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Abstract 

 The design and testing of a robotic analyzer for autonomous TCO2 measurement 

from oceanographic moorings is described. The analyzer employs a conductimetric 

method of TCO2 measurement wherein CO2 from an acidified sample diffuses across a 

semi-permeable membrane into a NaOH solution decreasing the conductivity of the 

base. The instrument is capable of ~850 analyses over a period of at least six months. It 

is designed to operate to depths of at least 1000m. TCO2 calibration is based on in situ 

standardization throughout a deployment. 

 We report both laboratory and in situ tests of the analyzer. In the laboratory 

automated analyses over a period of 38 days at temperatures ranging from 8° to 25° C 

yielded a TCO2 accuracy and precision of ±2.7 μmol/kg. In situ tests were conducted at 

the WHOI dock with a deployment of 8 weeks at in situ temperatures of 5°-13°C. The 

accuracy and precision of TCO2 analyses over the deployment period, based on in situ 

calibration, was ±3.6 μmol/kg. 

 Laboratory tests of reagent and standard solution stability are also reported. 

Standards, based on Certified Reference Material were followed for periods of up to 2 

years. In all cases TCO2 increased. Drift of the standards was the equivalent of ~1 to 
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μmol/kg per 6 months. The conductivity indicator solution was found to be stable for at 

least 2 months. 

 

1. Introduction 

 The role of CO2 in climate and the important part the oceans play in taking up 

anthropogenic CO2 has led to great interest in the oceanic CO2 system and the marine 

carbon cycle. The oceans are estimated to have taken up about 30% of past 

anthropogenic CO2 emissions (Takahashi et al., 1999) and are predicted ultimately, on 

millennial and longer time scales, to take up some 90% of anthropogenic carbon 

released to the atmosphere (Archer et al., 1998). The uptake of anthropogenic CO2 has 

altered ocean chemistry and processes tied to the carbonate system of the oceans. Orr 

et al. (2005) report a decrease in the pH of the oceans by 0.1 pH units and predict a 

decrease of 0.2 to 0.3 over the next century. Decreasing pH lowers CaCO3 mineral 

saturation, enhancing dissolution in the upper water column and reducing burial of solid 

CaCO3 (Feely et al., 2004). Decreased pH also inhibits CO2 uptake by the oceans 

(Sabine, et al., 2004). Understanding the rates of uptake of CO2 by the oceans and the 

processes governing uptake and redistribution within the ocean is critical to assessing 

the impact of anthropogenic CO2 on the oceans and in the development of models that 

seek to predict future impacts. 

 An important strategy being employed to monitor biogeochemical changes in the 

oceans is the establishment of time series stations where intensive measurements of a 

variety of biological, physical and chemical variables are repeatedly made at a fixed 

location over periods of years. Perhaps the best known of these, where extensive data 

sets have been collected, are the Hawaii Ocean Time-series (HOT) and Bermuda 

Atlantic Time-series Study (BATS).  Studies at these stations have provided a wealth of 

insights into temporal biogeochemical variations from almost unbroken data records 

since 1988. As regards the CO2 system, data from these studies document a steady 

increase in TCO2 (Bates, 2001). Measurements are made both from moorings at these 

sites and from ships on approximately monthly visits. To date, measurements that fully 

characterize the TCO2 system have been limited by the ship schedules. However, it is 

widely acknowledged that episodic events play a critical role in biogeochemical 

processes. Monthly cruises, which occupy a location only a small fraction of the time, 
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can capture neither high frequency nor many episodic events, systematically missing 

some that are almost certainly important, e.g. severe storms, large scale eddies, 

internal waves. 

Providing a continuous presence at oceanographic time-series sites has led 

several investigators to develop instruments suited for autonomous measurement of 

one or more of the parameters required to characterize the CO2 system (e.g. pH, ƒCO2, 

total alkalinity, TCO2). These include pCO2 (DeGrandpre, 1993; DeGrandpre et al., 

1995; Merlivat and Brault, 1995), pH (Byrne et al., 1999; Martz et al., 2003, Liu et al., 

2006; Seidel et al., 2008) and TCO2 (Byrne et al., 2002). To our knowledge, within the 

CO2 system, only sensors for pH and ƒCO2 have been deployed in the ocean for 

autonomous, unattended operation. This paper describes the development and in situ 

testing of a Robotic Analyzer for the TCO2 System (RATS).  

RATS was designed and built to measure both TCO2 and pH. The pH instrument 

is based on the spectrophotometric methods described by Clayton and Byrne (1993) 

and Zhang and Byrne (1996). The optical cell we employed was a long path length 

liquid core waveguide (lcw) (Byrne, et al., 1999) permitting absorbance measurements 

at very low dye concentrations, thereby avoiding perturbation of sample pH by the dye 

(Chierici, et al., 1999). The lcw used was Teflon AF® tubing. Subsequent to our in situ 

testing Liu, et al. (2006) reported an artifact in pH measurements made with a Teflon 

AF® lcw. Our measurements of pH are consistent with their findings. RATS can operate 

with a different optical cell, such as the long path length PEEK cell described by Liu et 

al. (2006), or can be reprogrammed readily to utilize the approach to spectrophotometric 

pH measurement taken by Seidel et al. (2008). However, as we have not collected in 

situ data using these alternatives, we discuss here only the TCO2 instrument. 

 

 2. Performance Criteria 

 The development of the instrument has sought to meet the following criteria: 

  • Measure TCO2 over prolonged periods of time with precision of  

  ≤±5 μmol/kg. 

  • Operate submerged to depths of at least 1000m 

  • Be capable of in situ standardization at user defined intervals 

  • Operate unattended for up to six months or ~1000 analyses. 
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 The precision sought is less than that achieved in the laboratory but is what we 

considered realistic for an instrument autonomously operating submerged for periods of 

many months while still being adequate to address a variety of oceanographic issues. 

Holding pH constant (RATS TCO2 analysis is intended to be paired with pH 

measurement), the TCO2 error corresponds to ± ~1 atm in ƒCO2 and ± ~5 μmol/kg in 

alkalinity for seawater of the composition: TCO2= 1998.2 μmol/kg, TA= 2202.0 μmol/kg, 

pH= 7.974 (20°C and 1 atm pressure). This resolution can quantify trends from episodic 

events such as storms and eddies as well as seasonal cycles in most ocean 

environments. In some regions diurnal cycles also could be resolved. The depth limit is 

arbitrary and intended to provide access to the “twilight zone”. The capacity for in situ 

standardization at regular intervals is important in assessing instrumental performance 

throughout deployments of many months. The endurance given is somewhat arbitrary 

and limited by accommodating required reagent volumes rather than power. 

