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Abstract

The objective of this study was to fit a simple ecosystem model to climatological
nitrogen cycle data in the Gulf of Maine, in order to calibrate the biological model
for use in future 3-D modelling studies. First depth-dependent monthly climatologies
of nitrate, ammonium, chlorophyll, zooplankton, detritus and primary production
data from Wilkinson Basin, Gulf of Maine, were created. A 6-box nitrogen-based
ecosystem model was objectively fitted to the data through parameter optimization.
Optimization was based on weighted least squares with model-data misfits nondi-
mensionalized by assigned uncertainties in the monthly climatological estimates.
These uncertainties were estimated as the standard deviations of the raw data from
the 6-meter and monthly bin averages. On average the model fits the monthly means
almost within their assigned uncertainties.

Several statistics are examined to assess model-data misfit. Pattern statistics such
as the correlation coefficient lack practical significance when data errors are large
relative to the signal, as in this application. Thus Taylor diagrams were not found
to be useful. The RMSE and model bias normalized by the data error were found
to be the most useful skill metrics as they indicate whether the model fits the data
within its estimated error.

The optimal simulated nitrogen cycle budgets are presented, as an estimate of the
seasonal nitrogen cycle in Wilkinson Basin, and discussed in context of the available
data. Wilkinson Basin has spring and fall phytoplankton blooms, and strong summer
stratification with a deep chlorophyll maximum near 21 m, just above the nitracline.
The mean euphotic zone depth is estimated to be 25 m, relatively constant with
season. The model estimates annual primary production as 176 g C m−2 yr−1,
annual new production as 71 g C m−2 yr−1 and sinking PON fluxes of 9.7 and 4.7
g N m−2 yr−1 at 24 and 198 m respectively.

Areas for improvement in the biological model, the model optimization method,
and significant data gaps are identified.
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1 Introduction1

The nitrogen cycle and phytoplankton biomass in the Gulf of Maine are2

of interest with regards to assessing the impact of wastewater discharge (Hy-3

droqual, 1995; Libby et al., 2001; Werme and Hunt, 2004), the ecosystem4

dynamics in a region of significant commercial fisheries (Franks and Chen,5

1996, 2001; Steele et al., 2007) and the occurance of harmful algal blooms6

and eutrophication (Anderson, 1997; Anderson et al., 2002). Diagnosis of the7

mechanisms responsible for observed plankton and nutrient distributions is8

a difficult task however, due to the interaction of multiple physical and bi-9

ological processes. That is, it is difficult to obtain all the relevant types of10

measurements on sufficient space and time scales to infer with certainty the11

dynamics that cause observed distributions.12

Here the time- and depth-dependent climatological seasonal cycles of ni-13

trogen and phytoplankton biomass in Wilkinson Basin are estimated through14

model optimization. The biological model equations are a hypothesis about15

how different nitrogen cycle components are dynamically related. As the ocean16

ecosystem is enormously complex, any biological model is a simplification; thus17

the primary hypothesis is that the proposed model is sufficient to simulate18

the variables of interest. Optimization of biological model parameter values,19

within observed parameter limits, is used to obtain simultaneous agreement20

with various data types. Comparison with both assimilated and unassimilated21

data is used for model skill assessment and validation. If sufficiently validated,22

a numerical model’s field estimates are a dynamically-consistent interpolation23

and extrapolation of the data that facilitates a consistent budget analysis.24

Previous models of phytoplankton biomass in the Gulf of Maine include25

a 2-box P-Z model for Georges Bank (Wallhead et al., 2009), 3-box N-P-Z26

models for Georges Bank (Klein, 1987; Lewis et al., 1994; Franks and Chen,27

1996) and the Gulf of Maine (Campbell, 1986; Townsend et al., 1994; Franks28

and Chen, 2001; Tian and Chen, 2006), a 4-box N-P-Z-D model for the Gulf of29

Maine (Ji et al., 2008), a 6-box model used in Massachusetts Bay (Besiktepe30

et al., 2003), a 9-box model used on Georges Bank (Ji et al., 2006a,b), 16-box31

models for Georges Bank (Steele et al., 2007; Steele , 2009) and Cobscook32

Bay (Campbell, 2004), a 24-box model for the Gulf of Maine (Zhang and33

Chen, 2007) and a 23- to 25-box water quality model for Massachusetts Bay34

(Hydroqual, 1995, 2000, 2003; Jiang and Zhou, 2003, 2004, 2006, 2007). Of35

these, only a few examine the seasonally-resolved annual cycle (Klein, 1987;36

Steele et al., 2007; Steele , 2009; Hydroqual, 1995, 2000, 2003; Jiang and Zhou,37

2003, 2004, 2006; Ji et al., 2008), of which only Steele et al. (2007) and Steele38

(2009) have used data for model optimization, though under an assumption39

of steady state.40
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Here a 6-box ecosystem model is used based on those of Anderson et al.41

(2000) and Besiktepe et al. (2003). The biological model parameter values are42

calibrated by objectively fitting the model to depth-dependent monthly data43

of nitrate, ammonium, chlorophyll, zooplankton, detritus and primary produc-44

tion from Wilkinson Basin. This is the first study that optimizes agreement45

with several different data types to estimate the depth-dependent seasonal cy-46

cles of nitrate, phytoplankton, zooplankton and detritus in Wilkinson Basin.47

The focus is on Wilkinson Basin because, of the various regions of the48

Gulf of Maine, the deep basins are closest to being closed systems, minimizing49

the impact of lateral advection that is not included in this 1-D model. The50

shallow areas along the coast have the strong throughflow of the coastal current51

and are intermittently influenced by coastal upwelling and downwelling, while52

for Georges Bank on-bank fluxes of nutrients are important on both tidal53

and annual time scales (Loder et al., 1982; Franks and Chen, 1996; Steele et54

al., 2007; Ji et al., 2008). One spatial dimension (depth) makes parameter55

optimization more tractable and facilitates estimation of the seasonal cycles.56

This Wilkinson Basin study provides an interesting comparison with similar57

studies for nearby regions (Sec. 5.7).58

The model and optimization method are presented in Sec. 2, and the data59

in Sec. 3. Skill assessment is a vital component of any modeling exercise; this60

is presented in Sec. 4. The model fits the data almost within its assigned errors61

on average (Sec. 4); this gives us sufficient confidence to present the simulated62

budgets (Sec. 5). In Sec. 5 the model validation is further examined through63

comparison with data-based estimates that were not assimilated. Primary con-64

clusions are summarized in Sec. 6.65

2 Model66

2.1 Biological model67

The model code used is the Water Column Biogeochemical Modelling68

Workbench developed by G. Evans (Fasham and Evans, 1995; Evans, 1999)69

with slight modification as noted here. It is a time- and depth-dependent70

model in which physical processes (mixed-layer depth, vertical diffusivities71

and vertical velocity) and biological initial conditions are specified, and bio-72

logical parameter values are optimized by minimizing a cost function to fit73

observations.74

A biological model was desired that explicitly modeled bottom-up (light75

and nutrient) and top-down (predator) controls on phytoplankton biomass,76

particularly as the time-dependence of the latter is thought to significantly77

influence the spring bloom (Keller et al., 2001). It was also desired to include78

(a) ammonium, so that new production could be separated from recycled79

production, (b) sinking detritus, which causes the total nitrogen content of80

a water parcel not to be conserved (e.g. Klein, 1987), and (c) chlorophyll, as81

3



all phytoplankton observations are in units chlorophyll, and phytoplankton82

nitrogen-to-chlorophyll ratios are not constant. The proposed model thus has83

six components: nitrate (N), ammonium (A), phytoplankton biomass (P ),84

chlorophyll (Chl), zooplankton (Z) and detritus (D). Bacteria and DON are85

also important ecosystem components, but since no data could be found on86

these in Wilkinson Basin with which to constrain the model, it was attempted87

to model these implicitly. The model is based on Anderson et al. (2000) and88

similar to that of Besiktepe et al. (2003); the Chl evolution equation was89

inspired directly by Besiktepe et al. (2003), though slightly modified.90

The biological model equations, variables and parameters are described91

in Tables 1, 2 and 3. Upper-case roman letters denote variables in time and92

space (i.e. depth); lower-case roman and greek letters denote constants. Note93

that in the central run some of the parameter values are zero, as determined94

by optimization, which disables some parameterizations.95

The biological model equations are fairly standard. For phytoplankton96

growth, the minimum of light- and nutrient-limitation factors is used in keep-97

ing with Liebig’s Law of the Minimum (Ondercin et al., 1995; Hurtt and98

Armstrong, 1996). The equilibrium carbon-to-chlorophyll ratio (Ro) is a lin-99

ear function of light (Geider, 1987; Geider et al., 1996, 1997; Zonneveld, 1998;100

Christian et al., 2002; Besiktepe et al., 2003). Chlorophyll is subject to all the101

physical and biological sources and sinks that affect phytoplankton, plus an102

adjustment toward its equilibrium concentration.103

Zooplankton graze phytoplankton, detritus and other zooplankton (Mc-104

Creary et al., 1996). In practice, Z grazing on Z allows grazing rates, assim-105

ilation efficiencies and total biomass to be more consistent with experiment-106

based estimates. The squared terms in the Z grazing parameterizations imitate107

a threshold at low prey concentrations (Steele and Henderson, 1992). Phyto-108

plankton and zooplankton mortality were parameterized as quadratics; it was109

decided to allow the optimization to determine whether the linear or squared110

terms allow better agreement with the data. Detritus remineralization was also111

parameterized as a quadratic; for a constant sinking rate, the squared term112

is more consistent with the observation that the sinking particle flux typi-113

cally decreases inversely (1/z) with depth (Martin et al., 1987). Nitrification114

is light inhibited (Ward, 2000); a quadratic nitrification term is included to115

explore whether it is better to assume nitrifying bacteria biomass is constant116

or proportional to A concentration.117

Sinking rates for P and D are concentration-dependent, with a minimum118

value at a threshold concentration, and a maximum value. For P , this rep-119

resents the negligible sinking rate of small phytoplankton (which dominate120

when P biomass is low), and the fast sinking rate of large phytoplankton121

(which dominate when P biomass is high), plus aggregation. For D, this al-122

lows the background D concentration (near 1 µM N) to have a low sinking123

rate, while pulses of high D will have a faster sinking rate. Chl sinks at the124

same rate as P .125

The time-dependent mixed-layer depth was prescribed based on data as126
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described in Sec. 3. Vertical diffusivity was specified within the mixed layer as127

