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Editor's Preface 

This year the central topic was the general circulation of the oceans. 

Some of the basic ideas used in wind-driven and thermohaline studies were 

presented in the introductory course of lectures and simple models that have 

guided our thinking in. the development of. the topic were discussed. As part 

of the introductory lectures Peter Niiler developed.a model of the mixed layer, 

exploring the reasoning and the parameterization behind the theories of this 

important boundary region at the surface of the ocean. Dennis Moore gave a 

careful account of transient flows in equatorial regions and showed how dynam­

ical conditions on the eastern and western boundaries are satisfied by a 

superposition of planetary, Kelvin and Yanai waves. Peter Rhines concluded 

the series with a discussion of topographically induced.low frequency motions. 

At the request of the students.Joseph B.Keller gave a lecture on "Solution 

of Partial Differential Equations by Ray Theory". 

As in years past notes of the lectures were taken by the students and 

are recorded in this first volume of the yearly report together with abstracts 

of the seminars by invited staff. For the most part.the reports reflect the 

students' understanding and interpretation of the material. 

Mary C. Thayer has assembled and typed. all of the lectures. We are 

all especially grateful for her continued.dedication and determination to keep 

the program running smoothly. 

The National Science Foundation has supported the program and the Woods 

Hole Oceanographic Institution has made available. to us its many facilities. 

We are thankful to these two institutions for their encouragement and support. 

George Veronis 
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COURSE LECTURES 

by 

George Veronis 
Yale University 

LARGE SCALE OCEAN CIRCULATION 

The large scale circulation ofthe.-oceans .. contains motions with 

horizontal scales from about, 1 00 km .. toglobaL.sca.le.. It may be separated 

into a mean pattern ~ndtransient mo.tions.with a time s.cale of the order of 

one montn. In the following only the mean flow is considered. 

The main driving forces are: 

(1) Horizontaldiff,erences in heating and cooling at the sea surface 

from Pole to Equator. The scale is .,/""0../ R (radius of Earth). 

(2) Wind stress at the surface, with a horizontal distribution accord­

ing to atmospheric circulation. The scale is somewhat, though not by an 

order of magnitude, smaller than R. 

(3) Differences in evaporation minus precipitation, with scales less 

than or equal to those of wind. This force is not usually taken into ac­

count, its influence being about 10% of that of wind. Locally, it might be 

a more efficient mechanism (especially in the equatorial regions). 

(4) Several oscillating driving mechanisms which are usually neglected 

are due to fluctuations, e.g. diurnal heating and. cooling, tides. By the 

nonlinearity of the equations of motion these fluctuations produce a small 

but nonvanishing contribution to the mean motion. 

(5) The.horbontal gr~dients of water density due to convection. 

This mechanism.is.important, but has not,yet been considered much. 

The scales of motiQn.are.not. altlaysthe .. sameas:the Scales of the 

driving forces •.. Consider .,theabyssal cir.culation.,whichis driven mainly by 

heating and cooling, since wind stress and evaporation minus precipitation 

act only in shallow layers.near the surface .. ,Due to topography, the cooling in 

in the northern parts of the oceans is not of .. the same importance in the 

different oceans, the strongest cooling being in the North Atlantic. Since 

the oceans are connected, deep water .,maymove .from the North Atlantic to the 

other oceans. The horizontal scale of the .. abyssal circulation is therefore 

global, 7' R. 
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The.horizont.aLdistribution oi.pa,t.ent.ial. ,.d.ensit,y ,at ,the ocean floor, 

referred .. to a I.evel .. ofA. km depth" shows. ,small.. J:)u.t~characteristic gradients 

in the north-south direction. and also around.the Antarctic continent. The 

density diffe.rences are typically of th~ orderlO-4cgs units. For the maps 

the reader is referred to Lynn and Reid (1968). Similar features are found 

in the distribution of salinity. and potential temperature, all indicating 

that the most important ,.,cooling and sinking. takes::"pl~ce in the ~orth Atlantic. 

However, if one chooses the sea surface rather than 4 km depth as a reference 

level, this feature, completely vanishes, ,and no significant large scale dif­

ferences are found. The reason for this differentbahavior is the d.ependence 

of the coefficients in the equation of state. ,on temperature, salinity and 

pressure (see Veronis, l~73J. It is important to remember that the potential 

density at surface reference level is .!!£!. dynamic.ally significant for the 

abyssal circulation. 

From vertical profiles along a north-south line in the Atlantic Ocean 

nearly parallel to the east coast of America it turns out that in the Atlan­

tic Ocean several masses of water have to be distinguished: 

(a) Antarctic Bottom Water (AABW), which is formed in the Ross Sea. 

The AABW has the.lowest temperature found in the'ocean (-1.390 C). 

(b). North ,Atlantic Deep Water (NADW), formed by cooling and ,sinking in. 

a region south of Greenland. 

(c) Antarctic Intermediate Water (AIW) , . formed at latitudes between 

550 and 600S. ,The AIW is colder, but less salty and less dense, than the 

NADW. 

Several tracers may he used to detect.these, structures, e.g., salinity, 

oxygen, silica, .. suspended particulat.e matter. None of these is a completely 

conservative quantity, each showing characteristic deviations from the above­

mentioned structure due to sources and sinks. 

Salinitr: 
An intermediate..Jllaximum occurs, which is due. to,. the)1edit;erranean out­

flow. The distribution near the surface shows the influence of the wind stress 

pattern; and also differences in evaporation minus precipita~ion. 
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Oxygen: 

The main. sink is bio.logicalcomsumption" .... t,he .source being at the sur­

face. It is remarkable that the oxygen distribution shows not only the large 

scale structure but also considerable smaller scales. e.g., the Equatorial 

Undercurrent .. 

The sources for silica and suspended. particulate. matter are mainly at 

the bottom. 

The wind stress.pattern corresponds, highly to the observed currents at 

the surface,. It is interesting, however, that. there are cases in which the 

density near the surface is not correlated to the wind, whereas the density 

at a greater depth is. The reason for this is not yet well understood. 

Reference 

Lynn, R.J. and J.L.Reid 1968 Characteristics and circulation of deep and 
abyssal waters. Deep-Sea Res. 15: 577-598. 

Lecture #2. 

1. Equations of motion 

Notes submitted by 

Jurgen Willebrand 

Consider the equations. of motion. for. an inviscid fluid, namely 

it := 7s- \l J -v cp + frictional forces, (2.1) 

~~ + f \j. 'X := 0 (2.2) 

where r1 d 
d t 'E? at +:t. 'V 

and - 'Y~ is the body force, such as the gravitational force. The fric­

tional forces are omitted. in this lecture. To these equations must pe 

added an energy equation, property (e.g. salinity) conservation laws and an 

equation of state which, for the ocean, is generally 

where S .is the salinity ... We now transform. to a coordinate system rotating 

with the earth. Then (2.1) becomes 
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,ax + 2..n. A v ': - _pI 'iJ'"D _\l;f.. eLi .......'-' J:r (2.3) 

and "R is the magnitude of the component of . X. perpendicular to the rota­

tion axis. 

2. CQnservationoLpotential vorticity (Ertel, 1942) 

Equation (2.3) may be written as: 

Consider a system governed by (2.4) and (2.2) with 

jJ:::fJ(S)'f) 

where S is some state property that is conserved, so that 

cis ~ (Is + V '1"7,$ - 0 (ft- F"" "",'v - • 

Taking the curl of 

where 

(2.4) gives the vorticity equation: 

r1~-W~'VV+W\J. V= -~(D/I\l'D d:t- - ~ -,... p-) of 

~ =2. Sl+ V1" V. f"J ,..,. 

Eliminating r::;. y, from (2.2) and (2.4) gives 

it (~) - C};;\l~ = \7p A\7;p 
• to3 • 

The gradient of (2.5) gives 

1t\lS + 1lY.,. 'rls :It 0 • 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Adding the scalar product of (2.6) with \Is to the scalar product of (2.7) with 

YJ/p gives: 
~ (\}s.~'_ 0 
cit ;0 -; - • 

fls--W/p is called the potential vorticity. 

3. Approximation.of.the.earth by a sphere 

The earth's shape is approximately that of an.oblate spheroid, whose 

ellipticity is estimated to be 1/298. Since the oceans have an average depth 
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of 4 -km which is small in comparison with the earth's radius of 66,000 km., 

the equilibrium shape of the earth is taken to be spherical. This produces 

an error of 3e/2 ~ 1/200 in the equations. (For justification. see Veronis 

(1973)) . 

4~ Approximation,of neglecting 2stcos 1> term (Phillips. 1966) 

We use the equation of motion in the form: 

d)l, :. F - 0 - 'iJ (-1- V • v) + V II (\J It. V) - ;2.. n 1\ V at. ,....:!. .l ,,;"""; ,... ~,;oJ (2.8) 

where 1: denotes the frictional forces and the pressure gradient. We use 

spherical coordinates (r. it. 'f) where it and ~ denote the longitude and 

latitude respectively (with scale factors ~A. =- Y"~ f, ~<p : T and liy-:' 1 ). 

This gives the exact angular momentum balance: 

d..~ [ y- COO SO (u. or 2-n yo CQ.) cp ~ =- r COO p F;1 • 

The shallow system approximation, is to introduce into all curvilinear opera­

tors the approximate scale factors: 

~~ = CL ~ cp) -A~;: T? 0. • 

If (u... v .w) now denotes the eastward. northward and upward velocities. the 

components of the approximation to (2.8) are: 

a.~cp )VMnC[J> 

rJ-f! p )IL /JAm ff' 

This gives the approximate angular ' momentum balance: 

d~ [~~ ~ ( u. + 2. .n.. y ~ c;o) J ;: 0.. ~ <p 0. · 
We note that shallowness is not sufficient for the horizontal compo­

nent of the Corio lis term to be neglected since stratification is necessary. 

A second argument for its ,neglect is now given (Veronis. 1973). The poten-

tial vorticity in spherical coordinates is ~ } d 
~~AY = + {)'~q> [o~~ - -a~ (l).~97 ~ + l!l.oirn q> i3~ + 

-T t-[ y-~f [;T (YlJ. ~ cp) - ~f ~ -2. n C4Q cp} ~ ~~ + 
I f I ow ,d (,\} I 'as . + pt -;- 8iP - l=" or TV, r~tp aA 
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The horizontal component of the Coriolis term thus provides a negligible 

contribution to the potential vorticity in comparison with the vertical 

component when 

that is, when 

where Lz and Li-j are typical vertical and horizontal lengths respectively. 

For motions away from.the Equator with scales L~< 1 km and LII> 100 km, 
say, then the horizontal component of the Coriolis term may be neglected. 

5. Boussinesq.Appr.oximation (Malkus, 1964 G.F.D. Lectures) 

We write the equation of motion as 

f> (~; +.2.Q A ~) = - \If - P ~ · - (2.9) 

-3 For the ocean f varies between 1.02 and 1.07.gm.cm . and hence is nearly 

constant ... We approximate (2. 9) by replacing f by the mean density, Pm ' 
on the left-~nd side, giving 

l) (d.x. + l. .n. A V) = - \ly - P Cl • 
(m 01..:1: ,,-""'" ~ 

The reference ,system, denoted by (po.,]Q.' T~ ), is adiabatic and hydro­

statically balanced, so that 

The salinity is taken to be constant (usually 34.85 parts/lOOO), so that 

fo. $: Po. (.po.. TQ. ). 

The First Law of Thermodynamics gives: 

~$Q-ToL7= CpdT+T(:i)TcL:P 

where ~ is the specific entr,opyand Cy is the. specific heat at constant 

pressure, so that, for an adiabatic process, 

d.To..;:: _I (In.-l cLpo..= 8,00. To.. (~J = _ ~A To. (~) 
ot.2 Cy a:p iT C[i" C:p 1 7, C"] 0 T Y 

where V. is the specific volume. If eX. = v-'ea ~a·T))' denotes the coefficient 

of thermal expansion, this becomes 

oTa.. = 
dZ 

r 
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For the ocean a typical value of the adiabatic.temper.ature gradient,oTQ.ldZ~ 
is -O.l°km. Now suppose that 

Y<:::Ya,+Y,P:Po.-+f, T"XT~+e . 

Then the equation of motion is approximated by 

p [ ely' + '- SL 1\ V-J = - \/'1- a p. 
1m olt. ,..., tv ;L 

Suppose now that 

where S is the salinity. The equation of state is linearized about the 

adiabatic reference state, so that 

1=;;-I?,:C (~l e+ (¥-\ 5 t (1L-) j + 
(l. a T/J;S S /Y)I ~y 7-r;s 

. . . 
and thus 

where 

t- -' (lLJ - ~ -as )1;T 

Now I ~ kJI « ldp\ciz I, so the equation of motion is. finally approximated as 

~ (ir+2QII~)= -'l:Poi- ~oce-1~s (2.10) 

Now consider the equation of continuity, (2.2). As above,the term 

(Y.-·\])f is much smaller than"a\]·Y., and is thus neglected. For motions with 

characteristic time scales» periods of acoustic waves, the term "dp/at may 

be neglected and hence the continuity equation is approximated by 

\l''j. ... 0 

The system is completed with the equations: 

rl e 0 ds - 0 it =, d.t - , 

It is noted that the use of ;S instead of ;; can lead to difficulties 

(Veronis, 1973) which are best avoided by letting oC and ~ be functions of Z 

in (2.10). 

Notes submitted by 

Rosemary G. Kennett 
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Lecture #3. 

Scaling of the. Equations of Motion 

The equations of motion in sphericalc.oordinates will be scaled for 

large scale motions. Cases for which the resulting scaled equations do not 

apply will violate some or one of the scaling ~ssumptions. 

With the Boussinesq,_assumption and after taking out the adiabatic field. 

the equations of .motionin-spherical.coordin~tes become: 

eLLA-+ u.W _ LJ.viDm 41 + HlCCf.l CPW -2 n.~ ~V::: - -'- ,()~ 
rit 'r )" ~-r0l\ . 

,... 
d,w _ u."t v,. -1 Sl COO A, u.. :. ~ _,_ d fi ,... Il L 
"It"r 'f' fJm '0 r d Pm 

d.~ *=0 
I 'du. + I;'V .Y..~"'~ dw + :2w !6 0 

~~+ ~. Y df" - r 'f' Tr r 

with the definition: a~ = a~ + Y'~Cf) l'A + ~ a~ '-I- to * . 
For the purpose of scaling. the variables. and operators will be 

denoted as follows: 
d ""..0. {' I 0 _ I (", I '0 _ .l. c'" .. ~ _ ._, r , 

at = \. °t'a,~~ o~ - LOA a o«p - L°tr' 0'( - ~ 0: 

u.=Vd, V=- Vv l , w= Ww') ji =- (6;;),1) I "P :.(L~p)p 
where the ~ operators. prime quantities~ J • and pare nondimensional and 

assumed of order one. Note that r is a nondimensional factor in the time 

scaling and the different scaling for horizontal and vertical motions. Since: 

Y"::. Q.. C. t i' ?:/fJ-) and, r 6 +-I .~ and H fa. <: .001: take ,'(' 'R::I a.. Substitution 

then yields (dropping primes): 

t ~(J. -+ R[ 'i' 'Vu.+ ~j1. u. w - '1 U.V"tarv, ~ + 2).~ oo-o¢ w -:l..o.Un 4 V = - PdA P 

r: rfev -I- R ['t- t;;nl- + ~}J. V !AI + '11..l""tom ~ + 1 4Vn 1 u.. = - Pdr1 P 

E)..( [r dtW + 'R (t. \]w- ry u.'" -~ v~)J -2. E~ <fJ u. = - Ptfc p - Q,P 

~u. + J~ II -ry 'I tam ~ + :l. "1tUW+ + ~ w::. 0 

, .7:4p+"R'i,*\JP-=,O 

with the definition t·\7]:u.~ + ,,6',+ Twt~. 

r 

-
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The nondimensional parameters which appear are as follows: 

R.= .L, ..n.L 
the Rossby number which is. a .. measure of the nonlinearity of 

the system 

jJ='f) 

E = f· 
"1 = ~, 

the ratio of vertical to horizontal velocity 

the ratio of vertical to horizontal length scales 

the ratio of the horizontal length scale to the earth's 

radius 

1'\ _ ~ ~ a ratio of frequencies squared 
~-Y.n.1.. .P ) 

frl 

and "P= ~~.n VL...Pm ) a scaling of the pressure differences with rotational 

forces. 

Two assertions are now made: The first is that ~ .c~l ; the second is that 

~ ~ 1 , or the vertical 

divergence, W:S V t 
The following result: 

divergence is upper bounded by each horizontal 

Formally. take It- ::. 1 . 

1. From the vertical equation of motion we get hydrostatic balance: 
p_ Q amJ. A -P"""<a 6.p H. 

2. '1.- \J:::. U. tAt Va4> + uJ aT:. The vertical convection is the same mag­

nitude as the horizontal convection. 

3. All metric terms involving U) are at most O(E). 
4. The horizontal component of the Coriolis terms is 0 (6) • 

With the ordering by Coriolis acceleration implied in scaling the 

pressure and with the restriction P = Q = l, the equations, to 0 (6-) , are: 

t' eft- LA-"" R (y. 'i) IA -1 u.vi"arn ~ ) -21Wn 4> V :: - df.. P 

Lotv+"R('i''V''-'f1U~~cjI)'''2 ~cP~: -~P 

di!p =-,P 

" TOt A + R'Y • V P :; Q 

,d).. u.. + r:f~ II ~ Yl V ta.m ~ + cf.e w = 0 

Three additional scalings of these equations are now considered. 
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Small scale motions: ~:. ~ « L 
Swallow eddies are an example of this class of motions; typical mag­

nitudes are 
~ 

2 L ..-....; 10 km. 5 H .-...J 10 cm. v ~ 102cm/sec. 

T ~ 10-1. 

The nondimensional parameters associated with the upper limit have the values 

To avoid the complication of the spherical character of the earth an ex­

pansion is made about some latitude, ¢o. 

¢= ¢ot ~'::r ~c+ (';//0,);: ¢o+?~ 
Then expanding IJ1m ~ and CO'Q ~ about ¢o yields 

we can write 

M;, cp=,w" ¢c ( I + Yl~1 CJit ¢ + .•. ) 

0f;Q ¢ = Ct>Q ~o (I -11 tom ~ -+ •• .) 

To lowest order in ? -the equations of motion are: 

.-r au. + Rv.vl.A.-r'lv = - #-
I.. at - ,. C1 '" 

l 'e)v -+ R~·'\1V -+f/.A.::' - ~ 
~e o~ 

~=_o ail i 

t' ~ .... 'R~. 'I,P :: 0 

'du.. + (3 v -I- 'dw :: 0 
a x. ~~ ~"! 

where f :=. A4-im cP, =- const. (traditionally f:::. 1.n. AAm ~o) 

This set of equations is called an f-plane system. 
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Intermediate scale motions .~ ~ 7 • 
Wind-driven gyres are an example of this class of motions. As for 

small scale motions (f~plane), expand ~ about some latitude ¢o Compare 

the terms ~ V and ~ vtmn ~ in the continuity equation 

(" dV . +- " 'y)l(,/'y 
Ott> V = '0 ~ J ~ V tam 4' : ~ l.JQIYl ¢o V + ~9 .. ¢o + . . • 

The conditions "7 <:.1 and 4>0<' 45° (strictly ~i:J <<. 4Sf)) imply that the 

metric term may be neglected to lowest order. With the Coriolis parameter 

written as 

The system of equations is the same as for the f-plane system with: 

f -:. '-iO.kn if:;,. + .l1CA>O q,~ ~'I:. fo + (3~' 
where /3 ... 2. ;: otXI CPo (traditionally./3 = ;J.n~ ¢o ) ~ 

This set of equations is called a ~ -plane system. Note that toward the 

poles in the continuity equation the spherical effects are no longer small 

compared with the variation of the Coriolis parameter, and the /3 -plane system 

must be used with caution. 

Global scale motions: r;.....,; 7 • 

The global circulation is an example of this class; typical magnitudes 

are: 

For very long~period motions, take L = O. The use of R = 0 simplifies the 

equations of motion to: 

LA.im¢V 

LMm~u.. 

~ 
di! 

k 
cit 

I ~ :. 

~4> 0).. 

= - .~~ 
= - Q'p 

= 0 (.A..:; y.o) cLt AJ 

Notes submitted by 

Laurence D. Armi 
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Lecture #4. 

In the last lecture, sets of working equations were presented for 

large scale oceanic flows under various circumstances. Today's lecture 

~ea1s with preliminary discussions of two important phenomena related to 

these equations, and then progresses to a global circulation calculation. 

1) The phenomena 

A) Geostrophic flow 

This is a process fundamental to one understanding of many oceano­

graphic phenomena which arises from the balance of Corio1is and pressure 

gradient accelerations which were derived in the last lecture. A simple 

thought experiment is given as a means of demonstrating geostrophy in a 

conceptually simple situation. 

Consider a cylindrical tank containing homogeneous fluid rotating 

about its axis wit,h angular velocity ft . The system is at a state of 

rigid-body rotation. This is system Number One. 

Ii>..n. The re1event equations are: 

-' 1A=- Cl P a"2. ~ 
_, ,_ ~ ~ ~Jl., 
P d/t 

(j ( alt which yield: f'l ~J1.)::"", ,. --. 
, 0 2~ 

Now consider system Number Two, which is identical except that it has 

angular velocity .n. -+ A..n. • 

(+A.fJ: 

I 
Our thir~ system is this: the tank and all the fluid in it rotates at 

angular velocity -fl , except for an annulus of fluid which is, by some means, 

kept at angular velocity ./"L + b.J1.... We have 
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The relative velocity in the annulus is the 

difference in some sense between the above two 

systems. We define 

;. LJ l' = P f = 1> ~ - 10, 
~--~~----~I~'~ 

Now if 

rotating at 
.!).+b Sl-

and we say 

we obtain 

and subtract the horizontal momentum equations 

of the above two systems . 

-:a. 
t:. ...n. .t::,L.n. (thus drop the (LU,).) term) 

I dlr.J t I - ~ =;2..n. 'V~ 
(J ,,)1. 

which is the geostrophic balance. We see this is a situation where the 

pressure gradients are compensated by a normal flow. In Cartesian coordi-

nates it becomes: 
Ik 7 a~ :: J.S2v 

~ ]~ : -2SLLL 

An immediate result of geostrophy is the thermal wind equations. 

'If we write the equations for the ocean: 

~ev ;:: I ff o..~4> 

Ip/J.; : --' ff Gt, '0 

~ 
";1r ~ -BF 

(where G:::. :t..n AWn tp ), we readily obtain: {*" (to 11) = - o.l (J) :K 
f ;f; (pu.) == t ~$ · 

These equations are extensively used in observational oceanography for 

obtaining vertical velocity profiles, to within a constant added term, from 

hydrographic data. 
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An example of their use is motivated by John Bennett's talk. Con­

sider Lake Ontario where warming occurs preferentially on the edges at any 

given 1 evel : 
® flow into page 

o flow out of the page 

COLD 

B) Ekman layers 

Consider a system infinite in x and y, with fluid in the lower half 

plane. A stress acts on the surface, -e = 0 , in the x direction (the 

orientation does not matter). Finally, we assume the flow is steady, and 

that the density is constant (these two assumptions are not necessary). 

We have the boundary condition: 

V (du.." := L= constant, and ( ~v) := a 
~a=D ~r ~=o 

and the equations: 

-2 Sl -V-
d~ 

:::t- \J ~ 
ar~ 

l-D. ).J.. -:: '!) a~'V" 

~ 2!---

thus lJJ' :: constant = 0.., . 

since W = 0 at the surface. We also specify that the velocities, u and 

v, vanish at great depth. Now define 

so, by solving, 

where 

cp ~ M. 1" ,,' 7./ .. 

¢ ::. ¢a e VIT ?oj; , 

d =JX' 
is the Ekman depth, an internal scale of the system. By using the stress 

boundary conditions we get 

• 
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"u..' = ~er/f (~~/'J + Mn ~/rJ) 
lvVJl. . . . 

V ::. -L_ e9'J"(~zlcr _ ~ -e/cr) . 
.1 v \,):'1 . 

We see that (u.l r ::. O = - (V-)l~O'::' .2~, 
so that the surface velocity is directed 450 to the right of the applied 

stress. 

This Ekman phenomenon is important in understanding frictional inter­

actions in rotating systems, although it is not always applicable in exactly 

the form derived here. For the ocean, we would have predicted a very thin 

layer using molecular viscosity. A more-of ten-used approach is to use an 

eddy viscosity for V ,but this is messy and not constant with depth. 

To handle this, consider: 

and define 
5° V cL-e == V 

-Qt:J 

r M- d.~ =- U 
-00 

where "l' ~ ::. O • ., 
o From this we readily see that the depth-integrated transport goes off at 90 

to the right of the applied stress. 

We have one note to add on scales. In the last lecture, we assumed: 

E;: ~ <:< 1. 
We now have a vague (due to turbulent viscosity) Ekman depth, which assumes: 

so we must have 

d H« 1) 

d «1 L . 
also. 
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Now consider an upper layer of the ocean. We have a diagram where 

solid arrows are applied stresses and double arrows represent transports. 