 The choice of TCO2 as the measured variable was based upon a number of 

considerations. First, the TCO2 / pH pair (and total alkalinity / pH) yields more precise 

calculations of dissolved carbonate speciation than the ƒCO2 /pH pair (Millero et al., 

2002). Perhaps most important, changes in TCO2 in response to photosynthesis and 

respiration are much larger than those of TA, facilitating accurate determination of 

variations in these processes that are central to the oceanic carbon cycle. Finally, we 

deemed implementing an in situ method for the determination of TCO2 simpler and 

more power efficient than would be the case for alkalinity. 
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3. Analytical Method 

RATS employs the conductimetric method of TCO2 measurement described by 

Hall and Aller (1992). In this method CO2 diffuses through a semi-permeable membrane 

from an acidified seawater sample into a sodium hydroxide solution. The high ƒCO2 of 

the acidified seawater and low ƒCO2 of the base drives quantitative exchange of CO2 

across the membrane. The CO2 reacts with OH- in the base to produce CO3
= and HCO3

- 

ions, decreasing conductivity. The limiting equivalent conductivity (cm2 Int. ohm-1 equiv-

1, 25°C) of OH- is 198.3, that of HCO3
- and CO3

= are much smaller: 44.5 and 69.3, 

respectively (Robinson and Stokes, 1959). This conductivity contrast forms the basis of 

conductimetric TCO2 analysis. 

The NaOH concentration of the indicator base used is 7 mM. This concentration 

was chosen to maximize the response of our CO2 instrument to samples in the normal 

range of TCO2 in seawater. The samples are acidified with 0.024 M H3PO4. This 

relatively low acid concentration has a density well below that of seawater while 

providing a substantial excess of H+. The density contrast reduces irreproducible 

dilution of the acidified sample by mixing in the CO2 exchange cell.  

Figure 1 presents the speciation and conductivity relationships calculated for 7 

mM NaOH over a range of TCO2 concentration. Conductivity is presented as relative 

specific conductivity (RSC): the conductivity of the base at a given TCO2 concentration 

normalized to the conductivity of the unreacted base. This normalizes the cell constant 

and hence applies to any conductivity cell.  

The change in conductivity from the addition of CO2 exhibited in Figure 1 reflects 

three reactions:  

   1. 2OH- + CO2   CO3
= + H2O 

   2. OH- + CO2   HCO3
- 

   3. CO3
= + CO2 + H2O  2 HCO3

-. 

The optimum CO2 range for measurement is restricted to CO2 additions (exchange) 

where reaction 1 dominates (≤ ~2800 μmol/kg TCO2) and 2 OH- are consumed per CO2 

added, producing one CO3
=. Once significant amounts of HCO3

- are produced (above ~ 

3000 μmol/kg TCO2), the sensitivity to CO2 addition decreases: the change in 

conductivity per mol of CO2 added for reaction 2 is only 60% of that for reaction 1, 

based on limiting equivalent conductance. With further increase in CO2 (≥ ~3500 



 6

μmol/kg) sensitivity becomes very poor as reaction 3 dominates and the conductivity 

change is < 10% of that for reaction 1. Thus the upper bound of CO2 addition is set by 

the need to restrict measurement conditions to the region where the predominant 

reaction is OH-  CO3
= . The lower bound of TCO2 addition is set by the precision of the 

conductivity measurement (typically a few parts in 10,000) and the objective of 

achieving a TCO2 precision of ±5 μmol/kg. The working range, using 7mM NaOH, is 

sufficient for most oceanographic applications. From Figure 1, a range of CO2 added 

from 1600 μmol/kg to 2800 μmol/kg should decrease RSC of the solution from ~0.75 to 

~0.58. The precision of measurements outside of this TCO2 range can be enhanced 

using a different NaOH concentration. 

A schematic of the TCO2 analyzer is presented in Figure 2. A 10 cc syringe pump 

is used to move solution in the analyzer. Solution is drawn through the instrument to 

minimize the number of valves required, permit use of a single pump and minimize 

power requirements. Rotary distribution valves (RV1 and RV3, Fig. 2) control the flow of 

solutions. The valve ports remain closed (sealed) except when selected. Sample and 

standard volume is fixed with a sample loop (500l). Exchange of CO2 from acidified 

sample or standard into the NaOH occurs across a silicone membrane in the exchange 

cell. The configuration shown is the in situ instrument. In the laboratory experiments 

discussed below, RV3 was a 4-port valve, limiting the number of standards to 2. 

TCO2 analysis consists of seven sequential steps. 1) The sample loop, knotted 

mixer and acid/sample volume of the exchange cell are flushed with “fresh” acid from 

the reservoir. 2) The base volume of the exchanger is flushed three times in succession 

with 120 sec between each base flush. The delays between flushes remove any CO2 

present in the acid in the outer volume of the exchange cell prior to introducing the final 

base flush into which the sample CO2 will be exchanged. This procedure also flushes 

the conductivity cell and tubing between the exchanger and cell with new, unreacted 

base to serve as the pre-sample peak baseline.  3) The sample loop is then flushed and 

filled with sample or standard. 4) The sample (standard) is moved through the knotted 

mixer, with acid both leading and trailing the slug of sample, into the exchange cell. 

Mixing of the sample with acid is enhanced in the knotted mixer. 5) The acidified sample 

is held in the exchange cell for 3600 sec to permit nearly complete CO2 exchange. The 

long exchange period is based on uptake in the base of ≥99% of the analyte CO2 at a 
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temperature of 5°C. At this proportion of complete exchange the rate of further reaction 

is very slow, rendering the integrated conductivity change highly reproducible, 

enhancing precision. Exchange is more rapid at higher temperatures, but we have 

adopted an exchange time suited to low temperatures as the standard exposure time. 6) 

Following the exchange period, base is drawn through the conductivity cell for 90 sec. 

while conductivity is measured. This results in a sequence through the cell of unreacted 

base( =pre-peak baseline), reacted base( =TCO2 peak), unreacted base( =post-peak 

baseline). 7) The syringe is emptied. An analysis requires 8.7 minutes plus the 

exchange time, or as normally run 68.7 minutes. Each analysis consumes 2500 l of 

sample/standard, 4760 l of acid and 3825 l of NaOH. 

 

4. Instrumental 

The analyzer is controlled by a Tattletale™ Model 8 (Onset Computer) process 

controller. A 12-bit A/D converter is used for temperature and conductivity data 

acquisition. Temperature and conductivity data are stored as 10-point averages 

recorded at 10Hz. Conductivity is measured with an Amber Science Model 2055 

Conductance Board, a conductivity bridge operating at 1000hz with analog output. 

Conductivity data are stored and reported here as counts (cts). The resistance of the 

bridge is set such that the A/D converter yields ~3500 cts (of 4096) for 7 mM NaOH at 

~23°C. A battery pack in the controller pressure case is sufficient for ≥1000 TCO2 

analyses. However, reagent volume storage, specifically acid, is limiting currently, 

permitting ~850 analyses. 

The conductivity cell is a custom designed 3-electrode cell. It was developed in 

consultation with K. D. Lawson of Sea-Bird Electronics, Bellevue, WA. The configuration 

is analogous to the Sea-Bird CTD conductivity cells in that the electrodes are in series 

with the center electrode being the “power” electrode and the outer pair common. The 

guard (common) electrodes isolate the cell from externally generated signals. The 

electrodes are 0.125” o.d. x 0.060” i.d. (3.2 mm x 1.5mm) Pt tubing 0.80” (20.2mm) 

long. The electrodes are separated by polysulfone spacers (0.280” (7.1mm) thick with a 

0.060” (0.15mm) i.d). The internal volume is 146 l. 

