed  p a r t s ,  e . g .  yb+T' and w r i t e  T:Tm+Z 
where now r e p r e s e n t s  t h e  v a r i a t i o n  of around i t s  mean v a l u e .  We then  s c a l e  

, T' a n d p , , p f  by AT: fL-7; and A p  tp , -p,  r e s p e c t i v e l y .  I f  we d e f i n e  t h e  
two small  parameters  

&, 
(20) 

we may w r i t e  t h e  conduc t iv i ty  a s  

/>I - -- 
7 m  - 1 ; 3 d ~ . + f  ? e + t d ' S 7 ~ - $ ~ r / c r : + ~ ~  T o p d +  7 ' [ ~ d + ~ & ' ~ + * j d S , u ~  - 

We can make use of t h e  equat ion  of motion i n  i t s  more convenient  form by 
e l imina t ing  t h e  X and 3 components of  (1) a s  we l l  a s  7" . By t a k i n g  a/Ss of  t h e  
divergence of ( I ) ,  u t i l i z i n g  (2 ) ,  and s u b t r a c t i n g  from t h a t  t h e  Laplacian of  t h e  
z-component of ( I )  we o b t a i n  

where - as L ( ? C . ~ v ) - ~ a ( v .  DW). LC?)- m ( ~ * w  + 2 ta Y 

In (22) we have rep laced  ~ 3 '  with Eq. (15) , w r i t t e n  t h e  v e l o c i t y  components a s  
2% a- -p =(u,Y,wJ and def ined  Ax= = + ay+ . For two-dimensional r o l l s  V = 0 and 

= 0 . (Equation (22) has  t h e  unscaled q u a n t i t i e s  7' and ,.uf which a r e  s c a l e d  
i n  (21) . )  Before going on t o  s c a l e  t h e  governing equat ions  and d i scuss  t h e i r  s o l u -  
t i o n  we w i l l  o b t a i n  from them t h e  s t a b i l i t y  c r i t e r i a  of Ledoux and Schwarzschi ld.  

111. The Ledoux and Schwarzschild L i m i t s  

The s t a b i l i t y  c r i t e r i a  used by Schwarzschild and Ledoux were obta ined  from 
simple buoyancy arguments concerning t h e  a d i a b a t i c  displacement  of a b lob  of f l u i d .  
For a d i a b a t i c  motion we r ep lace  a l l  t h e  t r a n s p o r t  c o e f f i c i e n t s  by ze ro .  Equat ions 
( l o ) ,  (14),  and (22) become 

Equation (24) e l imina te s  t h e  & term from (23) .  We r e p l a c e  t h e  v a r i a b l e s  7 and 
/cc by t h e  sum of t h e i r  unperturbed p l u s  pe r tu rbed  p a r t s ,  e . g .  T =  T(=) + T', We 
then  l i n e a r i z e  (23) - (25) and remembering t h a t  

we o b t a i n  



and 

We assume that W ,  ', and a' can be written in the form 

where the plan form f (x,yl satisfies <& + e, + bL$ s 0 , (i .e . closely packed 
cells of horizontal wave number 'a'). Substitution into (26) through (28) yields 

which can be combined into the one equation 

At margin21 stability the growth rate CTs ()(disregarding any overstability). In 
general w + O  and therefore the square bracket in (29) must vanish at r = O .  If 
we choose the reference point at the position of the displaced blob we obtain the 
Ledoux criterion for marginal convective instability, 

For a homogeneous fluid *.= 0 and we obtain from (30) the Schwarzschild 
criterion. 

IV. Scaling the Equations and the Basic State 

The governing equations in dimensional form are (2), (lo), (14), and (22) 
with the conductivity scaled by ?,in (21). At this point it is convenient to 
scale the equations by taking (dimensionless quantities are capped) 

The dimensionless numbers which are relevant to the problem are then the thermal 
A 7  3 4% ~ ) 3  

Rayleigh number RT= 9 , the concentration Rayleigh n u m b e r R p = k  , 
-v 3t-n lJ 

the Prandtl number C =v?_  and the ratio of concentration to heat diffusivities 
2. = KY/x,. In terms of these scaled quantities the equations become (dropping 

the caps) 

3 
r at: + R,&T - R+asp (31) 



I 
In Eq. (31) we have rep laced  t h e  sca l ed  pe r tu rba t ions  T' a n d p '  by T = Tb+ T and 
,u = p h + p '  a s  a n d p ,  a r e  only func t ions  of 2 while  b2 i s  an ( x , Y ) d i f f e r e n t i a l  
ope ra to r .  As i t  s t ands  now t h e r e  i s  no t  much t h a t  can be  done wi th  Eq. (34) ,  how- 
ever  we can s imp l i fy  it even more i f  we assume t h a t  

7 /6*<< I . 
P Let us  cons ider  t h e  dimensionless  product X which appears  i n  (34) .  I f  we w r i t e  

i t s  equ iva l en t  i n  unscaled v a r i a b l e s  and make use of t h e  i d e a l  gas law we f i n d  