We draw in Ekman transports as our above results indicate them. 

The curved double arrows represent the vertical transports into or out of 

the Ekman layer demanded by mass conservation. These can be d~rived by 

means of integrating the continuity equation: 

jO~. ott =. -wi = _ t (aM + ov) ol:e. 
d'C,. :=_oo)~ (}-x. -au 

_~ . _~ d 

It thus becomes clear that the Ekman layer provides a vertical velocity con-

dition on the top of the interior region of the fluid. 

II) A global scale ocean circulation calculation the thermocline. 

The discussion is based on a 1971 paper by We1ander (J.Mar.Res., 

29: 60-68), where he studies an inviscid, non-conducting, steady system. 

The working equations, with the Boussinesq approximation already made are: 

~(J{.\7 Jl+:lJl- xY):: -91' - P9~ 
\i. yo;: 0 

y_" p=-O 

The potential vorticity of the system, 

p= 

(1) 

(2) 

(3) 

is conserved along a stream line. The p in the denominator is not really 

needed, since it is conserved along a stream line by Eq. (3). We also de-

rive: 

which states that the Bernoulli function, B, is conserved along a stream line. 

Thus we have three conserved quantities: p , P and B. 

Now, we can consider a stream line as an intersection of two surfaces 

in space; 

-
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tV ;:: const. and A ;:: const. 

thus 

From this it is clear that 

a very general result which is about as much as can be said from what we 

know here. 

Now we restrict our attention to (slow) oceanic flow below the 

Ekman frictional layer. 

so that: 

We then derive: 

That is: 

A, 

fJfkx]£ =.-9P-~f 
IJoJ£ :: 0 

yo'\}p =0 

P: 1.S'L 1' •• LYl ¢ ~1 
.B:=. 1'+ f ~ ?: ~ 

What is left to work with is this: 

AWn cp -* = r( F' P ;- p ~ i: ) 
~f :: -~p# 

In order to get a solution now, we need to and pu (p and f defined on 

some surface) and a form for F. 

As a special case, we consider 

p ;:: a,p -1r B + c. 

We readily derive 
'a. d 

AWn rf, ~ ~ (Q., --8-0..~) !!.L, 
'f' 'O.;!.:l- \: t::I '0 to 

which leads to 
;: = c, (A, ~) e (a.i!- fr~7:1~)/IJiJnrj; 

f. (1,( ;tA) +C (?iA) fe -(r ••• 1/D,w",p rl r . 
o 

and 
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The constants are: 

Now we are in a position to look at the nature of the solution. There are 

two vertical scales: 

1) i!o= 
a... 

8-~ 
If -t- ) 0 

If -t < 0 , 

We need to have 

the density profile is exponential-like. 

the density profile will have an inflection point 

at ~o • 

.a(mf 
~ /0, and then there will be an appro-

pr!ate decay at depth. 

This scale ,e-, represents/a thermocline thickness. 

Welander, in his paper. used d~~a assembled by Reid for the South 

Pacific to get Po (A I <p) , and C (AI 4» , as well as the scale depths. 

The results are sketched here. The qualitative agreement with observed 

data appears reasonable. and it does show a bunching of constant-density 

lines near the equator similar to the observed. The breakdown of the general 

agreement in the southern part of the ocean is no surprise. as it is due to 

the circumpolar current which is not accounted for in the model. 
~-S OOIM), '1''''"5 ~O' 

computed observed 

It is possible to compute a velocity structure according to 

along the plane where ~ , and C are calculated we have 

this model, since 

,cJm 1'( ~~ t = ct,4 -.gPo + c ~ 
and po can be calculated, leading to a velocity structure. Welander did 

not do this. 

Notes submitted by 

Kenneth H. Brink 

-

-
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Lecture #5. Analysis of a Diffusive Thermocline Model 

The main difference between this model and the ideal fluid model of 

We1ander (1971a) is in the introduction of diffusive processes .. The aim is 

to determine the role of these processes in the maintenance of the thermocline. 

This model, however, does not provide a severe test as will be shown later. 

The basic equations are: 

f k x v = 
-v --

'V·z = 0 

:to 'V P = 

where -p = 

v P - gf! (1) 

(2) 

(3) 

(4) 

Vertical diffusion in this system is introduced by Eq.3. Horizontal diffu­

sion is ignored. The justification for this is that the sea surface is heated 

and the heat so introduced is carried Q 
downward by turbulent trans­

port, Thus, at least in the 

thermocline region, vertical 

diffusion is much more impor-

l ----'------=----:;::::---Sea. sur+a.ce 

tant than horizontal. 

When Eqs. 1-3 are 

expressed in spherical 

coordinates, the following 

equations result. From 
T 

Eq.1, the momentum equations are: 

u.. = - ~o- P<p 

V ;:: I P. 
.f:o..~ q; A 

P = - t"Pl: 
The continuity equation (2) becomes: 

+ ~ + W =0 ct. ~ 

(5) 

(6) 

(7) 

(8) 



- 20 -

The diffusion Eq. 3 becomes: 

W = ~ [k: Pit" - a.~ 'P fA - * Pcp] (9) 

Substituting ~ for p using Eq. 7 in ~q. 9, then using Eqs. 5 and 

6, the continuity equation may be rewritten as an equation for 1'. 

kA-im <p ~lf[lii!t;u.- p.~= 1'cp[Pan ~~ - ~i! R~~ + 

+ ~ [~i! ""Plf,H "'PH? -Pq>~ + c.ot (p 1': ~J (10) 

where /(:: -;..n 0.. 'to )( 

Needler (1967) arrived at this equation in nondimensionalized form using 

the variables 

(11) 

The dimensional Eq. 10 will, however, continue to be used here. 

Welander (1959), arrived at a simplified form of Eq. 10 by using a 

variable M, essentially the vertical integral of P with the barotropic 

mode included. His equation was: 

(12) 

The solutions to (12) are no simpler than the solutions to (10), so (10) 

will be used in the following analysis. 

Since the model is geostrophic and hydrostatic, what can be done 

with boundary conditions is limited. On the surface, an Ekman layer may 

be introduced to give a density distribution at its base and, coupled 

with a known wind stress, a vertical velocity into the interior. On the 

bottom zero normal velocity and zero heat flux conditions could be applied. 

Available solutions are not general enough to satisfy all these conditions. 

Similarity theory has provided two solutions to Eq. 10. The re­

strictions imposed by this technique may be lessened by more general forms 

of the solutions. 

For the similarity solutions, the following substitution was tried: 
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-P(~?Y??~) = rt(A;cp)G (rO 
where ~ ~ ~ k (it I cp) 

Surface boundary conditions then correspond to conditions at G(O). 

Substitution of (13) into (10) gives: 

I< ~ Cf ~ cp k.3[~IIGI~- Gll/~J e J (k) ",) G1 G GIII+ 

(
, ..j.. ) II II I I III 

+ CbL rpk 9,c). - :2. j . G G G - -r ~ G G G + 

+ (~<p q, k). + :r) GIG 'I G 1/ 

where J (k, q) is the Jacobean of k and q with respect to A and !f 
To solve this equation it is necessary to remove the A and 0/ 

dependence by choosing k and q as follows: 

k = (41-n qJf[A + E (q>Jll 

I}: [JJJm cp)""".[ II .. E c cp)f" , 

When these are substituted into Eq. 14, the following equation results: 
L ~ 

K (GWGu_ (jIll) = (In-m ') G G1G:1J of- (1m - 'l"Yl+ 1) G G"-
It. III (, \ 'I I'). 

- (21'\-rn)1 ~ G + ~n-Yn) 'L G Gt 

This is solved, as in Koslov (1966) by first balancing the coefficients 

of ~ . 

{ .3 11-1'n GI'~ d" Gill ( C' = 0 
1 Yl-ffl J 

(13) 

(14) 

(ISa) 

(ISb) 

(16) 

(17) 

If G' = 0, then G = constant, implying a barotropic field which is 

not of interest here. For the other solution, if G' f 0 and 

3n-m *' 0 1 00 :L.Yl.-m ~, (18) 

then 

(19) 

For compactness now let ~ + ~I) ::: r , W- -1 = w. 
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The remaining terms of Eq.(16) are: 

1< (G'VG'~c}H").) = (2 Yl-m) G G' G,I)+ (:2'm -2"'(1 + 1) G Gil Gil 

Putting (19) into (20) gives: 

A solution can be found for rn ~ 2:n, corresponding to zero horizontal 

advection. 

If m ~ 2n, then: 

my:'fl. K r-~+ (m+YI-r'')(Q( rW+ e)= 0 

Balancing powers of r gives either: 

W=-2, e::o 

or 

Equation (23b) corresponds to a barotropic field. 

Putting (23a) into (19) gives: 

G = 14K 
(~+ Ylo)~ 

This form of solution was guessed at by Fofonoff (1962). 

3n-m If, in Eq. (17), l - :: 1 
V\+m 

Gil" G' C"" then - :: 0 

yielding a solution: 

Putting this result into (20) gives m = -1. 

(20) 

(21) 

(22) 

(23a) 

(23b) 

(24) 

(25) 

(26) 

It is also possible to obtain this result from the conservation of 

potential vorticity. 

It can be shown that this exponential behaviour follows from: 

tWn ~ ~i :: cp (27) 

with no Bernoulli function as in Welander (1971). The solution to (27) is: 
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_ \~ c~~rp p- oe .. 

Note that this solution, of the same form as Eq.(26), comes from a com­

pletely conservative system, - with no diffusion at all. 

(28) 

Now that the form of the solutions has been found, it is necessary to 

add the scale depth from observations. One approach is to use the thermal 

wind equations which give a thermocline depth that is more or less realistic. 

The inverse square solution (Eq.22) was arrived at by Fofonoff (1962) 

and exponential one (Eq.26) by Welander (1959) and Blandford (1965). In 

the first case the surface boundary conditions must be fitted to the arbitrary 

mathematical forms of k and q (Eqs.15). In the exponential form the surface 

density field may be exactly specified. 

These solutions may be generalized by assuming a form for P based on 

the similarity solution. Needler (1967) and Welander (1959) took 

p~ A (7\)tp') + M (A/f) ek.(il./.p)r (29) 

where A CA.; If) is the barotropic part of the pressure field. When this is 

substituted into the pressure equation (10) the result is: 

which is satisfied as long as the following conditions are true. 

K" =- 0 

A", [KIP "" k. cbt·~ ] 

f'II" [K,/ ~ Ka.6tc.r ] 

The solution of the conditions above where 

= 0 

=0 

(30) 

(3la) 

(3lb) 

(3lc) 

(32) 

has been investigated. It gives the same general exponential form of solution 

as used by Welander (1959) and Blandford (1965). It can, however, satisfy 

arbitrary boundary conditions where ~(AI~) represents the surface density 

field. 

This same generalization technique used on the inverse square solu­

tion yields 
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(33) 

When this is substituted into Eq.(IO) the following equations result; 

(34) 

(35) 

Thus it seems as if the more general form of the solution has done little to 

ease the restrictiveness of the boundary conditions imposed by the similarity 

solution. 

This solution does however reproduce the observed density profile in 

a more realistic way than does the exponential form. This is so because the 

density in the exponential form decays too quickly with depth. 

The inverse square solution has not been explored further, but more 

work has been done on the arbitrary exponential form. 

Using the pressure equation (29) with the pressure density relation 7 

to solve Eq.(9) for the vertical velocity gives; 

w= ~ + I [J(M>A) + A + I<~A/o. + M1e1<'a} 
.QAiy\ ~ -;;.n o.'l.C N\Cif\o ~ ~ cp f.Wl'l ~ ~ Cf 

(36) 

Due to the predominence of vertical mixing over horizontal, this model 

applies strictly only to the thermocline region but some interesting things 

may be noticed by looking at Eq. (36) as r ~ -00. The exponential term 

vanishes~).'f ----7 - DO unless A" ~o. If this is so then Eq. (26) re­

duces to: 

(37) 

The same solution (without the barotropic term) can be obtained from: 

wft::. KiL 
0'7: a e~ (38) 

which is just a balance between vertical advection and diffusion 0 Therefore 

the vertical velocity may be represented by: 

OJ::. W(aeo.l -flu.id + UJ'_ 00' 
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This implies that the exponential solution to the diffusive model is 

a linear superposition of We1ander's ideal fluid thermocline model and a 

balance between vertical diffusion and advection. 

Because of the mathematical arbitrariness of these solutions and the 

need to supply scale heights from the observed density distribution in the 

oc~an, "this model does not severely test the role of diffusion in the thermo­

cline. It must also be remembered that these solutions are not closed: they 

satisfy neither side nor bottom boundary conditions. 

Addendum on Fixing the Scale Depth in Diffusive Thermocline Models 

Although the general shape of the density profile in a diffusive ther­

mocline model is fixed by the form of the solution, the resemblance between 

the theoretical profile and ones measured in the ocean depends critically on 

the scale depth in the solution: typically the depth where 

Using the equation 

yields a scale depth of 

f (il) - P (-QO) 

p (0) - f (-DO) 

H~~ 
IN' 

-I 
=e 

This is not particularly useful for estimating H since neither ~ 

(39) 

nor ~ can be reliably measured in the ocean. When the relationship is used, 

it is with some measured H and estimated X. to get an estimate of I,.)j for 

the model. 

The scale depth may be estimated by the following technique alluded to 

earlier. 

The geostrophic equation 

(40) 

may be cross-differentiated to remove the pressure dependence, and combined' 

with the equation of continuity to yield 

V=-fr ~~ (41) 

This can be integrated from a level of no horizontal motion to the 
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surface to give a transport in terms of the vertical Ekman velocity ~ 

y-:: ~ we (42) 

This transport may then be represented by some average velocity times a 

scale height 
¥=vH (43) 

The thermal wind equation ~(~~.) 
f ~ - -~ ..E.e- (44) ail - C(.~~. a A 

can be scaled to yield 
(45) 

Combining Eqs. (42), (43) and 

following results: 

(45), eliminating V and solving for H, the 

H - r- .p'Lou.re LJ Y2,. (46) 

- l~,B (7-) J 
Typical oceanic values for these quantities are 

L = 108 g = 103 

we = 10-4 /3 = 10-13 

f = 10-4 ~ = 10-3 
P 

These put into Eq.(46) yield H = 300 m, which is reasonable value for 

the ocean. 

There is a discussion of determining scale depth in Veronis (1969). 
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Lecture #6 . Wind-Driven Circulation 

The wind blows over the surface of the ocean and exerts a stress on 

the water beneath. It is observed that the horizontal scale of the OCean 

gyres is about the same as the scale of the curl of the wind stress. Since 

the gross features of the gyres (western boundary currents, for example) are 

present in many different ocean basins we will consider a greatly simplified 

model where the effect of wind stress on the water is analyzed. 

The following assumptions are made: 1) The flow is steady (o~ =O)J 
and 2) linear (Rossby number R = 0). 3) Both the (explicit) existence of 

stratification and 4) topography will be ignored. 5) Motion will be taken 

on the (J -plane with 6) Cartesian geometry. It should be noted that in using 

the /?-p1ane, Corio1is forces arising from the horizontal component of rota­

tion is ignored, and this, in fact, invokes the implicit existence of strati­

fication which is otherwise neglected. 

The horizontal momentum equation is 

fk)(Y:~=-~\7P+ ~; (1) 

where ~ is the modified pressure, f is the Corio1is parameter, ro~. is the 

mean density, 1. is the stress exerted on the water by the wind, and K is 

the unit vector in the vertical direction. If the first two terms are bal­

anced, the result is geostrophic flow. 

(2) 

If Eq. (2) is differentiated with respect to ~ ,we obtain (since 

p ,which includes gravity, is hydrostatically independent of ? ) 

~;., :: 0 (3) 

Taking ~. curl of Eq.(l) (third term omitted) gives 

'V-V ",0 
-H 

which combined with the continuity equation 

\j-V::O 

(4 ) 

(5) 

makes the vertical velocity independent of height, and identically zero if 
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it is zero anywhere. This and Eqs. (3) and (4) is the Taylor-Proudman 

Theorem - valid for steady, inviscid, linear flow in a rotating fluid. 

If the first and third terms of Eq.(l) are balanced the structure 

of the Ekman layer can be obtained (as in previous lecture notes). Now 

consider the balance of all three terms with 

f:: fa + f3y. (6) 

The vertical equation of motion can be written as 

p~ ~t =-~ (7) 

Let the depth of the water be 

% :: 0 (V,ODO) typically (8 ) 

Then if Eq. (7) is integrated from z = 0 to the surface 

p:: fCi"tm + ~ ,om (h -~). 
Taking a uniform atmospheric pressure 

~'(T'l \lH"P .:: ~ \7 H h , 

(9) 

(10) 

which expresses a change in pressure due to a horizontal change in surface 

height. 

Now integrate the continuity equation from z = 0 to z = h (the 

vertical velocity vanishes top 

where 

and bottom) to 

Ult. + V~ ::. 0 

get 

U h 

= S ~ rl~. v o 

The horizontal equations of motion likewise become 

-fV:: - 1- ~~~ + t~ - rr 
+ u = - t ~ r + ts'* - Tb1 

where s, b stand for surface, bottom. Let cp = u+ ~ V 
layer solution to these equations is 

rh ;I. - (/+ t)~ffi: of" 
fe:: - 'f~e 

Differentiating to get the bottom stress 

(11) 

(12) 

(13) 

Then the Ekman 

(14 ) 
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1:: ~Jvf (u~ -V~) 
-c~ = J \t (uj + v~ ) 

(15) 

(16) 

where the geostrophic mass flow is independent of height and H U ~ = U H V~;: V. 
Substituting these into Eqs.(12) and (13) yields 

a h'2. ?C -f v:: - ~ - + r ~ K U + K V T ox. S (17) 

t U :; - t ~ ~ to + t~- K V - K LJ (18) 

with K=J ~t ~ = ¥w. Since % = }fo typically, I~ < < f and we ignore the 

last terms in the above equations. The net result is that bottom friction 

is being parameteri~ed as - K U and - K V . 
Cross-differentiation of Eqs.(17) and (18) yields 

/3 V -:. K· 'V x Ls - K (V~ - LJ~ ) (19) 

Introducing a stream function 

U = - lfIj (20) 

we have 

(21) 

This equation was first considered in this context by Stomme1 (1948). 

Consider a rectangular basin. 

0< y < IT L ~ 0 < Y < $ L 

where 4/= 0 on the boundaries. Nondimensionalize with a length scale L 

and a stream-function scale ~ . Since the zonally averaged wind stress 

over the North Atlantic gives a wind stress curl approximated by a sine wave, 

consider a wind forcing of the form 

K· \If- T.s = - ~dm +.- (22) 
/3 L;j L 

We have 
(23) 

Since E::. 0 (10-'3) this is a singular perturbation problem. 

If the variable dependence is separated 

(24) 
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the equation 

(25) 

is obtained. The interior solution with E= 0 is 

¢. = -X -t C 
L 

(26) 

which cannot satisfy the boundary condition ~:O in the boundary. So a 

boundary layer is needed to satisfy the boundary conditions, and it is 

expected to appear at x = 0 since the sign of the )S ~~ term is positive. 

In the boundary layer at x = 0, let the balance be 

(27) 

where the derivations are of large order. Re-scale the equation ~ = f 
so that 

(28) 

which admits a solution of 
-J ¢ :: cA..e + constant (29) 

and exhibits a boundary layer thickness of G near x = o. 
The uniformly valid solution which satisfies all the boundary con-

ditions is 
( -%4:) ~=- s-x-se ~y. (30) 

A plot of the streamlines shows the intensification of-velocity in the west. 

')( 

Fig.l 

r 
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The boundary layer width E can be determined by substitution of 

values, but since the ocean is really stratified. a modified value of it 

might have to be used. 

The basic balance in the interior is 

(31) 

which is the Sverdrup transport relation, and is valid in spherical coordi­

nates independently of the ;I.5-plane approximation. If Eq.(3l) is rewritten 

as 
(32) 

it can be seen that the wind stress acting on the ocean increases the vor­

ticity of the ocean. The physics of the Sverdrup balance can be easily 

understood. If the wind has a negative vorticity (clockwise) as it does in 

the North Atlantic, then the fluid wants to decrease its value of f and hence 

flow southward. 

The vorticity of the fluid behaves like "'P ~ - S:1 e --x/€ llArn \,J 
. E ) (33) 

near x = 0 and becomes very large in this western intensification region. 

It is here that energy from the wind is dissipated. 

Hidaka (1949) and Munk (1950) considered the same model but with a 

A9A~ frictional term. This produces a balance of 

j3~ . 4>)l.Y-X)f. ~ cp)( 
and gives a boundary layer thickness of 

(2L)~ . ,13 L:} 

(34) 

(35) 

The results of both theories are basically the same. 1) There is a 

southward flow in the interior which is returned in the boundary layer, and 

2) the downstream velocity in the western boundary layer is geostrophically 

balanced (see Eqs. (27) and (19)). 

If nonlinear terms are included, the equation becomes 

(36) 

where R = Rossby number and Z = H·(vorticity). For small Rossby numbers, 

the velocity can be expanded in powers of R 

'i= .vO+'R~I+ ~ . . (37) 
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The boundary layer equations near x = 0 for the stream function ~ become 

E IV + 111 U d avo II d dVo (38) 
TI}(~ '1',)( = - 0 d1. ~ - Vo ay-~ 

If this equation is scaled *= ~ and the functions U and V of the linear 
e 0 0 

problem are introduced, there results 

III + II) - 5'). e- l 4im ~j (39) 'f'n '("f - 1€20 . 

with ~, ~ 0 on the wall. The solution is 
sQ.. -1. 

\.V, -= ~-G '- S e lJJ.lfl 'l ~ (40) 

Then to second order. the total solution in the boundary layer is 

( -4€). "'Tl c'l-... -.,j, • 
4J :: 5 I - e MIn 'I - l"r/l. -£ e /.Wr) 'J. Y (41) 

V c f (.<Wn j + t : .. ( t- -I) tWn 1 Y ) e -74 (42) 

~ = - ~" (Wn j + ~~ ... (X/6 -2)Aim.2. y) e-1./~ 

which is valid only if R..:::. E'l so that "R ':!. • \l r .::(<! G ~ • 

The effect is a northward displacement of the intensification, with 

the dissipation now occurring mostly in the northern part of the western 

boundary. 

y 

o X 

Fig.2 

0,0 

Even with the inclusion of the nonlinear teams, the downstream 

veloci ty in the boundary layer is geostrophic. If"'R > €:l.. then the inertial 
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nonlinearities are more important than the. frictional forces and then a full 

nonlinear theory is needed and produces a scale of the boundary layer of ~~ 
which (in this case) is greater than C , obtained above. 
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Lecture #7. A Model of World Ocean Circulation 

Notes submitted by 

Mark Koenigsberg. 

The linearized equations of motion for a steady, wind-driven model of 

the ocean can be written 

-(Iv:: , If... + arr. 
T Po..~tp ail ,,~ 

(1) 

f u... = - -'-~ + o-c4' 
Pa.. acp o. (2) 

~! = - ~p (3) 

(4 ) 

For the model to be discussed, the stratification is idealized as two 

layers of constant density, the top layer having density ~ and the bottom 

layer P'2. The ocean bottom is flat; the equations of the bottom, surface 

and the interface between the two layers are z = 0, z = hI and z = h2 respec­

tively. It is assumed that the zonal wind stress is the most important 

forcing function and so we take 

r" ::. 0 ~ (5) 

where I[ is the zonally averaged wind stress per unit mass. At the inter­

face the stress is assumed zero. 

Assuming constant atmospheric pressure, the hydrostatic equation can be 

integrated to give 
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T.;:z P, = ~ 2 -hI (6) 
I 

-' \l"Po ~ ~ [b. P v -A + JL \j ~J (7) 
~_ l .~ ~ 2. ~,.... I 

where the (I> subscript refers to the top layer, the ci subscript refers 

to the bottom layer and b. f is ~ - f, . 
When upper layer water is present there is no momentum transfer to the 

lower layer because the interface stress has been assumed to be zero. Hence 

90 must vanish and so by (7) 
~r:2. 

(8) 

or 
(9) 

where h, the thickness of the upper layer, is given by 

A - ~ - ~ - I TI1 (10) 

The transport equations result from (9) and a vertical integration 

over the top layer. The result is 

(11) 

(12) 

(13) 

where (14 ) 

and (15) 

When there is no upper layer water, the Eqs.(ll) - (13) can still be used 

provided we replace g' by g and redefine (U,V) as 

( (h,.\ 
\.J I V) ::. J ( U. I v) cl r (16) 

<I 

Upon cross-differentiating Eqs. (11) and (12) we obtain the Sverdrup 

relation 

(17) 
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I df 
Cl 7f(f 

and ~ is the unit vector in the ~ direction. 

Use of (11) and (17) gives 

(18) 

a/'2. == .2.0. r~..<Jm (0 k.\l~ r + T ~ (01 , (19) 
~ t L' T - :- - -rJ 

and then integration between longitudes A and Ae yields 

-1,2: 1,;- ~~ [Q.MmCf~·1·ItL~<PJ(Ae'-A) (20) 

where lie is the value of h at Ae ' a longitude near the eastern boundary. 

