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Sequestration of carbon dioxide (CO2) in the ocean is being considered as a feasible 

mechanism to mitigate the alarming rate in its atmospheric rise.  Little is known, however, about 

how the resulting hypercapnia and ocean acidification may affect marine fauna.  In an effort to 

understand better the protistan reaction to such an environmental perturbation, the survivorship 

of benthic foraminifera, which is a prevalent group of protists, was studied in response to deep-

sea CO2 release.  The survival response of calcareous, agglutinated, and thecate foraminifera was 

determined in two experiments at ~3.1 and 3.3 km water depth in Monterey Bay (California, 

USA).  Approximately five weeks after initial seafloor CO2 release, in situ incubations of the 

live-dead indicator CellTracker Green were executed within seafloor-emplaced pushcores.  

Experimental treatments included direct exposure to CO2 hydrate, two levels of lesser exposure 

adjacent to CO2 hydrate, and controls, which were far removed from the CO2 hydrate release.  

Results indicate that survivorship rates of agglutinated and thecate foraminifera were not 

significantly impacted by direct exposure but the survivorship of calcareous foraminifera was 

significantly lower in direct exposure treatments compared to controls.  Observations suggest 

that, if large scale CO2 sequestration is enacted on the deep-sea floor, survival of two major 

groups of this prevalent protistan taxon will likely not be severely impacted, while calcareous 

foraminifera will face considerable challenges to maintain their benthic populations in areas 

directly exposed to CO2 hydrate.   
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In both the scientific and public arenas, much attention has recently focused on the issues 

of global warming and climate change.  Although debate over the most appropriate mitigation 

pathway continues, it is certain that the atmospheric concentration of carbon dioxide (CO2) has 

increased significantly in the recent past (e.g., Keeling et al., 1995; Keeling 1998).  One option 

to curtail the rapidly rising atmospheric CO2 levels under consideration is to sequester waste CO2 

in the deep ocean (e.g., Caldeira, Akai et al., 2005).  A number of scenarios have been proposed 

for such ocean carbon storage, including fertilization of the sea surface with iron to promote 

phytoplankton growth and accelerate the biological pump, thereby increasing dissolved inorganic 

carbon (DIC) export to the deep sea (e.g., Buesseler et al., 2004), CO2 injection at mid-ocean 

water depths (e.g., Ozaki, 1997), and CO2 injection onto the deep-sea floor (e.g., Brewer et al., 

2000).  Ongoing research is attempting to elucidate the benefits and drawbacks of each approach 

if implemented on the large scale.  In particular, impacts on both ocean chemistry and inhabitants 

must be ascertained, especially given that CO2 dissolution causes a concomitant decrease in pH 

(Brewer et al., 2000).  Physiological responses to elevated CO2, or hypercapnia, and ocean 

acidification are challenging to organisms in general (reviewed in, e.g., Siebel & Walsh, 2003; 

Pörtner et al., 2004); it is unclear which taxa, if any, will be unaffected by these environmental 

pressures.   

A series of in situ experiments have been conducted to assess the effects of direct 

injection of CO2 on the seafloor, concentrating on the lower bathyal zone since it theoretically 

provides a longer period of sequestration compared to shallow water (Brewer et al., 1999, 2000; 

Barry et al., 2005).  Although studies have begun to describe the effects of such CO2 disposal on 

deep-sea fauna including fish (Tamburri et al., 2000), crustaceans (Barry et al., submitted), 
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echinoderms (Barry et al., submitted), and metazoan meiofauna (e.g., Carman et al., 2004; 

Watanabe et al., 2006; Fleeger et al., 2006; Thistle et al., 2007), little is known about the effect 

of such activities on protista.  Because protists comprise a substantial portion of the deep-sea 

benthos (e.g., Alongi & Pinchon, 1988; Coull et al., 1977; Snider et al., 1984; Gooday et al., 