A s  v a r i a t i o n s  o f p  ,/u , a n d T  must be small  compared t o  t h e i r  mean va lues  we may 
approximate them byp, , /u_, and T, . As = C p  (wi th in  a  f a c t o r  of 2 )  we 
use (20) t o  f i n d  A ?  / x F l  * ?/a << 1 

by assumption. A s  t h i s  express ion  i s  so  small  while  t h e  c o e f f i c i e n t  1/ of  t h e  dW 
term i n  (34) i s  of o rde r  u n i t y  f o r  a  system i n  laminar convec t ion ,  we f e e l  t h a t  i t  
i s  j u s t i f i e d  t o  e v a l u a t e  t h e  e n t i r e  c o e f f i c i e n t  of % a t  t h e  r e f e r e n c e  p o i n t .  We 
d e f i n e  

and r e w r i t e  (34) a s  

A s  mentioned above we w i l l  cons ider  r o l l  s o l u t i o n s  t o  t h e  equa t ions ,  t h e r e -  
a s  

f o r e  A,= - . In  a d d i t i o n  we w i l l  r e s t r i c t  our  a t t e n t i o n  t o  s t e a d y  convect ion 
sq only and t h e r e f o r e  ,t=O. Though it i s  known from t h e  thermohal ine problem t h a t  

t h e  f l u i d  i s  uns t ab le  t o  o s c i l l a t o r y  modes a t  a  lower R T t h a n  f o r  n o n- o s c i l l a t o r y  
modes we w i l l  r e s t r i c t  t h e  a n a l y s i s  t o  s t eady  modes on ly .  Kato (1966) has shown 
t h a t  mixing can occur  by o v e r s t a b i l i t y  when dea l ing  wi th  an i s o l a t e d  f l u i d  r e g i o n ,  
however ~ u r k  (1969) has shown t h a t  o v e r s t a b l e  convec t ive  modes a r e  damped by t h e  
r a d i a t i v e  envelope i n  B s t a r s  depa r t ing  from t h e  main sequence.  We f e e l  t h a t  t h i s  
j u s t i f i e s  t h e  s tudy  of s t eady  modes only.  Moreover we w i l l  be looking f o r  t h e  
p o s s i b i l i t y  of a  s u b c r i t i c a l  s t eady  mode which t h e  s t a r  might lock i n t o  be fo re  any 
o s c i l l a t o r y  modes may develop.  However we can not  r u l e  out  t h e  p o s s i b i l i t y  of 
o v e r s t a b l e  modes i n  t h e  l i m i t  of vanish ing  frequency a s  t h e s e  s e t  i n  a t  Rayleigh 
numbers lower than  c r i t i c a l .  In  t h e  l i m i t  of t h i s  s tudy  t h e  governing system of  
equat ions  becomes 



t oge the r  wi th  (21) .  We might mention t h a t  t y p i c a l  va lues  f o r  rs and "&' i n  semicon- 
v e c t i v e  zones a r e  P- lo-'> T- 1 oSq*  

Equations (37) - (40) and (21) s t i l l  con ta in  t h e  b a s i c  s t a t e  tempera ture  and 
composition p r o f i l e s  which we may so lve  f o r  now before  going on t o  t h e  p e r t u r b a t i o n  
problem. I f  we t ake  t h e  mean q u a n t i t i e s  7 m  and ,A4 t o  be t h e  average of t h o s e  
va lues  on t h e  p la tes ,we  have t h e  fo l lowing  sca l ed  boundary cond i t i ons  on t h e  b a s i c  
s t a t e  7 6 ~ 7 ~ + T ,  amd / G c b : & , + f i 6  ; 

x=(*)& & = ( ? ) K  a t r = / Y ) .  (41) 

As t h e  b a s i c  s t a t e  i s  h y d r o s t a t i c  and z-dependent,only t h e  governing equa t ions  
reduce t o  

with$, given by t h e  f i r s t  s i x  terms i n  (21) .  Eqs. (42) and (43) may be i n t e g r a t e d  
d i r e c t l y  wi th  (41) t o  g ive  

p, = Y2 ( I  ' k t - )  (44) 

and d7' = cons t an t .  
F 4  7 l - S -  (45) 

A s g a  makes (45) non l inea r ,  it i s  t o  our  advantage t o  make use  of t h e  smal lness  of  
$ and 2 . We can ob ta in  an approximate s o l u t i o n  by expanding % i n  a  s e r i e s  of  

powers of b and 7 and r e q u i r e  each o rde r  i n  6 and 2 t o  s a t i s f y  (45) s e p a r a t e l y .  
We must a l s o  a d j u s t  our boundary cond i t i ons .  We may w r i t e  

and 

S u b s t i t u t i n g  (21) and (46) i n t o  (45) and cons ider ing  t h e  expansion through second 
o rde r  i n  small  quan t i t i e s ,we  ob ta in  t h e  fo l lowing  s e t  of equat ions  f o r  7;; : 