The Western Boundary Layer 

As in, for example, Stommel's model, a western boundary layer is 

used in an attempt to match the interior Sverdrup transport. For this bound­

ary layer the following assumptions are made: 

(i) the value of A offshore of the boundary layer matches the 

interior value at longitude Aw; 

the boundary layer is infinitesimally thin; 

the zonal flow at the western wall is zero; 

(ii) 

(iii) 

(iv) 

(v) 

the flow along the axis of the boundary layer is geostrophic; 

there is no specification of the complete dynamical balance for U 

(i. e., we do not have a closed system of equations). 

In the theory to follow, we consider the North Pacific to be an 

ocean basin closed to the north at the 57.50 N latitude line, A similar 

analysis can be applied to other ocean basins. 

It will be found later that the western boundary layer separates from 

the coast. To make allowance for this we write the geostrophic balance in 

the western boundary layer as d ~'2. 
tlV::-> g' s a l1 

where Vs is the flow along the axis of the boundary layer,'.l is the on 
derivative directed to the right of Vs ' and the interior lies to the 

right of the boundary layer. 

Integrating across the western boundary. layer results in 

(21) 
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1-f Tw _ = _ ~,. ~ 2-

~' . ww i' w (22) 

where hww is the value of 11 at the western wall, 

at longitude Aw and Tw is given by 

-h w is the value of ft 

I w:: ) Vs d. '() ') (23) 

the integral being taken across the boundary layer. 

The interior transport is 

I[ = CVQ.Cb<\rpd.A ~ 30;: (~'Y')(I)Ll" (24) 

the second equality being obtained using (17) with ~A =A.e-Aw· 
Substituting the result of (24) into (20) applied at A ~ A'll results 

in 
(25) 

1.. 

Eliminating ~ w between (25) and (22) yields 

(26) +':w ~ ~:- ~, (f(T" + It) + a. r~cpLlA) 
Since the total mass transport across a latitude circle is zero, T w 1" Tt 
is zero and (26) is thus 

The above formula 

~'J. :. f,' _.2.~'LC«ICP~i\ 
VI'll e ~' 

for calculating ~ww is acceptable 

(27) 

in tropical and 

subtropical latitudes where ~ is either negative or relatively small. 

In temperat-e zones, however, -r is large enough to make h:'wzero at some 

latitude and negative north of that latitude! This difficulty is over-

come in the following way. From the equator to the latitude at which A ~w 
vanishes, ~?l is the width of the ocean basin; north of this latitude, 

D. A. is obtained by solving (27) with ?tw~~ O. This in effect means that 

the western boundary layer must separate from the .coast and penetrate into 

the interior. At the latitude where ~~wwvanishes, the western boundary 

current jumps from the coast to its new longitude determined from (27) with 

~vvw = o. 
The Eastern Boundary 

It turns out that Eqs.(ll), (12) and (13) and a constant value at 

1he can account for the qualitative variation in the observed thermocline 
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but for a quantitative realization heating and cooling effects need to be 

considered. Since we want to be able to compare our results with observa­

tions, information accounting for the heating and cooling effects needs to 

be included in the model. To do this we use two observed values of I.e , 
the thermocline depth at the eastern boundary A = Ae' 

For the North Pacific, ~e is taken as given at 270 N and SOoN. 

Integrating (12) 

(28) 

If V is eliminated between (13) and (17) we obtain that 

O~IJ (13:.~)(!). Hence we write 

and hence U 
are proportional to 

.,. "0 
. a.U = ... l~(-k.\lXL) 

e It' oCf' \- - - (29) 

Combining Eqs. (28) and (29) enables us to determine -y as 

)10 [~01')-~(5110~/ 1/~' f O+ l<p (!! .~,,!) d. q> (30) 

We can now determine ~e for any latitude between 270 N and SOoN 

since V is now known and integration of (12) gives 

~; (tp) = ~(H~ --1 i> {p (~''ltt) 01. q> (31) 

Similar arguments can be used to obtain ~~ over other latitudinal 

ranges south of 270 N. 

For the interior of the fluid the zonal flow is geostrophic so 

that if there were no boundary layer at the eastern wall ~ would be con­

stant along the wall. Since this is not the case, we have to invoke an 

eastern boundary layer. 

The zonal flow at Jl e is non-zero but at the eastern wall the flow is 

zero so incoming flow must be diverted to the north or to the south in the 

boundary layer. The sign of !.~~~ determines the sign of the meridional 

transport in the interior and so we require that the sign of 11'2){! de­

termines the direction of the meridional transport in the eastern boundary 

layer. In the case of the North Pacific, I.!: .yx1. is negative between 270 N 

and 400 N and positive between 400 N and SOoN. Thus, incoming flow between 

270 N and 400 N is diverted southward and that between 400 N and SOoN is di­

verted northward. The incoming flow between 400 N and SOoN is provided by llw 
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The Subpolar Region 

A difficulty now arises because T[ , Tw and Te (the transport in the 

eastern boundary layer) are all positive and so we need a southward return 

flow to get a balance of transport across a latitude line. This problem is 

considered after we have investigated the situation north of SOoN. 

North of SOoN od~(~'2xr)iS negative and so no upper layer water need 

be supplied by the western boundary layer. Thus Tw = 0 in this region. 

By setting -h'l.= 0 in Eq. (20) we can determine Its , the longitude 

where the thermocline surfaces. We have 

Ae - As = 9' f.t;/2.o.. (D-.aim cp ~ . ~ x t. + L Cd.l Cf ) (32) 

Substituting an expression for V in (17) into (13) and then integrating 

between As and Ae gives 

~ ~-:2~ o~ (~'2)(I)(Ae- As) (33) 

Equation (12) applied at A-=- Ite is 

I d (~~) 
Ue = - *dT .. -r- (34) 

and elimination of Ue and (~e-'~\) between (32), (33) and (34) enables us to 

write d 
I d ~... 0- 6m cp ~ (& ·7)( I) 

.e,~ ~ e = 0-~ cp ~.2.)('I t- 't~cp (35) 

Hence we 
Jl~ "l.. 0 

obtain -n e northward of 50 as 

~l = .o.-t (S-oo)~p [. ( cp QLJUy, cp fp (Jj-'i]x!) cLcp I 
~ e Joo a./Jirn cp~. ~i-1:+1: ~ cp ) (36) 

U e and As can now be obtained from (34) and (32) and so the solution north 

of SOoN has been obtained. 

In our model, the North Pacific is bounded by an east-west boundary 
o - T at 57.5 N. A net transport I[ + e meets this boundary; since this fluid 

cannot leak out of the system, it must flow westward along the northern bound­

ary, turn south and join the western boundary current at the latitude of sep­

aration. Had our model included heating and cooling, this fluid could be 

cooled and become lower layer fluid, thus avoiding having a light fluid bound­

ary layer near the pole with lower layer fluid south of it. (See diagram of the 

"General Circulation of the Ocean", Lecture #8.) 
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The southward return flow along the western boundary enables us to 

overcome our earlier problem of an apparent lack of net zero transport 

across latitude line between 400 N and SOoN. North of the separation point 

we now have 

(37) 

where -rwb is the return flow along the western boundary. 

With the new balance given by (37) instead of the original require­

ment that T. t Tw vanis~, the calculations for ~ww and L:::. A for the western 

boundary layer need to be repeated. The results are 

~~ ~:-2 [c>.'[COiIP"" -f (T.+ TWb~A' (38) 

and 

"A ~ [3'~~;" + ter. + T".~/a.T_rp (39) 

where 1,wW" now refers to the value of ~ at the left side of the boundary 

current in the open ocean. 

A similar analysis to the North Pacific can be applied to other 

world ocean basins and a model of world ocean circulation built (see 

Lecture #8). 

Notes submitted by 

Allan J. Clarke 

Lecture #8. I. Clarification of Some Points from Yesterday's Lecture: 

1. Eastern Boundary Layers 

The assumed balance among the Corio1is term, the pressure gradient 

and the wind stress yields the following relationships between the curl of 

the wind stress and the direction of the currents: 

If k· c.u.n1. 1: is negative then V is to the south. 

If 'd()(f (K. cWJ-r ) is positive (neg~'tive) then U is eastward (west­

ward). Making the additional assumption that the direction of flow in the 

eastern boundary layer is the same as that. of the interior flow near the bound­

ary, the following qualitative picture is obtained. 
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~(K.wA. T) > 0 dcp -
--- ---- ---. .. --
L(~.cwJt) ~O 
acp 

This assumption about the direction of flow in the boundary layer may be 

expressed in the form 

The proportionality factor, 'Y , is assumed constant geostrophically 

t Ue = -f adcp (h~). 

of ~e 
By equating the two expressions for Ue and specifying the values 

at two points ~ may be determined. Once this has been done Ve 
and the eastern boundary layer transport ~ may be obtained. We do not 

know the boundary layer dynamics in detail; e.g., the downstream pressure 

balance is not known. 

Remark: Ue is affected by the meridional component of the local wind 

stress. This effect could easily be incorporated into the model calculation. 

2. The northern boundary and the separation of the western boundary 

current: 

The upper layer of water which impinges on the northern boundary flows 

around the boundary of the region C (which consists of cold, lower layer 

water) until it reaches the separation point S. (Whereas in the real ocean 

this upper layer water would be cooled in the course of such a trip, in the 
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model there is no provision for heat ex­

changes.) .. When this southward-flowing 

water reaches S it merges with the north­

ward-flowing boundary current. Hence the 

merged boundary current must carry an 

additional transport IIwb toward the north, 

but the separation point S was determined 

only in terms of the original transport lrto If the separation latitude 

is to remain the same, the transport balance argument requires that the longi­

tude of the boundary layer current must jump abruptly to the east to a point 

Se' Note that since r<.c.u;&'[":::'Q at this latitude the interior flow is to 

the south so that the separated boundary current will lose water to the south 

as it flows from S to S . e 
This jump could be avoided by moving the separation point south to a 

point SI where the combined boundary layer transport lr~ and llwb just re­

quires that the thermocline surface at the western wall. This would require 

a discontinuity in the depth of the thermocline at the point SI. In any case 

there is some arbitrariness in the choice of a separation latitude - it could 

be at any point between Sand SI. 

Perhaps it shoqld again be stated that this model is not a solution to 

a closed mathematical problem. Rather, it is a construction based on a few 

simple principles (e.g., geostrophy, transport balances). The given solution 

is admittedly not unique. The crucial point to bear in mind is that in this 

model boundary layer separation is determined by the requirements of the gen­

eral circulation rather than by the details of boundary layer dynamics. Note 

too that the boundary layer separation is not merely an artifact of the two­

layer model. In the continuously stratified ocean the deep density surfaces 

do get to the surface inshore and to the north of where the western boundary 

layer leaves the coast. 

In the region C in the northeastern Pacific there is no upper layer so 

the lower layer feels the wind directly. Therefore, the wind drives a circula­

tion in the lower layer. It has been assumed in the present calculation that 

this lower layer circulation is confined to the region C rather than extending 
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to other areas. One could do a calculation which permitted the latter (see 

Kamenkovich and Reznick, 1972, Izv.Atm.Ocean.Phys.~: 238-245), but either way 

no account is taken of the significant amount of mixing to be expected in the 

region where the western boundary layer has separated from the coast. There 

is a lower layer boundary current in this region as well, which enhances the 

possibility of mixing, 

3) Separation at the east: 

From the formulas developed in the last lecture one may obtain the 

relation: n 2. :; hw'- w + ~ Q... r COO (0 .6 A 
ew . 31 1 

where as before, hew and ttww are the thermocline depths at the eastern and 
~ 

western walls, respectively. If r < 0 it could force flew ~ 0 ; that is, separ-

ation at the east. This may well happen in the South Atlantic (the Benguela 

Current) and possibly in the South Pacific as well. 

II. Results of the Model Calculation for the World Oceans. 

The results of this calculation are reported in detail in George Veronis' 

"Model of World Ocean Circulation,!.", J .Mar. Res. ~(3): 228-288, 1973. 

The remainder of the lecture made liberal use of the figures from that article, 

the reader will find these to be helpful in considering the following dis­

cussion. 

For all the calculations ~f~P is taken as .001. The geometry of the 

world ocean is idealized so that all boundaries are zonal or meridional seg­

ments. Features are retained when they are important as ocean boundaries. 

For example, though New Zealand and Madagascar have about the same latitudinal 

extent only the former is retained in the idealized geometry. This is because 

New Zealand is an important barrier to zonal currents in the Southwestern 

Pacific, while Madagascar has little effect on the gross features of the cir­

culation in the Indian Ocean. 

All of the boundary flows will be calculated in the manner discussed 

yesterday (Lecture #7) and earlier today. However, for a zonally oriented 

boundary one must also take account of the local wind stress. 
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Pacific Ocean 

The North Pacific has been discussed to some extent in the course of 

describing the nature of the model. Unlike the North Pacific, which may be 

taken as closed to the north, the South Pacific is open to the south where 

it meets the Southern Ocean. The water which leaves the South Pacific at the 

southeast (i.e., the Cape Horn Current at the tip of South America) cannot 

simply return to the west as a flow along a zonal boundary (as is the case 

for the North Pacific). Rather, it must circle the Southern Ocean and re­

enter the Pacific along the southern boundary of Tasmania. From there it 

heads east to New Zealand and circles New Zealand to the south, joining the 

Australia 
and 

Tasmania 

) 

--~ 

South 

Lt.-Am_e_riCa 

~l> ~ 

main boundary current on the eastern side. In the real ocean there would be 

important cooling effects in the Southern Ocean which are not accounted for 

in the present model. 

The thermocline depth at the eastern side, ~e ' varies considerably 

(e.g., from 200 m to 500 mover 300 of latitude) so the geostrophic U there 

is substantial. However, the thermocline depth right at the eastern wall, 

-P,ew is approximately constant (varying by less than 60 m over the whole 

latitudinal extent of the basin). Therefore the geostrophic U at the wall 

is close to zero. Since the boundary layer must serve to bring the transport 

normal to the wall to zero we may conclude that U in the boundary layer is 

very nearly in geostrophic balance, even though the model does not impose this 

condition on the boundary layer dynamics. 

In contrast to the situation at the eastern wall, the thermocline depth 

at the western wall, ~WW' varies greatly, so the cross-stream velocity com­

ponent in the western boundary layer is clearly ageostrophic. Both the depth 
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and the transport contours close sharply at the western side of the ocean 

basin and smoothly. at the eastern side. That is, the interior flow meshes 

smoothly with the eastern boundary layer flow. This is related to the ob­

servational fact that it is often difficult to define the edge of the eastern 

boundary current. In contrast, the western boundary layer is sharply de­

fined: the transition from the interior is abrupt. 

The eastern boundary layer transports in the Pacific are all small; 

the maximum is the 7 Sv carried by the Alaska Current. The Alaska, Califor­

nia, Peru and Cape Horn Currents may be readily identified (although the 
o 0 Peru Current extends only from 41 S to 16 S). The Alaska and Cape Horn 

Currents (and, similarly, the Norwegian Current in the Atlantic) are related 

to the separation of the western boundary current in an essential way. (See 

Lecture #7.) 

The model calculation yields a 60 Sv transport for the Kuroshio. 

A later model, which contains the effects of heating and cooling, gives 

66 Sv; the observed value is 65 Sv. Separation occurs at 350 N. At this 

point the model Kuroshio jumps 810 of longitude to the east and its trans­

port decreases from about 30 Sv to 17 Sv. (See the discussion under § 2 

above. The point S' where the transport is cont inuous but -h ww is not, 
o would occur at 29 N.) There is a lower layer boundary current under the 

Kuroshio suggesting instabilities which would cause mixing in this region. 

The real Kurushio bifurcates into a warm jet and a colder one to the north 

of this; the latter has been affected by the mixing that took place in the 

separation region. The model has no provision for mixing: it gives a cold 

jet to the north of the warm Kuroshio. 

The transport in the model's East Australia Current is 70 Sv, which is 

much greater than the estimates based on observations. These range from 30 Sv 

to 50 Sv. (Bruce Hamon attributes the discrepancies in the observational es­

timates to different choices of reference level.) The model boundary current 

separates at 420 S; in the real ocean separation occurs between 270 S and 350 S. 

The model which includes heating and cooling yields a transport of 50 Sv; it 

has the thermocline surface at 300 S, but separation occurs at a higher lati­

tude. 
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The model. is poor near the. equator because: the geometry of the coasts 

is oversimplified;.meridional winds are not included in the model, and the 

ageostrophic (e.g. nonlinear) terms have been left out of the equations. 

Indian Ocean 

There are some special difficulties with the Indian Ocean circulation. 

The wind stress data is not good. Moreover". the. data used is an annual mean, 

whereas it is well-known that the seasonal changes in the wind system are 

significant (viz. the monsoons) and that the ocean's response to these winds 

shows important time variations. The geometry of the Northern Indian Ocean 

basin is drastically simplified - the irregular boundaries are neglected. 

This, together with the use of annual means for the winds, probably accounts 

for the fact that the Northern Indian Ocean is badly simulated. 

The most intense of all the western boundary currents is the Agulhas 

Current with a maximum transport of 72 Sv. In the present calculation it 

separates from the coast at the southern tip of Africa. At this point the 

transport requirements cause it to jump eastward by 590 of longitude. In 

the course of this journey to the east it loses more than 37 Sv of its orig­

inal 72 Sv to the interior. This intense return flow has been observed and 

named the Return Agulhas Current. It is of some interest to ask under what 

circumstances the Agulhas Current could make it around the Cape of Good Hope 

and enter the Atlantic. A substantial inflow of the warm water from the 

Agulhas Current. into the colder South Atlantic could be expected to have a 

significant effect on the atmosphere. This inflow could occur if there were 

weaker winds over the Indian Ocean. With stronger winds the Agulhas Current 

would separate from the coast closer to the equator, and return all of its 

water to the interior of the Indian Ocean. 

The Indian Ocean also contains the most intense of the eastern boundary 

currents - the Flinders Current with a transport of 24 Sv. The Flinders Cur­

rent is actually along a zonal boundary; in the model it is due to the local 

wind stress curl causing a northward flow of interior water toward the South 

Australian coast. 
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.Atlantic Ocean 

The model Gulf Stream carries 30Sv; the.Brazil Current has a slightly 

larger transport. The latter is greater than the observed value. It may be 

that the Benguela Current actually separates from the coast which would re-

duce the transport requirements for the Brazil Current. The Atlantic Ocean 

calculation also yields the Norwegian and Labrador Currents (the latter in 

the cyclonic gyre of lower layer water in the North Atlantic) as well as a 

single current which may be identified with the Portugal and Canary Currents. 

(There is some observational question as to whether these are distinct currents,) 

Southern Ocean 

The method of calculation requires a meridional boundary so that a 

Sverdrup balance will hold in the interior. To this end a barrier is intro­

duced at SOOW (the South Sandwich and South Shetland Islands). The calcula­

tion gives a transport of 220 Sv in the Falkland Current and the geometry of 

the basin suggests that this be interpreted as the magnitude of the trans­

port through the Drake Passage. 

Introduction 

Notes submitted by 

Mark A. Cane 

RECIPES FOR MIXED LAYERS IN THE OCEAN (Lecture #1) 

Pearn p, Niiler 

The following pair of lectures will be concerned with a description of 

the surface mixed layer in the ocean. Parameterization of the mixed layer is 

commonly approached in one of two ways. In the first method the mean flow is 

parameterized to fit observations and the eddy terms are then deduced, In the 

second method, the form of the eddy diffusion terms is found through a sequence 

of turbulent similarity arguments and then the mean flow and the turbulence in­

tensity are solved for simultaneously, The first approach will be followed here, 

Instead of deriving a theory from "first" principles, the method will be one 

which relies on observations from which the descriptive "recipes" can be developed, 
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Qualitative Description of the Mixed Layer 

For an example, a typical vertical temperature profile of the Florida 

Current is approximated below (Nii1er and Richardson, 1973). 
Te~peY"o.rlA.l1e. ("c) 

6 I ~ 

~ "'""2-$I,.j 'r,j''' c e j'IJ'l}Cea IQ~.QJl.. 

Strol1j ~Mr~ra11.tl1.L rAdl~l1 t 

boa 

'aOO 

Two important points should be noted: 

1) Near the surface a mixed layer of uniform density . (temperature) exists 

whose depth is greater in winter than in summer. 

2) The thermocline just below the mixed layer is very sharp, especially in 

summer. 

We need not be concerned with the variation in the main thermocline 

from summer to winter since it has no bearing on the argument which follows. 

(The variation is caused by advection of different water masses during the 

two seasons.) Although large horizontal variations in the mixed layer are 

observed, we will consider only the vertical structure. 

Observations of currents near the surface reveal the following per­

tinent facts: 

3) The mixed layer assumes a fairly uniform, vertically independent velocity, 

while the currents below are often quite different. 

4) During a strong surface wind event (passage of a weather front, for in­

stance), the currents in the mixed layer exhibit a strong response within 

hours with much of the kinetic energy concentrated in motion of the inertial 

period. The currents below the mixed layer respond only weakly. 

The depth of the mixed layer is also observed to change during a sur­

face wind event. The following diagram illustrates how quickly a deepening 
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may occur during the passage of a front. (Note also the effect of diurnal 

heating.) (Stommel et aZ., 1969.) 

'Depth ~. 
Nt !'wi /0.'1 QI'1.. '20 

(lYle 1"e.'r " ) 

12:00 _. 18:00 
Ilflle. 

On a much longer time scale, observations show more gradual changes 

in the mixed layer depth. The following set of diagrams illustrate a depth 

change during the passage of a weather system (cyclone) on a tIme scale of 

days. (Denman and Miyake, 1973.) 

~o 

.Dtptn 
(meifJI s) 

'3 

o 
1'Jf.p+n ~ 

- /0 M,'ad 1Q.~e.,. 
(me.w..s) 

20 

-.30 

'10 

"ol---!..--/_~-L--­
iqmpfrar",,.,, pra.f/1es ",.f selected tt'mes 

From the last two sets of diagrams we conclude: 
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5) Deepening of the mixed layer can occur over time scales from an hour to a 

few days. 

6) There are no steady mixed layers if we consider periods longer than a 

fraction of a day. 

A laboratory experiment (Kato and Phillips, 1969) provides one further 

useful fact. A nonrotating annular basin of stably stratified fluid is im­

pulsively forced from above by a screen which supplies a constant stress in 

the azimuthal direction creating turbulence near the surface. The depth of 

the turbulent mixed layer increases in proportion to the cube root of time 

as the experiment progresses and a rather sharp transition between the 

mixed layer and the fluid below is always observed. The velocity structure 

is illustrated below by means of observed displacement of tracers in the fluid. 

depth 

H ts ti-u depth ~ +he. 
mi~ed 1C\.~e.iI.. 

7) The existence of the strong shear zone at the base and top of the mixed 

layer should be noted. 

Development of a Recipe for Vertical Mixing: Basic Equations 

The diagrams below summarize the ~enera11y observed temperature and 

velocity profiles in the mixed layer. They also serve to define some of 
~(~jt) 

h 

1 

the variables needed in the development of the parameterizations. 
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To simplify the development we separate each independent variable, ~ ,into 

two parts: 

L is 

part 

into 

a length scale and l:l t is large enough to remove the quickly varying 

of J caused by turbulence. The. time dependence ('1:) had been separated 

two parts, a longtime scale, 

The above definitions imply 

I 
t , and a short time scale, t . 

()I: dI Q:nd. at_ 0 at at 7>t" -
but 

I 

lL "* o. fJ t l 

The variables for the recipe' can now be more explicitly definedo 

Referring to the above diagram, we can describe the temperature distribu­

tion as follows: 

T (i. t) :: T (o;e) 

-h - cl. > i!r. 

The assumed velocity profile for our recipe is: 

2Cr)t) ~ !J.o(t) + tJ (:CIt) 

2 ('r/ t) :: I,6Q (t) 

2: ( •. t)"" ° 
where 'j{ is a two-dimensional horizontal velocity. 

-h> i!» -h -cl 

The equations which describe the system are written below. (Boussinesq 

Approximation.) 

1) aa~ ~ Y..'iJ 'L + w :;,- 4t )l,~ = - ~ \)p- ff 
2) "l- V + ~ ':. 0 

- ail 

d/O 
3) Oi! :-~p 
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4) f· Cp ( ~r.'t t 01\] T + w ~r }+oW3 Po # ~ \7?-T ~ ~ + 'P 
where po is a constant average density 

F is frictional stress -. is diabatic heating ~ 
cp is a viscous dissipation term 

If we average the equations in space and time (apply ( 

the set reduces to 

la) 
~)l; ~ 

f) t ... \/. (Y-';L') + 

2a) ~.! .; -BP 

) operator), 

~: which impliesW=O if W=Oat great depphs. 

Neglecting viscous dissipation, the heat equation becomes 

4a) ~ T + V. ( V' T ') + a WIT' -: . i . at ..... o~ Po Cp 

Finally, we will assume that the time averaged correlation terms are 

horizontally uniform so that we neglect \). )/..'::/ and 'iJ. Y..' T/. 

