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S U M M A R Y
The marginal distributions for the magnetotelluric (MT) magnitude squared response function
(and hence apparent resistivity) and phase are derived from the bivariate complex normal
distribution that describes the distribution of response function estimates when the Gauss–
Markov theorem is satisfied and the regression random errors are normally distributed. The
distribution of the magnitude squared response function is shown to be non-central chi-squared
with 2 degrees of freedom, with the non-centrality parameter given by the squared magnitude
of the true MT response. The standard estimate for the magnitude squared response function is
biased, with the bias proportional to the variance and hence important when the uncertainty is
large. The distribution reduces to the exponential when the expected value of the MT response
function is zero. The distribution for the phase is also obtained in closed form. It reduces to
the uniform distribution when the squared magnitude of the true MT response function is zero
or its variance is very large. The phase distribution is symmetric and becomes increasingly
concentrated as the variance decreases, although it is shorter-tailed than the Gaussian. The
standard estimate for phase is unbiased. Confidence limits are derived from the distributions for
magnitude squared response function and phase. Using a data set taken from the 2003 Kaapvaal
transect, it is shown that the bias in the apparent resistivity is small and that confidence intervals
obtained using the non-parametric delta method are very close to the true values obtained from
the distributions. Thus, it appears that the computationally simple delta approximation provides
accurate estimates for the confidence intervals, provided that the MT response function is
obtained using an estimator that bounds the influence of extreme data.
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1 I N T RO D U C T I O N

The fundamental datum in the magnetotelluric (MT) method is the
site-specific, frequency-dependent, second rank tensor Z relating
the horizontal electric and magnetic fields measured at Earth’s sur-
face. The MT response tensor must be estimated statistically from
data using methods that are ultimately based on least-squares prin-
ciples. Considerable success has been achieved using robust and/or
bounded influence estimators that limit the effect of unusual or ex-
treme electric and magnetic field time-series intervals (e.g. Chave
& Thomson 2004), and this class of estimator is now in general use.
The ensuing estimates of the MT response function Z are generally
unbiased, statistically reliable, and consistent with the requirements
of the Gauss–Markov theorem, as further discussed in Section 2. In
addition, parametric estimates of the uncertainty (i.e. the variance
or standard error) δZ on Z are also statistically meaningful when
the influence of extreme data is bounded, while non-parametric es-
timators such as the jackknife (Thomson & Chave 1991) are more
accurate under these conditions.

However, MT interpretation is often based on an additional sta-
tistical entity derived for each tensor element of Z, the apparent

resistivity whose magnitude is given by

ρi j = µ0

∣∣Zi j

∣∣2
/ω, (1)

where µ0 is the magnetic permeability of free space, ω is the
angular frequency and Z is measured in units of electric field E
divided by magnetic induction B. Because the tensor elements
Zij are complex, there is a phase corresponding to the squared
response, but this is rarely used in practice. Instead, eq. (1) is
combined with the phase φ ij of Zij as substitute data for the
real and imaginary parts of Zij. Use of {ρ ij, φ ij} instead of
{Re[Zij], Im[Zij]} is often preferred because the ubiquitous occur-
rence of galvanic distortion biases ρ ij or {Re[Zij], Im[Zij]}, but
not φ ij.

While the transformation from {Re[Zij], Im[Zij]} to {ρ ij, φ ij} is
straightforward, statistical inference about the result is not. The most
widely used approach is a first-order Taylor series approximation for
δρ ij and δφ ij usually called the delta method (Stuart & Ord 1994,
section 10.5)

δρi j = 2µ0|Zi j |δZi j/ω

δφi j = sin−1(δZi j/|Zi j |)
,

(2)
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where the error terms in eq. (2) are O(1/N) and N is the sample size.
The arcsine function in the second equation is sometimes omitted at
some loss of accuracy. Propagation of error methods are sometimes
employed (e.g. Gamble et al. 1979; Stodt 1983), but their range of
validity remains unquantified, as is also true for the delta approxima-
tion. Yet, interpretation of accurate MT parameters combined with
inaccurate estimates for their uncertainty will bias the resolution of
derived models for Earth.