, , (04 0 )  

& l o  = cons tan t  
dt 

aa z cons tan t  

d ~ p ~ ~ ) +  T , c ~ ~  dT.(t4~) trd T>3D d7Po) 
ds -23- + 3% --&- db5 

cons t an t  

AT?' d L % ~  d7, cod 

-di; + BIJ.  - 1 cons tan t  

Ct,3 CD,~) (40) d7@') 
(6, ')  * +T 0 a ro, 01 $31, - T(O/O)=  cons t an t  ds d-e d+  + % f i ~ ~ f ? ~  0 



The s o l u t i o n  s u b j e c t  t o  (47) i s  

We may now s u b s t i t u t e  (48) i n t o  (21) t o  ob ta in  t h e  f i n a l  form of  % which we w i l l  
u se  i n  t he  p e r t u r b a t i o n  problem. L e t t i n g  T a n d &  i n  (37)- (40)  be  w r i t t e n  a s  
7= T,+  and=,,,+' s u b t r a c t i n g  t h e  b a s i c  s t a t e  from (37) - (40),  and dropping 
t h e  primes on p e r t u r b a t i o n  q u a n t i t i e s  we ob ta in  t h e  s e t  o f  equa t ions  governing t h e  
p e r t u r b a t i o n s .  

a- , a') a" 
L(T,= % [ w ( $ p  B a p  U.-LL(= f S)d 

In (53) we have a l r eady  expanded t h e  p e r t u r b a t i o n  q u a n t i t i e s  i n  powers of  d and 7 . 
Thi s  w i l l  be p a r t  of t h e  genera l  expansion procedure we w i l l  u s e  t o  s tudy  t h e  non- 
l i n e a r  system (49)-  (53). We may mention t h a t  i n  t h e  d e r i v a t i o n  of  t h e  p - d i f f u s i o n  
equat ion  we made a  s i m i l a r  expansion and threw out  h ighe r  o r d e r  terms whi le  we have 
r e t a i n e d  them he re .  We have done t h i s  because of t h e  dependence of  K,,d o n T  and 
& a s  implied by (19) .  The dependence on t h e s e  v a r i a b l e s  i s  r a t h e r  s t r o n g  and we 
can imagine ourse lves  c r e a t i n g  new small  parameters  which r e f l e c t  t h i s  s t r o n g  de-  
pendence. For example i f  &ad -Tn then  we can expand 7 about and c r e a t e  t h e  
small  parameter which emphasizes t h e  dependence through f i  . In  our  ca se  Y l  s 3  
s o  we have absorbed q i n t o  t h e  c o e f f i c i e n t s  of ( x -  l )  . We w i l l  u se  equat ions  (49)- 
(53) a s  a  model f o r  our  system and we w i l l  s tudy  t h i s  model w i t h i n  i t s  l i m i t a t i o n s .  

V .  The Pe r tu rba t ion  Problem 

We w i l l  s tudy  t h e  p e r t u r b a t i o n  equat ions  (49)- (53) f o r  bo th  p e r t u r b a t i o n s  of 
i n f i n i t e s i m a l  amplitude and f o r  smal l  b u t  f i n i t e  ampli tude.  To do s o  we w i l l  make 
use  of t h e  modified p e r t u r b a t i o n  techniques  used by Malkus and Veronis  (1958) t o  
s tudy  ~ a y l e i g h - ~ k n a r d  convect ion a t  f i n i t e  ampli tude.  The j u s t i f i c a t i o n  of t h e  
approach i s  e l abo ra t ed  on i n  terms of Taylor  expansions i n  a  parameter  space by 



i Millman and Keller (1969). , 

In addition to the two expansion parameters $ and Q which we have been using 
we will also make use of the perturbation amplitude E . We will expand the pertur- 
bations J , p , W ,  and u as T = ~ ~ ; I . , ~ ~ m ' n ) f P  6 9 h  and similarly f o r p  , w , and U .  

hS.0 

I We then substitute these expansions into Eqs.149)-(53) and solve them at each order 
of c- , 8, and 'Z separately. Thus ( $ m , u l )  z ( 1 ,  o , e )  will yield the linearized homo- 
geneous problem and for other values of (&,rn,rr)we will obtain additional inhomoge- 
neous terms. For a solution to exist the equation must satisfy certain solubility 
conditions. That is the inhomogeneous terms must be orthogonal to the adjoint solu- 
tion to the homogeneous problem. In general this will not be the case and so we will 
expand the eigenvalue as well and choose it so that this condition is met. For the 
stellar case we may consider the composition as given and so keep the concentration 
Rayleigh number 'RPfixed. We will expand the thermal Rayleigh number as 

= RJ. 
(~,n) 2 rn h,  

1 
E E  72 

rn-0 

I n s o  
To eliminate the arbitrary addition of the homogeneous solution to the solution of 
higher order (4,m,n) # ( l , D , o )  we will define E by an orthogonality relation to be 
given below. We will also refer to (n-l)lrn'"' which will depend on the index .( of the 
perturbations which appear in (53). 

