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Editor's Preface

The general circulation of the oceans was the topic of concentration
for the 1968 WHOI Summer Program in Geophysical Fluid Dynamics. Stommel
summarized the broad range of ideas and approaches to the many probiems which
face the investigator of oceanographic phenomena. A series of seminars of
observational studies.was followed by Louis Howard's two-week course on
theoretical concepts and techniques in rotating stratified fluids. An enter-
taining week of heated discussion on the use of chemical tracers in determining
oceanic circulation emphasized the need for a much more extensive network of
observations of chemical properties. The instructive function of theoretical
numerical modeling of ocean circulation was clearly brought out in a series of
seminars devoted to that topic. During the program various participants pre-
sented their ideas and researches on topics ranging from the micro-structure in
the surface layers of the oceans to the large scale thermal circulation of the
world's oceans.

The present volume contains a summary of the lectures and seminars.

Some of the reports are detailed while others are brief descriptions of the talks.
Perhaps the most useful purpose of the volume is the idea that it conveys of the
many fascinating approaches to the understanding of our ocean environment.

We are all grateful to the National Science Foundation for its continued
support and encouragement and to Paul M. Fye for making available to us the
facilities of the Woods Hole Oceanographic Institution. Mary C. Thayer has again
taken on the lion's share of the task of assembling and typing the reports for
this and the accompanying volume. Her unique ability to keep the program function-

ing smoothly is a constant source of delight to all of the participants.

George Veronis
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INTRODUCTION TO THE GENERAL OCEAN CIRCULATION

Henry Stommel

Lecture 1. General Considerations June 26, 1968

1. Introduction:
A selected list of references is given in Appendix 1.
The topics which will be discussed are:
(1) general ocean circulation, and
(2) special related subjects such as Gulf Stream, equatorial
currents, thermohaline circulation, etc.
General partial description of oceans will be found in books such as
e '"The Oceans'' by Sverdrup, Johnson and Fleming. We are going to study the
dynamical theories governing these phenomena.
\\\\\ OHe way of describfng the general circulation can be obtained by
considering the transpoff function obtained by integrating over the three

different coordinates. Each will reveal some feature of the general circula-

tion. The result is summarized in the following diagram. (Fig. 1)

et Il. Vertically Integrated Transport Function
1. Surface Charts (Chart 1.)

The most basfc information on the circulation comes from records of
surface currents compiled by hydrographic offices from thousands of individual
observations of ship drift. The charts compiled from these observations give
Lﬁ; the general picture of the mean surface circulation and comprise the main

evidence for features such as the Equatorial Counter-currents. Some of the

principal features shown by these charts are:
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a. In mid-latitudes of the oceans there are intense, narrow,
poleward currents on the western boundaries and slow, broad, equator-
ward drifts over the eastern parts of the oceans. These large features
have been called subtropical gyres by Munk. The intense western boundary
current occurs in the North Atlantic as the Gulf Streah and in the North
Pacific as the Kuroshio Current. The situation in the Indjan Ocean is
complicated by the monsoon winds.

b. In northern latitudes there seem to be cyclonic gyres of smaller
scale called subpolar gyres.

c. There is an eastward-flowing currént usually lying a few degrees
north of the equator in the Pacific called the Equatorial Counter-current.

This circulation seems to be drivén by the mean winds over the
oceans. However, the winds do not show the narrow asymmetry found in the
surface currents. This paradox will be discussed in the nextklgcturé.

Ekman did the first important study of the effect of wind on the
ocean. He found that the effect of a steady uniform wind was confined to
a shallow surface layer. The actual non-unfformity of the wind results
in convergences and divergences in the Ekman Jlayer. The resulting vertical

motions act as an important input for the geostrophic current below.

2. Geopotential Topography (Chart 2.)

The vertical balance of forces in the ocean is basically hydro-
static. Consequently surfaces of equal pressure are farther apart where
the density is low than where it is large. Complicating this are spatial
variations in the earth's gravity field which requires the use of geo-

potential rather than distance. The customary oceanographic units of
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geopotential distance, and pressure correspond closely in numerical
values. Thus a separation of one meter in distance corresponds to one
dynamic meter in geopotential and one decibar in pressure.

The data from standard hydrographic stations gives the density
field in the ocean. This data provides the basis for computing the
vertical gradient of horizontal velocity between two stations. By
assuming that the deep pressure surfaces are nearly horizontal, with zero
geostrophic velocities, it is possible to determine geostrophic velocity
as a function of depth by numerical integration. The 1000-decibar surface
will be used as the level of no motion in these lectures.

It is instructive to look at the topography of the sea surface
relative to the 1000-decibar surface. The total range of variation is
about two meters. The main features of the dynamic topography do not seem
to be subject to significant seasonal variations. The seasonal distribu-
tion of data is barely good enough to show seasonal variation. Sea-level
data for mid-ocean stations such as Bermuda, show an apparent rise and fall
of the free surface with seasonal density changes once high frequency tides

and atmospheric pressure fluctuations have been filtered out. This means

that the light surface waters simply expand and contract with seasonal changes

resulting in negligible pressure changes at the 1000-decibar surface, the

range is less than 20 cm, the contour interval of Chart 2.

Ill. Longitudinally Integrated Transport Function and the Vertical Density
Structure of the Sea Water
(A) The vertical structure of the specific volume of the sea

water may be indicated in the following diagrams. (Chart 3.)
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(B) Meridional sections of water properties reveal some
features of the abyssal circulations.
1. There must be slow (1 cm/day) general upward flow of
cold deep‘water to balance the loss of heat by diffusion from the warm 1ight

S

water above the main thermocline.

2. There is an indication of a slow.po]eward drift of deep
water over much of the ocean basins with an intense deep western boundary
current to provide the return flow.

3. There are two source regions for deep water: the North
Atlantic in the vicinity of Greenland, and the Weddell Sea. The source
regions are much smaller than the wider-spread upward regions underlying the
whole thermocline.

L. From salinity profiles there is an indication of a
net flow of North Atlantic deep water into the Pacific via the Antarctic

Circumpolar Current.

IV. The Latitudinally Integrated Transport Function

The general feature is summarized in the diagram indicated in the
introduction to this lecture. An interesting thing to notice is that there
seems to exist a fresh-water transport of about 1 x 106 m3/sec over Panama
from Atlantic Ocean to Pacific Ocean by the moist trade winds, and this is
related to a bimodal distribution of volume vs. salinity for the whole‘
ocean water mass.

Notes submitted by

Michael C. Gregg and

Han-Hsiung Kuo
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INTRODUCTION TO THE LINEAR VISCOUS THEORIES OF SVERDRUP AND MUNK
‘ Henry Stommel

Lecture #2 ) June 24, 1968

1. The Vorticity Equation and Sverdrup's Interior Solution

Consider the steady linearized equations of motion in the form

2 al. 3
- 2L o
-—}/ov.. Y IRCE horeh
(1)
T
. _2e 2 | X
chou’, 9"1 dz east
where = -+ . . . the coriolis parameter
F=f+ny
‘Eﬁalty . . . vertical wind-stress component
P . . . pressure
P . . . density.
Assume at z = -h the horizontal pressure gradients and motion vanish,

and z = z is the sea surface (z =.0, is the mean sea surface). Besides, one
assumes that the depth of h is far less than the depth of the ocean. Thus
bottom friction is negligible.

The vertically integrated mass transports per unit width are defined

as follows: 2z,

2-0
M)ﬁ;-j,au.dZ, Mj-:J/OVOlZ (2)
/4 ‘h

and a function P is defined as:

2,
P= F d'z- (3)
~h



- 13 -

’ Thus the equations (1) in integrated form are
OP T

_}"M'Z) T x T */a - 2,
- J; M y S o Y

In the above equations differentiation and integration have been

1}

(&)

1
1
L)
-
+
Q_QH
R
1}
hYl

interchanged in the pressure term. No additional terms are added because
-h is chosen at zero horizontal pressure gradients and terms introduced by
the variation in surface elevation are negligible.

The integrated form of the continuity equation is

: oM, am,
- S d° 0 : | (5)

- Cross-differentiation of equations (4) with equation (5) yields the

vorticity equation first developed by Sverdrup

(6)

2 2y

/43/A4:7 = cunf if

i f Mx is taken as zero at one meridional coast, Mx can be obtained using
equation (5). However, the solution cannot satisfy a boundary condition at
the other coast. The dynamics of this model are not of high enough order to
permit a solution of the closed ocean basin problem.

In order to seek a more physical meaning of equation (6) let us break
each transport component into two parts: one set to represent the Ekman wind-
drift transport components Mxe’ Mye’ largely confined to the upper hundred
meters, and the other the geostrophic transport components ng, Myg’ extending

deeper into the main thermocline:

— /Wx’Mxe"’ng’ ' Mﬂ°Mﬂe+M€l‘3 @



- 14 -

and —f My =Ty (Mye=T (8)

(j li' "z'a

2-2,

0
—fMyg= - #fo—-%;— (9)

The horizontal divergence of the Ekman wind drift, divﬁﬁe is

obtained from (8)

. “’ﬂML(e ‘i'CLULZ?

.F

Because of the variation of the Coriolis parameter with latitude,

-
div, Mg = (10)

all northward or southward geostrophic motions exhibit a horizontal diver-
gence, divHﬁg, which can be obtained from (9)
-—)
Cil‘V N] :—é_/_w_#%_ (”)
H 3 {

In steady state, the total horizontal divergence divﬁﬁg must vanish.
Thus the sum of equations (10) and (11) leads to equation (6). Then it is
clear that the equation (6) indicates that the divergence of the Ekman wind
drift, produced by wind, is compensated for by the divergence of the geo-
strophic flow. Thus the picture presehted is a coupled flow comprised of
the Ekman layer responding to the wind and the underlying geostrophic layer

which adjusts itself to the upward or downward flow from the Ekman layer.

A serious difficulty in relating the above approach to the real ocean

is determining the actual mean wind stress over the ocean. Using the mean

wind stresses over the central North Atlantic as obtained from pilot charts,

M can be computed using equation (6). Assuming a zero velocity at great

depth and using density data geostrophically along 32°N to compute LB(Z),
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we get figure (1)

(Figure 1)

Thus, My is given by the area of the triangle in the upper right-hand

corner of the figure.
= -1/2 x 10%m x 1.4 x 10_2m/sec

x4
|

= =7 m2/sec

Taking the width of the North Atlantic as 5000 km (5 k 106m) we get
a net interior transport to the south of 35 x 106m3/sec.

Measurements of deep currents in the vicinity of Bermuda by Swallow
and Crease showed much larger velocities than indicated above. They found
what appears to be large (50 miles) scale eddy motion with large amplitude
(10 cm/sec) and low frequency (1 cycle/2 months). This raises a question
about the lateral processes which has been neglected in the Sverdrup model
and points out that it is not possible to infer that geostrophic velocities

necessarily vanish at great depths.

it. Munk's Theory of the Wind-driven Ocean Circulation
By introducing a higher order term in the form of a horizontal shear
stress Munk was able to obtain solutions for the closed oceanic circulation.

Thus equations (1) become:

?p 3T 3 9

20 . 9T, 6
‘F’PU=———+—5+KH(3L}+831)V

(12)
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where KH is the horizontal eddy viscosity.

Let us assume that:

2 2 2'0‘ 2. 2
3 L) 0 9 '
A (—;’?1"—3#1)/1/1)( =] KH(()X" -+ —ay;)u OLZ
h

(13)
- 2 = 2 2. 2
A(—3—+ a)M_jK(—aJr a)VoLz
oxr  9y2/"y = Jy H\ ax? oy
where A == KH. Introducing a transport function W , defined by the
following equation |
Qv ' X |

Thus from equations (12), (13) and (14), we obtain

eM v aW)A a] 9T, oL,
[A (axw"'zaxaay;-"agv ~ﬂ-®7 ‘1U = -ag - _a_xg (]5)

Eqn. for singular boundary region
, « . . )
Egn. for interior region

The boundary conditions for ¥ are that both Y and its derivative
normal to the boundary shall vanish.

If the boundaries are taken as forming a simple rectangle’x =0, r,
and y = + S, and only an east-west wind system:is assumed, Ia =0, then an

approximate solution is of the form

.~ 2Tx
V=rX g8 ‘52;
where ny ' ’ )
_ -2 (V5 J3 T i -k (r-x
_X_—’Be w(zk +2Kr~ 2>+"__(KY"8 "')
and

6=()- (/). we>lih

A rough plot of X(x) is given by Figure (2).
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X (x)

{

L]

western Sverdrup eastern

boundary interior boundary
region region region
- —_
expanded ~expanded
scale scale
Figure (2)

Using the mean annual zonal winds only, the solution shows that the
integrated oceanic wind-driven circulation is divfded into closed circulatory
systems or ''gyres''. The gyres are bounded at latitudes where curl :2,= 0
and are centered at latitudes where curl ﬁ? is an extremum.

The Munk solution of the theoretical vertically integrated transport

is about the limit to which one can go in the physical geography of currents

using linear vertically integrated models.

Notes submitted by
Han-Hsiung Kuo and

Michael C. Gregg
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INERTIAL THEORY OF THE GULF STREAM

AND A LABORATORY MODEL FOR OCEANIC CIRCULATION

Henry Stommel

Lecture #3 ’ ' - June 26, 1968

1. Hydrography of the Gulf Stream

In comparing temperature and salinity profiles across the Gulf Stream

with theoretical ideas, we distinguish the following:

[A

—
| - ’/
. y =z T 7
rd
7
!
AHH B /; |
\—— \ |
i c
c' ’
schematic location of actual geographical location of
section in theoretical corresponding section in
gyre Atlantic Ocean

a. The observed section AB corresponds to the western boundary region
A'B' of Munk's or Stommel's model. The observed section BC corresponds to

the Sverdrup interior region.

b. From A to B the isotherms have a large downward slope toward south

under the Gulf Stream. From B to C, the region where the Gulf Stream is being‘

fed, the isotherms seem to slope linearly upward with decreasing latitude.

[

£y
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c. The major hydrographic difference in section ABC is the change in
thickness of the water lying between the 16°C and 20°C isotherms - called
18° water. There is a very marked decrease in thickness of the layer going
from mid-ocean to the Gulf Stream. It seems dynamically significant that this
e vertical shrinking is just about the amount required for the potential vorticity

of the layer to be conserved across the Stream.

d. The "18° water' seems quite homogeneous in temperature and salinity
- throughout the western North Atlantic. It is not yet known where this water
comes from and what maintains it. One would expect theoreticaily that it is
being fed by the Ekman layer over the whole year. However, this should resﬁlt
in greater temporal and spatial variations under the Ekman layer than seem to
be observed. At first glance the homogeneity of the water suggests formation
in a small region during winter months only and this seems inconsistent with

the Ekman idea.

i1. A Model of the Gulf Stream with Uniform Potential Vorticity
Now let us consider a two-layer model as indicated below. Layer 2 is

at rest.

- —_seq Surjace
A ; . 1\?
% 2
D=2(0) 5

8
v v

x layer 1

Pedp
layer 2

Figure 1.
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The conservation of potential vorticity is:

ey B
E’E( D /=9 | W

where\§==/?y and p s relative vorticity, J = YR

W,V are velocities in layer 1.

In the middle of the ocean 3 <?<5:. From the observed variation

of thermocline depth with latitude it seems that in the interior é; is
the same for all transport lines. Therefore, the potential vorticity along
streamlines in the interior is §B/ZD . In the Gulf Stream region J is

comparable to f , and W is negligible. Hence, the potential vorticity

5_8\/

in the western boundary is . From equation (1) we have,
v
F+ 3x £ '
I ox (2)
D D, |
Flow in the Gulf Stream may be taken as geostrophic
. L PP
Noting that the pressure in the 2nd layer is
V y -D o
fz(z)zjjpdz—-js,o dz+j (P+Ap)alz (%)
S 2 -D 2
and the layer is at rest, we have
on D R
°=9r 5a +3p 33 (r+2e) 53 .
5
29 _ 4p 2D

3x -~ P ox
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. op dy . .
Sjnce 5% _-3/0 5%’ quatlon (3) may.now be written as
.f"V:g/% , , (6)

A
where 3’ =j "‘5—

From equations (6) and (2), we have, by eliminating V

g";{”';(z-pa) o

. where J_TET“»
N o= 4B
5” ¥
The solution of equation (7) under the boundary conditions D=0

at X =0 and D =ZQ3 for large X , completely determines the cross-

stream profile of depth and velocity.

D=2, (I~ e-'X/j)

\ (8)
V - V ﬂl-DB e—)‘/d

if we introduce the numerical values as

- L Ap -3
i% = 8 x 10°cm, o ~2 x 10

3 ~ IO3 cm sec-2 §_~10_45ec_]

it is obtained,

P
]

= 40 km = L% width of the Gulf Stream

= I m/sec

<
I

max



The value of 40 km for the width of the Stream seems reasonable com-
pared to Fuglister's Gulf Stream '60 data. Charney's (1956) paper treats the
formation of an inertial Gulf Stream where a more general, non-uniform, law of

potential vorticity with latitude holds in the interior.

i1l. Laboratory Model for Oceanic Circulation

We are going to study a laboratory model to simulate some aspects of
oceanic circulation such as the intense western boundary current. Consider a
rotating sector with dimensions indicated as below. In this experiment the
change in height of a column with radial movement is used to simulate the

variation of the Coriolis parameter with latitude on the earth.

0 T T ] T [ T T T T 1 1
7]
o i o
hd ] 19°C
Q
E E
£
-y
£ 500+ ¢
o .
(=]
2007
integréted
: vorticity
o l
(1]
= I
£
1007 !
> “geostrophic
has velocity
O
2
)
>
0 n 1 6 4 \ 1 I]
Vg
0 50 \100/

naut.miles
Figure 2.

The lower figure is a potential vorticity analysis of the upper figure. The
solid line shows velocity computed by vorticity formula obtained by integrating

equation (2) with respect to x from x to ©0 . The dotted line shows geostrophic

velocity computed from the section.
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Figure 3

We will put point sources in various locations and consider the rising
of the free surface as a uniformly distributed sink.

The unperturbed paraboloidal surface h associated with the radial pres-
sure gradient balances the centripetal acceleration term. We take the level h

in the basic state of relative rest as
’_1-
ﬁ:ﬁo(uf:;) (1)

€ w "a."'

—23/%

where

Assuming hydrostatic equilibrium in the vertical and denoting by
the vertical displacement from the paraboloid surface, associated with steady

geostrophic flow, the equations of motion governing interior flow read

27

2.a.\@, =9 3, (2)
o7

—wv =L S | 3)

Neglecting \; relative to ﬂ , equation of continuity is



—aé—(hvr)*“i(“eo)rrf (1)

From equations (1), (2), (3), and (4), we can solve for

__ je -
Vo=~ v | (5)

oy

Thus the interior geostrophic flow which arises when a source adds
water to the basin, producing a positive j , is directed radially inward
and has no ¢ component.

If sources O (rate of addition of volume) are assumed tq produce a

uniform vertical rising surface throughout the basin, geometry requirements

give the relation
2
f, > (6)
and equation (5) becomes

_ S ]
V;-— giqzr?f; (7)

Consider the water budget of the shaded sector defined by ¥ = » in

the figure below.

Figure 4
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-ﬁi represents the transport into the sector by the interior geo-

strophic flow; T represents the vertical transport associated with J ;

v
S

one of the elements of the regime, and we solve for it on the basis of the

o denotes the source transport. We postulate the existence of [, as

mass conservation requirement

_E+_E+SO+TVéO (8)

From equations (6), (7), and the geometry of the system:

TI-—AYga ___,< ) (9)
% |

Tv=~ = -5 = (10)

Solving for ’TLU

TW=——§—(/+

{y* Sy* s
— = -S -2
az Sa+ . az o { (]])
where, for the general case depicted in above figure
S=S°+S/ | (12)

If SL is positive and f;lz O , we have
- - L | (13)
Ty~ So('*{) |

where 4€ is the parameter characterizing the slope of the equilibrium
surface. Note that the transport is larger than the source input.
If So = 0 and 5, is positive we have
‘ 5%
w7 (14)
The actuai experiments we are going to perform do show the internal

western boundary current and show interior flow.
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(The actual demonstration did not give as narrow western boundary currents as

it usually does. No explanation is offered.)

IV. Abyssal Circulation of the World.
A model of the abyssal circulation can be constructed by using the

following:
1) An areal upwelling flow of 1 cm/day everywhere just beneath the
main thermocline
2) Point source regions in the North Atlantic and Weddell Sea
3) Geostrophic flow in the interior
4) Western boundary currents

The resulting flow patterns are shown in Figure 5.

0N Aﬂ.&
cuY ?‘\Maﬁs

d“

pw‘ T X
l“S 4:‘1“ )("“Q“
& @ Co®
g0 ot
'
N

Figure 5.

Reference: Stommel, H., A. Arons, and A. Faller, 1958. Tellus X: 179-184.
""Stationary Planetary Flow Patterns''.

Notes submitted by
Michael C. Gregg and

Han-Hsiung Kuo
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THE USE OF TRACERS IN STUDYING THE ABYSSAL CIRCULATION
AND THE T-S FINE STRUCTURE IN THE THERMOCLINE
Henry Stommel

Lecture #4 June 27, 1968

I. The Use of Tracers in Determining the Deep Circulation
A. Bolin and Stommel Box Model

The observed distributions of tracers in the ocean can be used to
deduce the deep circulation. |In Longitudinal Profiles 1 and 2 the distribu-
tion of temperature, salinity,.and dissolved oxygen are portrayed. They exhibit
tongues presumably associated with direction of flow. Insufficient geochemical
measurements are available for this purpose, however. A box model of the deep
circulation was constructed by Bolin and Stommel using the observed distribu-
tions of temperature, salinity and very limited data on carbon. |t was possible
to obtain estimates of the origins and rate of flow of waters that make up
the Common Water in the Pacific and Indian Oceans.

The most voluminous water mass in the world ocean is the deep water of
the Indian and Pacific Oceans, called Common Water. (See T-S diagram,page 28.)

If we assume that the Common Water is pure Antarctic Bottom Water and
the small geothermal heat flux warms the Antarctic Bottom Water slowly as it
travels, a calculation shows that about 6000 years would be required to warm the
Antérctic Water 1.5°C. This is too long in comparison with qualitative indica-
tions derived from radiocarbon data.

Now we try another box model. Assume the Common Water is a mixture of
North Atlantic Deep Water, Antarctic Bottom Water and Intermediate Water. The

flux of various water masses is indicated as Ki (for example K] to be the flux
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1

R

=
—
L
5

] !
3k.50 135.00

S %/o0

T-S diagram showing characteristics of the water masses being mixed to form
Common Water

where
1 represents North Atlantic Deep Water
represents Antarctic Bottom Water

represents Intermediate Water

S W N

represents Common Water.

of North Atlantic Deep Water to Common Water, Kh the flux of water out of Common
Water). The conservation lows of mass, heat, salt, and radiocarbon in Common

Water may be written as:

Ky + Ky + Ky = Ky = 0
K;Sy + KyS, + K3s3 - KS, = 0

KTy + KT, . KsTs = KTy, = -HM,,
KiCp + KyCp + KiCy = KLy = Athh

where HMh represents the rate of gain of heat due to geothermal flux through

the bottom, A thh denotes the radio carbon decay and A=1.2x lo_hyr_I

and Mh is the total mass of Common Water.
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The solutions are:

Kj = 3.9x IO6 m/sec
Ky, = 9.6 x 10° m>/sec
Ky = 0.6 x 106 m>/sec
Ky = 16.2 x 106 m>/sec

The K values are believed accurate within 50%. A principal source

14 values. The residence time for Common Water is

of undertainty is the C
determined to be about 1200 years. Hence, the mixing is rapid enough that
geothermal heating is of minor consequence. The solutions are consistent

with an upwelling velocity of 1 cm/day beneath the thermocline.

B. Munk's Abyssal Recipes
Munk (1966) looked at the vertical distributions of temperature,
salinity, and radiocarbon in the interior Pacific (excluding the top and
bottom kilometer) and considered a balance between vertical advection and
mixing. He obtained an upwelling velocity of 1.3 cm/day and an eddy diffu-
sivity of 1.3 cmz/sec.

The physical explanations for vertical mixing may be:

(1) biological mixing

(2) boundary mixing

(3) shear mixing (internal Viis&l3d frequency, internal tide wave;
interior planetary wave, etc.)

(4) thermodynamical mixing (salt fingers)
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Il. Temperature-Salinity Fine Structure in the Thermocline

An STD trace shows many small wiggles in the thermocline. Although
some may be caused by instrumental effects, such as the pen sticking on
the chart paper, some of the wiggles seem to represent real features in

salinity and temperature. Repeated lowerings taken by Cooper and Stommel

of f Bermuda (in 1967) show the same type of jumps at the same temperatures.