2000; Smith et al., 2002), it is important to establish the effects of bathyal CO2 release on these 

single-celled eukaryotes.  One study that surveyed the effects of CO2 release on deep-sea 

meiobenthos observed that 4.5 weeks after seafloor CO2 injection many meiofaunal groups (i.e., 

nematode metazoans and flagellate and amoebae protists) experienced elevated mortality 

compared to sites removed from CO2 manipulation (Barry et al., 2004).  Robust conclusions 

about the response of some meiofaunal protists (i.e., allogromiid [thecate] foraminifera and 

ciliates) to that increased pCO2 exposure could not be drawn, however, due to low population 

sizes (Barry et al., 2004) and because an accurate means to determine survival was not 

implemented for those taxa.  
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In a continuing effort to better ascertain the response of meiofaunal protists to elevated 

CO2 exposure, a study was executed to determine in situ survival response of deep-sea benthic 

foraminifera to CO2 release simulating seafloor disposal of this greenhouse gas.  For the study, 

two experiments were conducted, each with a duration of 4.5 weeks in order to evaluate faunal 

responses to quasi-chronic changes in ocean chemistry, rather than ephemeral changes over short 

periods (i.e., days).  Foraminifera were selected as the study taxon for two main reasons.  First, 

they are a critical link in marine food webs (e.g., Legendre & Le Févre, 1995; van Oevelen et al., 

2006; Rowe et al., in press).  Second, while a large proportion of foraminiferal species secrete 

calcium carbonate shells called tests, the majority lack inorganic tests (so-called allogromiid or 

thecate forms, e.g., Gooday, 2002) or use detrital particles to construct agglutinated tests (Sen 

 4



89 

90 

91 

92 

93 

94 

Gupta, 1999), allowing comparative experimentation between calcifying and non-calcifying 

species of the same taxonomic group of Rhizarian protists (Adl et al., 2005).  This diversity in 

foraminiferal test composition is particularly useful when considering the biologic effects of 

ocean acidification.  It may be hypothesized that the mortality of calcareous foraminiferal species 

will be higher in response to deep-sea CO2 sequestration than the mortality of species of the two 

non-carbonate foraminiferan groups (i.e., thecate and agglutinated taxa).   
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Two replicate experiments were conducted on the seafloor of Monterey Bay, off the 

California coast (USA).  Using the surface support vessel RV Western Flyer and the ROV 

Tiburon for each experiment, a set of 40.6-cm diameter PVC cylinders were placed on the 

seafloor so that ~15 cm extended above the sediment-water interface; 15 cylinders (Experiment 

1) and 7 cylinders (Experiment 2) were configured in a circle with a diameter of ~ 20 m.  Then, 

over two to three days, liquid CO2 was injected into each cylinder using methods described in, 

e.g., Barry et al. (2004), Carman et al. (2004), and Fleeger et al. (2006).  CO2 hydrate formed 

immediately as a ‘skin’ on liquid CO2 pools.  The targeted pH decline within the ~20-m diameter 

circle compared to in situ pH (~7.8; Thistle et al., 2007 ) was 0.2 pH units because data suggests 

that pH declines of that magnitude can be an important physiological threshold (e.g., Seibel & 

Walsh, 2003).   

For both experiments, Conductivity-Temperature-Depth instruments (SeaBird Model 19+ 

CTDs) were deployed on the seabed at locations near the margin, ~3-5 m from the margin, and 

in the center of the circle of CO2 cylinders (Fig. 1).  Each CTD was equipped with up to 4 

Seabird Model SBE 18 pH sensors, positioned from 3 to 50 cm above the seabed.  These 

instruments collected data at ~2 minute intervals throughout each experiment.  Perturbations in 

the pH of surficial sediments were also measured during Experiment 2 within CO2 cylinders and 

from 0.1 - 8 m from CO2 pools, as reported in Barry et al. (submitted).  