We will require the perturbations in T and ,u to vanish at the boundaries t=(?) 
as we have assumed the plates to be perfect conductors of heat and helium. As fix- 

I ing any sort of boundary conditions on the gas motions in a star is somewhat artifi- 
cial we feel that stress-free boundaries are more realistic than rigid boundaries. 
The vanishing of the shear stress & at a = (7) (for all X ) combined with (50) yields 
@ = O  at t=($') and with the requirement that there be no net mass flux through the 

a plates implies w=O at %=(?). As a convenience from now on we will let D s - 73s 

Upon substituting the expansions given above into Eqs.(49)-(53) the equations 
we obtain may be written as 

We have chosen a periodic x-dependence of wavenumber 'a' to achieve a separation of 
variables. We will restrict our attention to solutions at all orders of E ,  J12 which 
have a periodicity of in the x-direction. This implies that the x-dependence at 
each individual order will be a harmonic of the fundamental wavenumber 'a'. Taking 
wave n of (54) we may combine (54)- (56) into one equation. 

[ D ~ ~ ' ~ W , ( ' J ~ +  [ ( .d+~c l j , )~r i  a'ir/i"'= 0 (57) 

AS ~ ~ " 5  ,u["~): 0 at s=(p) ~ q .  (54) implies (D: a?)%, "'"' vanishes as well at E =  (7). 
This is the well-known Rayleigh equation with the expression in square brackets being 
the eigenvalue. The z-dependence of the solution must be 4 4 ~ )  a7Tg.a~ seen from taking 
D'of (57) and using the boundary conditions over and over again. The eigenvalue 

will then be and will take on its minimum value of - 27 ii4 at n2= 7y2. 
aL + 

We may use the solution for W, 'o'" in (55), (56), and (50) to obtain expressions 



- 0 0  
forpt:b)7 1," 'and U, ' )  . The solution to this linearized problem at the eigen- 
value minimum is 

and 

We note that the G-expansion is valid only within some radius of convergence. For 
J! = 1 we have ignored the nonlinear terms in the equations. As can be seen from 
(49) and (51) this is only valid for € 4 4 ~ ~  and &<<yo This is a severe restriction 
as r and 2" are very small for stars. Rg'"' is the critical Rayleigh number for the 
problem. According to the solution of the linearized problem the system becomes un- 
stable to infinitesimal disturbances for RT '> 'R,(''''~ For Rayleigh numbers lower 
than R:'''' the disturbances decay while for Rayleigh numbers greater than ~ 0 ~ ' "  

they grow exponentially. We will see from the finite amplitude corrections that this 
is not the case. Before going on to those corrections let us see what effect the 
temperature - composition dependent conductivity has on the eigenvalue. 

At this point let us define & by the following relation, 

j ' d t  (vJ,@~"w). 
0 

159) 

(0," =] We also note that the general Rayleigh operator CV"- C~ (where  is the 
expression in the square brackets of (57)), together with the homogeneous boundary 
conditions at E ( 7 )  and the periodicity in 'X constitutes a self-adjoint 
operator. 

At this order of & , d , 2 we are still concerned with the linearized form 
of Eqs.(49)-(52), however the first order effects of the temperature dependence of 
7 will come in. Again we may choose the planform of the variables to be&&%&% 

as this now appears in the inhomogeneous terms. The equations become 

3 (n'-c) T,(~~)+(Y+J+ t $ , ) q , (1~ '?3 (~+~+  +)(I-2 E ) - ~ T ~  w a x +  

I Y r  ( ~ + I s ~ ) ) w ~ T T ~  rn CLY t vb+ ba+ (62) 
la Q 

~ a k i n ~  (9 -a ) of (60), we may combine (60) - (62) and using (58) obtain 



= 1;'""=0 at t= (P  we f i n d  from (60) t h a t  D* qhO'= O a s  

v/,""1 D~~,'"')= 0 ah t =(?) 4 From (63) we see  t h a t  "')- ax, Mul t ip ly ing  (63) 

by t h e  a d j o i n t  of W ~ C B A Q )  and i n t e g r a t i n g  by p a r t s  we ob ta in  a s  t h e  s o l u b i l i t y  con- 
< 5 8)- d i t i o n  of (63) t h a t  R, - 0. To s a t i s f y  t h e  boundary cond i t i ons  on qCb0) we w i l l  

need t o  make use  of  t h e  complimentary s o l u t i o n s  of t h e  homogeneous equat ion  (57'). 
I f  we l e t  t h e  s o l u t i o n s  of (57) have t h e  dependence e x a  we o b t a i n  t h e  a l g e b r a i c  
equat ion  