There are jumps in salinity coincident with the temperature jumps. In the
Sargasso Sea, the main thermocline seems to be filled with layers less
than 10 m in height (Figure 1).

The ocean can be crudely represented in the laboratory by a two-
layer model with warm salty water representing the mixed layer above the
thermocline and cold fresh water representing the deep water. An experi-
ment of this type, described by Turner and Stommel, shows that an inter-
change of water takes place across the interface. High salinity columns,
called salt fingers, descend from the upper layer and low salinity columns
rise from the lower layer. Malkus has examined the problem in an unpub-
lished manuscript and is able to predict many of the observed features.
Stern has carried out many theoretical studies of this phenomenon and will
discuss them later this summer.

From this it seems reasonable that salt fingers could fall through
one of the Cooper-Stommel layers in less than a day. A timé scale of one
layer overturn per day would give a result resembling the eddy coefficient

obtained by Munk.
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At this point there was some generai discussion concerning the
possible ways in which salt-convection may be operating in the main

thermocline.
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THE THERMOHALINE CIRCULATION AND THE ACTION OF VARIABLE WIND-STRESS
ON A STRATIFIED OCEAN

Lecture #5 : Henry Stommel June 28, 1968

I. Blandford's Model of the Thermohaline Circulation

This model of the deep interior circulation of the ocean assumes that
advection is balanced by vertical diffusion. The dynamics of the Ekman layer
is replaced by an impoéed distribution of surfacé temperature and vertical
velocity specified at the bottom of the Ekman layer. Purely geostrophic dyna-

mics will be used, together with the Boussinesq approximation.

mvsme = - C";s P¢ geostrophic equations W

wsme = - £, (2)
-P,+T=0 hydrostatic equation (3)

ié U.q,+—c;1’—§ (vm9)6+wz=o continuity equation (4)
—szz +an6 T‘P +V Te +wl; =0  heat equation (5)

All the variables have been non-dimensionalized and scaled, subscripts
indicate differentiation with respect to the subscripted variables: (u, v, w)
are the horizontal and vertical velocity components; ( ¢ , @ , 2 ) are longi-
tude, latitude, and vertical distance, respectively; T the temperature, p the
pressure, and X is the non-dimensional (turbulent) thermometric conductivity.
The following list gives the expressions by which the corresponding fields have

been non-dimensionalized and scaled.

e,
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3 (), [=* T, 8% 2R w [T, qfs 2 8]
2 4 .15
2,2 aRKaT ] Blankeen iy

T L5 K K
— If we work with the density field, T may be regarded as effective temperature.

Following Robinson and Welander, we define the potential function

. * T,
M = - JTd.a,diz+ c(e,9) (6)

e -0 <@

We can obtain the equation governing M

’%MZZZZ sl"mze“'MS!-Mzg(P'M;q Mzze‘wtlv\ymz?_t =0 (7)

A similarity variable for this problem is

_ g =(sime)" (9 +£(8)) 2 (@)

The similarity function is defined as

M- % (sim e)"’”(qnz)"”a () (9)

The governing equation for G(V)) is derived from (8) as

1 n

X G - (-m)nG G () GG+ (an-m)n €' C"- (an-m)Q"G = 0 (10)

An exact solution to (10) is given by

Ge-a+he @) n'e)

for the case n=0, m= -1,

The expressions for the fields of the exact solution are

— = - _'i.(sim"s)((p +E)b (a_’/ka.)e (a_/k)9
’ W= -5 (simg) (o + be 7))

b: 2‘(&1./7’7"6)
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U=Lsim %o [‘wo 6 (P+E)(b 2%:) " e/ | (sime)(z,b% ) e (azk) 9]

=4
~Ta
Vz-Lsin~'e (con”'e) (62 ) e &MY

The exact solution must satisfy the boundary condition at tﬁ =0 if
we let E = 0. A choice § = -1 corresponds to the western North Atlantic,
and we may then assume 7-=7;/W=MQ. At 2z0, € = 30°N the surface of a sub-

tropical region then
T, =ba*/k* , w,=a-b

s Wo
Eliminating b, the resulting cubic is
(ah,) = (a1w) = (T %) Ju,> =0
It is necessary to solve for @ > O, because the deep vertical velocity com-
ponent must be positive.
Figure 1 shows the graph of Cl./u/, as a function bf (7; K‘)/wf' for those

solutions for which a > O-
0,/ ujo

subtropical

/.01 —
2 g ' L subpolar
T K -0 ' ’
Woj N q v .
27 subtropic
-0+
Figure 1.

Asymptotic vertical velocity a, as function of surface temperature, T, eddy
diffusions coefficient K , and Ekman velocity $Vo , for subtropic and subpolar

gyres.

The temperature field for the ocean basin is

r—,
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¢<o

héan 30w
¢ o0°W

for Atltantic Ocean

’ - ]
Now we examine the scaling for W~|_<><Ts 3/2 9} R:__J

v -
and 2~[2ﬂ R"")<a/<>< TS 3] 3. If we let X ~2x10 7

T, ~]o°c’ %~l03cm/sec“, N~0.9, lO'HSec.’l) R~ .35 107
and Zz = 800 M, and
choosing W, ~ 3«x /0"fcrn/sec
X,~ I.1 ¢qn’/51c
a=1.5x lo—bacm/sec

This is consistent with results previously obtained with radiocarbon but no

dynamics.

l1. The Action of Variable Wind Stresses on a Stratified Ocean

e
A 2 A’. \f/ ’ u/ aV/

A .
4 f; U, s Vi

Consider a model of a two-layer ocean basin in which it is assumed
that the motions are quasi-hydrostatié and that no momentum is transmitted
across the interface by friction. |If the motions are small the equations may

be linearized. Thus
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'Bu-, 2 Z',
Linearized ot _g’%:‘g?}*—_f M
equations in 5 -
upper layer v g 20 T
—_at +-F u, 3 3g + ) (2)
Continuity
equation in a—t¢+D, (—%ﬂiﬁ-%‘i =0 (3)
upper layer 0 J
~-fv,=-9 ( 22 .p 2'71) (4)
Linearized ox
equations in 3
2 2
lower layer -:;1 +{: w, __3 ( A" +b a';:.) (5)
Continuity 2V,
equation in n- P D, (-— + —) 0 (6)
lower layer ot ( ) ox 33

where 77-?)’ , qb =n -, ; and x (directed eastward) and y (directed northwal;d),
are the horizontal cbordinates; t is time; u; and v (i =1, 2) are the
velocities in x and y directions respectively; DI is the equilibrium thickness
of the upper layer; D; is the deviation of the free surface from its equili-
brium position; g is gravity; f = 2L sin (latitude) is the Coriolis parameter;
L1 is the angular speed of the earth's rotation; a= /?/pa. ; b =<Pz-ﬁ)/(01 s

_ﬁ is the density of the upper layer; 7' and T are stresses in the x and y
directions, respectively, exerted on the ocean surface by wind. The terms
with subscripts ''2" define similar quantities in the lower layer; the varia-
bility of the Coriolis parameter is taken into account by writing dfﬂigﬁﬁ=canﬂiﬁT
wherever f appears in differentiated form. Otherwise f is assumed coﬁstant.
Cross-differentiating equations (1) and (2) and (4) and (5) we obtain the vorti-

city equations:

23, £ aqS o or oT’

W"D, tRVi= '57'@ @)
3y,

Bt .D at (j ¢)+ﬁ (8)
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where 1: 3\4/ax - 9“-/25 and J, = aV-‘L/ax - 3v1/aﬂ

Assuming at this point that motions are independent of y, we may obtain

for the upper layer from (7), (8), (2), (3), (5) and (6),

¢xttt

N Qe = T =g AN - £y =Tasfp (9)

-3
where =D /p, and A= g:Da/-f—z
and, for the lower layer

)1-(7)" b¢>xxyt "m‘Fi)xtﬂ: ‘(9'¢)xt + ﬁka(o"wa" - % b7"¢)tc =0 (10)

2

Introducing normal modes by multiplying (8) by the arbitrary constant &
and adding to (10), we obtain
‘ -] e ]
A [(r+o‘)7_ub¢]xxxf ‘Fi[(,— O()¢+°(9 xttt ([—o()d)+o<7 )Lt'+

LXX

+/‘)’>\2[(f+ tx)?..o:bqb]xx— %[{l-"‘)d’*“'ﬂtt: i - (1)

The conditions (’~‘°‘)¢+°<7=Rand [V+°()9~o<b¢=KR where
K is a constant of proportionality, are sufficient to reduce the equations

to a single variable. Thus we have

_ othb  rie
M= l—e¢ ~ X
and oo A= Ger)drp
2(1-b)
Consequently,
x, ~ I+r—rb oty ~ —r(/+r-b)
(+r)(1-5) (i+r)(i1-5)
K{"V l+r Kz_'v rb/l+r.

The two values of R (two normal modes corresponding to the two values
of o« ) are
Ri=( ~o¢ )+ opn (1=, 2)

Thus (11) may be written



. k" R‘“Xt B T Rthtt"Rt'K */6>\zki Rc‘xr.‘ ./‘2 ut = K (]2)‘
2

Consider a free wave solution of the normal modes
R{. =8, sim (& fw,"t)

where ij = constant and where £ is the wave number associated with the

wave length L . i.e. { = Z.W}G_ .
Substituting into (12) we obtain a pair of frequency equationé of the

form

G- (e oo e o0

where/ut & £
From an oceanographxc point of view, only a 1imited range of values
of £ is of interest and the approximate roots of the cubic equation within

this range of value 9( are
u

r

A
{ :
w2 =8 +\/ﬂ\+ ‘r‘/@:ﬂ +‘/yc"’
i 4 2€r V{are/ { q“

v 2z
we? :z(r /(zr,e/ £ i

S LY

wy / = ¢

The phase velocity and frequency of various waves of interest are shown

in the following figure for the range of wave lengths 10 km < L = 12,000 km.

Referemces

Blandford, R., 1965. J.Mar.Res. 23(1): 18-29. 'Notes on the Theory of the
Thermocline!'. : :

Veronis, G. and H. Stommel, 1956. J.Mar.Res. 15(1): 43-75. "''The Action of
Variable Wind Stresses on a Stratified Ocean''.

[re—



{ MINUTE

| Hour

! DAY

10 DAYS

PERIOD

{ MONTH

| YEAR

10 YEARS|

30YEARS

_39_

wave vumser £ en™
10-8 ro~? /0
1

T

gy INERTIA WAVES \
SVERDRUP WAVE

TRANSITION REG/ION

jo-!

j0~*

10-1

FREQUENCY w Sec™!

Notes submitted by
Han-Hsiung Kuo and
Michael C. Gregg



pro—



-l”_

ROTATING AND STRATIFIED FLUIDS

Louis N. Howard Lecture #1

I. Rotating Homogeneous Fluids

1. Introduction:

We consider a mathematical model which can be described by the Euler
equations, bearing in mind that this is a simplification. Also, we are
interested in problems in which the flow is near to rigid rotation, in some
sense, so that it helps to introduce a rotating coordinate system.. We take
the axis of rotation to be the z-axis, and parallel to the gravitational

vector. Thus the governing equations, in dimensional variables, are:

ou*

* | * ) >
+ -V 2 Qxu+ —;.;VP+V@Z;-Z(J}XX))=O
Coriolis term | (1.1.1)

gravitational term

*_ o centrifugal term
v-L = |

. . e . . -1
In order to non-dimensionalize the equations we choose a time scale SL R

length scale L_ R vélocity scale U (relative to rotating axes).

U
L

of the flow from rigid rotation, and is the Rossby number. We are considering

The non-dimensional number € =

is a measure of the departure

problems in which € is small.

The equations, when expressed in dimensionless variables, are

B

P-x- 2.2 2
unubt+ %g..v_u..i-ZQU/_gx_L_Lf-—L—v{7+3Lz-'znl.<5x[)] =0
V-L_L_..—-O (l.‘-Z)

(1.1.3)
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The zeroth order approximation for € CJ(L} o)is a balance given by the
terms in the square bracket, which is the case of rigid rotation.

If there is a free surface, it takes the form of a paraboloid
LN/, =
2 <—g‘)(" “y)

is associated with a '"'rotational Froude number"

2

Koy

If there is no free surface, (or Froude number small) we can lump all of the
last three terms into an ''effective pressure', thus suppressing the true zeroth

order solution:

V',L‘_é’ = 0 (l.].h)

We can treat ng"vgg as a pérturbation term on the equations, but it is a
singular perturbation, as we are dropping the highest order spatial derivative.
This can lead to non-uniformities in the convergence of the perturbation solu-
tion to the solution of the generaf equation, so we must be careful. (N.B. We
‘have already made anotHer singular perturbation by throwing away 1)‘7Z; ).

The ]ower order equation cannot satisfy as many boundary conditions as the
full equation. The initial value problem is a sensible one for the Navier-
Stokes equations, but for the Euler equations, which conditions must we drop?

Usually we specify & - N on the boundary, but this is not always so.

Example: Non-rotating problem in closed region:



Conditions for N.S. Egns.
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Possible conditions for Euler Egns.

Remarks

- L=0on S u-n=0onS This problem is
u—.ula,t't-zo w=zu abt t=0 well posed.
- This is not
- 4=ikg 0 5 " d
. (such that jg.s'gds =0 Woh=ugn om S well posed, can
J for continuity) have more than
» w=u-att=o w =uralt=o one solution.
— +==1 b _
- U=ty on S Now the problem
ditto Wtz gt on parls D/F, is well posed.
P
s whow Ug'n <0 (in}fow)
w :%Iait'—"o

the relevance of this condition is particularly clear.

i 2. Problems where € = 0O

We consider:
(N
-t

- Vou

vorticity, rather than of velocity, at points of inflow.

+ 2gﬁx(£ % VP:=o0

o

Taking the curl of the former gives the vorticity equation:

(ng_l—)t—.?_ = =0

An alternative to this last problem is to give the tangential components of
In two dimensions

Physically, it means

that we must ''tell' the fluid about any vorticity that is entering the region.

(1.2.1)

(1.2.2)

(If we consider a particular component of the vorticity, say the z component,
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it increases in time if %;—- > O . This implies a ''vertical divergence"
]

or a stretching of vortex lines.)

For steady flow we have

2% o (1.2.3)
= .2.3
o2 ’
i.e. the velocity is independent of z - the Taylor-Proudman Theorem. An

experiment to illustrate this theorem was performed. A fishing float, suita-
bly weighted so that it was only slightly positively buoyant, was allowed to
rise from the bottom to the top of a vessel of water, firstly when it was not
rotating, and then after the vessel had been spun up to about 25 r.p.m. The
time of rise in the second case was seen to be noticeably longer than in the
first - a ratio of 8:1 was obtained in one run.

For the ball to rise at all, the velocity field must be z-dependent,
hence the phenomenon must depend on the small effects that we have neglected
in deriving the Taylor-Proudman théorem, namely time dependence, zero Rossby
number, and zero viscosity. Probably all three are involved.

Flows for which € = O St ° O are called geostrophic.

Fundamental Theorem of Weather Maps:

Consider a flow region 25_<_2-g2_r; (x"j) in a two-dimensional region R .

We have then

-2v + F; = 0
(1.2.4)
2u 4-73 = 0
In the case 25 » Z1 constant we can give a general solution:
u,:--‘i ‘P'ﬁ' .
v=1 R where P(x,j)is any single valued function. (1.2.5)
w =0

——
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Thus —%-P is a stream function for this two-dimensional flow, and the
streamlines coincide with the lines of constant pressure.. Any incompressible
two-dimensional flow where stream function can be interpreted as a pressure

is a possible geostrophic flow. The interpretation as a pressure (i.e. single
valuedness) is important with mul tiply-connected regions, particularly in
source/sink flows, - e.g. in an annulus, fluid cannot flow in radial lines
(which is a possible two-dimensional incompressible flow). In fact, it cannot
even cross circular cylinders. |In practice, it is found that the & term is

e not negligible near the source/sink, while the Y term comes in near the bottom,

and boundary layers are set up.

Non-horizontal boundaries

When Z-r;ZB are not constant, geostrophic flows can only exist if
there are closed contours of constant depth, and they are therefore much less
numerous.

et Huy) =2 -2a

then w-VH=uwH+ U’Hﬂ :"nl_'.[Fx HJ—GH{]

taking W as a geostrophic velocity.

3(p, H)

=L
4-VH=> 2 (%,4)

Also L .V H= %‘Q(ZT—EB>

Now an element of fluid on a boundary can only move along the boundary.

o d= PES
Wr = t-r = St + u-y V 2‘— as boundaries are fixed.
;ﬁd zTaur
Thus %-VH:WT*.W'B;g _a_._. (LLX-\‘-U' 2

N

<]
=0 if wis geostrophlc

[S—
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2(p, H)

=0 (1.2.6)
a(x,j)

Hence

i.e. P and H have the same contours of constancy. In some cases there
can be no geostrophic flows, e.g. a cylinder with a slightly tilted bottom.
The solutions exhibit an apparent discontinuity when the bottom is tilted
slightly. This seeming paradox is resolved by studying the time-dependent
problem: slowly varying flows tend to geostrophic flows as the angle of tilt

goes to zero.

Time-dependent Flows:

-t
(Reminder) V-eu =0 (1.2.7)
ou
(VX_L_(_- t—2 -;a—;" =0

Consider a closed three-dimensional region R with 4-N =oon @K (boundary).

Then, if W 1is a solution,
Wk, +w.VP =0
S /1,2 :
._a_E(i.u_),;.V(pb_L).._._o smee V- w = o

%{(—’i u_l) dV =0 The Conservation of Energy (1.2.8)
R

Suppose now that R has closed contours of constant height everywhere,
g3

and does not look like 4]

. ,a_r )
Let /S'Eé AJZ =.E£ Ff
2g

Consider a particular contour C and the cylinder above it, with vertically

translated contours f“

S



_[‘,7_

Notes submitted by

Philip Hazel.

Lecture #2

3. We were examining rapidly rotating ( & small) homogeneous flows in a

region R with a one-parameter family of closed contours of constant height.

The equations are

—_—

Y+ 2RXU+Tp =0, V.uw =0, h-u=0om73R. (1.3.1)

We imagine the region R to ]opk like

¢ ‘-\ 2 (xy)
n
where}{:z_x -2 (2,) = constant
'()5> 5" on a given

cC contour
‘..lll"' <F——-2535Hq)

f
r.O
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Then the curve C is a solution of the equation

dr
ds

_'}\(s) o<s< ) (1.3.2)

where A (s) is the unit tangent to the curve, C is determined by the con-
dition that r(s=0) = ¥, = r (s:l_). We want to consider the family of curves
[T which are just vertical translations of C. Thus " is a solution of
Equation (1.3.2) satisfying the condition that r (s=0) = ¥, = r(5=L) where
=, + (0,92) for some Z . The important fact is that all of these
curves [ have the same tangent direction at a given (x,y) (and thé same
length L).
For any one of these curves B we compute the circulation

§_¢:L.dr =fi4_-3(5)d.5
r °

From (1.3.1) we have

frvdson g (5geder fop-de -

Clearly j§17p-¢ir is the net change in pressure as we go around the coutour
[ and must vanish. [T is a fixed curve and so we may take the time deriva-
tive outside of the integration:

—-a-_—t—é‘b_l.-c,.r+2ﬁ}3xl_,{_-d_¥‘

Averaging this equation over Z gives

T z,
! 2 2 .
WJ di‘jt‘ﬁ%'df'f _sz DL%%'{SX_L_L dr
<]

which can be written as

L
at H d_zchs A(s)- u.+——j fdsZ(s). kew =0

Since jﬁ(s) lS independent of 2 we interchange orders of integration to get

2 LsA(s)- JalZu_)+—j a[sA(S)xhdi*] u

25 o

i
0O

]

]
O

T
'
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It is clear that the second integral is an integral over the surface formed

by all of the vertical translates of the curve C and

dsa(s)xkdz=drxkda=pdo

c ==

where " is the normal to the surface and d o the element of surface area.

Let the surface generated by the family of curves M be S . Then

jETfL[dsa<s)xgazzj.u_¢= [noudo
2, 0 p

To make 2 into a closed surface we include the caps on the boundary of R
1
which are cut off by the curves C and C . Since these are portions of

the boundary BRQ-_L{— vanishes on them and thus

Sggdr=jn¢&d€= vewdv =0
5 £ +caps. enclosed volume c R

by the continuity equation. ertlng

2,
—;—,— _L.Lclhé
we have L
2 (o Als)- = O
—_— 5 = .
T Rl L
0 C

Thus the mean circulation of any solution to (1.3.1) is constant in time and

we have proven the mean circulation theorem. (Greenspan) .
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Mean Circulation Theorem: Given a solution g4q—t*2_’3><!!-_+Vp= 0, \.k=0

in R satisfying n. w =0 on the boundary of R , the mean circulation for

any closed contour of constant height is constant in time. We write

§g.c[r= 2(c)=2(H)

c

Z is constant for a given H

k. We would like to prove that a steady solution for (1.3.1) is uniquely

determined by its mean circulation and the geometry of the region Ti . We

have seen that ~té‘? is a stream function for the horizontal geostrophic flow

and the isobars are lines of constant height:

B(PIH)
— - — = H).
d(uy) 0 = p=p(H)
We can write
Rxu=-7Vp

and

kx(kxw)ek (ko)=L kxUp = -4 p'(H)(hxVH).

~ Now &’ ¢ =w and thus
w=Ruw+L p'(H)(kxTH)
= kw+Lp' (H)(Rx [Vzr(x,g) - V2, (x,j)_]

The vertical component of velocity is easily determined from the boundary

condition n 4 =0 at the top since W, =0 . For a given H , the top is given

by the solution to
z-z.(xy)l=0

and the direction of the normal
n_=V(2-2:(x4)=k -V 2 (xy)

where U7Z‘T (X,j) is horizontal. Thus



_5]_

ni=(k-vz.) (Rw+gp/ (H[kx(72,-725)])
= W+Jip’(H)\72_r- (15 xVae) =0

so W ="E‘P'(H)&O(VZTKVEB).

Now both V?T and V2 are horizontal so 7 2_x Va, = }VZTXV-ZIBIIE

and

=k 5P ()7 205 V2] 4 p (W« (72, -02,)

5 P'(H){ViTx Ve +Rx V2 -k xVaB}
=4p'(h) {(@—\7-27.) x (& - 723)} .

Now the outward normals to Z =Zrand 2= 2, are

DT_;&-ViT amd n -“(I—?-'—V'EB)

w=-4p/(H) [nTx nB] .
We form the mean circulation for this closed contour of constant height H
2(W) = ~+p'(H)E (a xn,)-

The integral § (QTX D‘B) vdr is independent of the flow and determined by

and so

the geometry of the domain R.
Call 3‘>dr-(n7*nz)= T(,H).
Then 2(H)=-4p'(H)T(H)

=0
5= S75e (a,0m,).

We see that the geostrophic flow. Li-g is determined uniquely by the geometry

and its mean circulation 2 (H).
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5. We return to the initial value problem for

_L!,e+9.’}_)(§+V|3=O, V'L_l_.:.OU'nR;

Yl-_l{.‘-‘-o on IR a/hd %(tp):%o

—

where W  is a prescribed flow. From the initial condition w, we can
construct the mean circulation Zr(H)and from 2(}0 a unique geostrophic flow
g,g associated with W& . The basic idea is that the general time dependent
solution of the initial value problem can be split into a steady or geostrophic
flow and a time varying flow with zero mean circulation, and this breékup is
unique. We expect, in fact, that the time dependent solutions can be broken up

into normal modes with harmonic time dependence. It is easy to see that any

3 . . 3 - 3 -'
solution with a harmonic time dependence has zero mean C|rculatnon:35(t)=g£e

f

andv o ég.dr = _.io-écg..ab_: . (H):o.

ot 1

Thus either O'MZ(H)must be zero.

6. There is an alternate route to this breakup of the general solution into

a geostrophic component and a time dependent flow. Let U, and L, be solutions

of the equation (1.3.1) satisfying the boundary condition. Then form
S u,dv
R

It is easy to show that this is independent of time:

9 {{9.—‘4’/ 'ac_g,_
ECN AL u,dv = o Lot "Zatdy "55‘}4"
R
i fR '{23)(5,%_1-14-(7;:,. l-'i'z“'"zgx—“f‘z'%ﬁvf’z'y:l}dv
=fR V'(PI ‘L.L’."'PZIL_{',)d‘\/

= “gkn'(Pl%z+P*é—L,)d‘S =0

‘T
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using the continuity equation andn.u <=0 on O R . Using this it is easy

, ~igt -ig;T
to see that two normal modes are orthogonal: l-f— u ~e , La~€ 5
3 * v *
St woew, dv= (a-,-o‘z) wieuw,dvs=0
R

if o F 0, » j 9—“7' w dv=0 and in particular any harmonically oscillating
flow is orthogonal to a geostrophic flow.
We can visualize geometrically the splitting up of a field & into a

geostrophic part &

g and a remainder g_L—g-s
(function space vectors)
i w -
29 U
U-u
it

Clearly L_l_.g should be chosen to minimize (,_t.—_(,_L3 or rather to minimize the

energy of the difference flow, if W—~W,is to be orthogonal to g.j:

ffasgf v - T[] - o

Since this integral is independent of time we can evaluate it at the initial
time so that w« is the initial value flow. We must vary 50;4.9 over the

manifold of geostrophic flows and determine lé_g' by the condition
0= J.I [Q-g] = - j(@—_b}j)o C(Q_Lgdl/

The only arbitrariness in cr(_,f.j is the pressure function

Sug=-£5P () [nxm. ]

" Sug == (W) [nrxn,]

where JYC(H) is an arbitrary function of H.

