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Abstract: 19 

Recent studies have suggested that rivers may present an isotopically light Fe 20 

source to the oceans. Since the input of dissolved iron from river water is generally 21 

controlled by flocculation processes that occur during estuarine mixing, it is important to 22 

investigate potential fractionation of Fe-isotopes during this process. In this study, we 23 

investigate the influence of the flocculation of Fe-rich colloids on the iron isotope 24 

composition of pristine estuarine waters and suspended particles. The samples were 25 

collected along a salinity gradient from the fresh water to the ocean in the North River 26 

estuary (MA, USA). Estuarine samples were filtered at 0.22 µm and the iron isotope 27 

composition of the two fractions (dissolved and particles) were analyzed using high-28 

resolution MC-ICP-MS after chemical purification. Dissolved iron results show positive 29 

δ56Fe values (with an average of 0.43 ± 0.04 ‰) relative to the IRMM-14 standard and do 30 

not display any relationships with salinity or with percentage of colloid flocculation. The 31 

iron isotopic composition of the particles suspended in fresh water is characterized by 32 

more negative δ56Fe values than for dissolved Fe and correlate with the percentage of Fe 33 

flocculation. Particulate δ56Fe values vary from -0.09‰ at no flocculation to ~ 0.1‰ at 34 

the flocculation maximum, which reflect mixing effects between river-borne particles, 35 

lithogenic particles derived from coastal seawaters and newly precipitated colloids. Since 36 

the process of flocculation produces minimal Fe-isotope fractionation in the dissolved Fe 37 

pool, we suggest that the pristine iron isotope composition of fresh water is preserved 38 

during estuarine mixing and that the value of the global riverine source into the ocean can 39 

be identified from the fresh water values. However, this study also suggests that δ56Fe 40 

composition of rivers can also be characterized by more positive δ56Fe values (up to 0.3 41 

per mil) relative to the crust than previously reported. In order to improve our current 42 

understanding of the oceanic iron isotope cycling, further work is now required to 43 

determine the processes controlling the fractionation of Fe isotopes during continental 44 

run-off.  45 

 46 
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 51 

1. Introduction 52 

 53 

Although iron (Fe) is the 4th most abundant element in the Earth’s crust (Taylor et al., 54 

1983; Wedepohl, 1995), its concentration decreases to trace levels (< 1 nM) in the ocean 55 

(Wu et al., 2001; Boyle et al., 2005; Johnson et al., 1997). Because Fe acts as an essential 56 

micronutrient in biological processes (e.g. phytoplankton growth), iron concentration in 57 

the ocean is considered to be a limiting factor for primary productivity in large regions of 58 

the open ocean (Martin, 1990; Lefevre and Watson, 1999; Archer and Johnson, 2000; 59 

Boyd et al., 2000; Christian et al., 2002; Moore et al., 2002; Moore et al., 2004). The main 60 

sources of dissolved Fe into the ocean are wet and dry deposition from the atmosphere, 61 

input from rivers, re-suspended sediment, pore water from continental shelves and 62 

hydrothermal vents (e.g. Wells et al., 1995; Elderfield and Schultz, 1996; Johnson et al., 63 

1999; Elrod et al., 2004; Jickells et al., 2005; Bennett et al., 2008).  64 

Iron isotopes exhibit natural δ56Fe variations of ~5‰ (Anbar, 2003; Beard and 65 

Johnson, 2004; Dauphas and Rouxel, 2006; Johnson and Beard, 2006) and provide 66 

potential new approaches to constrain the relative contribution of Fe sources in the 67 

oceans, and to improve our understanding of how Fe is mobilized from source regions 68 

(i.e. rivers, sediments) and transported into the ocean. In practice, the Fe isotopic 69 

composition of the various sources to the oceans is not well documented but recent 70 

studies have suggested that major sources of iron provide significant inputs of low- δ56Fe 71 

iron to the oceans. In fact, continental run-off (Fantle and De Paolo, 2004; Bergquist and 72 

Boyle, 2006), hydrothermal sources (Beard et al., 2003a; Rouxel et al., 2008a),  diagenetic 73 

pore fluids from shelf sediments and subterranean estuaries (Severmann et al., 2006; 74 

Rouxel et al., 2008b) have been suggested as potential negative δ56Fe sources in seawater. 75 

The focus of this paper will be on the river and estuarine component of the iron 76 

geochemical cycle. We present a comprehensive study of the variation in Fe isotope 77 

composition of dissolved and particulate iron across the river/ocean mixing zone. 78 

Large scale removal of river-borne dissolved Fe is a common feature of estuaries. 79 

Hence, the river input of dissolved Fe into the ocean is greatly modified by the salt-80 

induced flocculation of Fe-humic-colloids that occurs during the mixing of fresh water 81 

and seawater (Eckert and Sholkovitz, 1976; Sholkovitz, 1976, 1978; Boyle et al., 1977; 82 

Mayer, 1982; Hunter, 1990). 83 
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The estuarine reactivity of the river-borne colloids depends on the speciation of iron, a 84 

factor which may also control Fe-isotope composition (e.g. Brantley et al., 2001; Brantley 85 

et al., 2004; Johnson et al., 2004). In a preliminary study, Bergquist and Boyle (2006) 86 

reported the Fe-isotope composition of colloids precipitated during river water–seawater 87 

mixing experiments using the Solimões River water. Although the isotopic shifts in the 88 

flocculent (+0.2‰) was small and close to the analytical uncertainty, those results imply 89 

that the remaining Fe in solution may be isotopically lighter than the Fe in the river water 90 

end-member. Hence, it is presently unknown whether flocculation processes in natural 91 

estuarine systems can significantly affect the iron isotope composition of riverine 92 

discharged Fe to seawater. 93 

The first aim of this paper is to determine if the large scale removal of dissolved Fe 94 

during estuarine mixing will affect the iron isotope values of estuarine waters. Since 95 

estuaries act like a “filter” for terrestrially-derived dissolved iron, it is important to test 96 

whether this “filter effect” modifies the isotopic value of river-borne Fe within the 97 

estuaries mixing zone.  Our second objective is to characterize the Fe-isotope systematics 98 

between dissolved and particulate pools in estuaries and to assess the impact of rivers on 99 

the Fe-isotope composition of seawater.  To this end, a series of model equations will be 100 

developed and applied to a set of dissolved and particulate samples from the North River 101 

estuary.  102 

 103 

2. Material and location 104 

We collected water and suspended particles along the North River Estuary 105 

(Massachusetts, USA) in October 2006 (Fig.1). This river was chosen because of its high 106 

concentration of dissolved organic matter and colloidal iron, its proximity and convenient 107 

access as well as its limited urbanization setting. The waters of the North River and its 108 

estuary are distinctly yellow-brown in color due to dissolved humic substances. Typically, 109 

this type of river contains dissolved Fe in the form of colloids (Sholkovitz, 1976; Ross 110 

and Sherrell, 1999). The estuary watershed extends over 85 km2 and is primarily 111 

composed of salt marshes with Paleozoic and Precambrian igneous and metasedimentary 112 

rocks. The estuary can be physically characterized as partially mixed to vertically 113 

homogeneous.  As such, the surface water salinity changes gradually along the narrow 114 

channel of the estuary; this allowed us to collect samples with small (0.2 PSU) differences 115 

in salinity (Fig.1). 116 
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A 13' fiberglass boat was used to collect water samples at high and low tide in 117 