I The s i x  r o o t s  a r e  A, = L ~ T ,  h, = k & [ I +  &(I + 5 i ~ ~ a ) ( ~  + ; &'jlV; and ; I~ = +-F 
2. 4 

where (*) means complex conjugate .  I f  we de f ine  'A% 
1 

we may w r i t e  t h e  complete s o l u t i o n  of (63) a s  
w,(ba  = w:'+O\z) w a z- 

where W,("'(*) s A , t a j , i ~ t  + hat my 3 + A 3 ~ " ~ n h +  Ay*f l t  + ASe"f 

The f i r s t  t h r e e  c o e f f i c i e n t s  i n  (65) come from t h e  p a r t i c u l a r  s o l u t i o n  and a r e  
given by 

&a ipJ0~ 0) 

pi  = A(T%CL~S! [ + c v * ~ + ~ ) -  w ( r + z +  K,)], 

To s a t i s f y  t h e  s i x  boundary condi t ions  on M('JO;~) we may a d j u s t  t h e  s i x  f r e e  con- 
s t a n t s .  However t he  &rTEt.term cannot a f f e c t  t h e  boundaries  implying t h a t  a t  most I only f i r e  of t h e  boundary cond i t i ons  a r e  l i n e a r l y  independent .  By s e t t i n g  up t h e  
6x6 mat r ix  equat ion  f o r  t h e  c o e f f i c i e n t s  and performing t h e  u s u a l  row o p e r a t i o n s  we 
f i n d  t h a t  t h e  ma t r ix  has a  rank of f i v e  and a t  t h e  same time o b t a i n  t h e  s o l u t i o n  f o r  
t h e  c o e f f i c i e n t s .  The mat r ix  equat ion ,  o f f  of which t h e  s o l u t i o n s  may be r e a d  i s  



The c o e f f i c i e n t  A l l  i n  (65) i s  determined by t h e  o r thogona l i t y  cond i t i on  (59) .  The 

s o l u t i o n s  t o  (61) and (62) may be w r i t t e n  a s  /u,('."= ,uF'G w a& mdl;b$~"cl ma% 

The c o e f f i c i e n t s  Ag and A10 a r e  chosen t o  make ,UIC')O> s a t i s f y  i t s  boundary condi-  
t i o n s .  We s e e  t h a t  t o  f i r s t  o rde r  i n  & though t h e  s t r u c t u r e  of  t h e  e igenfunct ions  
i s  c e r t a i n l y  modif ied,  t he  c r i t i c a l  e igenvalue i s  n o t .  Also, a s  t h e  (1,1,0)  s o l u -  
t i o n s  a r e  a l l  p ropor t iona l  t o  M&. A% they  do not  a f f e c t  t h e  mean f i e l d s  ( t h e  h o r i -  
zon ta l ly  averaged f i  and f i e l d s ) .  We need not  w r i t e  down t h e  form of  b u t  
only say t h a t  i t  i s  obtained from u~"~;-&.~~&'~ Phys ica l ly ,  t h e  f i e l d s  
themselves a r e  given by t h e  r e a l  p a r t s  of  (65),  (67) ,  and (68) .  As we a r e  cons ider-  
ing  s o l u t i o n s  nea r  t h e  c r i t i c a l  e igenvalue we would expect  t h e  h o r i z o n t a l  wavenumber 
t o  remain very c l o s e  t o  a, s $/Q. This  was shown t o  be  t r u e  f o r  t h e  Rayleigh- 
~ e ' n a r d  problem a t  f i n i t e  amplitude by Malkus and Veronis (1958). 

(Z, m,n) = ( l j  0 1 )  

The r e p u l t s  of  t he  (1,0,1)  problem a r e  very  s i m i l a r  t o  t h e  (1,1,0) r e s u l t s .  
COrJ _ We f i n d  'R, - 0  and e igenfunct ions  of t h e  same form a s  t hose  of  t h e  (1 ,1 ,0)  c a s e ,  

Hence t o  f i rst  o rde r  i n  both 6' and 2 t h e  c r i t i c a l  Rayleigh number i s  una f f ec t ed .  

By t h e  time we g e t  t o  second o rde r  i n  8 t h e  equat ions  become very  unmanaga- 
b l e ,  however it i s  a t  t h i s  o rde r  t h a t  we f i r s t  encounter  c o r r e c t i o n s  t o  t h e  c r i t i -  
c a l  e igenvalue,  Let us cons ider  one a r t i c u l a r  term t o  demonstrate  t h e  p o i n t ,  To 
e l imina te  T'''~' from Eq. (49) f o r  W I g a d ' )  we w i l l  have t o  t ake  v l o f  (49) and i n -  
t roduce  (52) f o r  (*ha) i n t o  t h a t  equat ion .  Thus t h e  equat ion  w i l l  con ta in  t h e  
fol lowing terms due t o  t h e  w 2 term i n  (52) : 

aQ~:"') ( W ,  ~ l / r ( ~ ~ . )  D T 1. 