Then ozgcbi-—l:_l-z)- [DTXDB]J-F (H)dV.

Since we have tacitly assumed that the contours of constant height H fin
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the projection of R on the (x,y) plane, we can write

0= Sd(H)J'¥<H)dSS dz(u- u.j) [h +

Choosing 5{-(”) 5(H H)we have

0=J szals(g—g.g)'[nT* n

Zs

Now 27_1D5 is tangent to the curves 7 since the tangent along a curve

of constant height is defined by
A(s)-vH=
It is easy to show that D__I.XY_'I_B-VH:O since
n_ =v(z-2;(%y)) =k-vz,
N =~1_9..+VE-B
VH=v2z,-Vz,
N« VH=[-ksvH-V2 sv32, ] VH:o0.
*r
Thus f dajdsl(s)o(tLL*LA—?):
z

and so . and géz must have the same mean circulation. This completely
determines gg
Intuitively the harmonic solutions should average to zero and the time

averaged flow should be the geostrophic component.‘ Defining the time average by

T
(u)a. T—>eo §dtl—+

if the Timit exists. Tlme averaging the equation of motion gives
KCARELY (L_L); Vp =o, Vv (e_t)a=
We can expect (L_Lt)a:o unless the initial data is pathological and so (l-_l:)a_

is a geostrophic flow:

2/_@X(L_L)Q+V5_=O,. v-(c_a);é, n-(u) =0.



f—

_55-

The mean circulation is independent of time so(_g.)a’ has the same mean
circulation as w . Since they have the same mean circulation and (lf)a_ is

geostrophic, (L—L)a, is the geostrophic part of W

rot
7. The natural oscillatory modes are determined by substituting U € T
into the equation of motion:
ICw+2kxu + Jp =0, V-U=o0 (1.7.1)
Forming R ("7'0 and & x (117 1):
jocw + Py =0
/o (kxu)+ 2 (wh-w)+ kxVp =0 (1.7.2)
and
fo(Rru) -2+ -i%_—gff;+_l§pr =0 (1.7.3)

We can eliminate /S X W between (1.7.2) and (1.7.3):
(4—0'“)u+i6'VP+ 2 Rp-2kxUp=o0
u ——kp-2kxUp-

Thus for 0" % 2 (dimensional 0, =05 so 0 #+20)u is determined by the

pressure

w= (7 ) akxVreic Vp - =k ). (1.7.4)
We can get a single equation for the pressure by taking:
V- [u v 2ken+Vp]= (v-u),~2k.(v2u)+Vp =0
Ve [u+2kxu+Tp)= (Tag,-2(k-V)u =0

Thus Vp = 2&(17;::4)
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and VP 2R (Vxigy) = (R0 k = Az

VPet = 4wy s

but
wy+ Pz =0

so that 2
VPt 4 Paz=0.

This is known as Poincaré's Equation. Putting in the harmonic time

dependence we have

~c VP 4P =0, (1.7.5)

We can make the boundary condition N-L =0 into a homogeneous boundary condi-

tion for P using equation (1.7.4). The difficulty is that this boundary
condition depends on 0~ . Another difficulty is that although the equation

-
appears to be an elliptic equation, it is in fact hyperbolic: (ifo < 4)
+ -4 =
Pxx P33+(' /0"1)’922 =0 (1.7.6)

3
It can be shown that in a bounded region O£ 0~ <4 and in an unbounded region

2
O% 0 £ 4 . Thus the coefficient of the last term is negative and
2
Pux + Fgg’) Paa =0

where A is real. In general a hyperbolic equation subject to elliptic

boundary conditions need not have a unique solution. Our problem is essentially

finding the values of A for which a unique solution does exist. It is thought

that the set of allowed T 's is dense in the interval (—:2,2).
As an example of this type of equation, consider
.
w,, - = 0 < <
- ),uL#I o< X,y i
subject to

LL()L,O) = LL(X,TI—);-O

w(oy) = v(my)=0

s
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Since u vanishes on the edge of a square, we write

u=g;Ahmswvnxswvnj.
Since the eigenfunctions satisfy the boundary conditions, we can differ-
entiate term by term to get

. . X

ﬁz?n ]:n‘_ }_mZ]Anmswv nx s my = o)

and
a
[n"f lm‘JAnm =0

Unless ). is a rational number /Qn"f-o. If )::t%;, there are infinitely
many eigenfunctions, one for each /\kn,hw1Where K is any integer. - The
spectrum is dense in the real line (but discrete) and the eigenvalue is
infinitely degenerate. This situation is forced on us because we insist
on looking at normal mode expansions.

When viscosity is introduced the spectrum becomes complex and no
longer dense. As the viscosity is taken to zero all of the complex eigen-
yalues get squeezed onto the real line and become dense in the real line.

As another example we can find the general behavior of the modes in

a circular cylinder:

Then the boundary conditions on Jp at the top and bottom are

(by (1.7.4)) n.wu=0=> O0=- 7%7;32—:'6';92 :_-_;a-(/__ %__z)lpz.

Since 0 <G <Y, pPa=0at z:0,H.



- 58 -

On the side walls Y = @, we require

17'E'QC)=(qi;g[ﬂ'(2 Bx‘7p)-f¢‘f}»V}3— %%?f]’h F@

Now
__Y',OVP:P’,_., 5:)_3:0 nmcl. f,-(zl_(.*VP)=2 ,_(o(VPX_Y_"\):—% %g-
So we have, at r =@
2 .
—_— - =0.
2 8717 Pr (1.7.7)
niz .

Since P, = O , we use z-eigenfunctions of the form <0 —g—

Substituting this into Equation (1.7.6) gives
2 — — —Yﬂ7)=0 > YITT 2-(‘1’ -
Vop =l )G = Wr e (B (S -0
. . . -ime . .
The solutions of this equation are 3;1(l< rle where wm is an integer
* (TN 4 _
and K= (1) (35 -1).

Applying the boundary condition (1.7.7):
. -ime . / —im© -
i ) e e s

Th :
1e Ka _ ! jm (ka)
a 2m Ty (KD

and solutions of this equation give the spectrum.

There are reasons to suspect that for some regions there is also a

continuous spectrum, but the overall picture is not yet clear.

Notes submitted by

James R. Luyten

e,
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Lecture #3

8. The Effects of Viscosity

If we include viscosity in the momentum equation, the dimensionless
form is

U €L Vu+2kxu+Vp=EVY (1.8.1)

— Y
where £ = o= IS the Ekman number.
Putting € = O in this equation is no longer a singular perturbation,
in that it does not lower the order of the equation. However, it may suppress
(. certain instabilities. It leaves us with a linear equation. Also, E s

small when € is small due to fast rotation. Hence we expect a boundary

layer type solution.

Simplest Problem:

Consider the boundary conditions:

e w=0 Jor 2=0

B No dependence on X;j,t
Put w=Ug+a(z)

- = -2 Uts + ,P\

i.e. split the flow into the geostrophic part, plus a perturbation which —> O

at infinity.

dwr
Then from the continuity equation, T =0
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==> W =0 everywhere (by bottom condition)
5 2
dz ~°
d=z
- /3 = O  everywhere (by top condition)

(1.8.2)

Y
|
"
1<
"
-
2>

Take cross product with _;_?

—2_L_,Z = E _}S X Q— 22
Combine these two equations, using = VO
E[ari(kxd)], = -2¢(Gei(ke2))

(- (&+i(kxid)
Cozp [-(1-1)2 /g% ]

—> 4 +1(kxi2)

t

and C=—U(};+ij) by boundary conditions at O

= Q— = -URe §<£+£J')mp(—(/—z')z/t-yz)} (1.8.3)

Thus _L:l is different from zero on a length scale E’% (in the scaled coordi-
nates). |If we return to dimensional variables, we find the scale of the
boundary layer is N =‘_§§__N(_)_)__)%'. ——’—,
b L n L
Lo~ ()" C(.8.8)
This is to be expected, as there is no length séale in this infinite half-

space probiem.
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A More General Problem:

Consider a general geostrophic velocity and pressure in an interior

region above a rigid boundary:

Ekman layer

SIS S sy

urite  u =i, (x,y)+ G (xy,2)
and Prgéx;y)+ﬁ<7‘)y;l) for this case

the Equation of motion then gives 2R x U- +VP EV’ & (1.8.5)
Introduce the boundary layer coordinate 'S by the stretching

transformation

A

-E™J (1.8.6)
__;>2kxil+VA— Ef@ +
== [A P = 25 soe e small terms (1.8.7)

is the appropriate equation in the boundary layer.
We can now find Q- as before, although the boundary condition at infinity
has an x,y dependence.

However, the continuity equation is only satisfied to order E. This

means that the flow cannot have the form

w = g-j +_:S- (x;y, j) exact]y;

We have really been working with part of an asymptotic expansion:
- %
w = L_Lgo()c,j)+ E l:(:gl(’ﬁ;j)+ Ce
A Yo n
+ —‘-J’a(.x’la"'g)"'E’—‘:’:/ (x"j/I>+ ‘.- (1.8.8)

and similarly for £ -
Thus V-l;_L=V-_t._Lge+ EV’V-%5,+ « o

+E'/“

ot (W + Gy &)+ EP(. )+ ... (1.8.9)



Hence £ hx LL+V(7—EVu_ 2k x -{-V,pg-rc <2f{xu. +V,a9 )+E(2i?xq,2/+v,>7 V‘i'ga)t--

'/ﬁ—aFo A BP ~ ‘i—o] Ya
E axhx[2h1u+a¥'+\7“po > 7+ +E ["J:O

Fix 2 :#O (outside the boundary layer) and let E—=o0

=0
Lowest order terms: g

2R xU, +YF,,=
._X’vgo 3

These give the geostrophic velocities outside the baundary layer.

=0

(:_Lgl
2R x

Ist order terms:

,_5’4- VF

(

(1

—~~
—

This represents another geostrophlc flow (but, of course, multiplied by the

Y,
factor E *).
V' “L}gl = 0
2nd order terms: ‘

IRxikg, + V.- Vl(:ggo =0

This and higher order terms are of similar form.

Now fix I':ﬁ O and let E —> O (i.e. look inside the boundary layer).

’aw—
”C =0
o
-Ith order terms ~
°f =0
A A ° r
Since w, and p, vanish as 3’-——7 <o,
A ~
FD - Q)a = O

Zeroth order terms:

N A e
2R x U, + P ‘i*'vypo ,5?{:0

PO:O from above, and

R in the only term in the third direction.

(1

(1

.8.10)

.8.11)

.8.12)

.8.13)

.8.14)

.8.15)

; i
p—
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ral
Hence: P, = O as well.

Thus A 34&-
2R yu — —=2 =
._X ajl

A

Now the boundary condition on &, is that W,= -

z g0

at ‘§ =0 , to make & =0 on the boundary.

0o~ (L v ik g s (1) T 0616
(by comparison with the solution of (1.8.2))

~(1-1)¥
v, ad,=-Re {—Lqu.goBe } (1.8.17)

Thus

Hence, by integrating (1.8.15) ;
. k)oY
iy = ~Re {( TVXig e {r- z)}

independent of ¥

(1.8.18)

This can now be used to get the value of wg at the wall:

%[(6):'&8 {(V)“égo@ ——aa'&] (1.8.19)

This implies that there is a vertical geostrophic flow of order E ‘e if the
zeroth order vorticity does not vanish.
Higher order terms in the expansion can be obtained with a certain
amount of labour.
Here endeth the formal treatment. Professor Howard then spent some
time in discussing some other problems in a non-rigorous way.
(i) Right circular cylinder with top rotating slightly faster than the

bottom and sides.
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It is found that the central geostrophic flow rotates with the average
angular velocitySl(l + ‘—9_6), while at the bottom and top there are Ekman
. y . . . sk
layers of thickness [ >, causing an upward interior flow of order E =,
The structure of the side wall boundary layers is found to be more complicated,

although they only have a local effect.

U

In the L qlayer there is no vertical dependence, the horizontal flow is
: 1
adjusted to the boundary condition, whereas the ET 3 layer does have vertical

structure. What happens in the corner has not been fully resolved.

(ii) Containers with Sloping Bottoms:

In this case, the expansion becomes more complicated, viz:

e,

e
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4= —q'/jo(x;‘j,zlt)-\" E'/Z'_L:L/ +...

g
+ _C_Lo (xlljl S)t)fE%é + ...
+ w
"ﬁ°(1f5’2;r)+ ce .
+ & (x,y,g,'f)Jr .
where T = Ev’t,

In the axisymmetric case, only geostrophic normal modes are excited by small

change of rotation rate. The motions are damped on the T time scale.

Notes submitted by
Philip Hazel
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Lecture #4.

9. As an example of a system exhibiting the various boundary layers discussed
in the previous lecture, consider a rotating cylinder whose top and bottom are
rotating non-rigidly and at different rates. The side wall is rotating with a
given tangential velocity. Thus the boundary conditions on the tangential

velocity v'(r, 9,%) are:
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: Q
v, ()
S I S A E

v(nz=7) = V,(r)

—a > vir=a,z)= v(z)
e — = |z=0 For the radial and vertical velocities:
v, (r) w,w=0 on all of the boundaries.

We assume that the flow is steady and axisymmetric<:?é ~>O). In cylindrical

coordinates the equations of motion and continuity become:

~2v+p. = E(Vlu. —LL/Y-")
-2LL - E(V,-\f—\f/ra.)
P, = EV'w

'IF (r u.)r+ w,

1

@)

i

In the interior region, we expect the motion to be geostrophic and hydrostatic

and we have
—2V+ P =0, w=0, PZ=O, W. =0.

It is clear that in order to match the boundary conditions at top and bottom,
we will have an Ekman layer and the interior solution must connect onto the
Ekman solution. From the previous lecture we have that solution just above
the bottom layer (2‘-0) is proportional to the difference between the vorticity
of the interior flow and the flow on the boundary:

W(gf,%. E%. [}i'wl‘ B 92(0)] - "iE'A[-»é— (H’)r - —,’:(rv;(n))J
and just below the top layer (2 “JT)

oy s B [ (4 0= 5 (v ()]

Now in the interior V«/E:O SO

W(T)=W(e) and thus V’(") = [Vo (-r> + VI U.)]

L
2

o
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What else could it be? We now have the interior solution
vIim = 5 (% (+ v, (\‘))

uf(r) =0 olg)

wie) =4 £ {5 () - 5 (), )
Since these velocities are independent of Z they have no hope of satisfying
the boundary conditions at Y =a. We must have boundary layers at r= .
If the top is turning faster than the bottom, the vertical velocity will be
upward in the interior which means that fluid is being transported from‘ bottom
to top (driven by the Ekman pumping and suction) - somewhere an equal amount
must be going down.

4
Try a boundary layer near I'=a of width E ™
rz=a -E Vq,a

The equations of motion become:
4
F/o = E Uep

2 =

A
-2v-FE

Pz = & wpp
_E‘y‘*\;_p+w =0
If we assume that the solution in this %{-layer will match onto the interior
solution then V=0(‘> and W = 0(5\/1). Then LLP'—OCEV’) and Wy, is O(EW). |
Then Pi is O(E%). If we take P,=0 , the ]9{0 must have a part that is

O(E™) to balance V" . Then we have in the Y4-layer:

)

Q'U—...E A"Fp = 0 1.9.1 a

"

2w =%
_ = V;P 1.9.1 b
P =0 1.9.1 ¢

F

- ot Wy = O 1.9.1 d
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From (a), (b) and (c) we have
g~

V; = S pe= =0 amal ui—.pl_.E'y’v;_M=o

and W, o = E'Vl'u_zpzo. Thus W~ is a linear function of & in the 1/4
layer. Since this layer is much thicker than the Ekman (1/2) layers we can
expect that the W~ in the 1/4 layer connects onto the Ekman solutions.> If we

assume that the vorticity at the wall is 0(1) (i.e.-%—(PVQJ (r))r'=‘96‘)7

we can neglect those terms with respect to TP(Y V(rik in the 1/L layer.
, , o
W'(O)='5E’“[—-E q1)},1- o(l)]
,~ V —W
W‘(n):—};E"[E U"o-t-o(n)]
Since VV(%) is linear in the 1/4 layer we have,
} 2 - T/,
\A/'Z:EA'U‘ <_—_?;>
@= v, (22
Substituting this into (1.9.1 d)
W - Y%
W, = E%wy = (E'j/ﬁ)'uk

and

so that
V “9—/——%-‘-‘01

Since this is a boundary layer we pick the decaying exponential and write
'1..
‘U"((}) =‘K+Ce Te.
Matehing this to the interior solution, we have

tim r(§) = om v ()= % (Y, 6V, ()

s
and 2
v(p) =5 (Y% (a)+vi(@)+ Ce” Fae

' v £ —JFF
Then LL:_;__.E*.U;OF: —,,‘:"CE 7l

l
" v £ () (E e 3)
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Clearly w and W match onto 0 in the interior.

Again we cannot expect to satisfy the boundary condition and set {u;n vip) = V(f)
P—'O

since - is independent of 2 . At best we can hope to bring v to the

average value of \/(2) over the wall with the constant C

We will have to

¥
have another boundary layer narrower than E™ in which the velocity depends

on Z&
. ‘_1/3
To get a narrower boundary layer, let us try r=a- & 7
~Y Vs
2V-E Ryt By
y (1.9.2)
P? = E 3”’77
-~%

-k LL7-+MVé =0

We can expect that 1/=0(Oin this 1/3 layer. Then from (1.9.2) we have
I, _
v=0(1)=> u=0(£%) = w=001) = p,=0(E").
We expect that P7 :O(E‘/’) and balances 2v . |If w is O[l) , we seem to be

in trouble with the Ekman layers (still assumed to be much thinner than the

1/3 layer). At the edges of the Ekman layers we have

= Vs - Yo
W=i~—_[¢-E u]=¢—%—v

2 { {

This obviously cannot match a wr that is 0(1) in thevinterior(t%<‘2<:77)

of the 1/3 layer unless it is zero at top and bottom. The solution must have
two terms in the 1/3 layer - one with a w-that is 0(1) and goes to zero at
2=0 and ] and one that is O(E%) and matches the Ekman layer. Pre-

sumably one has to expand in powers of E;}41 to get the full solution. This is
in fact typical when 95 and 94 layers are present.

From (1.9.2) we have

Ys - P :“'ZZLT :> =

= T T e
2 . N o

E u-,z77 _+2u?_+2-E Wy =7 1/‘7,77= 2 Wy
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or

" 2
<aza + 4 92.'*)”:0 omd Ve s T s

Take w-~ as 0(1) and W(O)=O=w(ﬂ). Expanding W in a sine series,

w(1,2) = g'wn‘(wj)shn ne. | (1.9.4)

Since the eigenfunctions sim nz satisfy the boundary conditions we can formally

differentiate (1.9.4) term by term to get an equation for W, ('))? |

ry .
3ye Waly) = i ()

We retain the three sixth roots of 4 n* with negative real part:
£ V. 217} Y -2(T,
—{2 (an)?3 '3 2] e /3
\Afn(yzhkne an)y .4 L,e 7¢ +Mhec"") (

Clearly as Yz—-? == Wn(’?) —> 0 and W‘/y,i) —> O as they must since there is
no W of 0(1) in the interior (i.e. ‘//?4 layer). From (1.9.3) we obtain

Qo s m< )
v(vzz)=—_’.yWo(7)+§l -—"27—7— coon
where —_éj V\fo (r]) is an integration constant which is at most quadratic in 7 .

Differentiating this gives

\/3 w v |
u(,2)- £ {Z WD ane e w)

n=

If u(*),%) is to match onto the p—>0 limit of the %,‘ layer solution

2 = V2
—%—3\/\/—4(')*—900): -—;'—T— C<‘_/E—’,;,_ ,o)

p—>0
3 - » 'I . . .
Since W, is at most quadratic W, is a constant and must vanish as there is

nothing for it to match up with. Looking at the P-—> o limit of V° in the

Yy layer shows that W;, (V]) must be a constant:
b ()= k()= £ [w @)+ @)+ c - r)
b [Volore vy + -5 cEMy.

it
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W, is assumed to be 0(1) so that it must be a constant. Thus

Cotw, =% [V (@) v (a)]

The tangential velocity at the wall r =a,(Y[ —> 0 )must be V(®):
- ,
- __L_ w
V(z)-g_w,,+§|:1n W, (0) coen =

which gives

-
- 5 W —-%Sdvaa> | (1.9.5)
L an(o)_____f_;_ » o{zcovn-z.V(z)L (].9.6)

[

—

[~]

Thus we have W, and C . Equation (1.9.6) together with the -conditions
that L and W are zero on the wall give three conditions for each « which
are sufficient to determine the constants Kn ,L-n and Pqn . With the

v exception of the second(vv—x'EVL) part of the solution this completes the
boundary layer solutioné.

S Notes submitted by

James R. Luyten

Lecture #5

I'l. Rotating Homogeneous Fluids with Free Surfaces

1. Long surface waves in a shallow, rotating, homogeneous fluid:

We suppose that the system we are considering is such that
U-Vu << 2 52 xU, Then we have

k‘t+2gx_u_¢_+vp+3_lg=o ;
i (2.1.1)
- V- =0

—

Consider the third component of the momentum equation:

M4:+-2.(ﬁ-'égx:£}) +pa+g =0
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Now W, and 2 R.x u are small terms compared with 3 . Thus we have an
approximate hydrostatic balance. |If the region containing the fluid is
defined by

-H(xy) < 2 < T(4y,t)

then, choosing /9 to be zero at the surface gives
p=9(J-2) (2.1.2)

The horizontal part of (2.1.1) is then

(w,),+ 2(2xu) +9V, {=o (2.1.3)
(2ru) =-Rx(kx(axw)=-Rx (w2 -k Qu)

=-kiw+ (R.Q)Rxu

Now W &< Of)H for the motions we are interested in. Thus we omit the term
-—éx Slw . This is tantamount to taking S to be vertical, but with
magnitude ($:-R).
Writing now fL for the vertical component of S ,

w -20v+gJ=0

(2.1.4)
= O
vV, + 282 w + 3'jj
The continuity equation is
Uy + U;7+ W, =0

Since f¢ and jj are independent of 2 , we expect «w and V- to be inde-
pendent also. Integrate the continuity equation: (from —H to+ I

(wpt V) (HeT) s wyp-wy =0 | (2.1.5)

Now the dynamic conditions on the top and the bottom (saying, essentially,

that a particle on the surface moves along it) are:

D
.D_L_.(z—f)=o=w7—3,:—ujx—"jg (2.1.6)

"

D (z+H) =0

5E W, + “'Hx“‘“'Hg
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Substituting into (2.1.5):

("‘-»*Vg)(H+f)+ T.+u Jx+1r3'g+u.Hx+va =0
i.e. jb+ —aa—x(u[H+.T])+ %<‘U‘[H+]‘_]):O

We can ignore T with respect to H , giving

l+—%(uH)+ a—z—(l{/—/%O (2.1.7)

Suppose for the moment that the fluid is not rotating. Then substitution

of (2.1.4) into (2.1.7), with L =0, gives

B = 3030+ (9, Y -0

The boundary condition is i;—-= © at vertical side walls.

n

. ) .
Write SF S L0 to get out the normal modes:

— %_J'+ (Hjx)x"“ (ij)j=o

Multiply by J  and integrate over the area of the base:
o >
3—£j o A —f/)(wj‘x))C J’GZA-L(HJ’g)y Jol A
—fa‘v-(HJ’X,nglydA |
Z]
e oMy - ({0 [IH(I, I)]-9T-(HY, HI )} dA
AEEER S\ ICLICOEMELERCEALER)

1)

1}

But on the boundary, ( 3} ,3é>- n is the normal derivative of :r , and is
therefore zero. Thus, applying the divergence theorem, the first right-hand

side integral vanishes.

-~ <£F{(I:+ I;)CLA

—_—

3 éJﬁA

(2.1.8)

The minimum eigenvalue, O; , can be found from this by minimizing the right-

hand side over all functions satisfying jjd./q = O.
' A

For the rotating case, looking for normal modes gives
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Lru.—251u-=—a3x
2ﬂu+i¢v=~a%

from (2.1.4).

