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Editor's Preface

The principal lectures of this twelfth Summer Program were
given by Joseph Pedlosky of the University of Chicago. On the fol-
Bowing page one sees Dr. Pedlosky demonstrating advanced effects
caused by rotation and stratification, Only in his last few lectures
do these novel phenomena emerge from the analysis, This volume con-
tains a restatement by the Fellows of these introductory lectures,

In the first weeks of the program additional afternoon and
evening leetures were given by the staff with the purpose of suggest-
ing classes of unsolved problems and techniques to attack them.
Abstracts of these lectures follow the Pedlosky notes, attesting to
the enthusiasms of the staff and the blunt edges of our formal tools.

Abstracts of the summer research seminars are also recorded here.
These include the contributions to a micro-symposium on Turbulence
organized by Robert Kraichnan. As in past years it was concluded that
turbulence theory is on the verge of resolving pressing problems in the
real world,

Mrs May Thayer again has done all the work in assembling and
reproducing the lectures, Our debt to her skill and perseverance
defies repayment.

W are also indebted to the National Science Foundation for
financial support and to the Woods Hole Oceanographic Institution for

encouragement and shelter,

Willem V.R. Malkus
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FLON IN ROTATI NG STRATI FI ED SYSTEMS

Lecture #1 Joseph Pedl| osky

1. The interest inrotating stratified flows stens fromthe fact
that those are the flows encountered in the oceans and i n the atmosphere.
To study those problens, one fruitful line of attack is to consider sone
i deal i zed nodel s - realizable or not in the laboratory. One of the ains
of these lectures is to give through theoretical consideration an insight
into some of the nechani snms i nvol ved, Eventually consideration wll be

given to a particular topic, to be studied experinental ly soon in Chi cago,

2. Reviewof the basic equations

V¢ consider a frame of reference rotating with constant angul ar
7~
velocity L = |_r:|_| k . Ve take the 0z axis parallel to E , and, with-
out much loss of generality, consider situations where gravity is acting

along the negative oz direction: q - -‘gﬂ L

=

-ELTL n
G d

F
Then, denoting by g the velocity observed in the rotating frane, and with

standard notation for the other quantities, we have:

a) Conservation of nass:

2¢ +9-(r9)-0 (1.a)
or 2E +P?'% =k {1.b)



b) Mnentum
P[[%fﬁ_-?&]* 2000 g} =-Tp+pUd 17 - 3 uTT-q 2)
q:' is the force potential, including centrifugal potential :
p=-93+4 (Qrn)"

c) Energy:
PREARTTHP - (5)+ D ()

d) State relation: u5uallyPiF|:IFj ;in our caseFrgE—ﬂ(T—T.J]
where il!J:Ith' ':Ei'i;j"'ﬁ'}.n'..,ll is the viscous dissipation,

Although Eqs. (1),(2 and(3) constitute a closed system it is con-

venient to introduce the fol |l owing equation for the entropy .&

.f’
This, together with the thernodynamc relation

T oo o = 2 ¥

T F F

enables us to wite(3 in the nore convenient form:

Lo DT _ «T Ilp]; 2
‘P[Fat L e T+ & (6)
where o= - 422

P aT
Qur basic set of equations is now (13,(2 and(6 ; they are non-linear and

represent a coupling between the tenperature, velocity, pressure and den-

sity fields,

3, Sealing
In order to reduce this systemto a nore tractable one it is

necessary to do some approxi nations, For this purpose we non-di nensionalize



the equations by a scaling process. W thus assume that there is a scale
that characterizes the fields over most of the domain of interest (there
might be some singular regions where this fails).
Let LJ be the velocity scale,
L be the length scale (we assume the system has only one length

scale). W also write

T=T +@T4}T’ (2) + \iﬂ.T}TI{I,H.E,ﬂ; (7)

static temp, distrib. temp.distrib. due to motion
pepl-¢(aT) T+ = (4T)T ] (8)
p=p+ps+ Lp' (y,2t) (%)

where P_f is the static pressure:

VprRgu AT f T (3)-2g +ADTR ( (10)

. ]
[
[T 1]
— &
f S

Now we write g = Uq,'

a=La
L i
—=1t

£

Since the main feature of rotating flows is the presence of the Coriolis
force and we shall consider systems where this force is of the same order

of magnitude as the pressure gradient, we choose
P:/% ﬂ_ UL.

Ve want to relate £ T to the external parameters, like |/ ; we also insist

that in most regions of the flow

1}

Coriolis force = 0 (horizontal pressure gradient)

Buoyancy force = 0 (vertical pressure gradiant}'}ﬁﬂ”tﬂ?ﬂ AT

orL
=AT= £t —-=
o I

where £ = % is the Rossby number.




g AT
oL

Rossby nunber, V¢ can now rewite the equations wth the non-di nensi onal

I1f AT is given, one has: £ = and £ is thought of as the thernal

quantities; for convenience we drop the primes, Wth 8={&T,)T +(Al) T,

we have _
ﬂ-uﬁ][é ~% 2R g|=-TVprThs f‘%T‘-TE+*i;ﬂET,afr}+Ev;—§Ev{v-a} (11)
where [= ar i s the Eckman nunber, ¥ = “";;_ . W shall discuss only problens
where E==] E<<].
V- 9 = (= AT) %+wﬂuﬂ'ﬂ} %‘1 (wr = g . |"_l] (12)
£ar T Y
(I- ""E’j{E +u.r5 :’ (0 ,;{J']‘[L‘Fﬂ.T%tL Ew (.-_".-:1 ﬂ?p-ﬁ*g*% = E‘Fc.T]
SEoTe D% gD (13)

CpliL
where T, = is the total (dinensional) tenperature

aT, : .
8 - 4%°Y  js the stratification paraneter

Q*L
T = ;(5'_ is the Prandtl nunber
LT
V. 4 zp
and da
For a fluid |ike water c turns out to be ~~10"'% and di ssi pationis
P

uni nportant for tenperature changes, Aso = &Tse=1 | and =<&T, <<= |,

Then we can sinplify the equations and get the Boussinesq equations:

Veg =o (14)
P 1 21, iy T i
Eﬁritﬂ%= Vp+T R+EY g (15)
2T . 'J--E- ‘£ *
Eortw T T (16)
=
V¢ have al so neglected terns in L'L (centrifugal effect) and in

LGT" (slow circulation due to vertical tenperature gradient), This is

equivalent to assuming total gravitational force is anti-parallel to L .



%
V@ al so note that under the assunption {;’—L L& ;,T,;r_’ajis sol ution of
the static equilibriumequations only if T (®=2. (This neglects a very slow
steady convection.) Then(16) becomes:

£ %E* WSS =TT (16a)

9 |m

4. Potential vorticity equation

Fromthe preceding equations we can derive a useful relation for the

vorticity @ =W« q_ Taki ng the curl of (15):

Eg—f-.&-’@iiﬁ]g-ﬁzﬁ -?q,+?T1E+Ev‘3_u (17)
The vertical conponent of this is (wth ¥s ﬁ_-'l-E)
£ 35 E(w Wi ETy e
Conbining this with the z derivative of (16a):
e [1+23L)- {v‘(ﬁ;z 50} -ele N § %-W a9)

Eval uation of (a) by taking w~ fromthe thermal Eq.16 and of (b by
/\
t aki ng %i‘— =k -"?q_ fromthe vorticity Eq.17, shows that the right-hand side
of (190 contains only terns of order £ or £E and thus can be negl ect ed;

therefore we wite:

D (yr,2 2T _poyr,~ 3
EA(1 A T eV E) o
The quantity C+ls 2—1 is called the potential vorticity. W see that if

E<=<F it is conserved for each fluid element. On the other hand, if
E<<E we have
2 af
v Gnﬁ o) =0 (21)
Thi s woul d be a conduction equation for the potential vorticity if T = |

If ¢ ] we consider (21) as a quasi-diffusion equation for the potential



vorticity, which will be useful in the study of very slow sready mctions.
Even if £ is not small with respect to E the conduction equation
mey hold if the circulation is constrained by conditions of symmetry, For
example, if (as in cases we shall study) the motion i s symmetric about the
rotation axis, and steady,

3B...4d 2.
pr " aa YW B3

I't turns out (as will be shown later) that over most of the field
w=0(E), w= G(E/rj} }os - E"™

in which ease: £ I,%ﬁ.'i' (,TE'E.E‘ -
Hence the conduction equation will still hold under the weaker condition
05 > F instead of E * &. This is an important consideration for the
conduction problem is linear: we may thus say that we are dealing with two
distinct classes of flow, viz:

1) Over that part of the fluid where our scaling parameters are accu-
rate, flows with strong symmetries are often governed by the law of conduc-
tion of (essentially) potential vorticity,

2y In the absence of symmetry £ = E is enough to upset this result

and the principle of conservation of potential vorticity applies,

Notes submitted by
Yves J. Desaubies



EXMAN LAYER IN A STRATIFIED, ROTATING FLUD

Lecture #2 Joseph Pedl| osky

References: Barcilon, v, and J. Pedl osky J.F.M. 1967 29. 1-16
" "oomon n J.F.M. 1967 29: 609-621

" "o 3 J.F.M. 1967 20: 673-690
Veronis, G. Tellus 1967 XIX(2): 326

t m  Tellus 1967 XIX(4): 620
Consider a cylindrical annulus filled with fluid and rotating wth
angul ar velocity £L . The top lid of the annulus rotates differentially
with respect to the sides and the bottom The top is heated to produce
stabl e stratification before the systemis set inrotation, The side walls
are insulated. Let r, 8, z be cylindrical coordinates and let u, v, wbe the

radial, swirl, and vertical velocity conponents in the rotating frane res-

-

L

'
v
I, m—

The boundary conditions on the flow are:

pectively.

=
4

Fi

- - -— -

(u,v,w) = 0on all walls except the top
(u,v,w) = (0,v5(r),0) for z = L

where v(r) is the velocity of the top lid in the rotating frane.
The thernmal condition for the insulating side walls is

2T | -
ar =0 for r—riandro

There are two alternatives for thernmal conditions at the top and bottom.

Cne can either inpose a tenperature at the top and bottomor require that



-:.Lng.

ki

ds
there, The forner condition is easily achieved experinmentally but |eads to
a conplicated flow The latter can be realized experinentally with some dif-
ficulty, The classical rotating annul us experinents were performed with the
tenperature fixed at the inner and outer walls.

Recal | the equations of notion

?-q_::ﬂ
eTH r2Rag =-Tp+Th+EVy
DT & Elam
(2 ot + %rS Er ﬁF _T

The length and velocity scales are L and vT(ro) respectively.

For the problemwe wish to study, E=<= 1 and € ==1. |n regions
where the length scale is accurately represented by L the viscous effects are
negligible to 0(1) as far as the force bal ances are concerned, V¢ anticipate
that a singular region, a boundary layer, will develop in the regi ons where
viscous forces are inportant, The first such region to be studied is the
Eknman [ ayer on a horizontal plate, In particular, the effect of stratifi-
cation on these |ayers wll be considered.

Let the velocity of the lover plate, z =0, be g, = -;rl_(:,u!':.. % i npose
the condition 7- & = O-

The approach adopted here assunes that for small & the length scale
in the boundary | ayer can be obtained fromlinear theory, The linearized

equations of notion in cartesian coordinates are:

2?\.'I " _F}" A l..II



w5 = T
-

ux + VY WS 0
In these equations "u._.-'a has been replaced by 'E'KE‘ , the dominant part in
the boundary layer. A 'tracer bracket" has been placed around w . to enable
us to follow the contribution of this term,

Eliminate p from the first two of these equations to obtain

I{ux + vf] = E (v
Also, apply 3,4'{;3 to the first equation, %}L to the second to obtain

v
20 mud = WP T By vv)

Using the equation of continuity and the definition of the z-compopent
of vorticity
' mv e
x ¥
we obtain the following four equations in p, E , T, we

2w g 3¢
R Dax .y

2€ '?:P"FE%

& -ree 8

ciw=E21
Ik

=1

Nw successively eliminate T, p, and {.' from these equations to obtain an

eauation in w

& i S
*{ow a [d'w * o w
The second term in the curly brackets is aways negligible with respect to
the first because of the large vertical gradients in the boundary layer,

This term arises from the W term being traced, hence this term could be

neglected,



- 10 -

If &8
As long as T5 = E
4 may be interpreted as the distance
geneous,)

the appropriate length scale would be

= 0 then the equation is balanced with a length scale of £ =

- 1
1 the proper length scale remains £ = E%

EX,

over which the fluid appears homo-

If the first and Past terms of the equation were to be balanced

£ = {EVH‘S)H

-E

(g-:-:.&."l’ L'

-5

where Ra is the Rayleigh number,

1
The above calculations were undertaken to suggest that EZis the

proper length scale in the boundary layer for the full problem,

duce the stretched variable

3

-4

B L

It is assumed that the velocity q_tq‘{t#;i] for the steady problem depends

e

explicitly on £

ing to

It is convenient to scale the vertical velocity accord-

W = E!‘v’-?[x,:f. E ]

The boundary layer equations of motfon

can now be expressed in the form

o

=

€ |l + DG, + Wip| - 20 = -B+ Gy EV
e[, + 00« Wil | + 28 = <Py s U+ EqY

€ E[Lw, ‘?;-'ﬂa-ﬁ-'ﬁ;] -E%T . —.af-b Evegs + E™ W
E[".,fr +ﬁ'3 +'.T-f"l'-'[;] +EH'Sﬁr= “LT\' +£1;,' T

As long as £<< 1 the 0(1) balance in the momentum equation is

(Physically,

Now intro-



=T

&
2w Boa by
2u = '1?'3; + ‘:'ﬁ
[
0 p;

Equation (3) implies that p_ and f>Y are independent of £

by differentiating Egs. (2.1) and (2.3) with respect to &

following differential equations for & and v:

=2-.';: = Upge
Ef:lf = gy

If we introduce the function
YT = u +Lv

A

then upon integrationin § we find

'Ih: E 1|.T+1'.

The solution for L which decays into the interior is

T = r‘"eT{Hk}f'i" I,.

-1

(2.2)
(2.3)

A

Thus,

we obtain the

where the integration constants A and I, are obtained from matching condi-

A

eions. As L—+0 the flow must approach the interior, geostrophic flow so

-2 v L = Ry )

At [ =0 the flow must match the velocity of the lower plate so

U+l ’fe"al'ltF':-j‘bFuj

Thus, the solution for T becomes

T= i—{— Fl'iﬂ Fnj] 3 Em- E E:'-‘ |,"‘Ji ﬁ-f!.rl.- {'i"‘,lil’:xﬂ + Eiﬂm ; |'_.|:1.|'L—-'g P;:]J = {u1+ é F.‘-Iil;l.:li

Expressed in vector notation this is

~

Ehll-.:-ﬁr.q‘ Pr + & o | g3 ;l?..ﬁ]-e';:mfii [q.l_--ﬁr‘i‘ﬂ F;] (2.

where gr_q is the horizontal velocity.

4]



;]

Since F-* = 0 we have
9 - e
IF'E:'J %l = P‘ILII"Enﬂn}

From the equation of continuity

_.'.I;E - u;.'l"l"..a.
I?Hrq_ﬁ

-2 a
=e uml[kTxq 47 p; )
The boundary condition w=0for § =0 enables us to evaluate W Thus
A . - - —$ ~ i A
wep[RUia-4Up)e (s fesiml)ewe (2.5
(But as {—=o= , W approaches the interior vertical velocity, thus)

-4 9ps) [ ¥(eon £ sim P )- 1]
- B

A
W =

(U
s
=]
-
A0
=

Now suppose % and T are partitioned into interior and boundary layer

parts, namely
t o 92+ (Y 0
T =Ty+ Ty (eys?)
I f 6°S = 0(1) then
TE = 0 l;Elﬁ max| & ,EH}]
Hence, to the lowest order the boundary conditions are

i) wo=0 for z = 0,1

i) Ty satisfies the thermal conditions.

At z = 1 the same situation prevails, The analogous solution for the

bertical velocity in the upper Ekman Payer gives

5':';.-'- i Wor & 1
E Wfﬁﬂxﬂ;"&{nu,f}:'ﬁ [ﬁ'?#{im‘ﬁ-n']-
Notes submitted by
William B. Heard
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FLONI N ROTATI NG STRATI FI ED SYSTEMS

Lecture #3 Joseph Ped| osky

The dynamics of axially symetric notions: the interior,
The equations governing axfally symmetric, steady notions are, in the

nondi nensi onal form

r - moment um E,.:'-'l""r"" Wriky = ::]—lf-—pg E[‘E‘h—%] (3.1a)
G-momentum S[H'v'.,-+ WIg + U'TV]+.1H-= E[_':?.:—- —;LL] (3.1b)
z-monentum €[ uw, ¥ I-U‘u-".| =Tz =p+EVwr (3.1c)
continuity  +(ru), +We =0 (3. 1d)
t enper at ur e E{uTr’r W'T;]+ S{w=%v”‘T (3.1e)
i n whi ch the nondi nensi onal paraneters are

the Ekman nunber E={—""L—-<<7

the Rossby nunber E= _HLI_ c< | (3.2)

the stratification neasure Sz #%;-?T:E'

It wll be assumed that in the interior the scaling of the swirl
velocity, the pressure, the tenperature, and the lengths are correct, i.e.
the interior is not a singular region,

First it is necessary to estinate the divergence of the vertical flow
inthe interior. Fromthe Ekman boundary |ayers studied in the previous
| ecture, (Lecture #2, Eq, (2.2)),

wr= 0(E% at z = 0.1

and fromEq. (3.1d)
whp = 0{u) (3.3)



- 1d =

an estinmate for the interior vertical velocity is found
W= O(U,EV")
This estimate for ur is used in Eg. (3.1b) for finding

w=0(EEXE) (3.4)
whence Eq, (3.3) becones "
w;=0(E EE) (3.5)
The basi c dynamcs at the | owest approxi mation are
2v = Py (5.6a)
T = pa (3.6b)

al though these are not sufficient to determne the flow HEininating the

pressure between (3.6a) and (b) yields
2\/2 =Tl' (3.6e)

- the thernmal wnd equation.