October 2006 (NR1, Table 1).  Samples were collected in the central part of the river and 118 

estuary by attaching acid-washed 1L polyethylene (LPDE) bottles to a 2 m long plastic 119 

pole and dipping the bottle to a depth of 30 cm depth.  Salinity and temperature were 120 

measured on site using an onboard YSI® probe. Salinity data are presented in Table 1. 121 

During the sampling time, water temperature was restricted between 13.5 and 12°C.  One 122 

month later, a second set of freshwater samples (NR2) was collected from the North River 123 

in the town of Hanover, MA at the Elm St park at approximately 2 km up stream of the 124 

NR1 sample. This upstream site never experiences the intrusion of salt water and then 125 

represents fresh water background.  The NR2 samples were collected to obtain more 126 

isotopic data for the fresh water end-member; these samples were also used for more 127 

complex types of filtration procedures. 128 

 129 

Two samples of river water from the Connecticut River and Mullica River were also 130 

analyzed for the Fe-isotope composition of their dissolved Fe pool.  The Connecticut 131 

River drains a large region of northeast North America and is the largest river entering the 132 

ocean in New England (Garvine, 1975).  Like the North River, the Mullica River (New 133 

Jersey, USA) contains high concentrations of humic-type organic matter and colloidal Fe 134 

(Yan et al., 1990; Ross and Sherrell, 1999).  Humic substances impart a dark yellow-135 

brown color to the river water.   136 

  137 

3. Analytical method  138 

 139 

3.1. Sample filtration 140 

We operationally define “dissolved iron” as the Fe that passed through a 0.22 μm 141 

filter.  This < 0.22 μm fraction contains colloidal and truly dissolved (i.e. soluble) Fe 142 

pools. Although not measured, the soluble Fe pool is operationally defined as a non-143 

colloidal fraction that is not affected by flocculation process in the estuary and is likely 144 

composed of organically bound iron. The particulate fraction consists of particles retained 145 

by 0.22 μm filters; this > 0.22 μm fraction contains the suspended sediment as well as 146 

newly precipitated colloids in the estuary. Less than 8 hours after sample collection, the 147 

water samples from the North River estuary were pressure (using N2 at 31 PSI) filtered 148 

through DuraporeTM membrane type filters manufactured by Millipore Corp..  The filters 149 

were 47 mm in diameter and had a nominal pore size of 0.22 µm.  Polycarbonate plastic 150 
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filter holders by Sartorius Ltd. were acid cleaned and used for the pressure filtration step.  151 

Filtered water samples were acidified to pH ~ 2 using ultra-pure (Optima-grade) 1N HCl. 152 

For each sample, a non-acidified aliquot of 15 mL was kept for color measurement.  The 153 

filters were stored dried.   154 

 155 

One of the river water samples, collected upstream of the estuary in November 2006 156 

(sample NR2), was pressure filtered as describe above. A second sample was handled 157 

differently; it was pumped through a Millipore MillipakTM cartridge filter unit that 158 

contained 0.22 μm pore size DuraporeTM filter material.  The water obtained from the 159 

pressure filtering method was then refiltered in parallel through 0.1, 0.05 and 0.025 µm 160 

membrane filters. This filtration scheme was designed to characterize the colloids within 161 

the dissolved pool (<0.22 µm) of Fe.  The three fractions collected correspond to three 162 

size ranges of colloids: 0.22-0.1 µm; 0.22-0.05 µm and 0.22-0.025 µm.  163 

The Mullica River water was filtered using a hand-held all-plastic syringe with a 0.22 164 

μm pore size filter unit from Millipore.  The water was filtered on a small boat on June 165 

26th 2007 and acidified on the spot.  The Connecticut River water was collected off a 166 

small boat, pressure filtered on May 22nd 2007 and acidified as described for the North 167 

River.   168 

 169 

3.2. Chemical analysis 170 

 According to Sholkovitz (1976), the adsorption measurement of the UV-Vis 171 

spectra of unacidified filtered water samples at wavelengths of 350 nm and 465 nm 172 

provide an approximation of the humic acid content of the filtered samples.  These 173 

measurements were carried out in a 5 cm quartz cell.  Total dissolved iron concentrations 174 

of the acidified filtered water samples were measured by UV-Vis spectrophotometry 175 

using the Ferrozine method modified from Stookey (1970).  A reductant (Hydroxylamine 176 

HCl) was used to obtain concentrations of total dissolved Fe. Measurements were 177 

performed at a wavelength of 562 nm in 5 cm quartz cell.   178 

Multi-elemental analysis of the acidified filtered water and digests of the 179 

suspended particles were carried out on a ICP-MS (Finnigan Element 2). The filters were 180 

leached overnight with 6 mL of 7N distilled HNO3 in 15 mL closed Teflon vials on a hot 181 

plate at 80°C. The solutions were then slowly evaporated to dryness. A second dissolution 182 

step using 0.5 mL of concentrated ultrapure HF and 2 mL of concentrated distilled HCl 183 

was then used to obtain a total digestion of the particles. 5 mL of distilled and 184 
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concentrated HNO3 and 1 mL of H2O2 were added and the filters were removed before the 185 

solution was taken to dryness. The solid residue was dissolved in 10mL of 2% HNO3 186 

(Optima grade) and an aliquot was further diluted for multi elemental ICP-MS analyses. 187 

The remaining solution was saved for Fe-isotope analysis. Acidified water samples were 188 

diluted to 1:7 with 2% HNO3 (Optima grade). Indium solution was added to a final 189 

concentration of 5 ppb to correct for ICP MS sensitivity changes due to matrix effects. 190 

Four multi element standards with a salinity of 0, 0.9, 1.4, and 3.3 respectively were 191 

analyzed as calibration points. Water analysis reported in Table 1 includes Fe, Ca, Mo, 192 

Mn, Al while Ti, Cr, Co, Zn and Cu were below detection limit and are not reported. 193 

Particulate concentrations for Al, Fe, Ti, Ca and Mn are reported in Table 2. 194 

  195 

3.3. Iron isotope analysis 196 

A volume of not more than ~40 mL of estuarine water with a salinity < 15 was 197 

evaporated to dryness in Teflon vials with 1 mL of concentrated distilled HNO3 to release 198 

the iron from organic complexes. The maximum operational volume for saline water 199 

reflects the high load of salts that prevent evaporating larger volume of waters without 200 

subsequent problems during chromatography separation. Consequently, Fe-isotope 201 

analysis were performed only for samples with <15 salinity. The acid solution was taken 202 

to dryness at 80°C on a hot plate. A subsequent evaporation was done with 10 mL of 203 

distilled 7N HNO3 with 1 mL of H2O2 (ultrapure grade). For the particulate analysis, the 204 

solution obtained after complete digestion (section 3.1) was evaporated on a hot plate. For 205 

both river water and particle samples, the solid residue were dissolved with 4 mL of 206 

distilled 6N HCl and one drop of H2O2 to ensure the complete oxidation of Fe. This 207 

solution was loaded onto a chromatography column filled with 1.5mL (wet volume) of 208 

anion exchange resin (AG1-X8, Bio-rad) previously cleaned with 10 mL of 3N HNO3 and 209 

10 mL of 18mΩ H2O. Prior to sample loading, the resin was conditioned with 5 mL of 210 

distilled 2% HCl followed by 2.5 mL of distilled 6N HCl. After loading the sample, 25 211 

mL of distilled 6N HCl was passed through the resin to elute the matrix. Iron is then 212 

eluted with 12.5 mL of distilled 0.24N HCl and collected in 15 mL Teflon vials. Samples 213 

were evaporated to dryness on a hot plate at 80°C and dissolved with 3mL of distilled 214 