Where possible the analyzer components are contained in pressure-balanced 

housings to minimize the number of pressure cases required. The valve motors, 
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conductivity cell, syringe pumps, and thermistor are housed in containers filled with 

Fluorinert™ FC-40, a low viscosity, low dielectric fluid. Only the controller with battery 

pack is contained in a pressure case, which is rated for 5000m. The operation of the 

components housed in pressure-balanced containers with FC-40 has been tested to 

1500 psi (~ 1000 m). The limit of the pressure tests was arbitrary and operation to 

depths approaching 5000m should be possible. 

Reagents and standards require containers without fixed volumes. With the 

exception of the phosphoric acid, solutions used in RATS analyses are kept in Cali-5-

Bond™ sample bags (Calibrated Instruments, Inc.). Cali-5-Bond™ is a gas 

impermeable 5-layer “sandwich” of plastic and aluminum for storage of gases and 

liquids. Since prolonged storage of the phosphoric acid in the aluminized bags seemed 

potentially risky, the acid is kept in standard clinical IV bags.  

The exchange cell is analogous to that described by Byrne et al. (2002). The cell 

is, basically, a tube within a tube (inset Figure 2). The inner tube of silicone rubber 

(0.077” (1.96mm) o.d. x 0.058”(1.47mm) i.d.) contains the NaOH into which CO2 

diffuses. The outer tube is thick-walled polycarbonate (0.25”(6.35mm) o.d. x 

0.125”(3.18mm) i.d.) into which the acidified sample is drawn. The length of both tubes 

is 20cm, giving inner and outer volumes of 339l and 985l, respectively. The ~3:1 ratio 

of outer to inner volume is employed to enhance the amount of CO2 available per 

volume of NaOH and hence the resulting conductivity change. 

 

5. RESULTS 

Experiments of 5 to 8 weeks duration were carried out in the laboratory and in 

situ to assess the analytical performance of RATS. The laboratory experiments permit 

assessment of various aspects of calibration, precision, and accuracy under controlled 

conditions for comparison with in situ results that present a variety of additional 

challenges. The laboratory experiments were followed by a number of in situ 

deployments.  

5.1 Laboratory Experiments 

To assess TCO2 analytical performance in the laboratory an experiment of 38 

days duration was conducted during which TCO2 was determined at a series of seven 

temperatures ranging from 8° to 25°C. The objectives were to assess, over a range of 
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temperature, 1) instrument stability over the 5-week period, 2) the reliability of large-

scale temperature correction, and 3) the accuracy and precision of seawater TCO2 

determinations based on Na2CO3 standards. Four solutions were measured at each 

temperature: two Na2CO3 “standards”, a “sample” that is a Certified Reference Material 

seawater (CRM, Batch 37) obtained from Andrew Dickson at Scripps Institution of 

Oceanography, and a 0.63 M NaCl blank. The TCO2 concentrations of the Na2CO3 

standards and the CRM (Batch 37), stored in Cali-5-Bond™ bags, were independently 

measured by gas phase IR techniques before the start of the experiment. Laboratory 

TCO2 analyses used an automated analyzer employing gas stripping of an acidified 

sample (300 l) and gas phase IR analysis with a Li-cor™ 6252 analyzer (Li-cor 

analysis). Li-cor analysis of the CRM seawater yielded the TCO2 concentration given for 

Batch 37 (±2 mol/kg). 

During the experiment each solution was analyzed five times at intervals of 5 

hours at each temperature, using the automated procedures of the analyzer. All five 

analyses of a given solution at each temperature were completed prior to beginning 

analysis of another solution. The NaCl blank was run at each temperature before and 

after TCO2 solutions to assess carryover; none was detected. 

To achieve temperature control, the laboratory instrument and all solutions used 

were enclosed in an insulated box containing heat exchange coils and a fan to mix air 

within the box. The conductivity cell and in-line thermistor cell were immersed in FC-40 

to enhance temperature stability. Temperature variation over the 20 hours used for the 

five successive analyses of each solution typically was ±0.1°C. The temperature range 

over the ~100 hrs taken for measurements of all the solutions at a given temperature 

was ~±0.2°C. When the temperature was changed to a new value, 24 hours were 

allowed for thermal equilibrium to be established in the solutions.  

In quantifying TCO2 concentration we evaluated the precision of both peak height 

and peak area. Peak height (baseline less conductivity at time points within the peak) 

was determined on the basis of the average of 5 points on either side of the minimum 

conductivity value. Peak area is defined as peak height integrated over the interval 8 to 

85 sec. Peak width varies slightly with temperature and the 85 sec end-point for peak 

area determination is set to capture the entirety of peaks at low temperature. At a given 

temperature and TCO2 concentration the scatter in peak height is 2 to 3 times that of 
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peak area. Consequently, the ensuing evaluations of TCO2 analysis are based on peak 

area.  

5.1.1 Instrument Stability 

 In comparing TCO2 analyses made over a range of temperatures for a prolonged 

period of time, it is essential to establish that observed changes in the baseline (NaOH 

conductivity) are due solely to temperature variation, i.e. instrumental and NaOH drift 

are not significant over the time period in which standardization is completed. To test for 

drift, the baseline conductivity data for all of the runs throughout the 38-day experiment were 

fitted to the measured temperature with a second order polynomial. The residuals between 

measured and calculated conductivity exhibit no trend with time, and the root-mean-

square of the residuals is 0.84 cts. As a further test for temperature independent drift, 

we fit the baseline data for the first three temperatures studied (25°, 22°, 17°, days 1- 

16) to a polynomial and used that regression to calculate expected baseline values from 

measured temperature for the last interval studied (19.5°, days 34-38). The root-mean-

square of the differences between the calculated and measured baseline values for this 

interval is 1.1 cts. Both approaches to assessing instrumental and NaOH drift yield 

uncertainties only slightly larger than the uncertainty in determining the baseline in a 

single analysis (~±0.5 cts). These values correspond to an uncertainty in baseline 

determination for a given sample over the 38 day period of the experiment of 0.02% to 

0.03% at  ~20°, indicating that instrumental and NaOH drift were not significant over the 

5+ week experiment. 

5.1.2 Peak Area Correction 

In order to determine the precision and accuracy with which we can determine 

TCO2, over the range of temperatures studied, it is necessary to correct the peak area 

data at each temperature to a common reference temperature. This is done empirically, 

based on the observed relationship between temperature and the peak area of the 

standards. The CRM “unknown” was treated similarly to verify that temperature 

correction based on the Na2CO3 solutions is applicable to seawater (the CRM). For 

each analysis of a solution, the measured peak area is normalized with a correction 

factor,   

CorF = PkATmeas/ PkATref.  
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The peak areas at both the measurement (Tmeas) and reference (Tref) temperatures are 

calculated for each standard with the polynomial regression of peak area vs. 

temperature. Note that CorF is a ratio of peak areas, giving the relative change in peak 

area with temperature. The temperature corrected peak area (PkATcor) is given by 

PkATcor= PkAmeas/CorF 

with PkAmeas being the peak area measured at temperature Tmeas. 

To apply this approach to measurements of samples with unknown and variable 

TCO2, the correction factor (CorF) must be independent of concentration and values 

derived from the Na2CO3 standards must be applicable to seawater samples. This is 

expected since conductivity changes should only reflect the addition of CO2 to the 

NaOH. To test this assumption, the values of the correction factor, CorF, for a reference 

temperature of 16.5°, are plotted as a function of measured temperature in Figure 3. 