Case 1 S=0 [ Hmogeneous  H ui d)
If the fluid is homogeneous and the boundary conditions i npose no

fluctuations in tenperature, there will be no fluctuations in tenperature in

the fluid T=0
Then Eq, (3.6¢) gives a partial statenent of the Tayl or-Proudnman t heorem
There is no vertical shear in the swrl
¥, = 1]
or v =v¥(r) (3.7)
Now the Ekman efflux into the interior has a magni tude El/z, whil e the
estimate (3.5 of the divergence of the vertical velocity is snaller than
EX. Thus to the first approxi mation in ir
We= 0

or Wwr = wrir) (3.8)



= 15 a

Equations (3.7] and [3.8) express the strong restraint that the rotation
i nposes on the flow.

As the velocities v and w~ are independent of the vertical, they can
be determined by evaluaeing themat z = 0,1 where they are constrained by

the Ekman boundary |ayer matching. Lecture #2, Eq. (2.2) yields

_E" 4 3 E;
stz=1  wir)s 3-e o gor(vr=v(r)
E I 2
at z = 0 u_il'tl"'l}!l 2 L] ? ,a—-;r'..ri?';l
Then el imnating w-
s
T SO i
Foar TV = w gErvr
: _ow [
i.e. vr)= e (3.9]
where Cis a constant to be determ ned.
Consi der the radial mass flux in order to find C.
- - ~~ radial velocity wvertical |ength

— — 0(1) 0(E3)
/ /
7 %
/ /
/ — 0CE EX,E) 0(1)
/I /
/ 7
/l /
1 =" — 1 ow 0(E™)

VA A

43

In the interior, (3.4) gives an estimate of 0( £ E%.Ej for the radial fl ux,

i
3

while in the Ekman |ayers it has a nagnitude of E%. Thus the radial nass

fluxes in the Ekman [ ayers nust bal ance, These are found using (3.9) in

Lecture #2, Eq. (2.4), at the top w .
j ruTE“"“ri [= EF"[
E
at the bottom

P54

LA L
1_5
& ]



Hence C must vanish,

Thus the interior swirl flow has been found

_ vglr)
?ﬂ' W= 2 (3.107
]

and the interior vertical flow

2
w = 5= + 57 (rvy) (3.11)
L S S A

Meridional circulation

M M ey My R, R

e e T T

-
VA eV

£
As there is no vertical shear, Eq. (3.7), then Eg. (3.1b) gives a radial flow
w = 0(E) (3.12)

The detailed structure of the flow in the Ekman layers can be found by using
the solution (3.10) in Lecture #2, Egs. (2.4) and (2.5), To complete the

detailed description of the flow everywhere it would be necessary to discuss

1/4 1/3

E and E layers on the side walls.

In the Ekman layers there are radial fluxes top and bottom

L
+ % rvy(r) (3.13)

Unless Vo vanishes on r = T, and L there will be radial fluxes in the layers,



This cannat connect across the interior, and so there must be side layers

to accommodate it, These are found possible, One interesting result is

that when vT(r) is specified (smooth) over the full cylinder then the flux

up the layer on the inner cylinder is exactly that vertical flux in the in-
terior of the excluded central cylindrical region. This is because the Ekman
layers, due to the restraint of strong rotation, are a local phenomena: the
radial fluxes in (3.13) depend only on the radius at which they are calculated,
Thus at r = r. the radial flux in the Ekman layer does not know whether it
came from the interior of the completed cylinder or up the side wall layer

of the annulus,

Case 2 S0 (Stratiffed Fluid)

The correct measure of the significant stratification can be estimated
by comparing the vertical flow out of the Ekmen boundary layer, assuming
an 0(1) discrepancy between the interior and imposed boundary vertical com-

ponents of vorticity
i
W" = 0(E?)

with the vertical advection of the stratification needed to balance the dif=

= o(5)

Thus it can be expected that the fluid will behave differently from when it

fusion of temperature, (3.le)

i S homogeneous when

1
g
FS=E (314

It will be seen later (Lecture 5) that when the stratification exceeds this,

it restricts the interior flow in such a way that the Ekman suction is not
1

as strong as E*.

The linear problem is considered, a posteriori it is possible to find



the limtations on & for the nonlinear terns to be ignored.

£<<S
The linearized equations are
Ve

~avs-pr E[p-
- E[vV- %)
-_T:.-Fi+ l..l..l"

-L.O-u)r +UWL =0
oS =EVT

As before, assumng the sealing of the interior is correct,

=2 are of order 1, it is possible to expand
) 22
\/.‘=V()+..-

i.e. v, p, T,

W= E1¢ gt

i

E (s
L'J‘,-rsl'.l..l" ¥ = a

T= T*u+ - e

Lal

P 7 Fl T opown
The governing equations for this first approximationto the interior then
become o
1vr=pr
.ug u ﬁ::
Tf‘*Fiﬂa
%{ru_?}rl-u.rfg =0
wy’ =7 T

This is a linear systemand can thus be reduced to an equation in a single

variable, e.g. pressure

v [wris & 2= o0

75 Sa° (3.15)
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The previous equation in the elimination is familiar:

(#
» [t (re). P o
which is the conduction equation for the potential vorticity. The constraint
of symmetry with respect to the azimuthal direction has made the small dif-
fusion effects dominant in determining the steady state interior flow even
though E may exceed E.
The equation (3.14) is an "elliptic'" partial differential equation,

and so boundary conditions have to be imposed on both horizontal and vertical
boundaries. The Ekman layers on the top and bottom have been studied already

in Lecture 2. The matching conditions they impose on the interior are for

the vertical velocity w;ﬂ'
o« g5y 3 ey | .
et I-ETSFFI'{’\"T"UI ‘:I]' ﬂ.t 2= (3.15a)
=
urlrg_g %a—?_r\-";&"' of 2=0 (3.15b)

. . ¢ - .
and for the interior temperature T:_E those conditions imposed on the temper-

ature which in their general form are

. W v
mnlﬂ'*fu g-: =0 o 13[&

The side boundaries are the subject of the next lecture, and the solutions

for the interior flow will be presented in Lecture 5.

Notes submitted by
Edward J. Hineh
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VERTICAL BOUNDARY LAYERS IN A ROTATING, STRATIFIED FLOW

Lecture #4 Joseph Pedlosky

Side Wall Boundary Layers

In investigating the regions close to the inner and outer cylinder
walls we follow the same procedure as in the Ekman layer analysis. The
Rossby number is provisionally taken to be small so that we can look at
the linear problem. From this analysis we find the scales appropriate to
the linear boundary layer and from these the restriction on the size of
the Rossby number.

The field variables may be written as the am of two parts. For

example:

where up i s a boundary layer correction to the interior value chosen to help
satisfy the boundary conditions on the wall and to vanish rapidly as we
leave the layer. Because the equations are linear the equations governing
these correction variables will be the same as for the total quantities,

In the dissipative terms only the radial derivatives will be important and

we are left with the following set of equations.

A -%J:LH; [%’4 (1)

2u,= E g—L:E_ (2)

~Ty= - gﬁ' *E% (3)

L —?3%1 =0 (4)
o 5wys E ,%.;ﬁ; (5)

By eliminating pressure between Eqs. (1) and (3) we get:
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nal. i _Eu'] _ QW‘_} (6)

-:I'UE!+TE? = E e I. i 31.'] Sr

On differentiating by z and using the continuity equation we have:

e

o - u
~ 2 *Tin = E ar? i '.:"_I:‘L} 2 '3_1':_.1

where the term within the square trace brackets can wov be neglected in com-

parison with the next term' This equation shows the departure from a ther-
ma wind relationship within the boundary layer,
By continuing to eliminate variables we finally arrive at the side-

wall boundary layer equation:

b - *
8V v 3 v
B BUEE g T Rl (7)

which is reminiscent of the Ekman layer equation:

= Fu B w ot
EE—#+‘1 ﬁ*'ﬂ' Tu wW=0

The relative importance of the individual terms in this equation
depends on the thickness of the boundary Payer, A balance between the
first and second gives a thickness dﬂ, of

ER vy VA
é]'(.rsj'-‘“_{ﬂ“"”“ BE 'IL::J

(8)

3 . .
and makes the last term of O[E/fg5) ""*) relative to the first. Therefore
- Ya
S>E
for this type sf Payer to exist, Balancing the second and third terms pro-

duces a Sayer of thickness
o, =T 5. {9}

2

The same conditionT 5 > E%is necessary to make the first term of smaller
magnitude than she other two, In order to apply boundary layer techniques

to this layer we need the additional condition that

TS< |



Looking back at the interior equation we lose the 'i?: P:{"‘ term. This vorticity
diffusion i s then restricted to the boundary layer region.

If o~S is 0(1) there is only one boundary layer. Whnm5<E% the
balance is between the first and third terms which yields an ]:”3‘ layer. An
EI’H' boundary layer also enters in this range of @ S but the details will be
ignored here, The different possible layers for the range of values of the
parameter a3 are represented by the chart in Fig.1. We will restrict our-

selves to

T y
E‘ E.'A/m ""‘_>G_S
1 ¥
g%/ s)™
E!r_'i
|
| /s
Jo—- 5
EH
T interior
homogenous . stratified
interior
Ekmen lLayer N No Ekman layer

Fig.1l. Features of the Dynamics,

In the consideration of the upper and lower boundary conditions on the
sidewall layers it is noteworthy that these layers are all thicker than the
Ekman layers. As far as the Ekman layers are concerned the sidewall layers
look like an interior and we may use the Ekmen layer results to determine bound-

ary conditions, Therefore, in terms of the boundary layer variables:



BEAL [ -

'.ji H
on z = 0,1 WH-II'E;T";%
= ':}‘iﬁ ‘Ei,” [from (5))
E
225 Vgry (from (6))
Ek 2E .
or jTV‘raﬂ?'lﬂ';! -CITIE-(?:]_-. [].ﬂ_l

after integrating with respect to r.

We will first look in detail at the thin inner layer of thickness

5, - the so-called buoyancy layer.

M
Buoyancy Layer {5,=EV{H‘53 )
At r = T | et us define a stretched coordinate

n=(r-r)/s (11)

and allow all B-subscripted variables to be explicit functions of ‘rl .

If we define the boundary layer temperature scale 5'5 by
B76% T, M) (12)

where E'E is still to be determined, and ﬁ:{“rb‘lis 0(1), the scales of the

other variables can be established from the equations of motion in the buoy-

ancy layer to be:

x
=
I
Je
m
|'F £
o
[

ﬁ"‘
L,
=

=

=
|I
ot o
&
oy
e
Sk

>

i
=
il
D
ot
%Jm
o

V¢ now have the following set ¢f equations:
- A "
—1v = B TS Yann {13)

A L s
IU'-I! = 1"';5I1111 (i4)
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~T& = P st Yann s)
A

Qo™ W (16)
A i

W = Tynn a7

As we are considering the case TE}E?:' the pressure term in the vertical
momentum balance can be safely neglected to give a balance between buoyancy
and diffusion.

Equations (15) and (17) now form an fndependent set from which we

A LY A
can determine T and w. Elimination of T yields an Ekman-like equation

A
“annan ¥

Wy =0 (18)
This is a local equation with no z derivatives and therefore the solution
will depend only on local quantities and we do not really need the boundary
conditions determined from the Ekman layers.

Once W is determined, T is obtained from (15), 4 from (16), ¥ from

(14), and finally p from (13). The results are:

% =% fa ) can/im + Bwyaim /i } (19)
'T; e E {-ﬂ:&m U< + Bon ‘}fﬁ} (20)
= {9-‘_;1} [f,ﬂ{sh?ﬁ~m ﬂf.’r's)— dﬁ {mw‘ﬁ -rmn{r,:]} (21)

Nw i f we are fixing the temperature on the sidewalls of the annulus,
then BB must be 0(1) in order that ?E can correct the interior temperature
field. Because Wy is 0(E/o~S) we have the ratio wI/wB being 0(E/Je 5)
which is much less than unity, This implies that wp must be zero by it-
self at the boundary. On the other hand if we specify the insulating eon-

dition:
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9T _ 9 #© Wy 3T, )
0= 57 * 5+~ £x(%) T (22)

L . .
on the boundary we must have Sa of 0(51/2/(0'8) *Y. The ratio 'nf-[f'n'ﬂ 1S now

IZI”[EL"'.-f CO‘S)%) which is still much less than unity provided that ¢S >> E.

We again conclude that
WB=O ol 77:0. (23]

This implies that
A = 0,
The unknown B(z) can now be determined from the other boundary con-

ditions. Choosing the insulating temperature condition of Eq. (22) we find:
(5]
a7y
= - | 24
Ba) i B e {24)
From (19) we calculate a mass transport of

{s)
.. E 2Ty

Mﬂ' s T

and it seems that the buoyancy layer can compensate for the interior mass

Farg

flux. From Eq. (21) evaluated at the boundary:

A Py | /_ 4B\ _E_
e (}?'ﬂ:"u'_f( IE)a-s
As the total radial velocity must vanish at r = T, we find:

| d@
a5 d@

g (rar)= (25)

a condition on the interior field similar, in form, to the one derived for
the Ekman layer. The last condition is that the total swirl velocity go

to zero at the boundary. In the interior Vi is 0(1) while in the buoyancy

is O(E/[ﬂ‘S}‘“'-j which is much less than unity. Therefore v, must

layer v I

B
vanish by itself at the sidewall and from the thermal wind equation at

r =71 :
0 B

TII"':i'a‘ =0

and therefore:



B{z) = 0. (26)
To this order there is no buoyancy |ayer!

FromEg. (25) we have the condition on the interior field that:

at r = Ty Ty E}w.'.lu. = v Vg =W, /
) ‘5‘-'5'1 (27)
1] ra apd
V\heref =k ? 557 —-;E . Inaddition t(h)e swrl velocity vani shes so t hat
o OPr 28
ZVI = 3 r Q. (28)

O the upper and | ower surface we have the follow ng results fromthe Ekman

| ayer anal ysis,

< 9ps . T8 (s
UTI-EID "i? 3‘ quhw F {29}
'&ﬁ >
as wel | as the tenperature conditions:
o) 2T |
my Tos €y g0 on==(t) (31)

where vn | - and f€(|) are specified functions of r.
The previous considerations of the Eknan regions also allowus to
calculate the interior swirl velocity at the top and bottom For u‘S:ﬂaE“

)]
we have from(29) and (30) using the fact that 2\/” é{% ’

| dr
T | T ._._._.‘E. o
nz=2=0 e

®_a
and on z = 1 L%—rv = fT.

These nay be sol ved easily to yield the results:

v’ (re) =

(32)
and

Ve (n1) = Vet Art- (33)

wher e A0 and Al are constants to be determ ned.



Equations (32) and (33) determine the relative vorticity between the
interior and the top and bottom at the boundary, Therefore we can calculate
the Ekman layer quantities, |In particular the radial mass flux in each

1";.-!.1.."2 inward and in

layer can be found. In the top layer we find a flux of E
the bottom EHADM inward. Because of the strong stratification constraint
the Ekman layers are non-divergent and ehese fluxes must balance each other,
This implies that:

b T
However, this flux can only enter the sidewall which we have discovered can

not accept such a large flux, Therefore:

AO = Al =0 (34)
and we have the surprising result that as well as no buoyancy layer there
is also no Ekmen layer!

The problem for the interior is now fully posed, but for arbitrary
s is rather difficult to solve. W will look at the cases of @5 small or
large but still larger than the other small parameters,

For & 5 less than 0(1) the equation (3.15) (from Lecture #3, Eg.(3.15])

for the interior reduces to 5t 10
?::TE;_ = )
d g
Integrating once with respect to z we have:
¥
o prs ]
] 1)
vt S = F(r) = we ()

The interior vertical velocity wi"’ is only a function of r as a result of
the constraint on ¢ S.

From the hydrostatic balance in the vertical:

o (a7
VT, = w(r) (35)

The Ekman conditions at top and bottom are:



whi ch when added t oget her gi ve:

ol 1
W:r_:%%%r[v,-{f_{i{r,I:]—V.;_“Iiﬁﬂ}jl (36)

Integration of the thermal w nd equation over the fluid depth yields:
.H,m :I -r G') j d_-! (37}

Substitution of (37) into (36) and the result into (35) produces the
"interior-interior'" equati on.

[
VTt 55 j"l'mia=_,f;—511':;??"-’r (38)

Notes subnmtted by
Nel son G. Hogg

AXIALLY SYMVETRI C O ROULATI ON IN AN ANNULUS

Lecture #5 Joseph Ped| osky
In the interior our vorticity balance is of the form
Wt oS Esf;:ﬂ-:] »a (1)
For @ S< | we sawin the previous lectures that there is a boundary |ayer

of o{¥#s, and that the remaining "interior-interior" equation is

|
5 il o o
? TH‘ ;.E'i":_? ;TT. d_i:l ?Eﬁl?-'ﬂ_r 'L.IrT I:E:I

W nust now use the /@5 sidewall layer to set the swirl velocity to zero.
To sol ve the boundary |ayer equation we wll define a stretched

vari abl e VE r:r;-r}/.u".;:‘g and we will denote by bars the additive boundary
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layer corrections. To first order

WPl (3a)
+ Ty
11';” and U are of the same order since the existence of the boundary layer

]

is to balance "‘L.J'f at the walls. The remaining variables will be scaled

relative to ¥ , thus

I
P=Prt .. 3b
TSR na
LL= ELJ..TT ol '[3’:]
+§_E|1
E .=
M:u_—s'-lf: b g (3d)
+-E - Gr
(5P
Ta T %, (3e)
+HTES T
The equations of motion in theJg5 layer are then
=1 1-?,1 (4a)
A = T!i;m (4b)
.—- o EJ’J":._
-T "'F't+(ﬂ_5 7 (4¢)
CallE (4d)
Uy = 9y (4e)

We can neglect the last term in Eq. (4c) since T 5 = E’E and we have
already studied the case in which the buoyancy was balanced by the viscous
stresses, Again the boundary conditions at z = 0,1 are from the Ekman

suction which yield the following relations:

at z =0 EF=T?T=-*§—E;="2U%I (5a)
5

at z =1 EL-F:T”# ETTF‘FE = -'..l'l.f?- (5b)



The last equality above is due to the thermal wind -zfrzz— Integrating

the above two equations in ] yields the following condition on the swirl

velocity:
T TS5 (]
Vpet S5 T ot 2=(f) (6)
Elimination of 'T' . F and i from the equations of motion yields:
Ut HiG,=0 (7]
Ly
Consider a solution of the form:
i =%
=§,ﬂlhﬂ K.?fpnfi_," (8]
Plugging this back into Eq. (7) yields:
d Y & =
S & S (9)

The boundary conditions (6) reduce to

dﬂ* -+ 234 of 2+(7) (103

HET

Note that i f we multiply Eq. (9) by CPK and integrate in  , we get the

following result:
(" ( bt o 2 Ld’" da-[40)+ 4 (9] =0
Each of the terms is positive definite and this implies that YK is real
and that there are no oscillations, i.e. that all solutions have the proper
boundary layer character,

The solution to Eq. (9) is

%;-:,:Lﬁ%ﬂ—i+/3,§wﬁ—:’;Lz f11)

The boundary conditions (10) yield the following conditions:
¥,
K 1_H= z,l,._:-l.-._.fﬁﬁ (12a)

L3 [""nm jf'fgns‘l*’” ‘:H = JER [“"ﬁ"‘"” L*.-"Su

o

T,
] (12b)



T 5y

which lead to
[a-.' qu H {‘?—; ]WE:LL (12¢)

Inthe linit of high stratification, &5>>E%, /& =0and ¥ o=alm

JE%

n=0,1,2. This neans that W goes to zero at z = 0,1 and therefore the
Eknan | ayers made no contribution, which is just what we expect in the high
stratificationlimt. 1In the opposite limt G‘E‘Z"‘:EV", we get two types
of solutions. The first is a cosine seriesie¢ =0 and B =2nT, n = 1,2,

The second is a sol ution for small % which yields Yy e %
[f we substitute this expression for E'H we real ly have then an g | ayer
which is just the Stewartson |ayer.