100 cm2 sec−1 and below it as 0.3 cm2 sec−1 (Townsend, 1991; Benitez-Nelson128

et al., 2000). Vertical velocity was set to zero.129

Daily mean photosynthetically-available radiation (PAR) at the sea sur-130

face was set as 43% of the daily mean solar radiation, which in turn was131

determined as a continuous function of yearday from astronomical consider-132

ations for 43◦N using a mean atmospheric transmission of 51.76% computed133

from shortwave radiation data at Woods Hole, Massachusetts, from the spring134

of 1993. The diurnal light cycle is not included, as the daily primary produc-135

tivity rates and other data used to constrain the model do not resolve diurnal136

variability.137

According to table 2-8 in Hydroqual (1995), wet plus dry atmospheric de-138

position for Massachusetts Bay (adjacent to Wilkinson Basin) is 69.9 mmol139

NO3 m−2 yr−1 and 17.9 mmol NH4 m−2 yr−1 (based on 1.15 m yr−1 precipita-140

tion, from their table 2-9). These mean fluxes are applied at the surface bound-141

ary of the model. While atmospheric nitrogen deposition is actually episodic,142

it would not be appropriate to force this climatological simulation with sub-143

monthly variability; it would be appropriate to apply monthly variability, but144

no seasonality is apparent (Jordan and Talbot, 2000). At the bottom boundary,145

vertical diffusive fluxes are set to zero i.e. concentrations “below” the bound-146

ary are assumed identical to those just above, though D and P are allowed147

to sink out through the bottom boundary. Because of this open boundary148

condition, the model is not required to conserve total nitrogen.149

The vertical resolution of the model is 6 meters, to a total depth of 198150

meters. Timestep is determined internally in the code, based on the time rate151

of change of the biological state variables, and varied between 1 hour and 2152

days.153

2.2 Cost function154

To fit the model to the data, the minimum in the following cost function155

was sought156

Cost =





1

n

n
∑

i=1

(

mi − di

σ̂i

)2




1/2

(1)157

where di is the assimilated data (primarily monthly and 6-meter bin av-158

erages; Sec. 3), mi is the model estimate, σ̂i is an estimate of the uncer-159

tainty in that data value and n is the number of observations. The assimilated160

data types are nitrate (NO3), ammonium (NH4), Chlorophyll a, vertically-161

integrated zooplankton biomass, detritus and primary production rates. The162

optimization method is thus weighted least squares. A weight is necessary for163

nondimensionalization because multiple data types with different units are164

used. These weights should be determined by objective means. Previous stud-165

ies have used weights based on global data means (Evans, 2003), global data166
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variances (Friedrichs et al., 2007) or observational errors (Matear, 1995). (The167

term “global” in this context refers to an average over all data of that data168

type.) Here this last view is taken—that, to measure skill, model-data misfit169

should be weighed against the uncertainty in that data point (see Chapter 14170

in Press et al., 1986; Tarantola, 1987). In this climatological simulation, the171

assigned uncertainty includes both observational error and variability unre-172

solved by the model (see below). Minimization of Eq. 1 asks the model to fit173

each data point relative to its individual uncertainty, with a target misfit of174

zero. The outer part of Eq. 1 is designed to give the Cost a meaningful value.175

If the model-data misfit is equal to the uncertainty at every point, then the176

Cost is 1.0; if the misfit is twice the uncertainty everywhere then the Cost is177

2.0, and so on.178

In this study of the climatological seasonal cycle of Wilkinson Basin, the179

raw data is not a true time series, but collected over many years and includes180

spatial and interannual variability, particularly differences in the timing of the181

spring bloom due to interannual differences in mixed layer depth. Conseqently182

it is not sensible to fit the model to all the original data points, but rather183

the model is fit to climatological monthly means computed from the original184

data. The construction of monthly climatologies was in fact the first objective185

of this study. These monthly means are the di in Eq. 1. It is next considered186

how to assign the uncertainties in these means, including the degree to which187

one should expect a model to fit a climatology.188

In a model-data comparison, the assigned data error should include not189

only the measurement error (σm), estimated as the standard deviation of repli-190

cate measurements, but also the “representativeness error” (Ivanov and Pala-191

marchuk, 2007), which is the error associated with comparing a measurement192

made on a small space and time scale with output from a model that only193

resolves a much larger space and time scale, particularly when a significant194

amount of variability is known to occur in nature on the model’s spatiotem-195

poral subgridscale. For submonthly data with a standard deviation of σ̂, the196

representativeness error of a single data point (i.e. the error estimate for it197

being an accurate estimate of the monthly mean) is σ̂. Thus an estimate of198

the true monthly mean computed from n submonthly data points has a rep-199

resentativeness error of σ̂/
√

n, which is the sampling (standard) error. This200

suggests that the monthly mean estimates di should be assigned uncertainties201

computed as the standard errors of the data within each monthly-depth bin202

(σ̂i/
√

ni), which is generally greater than σm.203

The computed standard errors however were considered lower limit esti-204

mates of the uncertainty for a few reasons. The first is the correlation between205

data points. The value of ni in the denominator should be reduced if the data206

in a given year are within the dominant submonthly spatiotemporal correla-207

tion scales i.e. are not independent. Interannual correlations also need to be208

considered e.g. decadal trends and the North Atlantic Oscillation. To compute209

these correlation scales requires much greater data density than this dataset210

has. Thus while the monthly means were simply computed from all the data211
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points, it was recognized that the error should be normalized by something212

significantly less than
√

ni. The second reason is the issue of unknown inter-213

cruise calibration offsets. Some cruise data show offsets from other cruises,214

and the standard deviation (rather than the standard error) better estimates215

such calibration error, if these are calibration errors and not natural variabil-216

ity. Furthermore there was a lack of confidence that fitting a climatological217

mean within its standard error is phenomenologically correct (see Section 4.6218

in Wunsch, 1996). For example, some years the nitrate drawdown occurs a219

month earlier than in other years; the climatological mean is a slow draw-220

down over two months. Yet when forcing the model with climatological mean221

mixed-layer depths, the bloom will initiate once the “critical depth” is reached222

(Sverdrup, 1953), such that, if the uptake rates are correct, the slow clima-223

tological nitrate drawdown should not be closely reproduced. This suggests224

leniency should be granted in fitting the climatological means when the ob-225

served variability is high.226

Consequently σ̂i in Eq. 1 was based on the standard deviations (rather227

than standard errors) of the original data in each monthly-depth bin. The228

standard deviations can be considered upper limit estimates of the uncer-229

tainty; they are an accurate estimate of the error if the cruise offsets (men-230

tioned above) are calibration errors, though there is no way of knowing if this231

is always the case. Normalizing the misfit by the standard deviation makes232

the method similar to maximum likelihood estimation and Bayesian linear re-233

gression, discussed below. In effect the model is asked to fit the climatology234

relative to the observed variability or likelihood. It was decided to first see if235

the model could fit the data within these upper limit error bounds; if so, the236

assigned errors could afterwards be reduced to affect a closer agreement to237

climatological means.238

The value of σ̂i was computed as the mean of the standard deviations239

computed for each month and depth data bin (Sec. 3), which was 1.47 µM for240

NO3, 0.27 µM for NH4, 0.22 mg m−3 for Chlorophyll a, 10.8 mmol N m−2 for241

vertically-integrated zooplankton and 0.86 µM N for detritus. For the primary242

production data, the standard deviations were found to decrease significantly243

with depth, so σ̂i was allowed to be depth-dependent, computed as 0.27 mmol244

N m−3 d−1 above 18 m, 0.16 at 21 m, 0.08 at 27 m, 0.04 at 33 m and 0.03245

mmol N m−3 d−1 below 36 m. In the general case σ̂i varies for each data point246

(each data bin, in this study), as the standard deviation of the data within247

that bin (Press et al., 1986). However in this study many bins contain only248

one data point, and those that contain two have widely-varying estimates of249

σ̂i. Thus due to lack of data, lack of clear spatial and temporal trends in σ̂i,250

and for simplicity of application and interpretation, a single σ̂i is used for each251

data type (except for PP).252

It will be seen that the error estimates based on submonthly variability are253

fairly large relative to the monthly means, particularly for NH4. Some of this254

NH4 variability may be natural, though some may be due to measurement255

inaccuracy (Brzezinski, 1988). The large NH4 σ̂i gives the NH4 model-data256
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misfit little influence in the Cost. It is still desirable to assimilate these data257

however, to avoid the pitfall revealed by Armstrong et al. (1995), that opti-258

mization can drive unconstrained state variables to unrealistic values. These259

large uncertainties affect the choice of skill metrics (Sec. 4.3).260

This method of weighted least squares with weights estimated from the de-261

viation of the original data from the large-scale trend is similar to maximum262

likelihood estimation (MLE)(Wunsch, 1996; Bennet, 2002; Evensen, 2007).263

However in many applications of MLE the deviation of the data from the264

trend is considered to be a globally-constant observational error that is esti-265

mated, whereas here the model is fit to the monthly means rather than the266

original data and the data errors are estimated prior to optimization. Also267

MLE generally involves parameter optimization based on assumed probabil-268

ity distributions of parameter values, which are not assumed here (Sec. 2.3).269

Thus this method is a variant or subset of MLE. The MLE context reveals270

that Gaussian-distributed errors are assumed and correlations between errors271

ignored (i.e. a diagonal covariance matrix assumed).272

Similarly, this method can be seen as a subset of the even broader ap-273

proach of Bayesian linear regression (Gelman, 2004; Lee, 2004; Bolstad, 2004).274

Bayesian estimation can include in the Cost function a mathematical version275

of Occam’s razor, which penalizes the use of more parameters that do not276

statistically improve fit over the use of fewer parameters. This approach is not277

considered for three reasons. First, model formulas were preferred that were278

based on scientific understanding of the mechanisms, rather than simplicity,279

which should yield better predictions under varied forcing, and which per-280

mits evaluation of the proposed formulas. Secondly, what was considered to281

be the fewest acceptable number of state variables (N-P-Z-D-A-Chl) and sim-282

ple formulas (linear and quadratic terms) for poorly-understood processes are283

already used. Third, the model actually does not fit all the data adequately,284

which suggests the model is still incomplete. Had the model been able to fit all285

the data within its (leniently) assigned errors, then one would be in a position286

to apply Occam’s razor to find the simplest model that still explains the data.287

Some studies have used Cost functions that further inversely weight each288

data type by the number of observations of that type, in order to give equal289

influence of each data type in the Cost (e.g. Friedrichs et al., 2007). This was290

tried, and not surprisingly the few Z data were better fit at the expense of fit to291

the more numerous NO3, Chl and PP data. Since the primary objective is to292

estimate the nitrogen and phytoplankton cycles, this result was not considered293

preferable. The decision is probably best decided based on one’s data and294

application viz. whether the variable of interest is the most or least well-295

sampled.296

2.3 Parameter optimization method297

For clarity, a “run” is defined as a single optimization procedure run to298

completion (convergence). A run is comprised of many “iterations”, each of299

8



which is a 1-year forward simulation starting on January 1 and conducted300

with a specific set of parameter values, and for which the Cost is computed.301

The “results” of a run are that of the final best-fit iteration.302

In the Water Column Biogeochemical Modelling Workbench code, Powell’s303

conjugate direction method is used for optimization. The parameter values304

start at initial estimates, and sequentially each parameter value is perturbed305

until the local minimum in the Cost is found; then perturbations are made in306

the vector direction of the combined parameter modifications to further reduce307

the Cost more efficiently. The process is repeated until convergence is achieved308

i.e. further iterations do not decrease the Cost by a prescribed amount. The309

parameters are given initial values as well as maximum and minimum limits,310

which govern the amount the parameters are perturbed between iterations.311

Unlike Evans (1999), the misfits of the parameters from their initial val-312

ues are not included in the cost function, for two reasons. The first is that the313

parameter probability distributions are not known. For example, a maximum314

growth rate of 1.5 day−1 seems just as acceptable as 1.0 day−1. In essence, the315

probability distributions are considered flat between minimum and maximum316

limits. Perhaps in the future enough measurements will have been made in317

Wilkinson Basin to estimate probability distributions of these model param-318

eters. Upper and lower limits are set however, based on observations (though319

not exclusively from the Gulf of Maine). The second reason is that, for an opti-320

mal nitrogen cycle budget, the best possible fit to the data is desired. Including321

parameter misfit in the Cost sacrifices fit to the data for fit to parameter initial322