The system for the perturbation fields may also be written down with 

no further approximations,: 

lb) d~' +Vo\lV'+W' ~1.6+\7'V/X:'+ ~d W'I/'- i3t~/):. at , ~ Q!; . ~ 02 . Qe _ 

2b) V" V' + Clw ' = 0 ,... a~ 

3b) -'- 1.L= 0( ~ T' where 
Po rJ't 
~ oTs 

Expressions for Wi i and ~ 

Using the mean field equations and the assumed profile for -r(~t), 

we may develop an expression for W/.T' in terms of the mean field and the 

rate of deepening of the mixed layer to replace Eq.(4a) by one involving 

only mean field variables. The procedure will be to calculate vv'T' at the 

base of the mixed layer and at the ocean surface. The expressions deduced 
~ 

will be used as boundary conditions for calculating wiT throughout the 

mixed layer. The rate of temperature change in the mixed layer will also be 

deduced. 
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In the entrainment layer (-h .... ~/-h-d),io=O. and we can integrate the 

heat equation through this layer. We assume no mixing below ~:: -n-d.. so 

that below the entrainment region Wi T/= o. Then. 
-h (t) - [-h J d;~Jt) ch + . iw' cL'f = O. 

-\-i(t;)-d - -0 
Substituting the assumed profile for ~ and carrying out the integra-

tion gives for the entrainment region: 

W/T/=[T(-'n-dJt)-f(o)t)+Jo(_~-cLJtD %th -d -kT(OJt ) 

where ¥( -h-d)t):. g~ evaluated just below ~ =-h-d.: Assuming the 

thickness of the entrainment region is very small (as observations indicate). 

we deduce a parameterization for w'T!, in the entrainment layer: 

5) wIT' (r=-h):= [=r (-h,t)'- T t01t)] ~~ 

where T (-YIlt) is evaluated just below the entrainment region. 

In a thin layer near the ocean surface we can not neglect the diabatic 

heating ~ Integrating over the surface layer (where i is completely 

absorbed but not stored) . d 
-J i-tf -0' - i-( aT clil+ a(w'T')o rll =( i ch ~ ~ ~~_ 

. ) ~t- 0 a 2 Jo J<:' Cp /f; Cp " 
Q 

_ J dTC'?J t ) + w/T'(- J) = -cf 1: . 
at ~Cp 

Letting, J'{ :- Q where Q is an energy flux (positive down) in units of 

energy per unit time per unit area, and letting cf~O we get: 

6) 'W'T' (:t ~O) :; _ G 
p. Cp 

Equations (5) and (6) give us boundary conditions on Wi T' for the mixed 

layer. If we assume ~ is zero in the mixed layer itself we can solve 

Eq. (4a) as follows: (Remember T(i', t) -:. T(o,f) = i in the mixed layer.) 

Using Eq.(6) gives: 

,"OT + 'dW'T' = 0 o;>-r?-h 
at oi! 

W'T'·;: - CiT i- + C 
'Ot 

Q C = ---=-­~.Cp 
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Using Eq.(5) we find the rate of temperature change in terms of surface heat-

ing and rate of deepening. 

8) h ~r= [1 (-h~t}-=rJ *" 
where T(-h)t)' is evaluated just below tlle mixed layer. The parameterization 

for VV' I 'may now be written 

9) -tgCp w'T'~ Q'+qQ~ Cpf. (T-'T(-h,t)J :n· 
We can put (8) and (9) into slightly different terms if we assume that at 

time t=O, a linear stratification, r ,exists with surface temperature, 

IF(~o). If ~ is the deviation from the initial surface temperature, the 

following relationships hold: 

and since in the mixed layer the temperature is constant 

T (~) t ):. i (0)0) + T,s in the mixed layer. 

Below the mixed layer, the initial temperature remains unchanged so 

T(f, t) :: T (01 0) ... r~ below the mixed layer wh,ere 

'aT I r=-
(J? t:~o 

constant. 

If we substitute the above expressions for1"(-h)t) -Tin Eqs. (8) and (9) 

we obtain: 

L ~T,f co _ (Ts t rh) d h + ~ 
8a) n at I.... Olt: ~ Cp 

ga) -foC'p W',' = Q + ~ [Q -CY'fo (Is +rh) ~t J 
When referring to these equations one should remember that the whole mixed 

layer is at the temperature Ts + T (0)0). 
-,-, dUo 

Expressions for Jt W and ~ 

The velocity profile may be treated in a similar manner to provide an 

' ,III' ':> u.~ (t) F = 0 expression for )t JV and U at- We assume that _ except near the 

surface. 
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Equation (1))) 

layer (-h>~),-h-d) to 

may be integrated vertically through the entrainment 

yield: 

t (* +f~) 1:1-0 (t:) + ;; ~o :: _V~W' 
In the limit as d-~ 0 we find 

10) w'~' (i! =- h):; - !¢tJ(t) ~~ 

In the surface shear layer we assume ~ is approximately constant. 

Then Eq, (lb) may be integrated vertically from ~ = 0 to ~ ':: - J to give 

iw'(~' -J)= til~+£X ) (Jl!-.(t)+ r~ C ... t)d.~) ... 0 ~ . 

Lettingt'o -:::. -[Fa be the shearing stress acting on the surface, and taking 

a limit as 5---70 we get: 

11) Y.'W'(~=o)=:; - rok 
With Eqs.(lO) and (11) providing boundary conditions for the mixed 

layer, Eq.(16) may be solved in a similar manner as the temperature equation. 

The result is: 
a h ~o ~L f'v' h ,. 

12) ot:; -7fo - ,.",.,... :C-" 

and 

13) - fo ('!'w') = ~ (r;, - Ii!!;o ;;) + to 
Perturbation Energy Equation 

Our system of equations is not yet closed because we do not know the 

rate at which the mixed layer deepens. We appeal to the perturbation energy 

equation to proceed further. 

The perturbation energy equation is formed as follows: First combine 

the perturbation horizontal momentum equation with the perturbation equation 

of hydrostatic balance to form a three-dimensional momentum equation. Let 
p' 

the viscous forces be represented by the form ~. :; - 'i iJ 'l. 'if Then 

Eqs.(lb) and (3b) become: 

dY.,' +v.\jV'+- W' dV +'V.y'y'+ ~(W'V'_W''!.')+ fx VI::: at .,..,...., a c , oi! l - "'" ,... 

I , k. '*-' A T' ~ I ':.--~p-- +koc::o + "'V \I 'L tg ~ 2. J 
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A 

After dotting the equation with Vi + k w: we use the continuity equation to 
N. IV. 

manipulate the equation into the following form 

.1 "d t :t Y," y;' (2· V) )l~ -I' ~q. (y,' ~ '. ~ ) + -k ~ ( w "Y.'. y') + 

+w'v' Clv __ Vi a w'Y/ -t -L\] 'P'y! + -L ~ :: 
- ~ - ai", Po t1 ~ 

= cX.~ T' Wi +-%- \7 2,x.' • .Y' -y (U)L ') • (v ~/) . 
. , . 

If we apply the averaging operator, ( ), the horizontal gradients are 

eliminated among others and rep1acing~·t' by e') we get the perturba­

tion kinetic energy equation: 

a~ c;.~ +~ [WI(-~' + ~t.)J+ W't' ~~ =-O<~ I'w'--:;(\J'L" \Jy.,'-) 
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RECIPES FOR MIXED LAYERS IN THE OCEAN (Lecture #2). 

Pearn P. Niiler 

In the last lecture we derived two of the three equations that are 

needed in order to find h (t) : 

d hY.,;: Ie> _ f X h V 
~t ~ ~ ~ 

h oT_ + (Tt rh) ~ ~ at . at 
We also derived the perturbation kinetic energy equation: 

(1)* 

(2) 

l( c,.2.)+L rw'(~+ CI2.)~-I-W'l.~::> ~W'T.'- V \IV'. \lV' (3) at :l ~ £ C fo 2. U ~ a e fb . . - ..... . 

In this lecture we will obtain the third equation from (3) and will solve 

the set of equations for h (t) . 

1) The Perturbation Kinetic Energy Equation in the Mixed Layer 

The terms in Eq. (3) represent the change in perturbation kinetic 

energy, the gradient of the vertical flux of perturbation energy, the pro­

duction of perturbation kinetic energy, the vertical potential energy flux, 

and viscous dissipation, respectively. Conventional wisdom gives us esti­

mates of the magnitudes of all terms but the second, and they are listed 

in Table l. 

a~ ~ ;'2.) is negligible in all regions of the mixed layer. 

intermediate' layer #-:: 0 , and (3) reduces to . 

In the 

d [ '(L ~)J . - Q(,Q -,-; -h'" ~<-d 'd: W Po. +::l.. + £ - --rr:: W T, ? "- z;. 
(4) 

where 

The mean flow has strong vertical shear in the surface and entrainment layers. 

There the energy balance is dominated by the second, third, and fifth terms 

of (3) and it reduces to 

* Note the slight changes in notation in (1) - (3) as compared to their 
counterparts, (Sa) and (12), in the previous lecture. The notation here 
agrees with Niiler (1974). 
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TABLE I 

BALANCE WITHIN THE PERTURBATION K.E. EQUATION 

Estimator Ordered Magnitude Reference 
in cm2/sec2 

jiT Ufr:J. 

T 
:J y.. 10-'( Phillips (1966) 

'[0 (6 u) 
3'1. 6 U(f!Im/1JiC r' x lO .. 1t Eq. (13)(in pre--h-

vious 1 ecture) 

. oc~ 
fo2.Cp 

• 
Qf{\QJ( Y.X 10-3 Eq.(9a), in pre-

vious lecture; 
Denman & Miyake 
(l973) 

Shape of turbu,... h -) X [0-1 Grant, et aZ. 
lent K.E. spectra (1968) 

5 = 1 day = 10 sec 

2 2 = cm /sec 

= 100 m 

= vertical contrast of horizontal velocity 
within mixed layer 

= 2 x 10-1 cm/sec 2 °c 

.;.. -2 2 
~m~~ = 2 x 10 ca1/em sec 

·-d<r<.O 
+ E :: 0 ~ (5) 

-h-d<: e <-h 

Integrating (4) and (5) through the three layers yields: 
-.5 -d' -eS, 

+ ( E.~a::: J ~ W'T" eta 1h -I, fr> 
-h 

[ 
I 12.] 

w'(i- + ~) (6) 
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o 
o 

= -J W"l' 
-6' .. ~ 

o 
dU* 1 -- de - &di!!' 
a~ -6 

-h h 

[ W'(--l1'- + C~'J = _ Ch w'y.:. :ll J .. _ r I:cI~. 
~ . j Lh- cJ ?; J-h-d 

-h-d. 

(7) 

(8) 

The stress in the surface layer is assumed to be constant and equal to the 

value at. the surface, so fO. __ ' 
au*' t ... 

W'v' • '-- di = - ~.!do (9) _d ,.. G 2 ~ 

(terms of Oed/h) neglected) . Both the velocity and the stress are linear 

functions of c in the entrainment layer 

Using (10) and (11) we find 
-h i W'V' dl,! oL~;o _.l..v.V A 

,;,; O~ ""'" - at -h-d.. 
(terms of O(d./h) neglected) . 

Adding (6), (7), and (8) and using (9) and (12) together with 

and the simplification 

[W1(-f.+ C~)] =0 

-h-cJ 

o 
, ~ 

w'(L+- Cl~) tc - to 'Ult'_ ...l..V.V ~= ~ ( W'T' cL~ 
Po 2. 0 fo ~~ .2 - ,.. a t Po,)_ h 

we have 

(terms of Oed/h) neglected) . 

(10) 

(11) 

(12) 

(13) 

(14 ) 

(15) 

The terms in (15) are the flux of turbulent energy due to the surface pro­

cesses, the dissipation, the turbulent kinetic energy produced by the 

velocity shear in the surface layer and in the entrainment layer, and the 

change of the potential energy of the mean flow. 
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The expression for WIT'" from the last lecture (Eq.9a) is 

-I· r· ()hl 
-fo C? W'T=Qot- ~ lQ~-Cpf,,(T.,.rh)atJ' (16) 

Integrating (16) from - h to 0 we have 

-~ 1° W'T' ot~ =< ~ [ h~ + ~ (T+rh) ~h l 
Pc, fa ').(: cp drJ 

-h -
(17) 

Substituting (17) into (15) we have 

Wi (.g,o/ + c~,.) °t €:" _ ;I" .tJ:. - ..LV. V d h .- ~ -[h Qo' -f' .. h (r 1" rh) ~th]' (18) 
10.... f6 _tJ ~ ~ ~ at - Po ;2~ Cp,. !7 

2. Solutions to Mixed Layer Formation 

We will parameterize the energy flux from the surface by 

, I~) 0 1:" 41- I "'r 11:" 13/;3-Wi ( * + C:2, + £" - Ii' Qo "" -mo 110 = - m" Ii ' 
where YYlo is an 0 (1) quantity. Our independent variables will be 

UE = hV .... "'" 
Ekman transport 

e ;: f;Cp (T + llf)h heat content 

h depth of mixed layer 

Expressing (I), (2), and (18) in terms of the above variables with the 

parameterization (19) we have 

(19) 

(20) 

-ae • 
-at = QIj (21) 

~ ~ [c:~~ e h' t- N;h' - .Ii.-1J~ = 2 m. h "-I ~ \ X - c;~ d. h', (22) 

y, . 
where N .... (fo1 r) 2, is the VaisaHl frequency of the ocean below the mixed layer. 

Consider the case of initial deepening without heating. The stress is 

in the x-direction and all independent variables are initially zero. 

1!E'=9=h=O? t=Q 
~'= 0 . 

to =~~ 
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The solutions of (20) and (21) are 

!d E ~ r" [sin (f t ) , cos (f -t ) - 1] (23) 
fo, 

e (t)= O. (24) 

Inserting the above solutions into (22) yields 

A rN1h"_ (. r;; ~:2(7-Cb"il(f7))1 ~ '2~o (~):}':2.h~, (25) at [:L fPc)' ~ ft' 

The solution at the initial timet '< N-1<. r' is found by expanding cos (ft) 

in a series about t:. 0, and assuming a solution of the form 

h t Ko b 1<, 
'V 0.. + t . (26) 

Plugging (26) into (25) and balancing the first and last terms in (25) 

gives 
( ~ ( r: \V~(' Y.3 ( t: \Y",( ) h r..i 12.1110) ~~ ;.-} t N) . + .301ff'\o PaN'-' iN + ... (27) 

The above solution agrees well with the experimental.results of Kato and 

Phillips (1969). If we numerically integrate the equations for long time, 

we get the results qualitatively pictures in Fig.l. The experiments of 

h (t) 

II 

Inertial 
, motions = 
I mix layer 
I . 

III 

Inertial motions no 
I 
I longer important. 

Slow erosion 
L 
I 

Fig.l 

Kato and Phillips cover region I. Regions II and III are suggestive of the 

analysis by Pollard, Rhines, and Thompson (1973) and Kraus and Turner (1967), 

respectively. 

In order to study the deepening for long time with constant hearing, 

we rescale as follows: 
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t +-1 
h 1; Y;l (foN ff V,.. 

e Qo/.f where Qo is the heating rate. 

where 

(28) 

(29) 

(30) 

The equasions have been integrated numerically and the results of 

one run are shown in Fig.2 (see Niiler, 1974, for a more complete descrip­

tion) . If the initial value of h .c:: 2, h increases rapidly to h ~ 2. 

(h::::: 1 LoV,. (PoNf y\~) in half a pendulum day. For long time h ~ A/e if 

q ~ 0 arid ('At)~ if Q = 0 the function E:: t ~ . 2 ~~ is the rate at which 

turbulent energy is released by the wind-driven inert.ial motions at the 

base of the mixed layer. The peak at t ':: 1 shows the importance of the 

inertial motions in the ini tial deep~ning of the mixed layer. F ~ h'* - h 
is the difference between the layer depth without and with mean motion ener­

getics. Over a longer timeF eventually increases to zero . 
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FREE EQUATORIAL WAVES 

Dennis W. Moore 

Basic State 

Ocean at rest 

Density "p:::.p. (r) 
5 

Pressure hydrostatic 

~ sO for stability 
dr 

Linear Perturbations' 

Ll is velocity in the eastward 

V is velocity in the northward 

W is vertical (i5) velocity 
pI is pressure perturbation 
p' . 1S density perturbation 

(x) direction 

(y) direction 

Assume: The pressure remains hydrostatic. The Boussinesq approximation 

is valid. 

Frictional effects are negligible. 

Equatorial /3 plane: f = ;8,y 

Time Scale Ir= --'--2Sl. 

Horizontal Length Scale 

Vertical Length Scale 

L = R = earth's radius. 

H = depth of ocean. 

Velocity Scale U for horizontal velocities. 

Velocity Scale {U for vertical velocity. 

Perturbation Pressure scaled by 2Jl u..Po "R. 

Perturbation Density scaled by 2.!lU.;Oo R 
~H 

Let -6..P;:,PS('2-D:=H)-~ (~D-='O)'l 

so that ¥. = - ':f s(~) \ 
and sea) is dimensionless, and non-negative. 

Nondimensional equations: 

l.A.-f; - yv -+ Px :. 0, 

Ve + y LA. + ?y = 0, 

(1) 

(2) 
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11y. + Vy -t Wi! = 0, (3) 

~ .. -J>:> (4) 

and,.pt -@ W s (~) = 0 (S) 

IJp H 
@~ [~R)~ depends on the density structure of the basic state, and 

not on the velocity scale of the perturbation. 

Equations (4) and eS) give 

and substituting this in the continuity equation gives: 

A single equation for V may be obtained by the following manipulation: 

(-y£ ~ - ~~:'1) [ut-YV+1;]+(()~-t ()~:)[Vt+YU.+"?1J+ 
+ (0;:;;--y-ltJ f~ + '11 - t?-tJ= V",,)lt T Vyyt T Vx + J:. (t V-t + Vttt).= 0 

Vertical Separation 

Consider the equations 

L1:t - y V + 'P't. :. 0 

Vt +yu. ..f 'P~ = 0 

1;,.1' -it Vy = 1. Pt . 

wher.e 1.:. d~ (®;(e) a:)' 
We can seek separable solutions of the form 

LA. ':. F(:) u.(x.\~} t) 

V = F (~) V (X. ~ 1 t) 

P -= F (~) P (x) lJ)t). 

(6) 

(7) 

(8) 

Then Eqs. (6), (7), and (8) are separable in 2 if [F(if)= -/\F('2),whereA 

is an eigenvalue. We wish to solve ?;d~ (~gr)= - "F. 



• 

., 

-
• 
• 

· . 

- 65 -

( ) I ap 
Let G ~ :. (Os (;!)'O! 

Then G.a : - ~ ~ 

and Fi = ® .s(2) G ~ Gin! =-71 ®s(~) G. 

Note that the vertical velocity vi is given by W'l:-G(")P:t(~ly\t),so 
W = 0 a t ~ = 0 and c-: 1 means r; = 0 at -2-": 0 and l. 

(9) 

Equation (9) with these boundary conditions is of Sturm-Liouvil+e 

type, so there exists a countable set of eigenfunctions F(\ (~)J GYI(~) with 

non-negative eignev~lues An. Note Po (£) :. 1, Go (1:):: 0> 'A :' 0 is a 

solution: The barotropic mode. 

For the barotropic mode the dimensional equation is 

\l'Vt. + ~ '11- = 0 
and there is no distinction between mid-latitude and equatorial motions. 

If we use a free surface b.c. rather than a rigid lid, the barotropic mode 

has vertical structure. 

A simple case is S(.)::: 7 corresponding to uniform stratification. 

Then ::1.= i- f~! -Oe~:l], 
foCi:) ~ l- (~ ~ .. + o(~t 

Note Ao ~ ~ '1 :: (~.ni'l'R)'a. e:: 0(10). 
, ~ 

For the baroclinic modes with .s(~)= 1" 

,~ (i) ~ ~ YllT't 

and A-n ;: ~ Ln~1i:1+o (~e )1· 
i- = lfJ:t = o(to~). . 

So tl1e An are large for the baroclinic modes. 

LetA be a non-zero eigenvalue for the vertical separation problem. 

The horizontal time dependent motion is governed by 

u.t -~v + ~ = 0 

Vt + yu. + 1} -= 0 

API:" + U~ +V~ =0 
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The equation for Valone is 

'\J'l.Vt -+ Vx - A ('4« '+ y2.Vt ) =: 0 

Consider the possible solutions for which V = O. Then 

u.t+~=O 

a.rncL ,,~+' I.L-;x. = 0 
r 

~Al..I..t:t-~=O 

U ;::: U; (x ± A -r .. t ).u l y ) ) 
) . . 

_ _1/ .. 
P=-t/l t).., 

with u.. an arbitrary function. 

Then 

~ [). + "PV # 0 

=9 )..~ U-t - u""'-( ~ 0, . 
~ . 

='? ±. ~,.~ !). ~ u. y 
, .... :t. A"y2.. 
U = M.e:! e 2-

For boundedness at I y I = 00 take - sign. 

. (' _~) _,*-2.. "\.'6-
•• U -:::.- u.. X. ,- " t e· . = 1\ 'P. 
.' ' 

This is the equatorially trapped Kelvin wave, propagating to the east with 
1-1/2 .• phase speed /\. 

Let 

and 

This reduces formally to A: 1, in above equations. So the canonical 

system is 

and 

tJ.'I: - J V-4- 7'y. .: O,J 

V-t -, ~ u. + 1':1 ~ 0> 

Pi +Llx.+V~= 0, 

but now time and length scales are different for each baroclinic mode. 
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Separable Solutions 

admits solutions of the form 
;, (~:,,_wt) () 

V = e lYm y, 
where -:IX 

~ ('J) = e Hm(~), 
m J J"Yn'('rdlff 

where Hm is the mth Hermite Polynomial. We call lV\'V\ Cy) a Hermite Function. 

It satisfies the equation 

rllJ. VIm + (l YTH· I - y ') 1/1., :. 0 
dy~ . m 

so the function VIm. is oscillatory for Iyl ~ J'2(fltl • and monotonic (ex-

ponentially decaying) for 1;1 I >j1m+ \ The functions 1J( have been 
~ 

co 

S IJI~ (y) 1.Vn C y) d. Y ~ imy) · 
_i:>O " 

normalized so that 

Dispersion Relation: 

Substituting the solution for V into the differential equation 

gives the dispersion relation 

K"+ -&- -w~ + 2m ... / = 0) 

which may be solved for k as a function of W to give 

K- - -'- + JwG.+ -'- - (2m+ 1)-- '-w - IIW' 
If M:. 0 , the quantity under the radical is a perfect square, and the roots 

are 
I<. = w - tr- amd. K = - w. 

I. ((w-ts)"x -wt) 
V=e "''I{,(~) 

The solution with 

is called a Yanai Wave. 

The corresponding U. and l' fields are 
.iJ&L 1..'((w-1D)v..-w t)'l1l ( ) 

U-= p= IY e '1', y 1 

and involve only a single Hermite Function. 

The otherm=,O root, K = -W. is not acceptable on an equatorial 

(J - plane because the corresponding tA. field grows exponentially in 'j for 
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2. k w= ~1, 

, , , , 
I , , 

I 
I , 

__ ~ ____ ~ ____ ~ ____ ~' ______ L-____ ~ ____ ~f-7K 

-3 -:2. -I :;. 

Dispersion relation for waves 
on an equatorial beta plane. 

large Y For rn ~ 1 ., the wave number k is real for real W as long as the 

quantity in the radical is positive, which means jw I, ~ / Wf7 +J ~ . ' or 

else /wl ..::::: Jm;' -Pi . This divides the fast gravity waves from the slow 

planetary waves (see dispersion diagram). 

For J 'M2+ I +fi!f ~ \wl > rfl~J -~ , the wave 'numbers k. are complex, 

with real part Kreal :::. - .7b corresponding to westward phase propagation, and 

imaginary part k1'rrl"::. ±. /lrn+ l-ut-I./ ~':I. corresponding to exponential decay 

toward the east or the west, depending on choice of sign. 

For Yl1 '?: 1 , the LL and P fields corresponding to 

V · i(i<'t-wt) /) 
= e V''(fi l Y (10) 
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[hlw1~~~ ... , (yl + .r.mJ'!',' (;;) 1 

] 
, 

(11) 

(12) 

and involve Hermite functions of one order higher and one order lower than 

the V field. 