V¢ now have the swirl velocity in the Jo=$ layer. Fromthe thernal

wind rel ati onship we can cal cul ate the tenperature field:

- ¢||| ) =
T=25 A —;,{—-E: bt (13)
K
Let us now define a streanfunction ﬁﬂw such t hat
@
w;o)_ 'r'_ ag% (14

Recal | i ng t hat n:.-u'fJI i s independent of ® and reintroducing the scaling we

have E
Loy
Y=gV, (n (15)
In the boundary | ayer _
— -1
L = - —r‘_:- "‘-'—.a_? (16)
e < E - N
V=% (17)
Fromthe heat equations (4d) and (16) have

we
'§;=-w;il (18]
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The boundary condition on W at the sidewalls is that the total

velocity go to zero, i.e.,

v, (1,2)+ 7(R.2) =0

or ﬁ(ﬁ,!}f%ﬁltﬁ)l:E}

and similarly at r=f ,

(19)

An additional boundary condition at the wall is that there be no

radial flow, i.e. that the wall be a streamline, This implies that
14-;[1-,,]+1r;$,f'1\"¢: (2)=0 (20)
Equations (19) and (20) combine to give the boundary condition on the in-
terior swirl velocity, namely _
2 %_ff”: Ljﬁllf’{n} (21)
Let us now convert this relationship into a condition on the interior

temperature, The transport down in the boundary layer is given by

E (& = E __ap[E i g
D_*E'Jm[iflil =Tf]i—".s = L u;(ﬁ) =T T;‘- (U"ﬁ (227
]

Note that since 'V'Im! is independent of & , the integral of IrIr:::l:? isin-
dependent of & although &F itself is not. The mass transport into the/ad s

from the top Ekmen layer is

H__ 3
M £ [vr - Vi (o) (23)
while the transport into the bottom Ekman layer is
Vo
M, = L‘J‘. vy {"-' G..J (24]




S | S

Both the transports M1 and M2 must equal the transport in the Jg=5 layer,
manely lEf;'s” Uf: Thisi s due to the fact that the interior radial ve-
locity is O(E). Since the transport in the/ 5 layer is independent of

z, we can add the two equalities to yield
via ()= 5 [ (450 -5 (%, 0))]

or | i

31" ol N
_If.nﬁ‘ [ 'Jidr = d“] (25)
This is the boundary condition on the internal temperature, For the case
of insulated walls it is actually unnecessary to find the boundary layer
solution, W can easily find the transport in the J¢~S layer from the
heat equation:

da 0, = | == dee ET «-2T, (n) (26)

B u'-s oLrr gLr g% I W8

where the subscript B.L. denotes the unscaled boundary layer variable.

V¢ then equate this transport to the Ekman transports and proceed as above,

To solve the interior problem | et us make a change of variable,

(i ('
Let 8=T, + %J T da (27)
Our differential equation (2) becomes
d
?El'- H_SIL., E"r:-'r'-wr (28)
with
af‘ I:T—-.ia -L-r on reYg (293

o)
To find T: from & consider the following
iﬂn‘_i-Q+ }J TM-DI.

and thus TI“".-E- l:_u_g._ ggia



.

The solution to Eq. (28) is

S AGLISS 1CD)
where ?ﬂ'@ [:_r"ih] =0 and %:ﬂ gn ¥

The boundary conditions on temperature are

] @
Mo T“+ tl 3L .0 m e=(Y) (30)

These conditions determine §

g [M- “ﬁf‘“ﬁ] x[a. simh 2 [a - )+ broosh ﬂf?-“*ﬁ“;] (31)

Tlenrkl Y (b

J.. ¥., Y are Bessel functions, the H,n are determined from the re-
12 02 '1° 025

quirement that

J

=0 on Mo and T, and the a and b are determined from
Eg. (30). Let us call the first bracket in (31) ﬂntrj.
Nov that we have 'J;mwe can write L-";':"’-’ from the thermal wind rela-
tionship. Letting 1=¢’§’Eﬁ we have
w® WY A (r) (a-k )+

z T 'E[I Ayl
s J—‘I'- .:mh
o Z o [onfoh B o-i)- ok 22 e
Ry ar. - L“‘T

+b [m,i‘ 3G Ty sinh 72| (32)
In the ease of no vertical heat flux, due to the temperature produced by
the mechanical driven flow, i.e. mO = 0 all of the a_ and b_ are zero.

= m1 n n

As we increase the stratification, 2 , the swirl velocity goes from a con-
stant value, VT/:'_ , coupled to Ekmen suction, to a linear function of z in
which the Ekmen suction is choked off. In the more general case where a_
and bn are not zero we get the same effect on the Ekman layer in the [imit
of large A, i.e. u(r 1) = V;i(rjand v(r,0) = 0.

The radial transport, in the upper Ekman layer is
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a" /',i. =g ]

s

-E—Illll L r
ME o |1-§;€T‘ 1"rri-:'

and therefore M; is 0(E%) foros<o (E%) but only 0(Ejrg) for F5=E ",
Therefore the mass transport in thef/o"s sidewall layer i s independent of

the inner radius r, just as in the homogeneous case,

The circulation has the following structure Wt 0

—— - ‘e

I
|

Due to the discontinuity in the boundary condition there is a recirculating

g

eddy in the upper corner region,
Finally let us look at the total dimensional temperature field T*.

For the case of a rotating top with angular velocity E££L we have

{
| T-T+aTv £+ 22 (")

_._.—-'_\\\‘i_ HﬂL
| — when TZ =0 at z = 0,1 and the temperature
—\; contours have the following appearance.
Notes submitted by
Joel E. Hirsh
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Lecture #6, Joseph Pedl osky

Sone additional renmarks concerning the synmetric flow

1. In the case where ¢-S=>1, in the interior u = 0(E) and
W = 0(E/g-S) and therefore w== u. Physically, this neans that the con-
straint of stratificationis much stronger than the rotational constraint,

To | owest order the continuity equation becones

-
F e TurT 9

and the boundary conditions

u =0 on v=1r,1r.
| o 1

inply that u, = 0inthe interior, Then the equation for the swirl velocity

I
'G'J‘-’I-‘-"IJ/'IF-‘G 7 I

I f the annulus is shallowthis equation shows that the flowis essentially

Couette and the plate velocity is transnmtted to the interior of the fluid

by viscous stresses,

The tenperature (obtained fromthe thernmal w nd equation) wll not
satisfy the boundary conditions at the top and the bottom Thus thereis a
thermal boundary |ayer of thickness O (lgﬁ?gﬁin whi ch the thermal conditions
are satisfied, In these boundary |ayers the thernal wind bal ance still ap-
plies and a small correction to the swrl velocity of o(!//7z ) gives an
0(1) change in T.

2. In the situation where oS = 0(1) the existence of boundary
| ayers depends critically on the side wall thermal conditions. In contrast
to the case di scussed above, when T = 0 on the side walls we have both buoy-

ancy Payers and Eknan layers carrying a mass flux of (QET
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Linear stability of the symwetric flow
Inviscid theory.

It -has been shown that the potential vorticity of the motionis
governed by the equation .

R (50 3 (0o & 3o

In the annulus the constraint of symretry restricts the class of notions in
such a way that even for < > E[Ee:e:]nj , the potential vorticity is (except in
any boundary |ayers) governed by the conduction type equation

T.:?""(Irq- 2 E‘T:I 28,

oS oE

The possibility of non-symretric notions removes this restrictionand an
asymmetric perturbation to the synmetric flow may produce an entirely differ-
ent balance in the interior of the fluid.

In order to study the stability of the synmetric flowwe wite the

symmetric state as
ey

3 * 5 (ne)
= {E”.:":r-lj. Ve (m 2), E;""Irs uy (1 i:'.:'-
TaT.(ns).

The perturbation velocities are scaled in the same way as the sym-
metric flowand it is assumed that Rossby and Ekman nunbers of the perturba-
tion are small, i.e. the perturbations are in hydrostatic and geostrophie
bal ance to the lowest order. It is further assuned that the tine scal e of

the perturbations is of the same order as the advective tine scale of the

flow, Ve write
% =(w(r.8,2t), v'(r,6,2,t), ew'(r8,e,t).

(For €2 gk , accelerations of the 0(1) horizontal velocities give departures
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from geostrophy sf 0(€ ). This implies that the perturbation vertical
velocity is O(€) in the interior.)

p te this point no restrictions have been placed on the size of
the perturbation velocities relative to the symmetric flow velocities,
However, the restriction € <1 implies that the azimuehal length scale of
the perturbations is 0(1), The caseé& << EK will not be eonsidered here as
all perturbations are found to decay in that case.

We write the total velocity and temperature fields as

a;= 7, (ne)+ 3 (r8,0t),
- [Euj+w{r.ﬂji;t]l]+ 6 ["""s*“"""] + EJ:E;%;W+EWJ] \
i I T +T'
Denoting by f the vertical component of the total vorticity, we have that

the equation of motion for the total field in the interior is

IlIlt [:r_'_ i BT:I_G

o5 o
Here 3 3 5
| | i i !
fargr ™t var V756"
and
@'='_a_+E l-—-a- {—Ji {iw +Ew-’l"i.
pr Bt (“—s*“‘Jar"" r /88 " \gs F / B2

Substituting for r and T we have

3 ' a 3T 32 2 3 ' 3 [r', 2 8T"
[a—r*%sﬂ[f"?ﬁ]*“a?[’:ﬂ?i}]*“ar[f*?'ﬁ]*
-r%%[fk%%]:ﬂ[&é,qn}‘ (1]

In the limit €« 1, E«1 the right-hand side is effectively zero. If the
perturbation were symmetric the above equation would place no eonstraint

en it and it would be necessary to go back to the conduction equation.



.

In the region of parameter space nentioned above
uf.-ﬁ7§%+ﬂ&L
- 0@,
T= + %+ o(e).
Substituting into (1) we have
L%*%%][?:P'+%§Ei]-ia%' +%sE]:
1 {70 e 4 3R] -5 ¥ [olpe £ 5, -

V¢ now derive the boundary conditions on the flow

L]

Vertical walls

O r=r,r.

o |

U= 0 =3 u'lﬂ%%g

Hori zontal walls

The thermal equation is

i  [aT!, 28T 8T v &T iaTJJ
Wr?[ﬁ*“ﬁ"*“#*?ﬁ r 98 )

It is necessary to have Ekman | ayers top and bottomto satisfy the no-slip
condition on the perturbation. The vertical velocity punped out by such an

Ekman | ayer is
= 4 % (vorticity of the perturbation) on = .—(ﬂ~

This implies

B
;E‘-‘_ f{ﬁ Eiﬂlt};
W = =T

- E% L1
3¢ §(re.1E).
This is a non-linear boundary condition, V& see that the effect of viscous

di ssi pation depends on the ratio EE/E .
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An additional constraint on the fl ow

The azi nuthal equation of motion nay be integrated around the annul us

to give a7 am

atf
Enj g_t_"'de +EL L.r_“a';’T[fs.,w]dE + j; sudé=0.
This holds for ali r and in particular on the side walls, But u' = 0 on
the vertical walls (to |owest order) and it seens iikely that
J’wlu'c[ﬁ"-‘o
to 0(€). In other words, ﬁg postul ate that the side walls boundary |ayers

cannot accept a mean radial flux of 0(€). Then

%%u‘dﬁ:& m T, ",

Not es submitted by
Paul F. Linden

QUASI - GECGSTRCPH C POTENTI AL VCRTI G TY EQUATI ON

Lecture #7 Joseph Pedl osky

The equation governi ng non-st eady, non-synmetric perturbations when
€ > Eis the conservation of potential vorticity - hereafter referred to
as the quasi-geostrsphie potential vorticity equation (Q.G.P.V.E.) because
u and v are eval uated geostrophically.

V¢ can introduce a horizontal streamfunction * such that

P =3’y

W= "flr a%a
?’-:’EHPér

T =29%,

Wth this definition, the QG F.¥.E. beccmes



e

It e 'r' g dr rd |
V\hereﬁ:[-a—fi- 2 2 |» the linearized total derivative and ' -fja_rnr“
the vorticity of the basic flow. The boundary conditions in terns of ¥
are E—:= on T=F ,Falg

d l'f_. = T a Y=
ar ‘f" ar d@ =0 O g

expanding % in a small parameter a<< 1 where a can be regarded as the
relative anplitude of the perturbationat t = 0 to the anplitude of the
swirl flow Then qﬂzﬂ-‘l‘l'l'rf"r': + 0.3'#3 + ... Inserting this expansion
into the equation for -y and considering those terms proportional to a,

we can investigate the stability of the synmetric flow, and the initial
growh rate and initial strucutre of the perturbation if unstable.

For '4/,

RS Sw]_ i oy @
vy, 1 ou|- £ 5y Je-o
where Tig is the potential vorticity of the basic, symmetric state.

AN

Boundary Condi ti ons:
% 'E”i:" i 3 a = i 5.

by

=0 at =T, N

i’Lf :

Since the coefficients are independent of & and t we can Pook for a
sol ution of the form
Y =Re f_r,'e}ei'f:mﬁ'-rﬂ
whi ch anmounts to specifying wavelike initial conditions, Inreality thisis

not restricting the probl em because when one considers a nore general initial



condition, the non-wavelike portion always decays.

Using "'+" above we obtain an equation for ¢
T oty _
&'L }[_r o +¥ b% ] - § a 2

with boundary conditions

d=0 om r=r,n
(8-5)% - 133w Sl B -] ot 2 2(0)
Considering 0 tc have a real and an imaginary part
= ﬂ‘r+£u1'
The condition for instability is @3 =0 .

Inviscid Linear Problem

| f E"’fe << 1 we can set the right-hand side of the boundary con-
ditions at z = 0 and z = 1 to zero. Before specifying Vg and 'JTE several
general conclusions can be arrived at,
Suppose T; # 0
Since the complex conjugate of ¢~ will also be solution, EF"-# 0 insures an
unstable mode,

v
Multiplying the equation for é by f—ﬁ_} ’

where @ is the complex con|uqate of 5 . and |ntegrat|ng

[raraeﬂgr + Ir“rif 2 rd'f:—l ﬁ e T

dChp)
but —_f.i—qrr_ = at z=0,1

r

Substituting
L ro

..S (E’drc{iz (real, positive definite)J +

N e L N (0 (L YR
+T) T i g
K I:""."rn [L" T"'L]

F=0



- 4% a

we can write

| I {U__!)
i il ol 1 R

Then separating real and fmaginary

rdrdz a positive definite]+. «« +
A : " g
+_¢t[ J el %l [ gdrie]
jvo= 51" “r..n - ST
Since 07 , We can conclude:
j rlEfdr 3 ,(I dardr|g|" 37 8
I -q_ i|L E' [} rﬁh ;H'.I:l‘

1. If Tisfixedatz =0and z =1, thena-r =0 onz=0, z=1.

or
oo :g";‘ =0 onz =0and z =1 from the thermal wind equation. The

. : B
second integral must vanish, which means that -a% must equal 0 somehwere

in the fluid in order to have instability,

2. W can also consider the case where % =0 everywhere. Then the first
integral requires that the radial temperature gradient be of the same sign
atz=0and z =1,

It is possible to prove a second theorem which is a "semicircle
theorem' for the eigenfrequencies,
Define w = ﬂ?i:n-
men (grwnft &3k 4 5E-l-o(2r Al L3 o

(Uy-ar)

i 4 1 4 -
but we can write ! ug—-——r'F[:u- -u_-..-']- ~

or r ar r ar
By 3
and Fer e [:EFMT:'I

Then for

9 # 0 write: $=WF(n2); weu;(ne)-wr
Insert into D E —:_ [W‘l" arilq-s-a.gw?gﬁ f;m 1}_.E
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with boundary conditions

F=0 an r=r_, r

a 1

dz

Multiply D.E. by rF* and integrate in z and r
| T a o
oF aF | 4 =i e?
jdEj r‘ﬂlf"'-"""‘[ T3 +ﬂ-|-ﬁ +_r'_—‘||F| }" 0
Y

L
1
where the |?3f:_r‘ and |—‘%|:—r-1:nru!- we obtained by integrating by parts and

using the boundary condition ar z = 0 and z = 1. The quantity inside {]

IS positive definite, call it Q> 0. W can write

wia {i"i P =ir "“T:'Ii?l:""i "ru-'rlf; f"-l‘.-l.'ll:'.‘- I:'.'1r-!"""lr[i""'--ii - l"}

Then for the imaginary part

w,-ﬂr‘ied r(u; - rwr.) q=0
W Hv"dndr (3% -we)g=0

which means that the real part of the angular velocity of the wave pattern

QT

is equal to the angular velocity of the symmetric flow field at some point
in the fluid. This result can also be interpreted as showing that the time
derivative of the wave field is sf the same order as the advective time
scale,

Turning our attention to the real part, we have

Hr—r.i rde [L&‘.-zr Wy U 4 T W - r‘wl‘] G=0
we just showed that ¥ = T
therefore we find
j"r’d rde E-L:-i}ﬁ“ = 'ﬁi’![ﬂit *WF}Q drda
vs/r is always finite in the annulus, therefore we can write Li< Lil.r'r{nﬂ_

and



L

ﬂzj [:E,If -I‘l,_)f\% ~ﬂ;:] PQdrde= ﬁ& rdrde [[—"F’—Jt [+ ﬂﬂ% +Di, ﬂl_]=
=ﬂ|.'.‘l Fdrdz E{w:.'qrw:';l-wr [.n“-l-'ﬂ..'} + ﬂ;ﬂd.
-HG Fdres [{mr* @55.}: ulf - (—ﬂﬂ-fi:]j

which leads to a condition

0,-0 Slgtliy o .
2 = [W‘r' 2 }-r.:.u,

This condition can be represented graphically

oy

for ;>0
must lie inside semicircle

This result shows that the energy available to the perturbation
depends on the velocity gradients.