guesses. Since the model does not yet fit all the data adequately, I was not yet323

willing to make that sacrifice.324

3 Data325

The first objective of the study was to create a depth-dependent monthly326

climatology of the available data regarding the nitrogen cycle in Wilkinson327

Basin. The model is merely an attempt to interpolate this data and combine328

it into a consistent mass-conserving budget.329

Chlorophyll estimates were based on a monthly version of O’Reilly and330

Zetlin (1998) bi-monthly Chl data for the Wilkinson Basin “tiles”. The original331

data is binned in 11 layers from 0 to 113 meters; these were linearly interpo-332

lated to the model levels. The data (Fig. 1a) show a major spring bloom, a333

minor fall bloom, and a summer subsurface maximum.334

NO3 and NH4 data were from the Garside et al. (1996) dataset (post-1965335

data only), augmented with additional data (up to 1991) retrieved in March336

2002 from the NODC online archive, 1996 cruise data (Graziano et al., 2000),337

1997-1999 Georges Bank cruise data (Townsend and Thomas, 2001, 2002) and338

1998-2001 ECOHAB data (Townsend et al., 2001, 2005; Love et al., 2005). Sta-339

tions were used that were located within the Wilkinson Basin tiles defined by340

O’Reilly and Zetlin (1998). Obvious outliers were removed; the NODC data341
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in particular required significant quality control, as it also contained misnav-342

igations (decimal degrees misinterpreted as minutes) and misidentified data343

(data with the wrong column header), most of which were found by com-344

parison with the Garside dataset. The data were binned monthly and into345

6-meter vertical intervals for NO3 and 18-meter vertical intervals for NH4346

(due to less available NH4 data). Means for each bin were computed from the347

log10 of concentration, because distributions were non-normal. The resultant348

estimates (Fig. 1b,d) show some short time- and length-scale variance, pre-349

sumably due to a combination of measurement error and natural variability.350

Consequently, smoother NO3 and NH4 estimates (Fig. 1c,e) were computed351

at mid-month from all data in each depth bin using a 30-day e-folding scale352

(x(t) =
∑

i=1 xi exp(−(t − ti)
2/(30 days)2), smoothed vertically with a 1-2-353

1 filter (xnew
k = 0.25xk−1 + 0.5xk + 0.25xk+1). The smoothed estimate was354

subsampled to have data at the same depths and times as the binned dataset.355

No Sep-Dec NH4 data could be found. The NH4 data were therefore in-356

terpolated to December 15, to constrain concentrations at the end of the year357

to be similar to observed January values.358

Zooplankton biomass (in mmol N m−2) was estimated as two-thirds cope-359

pods (dominated by Calanus finmarchicus) and one-third microheterotrophs360

(Schlitz and Cohen, 1984; Davis, 1987; Sherman et al., 1987; Cohen and361

Grosslein, 1987; Meise and O’Reilly, 1996). The copepod biomass estimate362

was based on the Meise and O’Reilly (1996) bimonthly Calanus finmarchi-363

cus atlas for the Wilkinson Basin tiles defined by O’Reilly and Zetlin (1998).364

Vertically-integrated abundance (# m−2) was converted to biomass (mmol N365

m−2) using ratios of 11.07 mg N per individual fifth-stage copepodite (C5)366

and 23.39 mg N per adult female (C6F) (Durbin et al., 1995, their table 1),367

assuming primarily C5s in May-Dec, C6Fs in Mar-Apr, and 50% of each in368

Jan-Feb (Meise and O’Reilly, 1996, their fig. 4). Microheterotroph biomass369

was assumed proportional to the vertically-integrated Chl estimate i.e. with370

spring and fall maxima (e.g. Montagnes et al., 1988). The resultant total zoo-371

plankton biomass estimate (Fig. 1f) show a maximum in May-June and a372

winter minimum.373

Detritus (non-living PON) was estimated as PON − rN :ChlChl, where374

rN :Chl is a conversion factor assuming 50 g C (g Chl)−1 and 6.625 mol C375

(mol N)−1. The PON and Chl data were taken from the Massachusetts Water376

Resources Authority’s (MWRA) 1992-2002 Massachusetts Bay “Boundary”377

and “Offshore” stations (see Libby et al., 2001, for station locations). The378

data was binned temporally at the mean times of the bimonthly cruises, and379

vertically based on availability. The data show significant seasonality, with a380

maximum in June, but little relationship with depth (Fig. 1g). As with NO3381

and NH4, a smoothed version was also computed (Fig. 1h) by smoothing once382

vertically with a 1-2-1 filter; temporal smoothing was not necessary. Note the383

effect of the smoothing is generally much less than the error estimate (0.86384

µM N for D).385

Primary productivity data were obtained from the IMCS Primary Pro-386
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ductivity Database (http://marine.rutgers.edu/opp/Database/DB.html) and387

Graziano et al. (2000), converted with Redfield’s C:N ratio. The data were388

put into monthly and 6-m bins (Fig. 1j); a smoothed estimate was also com-389

puted using a 30-day e-folding timescale and applying a 1-2-1 vertical filter390

(Fig. 1k). The data show spring and fall maxima, and often a subsurface max-391

imum at 9 m.392

Mixed-layer depth (MLD) was determined as follows. Potential density was393

computed from T and S observations associated with the nutrient dataset, and394

estimated at bi-weekly and 6-m vertical intervals using a 30-day temporal e-395

folding scale and a 15-meter vertical e-folding scale. MLD was then computed396

as the depth at which potential density exceeded surface density by 0.125 kg397

m−3 (Levitus, 1982), though adjusted in fall and winter to agree with the NO3398

data, and is shown in Fig. 1i. (The NO3 data does not give a better estimate,399

but as the NO3 data is assimilated, a mismatch would be problematic.) The400

very shallow summer MLD (6 m) is confirmed from individual CTD profiles. In401

nature sub-monthly MLD variability occurs; this is not an important omission402

in this model in summer (as then the upper 24 m are nutrient-limited) but it403

is a relevant concern in winter.404

Initial conditions for the biological state variables were created by tem-405

porally interpolating the data to January 1. P was initialized based on the406

Chl data, using for conversion Ro from Table 1 and the January 1 light field407

estimate.408

Only data between 0 and 99 meters were assimilated. This approach is409

based on the observation that biological rates generally decrease with depth,410

such that the variability in the data below 100 meters is likely more influenced411

by physical processes (mixed layer depth, isopycnal displacement, advection412

and diffusion), while the data above 100 m is better suited for optimizing the413

biological model parameter values. For example, the individual cruise data414

have measurements (from Niskin bottles) typically every 10 to 50 m, such415

that the small-scale variability in N below 100 m (Fig. 1b) is primarily due416

to adjacent depth bins containing data from different cruises; requiring the417

model to fit this deep variability may result in unusual biological parameter418

values. The smoothed data estimates were assimilated (viz. Fig. 1c, e, h and419

k) to minimize the impact of high-frequency variations (attributed to under-420

sampling and unresolved variance) on the parameter optimization.421

4 Results422

Table 4 lists some of the runs performed. Run 1 is the “central” run, with423

the lowest cost; the other runs are sensitivity tests in which a parameter of424

Run 1 was held to a constant value or constrained differently and the full425

optimization procedure repeated. Runs 10, 18, 32, 35, 40 and 71 actually426

have slightly lower costs than Run 1, but by an amount smaller than the427

convergence criterion to stop optimization (0.003), such that the costs are428
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effectively indistinguishable. The total number of Runs was 197; Table 4 only429

lists the Runs that surround the final solution (Run 1) in parameter space.430

4.1 Reduction in Cost431

Model misfit to the data for a typical run (viz. Run 1) is shown in Fig. 2.432

By the gradual refinement of parameter values, the cost (Eq. 1) decreased433

by a factor of 2.0 from the first iteration (2.15) to the last iteration (1.08),434

approaching a value of 1.0 where on average the misfit equals the uncertainty435

in the data. In all, 2218 iterations (1-year simulations) were conducted before436

convergence was achieved i.e. until further improvement in cost was considered437

negligible. Note most of the progress was made in the first 120 iterations. The438

computational requirement of this Run was 100 minutes on a Dell Precision439

Workstation 650 with a 2.4 GHz processor.440

4.2 Initial and final parameter values441

Table 5 lists the parameter initial values, maximum and minimum limits,442

and final (optimized) values for Run 1. Note several parameter values are held443

constant or set to zero. This was determined as follows.444

Experimentation showed that a lower Cost could be obtained by optimiz-445

ing only some of the parameters rather than all of them. This is because some446

of the parameters are largely redundant over the primary data ranges, such447

that they cannot be determined simultaneously with confidence (Friedrichs448

et al., 2007). To determine which parameter to fix and which to optimize, a449

pragmatic approach was taken. In each Run in Table 4 a certain parameter450

was fixed to its initial value, its previous optimal value or a limit (e.g. zero),451

or optimized. If fixing a parameter to a constant value resulted in an equal452

or lower final cost, the parameter was subsequently kept fixed. If fixing a pa-453

rameter resulted in a higher final cost, the parameter was allowed to vary. By454

cycling through the list of parameters repeatedly, and comparing the final cost455

of different optimization Runs, it was determined both which parameters were456

largely interdependent, and which parameterizations led to optimal agreement457

with the data (Tables 4 and 5). Values for parameters not determined by op-458

timization are given in Table 5.459

The optimized parameter value uncertainties in Table 5 were computed as460

the square root of the diagonal elements of the inverse of the Hessian matrix,461

where the Hessian is d2F/dpidpj (Matear, 1995; Fennel et al., 2001), where462

pi is an optimized parameter, F = 0.5 ∗ n ∗ Cost2 and the number of ob-463

servations n=531 for Run 1. The finite difference computation of d2F/dpidpj464

used dpi=0.05pi, as smaller dpi values did not ensure F (p + dpi) − 2F (p) +465

F (p − dpi) > 0 apparently due to round off error in the temporal integration466

or cost computation. The computed uncertainties in Table 5 range between467

3-29%, suggesting all the optimized parameters are well-constrained. Follow-468

ing Fennel et al. (2001), eigenvalues and eigenvectors of the Hessian were469
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computed to diagnose parameter dependency. The condition number (ratio470

of largest to smallest eigenvalue) is 1.9e+7, suggesting significant dependency471

remains between some of the optimized parameters. The smallest eigenvalue472

is associated with nitrification parameter b5, suggesting it is the least well-473

determined, probably through correlation with nitrification parameter b3. The474

next two smallest are for detritus sinking parameters wd1 and wdn, suggesting475

interdependency. Yet fixing any of these to constant values, even their Run 1476

optimized value, results in higher cost (Runs 12, 49, 50, 19, 20, 63-66, 70).477

Tables 4 and 5 indicate that quadratic P and Z loss terms give better478

agreement with the data than linear loss terms. This is probably because479

a quadratic allows higher loss at high concentrations and lower loss at low480

concentrations than a linear term. For example, Run 1 has lower variance in481

Chl than Run 5. For Z, the misfit is primarily due to underestimation (Sec482

5.4), and the quadratic loss term allows a higher mean Z (Run 1 vs. Run 15).483

In contrast, linear A and D decay terms are preferred. Finally, concentration-484

dependent P and D sinking rates are preferred over constant sinking rates485

(Runs 19, 69 and 70). Another way to capture this would be constant sinking486

rates but two or more P and D classes.487

4.3 Simulation Skill Assessment488

Before discussing the meaning of the model results, let us assess the489

goodness-of-fit of the model to the observations. Table 6 shows various statis-490

tics for Run 1. Definitions are given in the Table 6 footnote; see Jolliff et491

al. (2009) and Stow et al. (2009) for more thorough descriptions. A variety492

of statistics are examined to see which statistics are most relevant to this493

application, given the large data errors.494

The correlation coefficient, r, and the model standard deviation normal-495

ized by the data standard deviation, σm/σd, ideally would be 1.0. Note that496

they are “pattern” statistics which do not take into consideration data error.497