In this paper, the statistical distributions for {ψ ij, φ ij}, where
ψ ij = |Zij|2 is a substitute statistic for ρ ij, given {Re[Zij], Im[Zij]}
that satisfy the extended Gauss–Markov conditions are derived from
first principles. In Section 2, the general linear model is reviewed
to establish a statistical model for {Re[Zij], Im[Zij]}, and the joint
distribution of {ψ ij, φ ij} is obtained from it. Sections 3 and 4 derive
and describe the marginal distributions for ψ ij and φ ij, respectively,
along with symmetric confidence intervals on them. Section 5 con-
tains further discussion and a data-based comparison of confidence
limits computed from the distributions with approximate results
from the delta method.

2 J O I N T D I S T R I B U T I O N O F ψ A N D φ

The magnetotelluric response function Z is usually estimated us-
ing a variant of the Welch overlapped section averaging method
(Welch 1967) in which a time-series is broken into segments, each
segment is pre-whitened and tapered with a data window, discrete
Fourier transforms are taken, and pre-whitening is corrected for.
The ensuing Fourier estimates at a given frequency become data
in the context of MT data processing. The MT response tensor Z
follows from a linear regression of the electric on the magnetic data
using a robust M-estimator (Egbert & Booker 1986; Chave et al.
1987). Additional steps to bound the influence of extreme predictor
(i.e. magnetic field) data should also be taken (Chave & Thomson
2003, 2004). Accurate statistical inference about Z depends criti-
cally on minimizing bias in the Fourier estimates through effective
pre-whitening and the use of low bias data windows, on assuring the
independence of the Fourier estimates for distinct data sections and
frequencies, and on satisfying conditions on the linear regression
problem, including those of the Gauss–Markov theorem. The first
two of these require careful spectral analysis procedures; the issues
are reviewed by Thomson & Chave (1991) and Chave & Thomson
(2004).

The standard linear regression model for a row of the full MT
response tensor Z is

e = b ζ + ε, (3)

where e is the complex response (horizontal electric field) N-vector,
b is the complex N × 2, rank-2 predictor (horizontal magnetic field)
matrix, ζ is the complex solution 2-vector, and ε is a complex
N-vector of random errors. The least-squares solution for ζ obtains
from minimizing the error power, yielding

z = (bHb)−1(bHe), (4)

where the superscript H denotes the Hermitian (complex conjugate)
transpose. The conditions on the variables in eq. (3) and their mo-
ments that yield a least-squares solution eq. (4) that is optimal in a
well-defined sense are given by the Gauss–Markov theorem of clas-
sical statistics (Stuart et al. 1999, chapter 29). The textbook version
of the Gauss–Markov theorem applies when the predictor variables
in eq. (3) are fixed, but Shaffer (1991) has extended it to cover a
wide range of cases where b contains random variables. The linear

regression solution eq. (4) is an unbiased estimate with an asso-
ciated unbiased variance estimate when the random errors ε have
zero mean, are mutually uncorrelated and share a common variance
independent of any assumptions about their statistical properties ex-
cept that the variance must exist. In addition, if the random errors
are complex Gaussian, then the least-squares result is a maximum
likelihood, fully efficient, minimum variance estimate. The regres-
sion residuals {ri} are the differences between the measured values
of the response variable e and those predicted by the linear regres-
sion, and serve as an estimate for the random errors ε that can be
examined to check the validity of these conditions. It is well known
that MT data frequently violate the Gauss–Markov conditions, and
that the use of robust or bounded influence estimators that intro-
duce data-dependent weights into eq. (4) can mitigate this problem.
Further, the residuals can be tested for consistency with the Gauss–
Markov and residual normality conditions, as described by Chave
& Thomson (2004).

Assuming the Gauss–Markov theorem is satisfied and the random
errors ε in eq. (3) are complex Gaussian, it follows that the response
variables e are complex normal, independent, and homoscedastic
(i.e. share a common variance). Their distribution is

e : CNN(b ζ, σ 2I), (5)

where CNN is the N-variate complex normal distribution with ex-
pected value bζ and common variance σ 2; I is the identity matrix.
It can also be shown (e.g. Mardia et al. 1979) that the elements of a
row of the MT response are bivariate complex normal

z : CN2[ζ, σ 2(bHb)−1]. (6)

In addition, {|ri|2/σ 2} are χ2 distributed with N – 2 degrees of
freedom.