Also shows that the advective time scale of the basic state and the
time derivative of the wave are of the same order.

We have found several necessary conditions for instabiliry. W now
proceed to solve the problem in order to find sufficient conditions, The
problem we will solve is the one in which we have insulating boundary eon-
ditions at z = 0 and z = | and the mechanical driving is produced by a
solidly rotating top

-ETI—-AO on 7=0, =|

with 05 = | o
Uyl as/RE"

T l+TS/pee

&5

Lr.rc,r} [E- '-*-:.]

where Vg lrl=r.

We defineﬁg , a measure of the shear



gE
l+T5/aEh

oTl.
Also when L"T l;l',:|='|"_, 'ars =0

Fop this specific case, the equation for conservation of potential vorticity

becomes .
PETIS EREIPE SR
with boundary conditions § -0 r=v.,n
and .
[‘.;:*‘E'l ]';i ~JE=0 onge0 amd | when € >>E

Choose $ - ¢mn (r)B (e

then £ :';n(xr_n_n -"{'u _ e {Hmn o
mr " T (Fenn ) 'I:Hmn )

with the condition

0=J, [Hmn“] Ym {I{mn.}- Im {“T"“j Tm {Hm'ﬂ"{'.}

where o( = r"/r;. J, - Bessel function of first kind

Ym - Neumann function.

D(z) must satisfy

-
2K £ 0

then  D@=Asinh k, 5* (2-%)+Beowoh Koy 5 (2-%)

with boundary conditions

e [P faoh B mamh S
- S[Asink o1 Bamh Keu8®] at e

and [—a—%—w][-'fysy‘{AthWi mwﬂ}]
-A[-Asinh £anS®  Bosh fnt ] of 2uo.
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In order to sati sfy the boundary conditions
M5 % Fi,...,s"‘v}[ K,.5% ]
g7 mﬂ,
Wegt ii,.msh l£ B 4 |

%
Si nce Eﬁﬂ-zw H“‘": from ig'tﬁmjﬂt

the criteria for instability (ew conplex) is

Ll c.iﬂ]]f .5!";-

V¢ note that stability depends on the paraneter 5 not A while the rate of

growt h does depend on A . Neutral behavior occurs when

sh Ko 5 1o
—— = uth
¥
the intersection being ﬁ,,:'_s = 1.199.

The stability criteria can be illustrated by considering inr; = 0.8
Then K, == 10 which results in an unstable mode when s =l . Sinilarly,
'-".fﬁ = 0.4instability occurs for 5=/.2
(ne |l ast comment can be nade. wr.'-;_at the margi nal point, which

follows fromthe dispersion relationship. Fromthe boundary condi tions at

.'::i"
z=oandz=1Viithu.|-'f-"ivihen K _wﬁ—m———wefindA:o
Hmﬂi .-,|:_'r'r1£| 't,’l_:_:' 9
Therefore ¥ = Rg?mntﬂ-l" ,—’:\l-ﬁ}ﬂ - Wth, in this form

the non-linear terns in the quasi-geostrophic potential vorticity equation

vani sh and thus "ﬁi:,’ is a solution of the conplete equation w thout regard to

initial anplitude.

Notes submitted by
Frank M. R chter
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LINEAR STABILITY OF THE SYMMETRC HON (VISCOUS THEORY)

Lecture #8 Joseph Pediosky

To repeat last lecture's results recall we assumed that E!i.-'E el ]
md (8T

in which case the stability of the flow depended entirely on S= ';_H_E—L#]
Stability results if S exceeds a certain value, depending on the aspect

ratio of the tank. The condition for instability was

Vo
Eﬂ'f—i f.2
or SI‘&E H—Hr'

mn

And the lowest mode h“ will give the least restrictive condition on S:

N 1.2
crit = k"

5 (unstable)

Now interpret this in terms of the Rossby radius of deformation

N reang

IL'.L
Then S = R2/L2, and 5. = (number) R2/L2will give instability, i.e. the

length scale L must exceed the Rossby radius of deformation for instability.
This agrees with yesterday's result that the flow may be stabilized by making
the annulus narrower.

Note also that the stability did not depend on the magnitude of the

g E/SE'\/ L
- s =_J. .."-
Shear, .{E = ; 0"5/ The mean flow was 'F'.-{E {? 2) and note

last lecture's result that when /5-'1'"3' f.ur--'i' , Which just means that any
perturbation on the interior flow is just carried around in the fluid in-
terior,

Y

Next we consider effects of viscosity, considering £, E” to be of

the same order, To see what this means,



Efets = U . Lm _ w/L _ Ekman dissipation time
J vV Vore/L circulation time

spin up time

or = —Trculation time

This parameter is therefore a measure of the viscous dissipation rate com-
pared to the energy input rate for a perturbation. Refer to the beginning
of Lecture #7 for the derivation of the equations of motion in which we seek

solutions for the stream function, ¥V £ -F of the form

V= Rad(re)e ™, w=S

m = integer

periodic in € , the azimuthal angle

e el

in the viscous, linear equation

L B 38 _p XA
tartar - hérg et
with boundary conditions
g% .
R I e e S D

-[.n_“'l

w5 (es0)

el mfed
= = [

d
[4-4-u]2E g5 L5 [L2,
feO0om i, g .

As before it is separable § (n=) = ‘th (Y')IJ (&) with

D)= Aunh Am (a-4) B eoah 2™ (24

and some algabra yields the foIIowing eigenvalue equation
,51 A
. + & = (g - esth “tamh g )
w =h¢ﬁﬂ1 e ﬁ{%t_ 1y f("u 2)(% ‘}r}

where we have defined "m st

E L1
Ll € Hm
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%
Note here that when n:ﬂ{_ﬂ Eg -i'f-l) this result is the same as last time
and viscosity cnly adds these J1 #£0 terms. Note also that the conditions
for instability will depend this time on the shear .:{f .

Consider what happens when d=0 , then

(- tamb g, [+ root

w—-’-=1j -E..
2 - _-'? ao%%,, (-) root

Thus wi<= 0 in both cases and recalling that %: L -f-ﬂ{bf;) this just
says that any perturbation just rides with the fluid interior and decays
slowly,

Next we would like to find the condition on.4 which just makes
w;=0 (i.e. that amount of shear which causes the flow to become unstable),

For marginal stability then
D)L :O

e v i Pyl ey
- i = |
(8 ) £t iranby)-
&
or ;&u; —ﬂ%'%-ﬂ *ﬁ[ﬁ-w E_]l

= sl E¥Shknn I
T Viwth g-gigTmhg)'

% 4
Plot /£ {dﬁ_a—ﬂﬂ%]{%‘tﬂ‘?} 8

=T =




- E a

and thus

unsTable
w, > L

T

sTable w; <0

where every scale on this curve is 0(1). Thus the minfmum value of shear
i . .

,43 for instability is 0(E*). The /L terms in the eigenvalue equation

appeared due to the boundary conditions we had to satisfy. These boundary

conditions give rise to a perturbation-caused Ekmen boundary layer where

the basic flow had none. As n —s (0 the instable region fills all of the

area q < 1.2.
[

| unsTable ;|
E‘,ﬂ | /F
|

<o/ |
:.':L-E—:
Nw we will investigate the narrow gap case.
1
n
—3
R-R
ﬁ 5 £ |
Lt
|
itk
2 Bl
[
Yidh
i

Re-scale the horizontal coordinates:



P d f
define s St A F.I-*'.“, :j‘
T -F -
J= F o=y =|
] .
to be a right-handed system
e
il
 (hegt
Then W =&§H;¢‘]ed * o’)where ’/?zo— (2m), will replace the former

Rg éﬁ(,,z) e"i““"_"'ﬂj and the equation of motion will become

r 28 3%, ofno

|
Ter T '.m)

Finally note that the notation will change here for u, v, w:

2 Wr
Vﬁn

v
W restate the problem (linear, viscous) with these new coordinates:
3 | B
u)-O G5 -8+ & 38]-3[ e+ ¢ Fa-o
where Uy = b +8 (2-4)

AT L
= Ji%—'L which takes into account the
1 H'T{rj . .

different horizontal and
vertical scaling,

With boundary conditions

(

s &[S -w3]; =<(9)
where ,:{ﬁ‘)ﬁ‘r— &fﬁ—-'ﬂjﬁ

L u

Now the results of this problem are essentially unchanged since the struc-

ture of the problem remains the same. Instead of Bessel function solutions,
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we get sin(nTiy) eigenfunctions in the narrow gap.
V¢ wish to investigate the nechanismfor instability in the narrow

gap probl em The equations of notion are

{%H& _'E'"} - e =Py (8.1)
E{at + Ly E—lw.a--pj, (8.2)
T=-Pa (8.3)

with E-nga{uﬂnshm-m,m’. ué_tfsl’_ﬂ , giving a slight scale change,

Let wr=#£ v/:r t hen

{%+%%+Wa;}+eﬁ=ﬂ (8.4)
E—:+ %+E ?ﬁ-ﬂ {8.5)

Take() XU +(@ XV) and integrate over vol une:
€ [ 4o dndgis [ (- ks,
by parts: -—-[G’fp a“ + E"r) ﬂi_ldﬂﬂl'.l
continuity: = —Emp 2 dydyde
= - [zr i) - FP_J'I dtcdydls
3= = €f[{@T)dadyde-eff u'»w‘g[pffrﬂw{frﬂ pleye) s (eye)]

It shoul d be remenbered here that the dr% refer to the interior problem
and are not necessarily zero at z = 0,1, To investigate the kinetic energy

in the perturbat|on

<Ky = —ﬂ‘ﬂ drdydn
Eﬁl ;em (wT}d;djd: + %“‘gwﬂ (e () +ple T(a)

U0 £ (i [T () rpe) )+ f  (67) g




Now, the geostrophic relation tells us that lower pressures will exist
where £ > 0.
So Ekman suction is forcing fluid out of the Payer and from Bower

to higher pressures:

L
&\r [” £ pressures

{(i.e. this daes work, which damps the perturbing flow, and the first term

on the right is negative.) The correlation of @ and T term must certainly

be positive to get unstable flow.

oH

Nw investigate the {w T term. Multiply (4) x

@ - 4T D]
giving 2 <oy + §50 = ([ {dmyde [ 5 (- ]+ ().

(the W, BT term integrates to zero since Ug IS independent of # in the
symmetric basic flow),

Using = -%J;— = %5'— (thermal wind), consider HE uT (aa—";‘) ¢ we see
that the correlation {u-T) must be =0 as well as(@T}r>0in order to have
energy in the perturbation increase, These correlations tell how the pertur-
bation wave must move the fluid te gain energy: warmer fluid must be moved to
a cooler region and vice versa,

Nw | et

Lagrangian displacement in z [mat vorticity)

4
YL Lagrangian displacement in y

L

[..3_1. l.lf [T-I-*q {f}] =0 (heat equation]



T o~
with solution T=-q%¢— fe.

Put this back into the integral
f e i [ (-1 - 0]
=-fﬁiu:i-3i15f o {I +I,'_l E_Eéj_;'_

-]
Thus we need [I + }{— —%éﬂ-}é @ for instability.
aTs aTy
Hurt gllag-n.a ﬂfa“‘

= slope of isotherms in the basic symmetric flow,

T e
Putting this back in terms of dimensional (*) quantities,
™ 9
g T
F}_ J T s cariEls
{ HOT
\ ' isotherms of the symmetric
/ \ basic flow

m"ﬂ

In order for the perturbation wave to take energy from the basic flow, it
must move in the above cross-hatched wedge: - e.g. hotter fluid must rise,
move in and into a cooler region to give energy up,

Recall that T determines £ £ or the buoyancy. Thus as the hot and
cold fluid elements get interchanged within the above wedge, the potential
energy of the system on a whole is lowered, |f G is too large this can't be
done - for example from the geometric constraint of too narrow an annulus.
Finally recall that we showed earlier that the Ekman boundary layer dissipation

term must not be too great or motion even in this wedge will be damped,

Notes submitted by
Dennis Randolph Watts
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NON-LINEAR STABILITY OF THE SYMVETRI C FLOW

Lecture #9 Joseph Pediosky

Reference: J. Pedlosky, 1970, "Finite Anplitude Baroclinic \ves",
J.A.S. 2Z; 15-30.

Ve want te find (1) the final anplitude of a wave if it equilibrates
{2) howlong it takes to reach final state
(3 the manner in which it reaches equilibration,

The basic flew IS

ws(3) = g +4 (3-4) -
The full (non-linear) equation for the perturbation is
(Frrue @) pe)(ye &) ¢ 7 (0,97 ¥+ 5 ¥;y) =0
wi th boundary conditions:

at zi.,;. [ {-,t;]a:l 3 ('Wa'll-’; /331411‘:!' ¥

at y = 0,1t %-D L 1"".;,{.;,-.,..5
where  Tla,b)=8 by -
i oo
n -—G —HH atle
. g aTih L
G LR LY Ay
£ s re-Re

The integral Lmd.m may be taken over a wavel engt h.

Ve can-'t do the problemin general, But by allow ng soall non-
linearity and slow growh from iinear destabilization, the two can balance
to give equilibration,

i .
Inviscid Case: E‘<<€ , i.e, A=0.

For a given k , linear theory yields a critical value of G, i.e. G,
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for instability. Therefore let
G=G._+ A where & << ] .

The results of the linear problem were
Vals [e"“"“"’”m iy [A cooh am (3 - %)+ Baimh @ {g-,g)]}
f \ Yo
where o= &+ f;h%-ﬁﬂ EE'J.{%}-M EE'—;I}

and A =V M%) G

The critical value for (g was
O, < 2.4 for instability

so this gives G, as a function of K :

g = 3.4
c i

This gives a "neutral™ curve for fixed m s O:

a

unstable

2
For a particular margfnal wave number, say Kk , the level of G is

determined from G¢{hj. For this level of G other waves may be unstable,
but we restrict the initial conditions so that only this marginal wave is

present.

The linear problem gives

ﬁ* ) (amainh 5= -4 cach P} A
Amh2p -+ £ - %}iﬂmh—“

but for the marginal wave = C“T therefore, B = 0.

(9
R
2 oth
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V% can al so see from the linear results that the growth rate for
G = G+ & will be the order of &% . Thus there are two natural tine
scales in the problem:
1. arapid scale fromthe real part of ¢
2, a slowscal e upon which the anplitude is grow ng,
The non-linear effects are weak and we expect themto '"come in'" on the | onger
time scal e,
Assum ng that we can separate the dependence on these time scales,we

wite

Y= '?(i,ﬂ.g,t'."rj

where T'=t

T=|a]%
Then the time derivatives nust be transforned since
by the chain rul e,

The function is expanded

YooY+ a4 @V,+. ..

where a is a scale for the magnitude of ¥ and will be assunmed snal |,
a could be a neasure of the initial anplitude of a wave-like disturbance.

| f one does the strictly linear problemwth this slow growh rate, one finds

an anplitude equation in which

G o~ ol
where & is the anount of destabilization, The non-linear contribution
will result fromthe interaction of the wave with the change in the mean
flow and will be proportional to a x a2 = ad, Therefore, i f (a 3) bal ances

[a A), then a = oc;a]‘/m), and we can wite
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Substitution of this expansioninto the equations |eads to a sequence

of problens according to the orders of /&

The o¢ lAIV*) pr obl em

This is the linear, marginal problem the solutionis

V= Ra fA(T)e *EMlain mity eh am (3-4)}

where g =G, (k% m2 )

¢ = ';E-t-'i

The function (A(T) nust be determined fromthe higher order probl ens.

The o( |&| ) probl em

The equation for "'qf

[‘éa‘ TSl }( *Gﬁr“f"at & [avw? ‘]J{U.ﬁﬁﬁ‘lﬁ'f%r}

Both terms on the right-hand side are zero since the margi nal wave,
ie. W has zero potential vorticity, Hence, a particular solution for

W, has the same formas the linear sol ution:
Yl ey [4, e 3= £ )+ Bih 2 (34)])

The boundary conditions for Y, are

[FF { +-J|:‘3 ﬂ;—] L '351'35_”&?:1 ot }:GJ]

Usi ng the above sol uti on, the boundary condi ti ons becone

at = 1: L:'—J*E’:lanmm %'“FE,%%E’,E—L]-LEJ&_mh?ﬁ,M Eﬂu
I ) _%-i
at z = 03 -QE—‘!}I_-AI&MM Om B, ayenh 8t]-1n8 [Auonh 5B aimk %)=

-1 I:IE.HM "E":' T
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For rhe marginal wave, fﬂ'!ﬂ'l'-ll —= , and these two equations become re-

dundant., In face, % drops out altogether, and then we can solve for B2 in
di
terms of s A2 is arbitrary but inclusion of it would merely reproduce

the basic linear solution, If we assume that the amplitude of the basic wave

is given entirely by A(T), we may set A2 = 0, This is simply a normalization

condition, Thus
{opmaimh™s  dA
Y] dT

There is another solution for '"L}lra_ that must be included at this order:

E‘.I.{T:I -

any function of y, z and T only, say ¢; (v,z,T). Thisis a slowly-varying
T
mean flow that will be determined in the next order problem.
The total solution to this order is
ki hGemct) a]* {nh 2% A
Yeafa {Ilﬂ| Rl iy Y [ﬂ (T)etsh a,m{;-.}_}'f Liiq. %umwni"T"wi d.,i:':,;:,l J} +
+18f4,(u,3T)+0(1a1%)

V¢ note that the harmonic contribution that has arisen at this order
gives a phase shift to the wave that is proportional to the rate of change
of amplitude. In the linear problem, this phase shift is constant since the

growth rate is constant. (That is, for the linear wave, i— % = , @

constant,) But for the non-linear problem, % %iﬁﬁ; is not constant and so
the phase of the wave will vary slowly with time.
V& still have not determfned A{T] so we must press on to the next

order,

The 0(1&1*) problem.