The RMSE, Bias, and unbiased RMSE (RMSE2 = Bias2 + uRMSE2; Jolliff498

et al., 2009) are dimensional, with ideal values of 0 (Table 6). Here we use499

the sign convention for uRMSE of Jolliff et al. (2009), who further normalize500

these by σd, also given in Table 6 (nRMSE, nBias and nuRMSE).501

A Taylor diagram (Taylor, 2001) is constructed from the values in Table502

6 (Fig. 3a). It is a polar plot with σm/σd as distance from the origin, and503

acos(r) as the angle from the x-axis; thus the ideal value is (x=1,y=0). Model504

results with radius greater (less) than the 1.0 circle have more (less) vari-505

ance than the data; model results close to the x-axis (y-axis) have high (low)506

pattern correlation with the data. Fig. 3a illustrates that NO3 and Chl have507

higher correlation coefficients and σm/σd close to 1.0. Thus pattern agreement508

between model and data NO3 and Chl is good. The standard deviation of509

model A is 3 times that of the (monthly mean) data, while those of Z and D510

are only half. Model D and Z have very low correlation coefficients, followed511

by A. None of this however tells whether the model fits the data within its512
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prescribed uncertainty.513

A Target diagram (Jolliff et al., 2009) is constructed (Fig. 3b) from the514

values of nBias and nuRMSE in Table 6. By the equation above, one can see515

that the radial distance from the origin is nRMSE such that the 1.0 circle516

indictates the RMSE equals σd. The Target diagram shows that A has the517

greatest nRMSE while Z and D have the greatest nBias. Again however these518

metrics do not tell whether the model fits the data within its uncertainty,519

which in this study are quite large, and for some data types larger than σd.520

It is helpful to distinguish the relationship between the standard deviation521

of the monthly-binned data σd and the assigned data uncertainty σ̂i. The522

original, unbinned data contains both “signal” and “noise”, and the binned523

data values are our best estimate of the signal we want and expect the model524

to fit. The σd in Table 6 is computed from the monthly-binned values, as these525

are the data assimilated; σd contains the variance of the large-scale spatial and526

temporal trends, i.e. the signal. The σ̂i is the average standard deviation of527

the unbinned data within each time-depth bin (Sec. 2), i.e. the variability of528

unresolved submonthly and interannual processes. Thus σd is the standard529

deviation of the signal, while σ̂i is the standard deviation of the noise, as530

defined by scale separation through binning. This separation allows us to keep531

the model from “fitting noise” (Lynch et al., 2006). In our application, the NH4532

data showed very large submonthly variability—either due to measurement533

error or natural variability—which the model was not expected or desired to534

fit. Monthly binning prevented fitting this noise. Yet the σd computed from the535

NH4 monthly means is much smaller than our error estimates of those means,536

σ̂i (Table 6). That is, the NH4 σd is not practically significant. This suggested537

that normalizing the quantities in Table 6 by σ̂i rather than σd might provide538

informative metrics. Note σ̂i can also be thought of as approximately the539

standard deviation of the original data from the mean trend, i.e. the deviation540

of the original data when the large-scale trend is removed. Normalization541

in Table 6 by σ̂i rather than σd therefore bears resemblance to maximum542

likelihood metrics.543

Considering the case in which RMSE, Bias and uRMSE in Table 6 are544

normalized by σ̂i, values less than 1.0 mean that on average the model is545

within σ̂i of the data, which is useful information. Comparisons between σ̂i and546

RMSE can be easily made in Table 6, but difficulty arises when different data547

points have different σ̂i (e.g. as with PP). The desired effect can be obtained548

by pre-normalizing each data point di and corresponding model value mi by549

the corresponding σ̂i. An additional benefit of doing this is that different data550

types, now nondimensionalized, can be included in the same summation, to551

yield an overall model score for inter-simulation comparison.552

Doing this normalization of di and mi by σ̂i, and then running through553

the same equations in Table 6, yields Table 7 and Fig. 3c,d. The values for r554

and σm/σd in Table 7 using di/σ̂i and mi/σ̂i are identical to r and σm/σd in555

Table 6, because σ̂i drops out when constant; the exception is PP due to its556

variable σ̂i. So this normalization does not cause changes in the Taylor diagram557
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(when σ̂i is constant) nor allowed it to take into account data uncertainty.558

The overall r and σm/σd are good, primarily because of the N and Chl data,559

which make up 65% of the data points (Fig. 3c). The modified Target diagram560

(Fig. 3d) however has changed significantly, both in the results and their561

interpretation. Bias and RMSE are now measured against data uncertainty,562

with the 1.0 circle indicating whether on average the model-data misfit is less563

than the uncertainty. The values of RMSE and Bias in Table 7 and Fig. 3d564

show that the model is on average within 1.34 times the uncertainty for all data565

types, with an overall RMSE of 1.08. Model A and D on average fit the data566

within their assigned errors. Modeled Z needs the most improvement; since the567

parameter values have been optimized, this can only be achieved by changes568

in model equations or state variables. Under this normalization minimizing569

Eq. 1 is identical to minimizing the RMSE. Given the Cost function, Fig. 3d570

also indicates that the Cost is currently putting less effort (per datum) into571

fitting D and A than the others.572

In Table 6 r, σm/σd, nRMSE, nBias and nuRMSE largely tell the same573

story; that model N and Chl fit the data best, followed by PP (except for574

nBias). Yet Table 7 RMSE indicates that A and D are on average within the σ̂i575

of the data, related to the fact that A and D have large relative uncertainties576

(Fig. 4; σ̂i/m̄ in Table 6).577

Other statistics that have been used as skill metrics include the Reliability578

Index (RI), the Modelling Efficiency (MEF) and binary discriminators such as579

the Receiver Operator Characteristic (Stow et al., 2009). However the RI does580

not take into account data errors, even when substituting di/σ̂i and mi/σ̂i for581

di and mi, and the MEF simply equals 1-nuRMSE2. Binary discriminators582

were developed for situations where a binary decision has to be made, unlike583

this application, and are not easily reduced to a single number for model584

intercomparison. As such these are not treated here.585

A skill metric should take three things into account: the model output,586

the data, and the uncertainty in the data. Model-data misfit is acceptable if it587

is within the observational error of the data. To be concerned with driving the588

model-data misfit well below the data uncertainty is considered “overfitting”589

or “fitting noise” (Lynch et al., 2006). None of the statistics in Table 6 include590

a variable for data uncertainty. By substituting di/σ̂i and mi/σ̂i for di and mi591

in the equations for RMSE and Bias, making them
√

∑n
i=1((mi − di)/σ̂i)2/n592

and
∑n

i=1((mi − di)/σ̂i)/n, these terms quantify misfit relative to data error,593

and thus are useful skill metrics when data errors are significant, and as model-594

data misfits approach data errors.595

5 Discussion596

The central simulation (Run 1) results are shown in Figs. 4 through 7.597

Because the simulation is not a repeating annual cycle, the values on Jan 1598

are not identical to those on Dec 31; nevertheless agreement is generally very599
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close.600

A repeating annual cycle was not demanded, firstly, because Wilkinson601

Basin is not truly closed. Horizontal transport can be significant on annual602

timescales (Brown and Irish, 1993). Adjacent Massachusetts Bay annually603

imports DIN and exports organic nitrogen (fig. 6-2 in Hydroqual, 2000), such604

that Wilkinson Basin likely imports organic nitrogen which is converted to605

DIN. Thus nitrate and detritus are probably not in periodic steady states.606

Furthermore, the sinking PON flux removes nitrogen from top 200 m at a607

rate several times greater than the air-sea nitrogen input (Charette et al.,608

2001). Nitrate has a subsuface maximum around 200 m (Townsend, 1998) due609

to horizontal import of Slope Water; at this maximum, the vertical diffusive610

NO3 flux must be zero. Thus the sinking PON flux at 200 m must either be611

balanced by a net upward advective flux of DIN at 200 m, horizontal import612

of DIN (between 50-200 m), or horizontal import of DON or PON (between613

0-30 m). This issue of long-timescale total nitrogen conservation remains to614

be addressed. In effect, prescription of the observed initial conditions at the615

beginning of every iteration makes up for annual imbalances in the modeled616

nitrogen cycle.617

Secondly, conducting parameter optimization simulations with a repeat-618

ing annual cycle would mean that the final year (iteration) of each sensitivity619

run (e.g. Table 4) starts from a different January 1 initial condition (IC). This620

makes it unclear whether differences in Costs between runs are due to the dif-621

ference a parameter has on the seasonal evolution or due to the difference in622

IC i.e. the decadal-timescale feedback of the parameter on the winter nutrient623

distribution. It may not make sense to compare parameter sensitivites starting624

from different IC, or to evaluate parameter sentivities starting from IC in poor625

agreement with the data due to long-term model drift. Therefore here every626

iteration (and run in Table 4) start from the same January 1st IC, which is627

based on the data; consequently we are only examining sensitivity to param-628

eters on a seasonal timescale. Such limited-timescale parameter optimization629

is commonly used in operational (weekly to monthly) ocean forecasting.630

Ideally horizontal transport of state variables into and out of Wilkinson631

Basin would be included as input to the 1-D model. The observations are632

too sparse in space and time to make accurate estimates of these time- and633

depth-dependent flux divergences, though such circulation-driven biogeochem-634

ical fluxes could be estimated from a 3-D physical-biological model. This sug-635

gests an iterative approach, with the 1-D model run to optimize the model636

parameters to data (since the 1-D model can be run thousands of times), a 3-D637

model run to compute horizontal fluxes, these fluxes used as input to improve638

of the 1-D model optimization, and so on. The horizontal flux estimates also639

would allow the 1-D model to be run longer than one year, to assess the impact640

of parameter values on longer-term budgets, which should further constrain641

the parameter values. The 1-D simulation presented here can be considered642

the first step in such a process.643

The previous section on Skill examined model validation with regards to644
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the data that were assimilated. Below we present the model results and model645

validation based on comparison with information that was not assimilated.646

This includes the unsmoothed data (Fig. 1) where it probably gives more647

accurate estimates than the smoothed data at the bloom peaks. In some cases648

the model results bear more resemblence to the unsmoothed data than the649

assimilated smoothed data. It is always a challenge to find the right balance650

between too much smoothing (losing sharp peaks) and too little smoothing651

(allowing outliers). This intercomparison provides further insight into where652

model improvement is needed.653

5.1 Nitrate.654

Surface N agrees reasonably with observations (Figs. 4a, 5a). In November655

and December, simulated N has “steps” due to the vertical grid resolution;656

N increases rapidly when the deepening mixed layer entrains another level657

(Fig. 4a). During October most of the entrained N is consumed by P (Fig. 4b,658

5b) i.e. the fall bloom.659

In spring, the simulated N drawdown is twice as rapid as suggested by660

the data (Fig. 4a), namely the simulated drawdown occurs primarily in April,661

while the data suggest a decline over March and April. The simulated N draw-662

down is probably influenced by the assimilated Chl data, which constrains the663

bloom to begin in April. This reveals a discrepancy in the data; it is difficult to664

reconcile the observed March N drawdown without an increase in Chl (or Z665

or D). Satellite measurements (Thomas et al., 2003) however suggest surface666

Chl in Wilkinson Basin does increase from February to March, with typical667

March concentrations over 1 mg Chl m−3 .668

Annual budgets from the simulation (Fig. 6) estimate that 90% of the NO3669

input into the top 24 m is supplied by vertical mixing (primarily in winter),670

8% by (wet and dry) atmospheric deposition and 2% by in situ nitrification.671

Annual total nitrogen input into the top 24 m is 1302 mmol N m−2 yr−1. Of672

this, 7% is due to the atmospheric N and A fluxes; interestingly 23% and 10%673

are due to upward mixing of A and D respectively, which have maxima just674

below the euphotic zone, with only 60% due to upward mixing of NO3 itself.675

5.2 Phytoplankton.676

Simulated Chl also agrees well with the data (Figs. 4b-c, 5b-c) with a677

strong spring bloom in April, a summer deep Chl maximum (DCM), and a678

smaller fall bloom in October. Note satellite data support a November Chl679

peak (Thomas et al., 2003).680

Chl starts increasing rapidly in the second half of March (Fig. 4b), due681

to decreasing light-limitation caused primarily by the rapidly shoaling MLD682

(Fig. 5b-c) though increasing PAR also contributes (Fig. 4f). During this rapid683

growth phase P losses are still significant, the net growth being due to a rela-684

tively small imbalance between sources and sinks (Fig. 7a); this is consistent685
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with the observation that during spring P increases only by 1 µM even though686