Solving for w and v :
(™4 Q™ )u
(™= nun) v

g(tody+ 20dy)

920 J, 4+ le I
(N.B. expect peculiarities at 0=%25)

Substituting into (2.1.7) gives
<o~ “iﬂ)ca‘r+ ————[ H(LO'Z +9»-Q K] [3l4<2nc+w'[):|

If we look for a harmonic plane wave,
T ‘A )
N say, we have, in the case H = constant,

(cr‘—'iﬂ‘)ao-_gH R*\a =0
=0 on crm:gH R*+ 4 (L7

In the case 0 = O, we have from (2.1.10)

So (2.1.7) becomes

2 (3t (R U)o

(2.1.9)

(2.1.10)

(2.1.11)

(2.1.12)

This is identically true if H = constant. The geostrophic flows are thus

included as normal modes of zero frequency.

I1f H# const.
(KT
Xy :r TR 0

This implies that g is constant along lines of constant depth

L——

[R—
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The Special Case O = 2 .Q

Ifo=2%9, from (2.1.9),
C (u+iv)zn =1igf
(w+ V)2 = —3?5

=>3;=£53
==€>:r is an analytic function of (X'-dj>'
(If the flow is unbounded, J =0 is the only solution. This implies motions

with inertial period, involving no surface elevation.)

' /3 -Plane'' Solutions:

Return now to the general case, and substitute FJ:H0+733 into (2.1.11).
/3 is taken to be small, so that we may put H = H, , but keep 143 =3 . Thus:
2 2 . . 1
(G-—L{_Q)c.o-r+3H,[w'((xx+ yg)}+jﬁ(~2ﬂ Cx-f- Lo (:1) = 0 (2.1.13)
I -tk x . . .
If Jxe@ (plane waves in x direction)
(o_a.—l_’,n:)‘_'o.._'_aHo (—-R L.O")+ lﬂgﬁLh =0
(We note the 0°=0 is no longer a solution. The geostrophic flows in this

system are along lines of constant y, and do not vary with‘x.) Hence

~2_Q%ﬁh
"B

U~ kg H, = (2.1.14)

The behaviour of the solution to this equation is brought out by plotting graphs

of the right- and left-hand sides:




in the previous case where H was constant ( /8 = 0) the hyperbola degenerates
into two straight lines coincident with the axes, and the solutions for I~
are given by the points A, B, C. (cf. (2.1.12)). The effect of making 2
small but non-zero is to shift the solutions slightly off the axes. Solutions
1 and 2 are qualitatively similar to the previous case, but the geostrophic
modes represented by so]ution’c have been shifted to oscillatory modes of
small frequency (solution 3). Since o~ s small, we can solve (2.1.14)

approximately to get

. 2098k
o = HDfH}H,R" (2.1.15)

These waves are called Rossby waves. Note that R has the same sign as 0~
so the waves always have a phase velocity in the same direction (Eastwards
if /3 >0).

The group velocity, however, can be in either direction:

o

The effect of boundaries

Consider a region X 20O with H = Ho'

ey
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Equation (2.1.11) becomes

(0_2'“11){*3"'0({“ +(53) =0 (2.1.16)

The boundary condition, u = 0 on x = 0, becomes (from (2.1.9)),
éo-fx-:-zﬂzj =0 on x=0

provided 0"qu l{_Q_L.

Put I = e_“kg;é(;t) i.e. Fourier analyse in y.
! 0"';— ’-['.Qz- 2
=>¢+,[ 97 "R_."P:O

boundary condition: ¢(0) = g_.:_)_k ¢ (o)

(2.1.17)

This is a Sturm-Liouville type system, except that the eigenvalue ¢~ appears

in the boundary condition.

4 a*+gH, k’la-;‘

9t

X Lf G*L< /-I_Q=+ sz,,R"

Solution is ¢ = axp {— j

4+ ghk=o  aak

From the boundary condition:
_\/ 3Ho ; o

(note this means O‘/k < 0).

2 Q' R™
Thus Llﬂl*'ﬁHR—'U_ = Lio..z jH

ice. (2 HA) (oL kgH) = 0
Ignore the 0°=2* 2 root, as we have already discarded this in deriving the
boundary condition.

-2

(gH

Thus ¢ = axp z (2.1.18)

and o= and R have opposite signs. Thus the wave propagates in the negative



y direction, and decays exponentially with x. These waves are called

Kelvin waves.

A circular lake with a paraboloidal bottom (brief description).

Fi= H, ("’ rz%i) ‘[cf. Lamb 8§ 193]

Y
In the non-rotating case we look for modes K::; (r)e'”

Then, writing .;(r)z 8(X),I= 54{ , we get

(-)(g' 59 () g = 274+ 2g =0 (2.1.19
where A = %

We seek power series solutions for g , and find that the series terminates

for particular values of A

n=o0,1,2, .
m= 0,2,k .

provided N and yn are not both zero.

Apm = n(am+ 2)s m(mra)

where

The rotating case:

If N=0 (axisymmetric case) we find

2 (o)o- 2 .
¢ =0 +H S as we might expect.
If 0, we find
n> we T > R Hnl
) = (O"— "i.ﬂ-)jHo - =

The following sketches illustrate the behaviour:



Geostrophic motions

280

Notes submitted by
Philip Hazel
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Lecture #6

I11. Rotating and Continuously Stratified Fluids - Inviscid Flows

1. Ertel's Theorem

We start by deriving Ertel's Theorem. Consider a non-dissipative,
incompressible flow in which the body forces can be derived from a potential

function. The governing equations, in an inertial frame of reference, are

V-u=o0 (3.1.1)

UruVu+r 5 Tp+ V=0 (3.1.2)

Consider also any function § that satisfied the equation

DS 3s

37 = ar-f-l_é-VS:O (3.1.3)

and the relation

VS-(VprVp)=0 (3.1.4)

By taking the curl of equation (3.1.2) and then the dot product with VS

we find

VS»@%‘(VX L_L)— [{vx g>. V_b_l.):] V5 =0 (3.1.5)

If we take the gradient of equation (3.1.3) and then the dot product

with (ﬁ?xg) we have

(Vx)- 2-(V5)+ Vxw- V- s =0 (3.1.6)

Adding equations (3.1.5) and (3.1.6) we find

D
- — (T x U = 0
ERTEL'S THEOREM Dt < x WU VS> (3.1.7)

The following are some familiar results that are included in Ertel's theorem.
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In a two-dimensional planar flow, independent of the coordinate 2 |,

we can choose S = 2, and (3.1.7) gives the well-known result that

———<Vx (;L>= o
In shallow water theory, consider the function
2z + H(x, g)
" TGy ) H oy

where Z = I(Xt;,f) is the height of the free surface

and sz—HQ&@is the depth. Note that

S=z0 at 2=-
S=1 at 2= Z
and therefore
)
‘?—t:O of 2=-H amd 2= (3.1.8)

In fact

35 i (S0 B)- o (3E30)

25 = it (G - wln)- e W) ()= w(- )|

or

In shallow water theory W is a linear function of 2 and therefore

w an ite
e cC writ DS

Dt = -Fo (X'Ej)-'- Z-F; <X'H>

However, the condition (3.1.8) then implies that, in general,

DS
e - ©
Therefore S is a suitable function for use in Ertel's theorem.
With Vst Vs = (Vxw). £
H+1T)
equation (3.1.7) gives D [ yrw-k
f)?( H+Y /

This result expresses the conservation of potential vorticity.
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2. Equations for Flows with Strong Rotation and Stratification

Now we first want to apply Ertel's theorem to a rotating and stratified
fluid. The equations (3.1.1) and (3.1.2) are supplemented by the energy equa-

tion and the equation of state.

DT
= 0 (3.2.1)
and pp(1-xT) (3.2.2)

If we switch to a frame of reference rotating with angular velocity

, then
fLK Vxu—2QK+w

where (0 is the relative vorticity and Ertel's theorem (3.1.7) can be written
2 [(25)_ K+ cg).vﬂw o (3.2.3)
Dt
We further consider a strongly rotating and strongly stratified fluid
and linearize about a basic state. That is, we consider
,_g_)l << lp_'g')_lil
and, expressing the temperature as
TT(2)+ 7,

we also consider

T, 2)] .

V:Fl<<

A

Then, including the above linearization and dropping the caret on T,

equation (3.2.3) becomes

-;E{29_7;+To'(2)5'@}+251WT,,"(2)=0 (3.2.4)

Now from the linearized form of equation (3.2.1) we have

£—+W7;/(z)=o (3.2.5)
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Solving for W and substituting in equation (3.2.4), we find

? 2T, K T 2T
9§ 285 k. P We) 2
ot { T *= ’} (7;')‘ 3¢ °

Combining terms we obtain

2 {251 (1)
ot 'r,,‘?3

+|§-(_1__)}:0 (3.2.6)

For a closed region another relation comes from taking an area average

of equation (3.2.5) in an x, y plane in the region enclosed by the boundaries.

Since fwd_xd5=0
A

equation (3.2.5) gives .
2T
5E - © (3.2.7)

where ?:j.l—d)‘d-‘;r
A

Now consider the linearized equations, with the Boussinesq approximation,

Vow =0  (3.2.8)

gt+2:)_\5xy_-+\7p——0<3_r5=0 (3.2.9)
27T /

_a_.t_-n-w—ro(z)—_o (3.2.10)

where P is the modified pressure. We nondimensionalize the variables by

setting " - o é'r g—*
T= AT T*
t 0t
2= L&

e L_ooall7-P*
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Dropping the stars, the equations in the dimensionless variables become

V-u =0 (3.2.11)
U, +2Kx e +Vp-Tk=0 0 (3.2.12)
371—+ 4S(z)w =0 (3.2.13)
where , . 1
ys(z) = 5—“}2—(2) = ﬂﬂz (3.2.14)

We first look at the steady solutions of these equations (''geostrophic

flows') in a region 0? with the boundary condition

U-n=0 on IR (3.2.15)

"From equations (3.2.12) and (3.2.13) we find directly

op
Ery =T (3.2.16)

and W =0 : (3.2.17)

Taking the cross product of K with equation (3.2.12) we obtain the
horizontal velocity vector

W, =

{
HE o 20V

Hp (3.2.18)

Therefore, p= P (Aﬂ,'é} is a stream function for the horizontal velocities
and can be any function, with the restriction, implied by the boundary con-
dition (3.2.15), that P be constant around curves of intersection of

z = constant planes with boundaries in non-horizontal directions. That is

,b(x,!j,i)= constant for 2 = constant, 2,7on oK (3.2.19)

An additional conserved quantity can be found. Taking the dot product

of w with equation (3.2.12) and using (3.2.13), we have
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5%(_5_‘__,_1)_'_‘7_ <£_LP)+_._’.._Z_?_ (__T) o (3.2.20)

A volume integral of this equation over 12 gives the result that

at 1j[(“‘2)+ L—/%—(—de:o (3.2.21)
2

Now if we have two solutlons,g‘,_lr and U, jg, and an inner product

defined as

we can show

———<LLT'LL 2> =0 (3.2.22)

To prove this note that, since the equations are linear U -u,, —n -T,

is also a solution. Therefore, using (3.2.21)

d
o] 3T <

H‘I—'H‘ﬂ.)

—9;{<{g_.T.]1>+ J > -2 <uwl L—LzTﬁ}
Equation (3.2.22) follows.

Equation (3.2.22) shows that, (with the addition of the complex con-

jugate in the appropriate place) if there are modes of different frequency,

< t A ‘
they are orthogonal. That is, if u = Qle 7" and w :_(_,Lle"o—’t equation
.2.22 iv
(3:2.22) alves (ea-o)< 8,T]2,T,> - 0
3. The Initial-Boundary-Value Problem - The Geostrophic Component

We now consider the initial value problem governed by equations (3.2.11),

(3.2.12) and (3.2.13), boundary conditions (3.2.15), and initial conditions
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To find the ‘''geostrophic'' part of the solution, 99,‘T we choose a solution,

v 6, of the equations

V=g kxVor (3.3.1)
8 = I, (3.3.2)
(where OF is the geostrophic pressure function), such that
a
<‘£’." -V, T—~0 > is minimized. (3.3.3)

This corresponds to orthogonal projection in the sense of the inner product

defined above. Stated in terms of the variation this condition is
.
§<’_L_L—y, T- 9'>=o : (3.3.4)

Further, we do this at T=0 » such that L=W . and T = TIC' Equation
(3.3.21) then insures that (3.3.3) is true for all time.

Using equations (3.3.1) and (3.3.2), condition (3.3.4) becomes
I .
4[{g—y)xg+—£§—(7— e)g]-va’wal\/:o. (3.3.5)

Integrating equation (3.3.5) by parts to get rid of the derivative of the

variation of U , we find

ﬂv.[(%-y)xiyz—'s-(ra)g]} a‘waLv;dfY [Qf_g)xf; +2’_S(T_9)5].n£w45 co. (3.3.6)

R

With the particular choice of S0 -0 on the boundary, equation (3.3.6) yields
|
Sl K o T _ .3.
\7[(_ -)x_+ 25('!’ 9)15-’_9 (3.3.7)

(Euler's equation in the calculus of variations).

Then equation (3.3.6) becomes
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([ (-9 nsmds0 G

?R
We can take O(DO‘ as an arbitrary function of 2 on the surface 2R .

Therefore, it is advantageous to consider the surface specified by

£ (8 2)
so that hdS"—?ﬁ _._c[GloLE
Y- S T
where & is an angle in the x,y plane. Then equation (3.3.8) becomes
27
jéw(z)izjt( "V)xk+——(T—s)] ?—"E—x E‘f—de 0. (3.3.9)

oo

Using the fact that éiv‘ is an arbitrary function of 2 , we have

J [(u—u)xm_—(r-e)] ZE 32 de =o. (3.3.10)

For example, if we consider a circular cylinder

?f=aQ|
26

PL -k
22

where I and §, are unit vectors in the ¥ and & directions of cylindrical

polar coordinates, then

2F L
= X =ar
06 2z -1
and (3.3.10) becomes 27
a) |[(w-vXKl.r d6 =0
P d
or, using (3.3.1),
N el
uw. 86 G =-\_L 2222_
5“ 8 d Ja 2r d 6 (3.3.11)
[+]
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We can see better what equation (3.3.10) means if we, in equatioh
(3.3.8) let thb' :.F (2) , where ]C is an arbitrary function of z , and
then use the divergence theorem to change the surface integral to a volume

integral. The result, using (3.3.7), is
/ y |
55-9—(T-e)7f(z)dvzo o (3.3.12)
R

This implies

[edxo(?/:f’/‘dxaég - (3.3.13)
| A

A

( 2 = constant)

which shows that the horizontal area average of the temperature is carried by
the geostrophic flow.

Equation (3.3.7) can be written

2 e ) _ e /T
kevxr e (F5) =k ven s 5 (55 (3.3.14)

With U and © given by equations (3.3.1) and (3.3.2), equation
(3.3.14) gives an equation for ©O° . The boundary conditions are provided by
equations (3.2.19) and (3.3.13) or (3.3.11). In addition, on horizontal parts

of the boundary, equation (3.2.13) and boundary condition (3.2.15) give

gz = o 6:=T (zTIC)-

Then, using equation (3.3.2), we have

o, = 6 =T on horizontal boundaries. (3.3.15)

We should note that we cannot obtain our previous results, character-
izing the steady ''geostrophic fluws'' of a homogeneous fluid, by letting the

stratification go to zero in the above expressions. For example, in equation
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(3.2.21) S appears in the denominator and it doesn't make sense to

formally let S—> 0 in this expression. The present results were obtained

from a linearization about a state with strong rotation and strong stratifi-
cation and, therefore, can not necessarily be expected to reduce smoothly to
the case of strong rotation and Egzg_stratification. It might, however, be
possible to relate the two cases by including a consideration of the respective

unsteady equations and solutions.

Notes submitted by
John S. Allen, Jr.

Lecture #7
In summary, then,
V=4kxVor (3.3.16a)
6=0, (3.3.16b)

and use of these with (3.3.14) gives

2 2 I D07 2 _'I:_
VH'CU+ 9—2(25>-§;>=2(ng).&+—5‘;<5&)) (3.3.16¢)

to be solved in Fa subject to

Sadx Dl.j :JTOLde (3.3.17a)
A A
where /q is an intersection of # = constant and FZ .
T, = 6 =T on horizontal parts of 9 IR (3.3.17b)
and 07" = constant on an intersection of d R and 2 = constant.

The right-hand sides of (3.3.16c) and (3.3.17) are independent of time

from (3.3.13), (3.3.14) and (3.3.15), so the initial data determine their value.
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L. Uniqueness of the steady part of the solution to the initial boundary

value problem

Suppose there exist two solutions of (3.3.16) satisfying the same
boundary data (3.3.17). Let the difference of those solutions be denoted by

(29] Then, (3.3.16c), (3.3.17) are

> 2 I 9T _oumR,
VH o + 5—_; 'EE) 52 wm (3.4.1)
jwzolxdg =0, (3.4.2)
and UD'a':Oon horizontal parts of 0 d¢. (3.4.3)

Multiplication of (3.4.1) by ©@U and integration over Rowill give,

with an application of the divergence theorem,
'&71 ' 2oL\/ fo ol 1 .
= lm®| + s @ |dve |95 ) n s <o (3.0
R 3R

The parts of the second integral arising from those horizontal parts of the-
surface @ K are zero by (3.4.3). Hence, only those non-horizontal parts of
2R , say aRV , contribute to that integral over R . Clearly,

'05=TUB(2)on'a7KV. Using the divergence theorem again,
JwB@) [(wx,wﬂ,—'gwg -13} ds =
IR
[ ’ .
= fwBVo i(’afx,w ;?w:z)}d-v*-&%&) =2 dV=
R

:5@0&(2) z‘;i LV, by (3.%4.1).
R

Putting this into (3.4.4) yields

> [ 2 / .
“‘ﬂiﬂvHWI*' —gwi‘]"(«v-#ng (2)-5—%‘ dV = o
R
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Note, however, that because of (3.4.2), the second of these integrals
vanishes identically and all that remains of (3.4.4) is
2 } > .
5(]VHw[+?w2)aLV‘=o (3.4.5)

R
Applying the usual arguments to (3.4.5)

V=0 everywhere in R if S >0,

which means the solution to (3.4.1) - (3.4.3) is a constant everywhere in R
and hence the solutions to (3.3.16), (3.3.17) are unique to within a constant,

i.e. YV and B are unique.

5. The ‘initial-value problem for the cylinder - the steady component

In this section we carry out the above procedure for a right circular
cylinder of radius @ and height I . Using the original form of the boundary
condition for (3.3.16) as derived from the variational principle, (3.3.8) will

give, for the cylinder, as previously stated in (3.3.11),
27 27

wr(?%%)dv»::zjgoglolv“ (3.5.1)

[+

]

Also,

w, (r,%9)= T (r,%0)
Wy C’”ﬂ}rl)= T(r,‘l?’,l) Ey (3,3.I7b).

The solution is expected to be of the form
oL, =d N 18 o > |
T = em ” r
m:Z—-:oo %18 jm (O(" %'»)AKM(ENEAK(Z)J;(“K%)*' ['7(2) 2a (3-5.2)
{
where >, means the m=0 term is excluded from the sum, and the third term

in (3.5.2) is such as to satisfy the boundary value,
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vyl 27
_é_. Swr(z},z)dw= j_bﬁ.-@lcl')} =7 (=) (3.5.3)

<]

=

Since W=T(2)on r=a , one can easily see from (3.5.2) that

I («?):o (3.5.4a)

and since the last term in (3.5.2) satisfies (3.5.1) identically,

T ()= -7 () =0 (3.5.4b)

Supposing for the moment that (3.5.2) is a convergent representation of the
solution and {U;n (N:)} and {-Jo (“K)} are complete, one can differen-
tiate term by term and insert (3.5.2) into (3.3.16c). Doing this, one is left

with the ordinary differential equation

a 2 -
o dAR) =k, }
dz S(» dz a_*Ak" z'jr[j;(“k Y/a_):’ drix

xfﬂ@%%){ﬂ(w)*ﬁ = (5&)- 22@)}“ (3.5.5)

]

for the axisymmetric part of the solution, %§K , and another similar
doubly-infinite set of tions for the [A ft ndi Vu-h—a—(——r—)
oubly-infini set of equations for the km [s2fter expanding VxR +52 @
. . . +imw
in a series of the angular functions @ .

This is only the steady part of the solution, and in this special

case, existence of the solutions of (3.3.16), (3.3.17) has been shown, provided

the Fourier-Bessel series is convergent.

6. Oscillations in a Stratified Rotating Fluid

Putting = Q—(f)eio’t
p=p(r)e“t (3.6.1)

T=T(r)e""
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- into the non-dimensional equations of motion with the Boussinesq approximation,

(3.2.11) - (3.2.14), one obtains, dropping the carets,

t.'O"g_L+1I_<x_L_x_+VP-T5=O (3.6.2)
o T + 4wsS(® =0 (3.6.3)
V-4 =0 (3.6.4)

The vertical components of (3.6.2), and (3.6.3) are algebraic equations for

<T,W) in terms of Pz > and their solution, if 0“2#45, is

6-*-45 22 w= o4 02 (3.6.5)

\,i . T= 45 ‘op Lo op

Taking the vector product of (3.6.2) with K yields the system

— LOR ¥y = 2u +RxV P =g

. (3.6.6)
2Ry +LO L+ T, p=0

which is another algebraic system for _(,_(_H(zc_z_,-t\’_w> and R x &, in terms of
e VH p - The solution is easily found to be, provided O“l:f:é‘,

| {
Y, = o4

(oY p-2kx G p) (3.6.7)

Insertion of (3.6.5) and (3.6.7) into (3.6.4) then gives an equation for

the pressure,

. | _— | P _ |
o -4 V“P * 2z O 245@ 2= =0 wn (3.6.8)

and since 4. =0 there, (3.6.7) will require some combination of directional
derivatives to be zero on @ ™ . This has been done for the cylinder (cf.
Lecture 9).

i!: To determine an upper bound on the values of o— , we multiply (3.6.2)

by EE% , the complex conjugate of (. , to give
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(ou-utraut (kru)rp (put)+ 25)w]- o (3.6.9)

using (3.6.3) also. Integrating over R and u¥.n =0 on @ R (3.6.9)
gives
2. - %
~S(45'W’I——o"lgld\/f-iéo’jﬁﬂ(gxuf}d\/:o (3.6.10)
R , R
The second integral can be shown to be purely imaginary, so o™ is real.

In fact ' ' . o
'Li{_}g.(%xg )d\/lé_s \L_Lf oV

so, (3.6.10) is x

Ma‘%;l‘_&lquJrjﬁéi sl d V= ~z]¢[§? juf "V

SO
el ) e dv = _Lérol\/+4 S]w]id\/
(o>2frl+ )l av= ] fo
s§|g|’d\/+4fsmld\/
Thus, N
(lo_f—‘)él""—q‘smax’
that is

Io_lé J+ A1+4 S0, .

So, the frequency spectrum is of finite extent, and may also be dense;

in any case there must be accumulation points in the interval.

Forced Oscillations

We suppose there is a driving force per unit mass,

_Li-t+2_/$X_L£»+VP-’§T=f(r,t) (3.6.11)

as well as a heat source

[t
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T, +4Sw=a(;T) (3.6.12)

Vou=0 (3.6.13)

and U m=0on 2@ R s U Tspecified at t=0.

In general, of courseV-F#0, so define V° so that
F-ve=v (3.6.14)

Now, V-E—V?zs = V-V , and if we suppose V-V = O , then with the addi-
tional requirement Y -¥1 =0 , we have the Poisson Equation to solve.
Vg-U-FinR
34 - (3.6.15)

=5 =0 en O R,

So, one can collapse the qu part of f into F and just consider
U +2Rxu+Vp-RT=v(rt)

T 45w = § | (3.6.16)
V. %:O

To solve this, consider

w, +2kxuw, +Vp ~kRT, =0

Ty + 4 Sy, =0 (3.6.17a)
V";L,:O
subject to the conditions
w, (0, 6T )= v (r7)
. t-‘—o (3-6-]7b)

'T;(r,tiT>;Q(_r,Z‘>

Then, the solution of (3.6.16) is
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u(r,t) = Ju(rff ©)dT
T(r,t)= J T, (5t-7,7) dT (3.6.18)
P(.':)t) = JF:(.":)t“Z\:’C)CLZ\

To prove (3.6.18), note that

t
we=u, (r0.t) +j w,, (rt-tT)d0

o

(r,t)+ J[u.,ti-ihxu_ KT]O(_Z‘

- t_f(*:,t>—fvp.(r,r-r,f) do

SO

I
p‘.
,+
Y
|
rx
1=
|
|k‘
h
I

(3.6.19)

where (3.6.17b) was used first, and then (3.6.17a). Hence, we have (3.6.19).

g,t-(-z}jm_{.—}g_r-f—Vp:}{

and similarly T;*'4‘”'S = Q which are equations (3.6.16)
as are supposed. So, (3.6.18) is the solution of (3.6.16), or the solution
of (3.6.11) - (3.6.13) using (3.6.14) to define 1~ .