Nw the perturbation in G, i.e. & , enters - also the non-linear

interaction between the wave and the mean flow, d?,_ .
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The equations for "+£ , after the non-linear products have been cal -

cul ated, are o
[--M‘jlf“'*] J’( }:'HG:‘?; 11[,]-= - %{Gﬂ:ﬂ‘u— :_;]"*
ml“;{-}' ) i mnHA(T)M ap(3-4) + comples comjugqeTe )
e (Bl DUDAT B f a2 G
-5 dT'fM e ah Eu—nmn*ﬂg eds mflr'u%}: 3 ?_'jir complex eonjugaTe (B
plus a simlar equationat z = 0.
E i mnating resonance in Eqg. (A we get an equation for d; :
Simlarly, we have boundary conditions on dﬁ fromEs. (B
2 %%":-a:‘,‘,, T i S By A" of 2201
O, integrating with respect to T and using ¢£‘ Oat T=20as aninitial
condition on @, :
- i 2 sivgwny [la1-141")  at 220,
wher e Ao = A(0).

On the side walls there is another condition on ¢; :

These equations give a solution for

b (s57)- o[ A [mﬂim%ﬁ:fifgq:mﬂ Xatyp

wher e Tfiis a sol ution of g3,+ & %riL- © needed to satisfy the bound-

ary conditions,
Substituting for Wﬂ and tpi in Egs. (B) and renoving secul ar terms

| eads to the anplitude equation:
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The coefficient of the second term is just the linear growth rate
squared. Note that & is negative for Ifnear instability. The constant
factor N in the non-linear term has been found to be always positive,

If we let A(T) = R(T)ed“ﬂ , where R = |A| , substitute for A, and

separate real and imaginary parts, two equations for R and § emerge:

dd _ -
ﬁ-:—uf‘r‘ = constant = L, say

ri‘ﬁ - = Y L ==
I 3 P%ﬂ;:_?—h. NTR [R-T*’.ﬂ ]+ J'FTF

V¢ have a second order equation for A so we need initial conditions
dA

on A and T Let us consider the case where the wave conforms to the linear
unstable solution at T = 0. Then %c% would be real to T = 0. But

1dv 1 dR - dg

AdT TR O Y tar

Therefore we have g—,?(O) = 0, This gives us L = 0 so the equation for R is
AR b * )
=~ @ R- KR [R-R]
A first integral can be found:
dR Y
- [:_rl:rjl + (R) = E, a constant
™ alqe, KW Y
where V(R)=--3% [—H*,_L-p-.-‘u"ﬂn_]'ﬁq- _'-Tﬂ

[ PO oa™ AW Y
E=% | B@] - Br,- LN R

after taking & == |&/-

This gives us the following qualitative picture of the behavior of R:
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v (R)

Rwill oscillate with time between the maximum and minimum amplitudes
which are determined by the initial "energy" E. Note that the amplitude
can become less than the initial amplitude. Note also that the shape of the
curve, and thus the minimum point, depends on the initial amplitude R,

R as a function of T can be calculated in terms of elliptic integrals.

- _ _ R(T]
Qualitatively, it looks like
e
,
R — — — —
- - 4
The period can also be calculated. The limiting amplitudes are given by
3 e S =
J T g, Tie [ VR oo
‘FT”?‘I' Wk tRe T LIt oE R
min
. i 1 dA
The energy transfer process is as follows: As the wave grows, A ar
does not remain constant, Initially %j—? = 07 and the wave extracts

energy from the mean field as in linear theory, As the wave grows and its
amplitude departs from its initial value, Ay, the zonal flow is altered.

When R = R, the altered zonal flow is stable according to linear theory but



Lda
A dT

of constant p sleping upstreamwith height) which allows continued extrac-

# 0. Hence the wave sti1ll possesses a phase tilt with height (P nes

tion of energy fromthe zonal fiow. The wave continues t0 grow, 1ts phase
shift decreasing as it approaches its maximum amplitude R . At this point
% g% = 0, the wave no longer can gain energy fromthe nean flow(whish 1s
now quite stable), The wave amplitude then decreases with time; the phase
shift 1s reversed and the wave returns its energy to the nean flow until

t he wave achieves its minimum amplitude (which 1s |ess than A(0)) at which

point the wave proceeds tu grow again starting ancther cycis of the oscil-

lation.
Not es subnitted by
Michael A, Wi ssman
NON- LI NEAR | NSTABI LI TY OF SYMVETRI C FLOW concl uded:
THE EFFECTS CF DI SSI PATI ON
Lecture #10 Joseph Ped| osky

In all the previous analysis, the effects of viscosity have been
treated as negligible. W now ask what happens if a little dissipation is
present, and in answer we shall quote a few results w thout derivation
These results do not apply directly to the continuocusly stratified Payer,
but are froma two-layer model in which dissipation occurs at the rigid
top and bottom. In this model, the interface tilts an the same sense as
do the isotherns of the centinuously strarified nodel, and the twe nodel s

are indeed essentially simlar inail inperrant respects except tractability
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For the two-layer model, |et

& P be the density difference, L

original interface
be the layer height, and ‘Ef e (-fr

{ be the gap width. ™ tilted interface
|

The important parameter is thenF = Eigfl. and the form of the amplitude

-

equation is the same for both models. The models differ slightly in the

N
values of the coefficients gzy and /¥ .

We shall first discuss the ease of large dissipation (e = O(E"l))-

W have
dA
8 - ¢ (rA +« N(ralal = o, (1)
where r = E':i,.-'E
and T = |ﬂ.|1:,

As in the inviscid case, the first two terms of this equation are the

linear results, and the third term is the non-linear effect, which here

leads to equilibration, In the inviscid case, two modes grew slowly, Here,
however, the order of the equation is reduced (phase shift is proportional

to amplitude rather than rate of change of amplitude), and only one mode grows,

2k

Aot _

>T
The graph depicts initial growth via linear theory leveling off to a steady

*
. . . _ vl . . s s
finite-amplitude solution (A, = a |, ./NI:T-) which is independent of ini

tial conditions, The behavior is thus very different from that of the in-
viscid ease, There the wave '"remembers'" its initial amplitude; here its

initial phase.
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1
W now consider an intermediate case. A critical value isr = 0(AJ7,
for which viscosity and growth have comparable effects on phase, With

1 .
=]&y3t, the equations are

dg . 3 dd _ 4 (U
i ?.Lflﬂ 25 -owiA- mﬁﬂ“’””&

Eii o (T ,I'fJ %: H-rdtl s & = Al ]Mimﬂg (3)

This may be integrated for r = 0. The problem reduces to the inviscid one,

f]
-::"1}.(7 d"} .0 o

| f ﬁ: is large, we obtain the small-r Iimit of Eg.(1). In general, one
can calculate the equilibrium value A4 by solving (2) neglecting T deriva-
tives, using & from (3) viz.:
JAnl= £ UV (k)
To gain insight into (2), we relax the boundary conditions on the
part of the flow that is independent of x. Then, assuming a natural

(~ sin 2mTy) periodicity iny, we solve for & in terms of A and obtain

the following equation for A:

; - - Ll
98, 3 o Zh- o AcPA Al JAwle ﬂ*ﬁfuj(:u:"f;d‘ll R T8 of TR O

NPT
where m Rk
Fl’ 2.]4m‘n"‘+)?mj

o _#mtTh
and L T e
and _mtH K
=

From (4), we see that the wave gradually forgets its initial condi-
tions as time goes on and the integral causes the memory of distant past
history to fade. The early growth is oscillatory, and the final steady
state in the small-r limit of the previously calculated fﬁ.“r: G‘{rl‘j,—";-.,.-'{,_)'

W note that she final state A, is independent of the initial conditions



and may, therefore, actually be smaller than the initial anplitude.
Finally, we reluctantly remark that nunerical solutions of (4 should be

i nfornmative."

To summarize briefly all the lectures, we recall that we first ex-
amned the inportance of potential vorticity, its conservation and its dif-
fusion, Next we studied the inportance of boundary |ayers in determning
the interior flow of symmetric states. Lastly, we determned that such
states may be unstable(for sufficiently snmall Ekman nunber) to wave states
whi ch can grow via baroclinic instability and equilibrate via non-linearity.

Al of these results have been found in a very sinple thought experi -
ment. In real geophysics, the sanme nechani sns are present, but in vastly
more conplicated forms. |f we actually performthe experinent, we shall ex-
pect to find confirmation of these results, Being experiencedin this field,

we shal | expect surprises too.

"Ccalculations done since have shown that when k2 = 3 mzﬂz the possi bl e
steady state is in fact unstable and then a lint cycle rather than a fixed
anplitude is obtained for large T when ';/‘fal"‘h is small.

Notes submtted by
Rchard C. J. Somerville
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| NSTABI LI TI ES (F CONVECTI ON ROLLS IN A H GH PRANDTL NUMBER FLUI D
Friedrich Busse

It has been shown by Schliiter, Lortz and Busse (1) that rolls repre-
sent the only stable form of convectionin a fluid |ayer heated frombelow
provi ded that the fiuid satisfies the Boussi nesq approximation and that
the Rayl ei gh nunber exceeds the critical value by a sufficiently snall
anount. The range of wave nunber for which rolls are dynanmcally possible
Sgl utions of the basic. equations increases strongly with R. The range is
bounded by the curve R, in Figure 1. Oy for arelatively small sub-
range of wave nunbers ¢ , however, rolls are stable. The region of sea-
bility is roughly centered around the critical wave nunber o<, and is
bounded by the curves B and C which correspond two different instability
mechani sns: Rolls with a too small wave nunber becore unstable to the
"zig-zig instability”, By bending the original rolls this instability
leads to a pattern of shorter wave length. Rolls with a sufficiently high
wave nunber becone unstable to the "cross roll instability' which induces
rol|'s perpendicular to the original ones, For Rayleigh nunbers above 8000
the latter instability is also responsible for the boundary on the left
side of the stability regionin Fig.1.

The characteristic wave nunber of the nmarginal cross roll instability
at the stability boundary is shown by the dashed line in Fig, 1, The fact
that the Pine crosses the stability boundary at R= 15000 indicates that
the cross roll instability can not induce rolls as stable stationary sol u-
tion for R = 15000, Instead a three-di mensional formof convection, called
bi modal convection, is induced, Figure 2 shows the streantines for the

hori zontal conponent of the velocity of binmodal convection near the boundary,
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Fig. 1
Stability region

=
Ol

Fig. 2

Stream ines for the horizontal conponent
of the velocity of binodal convection near the boundary.



Experinental evi dence suggests that binodal convection represents the only
stable formof stationary convection for R = 22600 when rolls are no | onger
stable, An experinental investigationof the instabilities of convection
roll's has been carried out recently by Busse and Witehead (2 in extension
of the earlier work by Chen and Witehead (3). The observations show rea-
sonabl e agreenent with the theoretical predictions displayed in Fig.1 which

are taken from(4.

(D  Schliter, A, , D. Lortz and F. H. Busse 1965 J.Fluid Mech,,
23. 129,

(2 Busse, F. H, and J. A Witehead 1970 submtted to J.Fluid Mech.
(3 Chen, M. M and J. A Witehead 1968 J.Fluid Mech., 31. 1,
(4 Busse, F. H. 1967 J.Math. and Phys. 46 140.

ON THE EARTH S CORE- MANTLE | NTERFACE
Raynond H de

The tightness of the coupling between the core and mantle of the
Earth that is inplied by the occurrence of irregular fluctuations of up to
about 5 x 107°s in the length of the day on tine scales of a few years and
upwar ds rai ses inportant questions concerning the nature of the horizontal
stresses at the core-mantle interface. H ectromagnetic coupling does not
suffice unless very rapid magnetic fluctuations in the core - ontime
scal es well below the "skin effect'" cut-off due to the mantle - are in-
voked, An alternative suggestion is that the core-nmantle interface is bunpy,
typical undul ations being a kilonetre or so in height, and recent |aboratory
experinents on "Spin-up'" in irregul ar containers remove one theoretical ob-
jection to this suggestion. Planetary-scal e undul ati ons of the core-nantle

interface woul d contribute significantly to the Earth's regional gravita-



tional field, and they woul d al so distort the magnetic field. The recent
di scovery of evidence of a previously unsuspected correl ation between
global features of the Earth's gravitational and nagnetic field |ends
weight to the suggestion that undul ations are present on the care-mantle
interface. The study of theoretical nodels of interactions between these
undul ati ons and magnet shydr odynam ¢ moticns in the core Wll be a useful

devel oprment in geophysical fluid dynam cs,

Reference, R. Hde, "On the Earth's core-nantl e interface', Quart.J. of
the Royal Meteorological Society (Oct. 1870].

THE PERI DS (F FI N TE- Dl SK GENERATED GRAVI TY WAVES

Louis M. Howard

Qavity waves in a cylindrical tank of water excited by vertical
oscillation of a centrally placed di sk exhibit resonant frequencies dif-
ferent fromthose of the cylindrical tank with a conpletely free surface,
The | owest axi symmetric resonanee has been found experinental |y by Kaiser
and Mirty (Phys.Fl. 12: 1144(1969)) to be nearly the same as the conputed
natural frequency of an annul us whose inner eylinder lies just bel owthe
exciting disk.

In this lecture it is shown that resonances observed in this nanner
shoul d be accurately given by natural frequencies of free surface nodes in
a cylinder With a partial rigid cover coinciding in position with the forcing
di sk, Wsing the general variational characterization of free surface waves,
the |l owest axisymmetric frequency of the '"capped'" cylinder 2s estimated, and
it is found to be bounded frombelow by that sf the annulus. A slightly

more conplicated but basically simlar estinate from above shows that in cir-
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eumstances like those of the experiments, the eapped cylinder frequency
also cannot be more than a few percent above the annulus frequency, even
when the ''cap" is as large as 3/4 of the tank radius and the annulus fre-
queney differs markedly from that of the free cylinder. This gives a theo-

retical rationalization of Kaiser and Murty's observation.

AP HLMS

Louis N. Howard

Primarily a popular talk centered around demonstrations of large
soap films (0(1 mz.)), this lecture dealt with some |ess obvious but every-
day manifestations of surface tension phenomena, a few mathematical curious-
ities regarding minimal surfaces and surfaees of constant mean curvature,
and the role of soap in the actual production of films, With respect to
the latter, emphasis was placed on the necessity of variations in surface
tension with macroscopic decay times, both for the existenee and the
stability of films. A simple experimental demonstration of this variation
in a vertical soap film together with a discussion of the physical mechanism

by which it can be produced with the aid of soap, were presented,

INERTIAL TAYLOR GOLUMNS

Andrew P. Ingersoll

A homogeneous fluid i s bounded above and below by horizontal plane
surfaees in rapid rotation about a vertical axis, An obstaele is attached
to one of the surfaces, and at large distances from the obstacle the flow is

uniform and horizontal. Steady solutions are obtained as power series ex-



e

pansions in the Rossby number, uniformly valid as the Ekman number approaches
zero,

If the height of the obstacle i s greater than the Rossby number times
the depth, there is a region of closed streamlines in the vicinity of the ob-
stacle. The effect of viscosity, however, is to prohibit flow within such
regions in the steady state. Thus a stagnant region (Taylor column) forms
over the obstacle. Outside this region the fluid obeys inviscid equations
of motion, and there is a net circulation in a direction opposite the rota-
tion.

The shape of the Taylor column is not known a pricri. This shape is
determined from the free surface boundary condition on the critical stream-
line: free shear layers do not exist when the slope of the obstacle i s much
less than one. Velocity is therefore continuous in the inviscid limit,

Thus velocity must vanish on the closed portion of the critical streamline.
This condition applied to the inviscid exterior flow uniquely determines
the shape of the Taylor column and the circulation round it in the steady
state.

Reference: J.Atmos.Sci., 26: 744 (1969).

VENUS THE GREENHOUSE THAT RAN AWAY

Andrew P. Ingersoll

Venus, Mars and the earth have nearly the same average density, which
suggests that they have nearly the same average composition, Nevertheless,
the atmospheres of the three planets do not resemble each other in any obvious
way. A reconciliation is possible if one assumes that large amounts of H,0

and Co, have been exhaled from the interiors of all three planets, and that
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differences in their atmospheres have evolved because of differences in the
amount of solar heating.

On Mars, the temperatures are so low that both H20 and CO2 exist
mainly in solid form, The partial pressure of these gases in the Martian
atmosphere is controlled by vapor-solid equilibrium at the Martian surface,

On the earth the temperatures are such that H,0 exists mainly in liquid

2

form, and the partial pressure of H,0 in the atmosphere is controlled mainly

2
by vapor-lfquid equilibrium at the surface. co, in the earth's atmosphere

is controlled by equilibrium with dissolved CO, in the oceans, which in

2
turn is controlled by equilibrium with metallic carbonates in sedimentary
rocks.

On Venus, the situation is less clear. Both H,0 and o, can only
exist in the vapor phase, but there appears to be very little H20 on Venus
at present. Ore explanation is that H,0 has been destroyed by ultraviolet
light from the sun at a rate which i s several orders of magnitude greater
on Venus than it is on the earth or Mars, Such a circumstance could arise
i f H20 were once the major constituent of the Venus atmosphere. The quan-
tum efficiency for destruction of H,0 on Venus would then have been close
to one,

5

On the earth the quantum efficiency is about 107, since H,0 is only

2
a minor constituent of the earth's atmosphere, |If large amounts of H,0 have
been dissociated on Venus, the hydrogen must have escaped into space, and
the oxygen must have gone into oxidation of surface rocks.