7 µM of N is drawn down (Figs. 4a-b, 5b). During the bloom, P losses to graz-687

ing, sinking, losses to D (“aggregation”) and vertical mixing (while the MLD688

is > 24 m) are all significant (Fig. 7b). The sharp decline in P occurs when689

N suddenly becomes depleted, allowing P growth to drop below the loss rates690

(Fig. 7a).691

The simulation shows that temporally-decreasing light limitation in spring,692

coupled with the fact that P growth rates are faster than Z growth rates, al-693

lows growth to stay just ahead of grazing, until nutrients are depleted. The694

close balance between daily primary production and losses allows the spring695

bloom to be simulated in models without zooplankton (Sverdrup, 1953; Hy-696

droqual, 1995; McGillicuddy et al., 2003).697

In summer the simulation develops a DCM at a depth of 21 m, in agree-698

ment with observations (Fig. 5c). The simulation suggests the DCM is also699

a biomass maximum (Fig. 5b), in agreement with Holligan et al. (1984). The700

simulation matches observed Chl at 3 m well in summer, but overestimates701

Chl at 21 m in July and August, though it is unclear why observed Chl is702

lower in July-August than in June or September, given the similarity in phys-703

ical conditions in all these months. Perhaps Z grazing is highest then, because704

Z biomass is maximum. The simulated DCM is at the 8% light level, though705

observations indicate it resides at the 1-5% light level (Holligan et al., 1984)706

and the 3% light level (O’Reilly et al., 1987). This suggests kw or kc may be707

too low, though higher values fit the data less well (Runs 51-54 in Table 4). A708

variable Chl:C ratio was not needed to simulate the DCM, as the Chl:C ratio709

does not change sharply enough with depth to account for the increase in Chl.710

The DCM is at the top of the nitracline, the primary cause being nutrient711

limitation of biomass.712

In summer Z grazing dominates P loss (Fig. 7b); the Z excrete A which713

fuels recycled production. If it were true that in summer most phytoplankton714

production is exported by P sinking rather than Z grazing (Walsh et al.,715

1987), such an export of 12 mmol N m−2 d−1 from the euphotic zone would716

rapidly drive P and PP far below observed. The sum of the atmospheric N717

flux (0.24 mmol N m−2 d−1), the vertical diffusive N flux (0.77 mmol N m−2
718

d−1 at 24 m), and a maximum estimate of the decline in the D+P+Z standing719

stocks (3 mmol N m−3 × 24 m ÷ 100 days = 0.72 mmol N m−2 d−1) are not720

enough to keep up with such an export. Thus while P sinking is significant in721

the annual average (Fig. 6; Walsh et al., 1987), it is not in summer.722

5.3 Primary Production.723

Simulated primary production at 3 m peaks in April and October (Fig. 4d),724

in agreement with the unsmoothed PP data (Fig. 1j). Annual mean primary725

production is 2.22 mol N m−2 yr−1 (Fig. 6), slightly lower than observation-726

based estimates (Table 8). Annual mean new production is 0.890 mol N m−2
727

yr−1, within the range of observation-based estimates. The f-ratio is 0.6 in728
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winter and 0.2 in summer (Fig. 7d).729

Simulated primary production (Fig. 7c) has a subsurface maximum at730

the DCM during the stratified season (May-Sep). The PP data indicate this731

is incorrect (Fig. 1, where the max is at 9 m from Feb-Sep), though it is732

sometimes observed (figs. 7 and 10 in Holligan et al., 1984; fig. 21.10 in O’Reilly733

et al., 1987; fig. 8 in Charette et al., 2001). More precisely, model PP at 21 m734

is in good agreement with observations (Fig. 4e), but model PP at 3 m is too735

high in spring and too low in summer (Fig. 4d, 5e), as often occurs in simple736

ecosystem models (Fasham et al., 1993; Lefevre et al., 2003). Observed PP at737

3 m (Fig. 4d) shows surprisingly little seasonality, given the large seasonality738

in Chl, N and PAR (Figs. 4a,b,f). A contributing factor may be the use of739

smoothed PP data, as the binned PP data (Fig. 1j) suggests similar PP in740

April and October at 3 m (0.732 and 0.814 mmol N m−3 d−1), twice that of741

August (0.349 mmol N m−3 d−1). In addition, the model may need to include742

DON seasonality or more complex treatment of C:Chl:N ratios (Lefevre et al.,743

2003). Silicate limitation may also affect the evolution of the spring bloom744

(Townsend and Thomas, 2002).745

The mean depth of the euphotic zone (defined as the zero line between net746

biological source and sink, i.e. excluding sinking and mixing) is 25 m for P and747

28 m for N in summer, just below the DCM (21 m) and summer nitracline748

(24 m). Thus for estimates of fluxes into the euphotic zone, we use 24 m (the749

bottom of level 4).750

In the top 24 m, 51% of P losses are due to Z grazing, 10% to sink-751

ing, 11% to loss to D (i.e. senescence to phytodetritus; Turner, 2002; Cuny752

et al., 2002), and 28% to vertical mixing in winter (Fig. 6). This generally753

agrees with estimates that a significant portion of PP is lost as phytodetritus754

(Walsh et al., 1987). However Dagg and Turner (1982) estimate that 50% of755

primary production is grazed by mesozooplankton alone. Similarly, Cohen and756

Grosslein (1987) estimate macrozooplankton production as 8.07% of annual757

PP and microzooplankton production as 14.30% of PP; assuming assimilation758

efficiencies of 20% for macrozooplankton (Anderson and Hessen, 1995) and759

33% for microzooplankton (Peligri et al., 1999), this suggests macrozooplank-760

ton graze 40% of PP and microzooplankton graze 43%. Although not included761

in our model, P excretion of DOM is estimated at 16% of PP (Walsh et al.,762

1987).763

5.4 Zooplankton.764

Simulated Z peaks in spring rather than mid-summer (Fig. 4h). At 3 m765

Z closely follows P , with a spring and fall maxima (Fig. 4g). Thus Z is be-766

having more like microzooplankton than macrozooplankton, due to the high767

grazing rate g and assimilation efficiency fa (Table 5). This shows an inherent768

difficulty in using one Z state variable; copepods dominate biomass but micro-769

heterotrophs dominate grazing. In summer, model Z biomass is highest at the770

DCM (which has been observed at times; Townsend et al., 1984; Malkiel et al.,771
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2006), and there are significant concentrations below 30 m feeding primarily772

on D (Fig. 5f).773

Vertically-integrated Z biomass was assimilated because the observed ver-774

tical distribution of Z biomass is not well known, largely because of diel vertical775

migration, which is sometimes observed for some species though not always776

(Durbin et al., 1995). Because of this irregularity, vertical Z migration was777

not included in the standard model.778

In the euphotic zone, Z graze primarily on P , though grazing on Z is779

significant (Fig. 6). In the aphotic zone, grazing on P , D and Z is more780

closely balanced. Of Z losses, 22% goes to D and the rest to A. In Run 1, Z781

are net producers of D in both the euphotic zone and aphotic zone.782

Secondary production in the model, viz. fa(Gp + Gd + Gz)Z, is 53 g C783

m−2 yr−1, similar to the Cohen and Grosslein (1987) estimate of 57 g C m−2
784

yr−1 (assuming 1 g C = 10 kcal for Z). Note however Cohen and Grosslein’s785

estimate is based in part on the assumption that Z only graze P , and thus is786

likely an underestimate; the model eqivalent of faGpZ is 43 g C m−2 yr−1.787

5.5 Detritus.788

Simulated D predicts a peak at the time of the spring bloom; unfortunately789

there is a lack of D data between April 12 and June 9 for comparison. As a790

large amount of P are estimated to sink out of the euphotic zone rather than791

be grazed by mesozooplankton (Walsh et al., 1987), and only a fraction of792

what Z graze would go into D, an April peak seems likely. Charette et al.793

(2001, fig. 13) show POC export at 50 m to be higher in March than in June794

in both Wilkinson and Jordan Basins.795

The data suggest the D peak occurs simultaneously at 27 and 99 m depth796

(Fig. 4i,j), suggesting a fast sinking rate. Yet D concentrations never get below797

1 µM at 27 or 99 m, suggesting a slowly-sinking, refractory component. The798

model is roughly able to fit the data by means of a concentration-dependent799

sinking rate and a slow remineralization rate (Table 5). With constant sinking800

rates, probably two D classes would be needed.801

The MWRA data show uniformity in D with depth, rather than a fac-802

tor of 2 decline over 100 m (Martin et al., 1987). Since this data is from the803

edge of Massachusetts Bay (<110 m water depth) it may be an overestimate804

for Wilkinson Basin. Charette et al. (2001) estimate POM concentrations for805

Wilkinson Basin generally a factor of 2 lower than the MWRA-based esti-806

mates, though this is generally within the estimated D error bounds (Fig. 4i,j).807

Charette et al. (2001) also found general uniformity in D with depth and sea-808

son, with deep (> 70 m) POC of 3-5 µM and POC fluxes of 14-18 mmol m−2
809

d−1 which indicate sinking rates of 2-4 m/d. The model yields similar sinking810

rates (0.5-4 m/d), with annual sinking PON (=P+D) fluxes of 1.91 and 0.92811

mmol N m−2 d−1 at 24 and 198 m respectively.812
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5.6 Ammonium.813

Simulated ammonium at 9 m (Fig. 4k) is generally lower than observed,814

though within the uncertainty based on data variability. Some of the data815

variability may be due to measurement imprecision (Brzezinski, 1988), but it is816

also possible that natural variability is high, due to its production by Z (which817

are spatially patchy), rapid consumption by P and bacteria, and sporadic818

sources from the atmosphere and the coast. At 45 m (Fig. 4l), simulated A819

has an Apr-May peak much larger than observed, associated with the grazing820

of sinking P by Z (Figs. 5, 6).821

The simulated A maximum is just below the DCM, similar to typically822

observed (Holligan et al., 1984). The NODC A data (Fig. 1d,e) show an A823

maximum between 50 and 100 m, deeper than the P and D maxima; the fact824

that it occurs in almost every month in Fig. 1d suggests it is not an artefact825

of undersampling. Perhaps it is the result of vertical Z migration, which is not826

included in the model, or horizontal advection of seafloor-regenerated A from827

shallow areas. Deep A maxima are generally not observed in the ocean, due828

to nitrification, suggesting horizontal advection; in any case, if such a deep A829

maxima does exist in Wilkinson Basin, it is below the depth for utilization by830