Energy Density and Energy Flux 

and p . 
Multiply 

and add 

Define 

In what follows u... V and 'P mean the real parts of u-. V 

/J.. Ut- - tv + ),,, := 0 

by V .," +:. -+ y u. + 'Py -::: 0 

P Pt- +- llv + Vy -:;;. 0 

E = foo u'J.+ i""+ p~ ely amrl F = l~ LA. P d :J ' 
-Go 

A t' (I~K-c..ot)')11 () 'I"': where the overbar denotes a time average. Then if V= ,e 'I'm Y ,erc-, 

with complex amplitude A. we find 

E - W" [I m+-' TV" l - t.f. + (W-K'f + (w+I<)~ , 

and 
"A1'J.. [ j F - 1!...!!.. . m+1 _ YY'l 

. -, LI (\..\)-I<)~ GW+I<') 

Exercise for enterprising students: 

a) Prove that c~ E ~ F, 
h C aOl,_ 

w ere ~;: '1fk-

i(KI(.-wt~ 
If V = ~ Ams e 1(n"'\ (y)) .e~. 

m . s=z 
b) 

that 
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Half Basin Modes 

1. Western Boundary 

We require U: 0 at the boundary for all time. Consider a single in­

coming wave (C5 .c:. 0), characterized by W , 'rf'\ and It (see Eqs .10-12) . This wave 

will either be a planetary or a gravity wave. For these waves there is al­

ways another wave of the same frequency, the same value of ~ and an eastward 

group velocity. (E.g., see points A (~<! 0') and 13(C~ >0) on the dispersion 

diagram. This example has m = 1 .) The t.A..field corresponding to point A has 

a J structure of the form 

U. 0< v2.m+1 '"ilf () J1m "I If (\.1\ A w-kA 'frl'l.+1 \.J + w+kA "11'-1 )1 

while for point E 
U. 0< Jlm+l 'lIt () h(h ')If () 

B w- KI3 "m-rl ~ + W+KB 'f(r\ -I j 

By adding a suitable mul tiple of U,B we can cancel the 1.J!'rT)+I (~) part 

of LtA. This will leave a part proportional to lVm-1 (j) , which may be can­

celled by the wave with frequency W, ~ > 0 and north-south structure charac­

terized by Yn-2.* Continuing in this way we eventually are left with a UL 

field proportional to 1I1D (if rn is odd). This field can be cancelled by a 

Kelvin wave which has a ~ structure proportional to ~ and always has group 

velocity to the east. (If 'm is even we will eventually be left with u.. pro­

portional to ~. This may be cancelled by the Yanai wave.) 

2. 

At 

as above, 

However, 

Eastern Boundary 

the eastern boundary, if one 

one would eventually be left 

in this case there is no mode 

were 

with 

with 

to carry out the same procedure 

a part proportional to 1l or lff, • 
a field proportional to 't or ~ 

and with group velocity to the west. Therefore one is forced to satisfy the 

boundary condition U. -:::. 0 by using an infinite series of higher'm modes. (See 

D.Moore's PhD thesis, Harvard Univ.,1968.) This series converges and for 

large ~ represents a Kelvin wave propagating away from the equator along the 

eastern boundary. 

*(In our example, this is point C on the dispersion diagram: the Kelvin wave.) 

Notes submitted by 

Allan J. Clarke 

and Mark A. Cane 
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FORCED EQUATORIAL WAVE MOTIONS. 

Dennis W. Moore 

The forced problem in the equatorial region is examined by Lighthill 

(1969). Although there is an error in his analysis (he ignores the equato­

rial Kelvin wave). his approach to the problem is good. We will examine and 

extend his results. This lecture will be divided into three sections. First. 

we will examine the vertical structure of the modes. Second. we will derive 

the response of an equatorial ocean to forcing. Third. we will look at the 

effects of meridional boundaries. 

I. Vertical Structure 

Lighthill treats the surface stress as a body force ~ (z) acting on the 

top mixed layer of dimensionless thickness .05 . 

. 95~ ! ~ 1 

o s ~ < .95 

Let F (z) be the eigenfunction giving the vertical structure of the horizon-
n .. th 

tal veloc1ty 1n the n mode. n = 0 is the barotropic mode while n = 1.2.3. 

are the baroclinic modes. F is determined by the density profile as shown in n 
the previous lecture. Oj1.,.....p. Fo' Fl and F2 are plotted in Fig.I. 

Now expand F in a series of the eigenfunctions F 
n 

~(~) = f:. Cl..'n F'n ('!o) ) 
'n =0.· 

where F is normalized so that I ' 

n ~ Fh (~) Fm (;!) d~ =~ m 

In the usual manner we find I 

~'h= f~(2)Fnt't)cL~ -: ~s FnCl)cb). 

and in particular 
~= • OS' • 

Completeness implies 

or 

,The R.M.S. forcing amplitude of the barotropic mode accounts for 

1/20 of the total. 
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1 J 
-(3 ee) 

6--------~~~*---------~ 

Fig.1 

Numerical computation showS that 

(~: t;: 13.Q3, (~j = lI.t"f'1 ) 

This kind of forcing projects onto the 1st and 2nd baroc1inic modes and the 

barotropic mode, in that order,with little energy in the higher vertical 

modes. 

II. Fprced Response 

Let us consider forcing an equatorial ocean initially at rest by an 

x-independent zonal wind. The response in each baroc1inic mode will be given 

by the solution of 

Ut -yv + PI' ::: A (y) s (t):; step function in time 

VI; ~ ~ u. + P'J -:: 0 J 
I • 

and Lt "I- + V ~ + "'PI: = 0 • 
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If the solution is x-independent we find for t'> 0 

Ut+ ~v :F P.x. ~ A ('1 ) 
v'c. t ~u. + P'j :: 0 

?-e + "'1 = 0 

Sol ving for V we get Vtt +) ['-)V + A t ~ ~ - V~rj':: 0 

~ 

Let A (1) = ~ C11 1¥l\ (j). 

Then y A L 1):' to en [Jnt' ~+I(j J + If 'lfn., (j ~. 
Let 

Then 

and 

where 

QO 

V = ~ V", (t) \lin, <yL where 

VY\i-t. + (l.V'I+ I)Vn + Ff Ln-I+ J fI~' (fI+1 : 0 

VYI = !f Cn-''l..+f:!!:C'fI+' [COO 1'2..'11+,' t -U 1 

It-: tA (~,) + y ~/1.n IVY! tsAm"ftl t -~, 
J. .[if Cn~1 +[iijLCM1 

'r, :; :l.. 1'1+1 

So, in general 

U :: t u., (1) + LL" (y, t) 

v=- V, (y) + ~ (ylf:) 

and p:;- t-p, ('1) + p~ Cylt) 

where u.., - ~ V, ~A (y) 

~ u.., + Fry = 0 

and P1 -+ V, Y = 0 

Solving for V, we find ~ [1 ~ + A Cy ~ - v,'1y : 0 

The "2" field satisfies lt~. -:1 V:A 'S 0 

V2.t" + ~u.,. + Pz-l :; 0 

and p~~ t V2.'j ": 0 
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Solving for Vi we find 

~i:.t' + i~ ~ - v,.~~ :: 0 

We will call these the inertial oscillations. We will take as an 

example the case considered by Yoshida (1959). 

Let At,:!):: 1. 

V, now satisfies V, tl ~ - 'j .... \1, :=. ~ " 

Expanding A we have 
Qc> 

1# ~ I,. iK1'I (u») 
\"1=0 .. J 

. I/: 11'''' 
where "I;::.l..'. J ('2''(I)! 

I'l , :2"n! -

Sol ving for V, and computing I.A., ' from the equation of motion above 

we get 

so Ll. looks mostly like '¥o(~). LL" V, ,and P, are shown in Fig.2. 

Notice that the equatorial response is highly localized. 
/.0 u, (~) . 

-.0 

Fig.2 
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III. Effect of a Meridional Boundary 

Consider first the portion of the forced solution that looks like 

In order to cancel this at the western boundary x = 0, we must add the free 

Kelvin wave u..=(1--~)'1./{, (~)S (t-i-) where $ is a step function. Exam­

ining the balance of terms in the x-momentum'equation we find that the 

forcing is balanced by ~c prior to the arrival of the Kelvin wave and by 

?-x. thereafter. 

Since the Kelvin wave can only propagate to the east, the reflection 

from an eastern boundary is another story. The low frequency, westward 

propagating waves are located just to the left of the origin on the disper­

sion graph that accompanies the previous lecture. As W----'70 we find 

C p = it ~ - ~Yl~ " 
In order to cancel the aforementioned solution at the eastern boundary. we 

would need terms that look like 

V =.f, (X + !) if I (~ ) + f 2 (it + ~) ~ (!:J) + .. • 

The lower order waves that are trapped closer to the equator propagate west­

ward faster than the higher order waves. 

Now let us consider the reflection from a western boundary of the 

portion of the forced solution that looks like 

U. ::: t 1/111 C~)) Yl ~ " 
We will do this by looking at the forced problem with 

The equations of motion are 

Ui-YV+P)L::: l.JI'rI_ll~) Set) 
Vt- -+ ~ \). '* PI..)":. 0 
Pt + u. "t + V:J ~ 0 

The x-independent solution is 

V :-~iJ+1 lVY\ ('1) [I -CC"!1h.n-l-l' tJ - jn~~ If'h-2 C~) [1-CtfoV211-=3 tJ 
t"\\( () ~ Tt _ .wn~tJfjnp ~ -t-J..b-"lll J u. -; '1'YH~. -: Qn .... t U v'J."'-t-..' U 2. n+I 2. '1'1'1-1 -

~ ~ [t - Wn~tJ rjfl=J. <)II +.; "fi-?- LK J 
LYI-'3 J'J..n-'!I ~ '2. 'i'rH "l.. '1'\-3 
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We want to add free waves to this so that we can satisfy the b.c. at X =O~ 
Let us cancel the tP~+1 term first, then proceed down the ladder to ~ = O. 

Suppose V;' V'(l ('X. J t )11." (Lj) , 

then u.~ l.L Y1 + 1 Cx)t)ljIrI-t-1 (~)+ 1,..(.)"1-/ (7Cl t)'LVn_1 (~) 

P -: IJ.Yl+1 (Xl ~)lV'(l+' ('1) -u. n- J (''It')I.IIY1 -1 (~) > 

Taking the Laplace Transform we have 

S(S"- o~-a.~)u.n+I+[(2n+I)S-l)(,]u.'fI+I':O? 
UY'.,..=-lfu.n -l-\(it)t)}:; [e-st U-Yl-+I (,!>t)rlt .. 

o 

where 

The solution to the above equation is of the form 
- _ - 1('1. 
LL"H'·I - F (5) e 

Substituting this into the equation yields 

K~+ ~ -(2:f'l+I)-S":O 

K':! - -'- ±JS" + (2't1+ ,)+ -'-
.25 /(5'" 

We take the lower sign so that the solution remains bounded as X. ~ 00: 

_ - - fs-'"1-.j~+(3.n+/)+1:rs" 
Ufl+l ~ F (s)e 

We want U'il +1 to cancel the 1Yn + I term in the forced problem at X:: 0 ; so 

F(s)=-oL {if, [t- SAirJ!F-t ]/~/1fn+11· 
The inverse transform is . 

CHOO X. If ')& ) -r-'{--) I f - st ... U-X "oS-iS -4-,2(Y1+/).J 
U.n+I(~)t=-d... U n+'J;,2.1TL • P(S)e (Jt.S,C>O. 

c- c.oo 
There are four branch points on the imaginary axis at 

S = ± i. J tit' ± iff . 
We place the two branch cuts between the upper pair and between the lower pair. 

The term in the exponent can be rewritten as 

S(-x-+t) ... X [5- ~/s -J(5- kJ+:l("(\+I)] 
As 5 ~ QO , the term in the brackets goes to zero; so if X >t , we can 

close the contour in the RHP and 



• 

l 

.... 

• 

- 77 -

Lll'\+1 ('tIt) ':. 01 X. ~t ~ 

Nothing propagates to the right faster than the gravity wave speed. If 

'X ~ t, we close the contour in the LHP and from F (5) we get a term which 

basically cancels the inertial oscillations. 

Proceeding in the same manner, we cancel the lower order terms. 

Discussion 

Stern: Shouldn't one take the undercurrent into consideration when doing 

the problem? 

Moore: The undercurrent does not affect the barotropic or first baroclinic 

modes because the phase speeds are too high. The interaction oc­

curs at the second baroclinic mode. 

References 

Lighthill, M.J. 1969 Dynamic Response of the Indian Ocean to the Onset of 
Southwest Monsoon. PTRSL A 265: 45-92. 

Yoshida, Kozo 1959 
Upwelling. 

A Theory of the Cromwell Current and of the Equatorial 
J.Oceanogr.Soc.Japan ~: 154-170. 

Notes submitted by 

Robert E. Hall 

TOPOGRAPHIC AND PLANETARY WAVES: LINEAR THEORY 

Peter B. Rhines 

In this lecture we discuss the linear theory of ocean waves with fre­

quencies w <:t := '2..Q&Vn(latitude) (i. e. periods Z 1 pendulum day). We 

consider waves whose horizontal scale is of the order of 21T times the Rossby 

radius of deformation (~250 km). A study of these waves is important 

since the kinetic energy is known to be dominated by mesoscale waves and 

eddies with time scales of many days. Motions on these scales are also 

thought to have significant interactions with the mean flow and to be impor­

tant for understanding the spin-up of the oceans. 
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We now consider the simplest accepatble model: f-plane approximation, 

small, uniform, plane bottom slope, uniform stratification (N'J{i!)=-~p-~p/a~: 
constant), Boussinesq fluid. The governing equations are non':dimensionalized 

using a characteristic horizontal velocity, UL , for the horizontal velocities 

(u,v), characteristic horizontal and vertical lengths Land H for the horizon­

tal (x,y) and vertical (z) coordinates respectively, UH/L for the vertical 

velocity (w), fef l1.. L for the pressure, f- l for the time and fo fU LJ (~H) for 

the density. Let B=-n 
The model considered is shown in the following diagram: 

-twt We linearize the equations and look for motions oce . , giving: 

- ~wu. -v :0 - J':x: , 

- L, W V + U. ~ -1'~ ) 

- L w (H/U"w :; -l'z -~ .. 
, B~ 

..... t. <» f - VI -= 0 

u.x+ V'y +- Wa -:: 0 

We assume that the bottom slope,c(, is small, with 

J' _ o(L L<C.. 1 
o -= -r:r- · 

Then the (linearized) boundary conditions are 

(1) 

wi :: 0 W l :: 0, ...Y:L/ := J. 
!! ... o :::0 V i ::-Itd (~- Y,.) 



.. 

- 79 -

u., v , w , w 'f and p are expanded in the form: 

lJf= r CO\ J 1;/') + 0 (o? J. 
The zero-order state is assumed to be steady (W (0): 0) and is in geostrophic 

CO) (0) (0) "P.(o) M (.:;) P (0) 
balance: LL := p~ ~ V :::.:x. ~ W = 0 \ ~ ::. -if • 

The 0 ($) terms give 

(2) 

with the boundary conditions 

W(d/ -= 0 
i!=O ' 

Since the above perturbation scheme is used only to find the slow evolution 

of the zero-order field, it may therefore be valid even if the first order 

quantities are not small, provided they change sufficiently slowly. From (2) 

we obtain 
'\, ~"l. ~ .. 

where 'V~ == Ox + o~ (3) 

wi th the boundary conditions ., 
P (0) • (1)8-1 'D (0)_ pC~ -~ --1 

i!: = 0, L W '-a - J:: 0,..(, ~ - • 
i.=o 

This is an eigenvalue problem for WCl) and has the horizontally plane wave 

solutions: 
(0) L' (J-<X + e~) h 'j. B"( ~ e.~) 'P .:: constant 'I. e CDS )J-r.) ).l .. = r<; + > 
(.I) J< 'B ~ 

w -= - pt~h# (4) 

(4) provides the dispersion relation. We consider first the two limitsJU~<l 

and ft» 1 which correspond to wavelengths that are respectively long and 

small compared with l 11 "f.. (Rossby radius of deformation). 

(1) Long wave limit (~«1) : From (4), the dimensional frequency is 

eo< k 
C) '"'"" - -W- I< 'l. +..e. a. 
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The quantity -+ oC/H corresponds to the (3 in the dispersion relation for 

Rossby waves on a j.9-plane. The vertical structure is nearly uniform, as 

would be expected from the Taylor-Proudman theorem, with a small shear that 

increases with depth. 

(2) Short wave limit C}A- »1) : From (4), the dimensional frequency is 

IT"",,"""" ocNWn¢ 

where CP is defined as the angle between ~::::. (K}e)O) and the y-direction. 

For a slope of finite amplitude the frequency becomes 

() ,,;;: - sJ.m 0< NsAm ¢. 
In this case the frequency depends only on the direction of k and not on its 

"'-'" 

magnitude and so the group velocity is perpendicular to k in the horizontal 
""'" 

plane. This is similar to the dispersion of internal gravity waves for which 

¢ is the angle between !$. and the vertical. The vertical structure is ........ e).(~ 
so that the waves are exponentially trapped at the bottom, with an e-folding 

depth of + 2./ (N'l.'1 ~ r). This behavior resembles tha.t of Kelvin waves and 

Lamb waves near boundaries. 

The dispersion relation (4) can be visualized by plotting the lines of 

constant frequency in the wavenumber space, as shown in the following diagram: 

e 
~+---- low frequencies 

high frequencies 

The arrows point in the direction of the group velocity, £~ . It is inter­

esting to note that 9..j remains finite as W~ O. One might therefore use 

the concept of group velocity for energy flow or region-of-influence consider­

ations even in steady flows. 
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The above may be generalized to the case of arbitrary stratifications, 

N(z). If one is interested mainly in the dispersion relation rather than the 

details of the vertical structure, one can find w ll ) by a Rayleigh-Ritz tech-

nique, obsefving that 

W el)= min 
"P .C ~~t I"I:Z~ 13("f2~"] d.~ (5) 

since the minimum of the functional of P on the right-hand side of (5) occurs 

when P(z) is a solution of the eigenvalue problem corresponding to (3). 

The solution of an initial value problem for constant stratification 

is found by inspection to have Fourier components given by 
-pCD)= ei(I<r.+f~)F(:rl t) 

where 
F('l-Jt)=F(~lo)+F(-/)O) ~t.~(e-ilJ)~-l)} j.J-'J-=- B-"(J<""+f. 2 ). (6) 

We now consider waves on a ,8 -plane. We let f =to 0+ L..~ /R) where 

'R.= "Rearth tom(latitude), . so that (3) is replaced by 

. (,)[-n2.'O(C»B-~'C(·)J· ~'"'DC(J)_O (7) 
- L W v'l. r +- I iii + 6 R r x -
l (KX +t.I.I) . For solutions oCe d, there are both barotroplc modes varying like 

~h,.ui- and baroclinic modes varying like ~ rn e with the dispersion re-

lation: 
(8) 

where rn is given by 

(9) 

(9) is a transcendental equation for rn from which Yn is determined by the 

interaction of ~~rn with a parabola. As illustrated in the following 

diagram for the lowest internal mode, the current reverses direction in the 

limit t ---7 0 whereas it decreases monotonically with depth for large cr . 
For large d the phase velocity of the waves is about four times the value 

for small 0 and so the effect of the slope is to speed up the waves and 

thus the baroclinic adjustment. 
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Notes submitted by 

Rosemary G. Kennett 

and Jurgen Willebrand 

TOPOGRAPHIC AND PLANETARY WAVES: NONLINEAR THEORY 

Peter B. Rhines 

In the last lecture linear theories for planetary waves were dis­

cussed. The problem now is to prove the waves indeed occur in the ocean. 

One approach is to prove from observations that the derived dispersion 

relations hold. This, however, is difficult to do even with simple gravity 

waves. 

Rory Thompson and J.R.Luyten (unpublished, 1974) did try to observe 

short, topographically controlled waves, whose theoretical d.ispersion rela­

tion is w;::;. -N C{, sin 4> 
(where N = buoyancy frequency 

Q = bottom slope 

. ~ = angle between the horizontal wave number vector and 

gradient of the bottom topography). 

To this end, they considered data from site D, a current meter and tempera­

ture sensor mooring located about 50 km south of the continental shelf, and 

north of where the separated Gulf Stream travels. The relevant periods are 

in the range of 4 to 15 days. The records at 2500 m depth, or about 100 m 

above the bottom, were considered. They plot the principal axes of the 

band-passed vector velocities for each frequency interval. The anisotropy 

of the dispersion relation is thereby exhibited. 
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A reminder of the disparity in apparent length scales among various 
related fields: lower right: stream function, ~ or pressure; upper 
right: corresponding v-velocity,altl/ax,. ; upper left: u-velocity,-otpla~; 
lower left: vorticity, V~~ . The (isotropic) wavenumber spectrum of 
the velocities is E(k) = 1.0 for k6 5, E = (k/5)-3 for k::> 5. Note 
how the velocities are better correlated ('larger scale') downstream 
than across-stream. 
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Another observational approach is that of Munk, Brown, Snodgrass, 

Mofjeld, Zetler (submitted toJ.Phys.Oc., for publication, 1974), in which 

bottom pressures were measured in the MODE region. This is motivated by the 

relation: 

for quasi-geostrophic flows. It is argued (see included illustrations of 

flow fields) that integration smoothes, and that differentiation roughens. 

Since velocities are obtained by differentiating pressure, it is expected 

that the pressure field be "smoother", i. e., coherent over a larger scale, 

than the velocity field. This seems to be in agreement with the data, 

which indicates coherence over at least 700 km. The data display large­

scale coherence at periods 5 - 20 days, while the velocity data show smaller 

scales dominating at longer periods (60 - 200 days). This gives qualita­

tive agreement with the Rossby wave-type dispersion relation, 

WN-+~ 
as opposed to a turbulence-type relation, 

c.t)-v I!I 
At this point a movie was shown of Rossby and Webb's neutrally buoyant 

floats, taken during the MODE experiment, demonstrating mesoscale oceanic 

flows at 1500 m depth. 

Now, we begin to look at the heart of the lecture, Rhines' studies 

of two-dimensional turbulent flows. To do this, he considers a two-layer 

model, solved with cyclical boundary conditions, and satisfying the vorticity 

equations that Phillips used for the atmosphere: 

ft [\7'-I){+g,(1j{-1V;hf3~] ;. 0 

t: [\1~1Y",+ £2(1'. -"'?)+~~J = 0 

where 

and 
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for l = I or 2, for the upper and lower layers, respectively. The HL 
represents the mean depths of layers. No bottom topography is included. 

There are two important horizontal scales corresponding to: 

-fq.-I 
f' = internal Rossby radius 2! 50 km for the ocean. 

r~== ~f (*+ ~)J 
+<-;' :;: ( 2.l ~,. , 

where U is an R.M.S. particle speed. 

First, consider the strongly stratified fluid on an f-plane (;6= 0). 

Initially the scale of the motions is much smaller than the Rossby radius 

of deformation. Both layers start with random, unrelated, velocity fields, 

and then cascade independently toward larger scales of motion. When the 

scale of motion nears the Rossby radius of deformation, upper and lower 

layer motions become coupled (roughly like the atmospheric process of occlu­

sion), and the fluid behaves barotropically, continuing to progress toward 

larger scales of motion. Nonlinearities of the mathematical form Id:-. 'iJ Y:­

are very important in this cascade process. 

Nonlinearity of the types~· \) ~ (r;: deflection from mean of the in­

terface height) is also demonstrated. The starting state is a nearly pure 

baroclinic Rossby wave, of large scale. The wave is unstable, and cascades 

its energy to wavenumber ~f ' then the fluid 'occludes' (eddies at differ­

ent depths locking together), tending toward a barotropic state. Next, the 

barotropic eddies act like 2-d turbulence, clustering toward larger scales 

until reaching ~~ where the field (now barotropic Rossby waves of steepness 

unity) equilibrates. This complex history (cascade from large scale to small, 

then back toward large, cascade from potential energy to kinetic) is roughly 

analogous to the index cycle in the atmosphere. But here, without a main­

tained zonal flow, the 'jet-sharpening' role of atmospheric eddies is not 

found, and the late stages involve simply a field of weakly interacting Rossby 

waves. The scale of motion grows, and the fluid tends toward a barotropic 

state, and the cascade to small wavenumbers is stopped whan the scale is of 

order kf3. 
Notes submitted by 

Kenneth H. Brink 

and Laurence D. Armi. 
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RAY THEORY 

Joseph B. Keller 

Ray theory is a method of reducing a partial differential equation 

(POE), to a set of ordinary differential equations (ODE's). It is based on 

the assumption that it is easier to solve ODE's than it is to solve PDE's. 

For a first order PDE, ray theory is just the method of characteristics. 

1) Let us begin with a simple ODE. 

t~ -I- ~ (0-) A :. c:1{o-) (1) 

The initial condition is A (0;) = Ai')' 

The solution to (1) with the initial c.ondition is; 

A(rr }::.Ao#p [-Jf (~) dcrJ+ {mp t r,f (<f')d.if] ~ (cf-)d.o-; (2) 

This result can be used to solve a linear, first order PDE, as we shall 

now show. 

2) Take a partial differential equation of the form: 

k,d)t.,A+ • •• + K" dXnA+t Ii:. ~ (3) 

We define a curve 'X,(cr) ..... ''Xn([)) such that: 

~~, ,., K, ) ••• ~ ~~ = K~ (4) 

with initial conditions: 

This curve is a ray, or characteristic curve of the PDE (3). Equations 

(4) form a system of ODE's. 

Next we write 

A [~I (0-) ~ . . • ,j(tt (0-8 :. A (cr-) 

so that 

• + dA ~ 
O'Xn ~cr 

(5) 

By substituting this into the original PDE, Eqn.(3), we get: 

1~ + fA:. ~ (6) 

which is exactly the same as Eqn.(l). 
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It is now necessary to look at the initial conditions for Eqn.(3) 

before we solve (6). Assume that there is some k-dimensional manifold 

(point, curve, . . .) r given parametrically by 

'XI = It~(t" .... ,tit) 

'l-Y\ = 't~ (t, ?' • • ,t,.) (7) 

Here k is an int eger in the range 0 ~ K:: 11-1. On this manifold r we give 

the initial value of A in the form 

A (t ~ (tl ) , • • ) t l< ), • • • ~ X ~ (t I ' - • • ,"t K )) ::; 

(8) 

To find A. at points off r , we take a point on r and solve for the ray 

through it. Then we solve (6) along this ray with the initial value 

Ao =- A (06) given by (8). The solution gives the solution of (3) in the 

region covered by the rays. 