0.24N HNO3 ready for isotope analysis. 215 

 Fe isotope compositions were determined with a Finnigan Neptune multicollector 216 

inductively coupled plasma mass spectrometry (MC-ICPMS) at WHOI using the method 217 

described in Rouxel et al. (2005; 2008a). The Neptune instrument permits high precision 218 
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measurement of Fe isotope ratios without argon interferences using the high-mass 219 

resolution mode (Weyer and Schwieters, 2003; Poitrasson and Freydier, 2005). Mass 220 

resolution power of about 8000 (medium resolution mode) was used to resolve isobaric 221 

interferences, such as ArO on 56Fe, ArOH on 57Fe, and ArN on 54Fe. Instrumental mass 222 

bias is corrected using Ni isotopes as internal standards. The method, which has proved to 223 

be reliable for the Neptune instrument, involves deriving the instrumental mass bias by 224 

simultaneously measuring 62Ni/60Ni isotope ratios.  225 

Samples were generally introduced in the plasma torch using a quartz spray 226 

chamber equipped with Teflon nebulizer (50 μl/min). In some cases, increased instrument 227 

sensitivity was required and the analyses were performed using X-cones. Under these 228 

conditions, sample solutions were measured with concentrations ranging from 0.5 to 3 229 

ppm. In all cases, the samples were diluted with 2% optima HNO3 in appropriate 230 

concentrations so that the IRMM-014 bracketing standards had the same concentration as 231 

the sample. Potential 54Cr interference was monitored by measuring 52Cr intensity using 232 

peak jumping in medium resolution mode to avoid 40Ar12C interferences.  233 

Because instrumental mass bias is sensitive to matrix effects, we measured Mg and Ca 234 

concentrations prior to isotope measurements. The aim is to quantify the efficiency of the 235 

purification scheme by measuring elements present in seawater matrix. In all cases, we 236 

verified that matrix elements were <1% of the total Fe concentration.  Because Fe 237 

isotopes can be fractionated during column chromatography (Anbar et al., 2000), we also 238 

verified the yield of the purification step. For each sample, the matrix solution eluted from 239 

the anion-exchange resin was collected in Teflon vials, evaporated and then analyzed by 240 

spectrophotometry using the ferrozine method. In all cases, the loss of iron during the 241 

purification step is less than 1%. 242 

 All analyses are reported in delta notation relative to the IRMM-014 standard, 243 

expressed as δ56Fe, which represents the deviation in per mil relative to the reference 244 

material:   245 

( ) 10001
)/(

)/(

014
5456

5456
56 ×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−IRMM

sample
oo

o

FeFe
FeFe

Feδ     (1) 246 

We also reported δ57Fe values but, since the relationships between δ56Fe and δ57Fe 247 

of the samples plot on a single mass fractionation line, only δ56Fe values are discussed in 248 

this paper. 249 
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 In order to check the accuracy of our Fe-isotope analyses in estuarine waters, 250 

natural seawater matrices were doped with IRMM-014 standard and processed through 251 

the complete chemistry steps as unknown samples. Duplicated purification and analysis 252 

gave an average of δ56Fe = 0.01 ‰ (2 σ = 0.06 ‰) for 17 samples which compared well 253 

with pure standard processed through chemistry (in 18mΩ H2O). The average Fe blank 254 

measured in seawater matrices processed through chemistry was 10 ng, which 255 

corresponds to about 0.1 % for the water samples and 0.01 % of the filters.  256 

 257 

4. Results 258 

4.1. River end-member composition 259 

The river water end-member concentration of dissolved iron during the Oct. 2006 260 

sampling of the estuary is 7.0 μM (Table 1).  The sampling of the upstream river site on 261 

Nov. 2007 (sample NR2) yielded 8.7 and 8.8 μM of dissolved Fe using cartridge and 262 

membrane filtering methods (Table 3). The Mullica and Connecticut River yielded 263 

dissolved Fe concentrations of 8.3 μM and 1.4 μM respectively (Table 4).  Hence, the 264 

two highly colored and organic-rich rivers contained significantly more dissolved Fe than 265 

the Connecticut River.  266 

Filtering a North River water sample through 0.22, 0.1, 0.05 and 0.025 μm pore-size 267 

membranes lead to similar concentrations of Fe (8.8, 8.7, 8.3 and 8.7 μM respectively, 268 

Table 3).  While our filtration scheme was designed to remove colloidal Fe from the river 269 

water sample, filtration down to a nominal pore size of 0.025 μm didn’t remove colloidal 270 

Fe (Table 3).  Likewise, the Fe retained by the 0.1 and 0.025 μm pore-sized filters was 271 

very low (0.08 μM) with respect to all four filtered fractions (~8.7 μM) and to the particle 272 

(> 0.22 μm) Fe fraction (3.17 μM).  Hence, the Fe retained by 0.1 and 0.025 μm filters 273 

represents less than 1% of the total dissolved (<0.22 μm) Fe pool.  Only the Fe retained 274 

between the 0.22 and 0.05 μm fractions contained a significantly amount of Fe (0.47 μM).  275 

Again, this Fe only represents 5% of the fraction of Fe passing through the four different 276 

filter sizes.  Hence, both the filtered and retained Fe for the pore-size study show that 277 

filtration down to 0.025 μm was not small enough to remove colloidal Fe from the river 278 

water of the North River.  As discussed in the next section, there is large (83%) removal 279 

of dissolved (<0.22 μm) Fe in the North River estuary. This removal is almost certainly 280 

due to the salting-out of river Fe colloids.  Hence, the colloids removed during estuarine 281 

mixing must be smaller in size than 0.025 μm.  282 
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 283 

The isotopic Fe composition of three filtered (<0.22 μM) NR2 river water samples 284 

displays positive δ56Fe values of similar magnitude relative to IRMM-014 standard.  285 

These values are 0.37, 0.34 and 0.38‰ (Tables 1 and 3). These values are also ~0.3‰ 286 

heavier than the bulk Earth value defined at 0.09‰ relative to IRMM-14 (Beard et al., 287 

2003a; Dauphas and Rouxel, 2006).  In contrast, the total particulate Fe fraction (>0.22 288 

μm) of upstream river site had the most negative δ56Fe value at -0.22‰ (Table 3).  The 289 

two lowest salinity samples of the estuarine transect also had negative δ56Fe value at -0.09 290 

and -0.01‰ Hence, the difference between dissolved and particulate Fe in North River is 291 

about 0.5‰ (+ 0.37 vs. -0.1‰).   292 

Iron passing through 0.22 μm to 0.025 μm filter pore size show negligible variations 293 

in Fe-isotope compositions (average δ56Fe of 0.39 ± 0.04‰).  As noted above, these four 294 

filtrates also show little variation in their dissolved Fe concentrations (~8.3-8.8 μM).  The 295 

Fe fractions retained by the 0.1, 0.05 and 0.025 μm pore-sized filters (starting with the 296 

<0.22 μm filtrate) are characterized by a δ56Fe composition of -0.12, 0.14 and 0.09 ‰ 297 

respectively.  These ‘colloidal” values are more positive than the river (>0.22 μm) 298 

particles at -0.22‰ but lower than all four filtrates (< 0.22 down to <0.025 μm) at 0.34 to 299 

0.44 ‰ (Table 3).  As noted above, our size-filtering scheme yields little in the way of 300 

colloidal Fe.  Hence, our pore-size study was not able to directly characterize the Fe 301 

isotopic composition of the major pool of river colloids in the North River.  Ultrafiltration 302 

techniques are part of on-going project to isolate the pool of Fe colloids.   303 