Despite the seeming simplicity of eq. (6), it still contains
eight unknown real parameters (the real and imaginary parts of
two elements of the MT response, the population variance for
each element and the real and imaginary parts of the popula-
tion covariance). Following Kotz et al. (2000 section 45.13), let
zj = xj + iyj have expected value µj, and assume var(x j ) =
var(y j ) = σ 2

j , cov(x j , y j ) = 0, cov(xi , x j ) = cov(yi , y j ) =
αi j , and cov(x j , yi ) = −cov(xi , y j ) = βi j . These conditions apply
to any signal that may be expressed as a Fourier transform (Wood-
ing 1956), and hence are not restrictive in the present context. The
Hermitian covariance matrix � follows directly from the definition.
Define the correlation coefficient � = (α12 + iβ 12)/σ 1σ 2. The joint
probability density function (pdf) for z1 and z2 is the bivariate com-
plex normal given by

f (z1, z2 | µ 1, µ2, � )

= 1

4π2σ 2
1 σ 2

2 (1 − |�|2)
e−[|ξ1|2−2Re{�ξ∗

1 ξ2}+|ξ2|2]/[2(1−|�|2)], (7)

where ξ = (zi − µi)/σ i. The marginal pdf for a single element z1

follows by integration over all possible values of z2, and it is well
known that the result is univariate complex Gaussian and hence
independent of the correlation coefficient. It is also identical in form
for z1 and z2.

The marginal pdf is traditionally used for statistical inference,
and especially to derive confidence intervals on the elements of z.
However, there are instances where the more appropriate choice
would be the conditional pdf of z1 given a particular value � for z2

f (z1 | z2 = �, µ1, µ2, �)

= 1

2πσ 2
1 (1 − |�|2)

e−[|ξ1|2−2Re{�ξ∗
1 ξ2}+|�|2|ξ2|2]/[2(1−|�|2)],

(8)
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where ξ 2 is evaluated at z2 = �. For example, when the 2-D approx-
imation is used for inversion so that the diagonal elements of Z are
ignored, it is more appropriate to estimate confidence intervals on
the off-diagonal elements conditional on the diagonal elements be-
ing zero. The resulting confidence intervals may differ significantly
from those estimated using the marginal distribution for which no
constraints on the diagonal elements pertain, depending on the cor-
relation coefficient � and the size of |�ξ 2|. Derivation of confidence
intervals using eq. (8) is a straightforward extension of the results
presented in this paper.

In the interest of simplicity, only the marginal distribution for a
single complex element of the MT response tensor will be further
considered. This marginal pdf for z1, which is also the joint pdf for
the real and imaginary parts of the MT response, is given by

f (zR, zI | µ R, µI , σ ) = 1

2πσ 2
e−[(zR−µR )/σ ]2/2e−[(zI −µI )/σ ]2/2. (9)

The joint distribution for the magnitude squared response function
ψ = z2

R + z2
I and the phase φ = tan−1(ZI /ZR) follows from standard

transformation methods (de Groot & Schervish 2002, section 3.9)

g(ψ, φ | λ , ν, β) = β

2π
e−β(λ+ψ)e2β

√
λψ cos(φ−ν), (10)

where β = 1/(2σ 2) is the square of the precision modulus, λ =
µ2

R + µ2
I and ν = tan−1(µI /µR). This result is exact. The parame-

ters λ and ν are anticipated to be the population values of ψ and
φ, respectively, although the expected values and/or the maximum
likelihood estimates may differ. The marginal distributions for ψ

and φ are obtained by integrating eq. (10) over all possible values of
φ and ψ , respectively. When µR = µI = 0, this is straightforward,
reducing to the exponential distribution for ψ and the uniform dis-
tribution for φ. The distributions are substantially more complicated
in the more common instance where the expected value of the MT
response function differs from zero.