The figure includes CorF values for all of the analyses of the Na2CO3 standards as well 

as the CRM. Also included are linear regressions of the data for each of the three 

solutions. The regressions are essentially indistinguishable, consistent with the fact that 

correction factors (CorF) derived from the Na2CO3 standards are identical (i.e. 

concentration independent), and that the Na2CO3 correction factors are identical to 

those of the CRM. Thus CorF derived from the Na2CO3 standards can be applied 

generally to seawater samples over the concentration and temperature ranges of this 

experiment. 

5.1.3 TCO2 Calibration and Analysis 

The above temperature correction method was applied to the peak areas 

measured at each temperature to assess the precision and accuracy of TCO2 

determinations of a seawater “unknown” (the CRM), based on the Na2CO3 peak area 

calibration. Peak area values of all three solutions were corrected to a reference 

temperature of 16.5°C, the mid-point of the range studied, with the Na2CO3 correction 

factor. The TCO2 concentration of the CRM was calculated with a linear regression of 

concentration vs. corrected peak area for the Na2CO3 standards. The use of a linear 

regression is not strictly appropriate as conductivity and hence peak area is a non-linear 

function of CO2 concentration. However, over the limited concentration range of the 

Na2CO3 standards, departure from linearity is small. We estimate that the error is an 

overestimate of less than 1 μmol/kg. The average TCO2 concentration of the CRM 



 12

determined over the 38 day experiment at temperatures from 8° to 25°C, based on the 

Na2CO3 calibration, is 2043 ±2.7 μmol/kg. Taking into account a 1 μmol/kg non-linearity 

correction, a value of 2042 μmol/kg is possible, still within 1 of the true concentration 

2044 mol/kg).  

The measurements made also permit concentration calibration at each of the 

seven temperatures studied over the course of the experiment. These data demonstrate 

the short-term (~ 5 day) variability and the consistency of the measurements throughout 

the period of the experiment. The individual measurements of the TCO2 concentration 

of the CRM sample, as well as the averages and standard deviations for each 

temperature, are presented in Figure 4. The average 1 for the 7 individual data sets is 

±2.2 μmol/kg. Thus the measurement uncertainty is similar for (a) data calibrated and 

averaged over 38 days at measurement temperatures between 8 and 25°C (± 2.7 

mol/kg) and (b) calibrated over only 5 days at a single temperature (±0.2°C) (±2.2 

mol/kg). Further, the magnitude of the temperature correction to the reference 

temperature (16.5°) has no effect on the concentration determination (Figure 4).  

In summary, the laboratory data indicate that the TCO2 instrument developed is 

stable and suited for unattended operation for periods of at least 5 weeks. The TCO2 

reagents and standards are also stable for at least this period of time. The temperature 

corrections required in comparing analyses over a range of temperature approximating 

environmental conditions (8-25°) do not introduce any detectable bias in the 

concentrations of TCO2 determined. Regardless of whether the data are analyzed as a 

single group collected over a period of 5 weeks or at individual temperatures over 

periods of ~5 days, the concentrations and analytical uncertainties are similar. The 

analyses performed are accurate, yielding an estimated concentration of 2043 μmol/kg 

for a TCO2 Certified Reference Material whose stated and confirmed concentration is 

2044 μmol/kg. The precision of the measurements over the course of the 38-day 

experiment was ±2.7 μmol/kg. For comparison, laboratory coulometric TCO2 analyses 

typically cite precisions of 1.5-2.0 μmol/kg (Dickson, et al., 2007).  

5.2 In situ TCO2 Experiments 

The components tested in the lab were incorporated into an instrument suitable 

for in situ deployment in the ocean (Figure 5). As noted above, RV-3, a 4-port valve in 

the laboratory experiments, was changed to a six-port valve for the in situ experiment, 
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permitting the use of 4 TCO2 standards for improved calibration. In situ tests of 

performance were carried out at the WHOI dock. The location provides ready access to 

the instrument, facilities support when needed, and monitoring and control of operations 

over the Internet. In addition, the location is an environment that challenges the robotic 

operation of any analytical tool. Currents are strong (several kts), temperature varies 

rapidly as tides change, and primary production and bio-fouling are high. We deemed 

the conditions a strong test of the capabilities of the instrument. RATS has been 

deployed at the dock a number of times over the course of our in situ tests. In total, the 

instrument has been operated submerged for about six months. We report here the 

results obtained in the most recent deployment, as this was the most thorough test 

conducted.  

Rats was deployed at the WHOI dock from 29 Mar through 23 May 2006, a total 

of 56 days. The instrument was tethered at ~ 10 m depth for the duration of the 

experiment. Throughout the test the instrument was connected to the surface by a 

communications cable. This was done to permit monitoring of operation and 

downloading of data over the Internet. Previously we tested operation of the instrument 

with and without the cable and observed no difference in any aspect of operation. Over 

the course of the experiment, in situ temperature ranged from ~4.5° at the outset to 

~13.5° at the time of recovery. The diurnal variation of temperature was ~1.2° early in 

the experiment and ~0.9° over most of the period. Temperature changes of 0.2° to 0.4° 

in an hour were not uncommon. The depth of the instrument changes with the tide, but 

the range is quite small: ~0.7 m. Particulate matter in the water was generally high, 

based on the typical visibility of ~2 m, but was not measured. 

The first week of the deployment was used to test operations prior to starting a 

long automated sequence. The automated analytical sequence consisted of a series of 

sample and standard analyses that ran for approximately 1 week at a time. The 

sequence was repeated each week for the remainder of the deployment. This approach 

was employed to permit downloading of the data files weekly for assessment of 

performance. At no time was a malfunction detected in the analyzer. Running in this 

fashion is operationally the same as programming the instrument to run for the entire 

period of the deployment. Dock water samples were run every 5 hours; standards were 

run between samples at assigned frequencies based on the number of sample analyses 
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completed. Each standard was run 3 or four times per sequence (~1 week), a much 

higher frequency than would be normal for a mooring deployment. This was done to 

enhance evaluation of instrument stability and calibration. In total 121 standards and 

233 samples were analyzed in situ. 

For calibrating TCO2 response and assessing accuracy, four standards were 

analyzed throughout the deployment. Two of these were CRMs modified by the addition 

of NaHCO3 or HCl and equilibrated with atmospheric CO2 to extend the TCO2 

concentration range. The other two standards were unmodified CRMs. The two 

modified CRMs and one unmodified CRM were used as standards for calibration. The 

second unmodified CRM was treated as a “sample” in order to assess precision and 

accuracy. The Na2CO3 standards were abandoned due to long term drift in TCO2. As in 

the case of the laboratory experiment, the standards were and stored in Cali-5-Bond™ 

bags. The TCO2 concentrations of the standards were determined before and after the 

deployment by Li-cor analysis. The pre- and post-deployment concentrations did not 

differ significantly and the average for each was used for the in situ TCO2 concentration 

calibration. The Li-cor determined concentrations of the standards are given in Table 1. 