 304 

4.2. Element behavior in North River estuary 305 

 The estuarine distributions of dissolved (<0.22 μm) Fe and Al along the salinity 306 

gradient of North River estuary show that both elements deviate markedly from 307 

conservative mixing with very similar shapes (Fig. 2). The salinity distribution of 308 

dissolved Fe and Al remain similar under ebb and flood tides conditions.  Hence, we will 309 

consider the two transects as one.  This observation also permits us to assume that  iron 310 

precipitation is only salinity-dependant.   311 

Large scale net removal of dissolved Fe during estuary mixing in the North River is a 312 

common feature of estuaries (Boyle et al., 1977; Sholkovitz et al., 1978; Mayer, 1982; 313 

Fox and Wofsy, 1983; Forsgren et al., 1996; Hunter et al., 1997; Gustafsson et al., 2000).  314 

Though much less studied than Fe, field results confirm that the non-conservative removal 315 
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pattern of Al does occur in estuaries (Hydes and Liss, 1977; Crerar et al., 1981; 316 

Upadhyay, 2008). Ultrafiltration studies (Ross and Sherrell, 1999) and laboratory-based 317 

experiments (Eckert and Sholkovitz, 1976) also show that dissolved Al in organic rich 318 

rivers exists as humic-type colloid and undergoes extensive salt-induced flocculation.   319 

 320 

The percentage of Fe removal during estuarine mixing has been calculated following 321 

the flux model of Boyle et al. (1974). The explicit formulation of this mixing model 322 

implies that, over straight-line segments of the curve, simple two end-member dilution 323 

processes can be considered. Using this approach, pure river and seawater end-members 324 

as well as the percentage removal of Fe can be determined. Because the salinity along 325 

North River estuary ranges from 0.2 to 30, we can extrapolate our measured dissolved Fe 326 

concentrations at low salinity (i.e. S between 0.2 and 5) to derive the Fe concentration for 327 

the river water end-member as 7.5μM.  Similarly, we can extrapolate our measured 328 

dissolved Fe concentrations at high salinity (i.e. S between 20 and 30) to derive the Fe 329 

concentration at the zero-salinity intercept as 1.4μM (Table 4). The removal of Fe due to 330 

the flocculation process is then estimated by the difference between the initial Fe 331 

concentration in the river end-member and the Fe concentration at the zero-salinity 332 

intercept.  The model results yield a net removal of 83% for dissolved Fe in North River 333 

estuary; this value compares well with other estuaries in the northeast United States 334 

(Boyle et al., 1977).  The net removal for dissolved Al is also large ~ 85%. Color can 335 

serve as a semi-quantitative proxy of dissolved humic substances (Eckert and Sholkovitz, 336 

1976; Sholkovitz, 1976).  Figure 2 shows there is small, but significant, amount of 337 

removal of dissolved humic compounds (i.e. color) from the river water during estuarine 338 

mixing.  The color removal, based on the salinity distribution model of Boyle et al. (1974) 339 

is ~ 30%.  As expected, the results show a linear relationship between Ca and Mo with 340 

salinity, consistent with conservative behavior during estuarine mixing.  341 

The distribution of particulate Fe concentration vs. salinity is presented in Figure 3 342 

and display a sharp decrease at low salinity, from 7 μM in the river end-member down to 343 

3 μM at salinity of 5.  The ratio of dissolved Fe relative to particulate Fe (Figure 3) 344 

indicates that approximately 45 to 50% of the total Fe in North River is carried in the 345 

dissolved load. This proportion decreases to less than 5% at the high-salinity end of the 346 

estuary.  347 

 348 
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4.3. Determination of the flocculation factor 349 

In order to relate potential Fe-isotope fractionation during the flocculation process, we 350 

calculated the fraction (F) of dissolved Fe removed in each sample along the salinity 351 

gradient. F is calculated using the ratio of measured Fe concentration corrected from 352 

seawater mixing, versus the initial dissolved Fe concentration in the river (i.e. freshwater) 353 

end-member, such as:  354 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×
−

+−=
351

11
SFe

FeFe
Fe
FeF

RW

SWS

RW

SW
  (2) 355 

Where FeSW is the concentration of Fe in the seawater end-member (less than 0.01 356 

μΜ), Fes the measured concentration at the salinity S, and FeRW the concentration in the 357 

river end-member (7.5 μM). Although the concentration of dissolved Fe in local coastal 358 

seawater has not been determined, total dissolved Fe concentrations of about 10 nM have 359 

been already reported in surface seawater of Massachusetts Bay by Zhuang et al. (1995). 360 

Because end-member seawater Fe concentrations represent less than 1% of the initial Fe 361 

from the river, using seawater Fe concentrations of up to 20nM, as found in other local 362 

coastal seawater (Rouxel, 2009) has no effects on the value of F. As presented in Figure 363 

4, the fraction of Fe removed by colloid flocculation shows a drastic increase up to 0.5 364 

below a salinity of 5 then increases slowly up to 0.7 for a salinity of 10. At higher salinity, 365 

the percentage of flocculated iron is relatively stable between 70 to 80%. The Fe-isotope 366 

compositions of both particulate and dissolved Fe pools along the salinity gradient of 367 

North River estuary are presented in Table 2 and Figure 5. The dissolved Fe pool (i.e. < 368 

0.22 μm fraction) does not display any systematic changes in δ56Fe values along the 369 

estuary and yields an average Fe-isotope composition of 0.43 ± 0.04‰. In contrast, 370 

particulate Fe-isotope compositions increase from -0.1 to 0.15‰ between salinities of 0.2 371 

to ~5‰. At higher salinities, suspended particles yield δ56Fe values similar, within 372 

uncertainties, to crustal materials defined at 0.09‰ (Rouxel et al., 2003; Beard et al., 373 

2003a,b).  374 

 375 

5. Discussion 376 

 377 

5.1. Fe-isotope systematics in colloidal and particulate pools in the river end member  378 

An important result of this study is that the dissolved Fe fraction of North River 379 

has a positive δ56Fe value of ~0.4‰ which is heavier than the crustal composition defined 380 
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at ~0.09‰ and heavier than most previous studies in other riverine systems (Fantle and 381 

DePaolo, 2004; Bergquist and Boyle, 2006; Ingri et al., 2006). Another important result is 382 

the significant differences in Fe-isotope compositions between the dissolved and 383 

particulate iron in the riverine end-member. This difference reaches 0.46‰ and 0.60‰ in 384 

North River sampled in October and November 2006 respectively.  385 

Although Fantle and DePaolo (2004) analyzed unfiltered river water, they 386 

proposed that soluble Fe in rivers is characterized by more negative δ56Fe values 387 

compared to the average crust (i.e. δ56Fe values between -0.78 to 0.13‰ for 8 rivers from 388 

North America). Bergquist and Boyle (2006) reported δ56Fe composition of filtered (<0.4 389 

µm) Amazon River waters showing negative value (from -0.46 to -0.08‰) while the 390 

Negro River water displayed heavier Fe-isotope composition (from 0.2 to 0.44‰). In 391 

another study of Fe-isotope composition of suspended matter in a Boreal river in Sweden, 392 

Ingri et al., (2006) proposed that Fe (III) – humic acid complexes represent a light pool of 393 

iron isotopes in river colloids while Fe hydroxides would yield higher δ56Fe values. 394 