3) Now let us look at nonlinear first order POE's. Take a general 

equation of the form: 
(9) 

Here ~ ::. (Xp ... )'X.",) and p' = C'Pd' • • ~ 'PY/) 
dS r where 1\;. a ;t.~ • The initial conditions are S = So on Introduce 

rays or characteristics 

X=X(cr)j $:S(a-) p=p(a-) 

The system of ODE's for these rays is: 

~ :: F-o' ~ = .... F: - "P F .. , 00- r·~ d..ir. ,.. W> 
(10) 

This is a set of 2n + 1 equations for 2n + 1 functions. The method of 

arriving at these equations will not be given here. Instead it will be 

shown that they enable us to solve (9) for S . 

To solve these 2n + 1 equations, 2n + 1 initial conditions must be 

specified. The requirement that a ray start at a particular point ~' of 

r yields Y'\ conditions. The fact that ,$ (XQ) ::. $- is another condition. 

Then the equation (9) yields a condition on the initial value 'P 0 of 'P : 

(11) 
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To obtain further conditions we write the initial condition on S in the form: 

S[XO(t,"f . ~ i"K>] = Sf> (t" . . # ric) (12) 

When this is differentiated with respect to "t.j the following results: 
_I dr.() dXo as· · 
(;lX-, S itt +-. • • + OXY'I s ~ = '0 tj 'J =' 1> • • ., K 

or () d,,· as'"' . 'P •. -a-tr" : atJ; J ::: 1) .... , I<. (13) 

This gives k more restrictions on the initial values, for a total of n+k+2 

restrictions. Thus there are (2n+l) - (n+k+2) = n-k-l parameters free in the 

~hoice of -p'" at each point. 

By construction the initial conditions satisfy F = 0 at a- ~ ~ . 
Furthermore we have 

Combining this result with Eqn. (11) gives F(x>~ 11) = 0 along each charac­

teristic. Thus each solution of (10), satisfying the initial conditions, 

yields the solution 5 of (9) along one ray issuing from r 
On "r there is a k parameter family of points and"n-(k+l) character­

istics issue from each point. Thus there is an (n-l) parameter family of 

characteristics. Each characteristic has a one-parameter family of points 

so in all we have an n-parameter family of points. Thus in general the 

characteristics cover an n-dimensional neighborhood of r , and yield the 

solution s there. 

Now for an example of how to use this technique, we consider the 

eiconal equation ~ 

(\ls) = 1 (14 ) 

In the form we are using, this is 

F == ,,:1.- 1 111 0 

The ray equations (10) now give 

;~ = 1p ::i,> 
t> 

X:. "t.. + ~ po- (15) 

k 
d.o-

:: 0 co> p~pCl (16) 

.4L. :: :2. p" => S : SC + 2. p" a- (17) d..o-
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We will now try several choices of initial condition to find xO, SO 

° and p. First we take the initial surface to be zero dimensional, i.e., 

k = o. Thus s has a given value SO at a point xO. From Eqn.(ll) 
,,"l-P :::. 1 (18) 

Hence pO lies on a unit sphere with centre xO. Now (15) - (18) provide a 

parametric form of the solution sex). From (15) and (18) 

(x_"to)"l- = 4pQ~(J'4=- Ya-~ 
--"'- I )( - ~I 
----,r r:;-=-± ;;.. 

This and (17) yield S ::.$0+ :2 t'''""o-

:. s°.± I X -1.., / :: .s~ ± r 
Here r ~ Ix. - ')(6\' 

Now we look at the case k = 1. Here,r is a curve 

X::: X. ~ (t) 
S ::. SO C 1::.) 

In addition to condition (18), we now have from Eqn.(13): 

t> a x.0 Clso 
P at ~ dF 

(19) 

(20) 

This is the equation of a plane perpendicular to the tangent vector to the 

curve r . 

r 
'L. 

The intersection of this plane with the sphere (pO) = 1 yields either no 

solution (no intersection), one solution (tangential intersection) or many 

solutions (a cone in the sphere, called the Monge cone) for p-

The half angle of the cone is dS"!1 dX o I 
c.oo,A;: ~t , c3t" (21) 
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Another example is the Hamilton-Jacobi equation of classical mechanics. To 

define it, we let s depend upon x and the time t, and write 

F(t/X,)S)S'b"P) =0 

Suppose that we solve (22) for St and write 

St + H [x, pJ =0 

Then H is called the Hamiltonian, and (23) is the Hamilton-Jacobi equation. 

It is possible to get more than one Hamiltonian.from (22), one for each 

solution for St' In classical mechanics and. in .. wave propagation H is usually 

independent of s and in conservative mechanical systems it is independent of 

t also. Then (23) becomes 

4) Now let us look at ray theory as applied to wave propagation. 

Call s(x,t) the phase function. It is convenient to call 

There is a dispersion 

or 

This is a first order 

s = k x 

/ 

the wave vector 

St = -00, the angular frequency 

relation 
F (X)t)KJW):O 

w:: H (~)t, 'K)-

PDE for s. Here the different values of the Hamilto-

nian correspond to different modes of propagation. 

What happens when a wave hits a boundary? Assume that we know the form 

of the incident wave and a boundary condition (for example, si = sr' the inci­

dent phase equals the reflected phase on the boundary). Then we can find 

the reflected rays and the reflected'phase by the methods described above. 

When the incident wave hits a vertex or corner on. the boundary, then 

the condition on s is known only at a point. Therefore the rays emerge from 

it in all directions. They are called corner diffracted rays. If the inci­

dent wave hits an edge of the surface then each point produces a cone of 

emerging rays. They are called edge diffracted rays. 

What happens when a ray is tangential to the reflecting surface? It 

travels along the surface of the body and leaves tangentially. E:!(periments 

have been done to show this. One such experiment involves bouncing radar 
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<J- --~-
n.acLa..n. 

waves off a cylinder. The phase difference at the receiver between a ray 

- reflected off the front of the cylinder and one that passes around the cylinder 

is ~ (0.. ~ /ia. + Q...) • There will be interference between the reflected and dif­

fracted fields with a period dka determined by equating this phase difference 

to 2..17. Thus 

This is what is observed. 

5) An example of ray treatment of a "wave" equation. (Really- a diffu­

sionequation.) 

Uo/:::: E lJ. x 1- OJ U.(;t,0):: d(~) (25) 

Let LL ':. ets(-t.)t) A ('/.. Jt J 6 ) (2Sa) 

Therefore dU = ~t eS/e.A + e.sfe A at e _ ' t (26) 
-, 

at. _ D~[ s; A+ ~!tAlt-+ ~ + A } dii""- .... 62. 6 E 1f-"t. (27) 

Putting (26) and (27) into (25) gives: 

t- [$i-s~JA + 6~[At-lS1-A)f.-Sx~A]-eAxx: 0 (28) 
.' 00 

Let now A = foAn (x)t) t. 'n 

and substitute it into (28) and equate powers of ~ 

[5tM~;]An-t-~n_llt: -1s~A",_,)x- S~~A't\-IJ- A~_2.)'t.1- =0 (29) 
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Starting with h::- 0', A -Y1 = 0) Y) <.0 we get either Ao" 0 or ( 
/ ,. 

~- SiC ,. 0 (30) 

This is the dispersion equation for S . For Yl = I we get 

/lOt -ls)I,AolC - S'X,.Y- A .. ,. 0 (31) 

This is a linear first order PDE in )10' The initial conditions on s are 

s = 0 at x,t = 0 since the source of k is the delta function at x = 0 at t = O. 

We now make the substitution p,. S~ ) w .. S~. Then (30) becomes 

W - 'P'" = 0; (32) 

Applying the equations (10) to (32) we get 

From (35) 

From (37) 

dx. 2. . ~ "V ",0 "I ,,0 "," 0 
~ = - P ==i' '" == I'" -'f:i cr ::; - ..... p crl ,.. '= 

dt _- I 
dcr . 

~ po ,. 

:a.. po = 

~ o =* w- WO == pO 

w ... ~ p2 ~ 5 = $0 ~ (w - 2. -pt.)a- .: -t'''''cr 

:i~ ~ 4(J20= J./t'3-

-s 
t 

Now (38) and (39) yield the solution 

Ne~t we calculate 
$ -x., S ,. , 

'j.= ::2.t. > )II: )I. - '--t 

Putting these into Eqn.(3l) yields: 

which is solved by Ao = ~ ~ 

dAD _ Act 
crt - - .2.t 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

Finally, using this result for Ao and (40) for s in Eqn.(~Sa) gives the 

solution 

(42) 
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The only remaining problem is to determine the constant c. This 

cannot be determined from the theory as developed so far here, since the 

origin, where the initial conditions are specified, is a caustic. It can 

be found, but we shall not find it. 

The preceding procedure can be applied to any nonlinear PDE of any 

order, or any system of PDE's. 

ABSTRACTS 

Notes submitted by 

Joseph R. Buckley 

and Mark Koenigsberg. 

MINI-MAX PRINCIPLES FOR LINEAR SYSTEMS 
(abstract) 

James L. Anderson 

A number of physical systems are governed by a linear, inhomogeneous 

integral equation of the form 
IT 

X(t) = f(t)Q(t) - oeJ F(t,t')Q(t')dt' == H[Q] 

where X(t) and f(t) are given functions of t, 0<. is a parameter, F(t,t') 

is a symmetric, semi-definite (positive or negative) kernal and Q(t) is the 

unknown. Three examples of such systems are given: (a) Knudson flow through 

a channel, where Q(t) is the number of molecules hitting the wall of the 

channel at t per unit area and unit time; (b) radiative transfer through 

a plane-parallel atmosphere, where Q(t) is the density of radiation as a 

function of optical depth and (c) transport in a gas where Q(t) is related 

to the deviation of the distribution function from that for local thermo­

dynamic equilibrium. In many instances one is not so much concerned with 

the details of the full solution as with some weighted average of Q. More 

specifically one is often intereated in the quantity 

T = (X,Q) 
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where in general (A, B) "5 f A(t)B(t)dt. In case (a) T is number of molecules 

leaving the channel per unit time, in (b) it is the integrated reflected 

flux, and in (c) it is proportional to a transport coefficient. 

By constructing a variational principle for the integral equation it 

is possible to find a variety of upper and lower bounds on the quantity T. 

Assuming, for definiteness, that F(t,t') is semi-positive definite, it follows 

from the Schwartz inequality that, for any trial function U(t) 

T ~ (U, X) 2/ (U ,H [U] ) . 

Using the method of reciprocal variational principles one can obtain both 

improved lower and upper bound~ on T.l Thus, for case (b), for an optical 

depth of 0.1 one obtains a simple lower bound of .084159 while an improved 

lower bound gives .084292 and an upper bound of .084337. Systematic pro­

cedures for improving the bounds are also discussed. 

NUMERICAL SIMULATION OF LAKE ONTARIO 
(abstract) 

John R. Bennett 

The circulation of Lake Ontario during July, 1972 has been simulated 

with two numerical models. One of the models is a l2-level cross section 

model with a horizontal grid resolution of 3 km and the other is a 7-level 

three-dimensional model with a 5 km grid. fn both the hydrostatic, Boussinesq, 

f-plane and rigid lid approximations are us~d, and advection of momentum is 

neglected. The cross section model was used to estimate preliminary values 
i 

of the empirical parameters and to isolate some of the physical processes 

operating in the three-dimensional model. The chief difference between the 

two models is that the three-dimensional model allows longshore propagation 

and advection. 

Turbulent diffusion is parameterized with a vertical coefficient of 

turbulent diffusion which depends on wind stress and Richardson number dif­

fusivity. 

lH.H.JenSen, H.Smith and J.W.Wilkens, Phys.Rev. 185: 323 (1969). 
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The input data for the models consists of objectively analyzed fields 

of winds and air temperature at hourly increments. Both Canadian and United 

States IFYGL stations were used. For most of the cases a constant drag coef­

ficient was used to estimate the surface stress but for some cases the coef­

ficient was made dependent on the air lake temperature difference. 

The mean north-south temperature gradient due to upwelling on the 

north shore, the thermocline depth and the monthly mean circulation compare 

favorably with the analyses of R. L. Pickett and F. Richards. It is shown 

that the cyclonic circulation is due to both the variation of stratifica­

tion across the lake as well as the geostrophic flow due to shore zones being 

warmer than mid-lake. 

The most important propagation mechanism is shown to be topographic 

stretching. At several times in the month, after periods of relatively 

strong winds, two large counter-rotating gyres rotate counterclockwise 

around the lake. To a good approximation the period corresponds to that 

of a topographic or "second class" mode. Propagation of· baroclinic Kelvin 

waves, and longshore advection of temperature are less important. 

A REVIEW OF NUMERICAL MODELS OF THE OCEAN CIRCULATION 
(abstract) 

Kirk Bryan 

The first numerical models were intended to explore the response of 

a homogeneous fluid on the j3-plane to simple wind-stress patterns. For the 

purposes of this discussion we can interpret these models as representing 

the shallow upper layer of a two-layer ocean with a rigid interface between 

the layers. In this case the lower layer is at rest, and the interface is 

horizontal. Numerical models have been useful for studying time-dependent 

and nonlinear versions of earlier analytic models of homogeneous, wind-driven 

oceans. Spin-up of the system from a state of rest takes place through the 

excitation of Rossby waves which propagate energy to the western boundary. 

The final solution depends very much on the lateral boundary conditions im­

posed at the walls. For free-slip boundary conditions the solution tends 
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(b) 

Free-slip 

Fig.l 

to a steady state with a circulation much stronger than that given by linear 

theory. For non-slip boundary conditions there is very little downstream 

transport of vorticity in the western boundary current as shown by R. Stewart. 

As a result vorticity generated by the boundary current must be dissipated 

locally. For low Ekman numbers the western boundary current becomes unstable, 

and a series of vortices form which are carried downstream. The free-slip 

and non-slip cases are shown in Fig.l, as computed by Blandford. In both 

cases the dissipative mechanism is by the lateral diffusion of vorticity. 

Surprisingly the free-slip case shown in Fig.l has almost the same 

pattern as found in earlier calculations for another model investigated by 

Veronis in which dissipation is entirely due to bottom friction. 

Recently, interesting results have been obtained by Lin and Holland 

for similar models in which the interface between the two layers is free to 

respond, and there is motion in both layers. The initial response of the sys-

tem is barotropic, but later the spin-up process deforms the interface and the 

motion tends to be confined to the upper layer. For the case of free-slip 

boundary conditions a large depression of the thermocline forms in the upper 

gyre shown in Fig.l(b); Eventually baroclinic eddies form on the lower part 

of the gyre. The upper branches of the current adjacent to the western and 

northern walls are stable. The effect of the eddies is to excite motion in 
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the lower layer and arrest the baroclinic spin-up process. In the two-layer 

case with no-slip boundary conditions the flow pattern in the upper layer is 

like that of Fig.la, and baroclinic instability does not take place in the 

same parameter range. 

The simplicity of the two-layer model makes it an ideal tool for 

studying mechanism involved in the interaction of baroclinic instability and 

the ocean circulation. Studies should be made on a two-layer model to see 

if parameterization of baroclinic eddies is possible. More detailed treat­

ment of vertical variations of velocity and temperature can be kept in re­

serve for more detailed simulations with an aim to comparing Tesults with 

observed data . 

A MODEL FOR A CONVECTION DRIVE GEODYNAMO 
(abstract) 

Friedrich H. Busse 

It has become generally accepted that the earth's magnetic field is 

generated by motions in the earth's liquid core. The process by which 

motions in an electrically conducting fluid generate a magnetic field is 

called the dynamo process. It is governed by the dynamo equation for the 

magnetic fieldB. 

(1) 

( )-1 
where 1 is the magnetic diffusivity '1:= . (J).J. . There are two candi-

dates for the energy source of the geodynamo, convection and precession in­

duced motions (Bullard, Proc.Roy.Soc. A197: 433, 1946; Malkus, Science 160: 

259, 1968). Fortunately, the convection rolls in the core (illustrated in 

Fig.l) and the Rossby waves induced by precession are similar in character 

owing to dominating influence of the Taylor-Proudman Theorem. Hence we shall 

restrict ourselves to the case of convection assuming that the dynamo process 

will be similar in the case of precession induced motions. 

The complete system of equations to be solved consists of the Navier­

Stokes equations of motions in a rotating system, the heat equation for the 

temperature field, and Eq.(lJ. Our approach is based on the assumption that 
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.n 

Fig.l. Qualitative sketch of the marginally unstable convective 
motions in an internally heated rotating sphere. 

the geostrophic balance governs the motions in first approximation even if 

the magnetic field is present. This requires that the toroidal magnetic 

field in the earth is at best one order of magnitude larger than the poloi-­

dal field instead of two orders as has been sometimes assumed. The analysis 

proceeds by first solving the hydrodynamic problem without magnetic field, 

(Busse, J.Fluid Mech. 44: 441, 1970). Then the kinematic dynamo problem 

represented by (1) is solved. Then we modify the problem slightly by con­

sidering a cylindrical annulus with parabolic instead of spherical top and 

bottom. This will not .change the qualitative conclusions, however. Finally, 

the equilibrium amplitude of the magnetic field can be calculated by con­

sidering the Lorentz forces. This part has not been completed yet. The 

results will be similar, however, to a simpler case treated earlier (Busse, 

J.Fluid Mech. ~: 529, 1973). 

It is found that the field corresponding to the lowest magnetic Rey­

nolds number 'R tn :: Uroh is predominantly dipolar outside the conducting fluid 
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with the axis parallel to axis of rotation. The field is stationary and the 

toroidal component is of the same order as the poloidal component since dif­

ferential rotation is assumed t9 be negligible. The known features of the 

earth's magnetic field agree with the basic properties of the model if the 

secular variation is regarded as a secondary phenomenon. The mode~ does not 

exhibit reversals. These do not contradict the property of stationarity since 

they occur on a much longer time scale than the diffusive time scale of the 

geodynamo . 

PATTERN OF CONVECTION IN SPHERICAL SHELLS 
(abstract) 

Friedrich H. Busse 

The problem to which this work is addressed can be simply formulated 

by the question: "What is the analogue to hexagonal convection cells in the 

case of a spherica~ geometry?" The problem of convection in a spherical 

shell with spherically symmetric gravity and temperature gradient has a long 

history mainly motivated by the possibility of convection in the earth's 

mantle. Chandrasekhar's monograph "Hydrodynamic and Hydromagnetic Stability" 

has a long chapter on this topic. 

The general three-dimensional problem of convection in a spherical 

shell has been treated only in the linear approximation which yields a de-

generate eigen value Ro for the Rayleigh number. Since Ro depends only on 

the order .e of the spherical harmonic 
m m ) (mcp Yt s ~ (CDS e e (1) 

and not m, the multiplicity of the eigen value Ro is 2~+ 1. In order to 

determine which superposition of the 2l+ 1 independent spherical harmonics 

(1) is preferred, the nonlinear problem has to be considered. In the analo­

gous problem of a plane convection layer it can be shown (Busse, J.Fluid Mech. 

30: 625, 1967) that hexagonal convection patterns are preferred if the 

properties of the layer are sufficiently asymmetric. The importance of 

asymmetries between top and bottom part of the layer is emphasized by the 

geometrical inhomogeneity in the case of the sphere. In addition it should 
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be noticed that in the application to the earth mantle and stellar convection 

zones the basic neutrally stable state has generally inhomogeneous material 

properties owing to the adiabatic temperature gradient, while the neutral 

state under laboratory conditions is isothermal. This has consequences also 

for high Rayleigh number convection when the neutral state is approached in 

the interior of the convection layer. 

We use the property that 

is an extremum for hexagons in the plane case when x,y represent the horizon­

tal coordinates and < ... 7 indicates the average. In the spherical case 

we assume that w = we is given as a linear superposition of 2.e +1 modes of 

the form (1). Since < W-fJ:; > vanishes for odd .e , modes with even!, are 

preferred since they can adjust to the asymmetric properties of the layer. 

No general solution of the extremum problem (2) seems to exist in the spheri­

cal case. For..e =2 we find that W-,-:::- Y: extremalizes the functional at. . 
In the case of ~=4 the extremalizing solution exhibits the symmetry of an 

octahedron or a cube, depending on whether we identify the primary or sec­

ondary maxima of vertical flow with the corners of the polyhedra. In the 

case ~ =6 the solution shows the symmetry of the icosahedron or the dodeca­

hedron. No relationship to the problem of convection in the earth mantle 

has yet been found. Because of the continental cratons the boundary condi­

tions seem to deviate too strongly from spherical symmetry for the theory to 

be directly applicable. 
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"WHAT IS POTENTIAL VORTICITY?" 
(abstract) 

Louis N. Howard 

Ertel's theorem states that in any flow of an inviscid compressible 

fluid subject to a conservative body force per unit mass the quantity 

Jfl \It tb· '1/4 is constant following particles, provided that.-Q. is similarly 

constant, and, if i7PX~.P:f:O, is a function of l' and,.p. For a gas which 

does not conduct heat, the entropy per unit mass is a function ~ of this 

kind . 

Nonlinear shallow water theory is mathematically analogous to two­

dimensional compressible isentropic flow with 1'::: Cp'2.("'( =2.") in which the 

"density" is proportional to the depth h, bottom to free surface, of the 

water. Since the analogous gas flow here has \11' 't \1;:: 0 , .4 may be any­

thing constant following particles, and a good candidate is the position 

variable r , absolutely constant since the analog flow is two-dimensional. 

Thus for nonlinear shallow water theory *" (9)< ~ jo! is constant following 

particles. This quantity is commonly called potential vorticity in nonlinear 

shallow water theory. Evidently the quantity referred to in Ertel's theorem 

gives a generalization of this concept appropriate for stratified compress­

ible flow with any conservative body force field. 

Because of its constancy following particles, potential vorticity is 

often useful in qualitative discussions of, e.g., flow of shallow rotating 

fluids over topography. However the fundamental significance of this tem­

porally invariant field for the whole initial value problem is most explic­

itly appreciated by considering linearized shallow water theory, or the 

linearization of a compressible stratified flow about a basic state of rigid 

rotation and hydrostatic equilibrium. In these linear problems, the solution 

to the initial value problem can be described as a superposition of a steady 

part and of an oscillatory part. For rotating stratified flow the possi­

bilities for the steady part are frequently very numerous - the normal modes 

of frequency zero ("geostrophic normal modes") make up an infinite dimensional 

space. However it turns out that the way this steady part is determined by 

the initial data can be described in considerable detail even in a very 
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general case. by making use ofcertairt quantities closely related to the 

"potential vorticity" of Ertel's theorem. These quantities are defined 

slightly differently so that they are constant in time at a fixed place 

rather than following particles. which is more convenient in the linearized 

theory. They can be calculated from the initial data. and then determine 

the steady part of the solution to the initial value problem. 

When dissipative effects. viscosity and heat conduction. are taken 

into consideration the potential vorticity (or related quantities) is no 

longer constant. but with small dissipation varies slowly. The way this 

slow variation occurs can be described approximately by studying the bound­

ary layers. and in this way motions such as spin-up which are long time­

scale variations of nearly geostrophic flows can be investigated in consid­

erable generality; in particular the equation of state. the gravitational 

field. and the basic stratification may be quite arbitrary. 

(This lecture is primarily an exposition of material published in 

pp.12l-l37. "Mathematical Problems in the Geophysical Sciences". Vol.13 of 

Lectures in App~ied Mathematics. American Mathematical Society. 1971.) 

SOME COMMENTS ON THE METHOD OF MATCHED ASYMPTOTIC EXPANSIONS 
(WITH APPLICATION TO THE THEORY OF LAPLACE'S TIDAL EQUATIONS.) 

(abstract) 

Vladmir M. Kamenkovitch 

A situation that is found very often in many problems of geophysical 

fluid dynamics is: an asymptotic expansion of the solution y(x) of a certain 

problem in O~X~ 1 (outer expansion) is proved to be not valid in the vicinity 

of some point (say x=O). Usually it implies that in the vicinity of x:;::O the 

solution. y(x). has an alternative asymptotic expansion (inner expansion). 

As a rule it appears that the regions of validity of both expansions overlap. 

This essential fact is the real basis for deriving so-called matching condi­

t.ions without which usually it is impossible to find both outer and inner 

expansion. A discussion of the subject is given in several review papers of 

Lagerstrom. in M. Van-Dyke's book. J. Cole'sboo~, etc. The recipes which 

will be discussed in this lecture are based on a ;ecent paper of Ilyin et aZ. l 
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Consider for example a simple case: let ~ ~ a small positive param­

eter,~gK'U.kCX.) is an outer expansion of y(x), and ~ €kVK C~), s= xis 
is an inner expansion of y(x). Then for given accuracy O(EJ n) and boundary 

-&=£.Y, o.t::V<"l it is always possible to find numbers, Ne and Ni' so that 

ffi.. Ie Y'I ~ Y (X) - ~ c U k.. (X) = 0 ( c. )) v ~ X ~ 1 

"'. 
~ (:I.) - f; c:1< VI< (f) = oee/') ~ O~ X~-&-

Therefore 

From this relation it follows that asymptotics of functions U,k (-I..) at X ---';. 0 

and asymptotics of function VI<. (r) at {~-OO are related to each other. 