The remainder of the argument is to show why H,0 should have been a

major constituent of the early Venus atmosphere, although it is a minor

constituent of the earth's atmosphere. Water vapor i s the major source of
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infrared opacity in the earth's atmosphere, and therefore the depth of the
radiating layers, where the infrared optical depth is less than one, IS
determined by the amount of water vapor present. However, if the amount
of water vapor is determined by the vapor pressure of the liquid, then the
temperature of the radiating layers cannot rise above a certain point.
This means that equilibrium with the sun i s impossible i f the sunlight
absorbed exceeds a critical value, as long as the water vapor pressure isS
controlled by the liquid. Calculations indicate that Venus and the earth
are on opposite sides of this equilibrium, and therefore H,0 could never
have existed in liquid form on Venus, Thus H,0 may have been the major
constituent of the early Venus atmosphere, and this may account for the

absence of H,0 on Venus today.

Reference: J.Atmos.Sci., 26: 1191 (1969)

TURBULENT BURSTS

Mirten T. Landahl

Shear flow turbulence is discussed starting from the mathematical
model
(at +'I..:"—3’5'—)|~,;,r "g—z-u?*vﬂf{u]cy G (v)
Here u, v, W are the fluctuating velocity components of a parallel shear

flow of velocity Ulilj:lamd

AE T B e 3
" o |9 ':“J“*'”#“*ﬂ‘ Er [H‘E—"H* =k ﬂ

(U., = W, L =V, Uz= W)

may be considered a source term due to the fluctuating Reynolds stresses

(see Landahl, J.F.M. 29 441). Except for the term ﬂ[‘ur} the left-hand



side is the Orr-Sommerfeld operator, The model may be described as '"linear
ringing" (the modified Orr-Sommerfeld response) caused by 'non-linear bang-
ing" (the fluctuating Reynolds stress terms). The operator E:(v), is added
to include in some fashion the scattering effect of the background turbu-
lence on the linear response (predominantly damped Orr-Sommerfeld waves,
see J.F.M. 29 441). The most important terms in q_ (i.e. the ones con-
taining the highest derivatives iny) are
.

g = Eﬁ? [E—I{u_vh -E?—E-- (er-ﬂ
These can be expected to be large wherever there is a locally high growth
rate of fluctuations, Such is known to occur in turbulent spots, Itis
therefore of great importance to understand the conditions leading to
bursts.

The observations by Klebanoff et aZ. (J.F.M. (1962), 12: 1) of
bursts in a laminar boundary layer undergoing transition are, so far, the
best ones to use as a basis for discussion as the experimental situation
was very well controlled. These experiments showed that the bursts occurred
very suddenly once a critical value of the amplitude of the primary wave IS
exceeded. The growth rate of the fluctuation amplitude is far too high to
be explained by secondary instability, A different mechanism must therefore
be at work, The explanation proposed is based on a discussion of the rela-
tionship between the wave propagation velocities of the primary and the
secondary waves, When the primary wave amplitude increases, the group ve-
locity of the secondary wave will (probably) decrease. A criticality con-
dftion is reached when the group velocity of the secondary wave becomes
equal to the phase velocity of the primary one somewhere along the primary

wave, At that condition, secondary dfsturbances travelling into the primary
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wave are trapped and nust eventual |y cause conpl ete breakdown of the pri-
mary wave to renove the critical flowregion. An analogy wth choking in
a Laval nozzle, in which decel eration fromsupersonic to subsonic flowis
attenpted, can be drawn. A correlary of the proposed explanation is that
criticality shoul d depend exclusively on the local instantaneous velocity
profile, whichis in excellent accord with the observations. Furthernore,
the criticality condition is calculable on basis of linear stability theory
for a parallel flow

Some consequences of the proposed nodel were di scussed. The Reynol ds
stresses inthe floww |l be produced al nost exclusively by the bursts
whereas the linear randomwaves will contribute very little. Hence a rea-
sonabl e assunption to determ ne approxi nately the operator va}is to assume
that the fluctuatfons in a burst are sinply convected in a "frozen" manner
by the wave. This assunption |eads to )

| — ‘a:i r d_ _‘..-‘I
(0= s (57 s [ -5

wher e 6 is the streamine displacenent by the wave which is connected to

v 35 , U 394

T FY 2

and the bar denotes average.

TURBULENT SHEAR FLOW STRUCTURE

Marten T. Landahl

Sorme nodel probl ens believed rel evant for understandi ng the mechani cs
of turbul ent shear flow are proposed and di scussed. Recent experinental in-
vestigations, prinmarily by Kline's group at Stanford, indicate that the strong

turbul ence production that takes place in the wall layer is associated with
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local inflexional instability of strongly concentrated shear |ayers pro-
duced by local interaction of |ongitudinal vortices and the fluctuations
due to the large eddies, As inflexional instability is predomnantly an
inviscid phenonenon, it is proposed that the non-linear behavior of a
strongly unstabl e i nflexional region can be modelled by a distribution of
concentrated potential vortices interacting with each other in the pre-
sence of arigidwall, The sinple case of a concentrated two-di nensi ona
shear |ayer was set up on a conputer, and the devel opnent of the vortex
layer following aninitial small deformation in form of a bunp studied,
The nunerical results showthat a 'hole'" in the shear |ayer devel ops very
rapidly and that it starts to roll up on each side of the hole very nuch in
the fashion of aroller curtain. Such behavior mght be consistent with
the recent observations by Corino and Brodkey (J.F.M. 37: 1) of turbul ent
br eakdown showi ng the formation of vertical jets on the edge of the low-
speed flow region resulting in violent turbulent mxing with the higher
velocity fluid above.

The "passive" regi on of the turbul ent boundary |ayer is believed to
react in a linear fashion to the perturbations excited by the |ocal break-
downs in the active layer, Dominating statistically will be wave propagation
modes (see Landahl, J.F.M, 22 441). O inportance is to determne the ef-
feet of background turbul ence on the wave propagation. The formulation of

this problemis considered and sone possibl e approxi mations di scussed,
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ODE T O TURBULENCE

by Mirten T. Landahl
(sung to the Marine Hynn)

FROM THE LAM NAR SCLUTI ON

I NTO FIN TE AVPLI TUDE

WE SHALL STRI VE FCR UNDERSTANDI NG
W TH MATHEMATI CS NEAT (R CRUDE

BUT | F THE FLU D BECOMES TURBULENT
W TH EDDI ES AND RANDOM BURSTS

VE SHALL RALLY 'rouND THE PHYSI CS
AND LET GOWPUTCRS DO THEI R WORST,

"WH THER SST - BOOM (R BUST?"

MErten T. Landah

The mai n economi c-engi neering argunent for the supersonic transport
I's explained and aer odynam ¢ consequences for the design denonstrated, The
basic fluid dynamc reasons for the sonic boomare reviewed, and the para-
meters influencing its strength discussed, The physics of the phenonenon
makes the chances of a substantial reduction of boomstrength limted. The
resul ts of sociological investigations showquite clearly that the annoyance
effect, in particularly the startle(illustrated), is so large that it is
highly unlikely that any denocratic government woul d ever allow regul ar super-
sonic flights over inhabited territory, Thus, present proposed designs are
intended to operate supersonically over water, only. Sone of the inplica-

tions of this limtation are di scussed.



CYTHERAN ENERGETICS HOW- DOES VHNUS KEEF HER QGOOL?

Willem V. R. Malkus

Recent work on the atmosphere of Venus is reviewed. The observed
four-day circulation of the visible clouds led Schubert and Whitehead to
suggest that, given a sufficiently small effective Prandtl number, the zonal
flow could be a Halley circulation. In 1686 Halley proposed that a heat
source moving over a layer of fluid would induce an average horizontal flow,
Stern and Davey have constructed quasi-linear theories supporting this pro-
posal, Here, the work of Davey is extended to the non-linear regime by the
construction of an Oseen-type solution, Quite fortuitously, it is found
that the maximum zonal velocity is insensitive to the atmospheric mixing
processes, depending on the one-sixth power of the Prandtl number. The com-
puted velocity for Venus is in keeping with the observations. Other aspects
of the theory relate potential observables, such as the solar-antisolar
temperature contrast and the depth of the high velocity region, to the un-
known magnitudes of the turbulent transport of heat and momentum. The in-
ference from available data is that an effective thermal diffusion coeffi-
cient for Venus is orders of magnitude larger than previously suggested,
Among the unresolved problems which emerge from this study is the thermal-
tidal resonant interaction. Such interaction could produce long term torques

on the planet, perhaps explaining her retrograde rotation.
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THE STRUCTURE AND STABILITY G VORIEX RINGS

Tony Maxworthy

A series of observations on experimentally produced vortex rings was
described. Velocity and vorticity fields were observed using dye and hydro-
gen bubble techniques. 1t was concluded that stable rings are unique enti-
ties which grow in such a way that their vorticity is always contained within
the fluid mass moving with the ring. As the vorticity diffuses out of the
ring into the outer irrotational fluid it causes this fluid to be entrained
into the interior of the bubble. It is possible that an exponentially small
amount of vorticity escapes reentrainment and i s shed into a very small wake
behind the moving fluid mass. It has been found that the velocity of these

1; where t is the time measured from a virtual ori-

stable rings varies as t~
gin of the motion at downstream infinity. A simple entrainment model con-
taining all of these features of the observed flow predicts such a behaviour,
Sufficiently energetic rings become unstable and significant vorticity
IS then shed into a wake. Under some circumstances a new more stable vortex
emerges from this shedding process and continues with less vorticity than

before, Eventually, all motion should cease as the ring circulation decays

to zero under the diffusing action of viscosity.

LES TOURBILLONS DES RUMBURS

Tony Maxworthy

A lecture honouring Prof. Henri Bouasse who came close to correctly
describing the flow field of non-buoyant vortex rings, This presentation
described work extending the previous lecture on ''smoke rings"™. An entrain-

ment model was presented (Fig.1) which correctly predicts the behaviour of



Fluid originally making
up the vortex

Entrained layer

Layer to wake

Fig.1

vortex rings, As vorticity diffuses from the main ring structure it is
picked up by irrotational fluid flowing around the ring; some is entrafned

into the ring the rest is shed as a wake. The amount of fluid being en-

42~ o (&)’

W can show that at high Reynolds number the impulse is closely con-

trained is:

stant even though a small amount of momentum i s shed into the wake; whence

T~Ud'= const. Substitution gives
a? ~r {I‘F’j

and v~ ()%

va.
t

The decrease in ring circulation can be accounted for by the loss
of vorticity to the wake,

The model can be extended to buoyant rings, for which:



- BS -

¥
a~ (VF)*e™
A (_F_)E. t-‘&
b
and the circulation is constant, i.e. as much vorticity is being shed into
a wake as i s being produced by buoyancy forces, F is the total buoyancy
force acting on the ring,
Alternative explanations for this behaviour have been given by
J. S. Turner using similarity arguments. More refined experiments are
needed in order to distinguish between the two models,
The lecture concluded with demonstrations of the major features of
vortex rings, In particular it was shown that two rings of closely equal
initial velocity do nat pass through each other, as commonly believed, but

the slower entrains the faster and they combine,

TOPOGRARHIC EHFECTS ON THE WIND-DRIVEN OCEAN CIRCULATION

Elliott E. Schulman

V¢ consider the linear wind-driven flow of a homogeneous ocean in
which bottom friction is the dominant mechanism of dissipating the wind-
induced vortieity. The bottom topography varies only along latitude lines
and the effects of an oceanic ridge, plateau and continental rise are
studied, Solutions are obtained both for the inviscid case and those in
which the bottom frictional parameter are small,

V¢ find that a mid-oceanic ridge (such as the Mid-Atlantic Ridge)
tends to reduce the Sverdrup transport in the basin and direct the westerly
drift to the south. The diversion is the strongest where the bottom fric-

tional parameter is the smallest. In general, closed streamline patterns



- BT =

can be found over variable topography without diffusing vorticity to the
ocean fleor. As the ocean rises onto a plateau (such as the Blake Plateau)
the circulation is blocked from riding onto the plateau, A western conti-
nental rise (such as the rise from the Blake Plateau to the eastern coast
of North America) strongly reduces the magnitude of the westerly intensi-
fied northward flow at the coast; the maximum transport of the northward

current appears at the foot'of the continental rise.

HEAT TRANSFER I N STEADY TWO-DIMENSIONAL BlgNARD CONVECTION

Richard C. J. Somerville

Consider the following dimensionless Boussinesq system (Chandrasekhar,

1961):
VW =0 (1)
n.f-'-?ww?F-a:r-ETJrﬁ—u-‘F’W:ﬂ (2)
WV T-V'T=0 (3)

Here @ is the Prandtl number, R is the Rayleigh number, 4% is the vertical
unit vector, and I¥ , p, T are scaled velocity, pressure, and temperature
variables respectively. This system may be solved numerically in two space

dimensions (x, z) subject to the boundary condition
V=0, T=(3) on =(F) (4]
and. the periodicity condition
v IV
(l'l',"){x, 2) a("T){x +A,2) ()

where A is a parameter.
To each solution of this system there corresponds a value of the

Nusselt number N:



H{EJa*,l}:—;-ii{Th.w— %‘I‘HI (6)

Physically, Nis a heat transport, which is invariant with depth z, as
may be seen by integrating (3), subject to (1) and (5). In experinents
(e .g., Krishnamurti, 1970), Nand A have been neasured i n approxi matel y

steady rol | convection in the paraneter ranges

g = 0.7(air) and@=>6.8(water, oils) (7]

i 1708 < R = 22, 600, (8)

The upper bound in(8 1is from Busse's (1967) theory, Observed values of
A depend on R ™=, the history of the flow, and several experimental
details; but seemto lie between 2(at R = RC) and val ues slightly in ex-
cess of }knmm , Busse's maxi numpernitted wavel ength for infinite @ :

2 A g Ao (B) (9)

The purpose of this note is to give an accurate explicit formla
for N(R, &~ , A 1, based on numerical sol utions of the above system so
as to facilitate conparisons with experimental and theoretical determn na-

tions of M.

1 for ¢ =0.7
Let dlg) = { >

0 for & = 6.8

Then the Nusselt nunber N(R, @, A 7, as determned by nunerical sol u-

tions of () -(6 in the parameter ranges(7) - (9), is given by
o385+ 0.9% . .
+0.8 %{J{ﬂ‘}na E,—?J[Ir ij&}}} (10)
[ 4

_:E.)
N@Re (%
The fornmula (10) nay be m sl eading outside the parameter ranges(7) - (9).
It is nmeaningless, for exanple, that the exponent —# 0.385 as R — =0 .

Inside the ranges (7) -(99, however, the formula and the nunerical nodel s
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used to solve (1) - (5) are sufficiently accurate so that the error in the

formula (10) is at nost about 2%
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PREFERRED MCDES | N GONVECTI ON

R chard C. J. Somerville

This study is concerned with steady, two-dimensional (roll) convec-
tion in a Boussinesqg fluid |ayer bounded by rigid horizontal plates nain-
tained at different constant tenperatures. This regine of Bémard convection
is experinental |y observed to occur for Rayleigh nunber R and Prandtl num
ber inthe ranges 1708 = R < 20,000 and "= | , in accordance with a
theory of Busse (1967) for d"—# e=. This theory also predicts that rolls
are stable only if their wavelength A lies inside a certain closed regi on
(interior to the neutral. curve of marginal stability theory) in the R A
pl ane, Many experiments (e.g., Krishnamurti, 1970) at finite @ , while dif

fering in detail, confirmthis prediction, but al so show that:
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(a) the wavel ength exceeds its critical value (A >7\C ’
where A.s 2016 = A at R=R_ = 1708) ;
(b  the excess increases wth Rayl ei gh nunber (?—% >0

() this increase becones nore marked as @ is decreased(%{%}é D)-

In the absence of adequate theoretical explanations for these
properties, the author and F. B. Lipps (ESSA) have sought numerical sol u-
tions of the Boussinesq equations, Wen initial-valueproblens are inte-
grated in a domain of horizontal dinensionLl >> ?\C , we find:

(1) Integrations in tw space dinensions do not display these -
properties;

(2 Prelimnaryresults in three space dinensions display at |east
property (8.

These results not only indicate that the wavel ength sel ecti on nmechani smis
intrinsically three-di mensional, but also suggest that it exists within
the standard theoretical framework, and that it is not necessary to i nvoke
effects of sidewalls, inperfectly conducting boundaries, or other experi-
mental "contaminants'". V¢ have al so studied the paranetric dependence of
t wo- di mensi onal sol utions on A (forcing any desired stable val ue of A
by fixing initial conditions and/or L) and find:

(3) Nb obvious extremumprinciple |eads to properties (a,b,c). Max-
imum heat transport, for exanple, violates (3;

(4) Nusselt number N depends sufficiently strongly on A to explain
much of the di screpancy bet ween experinental determnations of N(R) and

many Previous nunerical determinations which assumed A : _.'rhc , thus ignoring

(8 and (b);
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(5) Result (4 and property (c) explain why early nunerical studies

al so failed to find the well-known experinental dependence of Non g .

Ref er ences:

Busse, F. H., J.Math.Phys., 46: 149 (1967)
Krishnamurti, R. J.Fluid Meeh., 42 295 (1970)
Lipps, F. B. and R. C. J. Somerville, tO appear.

Acknow edgenent :

This work was partially supported by the Atomic Energy Conm ssion
under Contract AT(30-1)-1480 with the Ceurant Institute of Mthenatical
Sci ences, New York University,

ESTI MATE G CONVECTI VE TRANSFER

Edward A, Spiegel

The following results are offered for the Nusselt nunber in Bous-
si nesq convection. They have been obtained in collaboration with b. 0.
Gough and J. Toomre.