Altogether, with the exception of the Rio Negro, most previous studies are consistent with 395 

the preferential loss of light Fe-isotopes during weathering and mineral dissolution 396 

processes (Brantley et al., 2004; Thompson et al., 2007). However, the hypothesis that 397 

organically-bound Fe in rivers can be characterized by lighter Fe-isotope composition is at 398 

odd with the enrichment in heavy Fe isotopes in river colloids at North River. In 399 

particular, the Fe-isotope analysis of various size fraction of colloids at North River 400 

(Table 3) suggests that the larger colloidal fraction (e.g. >0.025 µm) are lighter by up to 401 

0.3‰ relative to finer colloids (e.g. <0.025 µm).  Hence, these results confirm that 402 

colloids, probably composed of Fe(III)-humic or other organic ligand complexes, yield 403 

positive δ56Fe values relative to suspended sediments.  404 

The Connecticut and Mullica rivers yielded δ56Fe values of 0.18 ‰ and -0.33 ‰ 405 

respectively. This large variation between these two rivers suggest that the value of iron 406 

isotope is not principally controlled by the organic content in the water: the Connecticut 407 

River, which represents a large mineral discharge of North East America, has lower 408 

content of dissolved humic compounds than North River but has slightly lower δ56Fe 409 

values. Hence, the high value δ56Fe for North River is at odds with the expectation that 410 

Fe-C compounds are characterized by lighter Fe-isotope composition. Only Mullica 411 

River, which is characterized by the highest organic matter content and Fe concentration 412 

(Sholkovitz, 1976; Crerar et al., 1981; Yan et al., 1990) is characterized by lower δ56Fe 413 
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values than crustal material may be consistent with the preferential partitioning of light 414 

Fe-isotopes with organic compounds. 415 

In principle, Fe isotopes variability in rivers can be related to the mineralogy of the 416 

rocks and sediments present in watersheds, the weathering regime (chemical vs. physical 417 

erosion), and the presence of ligands during weathering (Brantley et al., 2004; Fantle and 418 

DePaolo, 2004). In addition, changes in iron isotopes composition can also be linked to 419 

biological (Johnson et al., 2004) and chemical processes such as adsorption (Icopini et al., 420 

2004; Teutsch et al., 2005), precipitation (Skulan et al., 2002), and redox conditions 421 

(Severmann et al., 2006; Rouxel et al., 2008b).  422 

Although the Fe isotope composition of the upper continental crust has been 423 

recently debated in the literature (Poitrasson and Freydier, 2005; Beard and Johnson, 424 

2006; Poitrasson, 2006), numerous evidences suggest that sedimentary clastic rocks have 425 

average δ56Fe value similar to igneous rocks. Only a limited number of high-SiO2 granitic 426 

rocks (δ56Fe up to 0.4‰) have been shown to deviate from the igneous average. However, 427 

those crustal components have likely a minimal impact on the global composition of the 428 

continental crust. Hence, it is unlikely that the high- δ56Fe values of dissolved Fe observed 429 

at North River is due to the weathering of isotopically heavy rocks.  430 

Among other processes, the precipitation or adsorption of isotopically light Fe 431 

onto riverine particles may also explain positive δ56Fe values in the dissolved pool. The 432 

observation that suspended particulate matter in North River has δ56Fe values ~0.5‰ 433 

lower than the dissolved pool is consistent with this hypothesis. Similar to North River, 434 

the Negro River in the Amazon system, which displays heavier Fe-isotope composition 435 

(up to 0.44‰) for dissolved Fe, has particulates up to ~ 1.2 ‰ lighter than the associated 436 

dissolved Fe. We also note that similar results have been already reported for other 437 

isotope systems such as Li (Huh et al, 2001) and Cu (Vance et al, 2008) isotopes. In 438 

particular, heavier Cu-isotope compositions of the dissolved phase relative to the 439 

particulate Cu-pool have been interpreted as resulting from an equilibrium isotope effects. 440 

The process of Fe-isotope fractionation between dissolved and particulate pools remains, 441 

however, unclear as the nature of Fe-species involved is unknown. Approximately half of 442 

the total Fe in North River is carried in the dissolved load (Figure 3). Hence, the δ56Fe 443 

value for total Fe is ~ 0.1‰ which is similar to the bulk crust value. This suggests that the 444 

total Fe-isotope composition in the riverine system is not significantly fractionated by 445 

continental run-off but that the production of colloidal organic species may produce 446 
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significant Fe-isotope fractionation between particulate and colloidal pools. Recent 447 

experimental studies of isotope fractionation between organically bound and inorganic 448 

Fe(III) species in solution are consistent with this hypothesis. Dideriksen et al., (2008) 449 

found that Fe(III) bound to strongly coordinating ligands is likely to yield heavier δ56Fe 450 

values (up to 0.6‰) than the inorganically complexed Fe, which may be removed from 451 

solution through precipitation. In the case of North River, similar isotope effects may 452 

occur: the preferential removal of isotopically light inorganic dissolved Fe (e.g. Fe-oxide 453 

and clays) may leave the dissolved - organically complexed – colloidal pool enriched in 454 

heavy isotopes.  Alternatively, in the North River estuary, high concentration of dissolved 455 

humic substances may provide stronger bonding environments than Fe-hydroxide- or 456 

clay-rich particules. In this case, heavier Fe-isotope composition in the dissolved Fe pool 457 

may result from direct Fe-isotope fractionation between dissolved and particulate pools, 458 

whereby heavy isotopes  are partitioned preferentially in the stronger bonding 459 

environments (Urey, 1947 and Schauble, 2004), as recently observed for Cu-isotopes 460 

(Vance et al, 2006).  Additional studies of Fe-speciation in rivers (e.g. Gledhill and Van 461 

den Berg, 1995) combined with Fe-isotope composition may solve this issue.   462 

An alternate hypothesis is that the heavy δ56Fe values in rivers are generated during the 463 

preferential retention of light Fe-isotopes in soils, either through secondary mineral 464 

precipitation (e.g. Wiederhold et al., 2007) or plant uptake (Guelke and Von 465 

Blanckenburg, 2007). The fact that both dissolved and particulate pools in the North River 466 

has Al/Fe ratios lower than crustal values (Al/Fe~0.15 vs Al/Fe~1.5, Figure 6) is 467 

consistent with incongruent weathering and formation of (Fe,Al)-silicates in soils. 468 

However, it is presently unclear if the Fe-isotopic difference between dissolved and 469 

particulate phases may be influenced by weathering intensity as previously reported for Li 470 

isotopic system (Huh et al, 2001).   471 

 472 

 5.2. Fe-isotope systematics of dissolved Fe during flocculation process in estuaries 473 

Dissolved Fe has long been recognized as having a non-conservative behavior in most 474 

estuaries (Boyle et al., 1977; Sholkovitz et al., 1978; Bale and Morris, 1981; Mayer, 1982; 475 

Fox and Wofsy, 1983; Forsgren et al., 1996; Hunter et al., 1997; Gustafsson et al., 2000). 476 

It is generally assumed that the coagulation of Fe-rich colloids results from the 477 

destabilization of organic complexes and negatively charged-Fe colloids by seawater 478 

cations. In this study, we have shown that most dissolved Fe in North River is affected by 479 

large-scale removal at low salinity (<15‰), reducing the effective input of dissolved Fe to 480 
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the ocean by about 83% of the primary river value. The precipitation of organic-rich 481 

riverine colloids at North River is also confirmed by the non-conservative behavior of 482 

humic compounds (i.e. color) distribution along the estuary and by the removal of Al 483 