P , such that its presence (and absence in the simulation) does not impact P831

production or biomass.832

Run 1 estimates 0.03-0.06 µM NO3 and 0.002-0.003 µM NH4 at the sea833

surface in summer, lower than observed (0.08-0.17 µM NO3 and 0.1-0.2 µM834

NH4; Fig. 1) though within the assigned data uncertainty. The high observed835

values remain unexplained by the model, and are probably due to unresolved836

processes (e.g. submesoscale upwelling, vertical Z migration) assuming the837

data are not contaminated.838

5.7 Comparison with other regions839

The data show that the seasonal cycle of phytoplankton in Wilkinson840

Basin is similar to the open ocean at this latitude of 42◦N (Strass and Woods,841

1991; Ducklow and Harris, 1993; Marra and Ho, 1993; Harrison et al., 1993).842

Chlorophyll and primary production peak in spring (April) and fall (Octo-843

ber). Strong stratification occurs in summer, and the model suggests primary844

production in the mixed layer then is essentially nutrient-limited (rather than845

light-limited), despite detectable nutrients. There are differences with the open846

ocean however. CTD profiles in summer often show extremely thin mixed lay-847

ers (e.g. 1 m), presumably due to strong light absorption, which in turn are due848

to high Chl and organic matter concentrations (Sosik et al., 2001). The deep849

chlorophyll maximum is at about 21 m depth, and the euphotic zone depth850

is estimated at 25 m. Detritus, NH4 and Chl concentrations are higher, and851

atmospheric nitrogen inputs are non-negligible. These higher concentrations852

are ultimately related to horizontal transport from nearby shallow areas.853

An interesting comparison can be made between our annual budgets (Fig. 6)854
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and those for Georges Bank just to the east by Steele et al. (2007, their fig. 4).855

Our annual primary and new production estimates (Fig. 6) are 49% and 56%856

theirs, though annual f -ratios are similar (0.29 vs. their 0.26). According to857

our model, 82% and 18% of primary production is lost to zooplankton and858

detritus, respectively; their analysis indicates 92% and 8% for Georges Bank.859

Wilkinson Basin shows spring and fall chlorophyll blooms, while ocean color860

data generally only shows a spring bloom on Georges Bank (Thomas et al.,861

2003). Field measurements of Chl on the shoals of Georges Bank do show en-862

hanced Chl in fall, although this may be due to horizontal advection (O’Reilly863

and Zetlin, 1998). In Wilkinson Basin, nitrate is replenished annually by ver-864

tical mixing, while Georges Bank relies on horizontal advection. Hence the ne-865

cessity of taking into account horizontal fluxes in an annual budget of Georges866

Bank.867

Massachusetts Bay (< 110 m deep), to the west of Wilkinson Basin, also868

generally exhibits spring and fall blooms, though interannual variability is sig-869

nificant (Libby et al., 2006). For example the spring bloom is very weak in870

some years, and the fall bloom has been observed to occur in September, Oc-871

tober or November (fig. 4-32 in Libby et al., 2001), which may be expected for872

Wilkinson Basin. The spring bloom occurs on average earlier in Massachusetts873

Bay than in Wilkinson Basin, and even earlier in Cape Cod Bay, as shallow874

areas warm and stratify earlier, due to their bottom-limited winter MLD. Ob-875

servations of the summer DCM and nitracline depth in Massachusetts Bay at876

a given station in a given year are rather erratic (Figs. 3.5-3.11 in Jiang and877

Zhou, 2006), attributed to mesoscale eddies and filaments. Massachusetts Bay878

imports 33 kilotons of DIN per year across its open boundary and exports879

an equal amount of organic nitrogen (fig. 6-2 in Hydroqual, 2000). Its coastal880

and atmospheric nitrogen loading of 26 kilotons per year is balanced by local881

burial and sedimentary denitrification. Note these numbers are about 10% of882

its annual primary production of 350-500 g C m−2 yr−1 (fig. 5-25 in Libby et883

al., 2001, 2006; Kelly and Doering, 1997), which is 2-3 times that of Wilkinson884

Basin, and similar to Georges Bank.885

5.8 Areas for improvement886

Model PP and Z are most outside the prescribed uncertainties in the data887

(Fig. 4). As these misfits could not be fixed through parameter optimization,888

changes to the model equations or state variables are required. They perhaps889

can be solved by adding a second P class (small phytoplankton, to maintain a890

nominal PP—also supported by the preference for a concentration-dependent891

P sinking rate) and a second Z class (to differentiate microzooplankton, which892

dominate grazing, from macrozooplankton, which dominate biomass.) Macro-893

zooplankton have lower growth rates, assimilation efficiencies and mortality894

rates which should help obtain the June Z maximum that lags the P maximum895

by two months. The concentration-dependent D sinking rate also suggests a896

second D class.897
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The optimization scheme assimilates the (time-averaged) data at single898

points in time, which is not a direct comparison. Comparing time-averaged899

model output with the data would avoid phase (timing) errors and allow the900

inclusion of the daily light cycle and diel zooplankton migration.901

This study also has identified key gaps in the extant observational database902

needed to constrain the nitrogen budget in Wilkinson Basin. In particular, mi-903

crozooplankton biomass, bacterial biomass, particulate and dissolved organic904

matter, and particle flux observations are extremely sparse. In our combined905

dataset, the time period Sep-Dec has few observations, even of nutrients. The906

A, D and Z data estimates have large uncertainties; more high quality data907

is needed to better constrain these estimates and thus the annual cycle.908

6 Conclusions909

A 6-box ecosystem model was fit to data through parameter optimization910

in order to provide a dynamically-consistent best estimate of the seasonal and911

annual nitrogen budgets in Wilkinson Basin. A summary of the observations912

are given in Fig. 1, and best estimates of the annual nitrogen cycle budget913

are given Fig. 6. The model estimates annual primary production as 176 g914

C m−2 yr−1, annual new production as 71 g C m−2 yr−1 and sinking PON915

fluxes of 9.7 and 4.7 g N m−2 yr−1 at 24 and 198 m respectively. The model916

does not agree with the data in all instances, and does not include horizontal917

transports; as such this is merely a first estimate, and not the final word.918

Model optimization was based on weighted least squares, with model-919

data misfits normalized by data uncertainty. The original data were reduced920

to monthly means, in order to separate the large-scale temporal and spatial921

“signal” from the submonthly and interannual “noise” that could not be re-922

produced by the model. The data uncertainties were computed as the standard923

deviations of the original data in monthly and 6-m bins (i.e. the noise), mak-924

ing the method similar to maximum likelihood estimation. These estimated925

uncertainties (σ̂i) are generally large relative to the seasonal cycle (σd), such926

that the assimilated data have a low “signal-to-noise” ratio. On average, the927

model fits the data at 1.08 times the estimated uncertainties.928

A variety of statistics were examined. Pattern statistics (such as the Tay-929

lor diagram) do not explicitly take into account the data uncertainties, and930

therefore are difficult to interpret when the signal-to-noise ratio is low. Us-931

ing uncertainty-normalized data and model estimates di/σ̂i and mi/σ̂i in the932

equations for RMSE and Bias tell whether the model is fitting the data within933

its assigned error, and thus were found to be the most appropriate metrics in934

this low signal-to-noise application.935

While the 6-box biological model is successful in reproducing most of the936

data within its assigned uncertainty, it has difficulty reproducing the seasonal937

trends in observed primary production and zooplankton biomass. The latter is938

probably because macrozooplankton dominate biomass while microzooplank-939
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ton dominate grazing, and the two have very different growth rates, assimi-940

lation efficiencies and mortality rates. This suggests the addition of a second941

phytoplankton class and second zooplankton class may be needed to better942

reproduce the primary production and zooplankton biomass seasonality.943

This study illustrates how phytoplankton abundance and primary produc-944

tivity interact with NH4, sinking detritus, DOM and zooplankton in a web of945

bottom-up and top-down controls. More high-quality observations of all these946

fields are needed to better constrain our understanding of the mechanics of947

these interactions.948

The optimized model estimates the typical depth-dependent seasonal cy-949

cles of nitrogen and phytoplankton in Wilkinson Basin (Figs. 5 and 6). As such950

the calibrated biological model can be used as a starting point in 3-D simula-951

tions examining nitrogen budgets and ecosystem variability. The model could952

be readily applied to the carbon cycle (assuming Redfield C:N ratios), though953

for e.g. air-sea CO2 flux estimates more model components are needed. More954

extensize model development would also be needed for application to fisheries955

(viz. explicitly resolve important Z prey species) and wastewater discharge956

eutrophication (viz. add sedimentary nitrogen-cycle processes).957
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Figure Captions1269

Fig. 1. The data. The Chl, NO3, NH4, Z and PP data are monthly mean1270

estimates; thus e.g. the third data point is March. The Chl, NO3 and PP1271

data are 6-m vertical bin averages; NH4 data are 18-m bin averages. Data1272

gaps appear when no data is in a 6-m monthly bin. December NH4 “data”1273

are actually interpolated from August and January data to keep the model1274

on track. Note that the colorbar ranges differ in panels (b) vs. (c), (d) vs. (e),1275

(g) vs. (h) and (j) vs. (k). Mixed layer depth (i) is computed primarily from1276

biweekly mean T and S data. The data (a), (c), (e), (f), (h) and (k) to 100 m1277

are assimilated into the model, with (i) prescribed.1278

Fig. 2. Cost versus iteration for Run 1.1279

Fig. 3. (a) Taylor diagram for Run 1. The ideal point is (x=1,y=0). (b)1280

Target diagram for Run 1. The ideal point is (x=0,y=0). (c) Modified Taylor1281

diagram for Run 1. The ideal point is (x=1,y=0). (d) Modified Target diagram1282

for Run 1. The ideal point is (x=0,y=0). N=Nitrate; A=Ammonium; C=Chl;1283

D=Detritus; P=Primary Production; Z=Zooplankton; O=Overall.1284

Fig. 4. Run 1 model-data comparison at selected levels. The circles are the1285

assimilated data, with the σ̂i error estimates shown as vertical lines. Note the1286