During the commencement of Experiment 1, a suite of control samples was obtained, as 

explained below.  The first experiment was initiated from 13-17 December 2004 at a water depth 

of 3088 m (36.6985oN, 123.0020oW) and terminated from 18-21 January 2005.  Experiment 2 

was initiated from 12-16 December 2005 at a water depth of 3266 m (35o48.6105’N, 
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122o34.0952’ W) and terminated from 18-21 January 2006.  The carbonate chemistry in the 

region of the experimental sites is typical of the deep Eastern Pacific (WOCE, 

118 
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www.nodc.noaa.gov/WOCE; Sector p17N, St. 10, 38.23733N, 124.93833W, 3087 m depth; 

DIC=2352.7; TA=2442.3; pHtot=7.7834; OmegaCA=0.93; OmegaAR=0.6). 
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As part of each experiment’s termination, suites of samples were obtained from a site 

with no increase in CO2 (i.e., ~100 m from CO2 release), from inside the circle of PVC cylinders, 

and from inside individual PVC cylinders.  These three treatments are hereby referred to as 

Control, Elevated, and Direct Contact, respectively.  Elevated treatment samples were further 

distinguished depending on their distance from the PVC cylinders due to experimental logistics 

(see below): Elevated Center samples were collected from the approximate middle of the PVC-

cylinder circle while Elevated Edge samples were obtained close to PVC cylinders (i.e., within 

~1-3 m; Fig. 1).  The configuration of core locations was mandated by the fact that this 

experiment included sampling for multiple additional purposes and by the logistical 

considerations of working in the deep sea.  For example, the ROV manipulator reach and 

seafloor disturbance in the form of sediment resuspension were critical factors for core 

placement.  More details on the experimental design and concurrent science objectives are 

presented in Ricketts et al. (2005; submitted) and Thistle et al. (2007). 

The fluorogenic probe CellTracker™ Green CMFDA (5-chloromethylfluorescein 

diacetate; Invitrogen, hereafter referred to as CellTracker Green) was used to distinguish living 

from dead foraminifera (Bernhard et al., 2006) and, thus, establish survivorship.  A fluorogenic 

probe is a non-fluorescent compound that yields a fluorescent product after structural 

modification; CellTracker Green accumulates intracellularly in live cells after enzymatic 

 7

http://www.nodc.noaa.gov/WOCE


hydrolysis cleaves the molecule, thereby producing fluorescence (reviewed in Bernhard et al., 

1995).   
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Quantitative sediment samples were obtained using pushcores outfitted with a device to 

allow injection of concentrated CellTracker Green after pushcore placement into the seafloor.  

This approach was adopted to allow in situ seafloor incubations with CellTracker Green because 

temperature and pressure changes during ascent could cause mortality due to sample recovery 

rather than due to in situ experimental conditions.  CellTracker Green is soluble in dimethyl 

sulfoxide (DMSO); this stock solution was diluted with an equal volume of 0.2 µm-filtered 

seawater (FSW) to prevent freezing in the injector capillary tubing prior to dispensation.   

Initially, the pushcores (7-cm inner diameter) were emplaced into sediments (Fig. 2a) so 

that the internal header space volume was within a targeted range.  To do this, the pushcorer was 

positioned so that it penetrated the seafloor to a depth placing the sediment-water interface 

between two core-tube markings.  The ROV manipulator arm was then used to carefully squeeze 

a large diameter (2-cm outer diameter) flexible tube filled with FSW, which flowed through a 

check valve to displace the concentrated CellTracker Green from the capillary tubing producing 

a final concentration of ~1 µM CellTracker Green within each core’s header space.  These cores 

incubated in situ until the following day, when they were recovered by the ROV.  A negative 

control core, which was injected with DMSO and FSW but not CellTracker Green, was similarly 

incubated and collected from an area with no increase in CO2, during Experiment 2.  To maintain 

the integrity of the sediment-water interface, the pushcores were not equipped with a stirring 

device.   

After ROV recovery by the support ship, the incubated pushcores were taken within ~10 

minutes into an environmental room approximating in situ temperature (~5 oC).  Within an hour, 
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the overlying water containing CellTracker Green was removed via siphon; the surface 1-cm of 

each core was sectioned from the underlying sediments, placed in a high density polyethylene 

(HDPE) container, and fixed in ~3.8% formalin buffered with sodium borate.  All Direct Contact 

treatment cores became disturbed upon ascent due to degassing.  In these instances, fine particles 

were suspended and the sediment-water interface was typically disturbed.  Thus, for these cores, 

the overlying waters were retained in addition to the surface sediment interval or allowed to 

settle for approximately an hour prior to sectioning.   