(Figure 3), which is also closely associated with organic material (Eckert and Sholkovitz, 484 

1976).  Since the coagulation of Fe-humic colloids involves complex transformations 485 

between labile, colloidal and particulate phases, estuaries may modify the isotopic 486 

composition of riverine source of Fe to the oceans in the following cases:  487 

(1)  If chemical weathering results in river water having humic-Fe colloids with a 488 

different isotopic composition than soluble Fe, then estuarine flocculation should lead to 489 

modification of Fe isotope composition of dissolved Fe, reflecting the preferential 490 

removal of colloids relative to labile Fe which are not affected by flocculation. At North 491 

River, soluble Fe (i.e. pool of dissolved Fe which is not affected by flocculation process) 492 

represents about 20% of the total dissolved Fe concentration, Table 4. The evolution of 493 

dissolved δ56Fe values relative to the amount F of Fe precipitated can be described by the 494 

mass balance equation:  495 

solcol FeFFeFFFeF 56
max

56
max

56 )1()()1( δδδ ×−+×−=×−  (3) 496 
Where Fmax is the maximum extent of Fe precipitation in the estuary (determined at 0.83), 497 

δ56Fecol and δ56Fesol are the Fe-isotope composition of colloidal and soluble Fe end-498 

members. Note that this model does not include the potential contribution of seawater-499 

derived Fe which is estimated to be less than 0.01 μM, and thus negligible relative to river 500 

borne Fe, even at the maximum salinity in North River estuary. Based on the relationship 501 

between δ56Fe and 1/(1-F) presented in Figure 7, the δ56Fe difference between colloidal 502 

Fe and labile Fe (calculated at F=0.9) is restricted to less than 0.14‰ ±0.15 (2SE) and 503 

thus insignificant compared to the uncertainty (i.e. after error propagation). 504 

 (2) If significant Fe isotope fractionation occurs between particulate and dissolved 505 

Fe, then estuarine mixing should lead to isotope fractionation during Fe removal. Because 506 

colloids offer a much greater number of surface complexation sites than suspended 507 

particles, potential exist for isotope fractionation during adsorption processes or during 508 

precipitation/aggregation of colloids onto suspended particles. In this case, the 509 

precipitation of humic-Fe colloids corresponds to a unidirectional process (i.e. no further 510 

reactions between dissolved and particulate Fe pools), the fraction F of Fe precipitated, as 511 

defined in equation (2), and the Fe-isotope composition in the remaining dissolve pool 512 

can be determined by the Rayleigh law: 513 
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1000)1()1000( )1(
0

5656 −−×+= −αδδ FFeFe  (4) 514 

where δ56Fe0 is the initial value of the river end-member and α is the particulate-dissolved 515 

fractionation factor during the flocculation process. Using this relationship, it is possible 516 

to calculate the maximum α values producing the distribution of δ56Fe values along the 517 

estuary (Figure 7). Since δ56Fe values of the estuarine samples are identical within 518 

uncertainties, α equal to 0.99993 ± 0.00006 (2SE) which implies that Fe-isotope 519 

fractionation during the flocculation processes is less than 0.07‰ and does not 520 

significantly affect the iron isotopes of rivers within uncertainty.  521 

 522 

 5.3. Fe-isotope systematics in the particulate pool 523 

Iron in suspended particles (>0.22 μm) is essentially associated with clays, humic 524 

compounds and Fe oxides (e.g. Ross and Sherrell, 1999; Poulton and Raiswell, 2002; 525 

Allard et al., 2004). In estuaries, newly formed particles due to colloid flocculation are 526 

expected to represent another important pool of Fe. Although suspended particles in North 527 

River are characterized by sub-crustal δ56Fe values around -0.1‰, the precipitation of 528 

isotopically heavy colloids should result in significant alteration (i.e. increase) of δ56Fe 529 

values of estuarine particles. As illustrated in Figure 2 and 6, dissolved Al behaves 530 

similarly to Fe in the estuary (i.e. non-conservative behavior) with Al/Fe being constant 531 

over a wide range of salinity. In contrast, Al/Fe ratios in suspended particles display a 532 

gradual increase with salinity, from dissolved Al/Fe ratios of ~ 0.15 (g/g) in the 533 

freshwater end-member to sub-crustal values ~ 1.6 (g/g) at high salinity. Consequently, 534 

particulate Al/Fe ratios cannot be explained by a simple binary mixing between river-535 

borne particles and newly formed particles due to colloid flocculation. A third Fe 536 

component needs to be taken in consideration, that is, lithogenic particles with near 537 

crustal Al/Fe ratios. This last source corresponds to a major part of suspended marine 538 

sediments with an assumed Al/Fe ratios of ~ 2.0 (g/g)  and crustal δ56Fe (=0.09 ‰) 539 

consistent with upper continental crust values (Dauphas and Rouxel, 2006; Rudnick and 540 

Gao, 2007).  541 

From the relationship between δ56Fe and Al/Fe values in estuarine particles 542 

(Figure 8), we can define 3-component mixing relationships such as: 543 

LithLithColColRPRPpart FeXFeXFeXFe 56565656 δδδδ ×+×+×=  (5) 544 

LithLithColColRPRPpart FeAlXFeAlXFeAlXFeAl )()()()( ×+×+×= (6) 545 
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where XRP, XCol and XLith correspond to the fraction of Fe in estuarine particles 546 

(part) derived from river-borne particles (RP), flocculated colloids (Col) and lithogenic 547 

particles (Lith) respectively. These values can be determined for each estuarine sample 548 

using the equations (5-6) which can be simplified considering that Al/Fe ratios in river-549 

borne particles and colloids are similar, such as: 550 

[ ] [ ]RPLithRPpartLith FeAlFeAlFeAlFeAlX )()()()( −−=  (7) 551 

ColRP

LithRP
Lith

ColRP

partRP
Col FeFe

FeFeX
FeFe
FeFe

X 5656

5656

5656

5656

δδ
δδ

δδ
δδ

−
−

−
−

−
=    (8) 552 

LithColRP XXX −−= 1        (9) 553 

The mixing relationships between these three components are illustrated in Figure 8a 554 

showing δ56Fe vs. Al/Fe ratios of dissolved Fe (<0.22 μm) and particulate Fe (>0.22 μm) 555 

along the North River estuary. The most striking feature is the increase of XLith with 556 

increasing salinity (Figure 8b). This suggests that lithogenic particles derived from local 557 

seawater end-member, probably through sediment resuspension along the coastal zone. In 558 

particular, the high-energy environments provided by coastal seawaters may carry 559 

significant suspended sediments that can mix with estuary particles. Although an increase 560 

of XCol is observed at low salinity (S<5) due to flocculation process as river water mixes 561 

with seawater, the decrease of XCol at higher salinity is more surprising. As mentioned 562 

previously, the Al/Fe ratios in suspended particles (i.e. XLith) display a gradual increase 563 

with salinity which result in relative decrease of riverine particles and colloids in the 564 

estuary. In Figure 9, the relationship between XCol/XRP and the flocculation factor (F) 565 

reveals a positive correlation with a slope close to unity (0.9 ± 0.1). As illustrated in 566 

Figure 3, approximately 45 to 50% of the total Fe in North River is carried in the 567 

dissolved load. Hence, the total fraction of colloidal Fe relative to river-borne particulate 568 