Therefore, by noting (3.6.17b) and using (3.2.6), we get that
a
R Vxu (r,t,T)+ (T(r'm)) VxF(5t)+ (3‘5‘);

which may then, with (3.6.18), be written as

B.qu t) (T(_,t)) f[k (VXF) (-— ]0(7-\ (3.6.20)

and also

T
T= o (s,t)dt (5.6.21

Suppose instead that the driving is through the boundary conditions,

<‘:‘:‘Y)'n =0 on IR where V-V=0.

e,

[t
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- Let &« = Y+y’ so V.h =0 on JR. Inserting this into (3.2.11) - (3.2.14)

[ gives ,

. l/f+oll_le_f+vly—&7=—(\_/t+2'2><\_/)

T, +45w=-4SW (3.6.22)
) V-v =0 |

M,J Clearly, the problem with forced boundary conditions is reduced to
the previous problem, (3.6.16). For any motion started impulsively, it is

known that, at the outset, the motion is irrotational,
VxVY=0 (3.6.23)
plus Y-V =o0
Using the previous formalism, _/_:= -V, —2),3 X l/_
and § = —4SW
Inserting these into (3.6.20) to compute the potential vorticity,

Ux F=—UxVe-2Vx(kRxVv)

,,,,, . oV

| =0+ 2 5

:‘l ) and (Vx F)- k = lL However
o -/ = o2 ’

2S

come to the result that one cannot gain potential vorticity by impulsively-

SO é,-‘7xgg ﬁ-( ! > = O for impulsively-started motions, and hence we
=

started motions.

Notes submitted by

Michael R. Foster
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Lecture #8

IV. Rotating and Stratified Fluids - Viscous Flows

1. Equations
If the effects of viscosity and heat conduction are included, the

linearized, non-dimensional, equations (3.2.11) - (3.2.13) become

V-u=0 (4.1.1a)
Up+2Rxwe+Vp-KT=EAu (4.1.1b)
7_2+45W= E/O"AT (L}.I.lc)

where E = - is the Ekman Number and O = 2 is the Prandtl Number.
L*0 K
In this case, the function S (2) for the basic state should be a
linear function of & in order to satisfy the right-hand side of equation
(4.1.1¢).

Writing these equations in cartesian coordinates and considering flows

that are independent of y we have

Uy + Wy = O | (k.1.2a)
W, -2+ px= Eaw (k.1.2b)

U, + 2u = Eav (4.1.2¢)
W, ~T+ pe = EAw (4.1.2d)
T, +4Sw=ELaT (4.1.2e)

We can notice the similarity in form between equations (4.1.2b and c)
and equations (4.1.2d and e). In fact, in some cases a direct analogy between

homogeneous rotating fluids and stratified, non-rotating fluids exists (see

ey
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Ref. 1). Without exploring the analogy in full here, we remark that the
similarities of the equations, mentioned above, indicate that there should be
boundary layers in w and T on vertical boundaries similar to the Ekman
layers and the velocity boundary conditions on horizontal boundaries in flows
of homogeneous rotating fluids, we can anticipate a similar importance of side-

wall boundary conditions and boundary layers in flows of stratified fluids.

2. Spin-up Problems

Let us look just at the simplest spin-up problem, the case of the flow
between two infinite parallel plates perpendicular to the axis of rotation, where
at € =0 the plates are given a small increase in angular velocity. Even though
the effect of side walls is important in the flow of stratified fluids, this
case, which completely neglects the effects of lateral boundaries, is of interest
for comparison with homogeneous flows and with horizontally limited stratified
flows.

The equations for axisymmetric flow in cylindrical polar coordinates are

L(rr 4+ w,- o | (h.2.1a)
we -2+ Py =Efbu- “f;) (k.2.1b)
v tlu =E(av- (4.2.1c)

wt -T+pe =Ebw | (4.2.1d)
T +4 5T=%AT (4.2.1e)

CE '

h A= —"—+— — + ——

where ('Br‘ r oy ’Bz")
with boundary conditions

UW=V=wW=T=0 o z2=+1 (4.2.2)
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and with initial conditions
u,.-:W:T:O

YV = —-Y QI 't:o

(4.2.3)

Realizing that the solutions for «. and VvV can be represented in the

form w=r u (th)
V= VVCi/f)

and substituting these expressions in equations (4.2.1), we have

22U+ wg =0
U—t —2V+",TP\’: Euzz
V@ + 2 U = E?\/zz

T+ 45w = ELaT

. . / . .
If we consider the time scale i:“”c)(Eij: similar to the homogeneous case,

and anticipate that in the interior
VvV~ o(l)
U~ o (%)
W ~ 0(E"%),

1~

s
the equations for the interior, with 2 -t £ , become
2U+W, =0
l —
-—2V+-—,:Pr_*'o

)

E/‘\/Z. +2U = O

(4.2.3a)
(4.2.3b)
(4.2.3c)
(4.2.3d)

(4.2.3e)

(4.2.4a)
(4.2.4b)

(4.2.4¢c)

-
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[ _T_,_ PE- = 0 (4.2.4d)

= EAT, + 4 Sw-= Y (4.2.he)

The solutions to these equations, for the velocity components, are

V=-e™ " (4.2.5a)
A
iy _T
L U= —3-¢ | (4.2.5b)
— Y. _T
Ww=+E"ze (4.2.5¢)

where we have used the boundary condition from the Ekman layer theory

of z=21. |

_ Therefore W is known and is just a forcing term in equation (4.2.4e).
Representing

. | _ .,
, = {2+ =
o z En bhs,cmn !( + )) bn n T

and

L —r:% Th(Olsimmm(241) (4.2.6)

we get the following set of equations for the coefficients —T; (17)

: __l/
_ / -T £ = " —
[ TY\ -+ bh e = - -——5_—"' <TY\ Nl 7.) (4.2.7)
- with solutions .
Ly bl’l -n*TT == T
,,,,, ) T (e | © -e (4.2.8)
=)

We note that, although the time scale for the velocity to adjust is

/
O —= (the "'spin-up time"), the temperature has an additional time scale
EY:
K

>0

which is C’(%?J. Since %g— = » we recognize this as the diffusion time.
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The solutions (4.2.5) do not satisfy the initial conditions (4.2.3)
as L—> 0 but rather wf]l match with solutions from equations for varia-
tions on the short time scale t~0(1) as T —> <o (i.e. as f——)o(‘é“'a)).
We will talk about the short time scale equations and solutions in lecture 10.

We now look at the solution to the spin-up problem between two parallel
infinite plates when the disturbance on the plates is arbitrary and goes to
zero at ©o . The solution we present is included in a paper by G. Walin
(Ref. 2) and is similar to that obtained earlier by Holton (Ref. 3).

If we again look on the time scale C’(z?z}(i.e. substitute f‘:t1§%§ and
assume an expansion for the variables in the form

Z
«_LL:LL,,-l-E‘;u.,-I---'

v (4.2.9)
v=u+ E v ate.
we find that, with the introduction of the function
2
- . = » §.2.10
@ —= P ( )

the zeroth and first order interior equations, in cartesian coordinates, can

be reduced to a single equation for ¢>

2 z
27¢ L0, 128 o (4.2.11)
x> dy? s o=?

For this problem the boundary conditions for the interior flow come

from the Ekman layer theory and are

— ) KOV  du
WINT(2=i1>:+—2—:E _—é—)ﬁ—“——’aj> (4.2.12)

In terms of ¢> this condition becomes

BT X LA D
‘? aTaZ - 'axz alda. - ——l (ll213)

]
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A general solution to equation (4.2.12) satisfying the boundary
condition (4.2.13) can be written as

g b= [[ (O +A (6 D) " Htiae

oo

(4.2.14)
where
" - tr
f-e" fc.'ési’h_'j_n’f‘ (4.2.15a)
. __=rTsinhms
= e Provmeey (4.2.15b)
. = 5(K’+£’)= Sh* (4.2.15¢)
2 - 2
f) = K +4

(4.2.|5d)
EOSL'Im
9 =/S" h

Slmhm

(4.2.15¢)
J‘"‘;L 5\nhvn

Cosh ™

(4.2.15f)
This solution exhibits different behavior

depending on the value of
the parameter m /Sh which involves the amount of stratification and the

horizontal scale of the boundary disturbance

When E%=m<<l
we find

T
e (1+0(m)

o(wm)

i

f

(4.2.16)
dJ

and the process is similar to that in a homogeneous fluid, decaying in the

i H
ordinary spin-up time However, for J§?41 =m >>1

| ‘F ze.-m’[’[em(;_,)+ e-—m(zw):[
\;-\' g ~ edmr,'em(i"')_ e-m(2+l)]

—
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In this case we find that the motion is very different than that in the
-1
homogeneous case and is largely confined to layers of thickness(igjh) at

the boundaries. The time scale of the process can be found from

_ /2.
mT =S h ¢ = E5 ¢ (4.2.18)
and is O Ci%;ﬁ)
BhY
where — v g
be= A= (—L ) (4.2.19)

is essentially the Ekman number based on the boundary layer or penetration

thickness

§ = ————fs_’jh (4.2.20)

Therefore the time scale can be thought of as the homogeneous spin-up time
for a depth based on the penetration thickness S .
Notes submitted by
John S. Allen, Jr.
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Lecture #9

3. Dissipative Effects on the Normal Modes of a Rotating Stratified Fluid

In general, for E i 0, viscosity will effect some modification on
the interior modes of a rotating stratified fluid. For the initial value
problem, the solution may be accomplished by noting the existence bf two time
scales, ﬂ" and L/(‘v.ﬂ)va,. or the non-dimensional times € and T of the

previous section, as well as singular spatial structure in the flow. To do

this, write (Greenspan, 1965)
A Y,
_t+=g¢o(r,f)+2yhes"t+ E {_u_-,(r,‘f)+ >, L__l_.m‘<f,t)}+
+ 2, (3T E U, EW{E.(?,‘CN L& (T e)}+ - (4:3.1)

m

where (ﬁ' ) denotes a boundary layer solution presumed to be transcendentally
st »

small for large § , the boundary layer variable; the 1!;49 are the

interior modes of the container. As is the conventional procedure in the two-

time method, write

5k=50‘k+ElA5k,+-'-

to remove secularity in time. Tgis is clearly quite a complicated process

for a general container; there is the additional complication that there are
certain critical latitudes with a singular character (e.g. the equator of‘a
sphere) that are difficult to handle. These are associated, in the homogeneous
case, with the disappearance of the Ekman laYer and the appearance of more

complex shear layers on vertical parts of the boundary.
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N
4. Spin-up in an Arbitrary Container; Time Scales of O[/: /")

Now, for a rotating stratified fluid in a container
u (flfj +.. .04

+gm((;F)+EAQw(£f)+.,. (4.4.1)

where there is no attempt at this stage to make the solution uniformly valid in
time as in the previous section. Now, if n is the outward-drawn normal, then
-%2 3 '

n-Vv=-tF "—+0(

7 s +0()
in the boundary layer.

Putting this sort of expansion for temperature and pressure also into
the non-dimensional equations of motion with
jL

will yield, to 0(1) in the interior

Z&Xw vrzgn'

Vew, =0 (4.4.2)
w, = O
Y . o
and to O(E“%2), also in the interior,
’at.’_('o =§Tl
T
% - =0 (4.4.3)
V-u =0
=Y
In the boundary layer, the O(E '*) equations are
I P,
apzo
¢ (4.4.4)
a -a:O
3§' o
Now, to 0(1), the boundary layer equations are
—~ P
T A
P& .y (mxiz,)=o0
- *0Vx(nxg)= - (.4.5)
4Siw = L °
o or*

e
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Without stratification, (4.4.5) are the usual Ekman layer equations. Some
considerable manipulation of (4.4.5) with the boundary condition {1-2@:() on

the boundary will give eventually

o 1-2&(Q'E)j<y_)x ’_C_io-u'g.a).—._i[nxE—Lgx(Qxﬁ)J
! C orF . (4.4.6)
T gt ASeE)

It is clear immediately that when the boundary is horizontal(ﬁx 5::0),
these reduce to the conventional Ekman layer equations, so long as S is 0(1).
In general, on a sloping boundary like this, the buoyancy layers and Ekman
layers are mixed.

In a forced problem, one splits u into a part with homogeneous boundary
conditions énd a part with the inhomogeneous conditions, e.g., Ekman suction.
Study of the boundary layers would yield appropriate inhomogeneous boundary
conditions for the interior problem.

There is some question of the role of Ekman layers in stratified spin-
up problems; (Ref. 2 and 3, Lecture 8; Pedlosky, 1967) they are certainly
important on a time scale of O(E‘!é). (There was considerable dialogue among

Howard, Veronis, Rooth, Welander as to whether this normal mode approach is

‘useful in predicting the character of steady solutions when the fluid is

stratified. Howard pointed out that, in a stratified spin-up, not only are

-
time scales of O(—Q- )and O(L,/Jﬂﬂ) important, but also the diffusion time
scale L;AV-)

5. Time Dependent Modes in a Cylinder - given by W. Siegmann.

In slightly different notation than before, one has, for an unsteady

motion in R
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Q_Lt+25xg.—4STl_g_+V,b =0
TtJ-k-u

Y -
E‘_a

t

I8
\l

0]
0

amd

1>

en OR-

(4.5.1)

| 2
Here, SE(N/Q.Q.) . Again, a little manipulation of the equations with a time

dependencee&péﬂt) will give (cf. Lect.#7. Eqs. (3), (6), (8)), if S = constant,

-~ 4-3" &p
Y P+ a5 oae

For a cylinder,

. 2
LAp,. + —pp=0 on r=A
Pi=0mnz=o,l

The solution is then, noting (4.5.3b)

P:%m(mﬂz)eiw T (xv/n)

Using (4.5.2) and (4.5.4)

2 2

<OA§) = 44;‘-Ak2 (m ‘ﬂ')z

and from (4.5.3a),

)'j};(cx) + 2k j; <C<> =0

(4.5.2)

(4.5.3a)

(4.5.3b)

(4.5.4)

(4.5.5)

(4.5.6)

Equations (4.5.5) and (4.5.6) may be solved graphically by solving each for

) and using o< as the abcissa, A\ the ordinate; the intersections are the

solutions.

Such a plot is shown below

S



_]09_

| VRN
<

; ) p
- If K= 0O, the equations are uncoupled, with _Io (<><) = 0. |If the parameters

m and k are held fixed, then the wave spectrum is

A

Y7,
! |
et '/1 I ﬁs |- s
M <O S+ USo Sxl

; 2

et where,Aizz(frequencyL//EQKif+/Vﬂ. The dotted line represents something like
a Kelvin wave in shallow water theory. For comparison, the shallow water spec-
trum plotted against f;4é+|, F being a Froude number, at fixed k has a form

which is interesting to compare with the above results, viz.,

M
/
i o ~
F+l
L@ﬁ There is no bound on the frequencies in the shallow water waves, but there is

a bound for the modes of the cylinder.
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It appears that any solution of the initial value problem for the

special case S = ?537 = 7%) is atypical, since there is a focusing of

all the waves at that point; one can show that these modes do not decay in
-V

a "spin-up'" time scale, E a’ but much more slowly. |If S¥ I, then the

E~ "

modes decay on the scale

References

Greenspan, H. 1965. 'On the general theory of contained rotating fluid
motions''. J. Fl. Mech., 22: L449-462.

Pedlosky, J. 1967. J. Fl. Mech., 28: L463-479.

Notes submitted by

Michael R. Foster

Lecture #10

6. Initial Phase of the Spin-up Problem

We now want to look at the initial phase of thé spin-up problem of a
stratified fluid in a cylindrical container. That is, we look at the behavior
on the short time scale where the dimensionless time f"‘O(/)'(and the dimen-
sional time is O(_g""{') ).

The governing equations in cylindrical polar coordinates are those that
were written in Lecture 8 as equations (4.2.1 a - e). The boundary conditions

are

"

IN
<
"
£
1]
\‘
n

o on the boundary 2 = *I
r=a ' (4.6.1)

o

i

e,
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. .The initial conditions, at T =0 , are
Uw=w=T=o0
U=+r (spin-down problem) (4.6.2)

Taking the Laplace Transform of equations (4.2.1) and using the notation
- @ at
u.:[e" wdt, ofz.

L we have

| L(r@)r + @,=0 (4.6.3a)

AT-27+ p =E(a-5)a (4.6.3b)

B AT+ 20 =E(B-5)ar (4.6.3c)
| AW +py =ELD+ T (4.6.3d)

) AT +49W = EfpaT (4.6.3e)

To solve these equations we again make use of the fact that £ < <]

_ and solve for the appropriate boundary layers. Defining the coordinate ( by

Z=-1+E"],
the equations for the layer on the lower boundary become
Y

E LUr =0 , (4.6.4a)
AU-2V +Pp, =l (4.6.hb)
AV+H2L =V, +r (4.6.kc)
- Pp =0 (4.6 kd)

» T+45w - LT
— AT+ w "FT;; (b.6.ke)

Note that equations (4.6.4a-d) do not include any terms resulting from

the effects of stratification.
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Multiplying (4.6.4%c) by ¢ =§—T and adding to (4.6.4b) we have

%—;(&+L'17-)-(A+2i)(11+1_'1})=40r_ir (4.6.5)
with the solution
— %
- —r ~+2¢) 7Y
L+lU = —%«LCe (4.6.6)
With the knowledge that in the interior
U ~0(1)

(Note: the symmetry of the cylinder is necessary for this conclusion) we match
the solution (4.6.6) to the interior solution by requiring
[Z._><3 as ('—%> )

or

5.4}
Qe( - .>=O for real 4.
H+2¢

Using this condition, which can be written
dlet(ﬁr—ir—)(,o—li)“=_l5r/é—2r =0,
and the condition that .= U=0 at ( =0 , we have

(e zf)y‘z’)
(4.6.7)

— e i
LV = —o0 -
w+ A(/ e
The final solution can be found by taking the inverse transform. The above

development shows that the Ekman layer is set up on this 0(1) time scale.

Now with the expansion

(where U@,= O from (4.6.4a) and the bodndary conditions) the first order con-

tinuity equation in the boundary layer is

Wt (ra,) =o (4.6.8)

e
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JJ,(C——)oo)zfoJJIC d T = —fw—r'_—<rao) ol T

[

With

we have, using (4.6.7),

e Va
— (7. ) % ~(a+2L) [ Y ,
W'(( >m)_—[RElT(I“e ) 0{[: ﬁE[T M)Vz (4.6.9)
(o}
Multiplying (4.6.9) by 4 and letting 4—0 to find the behavior as

t —> 0o , We obtain
w, ([, tooe)s (4.6.10)

Now with ‘T‘:%%— E%“T 4 . .

IS 1

equation (4.6.k4e) and the boundary conditions give 1, = O-

However, with W, £ 0 we will find some TTF 0.
Note that the above analysis has been for the case
S~o(1)
If we considered, more generally,
S~o(E)
then as N decreased from zero the effects of stratification in the boundary
layer would enter at a lower order when N reached — Y2 and would enter in the
lowest order solution when n = —1.
The full solution to the equations on the T ~ 0<1) time scale, as
T— oo, will provide the initial conditions for the equations on the't‘vf7(E_Z)

or spin-up time scale.

Notes submitted by
John S. Allen, Jr.
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OBSERVATIONS OF TIME DEPENDENT OCEAN CURRENTS

T. Ferris Webster ' July 1, 1968

A discussion of the major characteristics of long-period flows
(T > 10 hours) observed by Woods Hole Oceanographic Institution from moored
arrays of recording current meters was presented. (Much of this material will
be found in two papers by Webster which are in press and which are cited in the
References.) Major emphasis was derted to the analysis of records made at a
site (Site ''D'; 39020'N, 7OOW) south of Woods Hole, Massachusetts. This site
is located on the continental rise where the water depth is about 2.6 km; it
is about 50 km south of the continental shelf and 175 km north of the mean
Gulf Stream axis. Nearly continuous observations have been made at about 6
levels over a period of 2.5 years by replacing arrays every 2 months. Typically,
records 20-to-60 days in length were acquired. The basic sampling procedure
used was that of forming a two-minute average every 15 minutes from a ''burst"
of 24 samples obtained at 5-second intervals. (The objective of this sampling
procedure is the suppression of high frequency noise due to mooring or other
spurious motions, while yielding a Nyquist sampling frequency of 2 cph.)
F{ve "primary''levels were always sampled: 10, 100, 500, 1000, and 2000 meters;
two ''secondary'' levels were occasionally sampled: 50 and 200 meters. The depth
of the permanent pycnocline was generally between 100 and 500 meters. The
material presented below is a digest of the discussion.

Progressive vector diagrams {(PVD's)*, see Figs. 1 and 2 as examples,

were used to convey several notions about the gross features of the flow:

*A PVD is simply a graphical addition of successive velocity vectors measured

at a ''fixed point''; it is not, in general, to be interpreted as the trajectory

of water parcels. Since PVD's are essentially '"low-passed' plots, they are useful
for characterization of the principal long-period motions.



a)

c)

d)

e)
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the flow was highly variable (see Figs. 1 and 2) at all levels;

the daily mean speed varied from 0.1 to 70 cm/sec over the entire
measurement set and by as much as a factor of 200 at a single sensor;
this result is consistent with the order of magnitude of the variable
flows indicated by neutrally buoyant floats and by Swallow (see Crease,

1965) in deep water near Bermuda.

there was generally low qualitative coherence between records at

various levéls, i.e., the motion was not strictly barotropic.

inertial motions (with a period T, = 19 hours) occurred intermit-
tently, i.e., bursts several cycles in duration were prevalent; they
were predominant at some 1evels, especially near the surface, while
not visually apparenf at others; all inertial motions rota?ed clock-
wise, i.e., according to theoretical expectations (see Fig. 1 where an
epoch of low mean flow and of 12 days duration is expanded, showing

inertial eddies).

there was a general trend indicating a decrease in the mean daily speed

with increase in depth.

the mean flow in all seasons and at all depths, with a single exception,
was from east to west; perhaps the flow was part of an inshore counter-

current associated with the Gulf Stream.

—

Two observational sets were given special attention. The first set in-
volved measurements made in the autumn at two sites (including site ''D") separated
horizontally by 3.2 km. At one site, the overall pattern of the records at 7

and 88 meters were very similar, though the sensors were separated by the seasonal
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thermocline, which was at about 50 meters depth. The records at 88 and 98

meters (separated by 3.2 km) were very similar; they both were without large

inertial oscillations. At the second site, the measurements at 98 and 1000
ﬁﬁyﬁ meters were not similar in kind; further, representative speed values at 98
meters were about 5 times tHose at 1000 meters. The second measurement set
emphasized was acquired in February-to-April at site 'D" and at depths of
106, 511, 1013, and 2020 meters (see Figure 2). At 106 and 511 meters, the
inertial motion was apparent. The record at 106 meters was poorly correlated
yyyyyy (in the qualitative sense) with those at the other depths, while the latter
were well correlated with one another: particularly striking was the simulta-
neous occurrence of large, low frequency oscillations of nearly the same ampli-
tude at all three sensors from 14-to-26 March, i.e., they were barbtropic in
character.

A few spectral calculations were shown (see Figure 3). Since the sum of

Cartesian velocity component spectra is invariant under orthogonal coordiante

i transformation, the total horizontal kinetic energy per unit mass spectra, i.e.,

KE o () =[Euy @)+ £,y (5] /2

were chosen for display. There were five frequencies, O~ , chosen for

- emphasis in the analysis; the corresponding periods were
T] : semi-diurnal

T, : inertial ( ~ 19 hours)
T, : diurnal

e Tyt N7,/ (T, -T3)

T. : 60 hours (similar to theoretical expectations for the

lowest mode planetary wave)
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PERIOD, HOURS
® 48 24 16 12 96

2
crmi/sec
cph
o

10 '
0 05 1

FREQUENCY, CYCLES PER HOUR

Fig. 3. Spectrum for data from site upit at 120 m. The ordinate is the .
logatithm of kinetic energy density per unit frequency and per unit
mass. The identified peaks are: {I) semi-diurnal tide IZ.Q? hrs.,
(2) inertial motions, 18.9 hrs., (3) diurnal, 24 hrs., (4) inter-
ference between inertial and semi-diurnal, 36.% hrs., {5) of unknown
causes, 60 hrs. {degrees of freedom, 9).