5.2.1 Instrument Stability 

The stability of the conductivity measurements over the course of the deployment 

dictates the intervals over which calibration can be used without introducing additional 

error. To determine if the conductivity measurement changed over the 8-week 

deployment, either through change in the conductivity cell or change in the conductivity 

of the NaOH, we have compared baseline measurements made in the laboratory before 

and after the deployment (a period of ~10 weeks). The temperatures of the pre- and 

post-deployment measurements are not identical but do overlap. The pre-deployment 

baseline conductivity and temperature data were fit with a linear regression.  The post-

deployment baseline data were then compared to values calculated with the  pre-

deployment regression at the post-deployment temperatures. The residuals of the pre-

deployment data, calculated with the pre-deployment linear regression average -.04 

±1.7 cts. The residuals of the post-deployment data calculated with the pre-deployment 

regression average -2.9 ±6 cts (out of ~3300). The post-deployment baseline residuals 

exhibit more scatter, but do not differ significantly from the pre-deployment residuals. 

Since there was no measurable change in the conductivity cell or conductivity of the 
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base, a TCO2 calibration over the eight-week deployment is justified. The observed 

instrument stability indicates that running a complete set of standards (4), at most, once 

every 7-10 days should be sufficient for calibration purposes. This translates to at least 

10-12 sample analyses per standard analysis. 

5.2.2 Peak Area Correction 

Raw peak area data for the standards was corrected to reference conditions 

somewhat differently from the procedure described for the laboratory experiments. 

Throughout the in situ deployment we observed that the baseline frequently overshot 

the pre-peak value at the end of the period used to define the peak. This discrepancy 

between pre- and post-baseline averaged +2 cts (in 2400 to 2800 cts) and ranged from 

-2 to +5. Since peak area is defined as (ctst=0-ctst=t), in the time period assigned to the 

peak, the overshoot, on average, reduced peak area slightly relative to an invariant 

baseline. We do not know the origin of this feature but suspect it is due to very small 

temperature differences between the conductivity cell and thermistor, originating from 

rapidly changing external water temperatures. In terms of concentration, the effect is, on 

average, ~ 0.5 μmol/kg. To account for variations in this baseline difference, peak areas 

were corrected to both a reference temperature and a reference baseline difference 

using a multiple linear regression analysis of in situ measured peak area and the 

independent variables temperature and baseline difference (MLR-PkA). Using data from 

the entire deployment, each standard was regressed separately. The regressions were 

run twice, first with all of the data and a second time with corrected peak areas that 

depart from the average by more than 3 excluded. Each standard was analyzed ~30 

times over the 8-week deployment and 1 or 2 points were excluded from each set of 

data used in the regressions. As in the procedure described for the laboratory 

experiments, the raw peak areas of the standards were corrected to reference 

conditions with a correction factor, CorF, such that: 

CorF= (PkA(ref T; ref dBsl))/(PkA(meas T; meas dBsl)), 

where PkA= peak area, ref= reference value, meas= measured values and dBsl= pre- 

post-baseline difference. Both numerator and denominator are calculated with the 

coefficients of the MLR-PkA for each standard. The reference temperature was 8.5° C, 

the mid-point of the deployment range, and the reference baseline difference was +2 

cts, the average baseline difference.  
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Since CorF was shown to be independent of concentration in the laboratory 

experiments, CorF values for unknown samples of variable TCO2 can be derived from 

the CorF values of the standards. To obtain this algorithm the CorF values of the 

standards were regressed against temperature and baseline difference with a multiple 

linear regression (MLR-CorF). A CorF value for each sample was then calculated from 

the averaged MLR-CorF coefficients of the three standards. Peak areas were corrected 

to the reference temperature and baseline difference, with these CorF values. 

5.2.3 In situ Calibration and Standard Analysis: 

Determination of TCO2 concentration is based on the corrected peak areas of the 

standards and the pre- and post-deployment average concentration of the standards 

determined in the laboratory. We have used the standards A, B and C for a calibration 

curve. Standard D has been treated as a “sample” in assessing performance over the 8-

week deployment. The standard curve, based on 28 to 30 analyses each of standards 

A, B and C, is given in Figure 6. The TCO2 concentration of standard D calculated from 

the regression in Figure 6, with peak area corrected as described above for samples, is 

plotted over the course of the deployment in Figure 7. Excluding the two points 

indicated on the figure (open symbols) the average concentration is 2034 ±3.6 μmol/kg. 

This value is not significantly different from the Li-cor average for Standard D (2036 ±4 

μmol/kg). There is no significant trend in the concentration with time. In fact, RATS may 

improve with use; while the average concentration is the same during the periods before 

and after day 20, the scatter is quite a bit less beyond day 20: ±3.0 vs. ±4.4 μmol/kg. 

Based on the measured TCO2 with pH held constant at the value calculated for Std D 

(CRM Batch 82) at in situ conditions (8.5°C, 10m depth), our TCO2 standard deviation 

of ±3.6 μmol/kg corresponds to an uncertainty in calculated alkalinity and ƒCO2 of ±3.6 

μmol/kg and 0.5 atm, respectively. If an uncertainty in pH of ±0.001 (Seidel et al., 

2008) is also considered, the combined uncertainties become ±3.7 μmol/kg and ±1.2 

atm. The above calculation is based on TCO2/ pH for consistency with the intended in 

situ measurement of this pair of variables. At constant alkalinity and our TCO2 

uncertainty of ±3.6 mol/kg, the ƒCO2 uncertainty would be 6.4 atm. 

5.2.4 In situ Sample Analysis: 

TCO2 concentrations for the dock water samples were derived with the same 

procedure employed for standard D. The TCO2 concentration of dock water over the 
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duration of the deployment is shown in Figure 8a. TCO2 is highly cyclical with a range of 

~10 μmol/kg in the colder conditions early in the deployment and up to 40 μmol/kg at 

the end of the experiment as temperatures warmed and daylight increased. The 

variations exhibit a roughly 1-day period, suggestive of the diurnal cycle of 

photosynthesis and respiration, with TCO2 draw down in mid-day and maxima in the 

vicinity of midnight. While our sampling frequency is less than ideal for defining diurnal 

and shorter cycles, we processed the sample data using Lomb’s method (Lomb, 1976) 

to assess the periodicity of TCO2 concentration. The power spectrum density calculated 

confirms (Figure 8b) that the only significant frequencies (above .005/hr) are the diurnal 

cycle (.042/hr or a period of 23.8hr) and tidal cycle (.080/hr or a period of 12.5 hr), with 

the diurnal cycle being the more significant of the two. 

The samples drawn into the system for analysis were not filtered. We avoided 

filtering because we felt that plugging of a filter in the dock environment was highly 

likely. There is thus the possibility of entrainment of CaCO3 particles, leading to a TCO2 

concentration above the true dissolved concentration. To assess this possibility we 

collected dock water samples with a 25 L Niskin on four different occasions. These 

samples were collected at the depth of the RATS sample tube (within 1 m) 

simultaneously with the draw of a RATS TCO2 sample (within ~1 min). A 1L glass bottle 

was rinsed and filled completely from the Niskin at the dock and immediately returned to 

the lab. In the lab four samples were drawn from the well-mixed bottle, two were filtered 

(0.2um pore size) and two were not filtered. TCO2 was determined in duplicate on each 

of the four aliquots. The results from these four sets of analyses are presented in Table 

2. It is clear from the data that the filtered and unfiltered pairs do not differ significantly. 

Thus, despite a relatively high particulate load, based on inspection of the bottles, there 

is no evidence of particulate matter contributing to the TCO2 concentration measured on 

the in situ samples. 