In the shore-based laboratory, samples were sieved over a 63-μm screen with tap water, 

and the coarser fraction examined with a Leica MZ FLIII stereo dissecting microscope equipped 

with appropriate epifluorescence optics (excitation 480 ±20 nm, emission ≥510 nm).  Fluorescent 

foraminifera were isolated, segregated into brightly and dimly fluorescent groups, sorted by 

species within those groups, and enumerated.  Thecate and “soft-shelled” agglutinated taxa, 

which were not identified to species, were archived in buffered formalin while calcareous and 

robust agglutinated taxa were air dried and archived on micropaleontology slides.  Because a 

single individual of observed unilocular cylindrical agglutinated foraminiferal taxa (i.e., 

Bathysiphon, Rhabdammina, Rhizammina) can easily break, those fragments were minimally 

enumerated to prevent over estimates of population density.  Within a sample, it is typically clear 

which fragments likely arose from the same specimen due to test grain size, diameter, 

composition, texture, and color.  During the picking process, the treatment of each sample (i.e., 

Control, Elevated, Direct Contact, negative control) was withheld from the microscopist.  

Species counts were normalized to in situ sample volume to provide abundance estimates.   

Abundance data from each experiment were statistically analyzed separately for each 

taxonomic group.  For thecate and agglutinated groups in Experiment 1, a one-way ANOVA was 
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used to test for differences in density among the Control, Elevated Center, Elevated Edge, and 

Direct Contact treatments.  For Experiment 2, a one-way ANOVA was conducted to test whether 

mean density of either group differed between the Control, Elevated Edge, and Direct Contact 

treatments. To homogenize variances, analysis was done on logged transformed thecate data and 

on square root agglutinated data. 

To determine the effects of CO2 injection on calcareous foraminiferal abundance, the 

mean abundance in the Control treatment was compared to the mean abundance in the Direct 

Contract treatment. For this comparison, the mean of the Control treatment was compared to a 

value of 0 under the null hypothesis with a one sample t-test because calcareous foraminifera 

were absent in the Direct contact treatment cores. Additionally, a one-way ANOVA was used to 

test whether mean densities of calcareous foraminifera differed between Control, Elevated 

Center and Elevated Edge treatments.  For Experiment 2, mean calcareous foraminiferal 

densities in the Elevated Edge and Controls were compared with a two sample t-test and the 

mean density of the Control treatment was tested in a single sample t-test with a hypothesized 

mean of zero.  
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 Only cores that were visibly injected (Fig. 2a) were processed and analyzed.  In one case, 

the capillary tubing parted from a coupling, thus CellTracker Green was not injected into that 

core so it was excluded from study.  Replicate cores from Control and Elevated treatments of 

each experiment were typically taken within 1 m of each other (Fig. 2b); Direct Contact cores 

were obtained from different PVC cylinders.  Careful manipulation by the ROV pilots resulted in 

absence of visible sediment-water interface disturbance within the corers, except for those 

collected from within the PVC cylinders (i.e., Direct Contact cores), which degassed during 

ascent as noted above.   

The negative control core (i.e., injected solely with DMSO, without CellTracker Green) 

lacked brightly fluorescent foraminifera, but had dimly fluorescent foraminifera.  Thus, only 

brightly fluorescent foraminifera were considered to be living at the time of seafloor incubation 

with CellTracker Green.  In CellTracker Green-incubated cores, the CellTracker Green diffused 

to at least 1-cm depth because some organisms in the 1-2 cm interval fluoresced brightly.   

pH changes 

The perturbations of pH measured in bottom waters during both experiments were 

variable but not large.  In an area equivalent to the Elevated Edge treatment, the maximum pH 

reductions compared to ambient [pH reductions were calculated as perturbations from the 

background pH measured at the site] values were 0.15 to 0.25 pH units, with average changes 

less than 0.05 units.  In the center of the circle (i.e., Elevated Center treatment), pH reductions 

sometimes approached 0.1 – 0.2 pH units, but typical pH perturbations were less than 0.05 units.   