KINETIC ENERGY DENSITY

(There are about 9 degrees of freedom in Figure 3, giving a 90% confidence

band of about 0.4 to 1.9 of the computed spectral value.) Motions with periods

T] and T2 appeared to be ''preferred' motions but their amplitudes seemed to be
quite variable, perhaps as if they were amplitude modulated by a random variable.
One general pattern which emerged was that of a tendency for the amplitude of

the motion at T] to increase with depth, while those of the motions at lower
frequencies decreased. The data analysis technique of complex demodulation, which
is basically a numerical hete?odyning procedure, was used to study the amplitude,
Ai(t)’ and phase, ei(t), of the motion near a given frequency, O <t) , as a

function of time, where

Vilt) = Ap (t)eos (o7 (£)+ & (%)

is a Fourier component of a time series. One of the difficulties with this type

of analysis is that its accuracy is limited by the finite length of data records

and by the fact that the amplitudes of inertial motions, in particular, are observed

~
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to vary by an order of magnitude in only 3-to-4 inertial periods. The
results for the cross spectral calculation of the coherence, Y (0‘), based on
the autumn experiment mentioned above, are given in Table 1 for the inertial
frequency:

TABLE 1

Inertial Frequency Coherence between Pairs of Sensors
(02 27/7T,)

Sensor Pair Yy (02)
7 vs. 88 meters | 0.3
88 vs. 98 meters : 0.7
(3.2 km between stations)
98 vs. 99 meters 0.9
1000 vs. 2000 meters 0.3

(Note: There were 16 degrees of freedom used in these analyses, giving a
90% confidence level of Y = 0.7.)

The low vertical coherence observed suggests the predominance of
large vertical wavenumbers at the inertial period. A study of local winds,
from a wind recorder mounted on a surface float, indicated poor correlation
with the currents and, in fact, far too little energy in the wind-induced
Ekman currents to account for the variable currents; thus, it appears that
inertial motions in particular must arrive via wave packets because they
can't be attributed to local generation.

The only two-week set of simultaneous measurements made on either side
of the Gulf Stream axis, at sites 'D'' and ''J", revealed an interesting feature
at a depth of 8-to-10 meters: in a low-passed plot of the downstream velocity

component, a motion with an amplitude of about 40 cm/sec and a 'period' of
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about 2 weeks occurred; the motion was essentially in-phase at the two sites, —
which suggests that both sites were influenced by the Gulf Stream.

Current measurements were related to stratification and depth by plotting
the log of the total time-averaged kinetic energy, KJE(?L versus log depth.
This plot was said to be approximately linear; the plot of log Vaisila-Brunt
frequency, ﬂ/(a) , versus log depth was also linear, having a slope equal to J—
that of KE(2). The conclusion was that KE(2)is proportional to A(z), which
will be supported theoretically in the following lecture by Dr. Fofonoff.

In summary, it is safe to say that significant progress has been made in
the technology and science of acquiring meaningful observations from moored
recording current meter observations and of analyzing them statistically. It —
is also only fair to add that considerable more work is necessary to be able to
carry out Stommel's (1954) outline of hypothesis testing on circulation theories
by the use of such observational tools. The observations to date indicate the

time and space scales, and their order of magnitude significance, which must

be accounted for in the study of deep ocean motions.
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MEASUREMENTS OF INTERNAL WAVES FROM MOORED BUOYS

Nicholas P. Fofonoff July 2, 1968

A physical interpretation of observed ocean current energy spectra

was made on the basis of two theoretical models (see Phillips (1966) for an

~extensive discussion of these topics). Attention was focused on the high

frequency portion of the energy spectrum, viz. foro > 0.1 cph. The first
theoretical model discussed was based on an isotropic turbulence model of

limited validity and was developed to the point where order of magnitude cal-

~culations suggested that it was rather unlikely that the observed spectra

could have been formed by a predominantly turbulent field of motion. The
second theoretical model discussed was based on a linear internal gravity wave
model which was demonstrated to be more plausible than the previous model.

The energy spectra discussed were primarily based on the set of recording cur-
rent meter measurements made in moored arrays by the Woods Hole Oceanographic
Institution between Woods Hole and Bermuda (some of these measurements were
described in the previous lecture by Dr. T. F. Webster); the other spectra

were based on the few wind, temperature, and vertical displacement spectra
available. The analyses investigated several properties related to the kinetic

energy density per unit frequency per unit mass, klE(a*z) , where
KE (6 ,2) = ‘/,(u”+ VA w?)
| 0~ is angular frequency,
Z is depth,
w and V are horizontal velocity components,

W is the vertical velocity, which is considered

negligible forccZ N . The kinetic energy density, £ GT}Z), is investigated,
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where E - aKE
do

of the energy spectra displayed (see Fig. } for example) can be summarized:

, with units cmz/secz//cycle/hour. The principal properties

a) The inertial period has a significant peak in most current spectra,
the semi-diurnal peak is also generally dominant, and the second harmonic

of the inertial period occurs occasionally.

b) Though the low frequency end of the spectra varies with geographic -
position, season, depth, etc., the spectra generally agree within a factor
of 10 through the frequency range of 0.1 to 10 cph; at higher frequencies,

the spectra are masked by noise.

( c) The spectra have a slope of about -5/3, or about -2 if that is pre-

ferred, in the frequency range of 0.1 to 10 cph.

d) A comparison of wind and current spectra, based on observations at the
Woods Hole Oceanographic Institution site ''D', shows that they have similar

slopes in the frequency band of 0.01-to-0.1 cph.

The existence of a spectral slope approximating the -5/3 law of Kolmogo-
roff's theory of isotropic turbulence suggested the exploration of the possibility
that the high frequency portion of the current energy spectra could be attributed
to isotropic turbulence. Knowing full well that W<<w oV, so that the con-
dition of three-dimensional isotropy was not satisfied, the analysis proceeded
with the assumption that this limitation would not restrict the validity of the
order of magnitude calculations. According to Kolmogoroff's hypothesis, in the

inertial subrange of the equilibrium range of isotropic turbulence
-5

E (k) = A Eﬁ/, k , where
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Fig. 1. Energy Spectra for data from various locations and times in the

Western North Atlantic; they show qualitative and quantitative
similarity.
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A is a universal constant,
€ is the energy dissipation rate, and

& is the wave number.

Taylor's hypothesis is used to convert the above relationship to the frequency
domain, viz., 6= 2 W , where & is a characteristic speed value, the selection

of which is not unequivocal in the oceanographic case. The conversion yields
’ ¥ 7 , Ya
E.(U")=/q<fLL) g, ot EL :'a;zsgé (3EE(0ﬁ)O? a,

—’
a‘iorm convenient for use in the sequel. Since the variance of W equals
j'k.ér)cia* identically, then for the 'turbulent' velocity, 37 , and the
(-4

"turbulent' portion of the spectrum,

oo = AL . 27
A al,

where L.o is a characteristic spatial scale,

s _j %
Y Voms = A(ta) o deo
g,

= 3}9.E(°;)0—; L)

v3

so ¢ - ! RMs_ 270
- (3 A)‘,/z [ —I;
_ (27 Vims
- (3A)'>/:. L‘o

3
Vams

20
B — A , ~ ~
ecause [(3/4)%} = 0%~ ¢ L

of the integral can be replaced by 67=1006, , since the value of the consequent

(In practice, the upper limit
. ,

integral is more than 3/4 of the value of the original integral with an upper

limit of 6" = ©2.) Using a value of To = 10 hours, Table | was compiled based

on observed spectra at Site ''D'':
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TABLE |
DEPTH £ (02) Viems _n L £
(m) (cmz/secz//cph) (cm/sec) (cm/sec) (km) (;F;g7;;:2223
10 200 7.8 12 4.3 100x107°
100 30 3.0 7 2.5 1x107°
1000 10 1.7 4 1.4 3x1077
2000 7 1.4 2 0.7 Ix107°

When compared with Munk's estimated value of 2x10_5 ergs/gm-sec for the oceanic
tidal dissipation rate, the tabulated values for E: appear too high to be
attributed to turbulence without identification of an available energy source.
(Note: The rate at which work is done by the mean wind and the mean current

5

gives an estimated energy dissipation rate which is also only about 2x10~ ergs/

gm-sec). The time, T , to dissipate the total turbulent enefgy can also be

estimated: 2 trgs
. vV Ly 282 4
T = /o RMS —;m 25X 10 sep ~ ‘/g_ dag,
€ 3yto M?‘/am-sec

which is a very short dissipation time. The estimates for & and T', together

with the neglect of buoyancy effects, i.e., the effects of density stratification

which contravene the isotropy hypothesis, make this turbulence model unlikely.
(See Phillips (1966) for a discussion of theoretical models which attempt
to account for effects of stratification on turbulence. In brief, a buoyancy
subraﬁge is fhought to occur at frequencies less than those of the inertial sub-
range; it is thought to have a spectrum obeying either a -11/5 or -3 power law,

-1
the extent of the buoyancy subrange is limited by =k éE‘kb , where { is a

3 Y,
characteristic depth scale, %L = Cf/y N 2E }; and C is a positive constant.)

The second model discussed was a linearized internal gravity wave model.

The Boussinesq approximation, no (mean) flow and hydrostatic balance in the zero
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order state, incompressibility, and the inconsequence of the horizontal
component of the Coriolis force were assumed. The first order perturbation

equations are then:

Equations of Motion (EOM's)

Ja ("LtWCVJ: - K
/’o(vt +-,Eu_)= “—Ej‘:am‘{
/oo W-(: :-—'Pz—-fg

Equation of Continuity (EOC)

Ut Vyt+ W, =0

d

Conservation of Mass (COM)

/ot+w(/%>2=0
/ - 3 .
where, in particular, L= (%)+/0 (x,tj,z,t) is the density field which con-
sists of a zero order term, /f , and a first order'termj0’<:§/% .

Let

z [ s .
N = -4 {%ﬁl ,/V’is the Brunt-Vaisala frequency,
-

od

Ct =W, { is the vertical displacement, and

il
oV
P

[\§]
N

+

o

—~

[
~

=)
N
‘X
&
N
o~
N

so "Rz'/o? = -‘f%[ﬁTZ_+/V2§i]’ sinea (;2)2'= +/321 amd

neglecting the product Q@)z’ﬂ.

Further, the EOM's take a simpler form:
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- My,

)]

11

Uy-fv
V‘I:+‘F(/L —/n/g, Om&l.

;tf_’-Nl(: - ﬂi 3

T
then, assuming simple harmonic motion in time (i.e.,~et ),
L.O-’n;'f'?[ Wj
™ £*
Lo~ T, - Ty

b

g.. [P
TNt

Substitution in the EOC yields:

2
v, T [’Wz J .

o f2 |Vt
or, alternatively,
<Nt°:)vuzw‘(°'z‘7[z)wzz=o- (1)
If plane wave.propagation is assumed in thé horizontal dependence, i.e.,
HJe—i(kx'ﬁzg) , and if N2 is allowed to be a slowly varying function of 2 ,
. then

WZZ + ml(Z)W'-‘- 0,
where (/\/(:)-CTZ)' a
m*(z)z ——=% (R7+ £7)
v (o -£?) (
is the dispersion relation (see Figure 2 for a general depiction of dispersion

relations for various classes of wave motions in the ocean and in order to see

where the class of internal waves appears in the general scheme of permissible

wave motions). The ratio

2 a
mT O N-T _tunte

Rl orf”
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!wﬁ gives the angle 6 at which these waves propagate with respect to the horizontal.
(Note: Stability oscillations GT“=fV)propagate (direction of phase velocity)
- ~ horizontally and inertial oscillations eraﬁ) propagate vertically, while the

water parcels oscillate (direction of group velocity) in the vertical and hori-

" S imdz
zontal, respectively.) The W-K-B approximation gives VV(j*}EQC<Yn e j

S B
as a solution. In the mid-range of permissible frequencies ~¥ <o << N7,
> x
assuming 4.-4 N “so that N is the high-frequency 1imit and 4: the low-frequency

- limit for the domain of hyperbolicity of the governing equation (1),m= §QJ&H>

2 2 2 _I/
where %%H = ¢1 + g , 50 W ~ N z, assuming the horizontal phase speed,

-—7?7 , is approximately constant. Now, if all functions are considered pro-

~ifmd=

portional to € , which is consistent with the WKB approximation, then

W:{-L(ﬂ?f:](,

Lo m
| <o [ ()

~ =)L), amd
;”*? V = {fiﬁiLiéf;JTT

{

o_ﬂ_*_F 2

()

Consequently,

¢
1)

) 2 2
ET(O‘): éiz+\f?;ét ~ Nk H Z. = f!;f;)

20"m?

and, the potential energy, P E , equals

———— 2
o N dic N7
| PE=N*( —dti N
T . v
so PE =KE, as expected, and Z;MS ~ —”A‘;—" . Estimates of {RMS were

- made for observations at Site ''D''; the results are entered in Table |, where



T, - &1
N="N

Depth

~

(m

100

1000

2000

In order to develop some idea of the limits to the vertical scale of the internal

gravity wave motion, Richardson's criterion for dynamic instability was invoked,

viz.

From above, V, = (V

Several computed values of L-z are entered in Table 1l. They can be viewed
as estimates of the scale of the microstructure in the thermocline; it is striking
how similar these values are to the size of the ''steps' observed in the thermo-

cline by STD-type instrumentation. An analogous stability criterion can be derived

Rms
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is the Brunt-Vaisala period:

TABLE 11
Vims T
(cm/sec) (hours)
3 0.3
1.7 1.0
1.4 1.5

£ (va)

R, = L

. and for

Tams
(m)

5.5
10.0

12.0

< '/;f , wave unstable

> %[, wave stable

)zx /\/m(, S0 _R,;:‘-’

!

A

m* [

27
m 3

Let Lz =

<7 { , wave unstable

L

2

for the steepness of the wave-siopes:

R,

> 7 [, wave stable.

Since {X-kac= (T)m{”(%)m C ’

(m)

then

Lz

17
31
38

fffff
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(mus?)
and since for stability ™ [ < 72

1)
then Cx(yg 2 f:’v*’

s

(must)
or, [, < 2%

o The relationship \JRms "“'A/(Rvu is subject to experimental verification by
N '
the analysis of direct or indirect observations of vertical displacements (see
Figure 3). One indirect method is the analysis of temperature spectra. With

6 =~ 7; [ denoting a temperature fluctuation and -7; the mean temperature gra-

o dient, 8's variance is given by

;itz (Tzf —C_E

> — 7
2@% (l/zla/vz)

= CT( %L‘VRnas) s
- TV Cshowld) _
where C = Z(W'-‘—); then, Eee(o—) = C E(o—), where again E is the

VVVVV kinetic energy spectrum and E‘-ee is the temperature spectrum. Order-of-magnitude
agreement was achieved for non-simultaneous, in either space or time, measure-
e ments at Bermuda; agreement within a factor of two was achieved at Site 'D" for
one temperature record at 1000 meters. A direct test was made at Site 'D'" using
a neutrally buoyant float equipped to efficiently measure vertical displacements.
The CRMS observed was 20 meters and cnmcomputed was 10 meters. The spectra
agreed in the band 0.2<(%)</cph . The following relationship was also
— verified: with W2z o f" o~ %—;u:ms’ and EH(O‘) ~ O-J/3 then EV(O”)’*G‘ '/3;
also Ev << EH"’PE, <N, and EH<< EV'VPE)O" >N . (Note: A sharp
fall-off génerally occurs in the spectrum of E;,-yof o > V.

In conclusion, the observational evidence supports the validity of the
uuuuuuu internal gravity wave hodel in the specified frequency band. (Note: The in-
ternal gravity wave model presented must be augmented by the hypothesis of the

existence of a continuum of internal gravity waves in some sort of statistical

equilibrium and by a mechanism for determining the spectral shape in order to
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explain more completely the observed spectra. If the above stability criterion

is used to specify the saturation level of energy as a function of frequency:

and, using the depth-dependent dispersion law to estimate the dependence of 4QH

0n0-, 6_-',0...4<62

Elr)~] _s

o , 0 L£< o7

where ¢, = C/d, C is horizontal phase speed, and d is the water depth.

Reasonable order of magnitude estimates are: C ~ 4W7AQC for the first mode and

ol ~ 2,5km, so O ~ 1.6 x 10_3rad/sec, i.e. 62 = 0, ; thus, it is not unrea-
: -
sonable to expect E(a—)~a- within the range o;/o< oo < lo 67, or 1 hour < T<100 hours.

Note: (This minus three power low frequency band is not necessarily related to the

buoyancy sub-range mentioned earlier, and which has the same power law.)

Notes submitted by

Christopher N. K. Mooers and

Gunnar Kullenberg

Reference

Phillips, 0. M. (1966). The Dynamics of the Upper Ocean, Cambridge Press, 261 pp.
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A DISCUSSION OF THE SOURCES AND CIRCULATION OF NORTH ATLANTIC DEEP WATER

L. Valentine Worthington July 3, 1968

A comprehensive discussion of the North Atlantic deep water was presented.
Both classical descriptive water mass distributions and modern direct current
measurements were analyzed.

First, a review of the climatic history of the North Atlantic was made,
linking sea level to principal events in the history of glacial ice cover over
the past few thousand years. One feature of note is that there was a minimum of
ice cover about 1000 B.C., so sea level stood about 1.6 meters higher then than
today. The subsequent withdrawal of water during the little ice age of 0-1800 A.D.
may have caused the observed fact that the North Atlantic has a greater salinity
today than the other oceans; the amount of water withdrawn could account for an
increase in salinity of 0.2 ©/oo in North Atlantic deep water. Another noteworthy
feature is that it is possible to estimate ancient 6-S relations (6: potentfal
temperature; S: salinity) for deep water; it was reported that no 'fossil'' water
has been found nor is it likely to be found. The apparent age of oceans has been
estimated by Clh dating; though the reliability of these estimates is still in

doubt, they lead to the following values:

ATLANTIC PACIFIC
Deep Water 800 yrs. 1500-1800 yrs.
Surface Water 500 yrs. 1000 yrs.

In each layer, the Atlantic appears youngest in the north, while the Pacific
appears youngest in the south.

Second, the 8-S relationships were investigated en toto for the North
Atlantic, then those of the deep water were subjected to special scrutiny. In

several respects, this work is an extension of studies by Montgomery (1958),
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Cochrane (1958), and Pollak (1958). The data used in the present work is based
on samples taken from 1954-to-1962, i.e., centered on the 1958 IGY. Deep water

is considered to consist of all water contiguous with the bottom and with o< 4°C;
it represents 90% of the ocean's volume.

The dominant mode of deep water, containing 75% of the water, has a salinity
of 34.90 - 35.00 ©/co in the Atlantic and of 34.60 - 34.70 ©/oo in the Pacific,
demonstrating the greater salinity of the Atlantic deep water with réspect to that
of the Pacific. Charts showing the distribution of salinity, and thus of identi-
fiable water sources, were shown oﬁ successive surfaces of constant ® for the
North Atlantic. A synopsis of features on several 8 surfaces is given below:

0 = 1.0°C. The overflow from the Denmark Strait (DSO), with S = 34.9 ©/oo, and

the Antarctic Bottom Water (ABW), flowing across the Equator with S = 34.8 ©/oo0,

appear.

® = 1.4°C. The DSO penetrates south to 53°N and part of it turns north along
the east Labrador Basin. The ABW penetrates north to the Puerto Rican trench.
The depth of this surface varies between 500 and 3500 meters in the north and 4000

to 6000 meters in the south.

6 =1.8°C. This is the "last" (i.e., shallowest) surface on which the DSO and
ABW remain distinct, and there is evidence for mixing, so salinities can't be

accurately traced to sources, e.g., the DSO has S = 34.92 ©/00 and ABW has

S = 34.89 9/00, which can't be traced to the Antarctic. They both continue to
penetrate along the western side of the basin. The DSO is a very thin layer,

while the ABW is a thick layer; they reach a depth of about 4500 + 500 meters.

0 =2.4°C. The third source, the lceland-Faroes overflow (IF0), appears; its

salinity, S = 34.99 °/oo, can't be found in the Norwegian Sea, so it must be
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Fig. 2. Sample hydrographic sections with direct current measurements used
to calibrate velocity field, from Swallow et al. (1961).
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water which has mixed with northward flowing North Atlantic water, with

S

35.10 °/oo, before sinking.

6 = 3.2°C. The fourth source, Mediterranean outflow (MW), appears and gradually

sinks west of Gibraltar. The IF0 penetrates a gap in the mid-Atlantic Ridge at

53°N and develops a northerly flow on the western side of the ridge. (Figure 1).

8 = 4°C. The fifth and final source, Labrador Sea Water (LSW), appears. The
MW extends across the Atlantic, separating the waters of northern and southern
origin. This surface varies in depth from the sea surface at Labrador to 1000

meters at the western boundary, and to 2000 meters at Gibraltar.

Third, the direct measurements of deep filows (@ SEhOC) were discussed;
the bulk of this data has been acquired in the past ten years and in conjunction
with hydrographic sections. The direct measurements were made primarily by
Lagrangian means, viz., with neutrally buoyant floats (NBF's) developed by
Swallow, but some were made by Eulerian means, viz., with moored arrays of
recording current meters developed by WHOI. Various hydrographic sections were
shown to give evidence for the existence of deep density gradients and thus
pressure gradients and, finally, geostrophic currents. |t was remarked that the
most interpretable results come from making hydrographic stations between NBF
''stations'' where two or more NBF's are set on a common vertical. The NBF mean
currents are then used to calibrate the geostrophic calculations by aiding in
the selection of a level-of-no-motion, or "null flasher''. In turn, fhe geo-
strophic calculations make the NBF measurements more meaningful by giving a
vertical section of isotachs which can be used to make transport calculations in
addition to point-wise velocity determinations. Three hydrographic sections are
shown in Figure 2 which have had their reference level determined with aid of

NBF's.,
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A summary of deep current transport calculations in the North Atlantic
is presented in Figure 3 for eight sections or rggions; the units are sverdrup's.
At Section | (Steele et al, 1962) near Iceland, NBF‘s gave westward currents with
mean speeds of 23 and 8 cm/sec at depths of 1300 and 1800 meters, respectively.
The calculated southward transport was 5.4 sv(a sv is a sverdrup, 1 sv = ]06m3/sec).
At Section |1, again near lceland, 2 NBF's and moored meters were used (Worthington
and Volkmann, 1965). Transports of 4.6 sv flowing through a gap (53°N, 36°W) in the
Mid-Atlantic ridge and of 0.7 sv going south along the ridge were calculated. In
Section 111, the Denmark Straits, an ambitious installation of moored temperature
recorders and current meters was made in late winter. Only three temperature recorders
and current meters of the seven recovered Qéve useful results. The records ran a
little more than a month. Southwestward currents about 100 meters above the bottom
in at least 815 meters of water occurred in 8 "bursts' at about b-day intervals, each |
with a duration of about 2 days. The maximum speed was 143 cm/sec. Correlated with
the current bursts were temperature bursts; the onset occurred first at 815.meters,
then at 760 meters, and finally at 655 meters; each burst cessation occurred simul-
taneously at the three sensors. There is a possibility that the lower 200-to-300 —
meters of the channel was filled intermittently with cold water ''sloshing-over'' the
sill. It is also possible, since these current measurements were made in mid-channel,
that the cold water flowed continuously along the northern side of the channel and
only occasionally ''sloshed-over'  to mid-channel. Transport calculations produced an
estimate of 10 sv. From Swallow gE_gl:(in preparation) at Section IV, the Labrador e
Straits, there is a northward flow on the Greenland side and a southward flow on
the Labrador side, with transports of 10 sv. South of Woods Hole, Volkmann (1962)
reported a westward flow with a transport of 50 sv. from the surface to the bottom.

This was probably the western boundary undercurrent, though subsequent measurements

—
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- have never again detected such a high transport value. Water budget considera-
tions suggest that this value is too high. In a section across the Gulf Stream
south from Woods Hole, Section V, an eastnortheastward flow of deep water was found
by Warren and Volkmann (1968); it was about 300 kilometers wide and had a trans-
port of 26 sv. The maximum %lowvwas found at 64°W and was 60 sQ. This flow

— ' decreased eastward. North of this latitude, 36°N, there is an apparent east-west
"barrier" between the northward and southward flows of deep water. The ''barrier'!
corresponds to a '‘trough'' filled with Mediterranean water.

At Cape Hatteras, Section VI, Swallow and Worthington (1961) found the
undercurrent; its core was at a depth of about 2400 meters, and its transport was

S about 4.5 sv. Further east, there was also a transport of 13 sv northward. At

-sections from the Bahamas to Bermuda and Cape Romain to Bermuda, Sections VI| and

VIIl respectively (Swallow and Worthington, 1961), the southward transport was

about 17 and 7 sv through the former and latter, respectively. There was also a

transport of about 2 sv northward on the latter section.
Finally, the high transport values calculated cannot be balanced geo-
strophically everywhere. Two anticyclonic gyres near the western boundary are

""" hypothesized in order to close the deep circulation. This leads to the proposed

water budget for the deep North Atlantic shown in Figure 4.