3 M A RG I N A L D I S T R I B U T I O N F O R T H E
M A G N I T U D E S Q UA R E D R E S P O N S E
F U N C T I O N

The marginal pdf for the magnitude squared response function ψ is
eq. (10) integrated over the range of φ

g1(ψ | λ , ν, β) = β

2π
e−β(λ+ψ)

∫ π

−π

e2β
√

λψ cos(φ−ν) dφ. (11)

Using the generating function for modified Bessel functions of the
first kind In(t), the exponential term in the integrand may be ex-
panded as

et cos θ = I0(t) + 2
∞∑

k=1

Ik(t) cos(kθ ). (12)

Performing the integration in eq. (11) yields

g1(ψ | λ, β ) = βe−β(λ+ψ) I0(2β
√

λψ) (13)

which is the non-central χ2 distribution with 2 degrees of freedom
with non-centrality parameter λ whose properties are described by
Johnson et al. (1995 chapter 29). As expected, it reduces to the
exponential distribution when λ = 0.

Defining the precision parameter κ =βλ and the non-dimensional
magnitude squared response function η = ψ /λ, eq. (13) may be
transformed under the requirement that probability is preserved to
yield

ĝ1(η | κ ) = κe−κ(η+1) I0(2κ
√

η). (14)

Figure 1. The probability density function (14) for the dimensionless mag-
nitude squared response function η = ψ /λ as a function of the precision
parameter κ = βλ = λ/(2σ 2) at values of 1, 3, 10, 30 and 100. Note the
increasingly skewed, non-Gaussian shape for κ < 30, and the lack of an
obvious mode for small values of κ .

It can be shown by integrating eq. (14) for its first two moments
that the expected value and variance of η are 1 + 1/κ and (2κ

+ 1)/κ2, respectively. Consequently, the sample value of λ is a
downward biased estimator for ψ , with the bias given by 1/β.
This may be important when the variance of MT response esti-
mates is large. The corresponding expected value and variance of
the apparent resistivity are µ(λ + 2σ 2) and 2µ2σ 2(λ + σ 2)/ω2,
respectively.

Fig. 1 shows the pdf (eq. 14) for κ = 1, 3, 10, 30 and 100. The
distribution is symmetric and peaked near η = 1 for large κ , but
is highly skewed and lacking an obvious mode for small values. It
takes on an increasingly Gaussian form as κ increases, but differs
substantially for κ < 30.

Confidence intervals are always non-unique and may be central
or non-central about a given value, but minimum size is typically
achieved in the central case. A central confidence interval about η

= 1 may be derived by solving

∫ 1+c

0, 1−c�
ĝ1(η | κ ) dη = γ (15)

for c at an appropriate probability level γ , where � denotes the
supremum. The lower bound on the integral reflects the non-negative
form of η. The confidence intervals about the expected value of η

may be found by replacing 1 with 1 + 1/κ in the integral bounds.
Fig. 2 shows c from eq. (15) evaluated as a function of κ for γ =
0.68, 0.95 and 0.99, respectively. The confidence interval is approx-
imately linear with κ on a log–log scale, exhibiting slight upward
curvature for small values. Large values of κ must be achieved for
the confidence limits to become small; for example, 3 per cent on
either side of the centre at the 95 per cent level is obtained only for
κ > 10 000. This corresponds to a relative error δZ/|Z| of about
0.7 per cent.

Eq. (13) may easily be transformed to the distribution of the
gain factor

√
ψ . The result is the Rice distribution, reducing to the

Rayleigh distribution when λ = 0.
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130 A. D. Chave and P. Lezaeta

Figure 2. The confidence interval c about 1 for the dimensionless magnitude
squared response function η = ψ /λ as a function of the precision parameter
κ = λ/(2σ 2) at probability levels of 0.68, 0.95 and 0.99. The statistics λ

and σ 2 are the expected value and variance of ψ , respectively. A confidence
interval of 3 per cent on either side of the centre at the 95 per cent level is
obtained only for κ > 10 000, and corresponds to a relative error δZ/|Z| of
about 0.7 per cent.