(2,0)  
These terms will be multiplied by h K r  and integrated over Zk to determine Ro a 

Upon doing so we find that the  term does not contribute, however the 
vl/lc'io)g f o t ' a D i  term does. This can be seen by considering only the first term in 
(65). The integration oveq )C does not vanish as both %@J' and /yr C ' ~ o )  - Q X  .The 

P integration will be --~'(&filil)(Z&nt)(/-22) $0. 
We would also expect nonvanishing ??:'"'and (" " as RO('*'$ 0 . Thus the 

critical Rayleigh number is modified at second order in the small quantities $ , 9 . 

For 422 the governing equations will contain additional inhomogeneous terms 
reflecting the nonlinear terms on the right-hand sides of (49)-(52). As L(*IJ) in 
(49) will always contain the factor W or B% of an order of W already known (which 
satisfied certain boundary conditions) it will not affect the boundary conditions of 
a higher order W . As can be seen for e: 2, LCvj contains U: a n d ~ w , b o t h  of which 
vanish at it('?) . As and&, must vanish on the boundaries as well as andDaw2 
we must haveDYWtvanish there also. This same argument applies for all higher or- 
ders o f w a n d  so from now on we can take as our boundary conditions at 

t = ( ~ )  . " I = T = w = ~ w = D ~ w = o .  
At ( 4 ,nJ , n ) = (2, 0, 0) the equations become 

We note that the inhomogeneous terms are independent of X and so will not enter 

into the ~'~,l".'~e~uation. Taking 0' of the w3OJequation, eliminating x'"' and 

/u.~~''and using the expression for  we find that choosing a W P X  dependence for 

Multiplying by w,(@''~*~ and integrating by parts we find that we must choose R, '40)~ 0 , 

If we do so we see that the equation and boundary conditions that W''(qO)must satisfy 
and they are the same as those for uc/,('") (see (57)) and so by the orthogonality con- 
di t ion (59) we must choose W,~~J')S 0 .  The equations for , U ~ ~ " a n d ~ ' "  may then be 
solved giving 

and 

'*" and are independent of x we see that the first effect of the non- As &z? 
linear terms is to modify the horizontally averaged fields. Eqs.(69) and (70) show 
that the convection mixes the fluid into a more uniform state. As wL(qo) = 0 Eq. (50) 
implies that UFO' is independent of )C . If we go back to Eq. (1) and consider the 
x-component for the steady state we find that 



If fi?') were nonzero we would have a horizontal pressure gradient which was 
linear with)( and hence would diver e as )(+GO. This is clearly unphysical and so 8 we must have D*LL,CO'~L 0 , or  at 3-b with 'a1 and 'b' constants. The vanish- 
ing of the shear stress at the boundaries implies a=0 leaving a constant horizontal 
velocity of the system. As this may be transformed away by a constant translation 
of the origin we may set u,c%')= 0 without any loss of generality. 

At this order we find that all the inhomogeneous terms in (49)-(52), except 
for the R,( 'J '~  term, are proportional to m l a X  or, as in (51) and ( 5 2 ) ,  are inde- 
pendent of 3 .  The equation we obtain for ~ ~ ( 1 ) ~ )  is of the form 

Multiplying by W,~J ' )  , requiring \ N ~ ( ' J ~ >  to have an harmonic period of 2& in the 
x-direction, and integrating over a period of  in^ and from 2.=6-.r/ we find 
~ , t t & =  0 This is then also true for R,c"~lJ  as the equations at ( .f ,,r/l , r, ) =  
C 2,0,1) have the same form as here. As the equations for /c(.~'J*) and T ~ ~ " ' '  have 
inhomogeneous terms which are functions o f t  only, we find that the horizontally- 
averaged fields are now modified by the &' and? terms in the expansion, The fields 
will also have components proportional to CXI% 2 UX . This applies to ,UZCod *) and 

- j - , c ~ b ~ )  also. If we go on to higher orders of 2 and? we will find that 
R,("*) o " j 3 =  as well. R ,  

All inhomogeneous terms, at any order of $ and? for (= 2 , will be formed either by 
products of R =  1 terms or by products of an <= Z term with a term from the basic 
state. This will always yield inhomogeneous terms in the sixth order equation for 
wl(mrn) which are proportional to ~ Z c l F a n d  so will not modify the Rayleigh num- 
ber. We may conclude that R , h,n): 0 for all (m, n). 

(4',m,n = (3,~~o) 
At this order Eqs.(49)-(53) yield the following sixth order equation, 

As above, we multiply (71) by w,~' '~ '  and integrate choosing Rd0>@' so as to remove 
any secular terms. We find 

( h e )  The dependence of Re on & is given in (58) .  We also note that for a stabiliz- 
ing composition gradient (qcL7 0) the form of Re'90' implies that (Y+ I+ 4) > 0 for 
A T  near or larger than the negative of the adiabatic gradient. Though the signs 
are consistent for b T C  -g/Cp it is not possible to convect as there is no poten- 
tial energy available to driv4 any motion. Therefore for (f+ 1 f KU)> Q (72) and (58) 
give us a condition for R ~ ( O J ~  c 0 . It may be written as 

R/L C l - t 3 ( 1 i ~ ) ]  > )+T'(I+F) ,--my 

where 

As I J r * - ' l <O  f o r b T > O  and ( ~ + l f ~ & ) u ) , O  we have F 4 O .  As T L  7 we have 



CBO) C/-T%(I+F)]>O and t h e r e f o r e  we ob ta in  R, 4 0 f o r  

As kju and a r e  both very small  numbers we conclude t h a t  i n s t a b i l i t y  t o  f i n i t e  am- 
p l i t u d e  p e r t u r b a t i o n s  s e t s  i n  below c r i t i c a l  f o r  almost any @'70. 