N , Chl, PP , Z and A data are monthly estimates; thus e.g. the third data1287

point is March. The solid black line is the model output. In (c), the dashed1288

line is model Chl at 3 m, for comparison.1289

Fig. 5. Run 1 model-data comparison. The N , Chl, PP , Z and A data are1290

binned monthly. The colors within the circles are the data; the background is1291

the model. The white line is the mixed-layer depth.1292

Fig. 6. Run 1 annual budgets, in mmol N m−2 yr−1. The left number is1293

the 0-24 m integral, which approximates the euphotic zone. The right number1294

is the 0-198 m integral, which is the entire water column. Sinking fluxes of1295

D and P at 24 and 198 m are shown as outward-pointing lines. “Dt” is the1296

vertically-integrated change over one year. “Mix” is the diffusive flux at at 241297

and 198 m.1298

Fig. 7. Run 1 output. (a) Time series of all phytoplankton sources (N to P,1299

A to P) and sinks (P to Z, P to D, P sinking, vertical mixing) as shown in Fig. 61300

for 0-24 m. The total sum equals the time rate of change ∂P/∂t. (b) Time series1301

of the individual phytoplankton source and sink terms shown in Fig. 6, as they1302

contribute to ∂P/∂t. (c) Bi-monthly averaged primary production. (d) F-ratio,1303

calculated as NO3 uptake divided by NO3 + NH4 uptake by phytoplankton.1304
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Table 1
Biological Model Equations

dN/dt = −UQnP + (b3A + b4A
2) exp(−I/b5)

dP/dt = U(Qn + Qa)P − GpZ − Mp + WpdP/dz

dChl/dt = (Chl/P )(dP/dt) + (1 − Ro/R)Chl/τ

dZ/dt = (Gp + Gd + Gz)Z − Ma − Md − GzZ

dD/dt = Mp + Md − b1TaD − b2TaD
2 − GdZ + WddD/dz

dA/dt = Ma + b1TaD + b2TaD
2 − UQaP − (b3A + b4A

2) exp(−I/b5)

K = (kw + kcChl)∆z

Ibot = Itop exp(−K)

I = (Itop − Ibot)/K

Ro = min(rmx, rmn + r1I)

R = rnP/Chl

L = 1 − exp(−αI/(µR))

Qa = (A/na)/(1 + (A/na) + (N/nn))

Qn = (N/nn)/(1 + (A/na) + (N/nn))

U = µTa min(1, L/(Qa + Qn))

Ta = 2(T−16)/10

Gp = gTas
2
pP

2/(1 + s2
pP

2 + s2
dD

2 + s2
zZ

2)

Gd = gTas
2
dD

2/(1 + s2
pP

2 + s2
dD

2 + s2
zZ

2)

Gz = gTas
2
zZ

2/(1 + s2
pP

2 + s2
dD

2 + s2
zZ

2)

Mp = a1P + a2P
2

Ma = fn(Gp + Gd + Gz)Z + (1 − fd)(a3Z + a4Z
2)

Md = (1 − fa − fn)(Gp + Gd + Gz)Z + fd(a3Z + a4Z
2)

Wp = max(wpn,min(wmx, wpn + wp1(P − wp2)))

Wd = max(wdn,min(wmx, wdn + wd1(D − wd2)))
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Table 2
Biological Model Variables

Variable Description

A ammonium concentration (µM)

Chl chlorophyll concentration (mg Chl m−3)

D detritus concentration (µM N)

Gd zooplankton grazing rate of detritus (1/day)

Gp zooplankton grazing rate of phytoplankton (1/day)

Gz zooplankton grazing rate of zooplankton (1/day)

I average PAR intensity in the model level (W m−2)

Ibot PAR intensity at the bottom of the model level (W m−2)

Itop PAR intensity at the top of the model level (W m−2)

K optical attenuation factor (nondimensional)

L light limitation factor (nondimensional)

Ma zooplankton excretion and mortality to A (µM N/day)

Md zooplankton egestion and mortality to D (µM N/day)

Mp phytoplankton excretion and mortality to D (µM N/day)

N nitrate concentration (µM)

P phytoplankton concentration (µM N)

Qa ammonium uptake factor (nondimensional)

Qn nitrate uptake factor (nondimensional)

R instantaneous carbon-to-chlorophyll ratio (g C (g Chl)−1)

Ro equilibrium carbon-to-chlorophyll ratio (g C (g Chl)−1)

T temperature (C)

Ta temperature dependence factor (nondimensional)

U phytoplankton growth rate (day−1)

Wd detritus sinking rate (m day−1)

Wp phytoplankton sinking rate (m day−1)

Z zooplankton concentration (µM N)
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Table 3
Biological Model Parameters

Parameter Description

α light-dependent growth rate (g C (g Chl day)−1 m2 W−1)

∆z vertical thickness of the model level = 6 meters

µ maximum phytoplankton growth rate (day−1)

τ chlorophyll adjustment timescale = 6 days

a1 linear phytoplankton mortality rate (day−1)

a2 quadratic phytoplankton mortality rate (day−1 µM−1)

a3 linear zooplankton mortality rate (day−1)

a4 quadratic zooplankton mortality rate (day−1 µM−1)

b1 linear detritus remineralization rate (day−1)

b2 quadratic detritus remineralization rate (day−1 µM−1)

b3 linear nitrification rate (day−1)

b4 quadratic nitrification rate (day−1 µM−1)

b5 nitrification light-inhibition factor (W m−2)

fa fraction of zooplankton grazing assimilated (nondim.)

fd fraction of zooplankton mortality lost to D (nondim.)

fn fraction of zooplankton grazing excreted to A (nondim.)

g maximum zooplankton grazing rate (day−1)

kc light attenuation coefficient of chlorophyll (m2 (mg Chl)−1)

kw light attenuation coefficient of seawater (m−1)

na ammonium uptake half-saturation constant (µM)

nn nitrate uptake half-saturation constant (µM)

r1 C:Chl ratio light-dependence factor = 1 g C (g Chl)−1 m2 W−1

rmn minimum carbon-to-chlorophyll ratio = 25 g C (g Chl)−1

rmx maximum carbon-to-chlorophyll ratio = 100 g C (g Chl)−1

rn nitrogen-to-carbon conversion factor = 79.5 g C (mol N)−1

sd zooplankton grazing half-saturation constant for D ((µM N)−1)

sp zooplankton grazing half-saturation constant for P ((µM N)−1)

sz zooplankton grazing half-saturation constant for Z ((µM N)−1)

wmx maximum sinking rate = 5 m day−1
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Table 3
Biological Model Parameters (continued)

Parameter Description

wdn minimum detritus sinking rate (m day−1)

wd1 linear detritus sinking rate factor (m4 (mmol day)−1)

wd2 linear detritus sinking rate threshold (µM)

wpn minimum phytoplankton sinking rate (m day−1)

wp1 linear phytoplankton sinking rate factor (m4 (mmol day)−1)

wp2 linear phytoplankton sinking rate threshold (µM)

All molar units refer to moles of nitrogen per liter of seawater.
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Table 4
Model Runs with Cost and Description

Run Cost Description

1 1.077 Central Run

2 1.098 b1 = 0, b2 = 0.01

3 1.124 b1 = 0, b2 = 0.02

4 1.091 sz = 2

5 1.119 a2 = 0, 0 < a1 ≈ 0.1 < 0.4

6 1.145 sd = 1

7 1.082 sd = 0

8 1.090 sz = 1

9 1.083 sz = 0

10 1.077 wp2 = 0

11 1.096 wd2 = 0

12 1.092 b5 = 15

13 1.092 b3 = 0.05

14 1.093 b3 = 0.1

15 1.097 a4 = 0, 0 < a3 ≈ 0.1 < 0.5

16 1.091 0 < sd ≈ 1 < 4

17 1.091 wd2 = 0, 0 < wdn ≈ 1 < 5

18 1.077 wpn = 0, 0 < wp2 ≈ 0.15 < 0.3

19 1.101 wd1 = 0, 0 < wdn ≈ 1 < 5

20 1.081 wdn = 0

21 1.094 wpn = 0

22 1.081 wpn = 0, wp2 = 0

23 1.088 0.01 < nn ≈ 0.1 < 1

24 1.083 0.01 < na ≈ 0.1 < 1

25 1.115 1 < µ ≈ 2 < 3

26 1.081 α = 4

27 1.087 g = 1

28 1.090 sp = 3.8

29 1.097 sp = 3

30 1.078 sd = 0.2
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Table 4
Model Runs with Cost and Description (continued)

Run Cost Description

31 1.082 α = 4.9

32 1.077 g = 1.3

33 1.091 a4 = 0.27

34 1.079 α = 5

35 1.077 a2 = 0.11

36 1.080 a2 = 0.1

37 1.094 0.4 < fn ≈ 0.5 < 0.7

38 1.086 0.2 < fa ≈ 0.25 < 0.3

39 1.090 a4 = 0.25

40 1.077 a2 = 0.12

41 1.110 g = 1.4

42 1.090 fd = 0.4

43 1.090 fd = 0.5

44 1.092 b1 = 0.01

45 1.096 0.02 < b1 ≈ 0.03 < 0.04

46 1.084 b1 = 0, 0.01 < b2 ≈ 0.02 < 0.04

47 1.091 b3 = 0.085

48 1.093 b3 = 0, 0 < b4 ≈ 0.05 < 0.1

49 1.089 b5 = 12.459

50 1.091 b5 = 10

51 1.093 kc = 0.0182

52 1.090 kc = 0.0170

53 1.093 kw = 0.114

54 1.090 kw = 0.112

55 1.084 a2 = 0.15

56 1.079 0.005 < b1 ≈ 0.02 < 0.04

57 1.092 wpn = 0.3

58 1.091 wpn = 0.1

59 1.092 wpn = 0.5

60 1.078 wp1 = 3.5
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Table 4
Model Runs with Cost and Description (continued)

Run Cost Description

61 1.083 wp1 = 3

62 1.092 0 < wp1 ≈ 1 < 3

63 1.088 wdn = 0.53

64 1.090 wdn = 0.5

65 1.078 wd1 = 3.36

66 1.080 wd1 = 3

67 1.090 0 < wd2 ≈ 0.5 < 1

68 1.089 0 < wd1 ≈ 1 < 3

69 1.112 wp1 = 0

70 1.100 wd1 = 0

71 1.077 a2 = 0.13

72 1.0802 a2 = 0.14

73 1.0844 wp2 = 0.16

74 1.0837 wp2 = 0.17

75 1.0844 wp2 = 0.15
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Table 5
Run 1 Parameter Values

parameter optimized value initial value min. limit max. limit

nn 1.0a — — —

na 0.01b — — —

µ 3.0a — — —

α 4.89 ± 0.18 4.0 3.0 5.0c

g 1.286 ± 0.040 1.0 0.3d 1.5d

sp 3.76 ± 0.12 2.0 0.2 4.0

sd 0.200 ± 0.040 1.0 0.2 4.0

sz 1.96 ± 0.11 2.0 0.2 4.0

a1 0.0 — — —

a2 0.111 ± 0.011 0.1 0.0 0.4

fn 0.6d — — —

fa 0.3d — — —

a3 0.0 — — —

a4 0.272 ± 0.015 0.1 0.0 0.3

fd 0.499 ± 0.063 0.4 0.3d 0.5d

b1 0.0101 ± 0.0018 0.02 0.01 0.04

b2 0.0 — — —

b3 0.085 ± 0.017 0.05 0.0 0.1

b4 0.0 — — —

b5 12.5 ± 3.5 15.0 10.0 20.0

kc 0.0182 ± 0.0013 0.0303e 0.0170f 0.0562g

kw 0.1137 ± 0.0038 0.134e 0.112g 0.160f

wpn 0.306 ± 0.076 0.5 0.0 1.0

wp1 3.49 ± 0.39 1.0 0.0 4.0

wp2 0.3h — — —
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Table 5
Run 1 Parameter Values (continued)

parameter optimized value initial value min. limit max. limit

wdn 0.53 ± 0.15 1.0 0.5 5.0i

wd1 3.36 ± 0.99 1.0 0.0 4.0

wd2 1.0h — — —
amaximum limit.
bminimum limit.
cbased on Table 16 in Parsons et al. (1984).
dassuming g=0.3, fa=0.2 and fn=0.5 for copepods (Anderson and Hessen, 1995)
and g=1.0, fa=0.33 and fn=0.33 for microheterotrophs (Pelegri et al., 1999)
ebased on a regression of Kd(443) on Chl from data in Table 1 in Sosik et al. (2001).
fHydroQual (1995); minimum kw estimate for Massachusetts Bay, p 5-18.
gbased on a regression of Chl on Kd(443) from data in Table 1 in Sosik et al. (2001).
hbased on lowest observed surface concentrations.
ibased on Charette et al. (2001).
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Table 6
Run 1 Model and Data Statistics