Fe, will be about 0.8 to 0.95 after quantitative flocculation (i.e. F=1). Hence, both 569 

independent approaches are in good agreement which confirms that only river-seawater 570 

mixing process and colloid flocculation control dissolve and particulate Fe concentration 571 

in North River estuary. In contrast, such processes have essentially no effect of Fe-isotope 572 

composition of dissolved Fe. 573 

 574 

 5.4. Implication for coastal seawater Fe sources 575 

 576 
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 Among important sources of iron in coastal seawater, diagenetic pore fluids from 577 

shelf sediments (Staubwasser et al., 2006; Bergquist et Boyle, 2006; Severmann et al., 578 

2006; 2008) and groundwater (Rouxel et al., 2008b) have been suggested to provide 579 

significant source of low- δ56Fe iron to the oceans. Based on the observed homogeneity of 580 

Fe isotope composition of suspended loads of major rivers across the United States, it has 581 

been initially suggested that Fe inputs to the ocean via rivers is similar to igneous rocks 582 

(Beard et al., 2003b). However, later studies have suggested that continental run-off may 583 

represent another source of low- δ56Fe iron in coastal waters (Bergquist and Boyle, 2006; 584 

Fantle and De Paolo, 2004; Ingri et al, 2006). Suspended load may have also δ56Fe values 585 

fractionated towards negative values suggesting that Fe isotope composition of river-586 

borne particles is not unique (Bergquist and Boyle, 2006, this study).  Since the process of 587 

flocculation produces minimal Fe-isotope fractionation in the dissolved Fe pool, we 588 

suggest that the Fe isotope composition of dissolved Fe in rivers is preserved during 589 

estuarine mixing and that the global riverine source into the ocean can display both 590 

heavier and lighter δ56Fe values (between -0.5 to up to 0.3 per mil) relative to the 591 

continental crust. Since different river types may have different colloid size and 592 

compositions that may behave differently than the North River, the total range of Fe-593 

isotope composition of the worldwide rivers is still poorly known.  594 

Despite those uncertainties, our study suggests that dissolved riverine Fe can be 595 

characterized by near crustal or slightly positive δ56Fe values which contrast strongly with 596 

benthic Fe sources having strongly negative δ56Fe values due to suboxic Fe cycling 597 

(Severmann et al., 2006; Rouxel et al., 2008b). Hence, Fe-isotopes can provide valuable 598 

tracers to distinguish various Fe-sources in coastal oceans and their potential impact in 599 

marine ecosystems.  This hypothesis is consistent with a recent study of the 100 km long 600 

Scheldt estuary (de Jong et al., 2007) where negative δ56Fe values down to −1.2‰ have 601 

been observed along a salinity gradient. The occurrence of low δ56Fe values for dissolved 602 

Fe in the Scheldt estuary has been attributed to either Fe-isotope fractionation processes 603 

due to redox cycling in the estuary or from adsorption/precipitation of dissolved Fe onto 604 

particulate matter.  Based on our study, it can be suggested that low δ56Fe values in the 605 

Scheldt estuary result from the contribution of an additional Fe source, probably derived 606 

from the diffusive input of isotopically light Fe from anoxic estuary sediments.  The 607 

potential addition of groundwater-derived Fe may also produce such negative Fe-isotope 608 

signature, as already observed in Waquoit Bay (Rouxel et al., 2008b; Rouxel 2009).  609 
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 610 

6. Conclusion 611 

 612 

The major objective of this study was to determine the processes controlling the 613 

fractionation of Fe isotopes between continental run-off and the oceans. The main 614 

findings are:  615 

(1) Continental run-off yields colloidal Fe pools in rivers that are isotopically distinct 616 

from particulate Fe pools. In particular, we demonstrated that the particulate and dissolved 617 

fractions in a small river in North Eastern US are characterized by a difference of Fe–618 

isotopic composition of up to 0.5‰ which is almost 10 times the analytical uncertainty. 619 

The particulate fraction (>0.22 μm) yields negative δ56Fe values while the dissolved 620 

fraction <0.22 μm yielded positive δ56Fe values relative to the bulk continental crust.   621 

 (2) The large scale removal of river-borne dissolved Fe, a universal feature of 622 

estuaries, does not significantly modify the Fe isotopic signature of terrestrial dissolved 623 

Fe reaching coastal waters. This suggests that, although Fe has a distinctly non-624 

conservative behavior in estuaries, the δ56Fe composition of rivers is not modified in 625 

estuaries. Based on Al/Fe and Fe-isotope ratios, we also determined that the suspended 626 

pool along the North River estuary is controlled by the relative proportion of river-borne 627 

particles, coagulated river colloids and detrital Fe derived from coastal area. 628 

These results contrast with previous finding suggesting mostly negative δ56Fe values 629 

for dissolved Fe in rivers (Fantle and DePaolo, 2004; Bergquist and Boyle, 2006). The 630 

oceanic input of Fe from rivers could have a local influence on the iron composition of the 631 

costal ocean which can be distinguished from diagenetic input from marine sediment and 632 

groundwater, the later having essentially negative δ56Fe values (Severmann et al., 2006; 633 

Rouxel et al., 2008b). Hence, Fe-isotopes provide valuable tracers of Fe-sources in 634 

hydrologic and marine environments. Additional work is now required to assess the 635 

importance of weathering regime and climate on the temporal and spatial variability of Fe 636 

isotope composition of rivers.  637 

 638 

 639 

 640 

641 
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FIGURE CAPTIONS 877 

 878 

Figure 1: Map of the North River estuary showing sampling sites at low and high tides. 879 

Sample name are also shown for each sampling site. 880 

 881 

Figure 2: Color and concentrations of Fe, Al, Mo, Mn (μM) and Ca (mM) of the dissolved 882 

fraction (<0.22 μm) versus salinity along the North River estuary. Sampling during ebb 883 

(open diamonds) and flood (gray diamonds) tides are shown for comparison. 884 

 885 

Figure 3: Concentrations of particulate Fe (>0.22 μm) and dissolved versus particulate Fe 886 

ratios along the salinity profile. Sampling during ebb and flood tides are shown in open 887 

and gray diamonds respectively. 888 

 889 

Figure 4: Fraction of Fe removed (i.e. flocculation factor F) along the North River 890 

estuary. Fe concentrations vs. salinity are shown for comparison. 891 

 892 

Figure 5: Fe-isotope compositions of dissolved Fe (<0.22 μm) and particulate Fe (>0.22 893 

μm) along the salinity gradient. Horizontal gray bar corresponds to average δ56Fe values 894 

for crustal rocks (Beard et al., 2001; Dauphas and Rouxel, 2006). 895 

 896 

Figure 6: Al/Fe ratios of dissolved Fe (<0.22 μm) and particulate Fe (>0.22 μm) along the 897 

salinity gradient at North River estuary.  898 

 899 

Figure 7: Iron isotope composition of dissolved pool versus the fraction (F) of Fe 900 

removed through flocculation process. A) a linear relationship between δ56Fe and 1/(1-F) 901 

is expected if truly dissolved Fe in rivers is different from riverine colloids; B) a linear 902 

relationship between δ56Fe and –log(1-F) is expected if colloid flocculation process 903 

produce significant Fe-isotope fractionation between coagulated colloids and remaining 904 

dissolved colloids.  905 

 906 

Figure 8: (A) δ56Fe vs. Al/Fe ratios of dissolved Fe (<0.22 μm) and particulate Fe (>0.22 907 