I t  can be  shown t h a t  a s  r</ t h e  r igh t- hand s i d e  of (74) becomes n e g a t i v e  f o r  

A small  b u t  f i n i t e  kick w i l l  homogenize t h e  system and a s  T" / t h e  thermal  f i e l d  
w i l l  be r e e s t a b l i s h e d  f i r s t .  This  would leave  t h e  system l e s s  u n s t a b l e  t han  b e f o r e  
because we would have destroyed t h e  d e s t a b i l i z i n g  concen t r a t ion  f i e l d .  Hence a  sub- 
c r i t i c a l  i n s t a b i l i t y  f o r  E p d O  i s  unphysical  and t h e  a n a l y s i s  i s  a p p l i c a b l e  on ly  
f o r  we'? 

With R,  C 4  0 )  determined we can so lve  (71) f o r  w~(@'*) t o  f i n d  

and L4("'jr D W,b.~) 
(a) ax 

,Udo'O' and dcO'') w i l l  have terms --3 ism& y and ddvn Tr t4H . The i r  c o e f f i -  
c i e n t s  a r e  unimportant f o r  now. 

A s  t h e  f i r s t  f i n i t e  amplitude r e s u l t s  were obtained a t  (4 ,  ~ , n )  ;(3,0,0) t h e  de-  
pendence of X on T and# can change th ings  only  s l i g h t l y  b u t  a s  8 c< I and 44 
they cannot remove t h e  s u b c r i t i c a l i t y .  Therefore ,  a s  i n  t h e  thermohal ine c a s e  we 
conclude t h a t  s t e l l a r  semiconvection zones a r e  s u b c r i t i c a l l y  u n s t a b l e  a s  w e l l .  

I t  i s  o f  some i n t e r e s t  t o  cons ider  even h ighe r  o rde r  terms i t h e  expansion.  
I f  we go on t o  (4, N,I,)=(~(,O,O) we f i n d  t h a t  & c Q ~ D '  = 0 and t h a t  r / : " % & m l T ~  Ch 1 P %  
and -& 4 7 7 ~  -2u. In a d d i t i o n  t h e  mean f i e l d s  o f , u  a n d 7  a r e  modif ied by terms 
w&%TT.2, and#& + 77 P . We s e e  t h a t  t h e s e  h ighe r  o rde r  terms b r i n g  out  more 
s t r u c t u r e  of t h e  e f f e c t s  of convect ion on t h e  h o r i z o n t a l l y  averaged f i e l d s .  The r e -  
s u l t s  of  t h e  previous  o rde r s  may then  be app l i ed  a t  ( ( , ~ - I , ~ ) = ~ ; o , o )  t o  o b t a i n  ??+ C O , ~ ) ,  
In d e r i v i n g  R ~ ( * ' O '  we drop some terms t h a t  a r e  c l e a r l y  sma l l e r  t han  o t h e r s  by s e v e r -  
a l  o rde r s  of T . The express ion  we o b t a i n  i s  

Here 

I / (  I Remembering t h a t  t h e  r e s u l t s  were v a l i d  only f o r  < T* and t h a t  (!$&I 3 1x1 ?/$ 
we s e e  f o r  171 of o rde r  u n i t y  ?/J &T ' o r  @%TARS and t h a t  a s  we a r e  i n  t h e  

neighborhood of  c r i t i c a l  RS -(YY+ &/r )/(). + 1 - t  K&) . With t h i s  o r d e r i n g  i n  



(o"  TI^'^'^), and R~"". We o b t a i n  mind we may w r i t e  approximate r e l a t i o n s  f o r  8, , 

A s  CQ,O)- c q 5 )  
Q' = ?/l an d R,. = R,., + 

R:@JO' we f ind  

Since Rp*Yrwe s e e  t h a t  (78) i s  convergent f o r  & 4<.2 which was a  r e s t r i c t i o n  on 
t h e  expansion procedure,  I f  we minimize 7?,("Oi with  r e s p e c t  t o  6% we f i n d  t h a t  

R-$''@) takes  on a  minimum a t  

o u t s i d e  t h e  l i m i t  of our  r a d i u s  of  convergence. I f  app l i cab le ,  t h i s  imp l i e s  