In areas corresponding to the Elevated Edge treatment, pore-waters of surface sediments 

at the beginning of Experiment 2 (i.e., 1-3 d after hydrate placement) were ~0.2 units lower than 
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at control locations (~50 m away) but the pH of Elevated Edge pore-waters at experimental 

termination did not differ from the pore-water pH of control area sediments (Barry et al., 

submitted).  Changes in the pH of surficial sediment pore waters (i.e., upper ~10 cm) were large 

within Direct Contact cylinders (~ -2.0 pH units compared to pore-water of control sites; Barry et 

al., submitted).   

Species composition of living foraminiferal assemblages 

 The living calcareous foraminiferal assemblage, as determined by bright CellTracker 

Green labeling, in the Control and Elevated samples was dominated by rotaliid forms including 

Uvigerina canariensis, Chilostomella oolina, and Globobulimina pacifica; the most common 

miliolid form was Quinqueloculina venusta (Table 1; Fig. 3).  The living non-calcareous 

foraminiferal assemblage in Control and Elevated samples was dominated by thecate and “soft-

shelled” agglutinated forms such as saccamminids, as well as Reophax dentaliniformis, R. 

spiculifer, Hormosinella guttifera, and Paratrochammina challengeri (Fig. 4).  Agglutinated 

species such as R. dentaliniformis and R. spiculifer and thecate species dominated Direct Contact 

samples.   

Abundances of live foraminifera 

The foraminiferal abundance between cores within a treatment was highly variable for 

some treatments but not for others (Table 1).  Abundances of all live foraminifera ranged from 

4.4 to 5.7 specimens·10cm3  in Initial Control cores of Experiment 1, and from 6.2 to 11.2 

specimens·10cm3 in Control samples collected at the end of either experiment (Supplemental 

Data; Fig. 5).  Thus, the average abundance of foraminifera in Control samples was 7.7 

specimens·10cm3 (n = 8, SD = 3.0).  Foraminiferal abundances within the Elevated samples 

spanned a wider range (2.6 to 26.0 specimens·10cm3; x  = 12.1, SD = 8.6) than those within 246 
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Direct Contact samples (1.3 to 11.7 specimens·10cm3; x  = 5.4, SD = 4.0).  The average of total 

abundance of Elevated Edge samples (

247 

x  = 14.9, SD = 10.4) was higher than all other treatments 

(Fig. 5a,b).  
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Abundances of thecate foraminifera averaged 2.3 specimens·10cm3 (SD = 2.3) in all 

Control cores and 3.3 specimens·10cm3 both in Elevated samples and Direct Contact samples 

(SD = 3.8, 2.5, respectively).  Abundances of agglutinated foraminifera averaged 2.1-2.2 

specimens·10cm3 in both the Control and Direct Contact samples, but were nearly twice as 

abundant in samples collected from within the circle (i.e., Elevated treatments combined; 4.1 

specimens·10cm3, SD = 3.8).  The mean abundances of thecate and agglutinated groups were 

generally higher in Elevated Edge samples than in other treatments (Fig. 5c-f), the exception 

being thecate abundances for Experiment 2 (Fig. 5d).  The mean density of thecate or 

agglutinated foraminifera did not differ significantly between the Control, Elevated Center, 

Elevated Edge or Direct Contact treatments in Experiment 1 (One-way ANOVA, thecate, F3,7 = 

0.39, p = 0.762; agglutinates F3,7 = 0.49 p= 0.701) or in Experiment 2 between Control, Elevated 

Edge, and Direct Contact (One-way ANOVA, thecate, F2,3 = 0.09, p = 0.913; agglutinates, F2,3 = 

0.40, p = 0.699). 

Calcareous foraminiferal abundances averaged 3.2 specimens·10cm3 and 4.7 

specimens·10cm3 in Control and Elevated cores, respectively, but no calcareous foraminifera 

were living in the Direct Contact cores (Table 1; Fig. 5g,h).  For Experiment 1, the mean density 

of calcareous foraminifera did not differ significantly between the Control, Elevated Center or 

Elevated Edge treatments (One-way ANOVA, F2,5 = 0.48, p=0.645) and, for Experiment 2, their 

mean density did not differ significantly between the Control and Elevated Edge treatments 