The Niskin samples collected also provide an opportunity to compare RATS 

analyses with samples collected and analyzed by more traditional laboratory methods. 

As noted above, the Niskin samples were collected in close proximity to the in situ 

instrument simultaneously with a RATS sample draw for TCO2 determination. However, 

such a comparison is likely to be somewhat uncertain, as the waters flowing past the 

instrument and Niskin are quite heterogeneous and change rapidly (e.g. the diurnal 
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swings in concentration of ~40 μmol/kg during the period when these comparisons were 

carried out, Figure 8a). The concentrations determined with RATS at the time of Niskin 

sampling are included in Table 2. Two of the comparisons agree within error while two 

exceed the two-sigma uncertainty of the analyses and both positive and negative 

differences are observed.  

The RATS-Niskin difference exhibits a trend from negative to positive over time. 

While the standard D analyses during this time period (26-55 days) exhibit a positive 

trend in concentration (Figure 7), variation is not significant relative to the analytical 

uncertainty. The slope of concentration vs. time for standard D in this period is not 

statistically significant (slope= 0.16  ±0.20), nor are the concentrations predicted from 

the fit in this interval significantly different from the deployment average (< 1). Finally, 

there is no trend over the last 15 days. Thus the positive trend in the RATS-Niskin 

difference, if real, is not instrumental drift but is confined to the samples. 

The instrument experienced extensive biofouling over the course of the 

deployment. The biological activity of the attached growth could have perturbed the 

immediate environment of the instrument, where samples are drawn. Assuming 

increased growth with time and rising temperature, as evinced in the enhanced diurnal 

variation of TCO2 towards the end of the deployment, increased influence with time is 

possible. However, as all of the Niskin sampling was conducted in late morning, 4-6 

hours after sunrise when photosynthesis is occurring, an enhanced influence of 

biofouling over time should lead to a RATS-Niskin difference that is increasingly 

negative, the opposite of what is observed. 

We cannot rule out a trend in the RATS-Niskin difference that is due to an artifact 

of unknown origin. Instrumental drift does not appear to be a factor. The influence of 

biofouling is not consistent with the observations. Given the uncertainties in the 

analyses, placement and timing of the Niskin sampling, and dock water heterogeneity, 

we do not believe that the differences and apparent trend are significant. However, we 

lack the precisely placed and timed samples to establish this. 

 

6. Reagent Stability 

To determine TCO2 accurately over deployments of 6 months and more, it is 

important that the reagents and standards be stable throughout. We have assessed the 
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stability of the solutions we employ for periods of up two years through laboratory 

experiments. These experiments have been based on storage of the solutions being 

tested in the Cali-5-Bond™ gas sample bags we use for deployments. The solutions 

studied included several CRM solutions and CRMs modified with small additions of acid 

or NaHCO3.  

6.1 CRM Stability 

The stability of the CRM solutions used for calibration is critical to the accuracy of 

results and assessment of instrumental performance. These reference solutions have 

been shown to be stable for periods of years (Dickson, 1997) and are widely accepted 

TCO2 reference materials as supplied in sealed glass bottles. However, it is necessary 

to repackage these solutions in Cali-5-Bond™ bags for in situ use. Both the transfer of 

solution and prolonged storage in the bags provide opportunities for contamination. To 

assess the stability of CRMs as we store them, a number of bags were rinsed and filled 

with ~500cc of CRM Batch 61 and periodically analyzed for TCO2 for up to ~24 months 

by Li-cor procedures. The results from four of the longest tests are given in Figure 9a. 

Almost all of the analyses fall at or above the given TCO2 concentration for CRM 61 

(1998 μmol/kg), and three of the four linear regression intercepts are 2 to 3 μmol/kg 

higher. The concentrations also exhibit a slightly positive slope. The uncertainty in the 

values, based on replicate analyses, is ~2mol/kg. The average of the regression 

intercepts is 2 (±2) mol/kg; the regression slopes average .005 (±.004) molkg-1day-1. 

Thus, at worst, repackaging may introduce a change of ~ 2 μmol/kg that can be 

assessed by analysis after repackaging. The slope values, if real, translate to a drift of 

~1 μmol/kg over the six months that RATS is designed to operate. 

While the above documents long term stability of the standards, in a few 

instances we have observed larger changes in TCO2 concentration as a result of the 

transfer of CRMs to the aluminized bags (up to 6 μmol/kg). It is thus important that 

concentration be determined after transfer. 

The modified CRMs, described above, that extend the standard concentration 

range behave similarly to the untreated CRMs. In the preparation of these solutions the 

opportunity for contamination is greater. Two solutions were followed for ~250 days 

(Figure 9b). Neither solution evinces a significant trend for at least six months. However, 

the last sample (~250 days) of each departs somewhat from the preceding values. The 
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slope of MCRM.2 is not statistically significant (1); that of MCRM.1 is > 1 but < 2 

greater than the slope uncertainty. Based on the regressions of Figure 9b, the drift in 

MCRM.1 and MCRM.2 could be ~3 μmol/kg and ~2 μmol/kg, respectively, over 6 

months. 

6.2 NaOH Stability 

Because we employ standards to determine TCO2 calibration, small changes in 

the NaOH solution (a few cts or ≤0.1%) over periods of months are not critical. It is 

critical that the NaOH not drift significantly over the period in which a calibration is used 

for TCO2 measurement. For mooring deployment we anticipate that each standard 

would be run once every ~10 days, requiring a period 1 to 2 months to complete a 

calibration with 4 analyses of each standard. The stability of stored 7 mM NaOH has 

been discussed above in regard instrument stability in both the laboratory time series 

experiment (5.2.1) and the in situ deployment of RATS at the WHOI dock (5.2.2). In 

neither instance was a significant change in conductivity detected over the period of the 

experiment (5 and 10 weeks, respectively). It thus appears that drift of the 7 mM NaOH 

in the Cali-5-Bond™ storage bags does not introduce significant error in TCO2 

concentration calibration, as determined both in the laboratory and in situ. 

 

7. Summary 

We have built and tested a robotic analyzer for TCO2 (RATS) suited for 

unattended operation on oceanographic moorings. TCO2 determination is based on the 

change in conductivity of a NaOH solution resulting from the addition of CO2 diffusing 

across a gas permeable membrane from an acidified sample. Concentration calibration 

is based on in situ standardization using four onboard TCO2 standards. The analyzer 

carries sufficient power and reagents for ~850 analyses over a period of at least 6 

months. Based on component pressure tests RATS can operate to depths of at least 

1000m. 

A Laboratory experiment was carried out for a period of 38 days at temperatures 

ranging from 8° to 25°C to assess instrument performance. Calibration over the 38-day 

period gave a TCO2 concentration for a Certified Reference Material (CRM), treated as 

an unknown, of 2043 ±2.7 μmol/kg vs. a given value of 2044 μmol/kg. Calibration over 5 

day intervals at each of the temperatures studied yields similar results. 
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In situ tests of RATS were carried out at the Woods Hole Oceanographic 

Institution dock at 10 m depth over a period of 56 days. Based on in situ 

standardization, the TCO2 concentration of a CRM standard, treated as a sample, was 

determined to be 2034 ±3.6 μmol/kg vs. laboratory determined concentration before and 

after deployment of 2036± 4 μmol/kg.  