(Y+ I + )jr*) w 6 5 7  + 7$+ (79 

Let u s  go back and cons ider  Eqs.(50) and ( 5 2 ) .  Let u s  a l s o  add t h e  b a s i c  s t a t e  
temperature t o  t h e  p e r t u r b a t i o n  temperature and t h e  b a s i c  s t a t e  p t o  t h e  pe r tu rba-  
t i o n  ,& , Taking no te  of (43) we o b t a i n  

and v ~ ( ~ o T ) + Y w - ~ * [ v ~ ~ @ v ~ ] = o .  (81) 

2r Averaging (80) over  t h e  x - d i r e c t i o n  ( e i t h e r  one per iod  of -& o r  t h e  i n f i n i t e  
d m  domain) y i e l d s  = 0 o r  W = cons t an t .  (An overbar  means h o r i z o n t a l  average .) 

- 

A s  W must vanish a t  a=(?) we have w= 0. As (80) s t a t e s  t h a t  l7-V~ 0 we can r e -  
p lace  v~ i n  (81) by v. ( ~ 7 )  and s i m i l a r l y  f o r  ye V,U. Then averaging  (81) 
over x gives  -3-7- V p ? p ] = o  

dt (82) 
d* 

Separa t ing  f a n d 4  i n t o  i t s  h o r i z o n t a l l y  averaged components (which inc ludes  d i s -  
t o r t i o n s  due t o  t h e  convection) and i t s  f l u c t u a t i n g  components by 7-z T+ and 

/CC =A + J% and no t ing  t h a t  W = 0 we can r e w r i t e  (82) a s  

I n t e g r a t i n g  (83) over Z we f i n d  

where Mu. i s  a  cons tan t  of i n t e g r a t i o n  and t h e r e f o r e  i s  independent of  2. I f  we 
i n t e g r a t e  (84) over t a g a i n  (denot ing t h e  t i n t e g r a t i o n  by b r a c k e t s )  we o b t a i n  



To order (m, n) = (o,o) we have y : 1 and we see that (85) is the heat flux nondimension- 
alized by a linear temperature gradient(b7/D) , that is (85) is the Nusselt number. 
Substituting in the € -expansions for the vari2bles of order (vl-r,x) z (o,,o), noting that 
w,c0~0~= 0 and that W, is orthogonal to TI 'hO' and E, (0.e) we find to order G~ 

AL -L  

contributes to the heat flux because the exchange of an H nucleus with a Ye 
nucleus via diffusion implies the removal of two particles (H+ + e') with the addi- 
tion of three particles (~e" + Ze'), i.e., the ions drag their free electrons 
along. 

Substituting in the eigenfunctions and performing the integrations we find 

I I From (87) we see that the restriction that (% 4 r is consistent with a Nusselt 
number always 2 1, (remember that C(+.t 4 0 as k$u " d )  . We can solve for E' in terms 
of the known quantities R,'"", R:"", ~ ~ ( ' 4 ~  and the specified RT'*>O'. The solu- 
tion of the quadratic equation is 

For RT > R ~ ( s ' )  we must choose the (+) sign while for Rs 4 RFO) we have two values 
for . The heat flux is proportional to NuRTand we find that the slope of the 
heat flux vs. R-r(v*O) curve at R,LD1o'is 

1 
at R=% RPJ*). As / d we have slopes of I L @C~y.+l)~]. 
The general shape of the curve 1s given in Fig.2. 

convection solution 

Fig. 2 solution 

Though we have considered only steady solutions to the equations we would 
expect the lower branch of the convective solutions to represent steady finite 
amplitude convection which itself is unstable to infinitesimal perturbations. This 
is because for a prescribed Rayleigh number the lower branch solutions convect less 
heat than those on the upper branch. As we would expect the fluid to convect in 
the mode which releases the most potential energy the fastest (Malkus and Veronis, 



1958) we suspect that the upper branch is the physically realized solution. 

VI Conclusion 

We have investigated the stability of finite amplitude two-dimensional dis- 
turbance in a compressible fluid layer with a stabilizing gradient of solute and a 
destabilizing temperature gradient. We have considered only steady convective solu- 
tions and have made an attempt to take into account the temperature and composition 
dependence of the conductivity. We have found that the steady convective solutions 
bifurcate from the conductive solution in a subcritical manner and that the variable 
conductivity does not remove this subcritically. Though we have restricted our 
investigation to a very special ordering of the relevant parameters we feel that the 
qualitative nature of the instability is demonstrated even though the minimum in the 
heat flux vs. RT curve was outside the radius of convergence of the E -expansion. 

With reference to stellar semiconvection zones we would like to determine with 
somewhat more confidence the minimum RT for which there exists a convective solution. 
Because of the parameter range we were working in, we found that the subcriticality 
did not change things very much, however we feel that this would not be the case in 
stars. It is still unclear whether the Ledoux or the Schwarzschild stability cri- 
terion is the more realistic in the stars. In some sense our results indicate that 
the Ledoux criterion is too restrictive while Schwarzschild's is not restrictive 
enough. 
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