NO3 NH4 Chl PP Det Z

units µM µM mg m−3 µM N d−1 µM N mmol N m−2

ni 151 54 196 84 34 12

m̄ (u) 6.6730 0.1346 0.5052 0.1391 1.0277 20.0604

d̄ (u) 6.0856 0.1341 0.5444 0.2581 1.3837 28.5425

σm (u) 3.7325 0.1236 0.4524 0.2023 0.2487 5.2751

σd (u) 3.5281 0.0386 0.4714 0.2088 0.4844 11.7677

σ̂i (u) 1.47 0.27 0.22 0.03-0.27 0.86 10.8

r 0.9070 0.4169 0.8428 0.5450 0.1786 0.2503

σm/σd 1.0579 3.2021 0.9598 0.9686 0.5134 0.4483

RMSE (u) 1.6841 0.1131 0.2625 0.2294 0.6166 14.3935

Bias (u) 0.5873 0.0004 -0.0392 -0.1190 -0.3560 -8.4821

uRMSE (u) 1.5784 0.1131 -0.2596 -0.1962 -0.5034 -11.6287

nRMSE 0.4773 2.9298 0.5570 1.0986 1.2729 1.2231

nBias 0.1665 0.0108 -0.0831 -0.5696 -0.7350 -0.7208

nuRMSE 0.4474 2.9298 -0.5507 -0.9393 -1.0393 -0.9882

(u) signifies the quantity has units (see units). Other quantities are dimensionless.
ni is the number of observations of this type (month-depth bins).
m̄ and d̄ are model and data means, respectively.
σm and σd are model and data standard deviations, respectively.
σ̂i is an estimate of the error in the data values (Sec. 2).
r = (

∑n
i=1(mi − m̄)(di − d̄))/(nσmσd), correlation coefficient.

RMSE =
√

∑n
i=1(mi − di)2/n, Root-Mean-Square Error.

Bias = m̄ - d̄
uRMSE = sign(σm- σd)

√

∑n
i=1((mi − m̄) − (di − d̄)))2/n, unbiased RMSE,

using the sign convention of Jolliff et al. (2009)
nRMSE = RMSE/σd, normalized RMSE (Jolliff et al., 2009)
nBias = Bias/σd, normalized Bias (Jolliff et al., 2009)
nuRMSE = uRMSE/σd, normalized unbiased RMSE (Jolliff et al., 2009)
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Table 7
Run 1 Model Statistics, using mi/σ̂i and di/σ̂i

NO3 NH4 Chl PP Det Z All

r 0.9070 0.4169 0.8428 0.4594 0.1786 0.2503 0.8946

σm/σd 1.0579 3.2021 0.9598 1.1690 0.5134 0.4483 1.0881

RMSE 1.1457 0.4189 1.1933 1.0393 0.7170 1.3327 1.0773

Bias 0.3996 0.0015 -0.1781 -0.7335 -0.4140 -0.7854 -0.1123

uRMSE 1.0737 0.4189 -1.1800 0.7363 -0.5854 -1.0767 1.0715

Table 8
Annual New and Primary Production (g C m−2 yr−1) in Wilkinson Basina

New Prod. Prim. Prod. Reference

190 270 O’Reilly et al. (1987), NCP table 21.5; fig. 21.7

110-186 162-364 Townsend (1991), table 1

59 290 Townsend (1998)

— 182b Graziano et al. (2000), table 3

27-63 — Benitez-Nelson et al. (2000), export at 10 m

93c —d Charette et al. (2001), table 3 and sta. 34 in table 4

44 276 Bisagni (2003)

— 322 computed from data in Fig. 1j

97 ± 58 267 ± 67 mean and std of observation-based estimates

71 176 This study, Run 1
aConversions made using a Redfield ratio of 6.625 mol C (mol N)−1 where necessary
b“assuming negligible production from December-January”, thus an underestimate
of 0-17%, indicating 182-218 g C m−2 yr−1

ccomputed as the mean of POC export at 50 m in March (29 mmol C m−2 d−1),
June (18 mmol C m−2 d−1) and September (16.5 mmol C m−2 d−1)
dCharette et al. (2001) observed a PP of 130 g C m−2 yr−1 in Sep 1997 in Wilkinson
Basin (Station 34 in their table 4), but this probably underestimates the annual
mean

43



0 100 200 300
200

150

100

50

0
(i) Mixed layer depth

yearday

0 200
200

150

100

50

0
(b) Nitrate (µM)

5

10

15

20

0 200
200

150

100

50

0
(c) Nitrate (µM), smoothed

5

10

15

0 200
100

50

0

de
pt

h 
(m

)

(a) Chlorophyll (mg/m3)

0.5

1

1.5

2

0 100 200 300
0

20

40

(f) Zooplankton (mmol N/m2)

0 200
200

150

100

50

0

de
pt

h 
(m

)

(g) Detritus (µM N)

1

2

3

0 200
200

150

100

50

0
(h) Detritus (µM N), smoothed

1

1.5

2

2.5

0 200
200

150

100

50

0

de
pt

h 
(m

)

(d) Ammonium (µM)

0.1

0.2

0.3

0.4

0 200
200

150

100

50

0
(e) Ammonium (µM), smoothed

0.05

0.1

0.15

0.2

0 200
60

40

20

0

yearday

de
pt

h 
(m

)

(j) Prim. Production (µM N d−1)

0

0.2

0.4

0.6

0.8

1

0 200
60

40

20

0

yearday

(k) Prim. Production, smoothed

0.2

0.4

0.6

Fig. 1.

44



0 500 1000 1500 2000
1

1.2

1.4

1.6

1.8

2

iteration

C
os

t

Fig. 2.

45



0 1 2 3
0

1

2

3

N

A

C
P

DZ

(σ
m

/σ
d
) cos(acos(r))

(σ
m

/σ
d) 

si
n(

ac
os

(r
))

(a) Taylor Diagram

r=0.866

r=
0.

5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

N AC
PDZ

nuRMSE

nB
ia

s

(b) Target Diagram

0 1 2 3
0

1

2

3

N

A

C

P

DZ O

(σ
m

/σ
d
) cos(acos(r))

(σ
m

/σ
d) 

si
n(

ac
os

(r
))

(c) Taylor Diagram, using m
i
/σ

i
 and d

i
/σ

i
^ ^

r=0.866

r=
0.

5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

N
AC

P
D

Z

O

uRMSE

B
ia

s

(d) Target Diagram, using m
i
/σ

i
 and d

i
/σ

i
^ ^

Fig. 3.

46



0 91 181 273 365
0

2

4

6

8

10
(a) Nitrate at 3 m

µM

0 91 181 273 365
0

0.5

1

1.5

2

2.5

(b) Chlorophyll at 3 m

m
g 

C
hl

 m
−

3

0 91 181 273 365
0

0.5

1

1.5

2

2.5

(c) Chlorophyll at 21 m

m
g 

C
hl

 m
−

3

0 91 181 273 365
0

0.5

1

1.5

(d) Primary Production at 3 m

m
m

ol
 N

 m
−

3  d
−

1

0 91 181 273 365
0

0.1

0.2

0.3

0.4

0.5

(e) Primary Production at 21 m

m
m

ol
 N

 m
−

3  d
−

1

0 91 181 273 365
0

20

40

60

80

100

120
(f) PAR at 0 m

W
 m

−
2

0 91 181 273 365
0

0.1

0.2

0.3

0.4

0.5

(g) Zooplankton at 3 m

µM
 N

0 91 181 273 365
0

20

40

60

(h) Zooplankton, vertically integrated

m
m

ol
 N

 m
−

2

0 91 181 273 365
0

1

2

3

(i) Detritus at 27 m

µM
 N

0 91 181 273 365
0

1

2

3

(j) Detritus at 99 m

yearday

µM
 N

0 91 181 273 365
0

0.1

0.2

0.3

0.4

0.5

(k) Ammonium at 9 m

yearday

µM

0 91 181 273 365
0

0.5

1

(l) Ammonium at 45 m

yearday

µM

Fig. 4.

47



0 91 181 273 365
−120

−100

−80

−60

−40

−20

0

de
pt

h 
(m

)

(a) Nitrate (µM)

5

10

15

0 91 181 273 365
−120

−100

−80

−60

−40

−20

0
(b) Phytoplankton (µM N)

0.2

0.4

0.6

0.8

1

1.2

0 91 181 273 365
−120

−100

−80

−60

−40

−20

0

de
pt

h 
(m

)

(c) Chlorophyll (mg Chl m−3)

0.5

1

1.5

2

0 91 181 273 365
−120

−100

−80

−60

−40

−20

0
(d) C:Chl Ratio (g C (g Chl)−1)

30

40

50

60

70

80

0 91 181 273 365
−120

−100

−80

−60

−40

−20

0

de
pt

h 
(m

)

(e) Primary Production (mmol N m−3 d−1)

0.2

0.4

0.6

0.8

1

1.2

1.4

0 91 181 273 365
−120

−100

−80

−60

−40

−20

0
(f) Zooplankton (µM N)

0.1

0.2

0.3

0.4

0.5

0 91 181 273 365
−120

−100

−80

−60

−40

−20

0

yearday

de
pt

h 
(m

)

(g) Detritus (µM N)

0.5

1

1.5

2

2.5

0 91 181 273 365
−120

−100

−80

−60

−40

−20

0

yearday

(h) Ammonium (µM N)

0.2

0.4

0.6

0.8

1

Fig. 5.

48



N

P

Z D

A

Mix: 776 / 0

Mix: −570 / 0

Mix: −28 / 0 Mix: 133 / 0

Mix: 305 / 0

Dt: −56 / −318

Dt: −1 / −1

Dt: −4 / −15 Dt: 1 / 23

Dt: −19 / −24

Atmos: 70 / 70

Atmos: 18 / 18

197 / 
2

499 / 
334

148 / 
283

847 / 
890

1020 / 
1817

50 / 
346

14 / 572

1164 / 1329

225 / 401

805 / 1530

19 / 118

211 / 420

Fig. 6.

49



0 100 200 300
−20

−10

0

10

20

yearday

m
m

ol
 N

 m
−

2  d
ay

−
1

(a) P sources and sinks, 0−24 m

 

 
all sources
all sinks
total

0 100 200 300
−10

0

10

20

30

yearday

m
m

ol
 N

 m
−

2  d
ay

−
1

(b) P sources and sinks, 0−24 m

 

 
N to P
A to P
P to Z
P to D
P sinking
vertical mixing

0 0.2 0.4 0.6 0.8
−50

−40

−30

−20

−10

mmol N m−3 day−1

de
pt

h 
(m

)

(c) Primary Production

 

 

Jan−Feb
Mar−Apr
May−Jun
Jul−Aug
Sep−Oct
Nov−Dec

0 100 200 300
0

0.2

0.4

0.6

0.8

1

yearday

(d) f−ratio

 

 
0−6 m
0−24 m

Fig. 7.

50