For example, in simple cases U o (0)::: Vo (00). 

A straightforward application of basic relation (*) is hardly possible 

because it is difficul t to find N , N. for given accuracy 0 (e:""n) and -y . 
e l. 

However it is possible to offer the following procedures which will be suf-

ficient for validity of this relation: 

First procedure 1) Consider f 81< "1).1( (£ n with fixed Nand r . 
o 

2) Expand it in an asymptotic sequence {£. 1<:} t'o yield ~ e. Ie C~N: (r ) . 

Then starting with sufficiently large N functions C ~N) ( s) will be corres­

pondingly asymptotics for functions VI< C n at {--7 oo . 
t./ . 

Second procedure 1) Consider~' CI<VKC+) with fixed N and X. 

2) Expand it in an asymptotic sequence {t I<} to yield ~ E K eL,/Nix). 
Then starting with sufficiently large N functions J.,/,.,t'X)o will be corres­

pondingly asymptotics for functions UK (x}at X-70. 

The choice of a procedure depends on the problem. Several illustra­

tive examples are considered. In conclusion short wave asymptotics are 

found for eigen functions of Laplace's tidal equation and corresponding dis­

persion relations. 

Reference 

1) A.M.I1yin et aZ., 1974. ,Dokldy Acad.Nauk. S.S.S.R. 
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WAVE PATTERNS OF NON-THIN OR FULL-BODIED SHIPS 
(abstract) 

Joseph B. Keller 

A method is presented for determining the wave pattern produced by 

the motion of a non-thin or full-bodied ship. It is based upon the assump­

tion that the Froude number F = U2gL is small, where U is the ship speed, 

L is the ship length and g is the acceleration of gravity. In this case 

the wavelength of the resulting waves is small compared to L. Therefore, 

the waves can be described by a theory like geometrical optics, in which 

rays, a phase function and an amplitude function playa role. The waves 

are superposed on the double body flow, which is the potential flow about 

the ship and its image in the undisturbed free surface. They are produced 

at the bow and stern, ~nd travel outward and rearward from these points 

along curved rays which become straight far from the ship. In addition 

some waves from the bow travel along the surface at the waterline and leave 

it tangentially toward the rear along similar rays. Thus the ship wave 

pattern consists primarily of the waves from two sources, one at the bow 

and one at the stern. The results are confirmed by comparison with the 

small F asymptotic evaluation of Michell's solution for thin ships. 

TOPOGRAPHIC ROSSBY WAVES - A CAUTIONARY TALE 
(abstract) 

James R. Luyten 

The dynamics of linear barotropic topographic Rossby waves are dis­

cussed for various forms of the underlying topography, with particular refer­

ence to the "I>aradox" of the energy flux of simple wave groups. The usual 

perturbation scheme is developed assuming that the fractional change in depth, 

~h/h' is small with respect to unity. For an exponential bottom profile, 

it is found that the flux of energy, the pressure-velocity correlation, is 

precisely equal to the product of the mean kinetic energy and the group veloc­

ity, in accordance with intuition. For a uniformly sloping bottom, energy 
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flux contains, in addition to the product of the mean energy and group veloc­

ity, a term arising from the turning of the wave fronts as the wave progresses 

up the slope. Energy is conserved since this additional flux of energy is 

balanced by corresponding terms arising from the gradients of the envelope or 

the pressure fields of the wave packet. 

FLOWS DUE TO ARBITRARY BODY FORCES IN A ROTATING FLUID 
(abstract) 

Willem V.R. Malkus 

The linear solution for forced flow in a homogeneous fluid is given 

by H. P. Greenspan (1968, Eqs. 2.13.7-8) in terms of an expansion in the 

free modes of the system. However, the free modes can be found explicitly 

only in a few simple geometries and even in these geometries summation of 

the expansion which determines the flow may be impractical. An alternative 

direct determination of flow for steady forcing was first given by J. B. 

Taylor (1963) in a study of the conditions which Lorentz forces must satisfy 

so that steady inviscid hydromagnetic solutions may exist. More complete 

reformulations of Taylor's work have been needed in recent geodynamo studies. 

The (unpublished) presentation of A. M. Soward (1972) is used as the frame­

work of this discussion. 

It is concluded that the only restriction on the arbitrary body 

forces for an inviscid solution to exist is that the integral of that force 

vanish over any geostrophic cylinder. The forced flow is then directly given 

by the curl of a partial integral of the body force along the rotation axis 

plus the gradient of a pressure also determined by the body force. Special 

consideration must be given to 
A 

where the N are vectors normal 

'" A points or contours on which NT x NB = 0, 

to the top and bottom surfaces respectively. 

The general conclusions reached may prove useful in a number of 

oceanic or other geophysical contexts .. They are used here to determine the 

flow resulting in a rotating spheroid from Lorentz forces of a growing 
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magnetic field. It is· shown (Malkusand Proctor, 1974) that the resulting 

flow can stabilize the magnetic field and that the novel eigenvalue problem 

which arises requires geostrophic "eigenflows" of scale amplitude as a solva­

bility condition. 

References 

Greenspan, H.P. 1968 "Theory of Rotating Fluids", Cambridge Univ. Press. 

Taylor, J.B. 1963 Proc.Roy.Soc. A274: 274. 

Malkus, W.V.R. and M.R.E.Proctor 1974 J.FluidMech. (in press) 

AN ANALYTICAL MODEL FOR THE OCEANIC RESPONSE 
TO ATMOSPHERIC COLD FRONTS 

(abstract) 

Christopher N. K. Mooers 

The basic hypotheses of this model are: (1) an appreciable fraction 

of the turbulence in the ocean is wind-induced; (2) this component of tur­

bulence can be adequately synthesized from a linear response model; (3) at­

mospheric events, e.g., cold fronts, have well-defined space-time structures; 

(4) such events may not contribute significantly to the mean wind stress on 

a monthly or a longer time scale, but they contribute significantly to ener­

gizing the ocean in an r.m.S. sense; indeed, their r.m.s. values may exceed 

monthly mean values by an order of magnitude; (5) when coastal topography is 

introduced, the consequent wave reflection and trapping phenomena for inci­

dent radiation lead to definite spatial structure to the mean square response 

fields; and (6) a divergent Reynolds stress field emerges, providing a mech­

anism for driving or damping a mean circulation. The model was first motivated 

by examination of some contemporary observations indicating energetic oscilla­

tions (40 to 80 cm sec-I) of horizontal currents and thermal fields on a con­

tinental shelf occurring on a weekly time scale, i.e., the time scale of the 

seasonal succession of atmospheric cold fronts. Though the oscillations 

appeared to be largely barotropic, there was no escaping the existence of 

baroclinic aspects to the response signatures. The second motivational ele­

ment was provided by considering the magnitude and form for the surface 

-
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expression of a hypotehtical atmospheric cold front, whose features were at 

least consistent with observed and textbook values. The model cold front 

had the following features: (1) a traveling disturbance (propagation veloc-
-1 ity ......... 10 m sec ) of constant form; (2) two predominant scales the 

f time /\/ 5 days "\ between successive f t d th ) time'"'"" 1 day \ 
tdistance rV 4,000 kmS ron s an e ~distance~800 km) 

over which the front was most intense; (3) the front had strong pressure 

( ........ tlO mb), sensible heat flux ("'-/ -7xlO-3g cal ,cm- 2sec -1), wind stress 

( ____ ±6 dynes cm- 2), wind stress curl ("'-'"± lxlO-7 dynes cm-3), and wind 
-7 -3 stress divergence (rv ± lxlO dynes cm ) forcing signatures. We will ac-

count for four meteorological forces: (IF, 2F) = -L trM r'1'\ the wind stress' Po \ 1 I' , 

3F = ~ p~, the atmospheric pressure; and 4F ~ B, the buoyancy flux. 
" We can thus model each of the four meteorological forces, i. ~j (L.:o J{J)/f) 

components: 
err.. < L LKrn(ct-i<~8-~Wne) 
'0' = ~. ,~ e ~ 
I.. Y\"I L h'I 

as a sum of propagating Fourier 

where C and e are the propagation speed and direction of the disturbance, 

respectively; KYr\=.1ff1 (m:IJ 2l •• ·) , the mth wave number of the disturbance; 

L is the half-distance between disturbances; and LFm is the mth complex 

Fourier amplitude of the disturbance. Typically,' the Fourier amplitudes have 

the following form: 

. F.. IX l sJm{rrmln) (m 4 n 1 and. -' ,(rn:..n)· 
~ hi 1T (Y)'lo_ml) , 2n' 

where Lin is the half-width of the zone o~ intense forcing. Thus, the 

amplitude distribution over-wave numbers is fairly uniform between the funda­

mental and the nth harmonic and then falls off rapidly with increasing n. 

In the atmospheric cold front case, the forcing is approximately broad band 

between periods of one and five days; therefore, near-inertial forcing must 

be considered. 

Ultimately, the mean circulation produced by the divergence in the time­

averaged wind-induced Reynolds stress is to be considered. We content our­

selves here with outlining the oceanic response, with coastal boundaries in­

cluded, from which the Reynolds stress and its divergence are to be computed. 

We assume that the fluid is Boussinesq and inviscid; we consider dynamics on 
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the f-plane and an infinitely-long, straight coastline; we neglect the effects 

of the mean flow on the fluctuations and treat linearized dynamics; we idealize 

the forcing as traveling, periodic disturbances incident upon the coastline at 

an arbitrary angle, 81. ; we treat the momentum and buoyancy flux from the sea 

surface as body forces which decay linearly from the surface to zero at some 

depth d, neglecting the details of the dynamics and thermodynamics of the sur­

face mixed layer; and we initially treat the case of uniform depth, returning 

briefly to the case of uniformly sloping bottom at the end. 

The momentum, continuity, and buoyancy equations are then 

(4) O)(LA- + d~ V+ d?:W = 0 omd. 

(5) at- b -+ tV')."" :::. O't B. 

From (1) - (5), a governing equation for the vertical velocity, w, is derived: 

(6) 1J?-IJ.'>-W + <£)~ w. ... =- - -h- O~i! [o-t \}~ ·r + f(\7X:T)~ J+ a" 7: 13 
, H ~ "'... '-0 , 

where ~~ ( ):: o~t. ( ) + N~ J]~ ( ) :; a~t ( ') + { .... 1 and the other notation is con­

ventional. With (6) to examine, and disregarding vertical derivatives for 

the moment, it is then clear that the interior forcing of VV is provided by 

f times the wind stress curl, the time rate of change of the wind stress 

divergence (which can be important, especially for time scales of the order 

of f- l or smaller, as in an atmospheric cold front), and the horizontal La­

placian of the buoyancy flux. For the case of a flat bottom, at ~ = -~) 
(7) w (- ~)-:. o. The linearized dynamic boundary condition at the free 

surface Cz = 0) is dt p- ~ W ... 0"t PQ... , or 

~ \7~ W(O)- d~Il:w(o) = -+-dt \/"Po. + -fr- d~ [Cit Vf\ .1++ (\7)(:t)aJ 
If) 101 0 D 

(8) 
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Solutions are then obtained for each Fourier component of the forcing 

individually. The problem to be solved in the vertical reduces to the fol­

lowing form: 

'K-"(N'J.- rr2)~ ... (O-2.._+-~)~1I = F(,) (6') 

7! (-D) :: 0) amd (B,') K 2.~ ~(O) - (0--" _+'1.)r' (0) ~ Ci:o ~ (7' ) 

where iT EKe and the subscript of the space-time harmonic has been dropped 

for convenience. The solution for ~ is found in terms of the modal solu­

tions, ( ~'f\'I)S f ' to the corresponding homogeneous problem: 

r ... ~ Am $m ) whefe 

Am:. 8m r CrfI 't 

(KJ._ K~ )(!pm) rp'Wj ) 

13 =[F~ dt , 
"' -Cl. rn 

em ::. G. ~ (0), 

(<Pm,cPm) =- Je> (N~fT"9.)<P'rY1 cPmd.~ + 'j Q>rfI(D) $n') (0) J 
-D 

and I<m is the eigenvalue corresponding to the eigenfunction ~rr-.' The 

formula for Am exhibits an expected tendency for spatial resonance where 

k tends to Kt1'\; also, a direct response occurs for I K\ > K'rn and an in­

direct response for I K I.e:. K m' 

Now that the directly forced part of the solution has been obtained, 

we turn to the coastal boundary where the normal velocity must vanish, i,e., 

t..l,:O at %:::.0, say. From (1) and (2), that is equivalent to requiring 

Clearly, a "free, reflected or trapped wave" will be forced by this bound­

ary condition. Such waves are solutions to the homogeneous problem with 

hQrizontal wave numbers K ~ (cloO'O 8R) .<Um 9R,) . It must be true that 

(9) 

and 
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(10) 

for the nth vertical mode in the case of constant N. If 0- ;:> IV or a-..:::: f ' 
V\K~ will be imaginary, i.e., a trapped, Kelvin-like wave will be gen­

erated. Combining (9) and (10) for +-..:::. cr< II , it follows that 

t-eVnl"\ 9R :: Wn ~ / [ ( " Y\ --nIT) K"I. ) '-: ~~ 91. j V,. (11) 

If /Br I "/ "t')6c ~ a. 'ie, slm (A rn Ii/ D Kz ) )'fI6R. and, thus, "rI k ~ , is imagin­

ary, and again a Kelvin-like wave is generated. Otherwise, a rpoincar~ 

wave will be generated which will propagate away from the boundary. Such 

leakag~ is favored by a small angle of incidence, 81 ; or, for a fixed 

6 1 ' by high frequency, high vertical mode number, shallow depth, and 

long incident wavelength. 

If we add a continental shelf with variable depth to our model 

coastline, we can anticipate. from (11) that some of the reflected (Poin-

'" care) wave energy will be refracted and thus trapped on the continental 

shelf. If we also add a continental slope in any form, say a topographic 

step, it is clear that some of the incident wave energy can be trapped as 

Kelvin-like waves at the step; other portions of the energy will be re­

flected back into the ocean, and a pattern of incident and back-reflected 

or trapped motions will be established on the shelf, too. More generally, 

the case of sloping topography must be treated. With a uniformly sloping 

bottom (~ :: - 'D., + Y')c). the kinematic bottom boundary condition yieids the 

reflection law for t <. r::r < tV: . . 
~ = (A+ 1"'") k:c + '-r It (-e'"-j. k~ /'L. 
~ (A'--Y'l.) (12) 

where the incident 3-D wave number is 

and the reflected 

Three limiting cases are noted: 

(i) ('1=0), kr< = ok!, : simple forward reflection from a flat bottom; 
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1 · . d d { forward I. norma 1nC1 ence an backward) 

reflection if A f~ ~} ; and 

tangential incidence 

and strong refraction if f... ~"'I. 

For IT <.f' or rr) N , replace A by i)k , then (12) -becomes 

I .(~ -k 1. 'It.. k = (,u1.-r'")-k% -L 2. rp.. ( . + 1:). 
R (M"/..+ y-j.) (13) 

i.e., the reflected wave has a complex wave number unless r ~ O. Thus, the 

mechanism of bottom-trapping comes into play. 

All of the principles have been outlined; what remains to be done is 

to work out the details, including the partial scattering and trapping over 

variable topography. In the final analysis, the divergence of the time­

averaged Reynolds stress will involve terms such as the following: 

~ r -i.f<. ~e?C LI-.'rn'rlX] A-t {k ..... (ct-~lJ..WIe) 
with U:. Re ~ 7n Un1'l7 Le Tn - e 'fYi ('2'). e , 

Then 

uu.:.~ .k f"t1LPmU9TM<P~(~)CP~(~) ['+~((~m~-km~)"X)­
- ~((KmClXl e-*m~X) - ~((Km~ &-kmp)X:)]. 

For simplicity, we also average over depth to take advantage of the ortho­

gonality of the ~~)s) 

uu. = ~ ~ Upm [\ -~ (( Km 000 e - -kmp) X) ] • 

Finally, 

d)l (1.,(. v.) -= ~ ~ u."prn (Km COt e- ~mr) Wn (O<rnc.fiO e - ~mp ))() (14) 

which lays bare the results to be expected from the general procedure. 

At the coastline, (14) vanishes; due to topographic trapping, it will gen­

erally vanish at infinity, too, Therefore, it will have at least one ex­

tremum over the topography; and a driving mechanism for a mean circulation 

will be provided. Since this is work in progress, no quantitative results 

are presented. It is hoped to provide an accounting for a 
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d (0 u.. u..) _. () (SO~ Se.c.~\)?- ::: I X I O-~ 11 Vl)..4. CI'«l ~a 
x 14 JO:2.;OkYYl ~ 

which would have an effect equivalent to a mean wind stressT", =1 dyne cm-2 

applied to a water column of depth D, ~ 100m. We can estimate the effect of 

a wind stress disturbance to be: 

ax ((J u.. u,... 'V -1... 
J'. PC! 

Hence, the mean squared wind stress with effect equivalent to a mean wind 

stress is estimated by 
1:"~w /1:W-,?o d~.f!2-IIH~"-' 10) 

3 . 4 -4 -1 -7 -1 where d ~ 10 cm, D ~ 10 cm, f = 10 sec , and K = 10 cm . As a final 

remark, the calculations should be extended to account for various mechan-

isms, e.g., bottom roughness, which will make the incident and reflected 

forced waves partially coherent and which will contribute to making such 

terms as (W)~* O. 

A TWO-LAYER MODEL FOR THE SEPARATION 
OF INERTIAL BOUNDARY CURRENTS 

(Abstract) 

Dennis W. Moore 

An unforced, inviscid two-layer model is used to examine the 

separation of inertial boundary layers. The Beinou11i taken as linear 

in the stream function Y and the potential vorticity of the upper moving 

layer is everywhere constant. The lower layer is at rest. In the in­

terior of the basin, the flow is a slow westward drift, and the depth of 

the moving layer increases linearly with latitude. Let e be the Rossby 

number for this interior flow. 

This flow hits the western boundary and is deflected to the north 

as an intense, narrow inertial boundary current. The width of the current 

is 0 (~tll) and the northward velocity is 0 (£. - ~). The depth of the moving 

layer on the western coast decreases to the north, and the interface sur­

face near an apparent separation latitude f = f c . (f = I+-j is the Corio­

lis parameter). At this latitude, the jet leaves this coast but remains 

-
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coherent with cross-stream width of 0 (E. Y2.). It leaves the coast going 

nearly parallel to it, with an initial deflection through an angle which is 

0([ 3,1(1). The free jet meanders to the east, while oscillating about the 

latitude f = fc with an Q(cV"I) amplitude and O(c:.Y<!) downstream wavelength. 

Reference 

Moore, Dennis W. and Pearn P. Niiler 1974 A Two-Layer Model for the Sep­
aration of Inertial Boundary Currents, J.Mar.Res., ~(#3). 

EMPIRICAL ORTHOGONAL FUNCTIONS -- A NON-STATISTICAL VIEW 
(Abstract) 

Dennis W. Moore 

The method of empirical orthogonal functions is being used to analize 

various segments of the MODE-I data. The purpose of this note is to explain 

the basis of the method in simple terms, without statistical jargon. In 

this analysis we make no distinction between signal and noise. We s~mply 

take the data as given and treat a deterministic problem. The distinction 

between signal and noise, and the process of obtaining corresponding error 

estimates, are important for interpreting the empirical orthogonal func­

tions once they have been found, but are not important to the process of 

actually finding the empirical orthogonal functions. 

Consider a discrete set of real data which depends on two variables. 

We denote the elements of the data set byfij , and the total data set by 

the matrix 
F::. (f~j)!'J.J .' 

The independent variables i. and j can refer to anything we want. For ex­

ample, if we are looking at a time series of XBT soundings at a fixed loca­

tion, the data might be the depth of selected isotherms from each sounding. 

Then l would refer to the specific sounding and j to the specific iso­

therm. . 
We assume that L ranges from 1 to I and j from 1. to J , and 

that there is no missing data (i.e., all of the elements of F· are known). 

We ask the following question: How well can we represent the given data and 
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. . 
the product of a single function of L times a single function of J ? 

Specifically, we wish to choose a column vector 

and a row vector H:. (hj)l x J" 

such that the quantity 

G : (~l \ j( 1 

.-r.. -;[ 2-

'R : L L (t~j -~thj) 
t=1 j.:.l 

is minimized. Since multiplying each element of G by a constant and 

dividing each element of H by the same constant does not change the product 

G H , we may assume that H is normalized. We take 
J . 
~h.~.:11 
j .. 1 j 

which in vector form is HHT = 1. The superscript T indicates the trans-

pose matrix, so \4 T: (hj )J')(. 1 is a column vector. 

We incorporate this constraint in the minimumization by means of a 

Lagrange mu1 tiplier, so we !ac;uallY minimi:e ( ~ ) 

f(1:L:L: (f..-athj)+A ~hJl.-1 • 
i:<) j-, "J oJ J::1 

I d I 
Variation of 1< with respect to each element of G (i. e., set ~ ~. :::- 0 for 

each k = I, ... I ) gives the condition S K 

G ~ FHT. (1) 

Variation of RI with respect to each element of H gives 

AH=GTp) 

where T I,. 
A + G &::t A + t;, ~~ 

From Eq. (1) we see that GT:: H fl, and substitution into Eq. (2) gives 

(2) 

(3) 

(4) 

Therefore.?\ is an eigenvalue and H a left eigenvector of the symmetric 

matrix F' T F'. The transpose of Eq. (4) is 

"AHT:. FTFHT, (5) 

T F 'iF ~ HI", ~"L so H is a right eigenvector of . From Eq.(2) we find ~ - r ~ 

We multiply Eq. (1) by A and substitute for A Hi to obtain 

''AG: FFTer. (6) 
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Therefore G is a right eigenvector of F FT with the same eigenvalue A . 
Now right multiply both sides of Eq. (4) by ~T to obtain 

A::. A HH'i :::. H FTFHT = G'TG• 

Therefore the eigenvalue 'A. is non-negative. 

From Eq.(3) we find that the Lagrange multiplier Jl is zero. Fur-

thermore, direct computation gives t ~ 

~ Of t t (f .. - Qi hi't = t: ~ t~ i ~ - A (7) 
l -:.1 J'" tJ J l ~ 1 .I ., ..j 

Therefore R is minimized by taking A to be that largest eigenvalue of 

FTF. 
\<. 

Denote the J real eigenvalues A in decreasing order by A , so that 
, :I.:l ~ 

A ?! A ~ it ~ • • ,= .. /\ ?! O. 

Denote the corresponding eigenvectors by C;K and Hi( The eigenvectors 

are orthogonal, so that 
(8) 

/<. I<' 1<.1' r; are given by C : fH , so we find The corresponding eigenvectors 

GKTC;-t :. HK F'f F Ht7= ~~H!~ HiT =" AK ~e . (9) 

So the eigenvectors r:;,.'~' are also orthogonal. 

Subtract the matrix G I H' from the original data matrix F to ob­

tain a new data matrix .F' given by 

F'::: F- G'H'. 

Now we repeat the entire process. Note that 

F';F' = FTF;.. H'TH' FTF. 

Therefore we find 

since 

value. 

with zero eigen-

) (10) 

since 
I IT 

Therefore HI!. is a left eigenvector of F F with eigen­
K 

value 1\. The sum of squares of the 
, 

elements of F -G H is minimized by 

choosing 11 = H'I. ,6 II G-~. Now we form 
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F'l.,::. FI- GtH~ :: F ... G'H'- G'a.H~ 
'. :£-."1':J. 

step the total variance ~ ~, -r " i 
:To '''I J', r",v 

is the trace of F F, it is equal to 

is reduced by A~ 
:r K 

the sum ~1 .1 .. · 
Therefore by repeating this process J times we obtain the identity 

:r 
F= LGr=.H K (11) 

, hI ' 
GK and HI<.. are the empirical orthogonal functions. The ktYt 

I< 
sum jn Eq. (11) contributes an amount A to the total trace 

The vectors 

term in the 

of P'F. The decomposition of the original data set into the form given 

in Eq. (11) is an identity. The usefulness of the representation depends 

on how much of the total variance ~ t,.l~ is accounted for by the first 
~. T 

few terms of the sum over K. If a few of the eigenvalues of F Fare 

much bigger than the others, this representation is very informative. On 
• "::\ I< 

the other hand, l.f all, the /\ are nearly equal nothing particular has 

been gained. 

Recall from Eqs.(4) and (6) that for each left eigenvector H of 

FT'F, the corresponding G:: PH' was a right eigenvector of ,=' FT .. But 

F TF is a J x 'J matrix, and F F T is an I '/.1 matrix. Say J is greater .,.. -
than I . Then F F has more eigenvalues than fF I Say A is an eigen-

val ue of F T F which is not an eigenvalue of F FT - Let H be the corres­

ponding eigenvector from Eq. (4). Then G;: FHf'must be zero, since A is 

not an eigenvalue of F FT. Finally, we still have It -= dT'G , so A = O. 