The long term stability of standards stored in the metallized plastic sample bags 

used for in situ operation were carried out in the laboratory for periods up to ~2 years. 

CRM samples evince drift in TCO2 concentration corresponding to ≤ +1 μmol/kg over 6 

months. Modified CRM standards exhibited drift equivalent to ≤2 to 3 μmol/kg over 6 

months. The base indicator (7mM NaOH) was followed for periods of 38 (laboratory) to 

68(in situ) days. No significant change in conductivity was detected. 

 

8. Acknowledgments 

Many discussions with Mike DeGrandpre have been essential in moving the 

development of RATS forward. 

The manuscript has benefited from the thoughtful comments and suggestions of 

Bill Martin and Mike Degrandpre. Two anonymous reviewers also provided detailed 

comments that significantly improved the manuscript. 

The Oceanographic Technology Program (OCE-9633022) and the Ocean 

Technology and Interdisciplinary Coordination Program (OCE-0104949) of the National 

Science Foundation, and by the Woods Hole Oceanographic Institution have provided 

financial support for this project. 

 

 

9. References 

Archer, D., Kheshgi, H., Maier-Reimer, E., 1998. Dynamics of fossil fuel CO2 
neutralization by marine CaCO3. Global Biogeochem. Cycles 12(2): 259-276. 
 

Bates, N.R., 2001. Interannual variability of Oceanic CO2 and biogeochemical 
properties in the Western North Atlantic subtropical gyre. Deep-Sea Res. II 48 (8-9): 
1507-1528. 
 

Byrne, R.H., Kaltenbacher, E., Waterbury, R., 1999. Autonomous in situ analysis of the 
upper ocean: construction of a long path length spectrophotometer aimed at order of 



 22

magnitude improvements in the sensitivity of spectrophotometric analysis. Sea Technol. 
40 (2): 71-75. 
 

Byrne, R.H., Xuewu, L., Kaltenbacher, E.A., Sell, K. 2002. Spectrophotometric 
measurement of total inorganic carbon in aqueous solutions using a liquid core 
waveguide. Anal. Chim. Acta 451:221-229. 
 

Chierici, M., Fransson, A., Anderson, L.G., 1999. Influence of m-cresol purple indicator 
additions on the pH of seawater samples: correction factors evaluated from a chemical 
speciation model. Mar. Chem. 65(3-4): 281-290. 
 

Clayton, T.D., Byrne, R.H., 1993. Spectrophotometric pH measurements: total hydrogen 
ion scale calibration of m-cresol purple and at-sea results. Deep-Sea Res. 40A(10): 
2115-2129. 
 

DeGrandpre, M.D., 1993. Measurement of seawater pCO2 using a renewable-reagent 
fiber optic sensor with colorimetric detection. Anal. Chem. 65: 331-337. 
 

DeGrandpre, M.D., Hammar, T.R., Sayles, F.L., 1995. In situ measurements of 
seawater pCO2. Limnol. Oceanogr. 40(5): 969-975. 
 

Dickson, A.G., 1997. The development and use of reference materials for the quality 
control of oceanic CO2 measurements. In Advances in Environmental Science *C. S. P. 
Iyer, ed.) pp. 31-42, Educational Book Publishers and Distributors, New Delhi, India. 
 

Dickson, A.G., Sabine, C.L. and Christian, J.R. (Eds.) 2007. Guide to best practices for 
ocean CO2 measurements. PICES Special Publication 3, 191 pp. 
 

Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Klepas, J., Fabry, V.J., Millero, F.J., 
2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science: 
305(5682), 362-366. 
 

Hall, O.J. and Aller, R.C., 1992. Rapid, small volume, flow injection analysis for CO2 and 
NH4

+ in marine and fresh waters. Limnol. Oceanogr. 37(5): 1113-1119. 
 

Lewis, E. and Wallace, D.W.R., 1998. CO2SYS- Program developed for the CO2 
system calculations. Carbon Dioxide Inf. Anal. Center; Report ORNL/CDIAC-105. 
 

Liu, X., Wang, Z.A., Byrne, R.H., Kaltenbacher, E.A., Berbstein, R.E., 2006. 
Spectrophotometric measurements of pH in-Situ: laboratory and field evaluations of 
instrumental performance. Environ. Sci. Technol. 40: 5036-5044. 
 

Lomb, N.R., 1976. Least-squares frequency analysis of unequally spaced data. 
Astrophysics and Space Science, vol. 39, pp 447-462. 
 

Martz T.R., Carr, J.J., French, C.R., DeGrandpre, M.D., 2003. A submersible 
autonomous sensor for spectrophotometric pH measurements of natural waters. Anal. 
Chem. 75(8): 1844-1850. 
 

Merlivat, L. and Brault, P., 1995. CARIOCA buoy: carbon dioxide monitor. Sea Technol. 
10 (1995), pp. 23–30.  



 23

 

Millero, F.J. 2000. The equation of state of Lakes. Aquatic Geochem. 6: 1-17. 
 

Millero, F.J., Pierrot, D., Lee, K., Wanninkohf, R., Feely, R., Sabine, C.L., Key, R.N., 
Takahashi, T., 2002. Dissociation constants for carbonic acid determined from field 
measurements. Deep-Sea Res. I 49:1705-1723. 
 

Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, 
A., Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, 
R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G.-K., Rodgers, K.B., Sabine, C.L., 
Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.-F., Yamanaka Y., 
and Yool, A. 2005. Anthropogenic ocean acidification over the twenty-first century and 
its impact on calcifying organisms. Nature 437: 681-686. 
 

Robinson, R.A. and Stokes, R.H., 1959. Electrolyte Solutions; Appendix 6.1. 
Butterworths, London  
 

Sabine, C.L., Feely, R.A., Gruber, N., Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., 
Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace, D.W.R., Tilbrook, B., 
Millero, F.J., Peng, T.-H., Kozyr, A., Ono, T. and Rios, A.F. 2004. The oceanic sink for 
anthropogenic CO2. Science 305: 367-371. 
 

Seidel, M.P., DeGrandpre, M.D., Dickson, A.G., 2008. A sensor for in situ indicator-
based measurements of seawater pH. Marine Chemistry 109: 18-28. 
 

Takahashi, T., Wanninkof, R.T., Feely, R.A., Weiss, R.F., Chipman, D.W., Bates, N., 
Olafsson, J., Sabine, C. and Sutherland, S.C., 1999. “Net air-sea CO2 flux over the 
global ocean: an improved estimate based on air-sea pCO2 difference”, In: Proceeding 
of the 2nd Symposium on CO2 in the oceans; Y. Nojiri, ed. Pp 9-15; Tsukuba, Japan. 
 

Zhang, H., Byrne, R.H., 1996. Spectrophotometric pH measurements of surface 
seawater at in-situ conditions: absorbance and protonation behavior of thymol blue. 
Marine Chemistry 52: 17-25. 