4 M A RG I N A L D I S T R I B U T I O N
F O R P H A S E

The marginal pdf for phase is obtained by integrating the joint pdf
eq. (10) over the range of ψ . Converting to non-dimensional form
as in eq. (14) gives

ĝ2(ϑ | κ ) = κ

2π
e−κ

∫ ∞

0
e−κηe2κ

√
η cos ϑdη, (16)

where θ = φ − ν. This can be integrated using the Mathemat-
ica 5 package (Wolfram 2003) subject to verification by numerical
quadrature of eq. (16). The result is

ĝ2(ϑ | κ ) = e−κ

2π
[1 + √

πκ cos ϑ eκ cos2 ϑerfc(−√
κ cos ϑ)], (17)

where erfc(x) is the complementary error function. Eq. (17) reduces
to the uniform distribution when κ = 0. The expected value of
θ is zero, so θ is the expected value of φ. A closed form solu-
tion for the variance cannot be obtained. The distribution eq. (17)
is symmetric about φ = ν for all values of κ (Fig. 3), becoming
increasingly concentrated as κ increases and approaching a point
distribution in the limit of large κ . However, the phase distribu-
tion is increasingly shorter tailed than the Gaussian as κ increases,
asymptotically falling off algebraically rather than exponentially
with θ .

Central confidence limits on θ about 0 (and hence on φ about ν)
follow from solution of∫ c

−c
ĝ2(ϑ | κ ) dϑ = γ. (18)

Fig. 4 shows c from eq. (18) evaluated for γ = 0.68, 0.95 and 0.99.
As for the confidence limits on the magnitude squared response
function, these are approximately linear on a log–log scale, exhibit-
ing a departure from linearity when the influence of the bounds on
θ at {−π , π} is evident. Large values of κ must be achieved for the
confidence limits to become small; for example, 0.02 radian (∼1◦)
on either side of the centre at the 95 per cent level is obtained only
for κ > 10 000, and 0.05 radian (∼3◦) is observed for κ = 800.

Figure 3. The probability density function (17) for the phase as a function
of the precision parameter κ = λ/(2σ 2) at values of 0.3, 1, 3, 10, 30 and 100.
Note the increasing concentration and more Gaussian-like behaviour as κ

increases, and the approach to a uniform distribution for small κ .

Figure 4. The symmetric confidence interval c about the expected value
ν for the phase as a function of the precision parameter κ = λ/(2σ 2) at
probability levels of 0.68, 0.95 and 0.99. The total confidence interval is 2c.
A confidence interval of 0.02 radian (∼1◦) on either side of the centre at the
95 per cent level is obtained only for κ > 10 000, and 0.05 radian (∼3◦) is
observed for κ > 800. These values correspond to relative errors δZ/|Z| of
about 0.7 and 2.5 per cent, respectively.

These values correspond to relative errors δZ/|Z of 0.7 and 2.5 per
cent, respectively.

5 D I S C U S S I O N

Confidence intervals obtained independently from eqs (15) and (18)
tend to underestimate the true value because they are exclusive,
placing all of the uncertainty in ψ or φ, respectively. Unless there
is an a priori reason to believe that one parameter is substantially
more accurate than the other, it is simultaneous confidence intervals
on both the magnitude squared response and the phase at a given
probability level that are required for inference purposes. Let γ =
1 − α in eqs (15) and (18). Simultaneous Bonferroni confidence
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The statistical distribution of magnetotelluric apparent resistivity and phase 131

Table 1. Apparent resistivity statistics.