(Two sample t-test, -1/x transformed data, df = 2, t = 2.88, p = 0.102).  In both experiments, the 
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mean density of calcareous foraminifera in the Control samples was significantly different from 

a mean of zero (One sample t-test, Experiment 1: t = 6.26, df =2, p = 0.025, Experiment 2: 

t=25.96, df =1 p=0.025). Thus, there were significantly more calcareous foraminifera in the 

Control treatments than in the Direct Contract treatment, which lacked calcareous foraminifera in 

every core of both experiments.   
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Discussion 275 
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 The hypothesis that higher mortality would occur in calcareous foraminifera compared to 

thecate and agglutinated foraminifera in response to deep-sea CO2 sequestration is supported by 

our data.  Survivorship of the thecate and agglutinated foraminiferal populations at our Monterey 

Bay sites were not significantly affected by direct exposure to CO2 hydrate on the experimental 

time scale. 

 Although the water depth at our experimental sites likely exceeded the regional calcite 

saturation depth and the carbonate compensation depth (CCD), calcareous (calcitic) foraminifera 

were living in the area as evidenced by Control treatment results.  The existence of calcitic 

foraminifera is not unexpected since most abyssal regions of today’s oceans have live calcareous 

foraminifera (e.g., Bernhard, 1992; Linke & Lutze, 1993).  In general, the observed abundances 

of foraminifera in control samples were comparable to abundances from similar water depths at 

sites ~150 km to the south (Bernhard, 1992).  Using a different viability method (i.e., Adenosine 

Triphosphate (ATP) assay), abundances of live foraminifera integrated over the surface 1 cm 

ranged from 0 to ~12 specimens·10cm3 in water depths from 3319-3728 m ( x  ~6 

specimens·10cm3; n = 4; Bernhard, 1992).  Deep-sea benthic foraminiferal distributions are 

known to be patchy on the scale of km to cm (e.g., Bernstein et al., 1978; Bernstein & Meador, 

1979), so it is not unusual to document considerable variations in foraminiferal abundance over 

short distances.  Indeed, Bernhard (1992) also noted large variations in foraminiferal abundances 

between sites, although those cores were separated by kilometers, not meters, as in this study.  

The species compositions of agglutinated and calcareous assemblages encountered in our 

samples resemble those previously reported from the region at comparable water depths (e.g., 

Bernhard, 1992).   

289 
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Even though some bathyal and abyssal foraminiferal species’ abundances exhibit 

subsurface maxima (e.g., Corliss, 1985; Bernhard, 1992), a down-core analysis of our samples 

was not feasible.  Because, in general, the majority of bathyal foraminifera live in the top cm 

(e.g., ~52-71%, Gooday, 1986; ~80%, Szarek et al., 2007) and because we expect the maximum 

physical and chemical changes due to CO2 hydrate release within the surface sediments, we feel 

our data reflects the typical survival response of bathyal benthic foraminifera to such 

environmental perturbations.  It is possible that foraminiferans migrated in response to the 

changing milieu, as observed in other experimental studies (e.g., Alve & Bernhard, 1995; 

Moodley et al., 1998).  In particular, if infaunal specimens migrated upward into the surface cm, 

the average abundances in treatments affected by CO2 would have been higher than those of 

Controls.  Indeed, the abundance data for agglutinated taxa were consistently higher, although 

not significantly different, in Elevated Edge samples compared to Controls (Fig. 5e,f).  This 

trend was not evident for other groups (Fig. 5c,d,g,h).  Why foraminifera may have migrated 

toward potentially stressful concentrations of CO2 is unclear, except the option of migrating 

deeper into sediments would have been more stressful for aerobic migrants compared to 

facultative anaerobes, which are known for foraminifera (e.g., Bernhard & Alve, 1996; Moodley 

et al., 1998), or if the migrants were incapable of performing complete denitrification (Risgaard-

Petersen et al., 2006; Høgslund et al., 2008).  Recent findings suggest elevated pCO2 exposure is 

stressful to at least some meiofauna because higher numbers of harpacticoid copepods emerged 

from sediments in response to elevated pCO2 compared to copepod emergence rates at control 

sites (Thistle et al., 2007).   