Therefore P'lF has at least J - I zero eigenvalues. So if J> I the sum in 

Eq.(ll) will have at most T non-zero terms. That is to say, the total 

number of terms contributing to the sum in Eq.(ll) is min(~ ,~).So in prac­

tice~ we might as well find the eigenvalues from the smaller of the two 

matrices FF" and F'F. 
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ADVECTIVE-DIFFUSIVE BALANCE FOR 
THE MEDITERRANEAN SALINITY ANOMALY 

(Abstract) 

George T. Needler 

In recent years a series of theoretical models have been developed 

that can describe the general features of the distribution of mass in the 

main anticyclone gyres below the mixed layer. An important feature of these 

"thermocline" models is that the density fields are relatively insensitive 

to moderate diffusion of mass. On the other hand, it is clear that even 

though the mass balance may be advective (that is, non-diffusive), there are 

first order diffusive changes in the temperature and salinity along stream­

lines in such features as the Mediterranean salinity anomaly. Assuming that 

the diffusion of mass, temperature and salinity may be described by the same 

Austauch coefficients, the Mediterranean salinity anomaly has been analyzed 

to determine whether the advective-diffusive balance in the anomaly implies 

significant diffusive effects in the mass balance for the main pycnocline in 

the North Atlantic anticyclonic gyre. 

The high-salinity anomaly due to the Mediterranean has been separated 

from the background salinity gradient by determining the difference from a 

linear T-S gradient. The resulting anomaly, which must satisfy the same con­

servation equations as T and S, exhibits a "tongue-like" distribution. The 

vertical and horizontal scales of this tongue have been determined as func­

tions of the distance along its axis from the available station data. Verti­

cal and horizontal Austauch coefficients have been computed through the use of 

a simple model including three-dimensional diffusion, constant advection, and 

an upstream Gaussian distribution. Upon taking the mean velocity to be .2 to 

.4 cm sec-1 along the tongue, the resulting vertical and horizontal Austauch 

coefficients are .35 to .7 cm sec-1 and 1.5 to 3xl07 cm sec-1 respectively. 

The diffusion in the tongue is found to be principally in the "horizontal" 

direction and diffusion along the axis of the tongue is of first order impor­

tance. Because of the scatter in the available data, no distinction has been 

made between diffusion along isopycna1s and in the true horizontal direction. 

From the values obtained for the Austauch coefficients, one can show 

that in the main pycnocline diffusion is unimportant in either the vertical 



- 118 -

or horizontal directions for the first order mass balance. Thus, it is not 

inconsistent to use a non-diffusive model for the main pycnocline in the 

North Atlantic anticyclonic gyre even though the distributions of T and S 

show first order diffusive effects. The results are suggestive that the 

principal diffusion of T and S takes place along isopycnals. 

SEASONAL VARIABILITY IN THE OCEAN 
(Abstract) 

Pearn P. Niiler 

The theory.of large-scale seasonal variations of temperature, salinity, 

sea level, velocity, etc. in the ocean is considered herein. 

the boundaries and within 150 of the equator are excluded. 

Regions.near 

It is found that, 

for the scales considered, the heat input is mainly stored locally and hor­

izontal advection by the mean flow is not particularly important. Effects 

of vertical advection and of seasonal changes of horizontal advection in 

the Ekman layers are calculated for 50 squares in the North Atlantic and 

North Pacific and also found to be relatively minor. Observational evidence 

is discussed. 

Contributions .to sea-level changes are calculated for each season 

for 50 squares in the.North Atlantic and North Pacific. First, there is a 

response to changes in atmospheric pressure which is particularly important 

(a few cm) at high latitudes. This response is, however, dynamically unin­

teresting as temperature, velocity, etc. are hardly changed. Second, there 

is the barotropic response to changes in the wind stress. This produces 

small changes (a few mm) in sea level on the scales considered, and corres­

ponding changes of bottom pressure. Velocity amplitudes increase to about 

3 mm sec- l in the west, corresponding to horizontal displacements of 15 km. 

Although these values seem small, the associated transports, spread over 

200 of latitude, are considerable (30 x 106m3sec -l). However, since topo­

graphic effects are so important for barotropic motions, the large trans­

ports are confined to deep water regions and would not, for instance, be 

expected to contribute much to seasonal changes of transport through the 
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Florida Straits. Because the changes in bottom pressure are small, the 

sea-level changes are approximately isostatic, as concluded from observa­

tional studies. On the other hand, there is reason to believe that large 

barotropic changes will be found in regions of closed contours of H cosec<pJ 

where H is the depth and ¢ the latitude. 

Thirdly, there are steric changes in sea level. The major change 

(a few cm) is produced by expansion and contraction of the water column 

above the seasonal thermocline due to changing fluxes of heat and water 
-1 across the surface. Currents of a few mm sec are produced above the 

seasonal thermocline by the changes in density field, but the transport 
o 6 3 -1 over 20 latitude is under 10 m sec . There are other, less important, 

steric changes (usually less than 10%) due to movements induced by the 

changing wind stress, and these effects have been explicitly calculated by 

season for the North Atlantic and North Pacific. The changes involve (1) 

changes in the mixed layer due to convergences of heat and salt produced 

by Ekman fluxes, and (2) changes produced by Ekman pumping which displace, 

the main thermocline up or down by a few metres. The latter change repre­

sents the baroclinic response which increases in strength towards the equa­

tor, although even at 150 (where the analysis breaks down), currents are 

only about 1 mm sec- l The baroclinic response dominates the barotropic 

response at low latitudes, while the reverse is true at high latitudes. 

The two responses are comparable at 300 . Fourthly, there is a tidal compo­

nent, Sa (Doodson, 1921; Wunsch, 1967) with a period of one year and an am­

plitude of a few mm which will not be discussed herein. 

Large-scale anomalies in the surface temperature of the ocean are dis­

cussed qualitatively, although these are not seasonal changes. It is sug­

gested that the main changes are simply due to changes in the heat flux 

through the surface, and changes in the convergence of heat in the Ekman layer, 

the latter becoming significant at low latitudes. Simple ways of modelling 

the changes can be employed for regions not too close to the equator. 

* This abstract appeared in "The theory of the seasonal variability in the 
ocean" by A.E.Gi11 and P.P.Niiler, Deep-Sea Res., 1973 20: 141-177. 
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ROLE OF WESTERN BOUNDARY CURRENTS IN OCEAN CIRCULATION 
(Abstract) 

Pearn P. Niiler 

The boundary currents which flow along eastern coasts of the major 

continents are observable regions of largest vorticity gradients and in 

models of ocean circulation are regions in which wind-induced vorticity is 

transferred from the interior of the ocean basin to its solid boundaries. 

Measurements of the velocity and density structure of the Florida Current 

along the eastern United States seaboard are used to map out the vorticity 

and potential vorticity fields within this western boundary current. There 

is a persistent increase of the potential vorticity of a water column within 

the cyclonic shear zone of the Florida Current. Vorticity and potential 

vorticity of positive sign is transferred into the subtropical gyre along 

this seaboard; the sign of this transfer is consistent with the convergence 

of eddy vorticity flux; however, its magnitude is an order of magnitude' 

smaller than the rate at which the surface wind induces into the gyre, or 

the rate at which the boundary current advects vorticity to the north. 

The Florida Current is seen to be an inertial advective current; its 

role in the general circulation of the North Atlantic is to advect mass and 

heat from the equatorial regions to the northerly latitudes. Its southern­

most extension, the Guiana Current off the northeast coast of South America, 

advects planetary vorticity of positive sign into the North Atlantic across 

the boundary of the zero of the wind-stress curl at SON latitude, which serves 

to balance the negative flux from the wind. It is postulated that in the 

region of the northerly extension of the Florida Current, the Gulf Stream, 

strong lateral vorticity transfer from the subtropical circulation pattern 

must take place by eddy process in the open ocean. 
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THE ONSET OF BIOCONVECTION 
(Abstract) 

Edward A. Spiegel 

In the proceedings of last year's course W. S. Childressl'described 

how certain cultures of free-swimming microorganisms produce regular pat­

terns as a result of their tendency to swim upwards and in spite of the 

fact that they are denser than the ambient medium. At that time, this work, 

carried out in collaboration with M. Levandowsky, had been developed to the 

point where critical conditions for the onset of bioconvection had been com­

puted; the form of some nonlinear solutions had also been found. The results 

occasioned some discussion, because at the critical conditions for the on­

set of bioconvection, the critical horizontal wavelength of patterns is in­

finite whereas patterns are evidently first seen with a finite horizontal 

scale. The boundary conditions appropriate here are just those correspond­

ing to fixed flux in ordinary Boussinesq convection, and they are known to 

give a vanishing critical wavenumber in that case2 . The question that then 

comes up is: Why do patterns first appear with finite size? While this is 

difficult to answer definitively, it seems that a relevant aspect is the 

dependence of growthrate on horizontal scale, and I should like to discuss 

that here. 

For a general description including references I refer you to Chil­

dress' discussion in the proceedings of last year. Briefly, we are inter­

ested in swimming protozoa of size ~ lO~ which tend to swim upward or, 

as the biologists say, are negatively geotactic. Of course, these organisms 

may also have a random component to their swimming, which we shall allow for. 

We shall describe the suspension of organisms as a single Newtonian fluid. 

Let n be the number of organisms/unit volume and v be the mean volume per o 
organisms. Let p be the density of the ambient fluid in the absence of or-

ganisms and fo be the volume of an individual organism. Then the density of 

the suspension is 

Let 
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Then the density of the suspension is. in a felicitous form, 

f(t-t-oC.C) , 
The equation of motion of the suspension is then 

p( ;t +J&'\7~):-\lP-9P(I+~occ)~+p-~~g (2) 

where !1: is the suspension velocity and /.k is the viscosity. For typical 

organisms, 0< = 0.1 and we are interested in cases with C ~ 10-2 . For 

this reason. we have .fJ as ithe coefficient on the left-hand side of (2), 

since the Boussinesqapproximation is good and we assume that 

\1- ~ = 0 (3) 

In suspensions whose depths are mms, patterns form in minutes. So 

the organisms cannot change their numbers on the time scale of pattern 

formation and we may write 
(4 ) 

where J is the organism flux which we take to be .... 
J = C '1,..L + elf - )( \1 c . - ,.., ,.. (5) 

The first term in (5) represents the flow due to fluid dragging organisms, 

the second term represents directed swimming with respect to the fluid, 

and the third "describes" random swimming (here taken to be isotropic for 

brevity). A simple model is given by the choice 

(6) 

in which the directed swimming is purely due to negative geotaxy with no 

photo-, chemo-, or baro- taxes, though any of these might occur in given 

circumstances. Of course, U and X are generally functions of c and the 

distance from boundaries, hence z, but we shall assume that 

i7- is independent of ~. 
The boundary conditions are 

and 
~(,()" 01. d~ :: 0 
;, i- d t:l (8) 

according as the surface is rigid or free. 
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This system admits static solutions with no horizontal structure and 

with a vertical distribution C :::K(il), defined implicitly by 

i! = (K(a) ~ 
1< Co) X (9) 

Evidently, for X~1f = const., K is an exponential, and all the profiles 

of interest have k decreasing downward. 

If we set C -::- K+ cp , where tp is small, and treat $& also as small, 

we obtain a set of linear equations in the usual way. These have solutions 

of the form 
( ~). I~ (i;) \ "t't '" • r 

W- -= tvr(~))f (x) ~) C > \I, t :: - Q. ;- , (10) 

in conventional convective notation. The linear theory, with h ~ (~;ltl);=o 
as unit of length, (tr)~=o as unit of speed, and 1«(0) as unit of C , is 

2-
~ (n: rf)W - (D~ a.~) W:. 'R a. ~ ~ (11) 
a-
)' ~ + WD K + D F + X ()..t. § =. 0 (12) 

F:: - X (DK') IJ [~/(D X) J (13) 

with 
w = F:: 0) ~ : 0.) -f.-. (14 ) 

and 

DWD1. TJW=Q>r:.O~-" (IS) 
where a 0< K(o) d..' _, a-:: :vh ) 

Ie. 0 ~ OJ 
(16) 

and 

It is not difficult to show that ¥ is real for all A and a.. , for 

any combination of rigid and free conditions. Moreover it appears that 

when '"t= 0 the eigenvalues of R (for the gravest mode) increase monoton.­

ically from a finite value at a = O. That is, the critical wavenumber for 

the onset of bioconvection is zero. Indeed as A ~ 0 the present system 

reduces to that of ordinary convection with A" R playing the role of the 

Rayleigh number. However, for most cases that arise in the laboratory, A 
is appreciably greater than unity and we shall confine our attention to 

that case. 
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For large A the linear problem can be treated by matched asymptotic 

expansions and an asymptotic sequence for <r can be developed. The appro-
"--"l ,.. 2. -" 

priate parameters in this case are a. =(~ 0.) "'t :! A rand 1? -::. 7t ~ • a11 of which 

remain finite as ?l--7'~. The aSYmptotics show that the interesting mode 

(appropriate branch of ¥ ) always has t'- :: 0 for 5. ~ O. For R ~ 4) Y. ~ 0 
for a. ~ O. For R ";> 4 • Y '> Q for a band of positive 'a: • and? has a 

single maximum as a function of ar. The approximate values of these max­

ima are: 
,.... 
R 4 5 6 7.5 10 

-
1max 0 .18 .8 2 5 

(t 
max 0 1.4 1.8 2.4 3 

When we recall that ac is the horizontal wavenumber scaled on the total 

layer thickness. we see that in fact linear theory does not really imply that 

we should see infinite horizontal scale first. The very large horizontal 

scales when they are unstable. grow so slowly that it would require a very 

careful experiment to detect them. The values of 2r computed from linear max 
theory are in reasonable agreement with observed pattern sizes. and that is 

the point of this footnote to Childress' remarks. 

References 

1. Childress, S .• G.F.D. Summer Program. W.H.O.I .• Notes of 1973. 

2. Hurle. D.T.J .• E. Jakeman and E.R.Pike, PRS.A. 296:469. 1967. 

INTERACTION OF INERTIA GRAVITY WAVES WITH A GEOSTROPHIC CURRENT 
(Abstract) 

Melvin E. Stern 

We compute the reflected and transmitted waves when an inertia gravity 

wave is obliquely incident on a barotropic shear layer in a uniformly strati­

fied fluid bounded by horizontal walls. If the incident phase speed vector is 

in the opposite sense to the basic lateral shear then a transmitted wave always 

occurs, and we find a net divergence of wave energy from the shear layer. The 

kinetic energy of the basic flow decreases with time. If the incident wave 
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propagates in the same sense as the basic lateral shear then the wave either 

supplies energy to the basic flow or is perfectly reflected, depending on 

the angle of incidence. The calculation of the "absorption and emission" 

coefficients has only been done for the rather artificial model in which the 

geostrophic shear is confined to a vortex sheet. But a maximum in the ab­

sorbtion coefficient is found for waves very near the inertial frequency, 

when the current jump across the barotropic shear layer is small (compared 

to the Vais~la frequency times the channel depth). Therefore it is suggested 

that the large scale geostrophic eddies in the ocean "leak" energy to the 

inertia gravity wave field. A preferred horizontal wavelength emerges from 

this calculation, but the significance of the result must await a calcula­

tion for the case of a more realistic basic geostrophic flow. 

"MODONS" 
(Abstract) 

Melvin E. Stern 

An isolated barotropic eddy on the j) -plane can be in equilibrium 

only if it is composed of a coupled cyclone-anticyclone system, only if it 

is separated by a vorticity discontinuity (free streamline) from the sur­

rounding fluid, and only if its rms vorticity exceeds (3 R/12 , where R is 

the radius of the free streamline. The eddy having this minimum vorticity 

is called a "modon", and a c~ose-packed array of non-overlapping modons is 

also an equilibrium solution. The latter is called a "modon-sea" and its 

rms velocity is;BR~/t,b. Although the equilibrium modon-sea is probably 

dynamically unstable, so that nonlinear Rossby waves will develop, the total 

energy is invariant and related to the modon area by the previous relation. 

The variational principle on which the equilibrium theory is based has also 

been generalized so that some baroclinic effects can be examined in future 

work. It is suggested that some of the statistical properties of mid-ocean 

eddies can be interrelated through the use of the "modon-sea" model. 
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RECENT EXPERIMENTS IN DOUBLE-DIFFUSIVE CONVECTION 
(Abstract) 

J. Stewart Turner 

The early experiments in double-diffusive convection were all one­

dimensional in character. They were concerned either with the production of 

layers from a hydrostatically stable gradient of one property using a de­

stabilizing flux of a second, or the measurement of the coupled fluxes across 

horizontal interfaces separating two well-mixed layers. This work was re­

viewed, and the limitations of such experiments discussed. In many oceano­

graphically important situations there are initially two smooth vertical 

gradients of properties (heat and salt) having opposing effects on the ver­

tical density gradient, and often there are nearly compensating horizontal 

gradients as well, across a frontal surface separating two water masses. 

The sugar-salt model of the salt-heat system has been used to explore various 

motions which can arise in such cases. 

Two problems of particular interest have been the mechanism of forma­

tion of layers near an intruding water-mass with different T-S properties 

from its surroundings, and the nature of the motion in the layers once they 

have formed. When a small source of sugar solution is released into uniform 

salt solution of the same density, there is a strong diffusive separation, 

leading to vigorous vertical convection above and below the source. Even­

tually this can set up a stable, layered density stratification. A sugar 

source released in a uniform salt gradient causes similar convection plumes 

locally, which then spread out horizontally at several levels. The next 

stage of complication is to release sources with anomalous T-S properties 

at their own density level into opposing gradients of two properties. The 

rate of extension of the system of layers both horizontally and vertically 

is greater, particularly in the "finger" case where the number of layers 

below the source level is increased dramatically. A systematic shearing 

and overturning motion is observed in each of the layers as it extends, and 

they all have an upward or downward tilt, the sense of which can be related 

to the properties of the input. It has been found possible to set up a sys­

tem of layers in which quasi-steady shearing motions are sustained by 
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supplying the driving fluxes at opposite corners of the experimental tank. 

In the finger case, the horizontal gradients set up in this way produce 

strong shears and eventual overturning of an initially smooth gradient 

region, to give tilted convecting layers which behave in a similar way. 

Each of these processes was illustrated using shadowgraph photography and 

time-lapse movies. 

STRATIFIED SPIN-UP 
(Abstract) 

George Veronis 

The response of a contained rotating fluid to a small, abrupt change 

in the rotation rate is analyzed by multi-scaling methods. The procedure 

used in this paper makes use of the fact that three different physical pro­

cesses (inertial oscillation~, spin-up response, diffusion) give rise to 

three different time scales. Since the flow is known to have a boundary­

layer character, the variables are divided into interior and boundary-layer 

parts. The pertinent parameter separating the magnitudes of the ampli­

tudes and the different time scales is the square root of the Ekman number, 

E~, so an e~pansion in powers of E~ is used. The solution for a homo­

geneous fluid is derived first and is shown to be consistent with the solu­

tion of Greenspan and Howard (1963). The results are given in two forms: 

one is a direct deduction of the expansion method and is valid to aCE) and 

the other is obtained by regrouping the terms to derive a form apparently 

valid for indefinitely long times. 

When the fluid is stratified, the physical structure of the system is 

substantially more complicated and so is the analysis. Exact results can 

be obtained for the case where the buoyancy (N) and the rotational (tL) fre­

quencies are the same. For the general case where F = N/Sl # 1, results 

valid for t» 1 can be obtained. In both cases the exact lowest-order 

solution for the interior can be derived since it is independent of short 

time (t). For the stratified fluid the eleme~tary spin-up solution of 
1 

Holton (1965) is part of the solution at a(E~). The remaining part includes 
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the long-time behavior toward which the system tends as diffusive processes 

become dominant. The formulation of the long-time problem is complete at 

OCE) but parts of it emerge from the analysis at lower order and it is neces­

sary to treat the lower-order system in order to obtain a consistent formula­

tion at OCE). In particular it is possible to show that the thermal boundary 

condition, which does not affect the elementary spin-up solution, should be 

satisfied only by the long-time part of the problem. The complete, lowest­

order response of the system includes a diffusive part which is quantitatively 

significant even for times of the order of one spin-up time. It is suggested 

here that the diffusive contribution may be responsible for part of the dis­

crepancy between elementary spin-up theory and recent experiments. 

ANALYTIC OCEAN - ATMOSPHERE MODEL 
(Abstract) 

Pierre Welander 

In existing analytical theories of the oceanic circulation the wind-
~w 

stress field ~ and the normal surface heat flux \~ , or the surface tem-

perature .~ are prescribed. This thermal condition is not satisfactory as 

it does not represent a proper external forcing. The specification of the 

heat flux by a Newtonian law (heat flux proportional to the difference be­

tween the atmospheric temperature l'~ at a standard height and the ocean 

surface temperature ~) is a better condition. Still, it leaves out the 

feedback link through the atmosphere which involves the dependence of Ta.... 
on -r: ' the subsequent depend~nce of;;;;w on Ta..' and finally the dependence 

of ~ on 1!w (the 10 -distribution to a main part is determined by ad­

vection from wind-driven currents). It seems important to consider com­

pletely analytical models of the ocean-atmosphere system, where the solar 

radiation is the only external forcing. These models must necessarily be 

drastically simplified, and may be far removed from reality. However, the 

understanding of such simple models, and in particular finding the time 

scales and amplification factors of feedback links such as the one described 

may be of help to understand the real and much more complex system. 

-
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The study of a quasi-linear oceanic model l reveals that 110 reacts 

to1;W mainly through the advection in the western boundary current. Im­

portant is that only a small amount of a mechanical wind stress work is 

needed to rearrange large amounts of differential heat in the ocean; even if 

only a small percentage of this differential heat is utilized to change the 

atmospheric flow, a strong feedback arises. 

An attempt has been made to add a simple atmospheric model to the 

quasi-linear oceanic one, coupling these models by the requirements of 

continuity in heat flux and stress. Specifically, the model considered is 

an annulus filled with a Boussinesq fluid on top of periodically repeated 

underlying boxes (no continents, only thin meridional walls between the 

boxes) containing a heavier Boussinesq fluid. The system, of course, ro­

tates. There is a prescribed amount of radiative heat Q absorbed per unit 

time in the ocean surface layer, a part proportional to 1; - li~goes to the 

atmosphere, while the rest diffuses downward into the ocean. Both the ocean 

and the atmosphere are (strongly) diffusive, with the nonlinear advection 

terms considered as corrections. Difficulties arise when one tries to obtain 

a realistic surface stress distribution in an atmosphere with continually in­

creasing temperature from pole to equator. The attempt to apply the dynamics 

of a laminar model is not very satisfactory. Still, it is felt that an un­

deratanding of the laminar model, which possibly could be realized in a lab­

oratory experiment, should come first. The preliminary study of the laminar 

coupled model shows noticeable feedback through the western boundary current 

with very short characteristic time (few weeks to few months), when scaled 

realistically. In this case the atmosphere has been assumed in a quasi­

balanced state at every moment. The calculations will be repeated after 

some deficiencies in the atmospheric model (pointed out by the Geophysical 

Fluid Dynamics audience) have been taken care of. Calculations using a tur­

bulent atmospheric model seem far off, as no existing analytical model pre­

dicts the dependence of the turbulence on -r~ etc. The formulation of such a 

model, following earlier ideas by Charney, Green and others, seems to be a 

critical task. 

1 M.Rattray and P.Welander, "A Quasi-linear Model of the Combined Wind-driven 
and Thermohaline Circulations in Rectangular (j -plan Ocean", (submitted to 
J.Phys.Oceanog.) 
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THE INERTIAL ROTATIONAL BALANCE OF STRAITS AND SILL FLOWS 
(Abstract) 

John A. Whitehead 

Theoretical and laboratory models of certain types of rotating 

strait and sill flows were discussed. Specifically, a two-layer rotating 

fluid was considered in which the upper layer is at rest and the lower 

layer flows from one large basin to another via a connecting channel. 

The flow was assumed to be principally in a down-channel direction. The 

cross-channel balance was therefore geostrophic and the Bernoulli and 

potential vorticity equations were simplified. Use of the usual non­

rotating hydraulic princ~ple of maximum transport in flow over a weir -

here the end of the channel - was then used to calculate relations between 

transport, rotation rate, and upstream interface height. 

The results were that volume transport was proportional to the 

paramet er group ~' h ~ / l f in the 1 imi t of 61. === 2 9' hu./-F" and vo 1 ume 

transport was proportional to ('2/3)3h b 9' y~ ( hl,A. -f t~/89'f"otherwise, 
where ~' is reduced gravity, hu.. is upstream height, b' is width of the 

channel, and f is two times the angular rotation of the system. 

Experiments were described which tested these relations favorably. 

A nonsteady decaying flow in the same system was analyzed similarly and 

also compared well with experiment, as does a flow in both layers driven by 

an initial density imbalance. The resulting formulae were used to predict 

flows through the Denmark Straits, the Straits of Gibraltar, the Anegada­

Jungfern passage, and the mouth of Spencer Gulf, South Australia, and the 

results compared favorably with observations in the literature. 
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