Period (s) κ ρ (�-m) B[ρ] (�-m) Exact 95 per cent Delta 95 per cent γ

17 067 5.30 3.40 0.641 5.72 4.67 0.949
12 800 1.65 0.384 0.233 1.44 0.948 0.913
8533 10.5 2.15 0.205 2.36 2.10 0.962
6400 6.35 0.564 0.089 0.846 0.709 0.953
4267 18.2 1.23 0.067 0.970 0.912 0.967
3200 32.1 2.24 0.070 1.29 1.25 0.971
2133 47.0 1.83 0.039 0.866 0.847 0.972
1600 45.0 2.36 0.053 1.14 1.12 0.972
1067 81.9 2.47 0.030 0.876 0.865 0.973
800 104 3.60 0.035 1.13 1.12 0.974
533 277 3.76 0.014 0.719 0.717 0.974
400 291 4.36 0.015 0.812 0.809 0.974
267 542 5.68 0.010 0.775 0.773 0.975
200 509 6.85 0.013 0.965 0.962 0.975
133 1234 8.52 0.007 0.770 0.769 0.975
100 1664 9.48 0.006 0.737 0.737 0.975
66.7 4346 11.4 0.003 0.548 0.548 0.975
50.0 6880 13.1 0.002 0.502 0.501 0.975
33.3 14204 13.4 0.001 0.357 0.357 0.975
25.0 14100 16.0 0.001 0.427 0.427 0.975
16.7 6550 13.7 0.002 0.537 0.536 0.975
12.5 317 5.94 0.019 1.06 1.06 0.975

intervals on both parameters may be obtained by replacing α with
α/p (Rencher 1998, section 7.5), where p = 2 is the number of
parameters. Thus, simultaneous confidence intervals on magnitude
squared response and phase at the 95 per cent level would utilize
the 97.5 per cent level in both eqs (15) and (18). Alternately, crit-
ical values from Hotelling’s T2 distribution rather than Student’s
t may be used. It is recommended that the Bonferroni or Hotelling’s
T2 method be more widely adopted, as failure to use simultaneous
confidence intervals will tend to underestimate the uncertainty in
apparent resistivity and phase.

For illustrative purposes, time-series from site 127 (28◦48′S,
23◦47′E) of the 2003 Kaapvaal, South Africa, transect are employed.
The time-series were sampled every 5 s for about 40 d. The hori-
zontal magnetic field from site 172 (22◦38′S, 29◦31′E) was used
as a remote reference. The time-series were converted to MT re-
sponses using the bounded influence estimator described in Chave
& Thomson (2004); the Zyx (where y is east and x is north) com-
ponent of the response function is explored in detail. The electric
field at site 127 is strongly polarized to the north, and the Zyx tensor
element is concomitantly noisy, making it suitable for evaluating the
statistics under less than optimal conditions. The delete-one jack-
knife given in Thomson & Chave (1991) was used to estimate the
standard error s. Zyx and s serve as sample estimates for µR + iµI

and σ , respectively, from which sample estimates of λ, ν and β fol-
low directly. Note that jackknife and parametric variance estimates
are comparable for data that even approximately meet the Gauss–
Markov conditions, although the jackknife is conservative and hence
always yields a slightly larger result (Efron & Stein 1981), so that
use of a parametric variance estimate on the response function would
not substantially alter the conclusions. Bonferroni 95 per cent con-
fidence intervals were obtained using the delta method (eq. 2) by
scaling δZ by 2.24 (or the inverse normal distribution at the 1 −
α/2p level with α = 0.95, where the extra factor of 2 follows from
symmetry), as well as from eq. (15) expressed as apparent resistivity
and eq. (18) for phase, respectively, with γ = 0.975. Note that the
lower integration limit in eq. (15) guarantees that the resulting con-
fidence interval will be at the γ level, but the delta method does not

include the non-negativity constraint. As a result, the delta method
will systematically underestimate the size of the apparent resistivity
confidence band when its lower limit intersects zero.

Table 1 contains period, the sample estimate of the precision pa-
rameter κ , apparent resistivity computed from eq. (1), the bias (i.e.
the difference between the expected and sample values) of the appar-
ent resistivity, the 95 per cent confidence limit on apparent resistivity
from (15), the 95 per cent confidence limit from the delta method,
and the actual probability level achieved in the latter by computing
(15) with the delta method value for c. The precision parameter κ

varies from 2 to 14 000, primarily reflecting decreasing variance
at short periods due to higher coherence and increasing degrees of
freedom in the MT response estimates. The apparent resistivity at
the longest four periods is not useful, as the confidence band is ex-
tremely broad and intersects zero. The bias in the apparent resistivity
is small except at long periods, and even then is not significant when
compared to the confidence limits. Further, the differences between
the confidence limits estimated using the actual distribution and the
delta method are also small, and certainly insignificant once κ ex-
ceeds ∼100. The delta method systematically underestimates the
confidence band, although the difference is not important unless the
lower limit intersects zero. Thus, it appears that the delta method
does produce accurate confidence intervals for the apparent resis-
tivity, presuming that the MT response function estimates and their
standard errors are themselves reliable.