Let the function 1C§ (x,y) be a convective plan form for a horizontal
wave nunber & ; thus . )

W - (e S -

For a given & the ?ff span the appropriate subspace of allowabl e plan
forms. Let ][,; be the nost general |inear combination of the -fﬁ for
fixed U

Note that for a;# uﬁ,%: © where the bar denotes horizontal average.
Normalize SO that

[ = 4 - @)

Let us wite



= QF =

M(L,H,i,t} = Z;{.‘E{z,.ﬂj w(at)
6ty 2 t) = Tf (ny) @ (e1), L.

where W is vertical velocity component and ® = T - T. Then the Boussinesq

equations become
Hm

5 o
’ Elllt',';;fl ; i%“*& I: rnl'r{%l F'M‘H*a'ﬂlti'mﬁlTingl%J'
=-Ray 8 + By W , (4)

|: him%yi‘h*lﬂ:ﬂlwm%:ﬁwﬂﬁngh ) (5)
W, ® = ? (6)

¢kt
m (O O

Z

where
4 o

a" & e Y a
L i T AL | U o R GRS S TS

and, as usual,

n:r‘:ﬁ—; R = ﬁf&ff. (8]
W have proceeded by retaining only a few terms in the expansion (3)

and solving (49 - (6) numerically, In the case where only one term is re-

tained, a fairly simple set of equations, similar to one reported previously,

is found, These one-mode equations have been solved numerically and for

a variety of initial conditions the solutions tend to a steady state. Ac-

cordingly, the steady equations have been examined in detail. These are
{D jw .H.ﬂ.'@'l‘—[ltrl'i'ﬂ'jfﬁ ﬂ.J‘WJW{D n.}ll'iwj[, (9)
(IJ‘-&_‘*} @=-4AW+C [2 wl®+ @ DW’J . (10}

B+wWE =N, (11)
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where
D= £, 8=-DT,C- (% a.a,, WaW,, @0, (12)
and N is the one-mode Nusselt number, or non-dimensional total heat trans-
fer, These equations have been obtained by Roberts using a method of
Prigogene. |f simple approximations for 7[; are used C can be explicitly
found. For rolls and rectangles, C = 0; for hexagons C = 677,
For R—> @ and a, C, g all 0(1) we find from matched asymptotic
expansions that ] . T
N~ 2 (3) E{ﬁﬁm‘@nﬁu‘—thﬂnﬁn‘]] . (13)
Further study reveals that this approximation holds for large Q. so long
as G does exceed qEZ‘ where the number q~ %. Thus the most heat transport
obtained from one mode varies like R°3(1nR)°2, which is reasonably repre-
sentative of some experiments. The choice of Q =0 {Ti"""}. though it leads to
a fair R-dependence of N, does not seem to be indicated in other respects
by experiments, though the evidence is not convincing, However, at low R,
L seems, if anything, to decrease with increasing R. With r.'L=D{ljlwe have
Nj ~ R"Z(lnR)'2 which does not accord with experiments at large R. It seems
reasonable to expect to remedy this deficiency with further modes, Let us
do this in an approximate way,
We take A= E'lfl_} (for example = L ).
For one mode at large R we have
;= ae(Rdn RYS (14)
where & is given in (13). Introduce successively more modes taking at
each step the mode that will most modify N. The modes that do this will be

those which can break down the thermal boundary layer. Such modes will be

excited both by the fluctuating and mean field interactions of (4) - (69.
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If the viscous boundary layer is thinner than the thermal boundary Payer,
the fluctuating terms will probably excite small scale modes that can do
this effectively when the Reynolds number of the first mode is high enough.
I f the thermal boundary layer is thinner, the mean-field term, /SW s Will
be the crucial one. The latter case occurs at large enough & and |l et us
consider only that. W may then proceed with the help of Malkusian argu-

ments. The second mode sees O_ T like:

—

#1

—sT
Thus it derives its input from layers which in total are :'-r'1 the total

layer thickness. It therefore sees an effective Rayleigh number

ﬁ'-'-F-,F- = 'Er",.ﬂ.-"! . We use (14) and find a heat transport for 2 modes like
' 2 § ®
Ny= N,x [uz {ﬁ#ﬁn'ﬂﬂ)ﬁ] et ERE(¥) {'Enﬂ}%‘ s "), (15)

Likewise a third mode sees R‘,ﬁ 43 so for 3 modes
N _ |-|-.,- , Ei (ied+ I,I'ﬂﬁﬁ}*{“'} '11-“':' (16)

Evidently, for n modes, f2n

1
i '.f[f LT:'.]
Of course, excitation of an infinite number of modes by mean fields will not
be possible. W can only have n modes where for the En+l]th mode
R
Ryge= —ETLR;'E‘:-'HGE (18]
This leads us to

i -
(R R)F = o R nR. (19)



and hence to . F:J" R AT
Ve (3 ~ (os) -

L]

a result which enjoys a certain popularity, It is worth noting that the

fi's seem reasonable as weli. The & of the first mode, call it 4, is ar-
bitrarily taken 0(1), caC say), For the second mode the unit of length was
seen to be O(N™'). Hence for the second mode, &= /V @ = 0(R}(&n R)¥) etc.
For the n'"" mode an=N o, =D_||:E*,'I for large R. These results should not
yet be compared with experiment since (13) holds only for R much larger than
is usually attainable in experiment, For this purpose we must use our numer-
ical solutions of (9) - (11). These details will be presented elsewhere

in extenso if Douglas and Jiri can ever be distracted from their more press-

ing responsibilities,

THERVICDYNAMICS AND  GCBVIALGGY

Edward A. Spiegel

In cosmology one considers in the simplest models a perfect fluid
i n homogeneous, isotropic expansion, The state of the system is then char-
acterized by a single scalar function of the cosmic time, t, Thus, if at
t = t, two infinitesimal elements of the cosmic fluid are a distance r,

apart, at a later time their separation is

where R(t) is the scale factor of the universe. The evolution of Ris a
dynamical problem of cosmology and evidently this depends on your theory of
gravity, Even the interpretation of R depends on the theory. Here |I have

given a Newtonian interpretation but R appears also in relativistic cosmology



with a different interpretation, For the purposes of this discussion we
shall just assume that R is a given function, Evidently with the interpre-
tation given here, the cosmic density varies like
ol
plt)= %’—(&—}f{tﬂr

A question of some interest is, Wha can be said of the thermodyna-
mics of this cosmic fluid? Of course, this can be discussed as realisti-
cally as you wish but with no guarantee of success. Here | want to mention
some problems that arise in one of the most idealized models, namely, that
of a gas of structureless particles which collide elastically. The problems
that arise even in this case have been discussed by only a few authors and
Engelbert Schiiking and | have been puzzling over them for a while (Comments

on Astrophysics and Space Physics, 11: 121 (1970)). Some people do not

agree that these problems are to be worried about, but here they are,

For a (special) relativistic gas which is not expanding, one can use

the usual equilibrium distribution A -8E

-1
where ﬁE(ﬁTj and E is the energy of a particle. The relativity enters in

the formula

2
m*+ p
where the units are chosen so that ¢ = 1 and where m is the rest mass of a

particle and p. is its momentum. In that case the normalization becomes

A N
Snm R TK, (m/RT)
where N is the particle density and k’_ IS a special Hankel function. In
the limit p*e m2 we find —,d#,ém

f= Eﬁf‘ie ,



which is the classical expression. In the opposite Iimit we have

7 -& gl
f- fﬂln:ﬂ’ = .

This would be the correct distribution for photons were it not for E-B

statistics,

Nw we turn to the expanding case with R{t) specified. 1In a
Minkowski space expanding like R(t) we let 1‘2, be the momentum relative to
the expanding coordinates. If you want to visualize the situation kin-
ematically picture two sets of observers, One set remains fixed with respect
to each other; the members of the other set move apart from each other with
their mutual distances increasing like R(t). Let ‘Iﬂ be the momentum of a
free particle moving relative to the expanding set of observers. It can be
shown that for such a particle|g|R is conserved.

In cosmology this result is used as follows: For the classical gas
equilibrium is maintained if/3£-i|.Fb|/{]- i s invariant. Eince|;el '"'ﬁ-l we
have Te¢ .~ which describes the adiabatic cooling. V/T% then is also con-
stant since MNVec ﬁd . Likewise for an ultrarelativistic gas to haveﬁ|p|
invariant we need Tﬂﬁ_' and this ensures N,:"'T-'i is invariant. Thus in cos-
mology a classical gas is said to cool with Tx’ﬁ‘z while a photon gas
with THR'I- This is a primitive description, but it can be made precise
with the use of the relativistic Boltzmann equation,

Wha of the relativistic gas? There seems to be no choice of T(R)
which makes/jF invariant. Hence - and there are more rigorous arguments -
it has been concluded that an expanding relativistic gas has no equilibrium
in the quasistatic sense described here, It follows that the expanding rela-
tivistic gas is dissipative. The assumption of a perfect fluid for the cos-

mological problem would then be unjustified, though it is probably a good



- 98 -

approximation most of the time, Macroscopically the dissipation must re-
sult from bulk viscosity since the fluid is homogeneous and shear viscosity
and conduction do not occur. You can think of an origin of this bulk vis-
cosity like that for a classical fluid. The usual reason for bulk viscosity
is that different degrees of freedom of the particles adjust to changes on
different time scales. |f the classical and ultrarelativistic particles
can be visualized in this way the bulk viscosity seems more plausible,

Still we may wonder whether the buik viscosity is really an artifact
of the Boltzmann equation for the relativistic case, Suppose we widen the
Boltzmann notions a bit, There, the distribution depends only on the mo-
menta. But there is another property of the particles that differs from
particle to particle. This is the proper time.

As an example consider a relativistic gas in a box, At t = 0 give
each particle a clock reading 0. Clearly at any later time t the clock
readings will not all be the same since the particles move differently, In-
deed, you can ask what the distribution of clock readings is at any time, t
For an ergedic gas, as t— oo the dispersion of clock readings tends to
zero since all particles have the same average history in some sense.

Since the ages or proper times differ for different particles we may
ask what happens i f we include this parameter as a statistical variable,
This complicates things a bit but one simple fact emerges,

Consider the model

R(t)s Ro(l +t)
where Ro and < are constants. Let T be the age of a particle reckoned

from 0 at t = 0. Then for a free particle in this space
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I= 5 I of
Hﬂ
is conserved, Note also that if two particles collide and if the collisdion
|asts no time then the sum of their I's 1is conserved since the sum sf the

E's is conserved and the T's dc not change.

Thus 'é: il e-rﬁ I

IS the solution of the appropriate "Boltzmann equation', though the details
are messy, Note that in the non-expanding ease | = E and the usual equili-
brium is recovered. Thus there does seem to be a sort sf equilibrium for

a relativistic expanding gas, but we are nor sure we understand 1t at all,

One curious point is that in a vague sense this kind of thing is

not without precedent, In visccelasticity it iS known that an alternate
way to discuss dissipative effects is through history terms. History terms
also play a role in two component fluids such as dusty gases, Can there be

a significance to these vague similarities?

GENERALIZATIONS G- THE ROTATING FLAME ERECT
WITH APPLICATION TO TORNADG GENESS

Melvin E. Stern

Heat sources and sinks propagate in an azimuthal direction with fre-
quency (w ) relative to a basic fluid state of vertical thickness (h),
static stability (s) and rotation rate (£/2). If {.p*—w‘jl[uf-gs}"} ]
the forced azimuthal perturbations pump kinetic energy and angular momentum
(w -directed) radially outwards, Thus the Reynolds stress, computed from
linear theory, leads to a mean relative spin ¢f the air in the vicinity sf
the heat sources and this is in the opposite sense tc the relative motion of

the sources. |In this generalization of the "rotating flame effect'' viscosity



is neglected, It is suggested that such a horiacntal vortex can be ampli-
fied as the air "passes" through a vertically convecting cumulonimbus cloud,
The kinetic energy and heat generated by the mother cloud is pumped ineo

the far-field by the azimuthal perturbations of the vortex, and angular momen-
tum i s thereby separated, |t is suggested that the angular momentum accumu-
lating within the radius of the mother cloud is dissipated by the smaller

scale tornado funnel.

AHASE BEHAVIOR CF LIGHT GAS MIXTURES AT HIGH PRESSURES

William B. Streett

If solid surfaces exist beneath the visible clouds of the major
planets, they may be expected to exist at depths and pressures at which the
component gas mixtures solidify under their om weight. An understanding
of the solid-fluid phase behavior in mixtures of light gases at high pressures
is therefore essential to the solution of the problem of deep atmosphere
structures in these bodies, For Jupiter and Saeurn, the mixture of primary
interest is hydrogen-helium, Although experimental results for this system
are limited to low pressures, several possible extrapolations of the phase
diagram are suggested by the results of high pressure experiments on other
helium binary systems, The suggested phase diagrams have been used to dev-
elop a structural model for a hydrogen-helium atmosphere, In this model,
gravitational separation of coexisting phases results in a layered structure,
and it is shown that masses of hydrogen-rich solid can exist in dynamic and
thermodynamic equilibrium with a fiuid layer of equal density but higher
helium content, This picture may be relevant to the floating raft concept

of Jupiter's Great Red Spot,
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MOTION CF JUPITER'S RED SOT
OCEANCGRARHY OF JUPITER)

George Veronis

A thermodynamic justification can be made for the hypothesis that a
layer of hydrogen-rich solid can form at a level of a few thousand kn below
the visible surface of Jupiter and that the solid is gravitationally stable
(in the dynamic sense) at the level of formation, I|f a topographic or other
such feature of the solid surface of Jupiter causes an accumulation of this
material into a massive object and i f the motion of this stable Cartesian
diver is analyzed, the observed motion of the Red Spot can be rationalized
in terms of the model, Vertical oscillations of the Cartesian diver are ac-
companied by longitudinal changes of position because of the associated
changes in the angular momentum of the object. Speculation about the fluid
motions caused by the motion of the diver leads to predicted changes in the

size and location of the Red Spot which agree with observed changes.

THE MICRO-OCEANOGRARHY CF BERMUDA

Carl Wunsch

An attempt to measure internal waves in the main thermocline at Ber-
muda (Wunsch and Dahlen, 1970) leads us to some peculiar physical processes
that appear to go on around this mid-ocean island, The island has been ex-
plored in 3 cruises (ATLANTIS II, Cruise 47 in October 1968, GCAONOD Cruise
144 in July 1969, and GONOR Cruise 147 in July 1970), using an STD, cur-
rent meters on buoys, and parachute drogues,

The internal wave measurements indicated no detectable coherence

between temperature sensors 1 kn apart for periods shorter than about 8-10
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hours, a disconcerting feature when one calculates theoretical wavelengths
exceeding 1 kn for internal waves of periods longer than 30 min. The data
show no inertial peak, no diurnal peak, a strong semi-diurnal tide with
random phase and large amplitude (about 20 m displacement of isotherms in
a small frequency band around 12.42 hours) and an unexplained strong peak
at about 18-20 hours period.

The hydrographic surveys of the island revealed that the tempera-
ture and salinity microstructure is a strong inverse function of distance
from the island, apparently accounting for the low internal wave coherence.
It was also found that the large scale current field around Bermuda is
very strong, with high shear and very time-dependent. |In the first two
cruises it was noted that the mixing region (defined as the area of maximum
microstructure) was strongest on the northern side of Bermuda On the
second cruise, the current field (basically from the west) was also much
more intense there. The buoy data was also quite perplexing as two current
meters placed a mile apart at the same depth show notably different mean
displacements. Thus, the whole island area appears to be exceedingly com-
plex and variable.

Some progress toward understanding the problem of an island can be
obtained by two hypotheses. W can postulate an internal wave field propa-
gating into the island and breaking (Cacchione, 1970) so as to generate a
microstructure. The corresponding change in the mass field generates a
geostrophic current penetrating into the interior, a distance given by the
baroclinic Rossby radius of deformation. A mechanism like this was used by
Wunsch, 1970, to explain the large scale ocean mixing. The Reynolds stress

effects of the incoming internal waves can then also generate apparent mean
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Eulerian velocities leading to Barge differences between current meters not
very Ea apart; (Wunsch; 1971), The intensification of the microstructure
and currents on the north is then accounted for by postulating a stronger
internal wave field from the worth, a rather unattractive ad hoe hypothesis,
However, estimates of the energy flux inte the island based on the tempera-
ture measurements give reasonable agreement with the change in potential
energy in the current near the island, and the estimated time a given water
parcel is in the vicinity of the island,

A perhaps more attractive, if less analytically tractable problem,
IS to hypothesize that the current shear flow past the island becomes un-
stable, The density gradients are then such that the mixing that occurs
through the instability tends to intensify the (geostrophic) current when
the island is to the right, and weakens it when the island is to the left.
Thus, a current from the west would be strongest on the north side, and
weakest on the south side, with the reverse being true for a flow from the
east. The hypothesis is consistent with the flow features in July, 1970,
and 1969,

The 18#20 hour spectral peak is dif ficult to explain, An analysis
of an infinite cone in a rotating stratified ocean showed no non-singular
trapped modes for periods between the inertial and Brunt, with many modes
above and below this range, The inertial period at Bermuda is 22.3 hours,
Analysis of the tide gauge records at Bermuda shows no sign of the inertial
resonsnce predicted by Longuet-Higgins, and the drogue data show no discern-

ible circulation around the island in the presence of the mean flow,
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MODEL QONSTRUCTI ON

Robert H. Kraichnan

A nunber of statistical approxinations proposed for turbul ence in
recent years can be characterised by generalized Langevin-type equations
for a nodel velocity field, These nodel equations have in common that
the actual nonlinear terns of the Navier-Stokes equation are repl aced by
a dynam eal danping term(generalized eddy viscosity), and a random
forcing term, acting on each Fourier node (oxr other appropriate node) of
the system The danping and forcing terms are determined wholly by en-
senbl e averages of the turbulent velocity field and thus are insensitive
to the fluctuations in any one realization, As aresult, the nodel am
plitude equation, in contrast to the Navier-Stokes equation, is effectively
linear in stochastic quantities, Thereby it |eads to closed statistical
equations whi ch determne first and second order nonents,

A nodel representationof the direct-interaction approximationis
obtained by a particular choi ce sf randomforcing and danping terns, such
that the Batter describes a danping with memory, 1In the case of isctropic
turbul ence, this nodel is nost sinply stated as follows, The Fourier-
space form of the Navier-Stokes equationis

@t « v (k,e) = - 3P 00 Lo ws(patdu(q,t), (1)

+3='_]-';‘
wher e
Pim® = Py G0 kiR, Payll) = 855 - kyky/k2,

The direct-interacti onmodel equation is

% -
2 = ;
(afat + vk ].ui[;_;,t} +.$ -|--._|ﬂ:,1:,sj|uJL (k,s)ds = -lFij:ﬂlE‘J sawl

o P,

B, (2. t) §; (g, t),
(2
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where the danpi ng-wi th-nenory function is
nik,t,s) = kﬂﬁbkpqﬂtp,t,i}”[q.t.silpqdpdq- (3)

In these equations, E and &' are randomsol enoi dal vector fields statisei-
tall'y independent of each other and of the initial velocity field u(k, t=0),

but constrained by the requirenent
Gika0E] Gty = GionE] Gy = (uytoou een) @)

Gand U are respectively the response and covariance scal ars of u, (k,t),
55& denotes integration over all p,q which form a triangle with k, and
kaq = (p/k) (xy + 29, where x,y,z are the cosines of the internal angles
opposi te k,p,q respectively.