Notes submitted by

Gunnar Kullenberg and

LO—

Christopher N. K. Mooers.
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GULF STREAM RINGS

Frederick C. Fuglister July 5, 1968

A bidecennial progress report was presented\on the patterns of irregulari-
ties in the Gulf Stream downstream of Cape Hatteras and west of the Grand Banks.
(The original objective of this work had been the tracing of the Gulf Stream down-
stream to the Grand Banks; this objective has never been achieved, but, rather, an
increasingly detailed documentation of Gulf Stream meanders and rings has been
obtained.) A Gulf Stream ring is defined to be a member of a special class of
eddy; this class consists of closed segments of the Gulf Stream which have become
detached from the Gulf Stream per se. Rings found to the south of the Gulf Stream
rotate cyclonically and contain cold water (slope water) from north of the Stream
in their centers, while those found to the north of the Gulf Stream rotate anti-
cyclonically and contain warm water (Sargasso Sea water) from south of the Stream

in their centers.
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A summary of the principal observational considerations and techniques
is given below:
a) The region studied is a 2100 km segment of the Gulf Stream, running

from about 35°N, 75°W to about 40°N, 50°W.

b) The principal indicator of the position of the Gulf Stream is the
topography of the main thermocline, a consistent index of which is the depth
of the 10°C isotherm; the depth of the 10°C isotherm is about 200-to-300 meters
north of the Stream and 800-to-300 meters south of the Stream; a core of warm
water near the surface is usually located over the shallow edge of the Gulf
Stream frontal layer (i.e., where the main thermocline is strongly inclined with

respect to the horizontal).

c) When the Gulf Stream is traversed, and when warm cores and thermochnes
are intersected more than once, ambiguities in interpretation frequently arise,
especially if an ordinary BT with a depth range of only 250 meters is used; among
the ambiguities are the possibilities that such a multiple intersect may repre-
sent meanders, rings, or several filaments of a diffuse stream; to remove the
ambiguities, new techniques have been employed, e.g., multiple ship surveys,
isotherm followers (V-fin's) which can track the fiducial 15°C (which is more
convenient for this purpose than the IOOC isotherm) at 200 meters depth, deeper
(and expendable) BT's, plank-on-edge floats which can '"tag' selected rings for

months, neutrally buoyant floats, airborne radiometers, etc.

d) The anticyclonic rings north of the Stream have been less thoroughly
studied than the cyclonic rings to the south for two reasons: generally more
inclement weather prevails to the north than to the south and the anticyclonic

rings are inherently more difficult to detect because they have intrinsically
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weaker horizontal gradients. Both types of rings are cyclostrophic flows, but
because the Coriolis and centrifugal forces act in the same direction (aé in an
atmospheric low), the opposing radial pressure gradient and thus the temperature
gradient‘in a cyclonic ring must be more intense than in an anticyclonic ring.

A further complication in detection of anticyclonic rings is that, while cyclonic
rings are formed ''from above'', giving rise to a readily identifiable upright cone

structure to the thermocline, the anticyclonic rings are formed '"from below' giving

rise to an inverted cone structure which is often too deep to be properly identified

when using ordinary BT's.

While the dynamics of the formation, migration, and decay processes in the
rings' life cycle are not yet clearly understood (see Warren (1967) for some ideas
about these questions), observations have progressed to the point where a number of

qualitative and quantitative statements can be made about the rings:

a) The rings appear to form at or to the east of the New England seamount
range, i.e., east of 70°W and north of 37°N; the eastern limit of their formation

zone is unknown, see Figure 1 for examples.

b) Rings appear to be formed when the 'bight' of a large meander is cut off

at the 'neck', the two 'bitter ends'' then joining.

c) Rings have been observed between 37° and 38°N and 60° and 66°W; they tend
to drift to the west and south in an irregular fashion at speeds of the order of
10 cm/sec; long term studies of a few rings have shown that, while they rotate
cyclonically with a period of about two days in their fast, shallow sections, they
revolve anticyclénically in a large orbit with a period éf about two months, thus
water parcel trajectories can vary widely as a function of depth; there is some
speculation that they may occasionally collide and merge with the Gulf Stream but

no observations unequivocally confirm this.

oo,
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d) Figure 2 shows a temperature section through a typical cyclonic ring;
note the ''upwelled' dome in the center; as time progresses, it will '"sink'' and
become narrower in lateral extent; the lateral and vertical extents of a ring
are typically 100 and 2-to-3 kilometers, respectively; rings are often circular
in shape but are sometimes elongated, with arbitrary orientation; the rotating
currents of a cyclonic ring are typically of the order of 50-to-150 cm/sec, with
the maximum value at the surface (when only a single traverse of a ring is made,
and when ship's drift records are available, it is practical to use this informa-
tion to decide which side of a ring has been traversed and, thus, something of

its size and of the location of its center can be inferred).

e) On one occasion, a pair of rings, referred to as the eastern and western
rings, were tracked for 5 months; Figure 3 gives a record of their joint history;

observe the near coalescence of the two during the 27-29 October survey.

f) Two independent estimates of the number of rings formed per year were
made; one estimate was based on the difference in the average annual inflow and
outflow (+25 cm/sec) over the 2100 km segment of the Gulf Stream under discussion
and gave a value of 15 rings; the other estimate was based on the monthly net
departure of the Gulf Stream from its mean position over the same segment and
gave a value of 14 rings; presumably, an equal number of cyclonic and anti-
cyclonic rings would occur, say 7 per year; to date, the formation of only b

rings has been observed.

g) It takes about 6 months to erode the upper 200 meters of a ring and

perhaps 18 months for the complete decay of a ring.

In closing, it is appropriate to point out a simple fact in the distinc-

tion between rings and ordinary eddies: rings rotate in the ''wrong'' sense with
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respect to ordinary eddies from the Gulf Stream. Since the Gulf Stream has
anticyclonic shear (or vorticity) on its warm side, ordinary eddies south of
the Gulf Stream would be expected to have anticyclonic rotation while the
rings have cyclonic rotation. A similar, but opposite, relationship holds for
anticyclonic rings and cyclonic ordinary eddies north of the Stream.

It is also necessary to mention that the present discussion of meanders
and rings does not contradict earlier discussions which emphasized the multiple
stream nature of the Gﬁlf Stream System, especially downstream or the New

England seamount range.

Notes submitted by
Gunnar Kullenberg and

Christopher N. K. Mooers
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SUMMARY OF DISCUSSIONS ON CHEMICAL TRACERS IN THE OCEANS

Wallace S. Broecker, Harmon Craig, GHte Ostlund,
KilTho Park and Karl K. Turekian

Chemical properties of ocean water that do not show simple linear
relationshfps to salinity are potentially useful in the study of physical
oceanographic problems such as the construction of large écale circulation
models; the determination of rates and mechanisms of transport in the mixed
layer, thermocline, deep water and bottom water; and the study of air-sea inter-
actions. The chemical properties that may be useful can be divided into
several groups:

Natural radioactivity: Several radioactive isotopes naturally produced

by cosmic rays or as members of the uranium decay series have been proposed as

useful in large scale circulation models and transport mechanism studies.

These are:
Carbon-14, 5700 year half-life
Silicon-32, 800 year half-life
Radium-226, 1600 year half-life
Radium-228, 7 year half-life
Radon-222,. L days half-life.

O0f these Carbon-14 has been the most useful. To a first approximation
the concentration of Carbon-14 per liter of sea water is the same in all major
parts of the ocean. This is maintained by large scale circulation and addition
of Carbon-14 to depth via organic carbon (80%) and inorganic calcium carbonate
(20%). |

Radium-226 distribution in the ocean is controlled not only by large

scale circulation but also biological transport from surface to depth. Most of
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the radium in the ocean appears to be supplied from the sediments. An indicator
of the biologically controlled radium distribution may be the distribution of
barium in ocean water profiles.

Silicon-32 may be useful, but the difficulty of collecting large enough
samples (requiring the processing of up to one million liters of sea water) has

made the accumulation of data a slow process.

Radon-222, in excess of that to be expected in equilibrium with the measured

concentration of its parent, Ra-226, has been used to study mixing rates near the
ocean bottom and in the surface. It is supplied from the ocean bottom at a more
rapid rate than Ra-226 and is lost to the atmospﬁere at the ocean surface. At
the surface it can also be used as a test of models of gas exchange between the
atmosphere and the ocean.

Radium-228 is just now being explored for use in oceanographic problems.
It is supplied from the sediments as the result of Th-232 decay. It will give

further information in mixing rates at the ocean bottom.

Man-made radioactivity: Bomb-produced Cs-137, Sr-90 and H-3 (tritium)

have been used in oceanic problems especially those in the top 500 meters of the
column.

Cs-137 and Sr-90 measurements indicate that mixing in the thermocline is
as lbw as would be predicted from the natural C-14 data. Huge amounts of Sr-90
and Cs-137 are clearly not transported below 500 meters by biological means, a
result compatible with the lack of great variation in the stable cesium and

strontium concentrations in the oceans.
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The properties of the mixed layer and thermocline are further elucidated
by the distribution of Cs-137 and H-3 which indicate that ''sheets' of water may
retain their identity for great distances in the upper layers of the ocean and
that vertical diffusion proceeds at a relatively slow rate.

Tritium has also been employed in studies of air-sea interactions

especially as applied to the generation and nourishment of hurricanes.

Gases: The use of O2 and EEYCOZ(most of the CO2 is as the bicarbonate
ion but is included under gases for convenience here) as ocean mixing indicators
was suggested. |If two water masses with typical O2 and 2 €0, concentrations
are mixed in different proportions and also modified by the conversion of organic
carbon to Z C0, by the utilization of dissolved 02, the complex patterns of
02 plotted against = CO, can be explained.

The rare gases (He, Ne, Ar, Kr, Xe) can be used in ocean mixing models
if the temperature of the’source water is roughly known and mixing of the water
masses takes place out of contact with the atmosphere. The differences to be
measured are small but initial results indicate the utility of such an approach

especially in understanding the origin of the intermediate waters.

Hydrogen and oxygen isotopes: These two isotopes respond essentially

identically during the processes of evaporation, precipitation, freezing and
melting so that information on one or the other is often sufficient in tracing

]6/0]8 ratios) indicates that North

water masses. Work on oxygen isotopes (0
Atlantic Deep Water and Atlantic Surface Water form a continuum on an oxygen
isotope salinity plot, hence show a close kinship. This is not true of Pacific

Deep Water when compared to Pacific Surface Water. Antarctic Bottom Water
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produced in the Weddell Sea shows a characteristic isotope composition. Pacific
Deep Water is not a linear combination of Antarctic Bottom Water and North Atlantic

Deep Water indicating the addition of a third component.

Phosphate and alkalinity: Deep Pacific Water has a constant ''pre-formed"

phosphate content from about 50°S northward indicating that most of the oxidation
of biological material and phosphate release from organic material derived from the
Antarctic takes place rapidly.

The injection of water from the north is clearly seen as both an oxygen and
a phosphate increase.

Alkalinity plots with depth in the ocean indicate that in the Atlantic
(where the alkalinity is lowest of the ocean deep waters) there is an alkalinity
increase near the bottom (about 4000 meters) whereas in all the other oceans there
is rarely an increase at the bottom and some indications of maxima in the water
column at depths between 3000 and 4000 meters. These may be relatable to ocean

mixing processes.

ABYSSAL RAD!OCARBON - 2002 - OXYGEN

Harmon Craig
Several recent studies have used radiocarbon data in diffusion-advection

equations of the type:

KC'= wc'yacC ()

where A is the radioactive decay constant, C is concentration, and the successive
derivatives are taken with respect to z or x in vertical or horizontal transport

studies. Radiocarbon data used for relative concentrations were taken from the
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/A . values tabulated by radiocarbon laboratories; these A values represent

lh/CIZ

specific activities (C ratios) in carbonate extracted from sea water, rather
than absolute Clh concentrations which must be used in the diffusion equation.
Absolute radiocarbon concentrations can be obtained by multiplying the specific
activities by the corresponding total dissolved carbonate (ZTCOZ) concentrations;
the corrections thus introduced are large and variable, ranging up to 40% in

Clqﬁx values (300 years in ''advective' time).

Moreover, equation (1) neglects the continuous production of €0, by

oxidation of particulate organic matter, and by solution of associated particulate

organic matter, and by solution of associated particulate CaC03. Thus if the
steady-state oxygen equation is written
i ]
K(0:> = w(02)+'\) (2)

with U the oxygen consumption rate (cc/kg yr), the stable carbon equation can

be written

KC' = wC-v-7T (3)

where C = EZCO2 (cc/kg), J is €O, production by solution of carbonate, and the

2

small imbalance between V and CO2 production by oxidation has here been

neglected. The complete radiocarbon one-dimensional equation is then:
k(¢*)'s w(C®) +1C*- vR, - TRy (4)

2

2 . . . 14,1
in which C* is absolute C]h concentration, R is the isotope ratio C /C'~, and

the subscripts denote the ratio for CO2 produced by the two sources.

Profiles of ZZCOZ and 0., were measured by Weiss and Craig along a N-S

2
track in the central Pacific on $10 Expedition NOVA during 1967. Using the

Z‘CO2 data, approximate corrections were applied to the Bien-Rakestraw-Suess
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Pacific radiocarbon specific activities to give absolute C]h concentrations
(C*). The Z'CO2 data were measured at sea, using shipboard gas chromatography
with electrolytically generated H2 as a carrier and thermistor detectors. Pre-
cision of the data is about 0.3 percent so that measurement errors are not sig-
nificant compared to the + 1 percent errors assigned to the C]h data.
In contrast to the specific activity profiles, which show a marked C

" minimum at about 2.5 km depth, the corrected absolute activities decrease by
about 40-50°/00 from one km down to 2 km, and are then essentially constant to the
bottom. They definitely do not fit the curves plotted by Munk (1966) using equa-
tion (1) with specific activities and finite u)/) ratios; the best fits are given
by w = infinite, or even by a small negative value for A

Values of V/Lo can be obtained by fitting 0, data to equation (2); values
of JVLJcan be obtained most precisely by fitting data on (2?002 + 02) to an equa-
tion which is the sum of (2) and (3), and individual values of © and J can be
roughly estimated from 02 consumption and geochemical data. If we normalize terms
in equation (4) by multiplication with C/C*, then neglecting insignificant differ-

ences between R, R, , and R the last three terms on the RHS are approximately:

‘J’ b4
v = + 0.005 cc/kg yr
J =~ + 0.001 cc/kg yr

50 cc/k

AC == 033 yrs

= 0.006

so that (v + J) =~ AC and the last three terms on the RHS of equation (4) approxi-

mately cancel. The advective term (normalized) is (wC/C¥) (d¢*/dz), which varies

from about 0.03 to zero (for w perhaps 8 m/year). Therefore C]h essentially obeys

the simple equation for a conservative substance:

kC'=wC (5)

o
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with considerable scatter in the profiles reflecting slight variations in the

- various production rates. For this reason no information on absolute values for
K and w can be obtained from Clh profiles, and the numbers derived by Munk

(1966) should be discarded.
‘ The Clh specific activity minima at depths between 1-4 km are due to the

fact that EICOZ shows a broad maximum in these depths because of the particulate
— input v + J. This input produces Clh at a rate closely equal to the radioactive
decay rate; thus the absolute activity is essentially constant, resulting in a
minimum in specific activity or CM/C]2 ratio. Using the specific activity
curves, Munk calculated a diffusive flux of C]h upward from the horizontally
advecting bottom water layer, resulting in a continuous loss of.Clh at a rate
much greater than the radioactive decay rate within the bottom layer. He thus
concluded that the Bien-Rakestraw-Suess horizontal flow velocity for thisllayer
was a lower limit, and must actually be 15 times greater than their mean figure
of 0.07 cm/sec. However, the absolute activity curves show that there is actually
almost no vertical diffusion gradient at this depth, but that, if anything, the
net C]h flux is downward. The B-R-S flow velocities will therefore be upper
limits, but will not be strongly affected by diffusion. On the other hand, some
- of their '"bottom water'' data actually are samples from about 3000 m, in the

specific activity minimum, and therefore their assigned relative ages for bottom

water are too large in some cases, especially in the North Pacific.
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AIR-SEA EXCHANGE OF WATER IN HURRICANES

H. Gote Ostlund

Seawater, tropospheric vapor, and stratospheric vapor, are characterized
by different tritium concentrations. The sea surface is at the lower end of the
scale, the tropospheric humidity is intermediate, and the stratospheric vapor
highest. When the ''undisturbed'' air around the hurricane, ''ambient air', is en-
trained into the envelope of the storm, the air-sea exchange will lower the tritium
concentratidn of the water vapor. This effect, the molecular exchange, occurs
primarily at the surface of spray droplets of seawater formed in the high winds,
and the lowering of the tritium concentration in the vapor is a quantitative measure
of the magnitude of air-sea exchange of water. From data on tritium versus radial
distance, conclusions can be drawn on possible distribution of mass inflow and
influence of wind speed on rate of air/sea exchange of water.

0f more pragmatic interest is the relative importance of local evaporation.
If the (radial) water vapor inflow at some large radfus isVg sec_], the total
evaporation inside that radius is E g sec—], and the loss of water to the outflow
layer is neglected, R = E/(E + V), is the interesting ratio. The tritium data can
supply information on this ratio, and our measurements are good enough for the pur-
pose, but three more parameters are essential. Absolute humidity at cloud base
and at the very sea surface, can be reasonably well measured. We also need the
radial distribution of the vapor inflow. This information is presently not avail-
able with any degree of reliability, due to the inability of the airborne Doppler-
wind instruments to resolve the very small radial component of the wind.

in the future we hope to perform tracer experiments in hurricanes. Let us

assume that we at one point release one tracer for air and one for water vapor
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(e.g. HT gas and HTO vapor). The concentration ratio between the two tags in
air samples downwind, will have a direct bearing on our R, without need of
information on radial wind component. In addition, the rate of inflow might

possibly be derived from the time and position of samples containing the tags.

A NONLINEAR MODEL OF AN OCEAN DRIVEN BY WIND AND DIFFERENTIAL HEATING

Kirk Bryan

A numerical experiment is carried out to investigate the circulation of
an ocean, driven by a prescribed density gradient and wind stress at the surface.
The mathematical formulation includes in one model most of the physical effects
considered in previous theoretical studies. Starting out from conditions of
uniform stratification and complete rest, an extensive numerical integration is
carried out with respect to time. Care is taken in the final stages of the cal-
culation to use a finite difference net which resolves the Very narrow boundary
layers which form along the side walls of the basin.

A detailed description is made of the three-dimensional velocity and
temperature patterns obtained from the final stage of the run. Since inertial
effects play an important role in the western boundary current, it is possible
to verify with a baroclinic model two results obtained previously with barotropic
models, i.e. (a) a concentrated outflow from the western boundary takes place
along the upper boundary of the subtropical wind gyre, (b) inertial recircula-
tion may increase the total transport of the boundary current to a value well
above that given by linear theory. In addition to the western boundary current,

a strong eastward flowing current is found along the equator. Taking into account
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a difference in Rossby number between model and prototype, the intensity of the
computed currents agree very closely to observation in the Gulf Stream and the

Equatorial Current.

BOUNDARY LAYERS AND LARGE SCALE NUMERICAL MODELS

Henry Charnock

The boundary layers of the atmosphere and ocean are among the regions
where small-scale motions--smaller than the grid size of foreseeable numerical
models--are dynamically important. They can perhaps be incorporated by empirical

methods of the kind here discussed: the treatment is based on a paper by

H. Charnock and T. H. Ellison presented at the GARP Planning Conference, Stockholm,

1967.

For this purpose we take the atmospheric boundary layer to be the region

near the surface where turbulence on a scale not much greater than the height
transfers significant qualities of heat matter and momentum. It is to be dis-
tinguished from the Ekman layer, where the wind differs from its (complete) fric-
tionless value. The Ekman layer may fill the boundary layer but will often
occupy only a pértion of it. Another subdivision of the boundary layer is the

surface layer, where the fluxes are approximately constant with height and where

the Monin-Obukhov scaling is appropriate.

The interfacial layer has a thickness of the same order as the surface

roughness: its dynamics and thermodynamics are complex, especially over the sea.
The climatology of the boundary layer is not well known. Plots of Taylor

diagrams (characteristic diagrams of specific humidity against potential tempera-

ture) indicate that its top is well defined for more than half the time, at heights
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below 850 mb. On these occasions it consists of a stable layer overlying an

unstable or neutrally stratified one.

This situation can perhaps be modelled using sea temperature, temperature,
humidity and wind at the top of the boundary layer, the wind, E)yét',-akﬁac etc.,
and the density gradient in the stable layer. All but the surface temperature
could be obtained from a large-scale numerical model.

The present treafments are empirical and messy but they are worth trying
since they can, once their usefulness is established, be progressively improved
as our knowledge of boundary layer processes increases.

It is assumed that the heating of the layer, through a surface flux,
controls the depth of the layer. The heat flux does not affect the free atmosphere
directly since the turbulent transfer is taken to vanish outside the boundary

layer.

The height of the boundary Iayer is controlled by a combination of mean
vertical velocity and by entrainment of 'free' air into the turbulent boundary
layer. The mean vertical velocity is made up of the frictionless component and
a Iarger contribution due to the frictional convergence in the Ekman layer.

The treatment should be applicable to the oceanic boundary layer, though
the effect of waves and of the different radiation input complicates it. Perhaps
the boundary layer can be identified with the seasonal thermocline but winter
conditions, away from the equator, may represent vertical convection over

greater depths. These will have to be modelled in a different way.
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THERMAL MICROSTRUCTURE IN THE SEA

Charles S. Cox

It is possible to measure the structure of temperature in the sea to a
sufficiently fine scale (and with sufficient sensitivity) to resolve structure
down to the smallest existing scales. Measurements have been made from a freely
falling body which has an attached thermister probe. The falling velocity of the
instrument is controlled by attached propellor-type blades which revolve in the
manner of unpowered helicopter blades. It is possible to adjust the falling speed
V over a range < 3 to > 10 cm/sec by altering the pitch of the blades.

Changing signals from the thermister are interpreted as changes of tempera-
ture with depth. Hence the vertical component of temperature gradient is measured.
The ''rise time'' T of the thermisters to a sudden change of temperature is
40 milliseconds. Hence the minimum resolvable scale of temperature fluctuation
is a few millimeters. The noise level in the thermister and amplifier is equivalent
to temperature fluctuations of less than lo_h Cc.

Measurements have been made in two locations: 1) Near San Diego where the
ocean is 1 km deep and bottom very rough. Measurements were made while the instru-
ment dropped between 600 and 700 m. 2) 1500 km offshore where the ocean is 5 km
deep and the bottom smooth. Measurements were made between 600 and 1300 m.

In the near-shore water it was found that temperature decreases downwards
in a series of nearly isothermal steps separated by zones of steep gradient. The
steps are widely variable in thickness but average several meters thick. The
gradient zones are occasionally as thin as one centimeter but usually consist of
a close packed series of sharp gradients extending over a meter or less.

The measurements offshore occasionally show a stair-step structure but more

usually the distinction between ''isothermal' and sharp gradient zones is less clear.
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The horizontal extent of structures has been studied by dropping a
series of instruments behind a fast moving ship. At both locations similarity
of larger temperature structures could be traced over horizontal distances of
200 m but not over 500 m.

Within the "isothermal'' layers there are residual temperature fluctuations
which vary in amplitude greatly from one layer to another. The spectrum of
fluctuations within some layers is not inconsistent with that proposed by
Batchelor for weak temperature variations carried by homogeneous isotropic tur-
bulence. For example, in one measurement one can estimate the viscous cutoff
at a wavenumber of 0.3 cm_] while the conductive cutoff is at 3 cm—]. The ratio
of the two is appropriate for the Prandtl number of water.