 Degassing of cores collected from PVC cylinders during ascent may have minimized the 

observed foraminiferal abundances in the Direct Contact cores.  We discount this possibility 
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because the average density of thecate and agglutinated morphotypes in Direct Contact samples 

was near or equal to their density in Control cores.  If significant abundance dilution occurred 

due to degassing disturbance, we would expect all three groups of foraminifera to be similarly 

affected, which was not the case.   

 Observed patterns and magnitudes of pH change resemble those reported for similar 

experiments (Barry et al., 2005).  Importantly, the observed bottom-water pH decreases in areas 

corresponding to Elevated Center treatments (~ 0.05 units for Experiment 1) were small 

compared to those declines corresponding to Elevated Edge treatments (initially 0.2 pH units, but 

~ 0.1 to 0.15 pH units at experiment end).  Thus, it is not surprising that all three groups of 

benthic foraminifera (i.e., calcareous, agglutinated, thecate) tolerated the Elevated Center 

treatments because those sediments apparently did not experience extended large decreases in pH 

and, by inference, extended large increases in pCO2.  It is also noteworthy, however, that thecate 

and agglutinated foraminiferal survival was not negatively impacted by the substantial pH 

decrease (> 1 pH unit) in the Direct Contact treatments.   

Economically viable protocols of deep-sea CO2 sequestration include formation of deep-

sea CO2 lakes and near-bottom injection of CO2 (reviewed in Herzog et al., 2000; Caldeira & 

Akai et al., 2005).  In all cases, a plume of CO2-rich seawater will lead from liquid CO2 or CO2 

hydrate drifting with currents and diffuse, eventually being diluted (Caldeira and Akai et al., 

2005).  Thus, CO2 and pH gradients will range from substantial (e.g., the lowest pH measured is 

4.5, a value measured within cm of CO2 hydrate; Brewer et al., 2000) to mild (i.e., <-0.05 pH 

units) at some distance, depending on specific mixing conditions.  Our Direct Contact treatment 

recreates the CO2 lake approach, although on a much smaller scale.  Benthos beneath any CO2-

hydrate pool will be directly exposed for long periods of time unless they can migrate from the 
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hydrate pool (Tamburri et al., 2000).  Deep-sea foraminifera move very slowly (<25 µm·min-1; 

Gross, 2000), so active avoidance at these spatial scales is an implausible escape mechanism for 

them.  The pH changes in our experiments are similar to those under any carbon sequestration 

option: conditions of our Elevated treatments are within the magnitude of pH change expected 

along the dilution gradient resultant from presently proposed mitigation scenarios.   
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The in situ response of foraminifera (and any other group of deep-sea organisms) to such 

CO2-hydrate exposure is unknown over time periods longer than our experiments.  Our results 

indicate that although the calcareous foraminiferal population tolerates short exposures to a 0.2 

pH unit decrease, their survival response to direct CO2-hydrate exposure results in a significant 

increase in mortality.  If, however, plumes of dissolved CO2 hydrate are diffused from the 

seafloor over a shorter time scale than our experiments, it is possible that calcareous 

foraminiferal survival will not be significantly impacted by large-scale CO2 sequestration. 

Although the effects of localized deep-sea CO2 sequestration appear to negatively impact 

calcareous foraminifera (Ricketts et al., 2005; submitted; this study), two other protistan groups 

(i.e., flagellates and amoebae; Barry et al., 2004), and a number of metazoan meiofauna (Barry et 

al., 2004; Carman et al., 2004; Watanabe et al., 2006; Fleeger et al., 2006; Thistle et al., 2007), 

our findings suggest that survival of at least some protistan meiofauna (i.e., thecate and 

agglutinated foraminifera) are not similarly influenced by direct exposure to CO2 hydrate.  

Because the abundance and diversity of thecate and agglutinated foraminifers are considerable in 

bathyal and abyssal sediments (e.g., Gooday et al., 1998; 2000; Smith et al., 2002) and their 

abundance can exceed that of other meiofauna (e.g., Gooday et al 2000), at least one major group 

of deep-sea meiofauna will likely not collapse if large-scale sequestration of CO2 is implemented 

on the deep-ocean floor.  Furthermore, our data showing that thecate and agglutinated 
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370 

foraminiferal abundances do not significantly decline in response to direct exposure to CO2 

hydrate at these spatial and temporal scales substantiate recent laboratory findings documenting a 

shallow-water thecate foraminiferan species survives ~2-week exposure to extremely high pCO2 

(200,000 ppm) where some specimens even reproduced (Bernhard et al., in press).   
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Table 1.  Mean abundances of live foraminifera [(#·10cm3); listed for all foraminifera and by foraminiferal group] for each treatment, 

presented by experiment.  The number of replicates (# cores) is also listed.  SD = Standard deviation.   