G ven the requirenent (49 on the randomforcing term(the right-hand
side of (2)), the formof (k,t,s) is uniquely determned to be (3) (apart

froma slight ambiguity in the value of b,_ ) by the requirenent that the

k
ensenbl e-averaged energy input fromthe raggom forcing bal ance the drain
fromthe danpi ng when sunmed over all k, thus preserving the conservation
property of the Navier-Stokes equation. Equations(-(4 easily yield the
closed direct-interactionequations for Gand U.

Sinpl er nodel anplitude equations, in which the danping term has no
menory, are obtained by nmaking the randomforcing termhave the same general
formas in(2 but, incontrast to (4), requiring it to be a white noise in
tinme and, again, fixing the danping termby requiring energy conservation.
A particular model of this kind yields Edwards' turbul ence theory and ex-

tends the latter to non-steady-state turbulence. In contrast to the direct-

Interaction model, these white-noise nodels do not give a qualitatively
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faithful representation of the full space-tine covariance of the u field,
However, they enbody more flexibility and can be constructed to yield the
Ksl nogorov inertial range spectrum which the direct-interaction node
does not,

The general i zed Langevin-type nodel s promse to be useful in three
ways, First, they can serve directly as approxi nations for | ow order
statistical properties of turbulence, Here the fact that a model anplitude
equation underlies the eventual statistical equations insures inportant
consi stency properties (under suitable precautions), Second, they can serve
as the zeroth approximation in a systenmatic expansi on schene for the exact
statistical dynamcs, for exanple by introducing a paraneter whose val ue
measures the proportions of a mxture of the true right-hand side (1) and
the nodel right-hand side (2). Here the fact that a medel anplitude equa-
tion exi sts nmakes the anal yticity properties of an expansion in the paraneter
accessible, Third, the nodel s can be used to give representations of sub-
grid motions in turbul ence simlations, with the advantage, over sinple

eddy-vi scosi ty devi ces, that energy conservation is maintained,
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STOCHASTI C MDELS
Cecil E. Leith

An inportant class of turbul ence approxi mations i s based on the con-
struction of stochastic nodel s, V¢ examne such nodel s for a quadratically

non-1inear systemof N variables evol ving according to

[ f - i
b (t) -%ﬂﬁﬂruﬁ{r]ur[g (1)
wth constraints on the non-linear interaction coefficients ﬂqﬁrto pro-

vide conservation laws. The single-time Statistical properties of ensenbles
of solutions of Eqg.(l) is conpletely determned by a Liouville equation.

for the ensenbl e probability distribution P{Li.,t:l defined in the phase space
of the system nanely,

3 Plut)

BP)2 - Attty 2L @

In practice for large N we cannot solve this linear differential equation
and nust seek approxi mati ons,
A stochastic nodel for the non-linear system (1) is a system evol ving

according to the random|inear equation

I:Lm(ta]:_fru(t)é)wxEE]'iE +1Co¢<t> (3)
0
where ¥, I:t;sjl is a non-randomeddy visco-elasticity and ‘Fx (t) aran

dom Gaussi an eddy forcing termwith nomrents §  (+)) = 0 and{fq{[t}{“{s;}'-ﬂ['ﬂ;q}
specified. The functions ¥, (t, s),, E,,Iif.ﬁ:l are chosen to sinul ate as wel |
as possi bl e the non-1inear coupling between nodes,

The direct-interaction approxi mation uses the choice

Fe(tg=2g, Aoy Uplts) Uy (53) (4)

|: hlgﬁﬂflﬂ_ m._‘?‘. t,;-} LV [tr}+ﬂwﬁq.rf‘f=]uﬂ Ct:}] (5)
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wher e g,:'[t]s:l is the Qeen's function for Eq.(3) and Ug{*,-‘ﬁ{“-,d':*.:"-h{i}}-
The eddy-danped Markovi an approximation i S based on the even cruder
stochastic model in which the random forcing is white and the eddy visco-

el asticity becomes an eddy viscosity, The nmodel equation becones

&x(t) =-7 Yo (t>u'u-:it)+'FutCt) (6]

with
Ralt)=4 2, D, (DA o Us(t) Uy Lt) (7)
&)= 5 DAy [y Yy ()% A Up (3] (8)

wher e _D#‘,(t) Is an eddy-danping tine for triple nonents. Here F,-_Cf)
measures the strength of the white forcing, (4 (t)f. () =F(t)d(t-s).
The Markovi an stochastic nodel Eq.(6) induces the random Liouville
equation
Gplut)=5 a{[-u; (), + £ ¢)] F[&t}} [ 9)
but since f_(t)is white the average (@(yt)) over the _)ﬂx (t) ensenbl e

satisfies the Fokker-Pl anck equation

sr-(Ple¥)T o [ 1 Pt 5o ] <) } o)
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NUMER CAL SI MULATI ON GF | NCOWPRESS BLE TURBULENCE
Steven A, Oszag

The nunerical simlation of turbul ence usually involves simulation
of conplicated flows in sinple geonetries wth sinple boundary conditions,
Inthis case, it is found that Gal erkin approxi mation procedures have sone
i nport ant advant ages over finite-difference approxinations, Two cases of
I nportance are examined: flows in rectangul ar geonetries using Fourier ex-
pansi ons, and flows in spherical geonetries using surface harmoni c expan-
sions, Transform tricks are described that make the nunber of numerical
operations involved in eval uation of the Galerkin approxi mati ons conpeti -
tive with those involved ih finite-difference approxi mations (cf. O szag,
Phys.Fluids Suppl. 12: 250 (1969) for the rectangul ar case; Orszag, J.Atmos.
Sci., Sept.1970 for the spherical ease),

The principal advantage of the Gal erkin approxi mations over finite-
difference approxi mations is the absence of spatial -difference phase-speed
errors and aliasing errors, It is shown that to attain the sane accuracy
with (high-order accurate) finite-difference nethods as with the Galerkin
nethod requires that about 3" tines as many degrees of freedom(where nis
the number of space dinensions] be retained in the finite-difference sinula-
tions as in the Gal erkin sinulation, Roughly, the argunent is that finite
di fference simulations of a wave with wavenumber K on a uniformgrid spaced
by &% requires K& ~1in order that phase speed errors not be large.
In other words, there should be at 1east 6 grid points per wavel ength, while
a Fourier representation requires only two degrees of freedom(the real and

Imagi nary parts of the conplex wave) to represent the same wave w t hout
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error, Several less trivial exanples were cited to substantiate the claim
of increased accuracy of the Galerkin approximations. Renarkably, the

Gal erki n approximations even do a better job of describing the evol ution
of localized flow structures than do finite-difference approximations,
despite the fact that each of the Gal erkin basis functions is non-local in
physi cal space,

In three space dinmensions, the Gal erkin nethods require about 10-30
times fewer degrees of freedomto describe accurately the evol ution sf a
given complicated flow.

Finally, the limtations of numerical simulation are di scussed, An
'honest' sinulation requires that all scales through the dissipation scale
be described accurately. It is shown that this requires that the nunber of
arithnetic operaticens involved in nunerical sinulationof aflowwth Rey-
nol ds nunber RE( 7 = Taylor mcroscal e) scales as Ft"-;‘l 0g R}_ , implying
that numerical sinulation of high Reynol ds nunber flows is not likely to be
feasible on digital conputers in the near future, It is suggested that
'honest' numerical simulations are useful for (a) testing theories of turbu-
| ence at | ow and noderat e Reynol ds nunbers, (b) investigating properties of
noder at e Reynol ds number flows which are then applied by assum ng[hoping) for
Reynol ds number i ndependence in extrapol ating te hi gh R)\ , and (c) visualizing
features of turbulence as in a laboratory experinent, with the advantage t hat
the nunerical experinents may be see up for nore idealized flow situations
than laboratory fluids permit and the results may be anal yzed nore fully be-

cause nurrerical simulations provide conplete detailed flow fields,
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UPPER BOUNDS

Wiliem V. R. Malkus - Louis ¥. Howard

Various studies seeking upper bounds on heat transport by turbul ent
fer non-turbul ent) convection are reviewed, with prinary enphasis on the
recent thesis of 5.-K. Chan(Mssachusetts Institute sf Technol ogy, Jan-
uary, 1970). The Patter treats the case sf infinite Prandti nunber, and
uses the full momentum equation as well as the continuity equation and
the entropy fiux integral as constraints in the bounding variational prob-
lem Results are obtained by boundary |ayer nethods anal ogous to those
used by Busse in the case of the power integral constraint. Wth a single
hori zontal wave nunber the asynptotic bound is proportional to R3/10 (log

lefs. and the overall bound is ﬁ.152R1f3. The optinal fields al so bear
a striking resenbl ance to observed profiles of mean tenperature and r.m.s.

tenperature fluctuations,
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CONVECTION AT ZERO FRANDIL NUMBER

Jackson Herring

At low Prandtl number, @ , a hot blob of fluid loses its tempera-
ture excess rapidly to the ambient fluid by conduction, Consequently,
convection i s not an efficient mode of heat transport even though the
temperature stratification is so unstable as to cause vigorous motion.

In the limit cc—> O , it seems likely that rapid conductive losses will
entirely prevent motions from distorting the temperature profile, The
gross energetics of statistically steady flow is then a balance of energy
input at low wave number and viscous dissipation at large wave number,

The non-linear advection term breaks up the large scale modes, and cop-
servatively transfers their energy to small scales where viscous dissipa-
tfon takes effect, Equations appropriate to this regime have been derived
by Ledoux, Schwarzschild, and Spiegel (1961), who expand the velocity-

temperature field in a power series of 0~ . Suitably non-dimensionalized,

they are, 3 . o ’
(5 -V)7=-vp-(FNB-k Rz w,
V.= 0, (1)
and W":T':'ﬁ'

Here, 0~ is the Prandtl number, R the Raylefgh number, ? the verti-
cal unit vector, and ( l,’f} is the inverse operator to ?" for free
boundaries.

V¢ have begun a numerical investigation of this regime of thermal
convection, and report here on some preliminary results for the free bound-
ary initial value problem, both for the amplitude problem and the statisti-

cal moment problem. The particular statistical approximations considered



are the direct interaction approximation [Kraichnan, 1964), the self-con-
sistent field approximation (Herring, 1966), and one of the Markovian type
approximations considered earlier this week by Dr. Kraichnan, In the
present calculations R ranged from RC’:“' 657 to R = 104. In the numerical
simulations up to 5 vertical wave numbers and 24 horizental wave number
vectors were used to represent the velocity field. The horizontal wave
vectors were chosen by the rule, Bl sut, + 4 m n*u[':“-"ﬂ =% (0.4 'J:-";

oh, 2 9-'%', with any |5?| greater than a cut-off value «,, discarded. In

most calculations «,, < 3«_, although for two dimensional flows &, = 704,

5
was used. Initial values for the Fourier components of F , '?-"_,‘J;:* , were
picked either by a Gaussian random number generator, or assigned values
which represented the regular plan forms, squares and rolls.

In the statistical theories, only two vertical wave numbers and
three horizontal wave number bands were used to represent the velocity co-
variance, Horizontal homogeneity and isotropy were assumed, These results
are to be compared to the randomly excited amplitude experiments in the
limit of large numbers of s,

Results for the randomly excited amplitude experiment suggest a
runaway behavior for the system. Thus the total kinetic energy, after an
initial decrease, eventually increases without apparent bound, W were
able to follow the energy amplification by about three orders of magnitude
with good accuracy. A similar runaway behavior was also found for rolls,
The square plan-form, on the other hand, stabilized at a finite value of

energy: however, these static solutions are noct stable with respect to the

runaway type if they are perturbed by a three dimensional disturbance,
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The D.I. approximation also has a runaway behavior, Both the tetal
kinetic energy and the Green's function which had a positive growth rate
eventually grew indefinitely, For the two other seatistical theories con-
sidered, the 5.C.F. and the Markovianized model the behavior was different;
the energy tended to stabilize at a finite value, although the linearly un-
stable Green's function remained finite at large times,

It then appears that the D.I. approximation faithfully reproduces
the qualitative behavior of this free boundary truncated system, whereas
the other methods do not, W have observed a similar behavior for iso-
tropic turbulence in which a region of (small) wave numbers destabilized
by negative viscosities,

With regard to the runaway character of these free boundaries sol-
utions, it should be observed that Eq. (1) does not prohibit such behavior,
This mey be seen by examining its energy equation:

E2 () == ((9T))+R¢w 5 ) (2)
Here, the angular brackets indicate a total volume integration, If v
becomes large there is no obvious way in which one can show E< 0. This
contrasts with the finite § convection equations in which the last term
in (2) is replaced by R{u.r 6> , Where 8 is the temperature field.
One may show from the equation of motion for & that it is bounded by its
initial distribution. Hence as]?] becomes large, (u..rr:-]}n.h.n'{_uri_} , and
'E < 0 at least in a large region of v- phase space,

The detailed dynamical reason for the runaway character may be due
to the fact that for free boundaries the " linear harmonics' non-linear

. . d 2 . :
terms 1 e , terms that couple anf-:" to Lrlil-""-..:l: ) make no contribution
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to the equation of norfon for ’J‘MJ; . This has the consequence that an

exponential ly growing rell is an exact solution to Bq.(1}:

ﬁftchelf{f{&mgx m‘tr1+ﬁnimn_xﬁimﬂ‘z_}

— 1 [ " 2
'E*(P+e“l:1f£mm*m+-&¢m1ﬁﬂtﬂ, %E“ﬂ_, (3)
s — (T ot ~Rar .
A== (T"+a)+ (i=r a2y

The face that the roll solutions runaway may be understoad in terns of
the dynamical stability sf (3). These roll type solutions are not, how
ever, stable with respect to the class of three dinensional notions, but
t hese three di mensional sol utions al so runaway,

Finally we note thar qualitatively different results may be ob-
tained for rigid boundaries, For this ease, the exponentially grow ng roll
is not asolution to Eq.(1) and the |inear harmoni es manifest thenselves
innon-linear terns in rhe _‘l_}m-;z,-equationo Thus it may be possibl e that
(1) is sensible for rigid boundaries but not for free boundaries.

These nunerical results and conclusions based on themnust be con-
sidered prelimnary until calculations USing a much larger set of wave
nunber points confirmor negate them: W plan to inprove this aspect of
the calculation soon,
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FINI TE AMPLI TUDE EXPANSI ONS
Bernard J. Mat kowsky

W treat a nunmber of stability problens governed by non-linear equa-
tions by a new nethod proposed by the author (1, 2, 3. The nethod, which
is formal, yields the conpl ete dynam cal description of the system and is
believed to be the first to treat arbitrary initial perturbations, As an

example We consider the initial-boundary val ue probl em

-u, +u = Af(u) Dexe T, t>0 (1)
u(0,t) = u(yf,t) =0 (2]
ufx,0) = hix) (3)

which is a mathenatical nodel for the tenperature distributionin a bar
with a non-linear heat source(sink) of magnitude -Af( . W study the
stability of the equilibriumsolutionu= 0, and obtain a conpl ete des-
cription of the dynamcal behavior of the systemuniformy for x in (0,1)
and t =0, valid in a nei ghborhood of u =0 and A near a critical val ue

)\:'

of instability. It is in additionthe first bifurcation point of the asso

Her e *1-: is the value of A , which when exceeded, yields the onset

ciated non-linear eigenval ue probl em
Voo = AE(V) 0<x T (4]
v(0) = v(m) =0 (5)

‘whose sol utions are stationary (tinme independent) solutions of (1) - (2),
As a consequence of obtaining the conpl ete dynam cal description, we are
able to trace the evolutionin time of arbitrary initial perturbations until

they sithér decay or growinto(new stationary solutions of (1) - (2).



The stationary states for this probl emwere described asynptotically by
Miilman and Keller (4). W therefore see how these stationary states are
generated frominitial perturbations, Another problemtouched upon is
the Bénard problem The asynptotic analysis for the stationary probl em
was treated by Mal kus and Veronis (5). W discuss the time evolution to
these states as well, In addition the stability or instability of the
new equi libriumsol utions is determned, w thout the necessity of per-
forming an additional perturbation analysis,
As a final exanple, we discuss the nsn-l1inear stability problem
for the buckling of a compressed el astic col um (9. This exanpl e illus-
trates the inportance of treating arbitrary initial data, since the re-
sulting notion of the column depends very strongly on the character of the
initial data. The essential feature of the theory is a scaling of the
time variable, Then, using a two-tine nethod, we systematical |y derive
the asynptotic expansion sf the solutionin power of a small paraneter E ,
which is alternatively a neasure sf a norm of U or the nearness of ‘A to
“"'h; _ The nethod seens to enjoy certain conputational advantages over
existing nethods (6, 7, 8 and these are conpared and contrasted,
Ref er ences
1, Matkowsky, B. J., Asynptotic Solution of a Nonlinear Stability Problem
in Studies in Applied Math, 5. A collection Of papers presented at the
conference on Qualitative Theory of Nonlinear Differential and Integral

Equations hel d at Madi son, Wsconsin in August 1968, Ed, by J.A.Nohel,
S.I.A.M., Philadel phia, 1969,

2. Matkowsky, B, J., Nonlinear Dynamc Stability: A Formal Theory, S.I.A.M.
J. Appl.Math, 18(4): 872-883. 1970,

3, Matkowsky, B, J., ASnple Nonlinear Dynamc Stability Problem Bull,
AM.S., 16_(3): 620-625. 1970,




- 121 -

Millman, M. H., and J. B. Keller, Perturbation Theory of Nonlinear
Boundary Val ue Problens, J. Math.Phys. 10. 342-361. 1969.

J. Huid Mech., 4: 225-260, 1958,

Stuart, J. T,, On the Nonlinear Mechani cs of Wave D st urbances in
Stabl e and Unstable Parallel Flows.I, J.Fluid Mech., 9. 353-370, 1960,

Watson, J., On the Nonlinear Mechani cs of Wave Di sturbances in Stabl e
and Unstabl e Parallel Flows.II, J.Fluid Mech.,9: 371-389. 1960,

Eckhaus, W., Studies in Nonlinear Stability Theory, Springer, Berlin.
1965,

Reiss, E. L. and B. J. Matkowsky, Nonlinear Dynam c Buckling of a Com
pressed Elastic Col unm, to appear 1n Quart, Appl.Math.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 800
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