Table 2 shows period, the phase, the 95 per cent confidence limit
on phase from eq. (18), and the 95 per cent confidence limit from
the delta method. The precision parameter estimates are identical
to those in Table 1. Agreement of the exact and delta method con-
fidence intervals is excellent, except at 12 800 s where the delta
method yields nothing meaningful. The delta method systemati-
cally underestimates the confidence band, although the discrepancy
is unimportant.

These are gratifying results given the simplicity of eq. (2), and
would not be known without the statistical basis for comparison
given in this paper. The Site 127 data set is of low quality due to
strong polarization of the electromagnetic field and cultural noise,

C© 2007 The Authors, GJI, 171, 127–132

Journal compilation C© 2007 RAS



132 A. D. Chave and P. Lezaeta

Table 2. Phase statistics.

Period (s) Phase (◦) Exact 95 pre cent (◦) Delta 95 per cent (◦)

17067 13.56 43.47 43.48
12800 41.03 101.1 180.0
8533 76.83 29.28 29.26
6400 61.88 38.96 38.94
4267 66.01 21.78 21.77
3200 58.63 16.24 16.23
2133 66.34 13.37 13.36
1600 62.57 13.67 13.66
1067 60.84 10.08 10.08
800 66.29 8.94 8.93
533 66.46 5.47 5.46
400 66.24 5.33 5.32
267 69.56 3.90 3.90
200 65.87 4.03 4.03
133 67.04 2.59 2.58
100 64.56 2.23 2.23
66.7 59.52 1.38 1.38
50.0 58.39 1.09 1.09
33.3 51.86 0.76 0.76
25.0 47.29 0.76 0.76
16.7 44.85 1.12 1.12
12.5 14.98 5.11 5.11

and hence the delta method is probably valid for all save extremely
noisy or very short duration data sets, where useful response esti-
mates are difficult to obtain in any case.

The apparent resistivity and phase are derived quantities rather
than entities that can be estimated directly from data using a lin-
ear least-squares-based procedure. The approach used in this paper
is to first compute bounded influence estimates for the elements
of the MT tensor Z along with their standard errors (either para-
metrically or based on the jackknife), and then transform these to
apparent resistivity, phase, and their associated confidence limits.
An alternate approach would apply the jackknife directly to the ap-
parent resistivity and phase by deleting data with replacement from
estimates of Z. However, the jackknife yields accurate confidence
limits only if the underlying distribution is approximately Gaussian,
which does not apply to eq. (14) without applying a variance stabi-
lizing transformation (Stuart et al. 1999, section 32.38). It is easy
to show that log(ψ − σ 2) should be jackknifed instead of ψ . Phase
estimates may be jackknifed directly, as the distribution is symmet-
ric and quasi-Gaussian in appearance. An alternate approach would
be application of the bootstrap at a significant increase in computa-
tional load. However, consistency of the much simpler delta method
confidence limits with the full parametric ones suggests that more
complicated approaches are not generally required.

On the basis of empirical analyses, Bentley (1973) and Fournier
& Febrer (1976) claimed that apparent resistivity is log normally
distributed, and this result has been widely cited. It is not diffi-
cult to understand this conclusion if it were derived from ordinary
least-squares MT response function estimates, as would be standard
practice in the 1970s. Such estimates are frequently dominated by
a small number of extreme data, so that the apparent resistivity will
be very long-tailed and its distribution might be approximated as
log normal. However, the correct distribution for the apparent resis-
tivity based on statistical theory is non-central χ 2 with 2 degrees of
freedom, which is always shorter tailed than log normal, especially
as the non-centrality parameter (or the squared response function)
increases. Further, the shapes of the correct distributions for both

apparent resistivity and phase change markedly as the non-centrality
parameter increases, in contrast to log normal or normal approxi-
mations to each. It is recommended that the correct distributions be
used for future inference.
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