512 

513 

514 

515 

 

Treatment  Experiment # cores     Mean (SD) 

516 

517 

518 

519 

520 

521 

522 

523 

524 

       Total  Thecate Agglutinated  Calcareous 

Initial Control    1 3  4.8 (0.8) 0.9 (0.5) 1.6 (0.8)  2.3 (0) 

Control   1 3  9.5 (2.9) 3.3 (2.8) 3.0 (0.8)  3.2 (1.8) 

2 2  9.4 (1.8) 2.9 (3.3) 2.0 (0.9)  4.6 (0.5) 

Elevated Center  1 3  8.3 (4.5) 2.4 (2.2) 3.0 (2.6)  2.9 (1.6) 

Elevated Edge   1 2  14.3 (16.6) 6.5 (7.0) 6.1 (7.5)  1.7 (2.0) 

2 2  15.6 (6.9) 1.4 (0.6) 3.6 (1.5)  10.5 (5.0) 

Direct Contact   1 3  4.7 (1.7) 3.0 (0.9) 1.7 (1.4)  0 

    2 2  6.5 (7.4) 4.0 (4.6) 2.5 (2.8)  0
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Figure Legends. 525 
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Figure 1.  Schematic representation of experimental configurations (a. Experiment 1; b. 

Experiment 2).   The CO2 cylinders are shown as gray circles, and CTDs equipped with pH 

sensors are shown as squares.  Pushcores analyzed for this study are shown as smaller circles; 

pushcore treatment categorizations are:  open = Control; / = Initial Control, black = Direct 

Contact, + = Elevated Center, * = Elevated Edge; ~ = DMSO. 

 

Figure 2.  Photographs of injector pushcores placed in the seafloor.  a.  Representative pushcore 

from Elevated Center treatment immediately after the ROV manipulator released its grip on the 

thick injector tubing (upper left).  Inset:  Note the stream of whitish fluid (i.e., CellTracker Green 

and DMSO) entering the header space from the capillary tubing, which extends through the corer 

top, approximately to the arrow.  b.  Suite of three Control pushcores incubating in situ during 

Experiment 1.  

 

Figure 3.  Reflected light (a, c, e, g) and corresponding epifluorescence (b, d, f, h) micrographs 

of calcareous foraminifera collected at experimental termination.  Those labeled with * were 

from a Direct Contact treatment core (935-JB2); those without * were from a Control treatment 

core (937-JB7).  Note that none of the Direct Contact specimens fluoresce brightly.  a, b. Top 

row: Quinqueloculina venusta , bottom row: Pyrgo murrhina; c, d. Cassidulina cf. delicata; e, f 

(left to right):  Hoeglundina elegans, Cibicidoides sp.; g, h. Uvigerina canariensis.  Scale bars: 

100 µm. 

 

 28



Figure 4.  Reflected light (a, c, e, g) and corresponding epifluorescence (b, d, f, h) micrographs 

of agglutinated and thecate foraminifera collected at experimental termination.  Those labeled 

with * were from Direct Contact treatment cores (935-JB2 or 935-JB3); those without * were 

from Control treatment cores (937-JB6 or 937-JB7).  Note that the Direct Contact specimen in 

c,d fluoresces brightly; other Direct Contract specimens were deemed dead.  a, b (left to right). 

Unidentified allogromiid, saccamminid; c, d (left to right). Pelosina sp., unidentified 

allogromiid; e, f. Hormosinella guttifera; g, h. Veleroninoides wiesneri.  Scale bars: 100 µm. 
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Figure 5.  Histograms of CellTracker Green labeled benthic foraminifera, presented as total 

density (specimens·10cm3) and by group and treatment for each Experiment.  Error bars reflect 

standard error.  
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