μm) at North River estuary showing a 3-component mixing relationship between (1) 908 

riverine colloids (Xcol) (2) river borne particles (XRP) and (3) lithogenic particles (XLitho) 909 
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from high salinity end-members. (B) Variations of Xcol , XRP and XLitho with salinity. See 910 

text for discussion.  911 

 912 

Figure 9: Relationship between the XCol/XRP and the fraction (F) of Fe removed through 913 

flocculation. XCol and XRP represent the fractions of particulate Fe from coagulated 914 

colloids and river borne particles respectively. As expected, the ratio XCol/XRP increase 915 

linearly with F along a 1:1 slope reflecting the addition of particles along the estuary due 916 

to flocculation process. This relationship also suggests a minimal loss of particulate Fe 917 

during estuarine mixing. 918 
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Table 1: Chemical and isotopic composition of filtered North River estuary samples
Sample 
Name Salinity color at 

350 nm
Fe 

(μM)
Al 

(μM)
Ca 

(mM)
Mo 

(μM)
Mn 

(μM) N# δ56Fe 1σ δ57Fe 1σ

ebb tide
NR-1001 1.33 0.426 5.24 1.21 0.5 0.003 1.40 5 0.37 0.05 0.56 0.09
NR-1002 2.40 0.397 4.15 0.96 0.7 0.006 1.14 6 0.48 0.05 0.69 0.08
NR-1004 4.99 0.334 2.98 - - - - 4 0.45 0.03 0.70 0.04
NR-1005 6.97 0.307 2.02 0.62 2.0 0.016 0.86 5 0.46 0.03 0.65 0.08
NR-1006 8.40 0.286 2.25 0.55 2.5 0.020 0.81 2 0.40 0.01 0.57 0.08

flood tide
NR-1021 12.51 0.22 1.39 0.38 3.8 0.033 0.63 2 0.44 0.09 0.66 0.12
NR-1022 10.04 0.219 1.89 0.48 2.8 0.023 0.71 2 0.51 0.05 0.78 0.08
NR-1023 7.86 0.291 2.33 0.54 2.1 0.018 0.79 6 0.41 0.02 0.61 0.06
NR-1025 4.67 0.341 3.24 0.73 1.4 0.011 0.95 5 0.43 0.07 0.64 0.06
NR-1026 3.31 0.377 3.79 0.84 1.0 0.008 1.07 12 0.45 0.05 0.67 0.07
NR-1028 1.68 0.435 5.04 1.14 0.5 0.004 1.32 6 0.37 0.05 0.57 0.06
NR-1029 1.12 0.471 5.36 1.20 0.4 0.003 1.47 5 0.45 0.04 0.68 0.07
NR-1030 0.69 0.518 5.68 1.29 0.3 0.002 1.70 6 0.42 0.07 0.59 0.05
NR-1033 0.20 0.56 6.98 1.73 0.2 0.002 1.75 6 0.37 0.04 0.55 0.06

#: number of duplicated Fe-isotope analysis
- : not determined



Table2: Chemical and Fe-isotope composition of suspended particles in North River estuary

Sample 
Name Salinity

Al 
(μM)

Fe 
(μM)

Ti 
(μM)

Ca 
(μM)

Mn 
(μM) N# δ56Fe 1σ δ57Fe 1σ

NR 1001 F 1.33 - - - - - 7 0.02 0.04 0.06 0.04
NR 1002 F 2.40 - - - - - 8 0.01 0.03 0.11 0.04
NR 1004 F 4.99 - - - - - 8 0.12 0.04 0.18 0.03
NR 1005 F 6.97 2.92 2.90 0.08 2.49 0.07 8 0.12 0.04 0.23 0.06
NR 1006 F 8.4 3.79 2.71 0.10 2.80 0.06 13 0.09 0.03 0.16 0.07
NR 1007 F 9.66 4.61 2.87 0.12 3.28 0.07 5 0.09 0.01 0.17 0.02
NR 1014 F 28.2 5.98 2.05 0.17 7.88 0.04 4 0.06 0.07 0.12 0.04
NR 1017 F 21.84 5.75 2.42 0.16 6.55 0.04 7 0.09 0.02 0.11 0.06
NR 1021 F 12.51 6.42 3.29 0.19 4.56 0.07 8 0.10 0.02 0.14 0.06
NR 1022 F 10.04 - - - - - 7 0.14 0.06 0.28 0.07
NR 1023 F 7.86 5.40 3.00 0.15 3.25 0.08 10 0.07 0.03 0.11 0.06
NR 1024 F 6.25 5.43 3.66 0.17 2.93 0.09 - -
NR 1025 F 4.67 3.60 2.95 0.09 2.21 0.06 8 0.09 0.02 0.09 0.03
NR 1026 F 3.31 - - - - - 4 0.15 0.03 0.24 0.03
NR 1027 F 2.25 4.48 4.00 0.12 1.84 0.10 7 0.05 0.05 0.09 0.08
NR 1028 F 1.68 4.57 4.33 0.11 1.74 0.11 5 0.05 0.03 0.10 0.03
NR 1029 F 1.12 4.99 5.32 0.13 1.88 0.14 11 0.03 0.03 0.07 0.04
NR 1030 F 0.69 5.20 6.96 0.13 2.26 0.16 12 -0.01 0.05 0.00 0.08
NR 1033 F 0.2 2.85 7.19 0.07 3.04 0.15 6 -0.09 0.02 -0.11 0.04
#: number of duplicated Fe-isotope analysis
- : not determined



Table 3: Fe concentration and isotope composition of North River for different filter size
Size fraction 

(μm) [Fe] μM N# δ56Fe 1σ δ57Fe 1σ

Water
NR II E* < 0.22* 8.65 6 0.34 0.03 0.55 0.08
NR II A < 0.22 8.76 6 0.38 0.02 0.55 0.02
NR II B < 0.1 8.6** 14 0.38 0.06 0.54 0.08
NR II C < 0.05 8.2** 6 0.44 0.03 0.65 0.03
NR II D < 0.025 8.6** 5 0.42 0.02 0.58 0.03
Particules
NR II A F >0.22 3.17 6 -0.22 0.01 -0.32 0.07
NR II B F 0.22 - 0.1 0.08 3 -0.12 0.04 -0.22 0.03
NR II C F 0.22 - 0.05 0.47 9 0.14 0.02 0.21 0.03
NR II D F 0.22 - 0.025 0.07 3 0.09 0.08 0.24 0.10
* filtration through 0.22um MillipakTM cartridge instead of DuraporeTM 45mm membrane
** calculated by mass balance using particulate Fe concentration
#: number of duplicated Fe-isotope analysis



Table 4: Fe-isotope composition and percent of Fe removal in North River and other east coast estuaries
River water δ56Fe Zero-salinity %

Estuary Date end-member river (1σ) intercept removal Reference
Fe (μM)  end-member Fe (μM)

Connecticut 07/1973 8.5 - 2.5 71 Boyle et al., 1977
11/1973 3.1 - 0.9 71 Boyle et al., 1977
11/2006 1.4 0.18 0.03 - - This study
05/2007 1.3 - 0.5 64 This study

Merrimack 07/1973 4.0 - 1.5 63 Boyle et al., 1977
08/1973 3.5 - 1.0 71 Boyle et al., 1977
10/1973 3.7 - 1.7 54 Boyle et al., 1977

Mullica 09/1973 23.4 - 1.0 96 Boyle et al., 1977
06/2007 8.3 -0.33 0.02 - - This study

North River 05/2006 8.9 0.14 0.05 3.3 63 This study
10/2006 7.5 0.37 0.04 1.4 82 This study
11/2006 8.6 0.34 0.03 n.d. n.d. This study

- : not determined