 24

TABLES 

Table 1- Summary of Li-cor analyses of standards used on the 8-week in situ test 

(concentrations in μmol/kg):  Analyses were done before and after the deployment on 

the dates indicated. Standards A and D are CRM Batch 71 solutions; standards B and C 

are CRM Batch 71 solutions modified with the addition of NaHCO3 and HCl respectively. 

The 1 values given are based on replicate analyses the solution. 

TABLE 1

Date Run Std A ± Std B ± Std C ± Std D ±

20-Mar-02 2031.4 2.8 na na 2035.0 1.4
23-Mar-02 na 2272.0 1652.2 na
23-May-02 2039.2 2.6 2274.0 2.4 1656.7 0.9 2040.9 0.7
14-Jun-02 2031.9 0.9 2266.3 1.2 1648.5 1.4 2032.9 2.6

Averages: 2034.2 3.6 2270.8 4.0 1652.5 4.1 2036.3 4.1

Given Concentration for CRM Batch 71= 2032.8 μmol/kg
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 Table 2- Comparison of the TCO2 concentration of filtered (0.2 m) and unfiltered 

dock water samples collected in a Niskin bottle; concentrations in μmol/kg:  Samples 

were collected simultaneously with an in situ RATS analysis and at the same depth. 

Also shown are the RATS concentration measurements made at the time of Niskin 

sample collection. 

TABLE 2

Collection Date Elapsed Time Sample Type Licor TCO2 StDev Unfilt-Filt RATS ID RATS TCO2 ² Conc.
(days) RATS-Niskin

(unfiltered)
24-Apr-06 26.50 Unfiltered 1989 4.1 0 04241230.cos 1977 -12

Filtered 1989 0.1

3-May-06 35.39 Unfiltered 1981 1.6 0 05030940.cos 1978 -3
Filtered 1981 1.8

10-May-06 42.41 Unfiltered 1994 1.8 1 05101009.cos 1992 -2
Filtered 1993 0.8

22-May-06 54.43 Unfiltered 1976 2.3 -2 05221040.cos 1986 10
Filtered 1978 0.2
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FIGURE CAPTIONS 

 

 Figure 1- Theoretical speciation and conductivity of a 7 mM NaOH solution with 

varying TCO2 content: The concentrations of HCO3
-, CO3

= and OH- have been 

calculated with the freshwater option of the carbonate equilibrium program CO2SYS 

(Lewis and Wallace, 1998). The conductivity has been calculated with a program 

provided by F. J. Millero (Millero, 2000), modified to include OH- conductivity (Robinson 

and Stokes, 1959). Relative Specific Conductivity is the specific conductivity of 7mM 

NaOH + CO2 normalized to the specific conductivity of 7 mM NaOH (i.e. TCO2= 0). The 

shaded area is the optimum range of TCO2 content for 7mM NaOH. 

 

 Figure 2- A schematic of the CO2 analysis instrument used for in situ studies: The 

components labeled RV1 and RV3 are rotary distribution valves. The “Home” position is 

the indexed port to which all valve rotations are referenced. The “balloons” are 

representations of the metallized plastic bags that are used to store the reagents and 

standards. The exchange cell (see inset Figure 2) is described in the text. The sample 

loop fixes sample volume at 500 l. The knotted mixer is used to enhance mixing of the 

acid and sample (or standard) prior to entering the exchange cell. The loop between the 

exchange cell and the conductivity cell stores the most recently added base (the 3rd 

base flush) that is used to determine the pre-peak baseline. The color-coding denotes 

the various flow paths. 

 

Figure 3- The correction factor, CorF, used to adjust peak area to a common 

reference temperature as a function of measured temperature (see section 5.1.2): The 

reference temperature used was 16.5 °C (Correction Factor=1). All of the standard runs 

over the 6-week period are plotted along with linear regression fits for each of the three 

solutions. 

 

Figure 4- A summary of the 35 TCO2 analyses of the reference seawater (CRM) 

over the course of the laboratory experiment: The temperature for each set of runs is 

indicated. The individual and the average (± 1) concentrations are plotted. The dashed 
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line is the average of our measurements; the solid line is the independently determined 

TCO2 concentration of this batch of reference seawater. 

 

Figure 5- The in situ version of the TCO2 analyzer following a 3-week deployment 

during the month of Dec. at the WHOI dock at a depth of 10 m: The cylinders in the 

picture, left to right, are the spectrometer housing (silver color) with Teflon AF housing 

(on top of cylinder) and the dye pump, both used in pH analysis (not discussed here), 

the sample pump, and the controller and battery housing. The uppermost cylinder 

houses the conductivity cell. The large stainless steel box at the bottom contains the 

reagent and standard bags.  

 

Figure 6- TCO2 concentration calibration from in situ peak area measurements 

over the course of the 8-week deployment at the WHOI dock: The peak areas have 

been corrected to 8.5°C as discussed in the text (section 5.2.2). The TCO2 

concentrations are averages of Li-cor IR analyses made in the laboratory before and 

after the deployment. The highest and lowest standards are modified CRM reference 

seawater; the middle standard is an unmodified CRM. Also shown on the figure is the 

polynomial fit used to calculate the TCO2 concentrations of a fourth CRM, standard “D”, 

and samples. 

 

Figure 7- The concentration of TCO2 determined in situ on Standard “D” over the 

8-week deployment at the WHOI dock: Two points (open symbols) have been omitted 

from the in situ average. Standard D is a CRM with pre- post-deployment Li-cor 

analyzed TCO2 of 2036 (±4) μmol/kg. The in situ measurements average 2034 (±3.6) 

μmol/kg.  

 

Figure 8- Characteristics of the dock water sample analyses: 

a. The TCO2 concentration of samples measured over the duration of the 

deployment at the WHOI dock: Sample analysis intervals were 5 hours throughout the 

8-week deployment. Superimposed on the TCO2 data is the in situ temperature record 

as measured on the samples at the time of TCO2 analysis.  
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b. The power spectrum density of the sample data (bottom of panel): The 

frequency cutoff at 0.1/hr is the Nyquist frequency dictated by the 5 hr sample interval. 

Also presented is the null probability (top of panel), i.e. the probability that the peaks are 

due to random noise. The two frequencies that are significant, .042/hr and .080/hr, 

correspond to periods of 23.8 hr and 12.5 hr, respectively, diurnal and tidal signatures. 

 

Figure 9- Stability tests of TCO2 standards: 

a. Long term tests of four CRM reference seawater samples stored in the Cali-5-

Bond™ sample bags used for in situ deployments: The symbol legend gives the date on 

which each bag was filled. The linear regression equation for each bag is given in the 

order that the bags are listed in the legend. The significance of the intercepts and 

slopes is discussed in the text (section 6.). The error of ±2 μmol/kg shown is the typical 

uncertainty in our replicate Li-cor analyses rather that the uncertainty in the individual 

data points. 

b. Stability tests of modified CRM reference seawater samples (MCRM) stored in 

the Cali-5-Bond™ sample bags used for in situ deployments: MCRM.1 and MCRM.2 

have been modified by the addition of a small amount of HCl and NaHCO3, respectively, 

and subsequent equilibration with laboratory air for ~18 hours. The significance of the 

intercepts and slopes is discussed in the text (section 6.1). The error of ±3 μmol/kg 

shown is the typical uncertainty in our replicate Li-cor analyses rather than the 

uncertainty in the individual data points. 
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