If the temperature fluctuations are indeed isotropic in this layer, the

mean square temperature gradient VO™ will be three times the.mean square vertical
component. The eddy coefficient of thermal diffusivity can be estimated from
the mean square gradient according to

K =x Ve~ / (48]d=)
where X is the molecular thermal diffusivity and Eiiizzg the mean temperature
gradient. Two values of E{. estimated from two different layers at the off-
shore station are'}g = 270 cmz/sec and 9 cmz/sec. The widely varying values

suggests that turbulence is intermittent and localized in the ocean.
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OBSERVATIONAL EVALUATION OF TOPOGRAPHIC EFFECTS ON THE GULF STREAM

Donald V. Hansen

The meandering path of the Gulf Stream as defined by the position of the
159C isotherm at 200 meters depth between Cape Hatteras and the Grand Banks was
delineated during 14 consecutive monthly cruises of the U.S. Coast and Geodetic
Survey ship EXPLORER. The indicator isotherm could generally be crossed at least
every six to ten kilometers to show the course of the Stream at comparatfvely high
resolution between 74°W and about 58°W by means of a towed thermister system.
The sequence of pathlines observed during the first nine months were all of a
regular wavelike nature but with continuing variation. These observations are
interpreted as a wavelike disturbance of mean wavelength 320 km which is advected
eastward with a net phase speed of 8 cm/sec. The eastward increase of amplitude
corresponds to an @ -folding time on the order of 100 days. In subsequent months
the pathlines' variations and their interpretation became more complicated in both
space and time. Although the time-dependent behavior of the meander pattern is an
obvious departure from their interpretation as a quasi-stationary topographic-beta

wave, the propagation speed and growth rate are both much less than predicted by

instability theories. Comparison of the position and curvature data for the observed

Stream paths with the observed variations of depth and latitude along the Stream
paths indicate that for reasonable Gulf Stream transport, momentum flux, and near-
bottom current speed, the mean position of the Stream is consistent with the topo-
graphic-beta control hypothesis, but that depth variations are generally too small
to force the observed curvature of meanders on the Stream, except intermittently
in the region over the continental slope just east of Cape Hatteras. Comparison
of the progressive wave interpretation of the meander pétterns with buoyed current

meter measurements and movement of detached cyclonic eddies near the Stream suggest

—
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a relationship between the meanders and the meridional motion outside the Stream.
The statistics of this meridional motion are similar to those of the well-known

float measurements near Bermuda.

THE NUMERICAL SOLUTION OF VIBRATION PROBLEMS

Myrl C. Hendershott

The properties of a finite difference approximation to the Helmholtz
problem specifying the harmonic motion of a rigid plate with fixed or free edges
are examined regarding the convergence of the difference solution to the analytic
one as the mesh spacing is decreased and regarding efficient solution of the
difference equations. Uniform convergence is deferred to increasingly finer
meshes as the analytic problem approaches resonance and the replacement of smooth
boundaries by step-like ones having reentrant corners may result either in no
convergence or in convergence to a limit different from the analytic solution.

The method of sequential over-relaxation is a convergent iteration only when the
plate is being driven at a frequency lower than the frequency of its grave free
mode. Because the matrix of coefficients of the difference equations is sparse and
has a very regular distribution of non-zero elements, an explicit inverse operator
may be obtained by writing this matrix as a product of a lower triangular matrix
and an upper triangular matrix. The availability of the inverse operator makes
possible solution of certain very large problems by partitioning them into smaller
sub-problems which are repeatedly solved in an iterative sequence (Parker, personal
communication). Systems of difference equations which have similar eigenvalue
spectra may be solved by the repeated application of the inverse of only one of

the systems, thus avoiding recomputation of the inverse for every new system. Very
high order difference formulae may be used in one direction without materially

increasing the computational effort.
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A NUMERICAL SOLUTION OF LAPLACE'S TIDAL EQUATIONS

Myrl C. Hendershott

Laplace's Tidal Equations are the linearized, inviscid, shallow-water
approximation to the Navier-Stokes Equations for a homogeneous fluid envelope
on a rotating sphere. Energy loss may be via bottom friction in shallow seas or
via conversion to internal waves. At the boundaries, we may (i) require agree-
ment of the computed field with observations, (ii) require flow parallel to the
coast or (iii) define a complex impedance which parameterizes the mechanisms of
energy dissipation at the coasts. In regions whereAthe energy flow is nearly
parallel to the coast, as it is in Kelvin waves, (i) may result in a good extrapo-
lation to the deep water but will be of limited utility in regions where tidal
energy is concentrated by a shoaling bottom and then diverted into small scale
turbulence. |If one is dealing directly with the tidal elevation, (ii) is numer-
ically difficult. If (ii) is imposed, one must moreover include regions of energy
dissipation within the computation and then use a computational grid of sufficient
fineness to resolve details of the flow in these regions. (iii) is numerically
just as difficult as (ii) but allows formulation of a meaningful problem in which
bottom friction is present only in the boundary conditions.

A solution of Laplace's Tidal Equations for the M2 tide in the world ocean
has been obtained using coastal observations as boundary conditions. The quality
of the prediction is variable, being excellent in the Atlantic and Western Pacific
but quite poor in the Indian Ocean and the Central Pacific. Further exploration
of the manner in which individual boundary values influence the numerical solution

is needed.
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ON THE DISTRIBUTION OF SOME TRACERS IN THE OCEAN

William R. Holland

The distributions of certain conservative and non-conservative tracers
such as temperature, salinity, oxygen, and radiocarbon have been used extensively
to understand the patterns of motion in the sea. In this study we turn the
problem around and ask what the distributions of some tracers would be if the
velocity field and the coefficients of vertical and horizontal eddy diffusion are
known. We shall take as our known velocity field that found by Bryan and Cox in
a numerical study including both wind and thermal driving forces.

Two tracers have been treated so far, oxygen and radiocarbon. With various
combinations of parameters and various assumptions about the decay, seven cases
for the oxygen distribution and five for radiocarbon have been calculéted. The
results suggest the range of parameters of interest in the real ocean and show
some promise of leading to good comparison with observations, at least in their
gross features.

The experiments run so far should be regarded as a preliminary study to
test the numerical.fechnique and to determine its behavior for a variety of
coefficients. The method of solution will be used further in future experiments
to look into the salinity and temperature distributions as well as to explore

further the cases of dissolved oxygen and radiocarbon.
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SOME EFFECTS OF STRATIFICATION ON ROTATING FLUIDS

Ants Leetmaa

In the framework of a linear theory of rotating stratified fluids, some S

aspects of the effects of stratification on rotating fluids were investigated.

In homogeneous Ekman layer theory, the stress on the surface of a fluid is balanced

by a net transport to the right of the stress. Horizontal variations in the
stress can thus cause convergencies or divergencies in this transport. These are

of major importance in driving motions in homogeneous fluids. The introduction —
of stratification allows horizontal pressure gradients to be set up within the
Ekman layers and these allow part of the stress to be directly transmitted to the
body of the fluid. |In the limit of strong stratification or small horizontal
scales of variation in the‘stress, all the stress is transmitted to the body of
the fluid, and the Ekman transport in the boundary layer disappears with the con- —
sequence that there are no convergencies or divergencies. Throughout the body

of the fluid, the motion is Couette flow in which the geostrophic shear is
balanced by a thermal wind. The results converge to homogeneous theory for weak
stratification.

It is thought that these ideas might have some application to a theory of
coastal upwelling. There, it is postulated, the horizontal density gradients in
the upwelling zone are of primary importan;e in modifying the dynamics of Ekman
layers near the coasts. As a model of a qniform wind blowing parallel to a coast,
the solution to a problem in which the surface stfess is of square wave form was
examined. A boundary layer was found which for strong stratifications is thicker
than the buoyancy layer. Later investigations have shown this thickness to be
almost independent of the wavelength of the square wave. Further work is being -

carried out to determine the exact nature of this layer.
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DOUBLE KELVIN WAVES

Michael S. Longuet-Higgins

It was shown in a recent paper (J.Fl.Mech. 31: 417) that a discontinuity
in depth in a rotating shallow sea is capable of supporting a novel kind of
wave motion. The wave energy is propagated along the discontinuity, and falls
of f exponentially to either side. Such trapped waves have been called ''double
Kelvin waves'' or ''seascarp waves''. |t was found that for any given wavelength,
just one such wave motion is possible, and its period always exceeds one
vvvvv pendulum-day.

A discontinuity in the ocean depth is, however, a special and possibly
uncommon situation. It is natural to inquire whether trapped waves exist when
the bottom profile has other forms, for example when there is a continuous trans-
- ition from one depth to another. One may further ask whether such trapped waves
will tend to double Kelvin waves as the width of the transition zone is reduced
to zero.

— An investigation of certain special cases has already been made both by
Rhines (1967) and by Buchwald and Adams (1968). These authors, however, assumed
that the divergence of the wave motion (associated with a vertical displacement
of the free surface) was negligible.

If the divergence is assumed to be negligible then it is not hard to see

Lo intuitively that waves will tend to be propagated along the sloping transition

zone with the shallower water to their right, just as on a sloping plane bottom,

or on a /3 -plane. Those vertical filaments of fluid displaced up the slope are
shortened and so have a negative relative vorticity, and those displaced down the
slope have a positive relative vorticity. The combination of alternate positive

o and negative vorticities results in a phase velocity to the west on a /3-plane, or

with shallow water to the right on a sloping bottom in the northern hemisphere.
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Qutside the transition zone the above meﬁhanism ceases to act, and one
might therefore expect some types of wave in which the energy was mainly 1limited
to the transition zone.

However, when the divergence is taken into account some stretching of the
vertical filaments of water is caused also by the vertical displacement of the
free surface, as well as by the bottom slope. At first sight it is not clear
which of these effects will predominate.

In the present paper we take the divergence of the wave motion fully into
account, and investigate the possibility of trapped wave motions being associated
with continuous depth profiles of a rather general kind. The depth l« is assumed
to be a function only of the coordinate X normal to the escarpment. Moreover h
is assumed to be monotonic in X and to tend to uniform values at large distances
from the escarpment on either side. The possibility of trapped waves in such a
configuratfon is investigated on the basis of the ]ineariied theory of waves in
shallow water.

It is shown that the trapped waves always travel along the transition zone
with the shallower water to their right in the northern hemisphere and to their
left in the southern hemisphere. The wave period must always exceed a pendulum-
day. The period is also bounded below by a quantity depending inversely on the
maximum bottom gradient.

By allowing the width W  of the transition zone to vary, asymptotic forms
for the trapped modes are obtained, both as W—0 and as W—> 20 . [n the limit
as W—0 the depth becomes discontinuous, and it is shown that the lowest mode
then becomes a double Kelvin wave (Longuet-Higgins, 1968) propagated along the
discontinuity. The periods of the higher modes, on the other hand, all tend to

infinity; these modes become steady currents.
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Numerical Ealculations of the trapped modes are presented for two different
laws of depth in the transition zone. It is found that as W >0 the lowest
mode is insensitive to the form of the depth profile. Higher modes depend on the
details of the profile. Hence the lowest mode is the most likely to be observed
in the real ocean.

The dispersion‘relation i's also investigated. It is shown that the group-
velocity of all modes must change sign at some point in the range of wavenumbers,
if the divergence is taken into account. When the divergence was neglected the
lowest mode ‘appeared to be exceptional, in that the group-velocity was always in
the same directioh. This anomaly is now removed.

In order to calculate the mean mass flux past a given recording station
it is necessary to know more than the mean velocity in a vertical section. One
must add an additional term - the ''Stokes'' velocity which depends also on the time
and distance scales of the fiuctuating currents. In typical circumstances, where
the fluctuations are larger than the mean current, the Stokes velocity may
dominate the mass transport, and lead to the mass transport being opposite in
direction to the mean current.

| Some general expressions are given for the Stokes velocity, and these are
studied in detail for the particular case of double Kelvin waves. 1t is shown
that in the regions of small bottom gradient the Stokes velocity is in the same
direction as the phase velocity, but in the region of large bottom gradient the
sign of the Stokes velocity is reversed. The mean Stokes velocity at the surface
is in the direction of wave propagation. However, the mean total transport
(integrated with respect to the depth) is in the opposite direction.

These conclusions are discussed in relation to some recent observations

of currents near the continental shelf in the Northeast Atlantic.
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ON WAVE BREAKING AND THE EQUILIBRIUM SPECTRUM OF WIND-GENERATED WAVES

Michael S. Longuet-Higgins

(1) Recent observations of the growth of sea waves under the action of wind
have established that the rate of growth is several times greater than has yet
been accounted for. A new mechanism of wave generation is proposed, based on the
idea of a maser-like action of the short waves on the longer waves.

It is shown that when surface waves decay they impart their momentum to
the surrounding fluid. Short waves are readily regenerated by shear instability.
But a longer wave passing through shorter waves causes the short waves to steepen
on the long-wave crests. Hence the short waves impart more of their momentum to
the crests of the loné waves, where the orbital motion of the long waves is in the
direction of wave propagation. |If the short waves are decaying only weakly {(under
the action of viscosity), the effect on the long waves is slight. But when the
short waves are forced to decay strongly by breaking on the forward slopes of the
long waves the gain of energy by the latter is greatly increased.

Calculations suggest that the mechanism is capable of imparting energy to

sea waves at the rate indicated by observation.

(2) A theoretical calculation is made of the loss of energy by wave breaking in

a random sea state in terms of the spectral density function. In the special case
-5

of the equilibrium spectrum fr(U)=ngzU’the proportion OTU of energy lost per mean

wave cycle is found to be given by /
o= e X

irrespectivé of the low-frequency cut-off in the spectrum.
Assuming that in the equilibrium state the loss of energy by breaking is
comparable to that supplied by the wind, one can estimate the constant &< in terms

of the drag coefficient of the wind on the sea surface. It is found that
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is

X =
Taking a representative value of C one finds & = 1.3 x 10_2, which falls
The above equation for o

- [l ['(000 C%(ﬁm/ﬁwm)]

within the range of observed values of «
extremely insensitive to the various assumptions made in the analysis.

There is some evidence, derived from observation, that o« may not in
fact be quite constant but may decrease slightly as the wave age (j Q/Lgor the

. P
non-dimensional fetch (3 x1//U')is increased. It is suggested that the drag

coefficient may behave similarly.

THE EFFECT OF SURFACE TENSION ON THE LIMIT FORM OF WAVES
Robert L. Miller

Experimental studies of run-up of undular and fully developed bores were
These brought out an interesting sequence of

carried out recently, Miller, 1968.
events during the beginning of transition from undular to fully developed bores
The first breaking of the crest was preceeded by

Accordingly comparisons

at Froude numbers approx. 1.24
a surface pattern of ridges normal to the crest, which later coalesced to form a
It appeared that the breaking process in its

pattern of cell-like indentations.
earliest stages might in part be a surface phenomenon.
were made of the sequence of early breaking with surface tension normal (approx-

imately 73 dynes/cm at 20 C.) and surface tension reduced to approximately
The results appeared tc indicate that the limit angle of the crest

Lo dynes/cm.
was sharper for surface tension reduced, and that for surface tension normal, the

wave form progressed about 20% further down channel before breaking.
Accordingly an examination of the literature was made for predicted limit
These are indicated in Table 1. An

crest angles for various wave types.
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experimental pfocedure was developed using high speed motion picture photography
and a number of wave types were examined for crest angle with surface tension
normal and surface tgnsion reduced. The results are given in Table 1.

Some indication of the variation in surface tension in natural waters
has been acquired by a series of measurements, as shown in Table 2.

The study thus far should be considered as preliminary. It appears that
a careful examination of the physical mechanisms operating just at the limit
crest is needed. In addition, the method of reducing the surface tension by
using a chemical additive, leaves doubt as to whether the results noted in
Table 1 may not be due to surface effects of the type created by a socap film.

To resolve these difficulties, a small standing wave tank of the type
described by G. I|. Taylor will be used. Measurements will be attempted of
1) the accelerations at the limit crest angle, possibly to infer the "bursting"
pressures, and 3) careful remeasurements of the gross limit crest angles. These
experiments will be carried out for several frequencies. In addition, the
experiments will be repeated for several homogeneous fluids other than water

where the viscosity is low, and the surface tension is significantly lower than

“water. In this way the validity of the previous results for water with a surface

tension reducing additive, can be checked.

Reference

Taylor, G.1. 1953. An experimental study of standing waves.
Proc.Roy.Soc.London, Ser.A, 218: 4k4-59,
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MODELLING THERMALS WITH VORTEX RINGS

Bruce R. Morton

Atmospheric thermals consist of buoyant regimes of air ascending in a
state of turbulent motion. Like all compact regions of fluid moving through like
fluid environments, the mean motion of a thermal has the broad features of‘a vortex,
and lies between the extremes of convective or ring vortices with mean vorticity
and heat concentrated into a toroidal core, and diffusive or spheroidal vortices
with both vorticity and heat distributed over the advancing fluid but with tempera-
ture maximum on the axis of propagation.

Although the gross properties of thermals and laboratory Vortical (such
as semi-angle of spread) appear to exhibit similarity there are likely to be
departures from similarity in the turbulent‘structure. Thus as a convective
vortex grows its core is stretched and can only expand with the vortex for a
particular diffusivity, or a particular core geometry for given diffusivity.
Sounders has observed fhat the relative size of visible surface elements in terms
of the diameter of a thermal is a function of the Rayleigh number and hence differs
in différent thermals.

The principal properties of isolated convective and diffusive vortices in
an extensive environment can be investigated using bulk equations obtained by
integrating the continuity and Navier-Stokes equations over the environmental
region. There proves to be no bulk mass conservation equation since the far-field
disturbance due to a compact vortexlis at most of doublet character, but simple
equations are obtained for the impulse and buoyancy. In place of continuity a
conservation equation is introduced for circulations, and this shows that the

circulation is increased by buoyant generation and decreased by diffusion of
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vorticity across the axis. Although a buoyant vortex ring suffers no change in
circulation, its gross radius increases progressively with distance as positive
vorticity is generated on its outer side and negative vorticity on the side nearer
the axis. The system of bulk equations is completed by the Biot-Savart equation
relating the propagation velocity and hence the gross displacement and time.
Typical features of vortex motion may be studied further by order-of-
magnitude analysis of the equations to identify similarity structure, and three
similarity regimes are identified for neutrally buoyant vortices with two for
buoyant vortices. These solution types give useful information even though actual
vortex behaviour will generally be intermediate in type. One class of neutral
vortex is time-independent but all others develop with time and diffusive loss of
mean vorticity ié found to be specially important. In unsteady neutral vortices
the circulation decreases steadily with time; but in buoyant vortices this diffusive
loss is just balanced by buoyant generation and the circulation remains constant.
The treatment provides a basis for the formulation of vortex models, which

may be developed approximately using the system of bulk equations.

NON-SIMILAR TURBULENT PLUMES

Bruce R. Morton

Entrainment models for buoyant plumes rising above steadily maintained
sources of buoyancy in neutral or stably stratified environments have generally
been based on similarity arguments, and have proved effective in the interpretation
both of laboratory experiments and of observations at larger scale in the atmos-
phere. However, models in which entrainment is scaled in proportion to the local
mean ascent velocity are based on a strict similarity relationship between the

turbulent structure and mean flow, and hence cannot be expected to apply in source

——

.
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neighbourhoods where the turbulent intensity (and entrainment of ambient fluid)
may be expected to carry a strong imprint of the source. In such regions of
developing flow the entrainment must be decoupled from the mean velocity field
and scaled in terms of the local turbulent flow.
A modified entrainment model has been developed on the assumption of
‘‘‘‘ ’ weak similarity in which the entrainment flux is related to the local Reynolds
stress (averaged across the profile), and additional conservation equations are
introduced for the flux of kinetic energy of fluctuating motion and for flux
of temperature fluctuation intensity. The derivation of the new model has been
based on an order-of-magnitude analysis of the full Navier-Stokes equations
S which provides an estimate of the errors involved in the neglect of various
terms, and serves to identify the appropriate equations for the velocity and
temperature fluctuation intensities. The analysis indicates that neglected terms
vvvvv in the momentum flux equation are likely to lead to errors amounting to ten
per cent, and identifies a term representing the direct generation of turbulent
— (velocity fluctuation) intensity as a result of density fluctuations. The
latter term is small in a hot jet, but is likely to play an important role in
moist cumulus convection. |
The model includes a parameter representing the effects of viscous dissi-
pation and one for the conductive annihilation of temperature fluctuations.
Neither of these can be deduced directly, and each has been evaluated by selecting
appropriate levels of velocity and temperature fluctuation intensity in the
asymptotic regime of flow far above the source; the values chosen prove to be
of the anticipated order of magnitude.
Numerical results have been obtained to illustrate the behaviour of a

L developing buoyant plume in a uniform environment and to determine the vertical

extent of the development region. These show that for a wide range of input
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conditions at source level the plume settles into an asymptotic state (and

that this state is determined solely by the gross source conditions on momentum
and buoyancy emissions) within a vertical ascent distance of between five and

ten source diameters. In the development region the entrainment may depart appre-
ciably from its asymptotic balance, and this departure may be expected to have a
considerable influence in cumulus clouds where the release of latent heat depends

in detail on the entrainment.

FINITE AMPLITUDE INTERNAL GRAVITY WAVES IN A CONTINUOUSLY STRATIFIED FLUID

Isidoro Orlanski and Kirk Bryan

In a fluid heated from above diffusive processes acting alone would tend
to produce a uniform stratification. To determine the effect of mechanical
stirring in modifying the density profile, the following problem is considered:

a moving torque of the form st)n(KX*aIU-sinZ’a- is applied to a body of fluid
initially at rest. The frequency is chosen to be the resonant frequency of the
internal wave of corresponding shape. The initial value problem is solved numer-
ically using a 40 x 200 mesh, assuming cyclic continuity along the boundaries of

a region, 0< (f(x>)’2)<ﬁ 2 M. The self-interactions of the growing wave are also
obtained analyticé]]y up to 3rd order in an expansion with respect to time.

Agreement between theory and the numerical results is excellent for small amplitudes.
Where the frequency is much less than the Brunt-Véisé]é frequency, Aﬂ, , and the
Reynolds number is 104, numerical experiments indicate breaking due to unstable

folding of the density surfaces. Let’i;n be the amplitude of the stream function

for the primary mode.

.
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Overturning takes place when
1 "3 />
Vri =08, /N =2
The breaking is accompanied by the formation of a ''step' structure in the
vertical density profile.
1t is concluded that in a continuously stratified fluid breaking due to
convective overturning will take place for considerably smaller amplitudes than

shear instability.

ENERGETICS OF THE GENERAL CIRCULATION

Melvin E. Stern

A theory of the main thermocline is advanced in which all of the work

done by the wind on the mean Sverdrup circulation is used to increase the laterally

available potential energy. The latter is transformed by large scale lateral
motions and ultimately dissipated in small scale salt finger convection. Equa-
ting the rate of increase of mean potential energy by Ekman pumping to the rate
or release due to salt fingers gives the following estimate of the typical

lateral density gradient

FE*S, (1-¥)
/Ii’ Vi fm ~ 1‘(

*®
where Ej is the maximum evaporation rate, T is the maximum wind stress,

S

/% is the average density, and ¥ < | is the ratio of the flux of thermal buoy-

o 1S the mean salinity of the ocean, { is the average coriolis parameter,

ancy (heat) to the flux of salt buoyancy.
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A STABLE SALINITY GRADIENT HEATED FROM BELOW

J. Stewart Turner

When a linear stable salt gradient is heated strongly from below, it
becomes unstable and convects in a series of layers, which form successively
from the bottom up. In the past, there has been some doubt whether side-wall
heating has affected the process of forﬁation, and in particular the depth of the
layers. The experiment discussed here has been designed to determine the rela-
tion between layer depth, h, initial salinity gradient, dS/dz, and heating rat
H, by concentrating on the growth of the first layer, up till the time a second
forms above it, and before spurious side-wall effecfs can be important.

It has been shown theoretically that the depth, and the temperature and
salinity steps at the top of this first convecting layer, are all increasing as
f:\éu The way in which these quantities depehd on dS/dz and H is also pre-
dicted, and the relations have been verified experimentally. Above the advancing
turbulent front there is a diffusive boundary layer, whose depth is proportional
to h and therefore also to t />, so the whole shape of the temperature profile
remains the same, but with an increasing scale. A stability criterion is
developed to describe the breakdown of this region to form a second convecting
layer. For large heating rates (in relation to dS/dz) a critical Rayleigh
number based on the temperature distribution alone is relevant. The breakdown
occurs in an oscillatory manner, consistent with the theoretical arguments which
suggest overstability. The layer depth obtained in this way is proportional to
Hjﬁ*(dS/dz)_], and this form of dependence is confirmed by experiment. The
numerical constant depends also on the molecular properties Y and X and on
the value of the critical Rayleigh number, which has so far not been determined

theoretically for this time dependent case.
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It is suggested that a similar argument could be used to discuss the
formation of layers from a stable temperature gradient, when a flux of salt is
provided at the top. In this case vertical transport can take place through the
fsalt finger' mechanism, but again a turbulent convecting layer will first form
if the flux of salt is large enough. The front of this layer slows down in time,
and the salinity and temperature step grows; the proposed criterion for the forma-
tion of a second layer is that the front velocity should become comparable with
the individual finger velocity. This assumption leads to a prediction of layer
depth of the same functional form as before, but with the roles of heat and salt
just interchanged in the initial density gradient and buoyancy flux. Such a rela-
tion is not easy to test in the laboratory using heat and salt, because of the
difficulty of maintaining large temperature gradients and the effects of side-wall
cooling. Experiments carried out later in the summer with Melvin Stern have
shown however that it is possible to produce convecting layers, separated by inter-

faces containing '"fingers', using two diffusing substances (e.g. salt and sugar).

EFFECTS OF BOTTOM TOPOGRAPHY ON LARGE-SCALE OCEANIC FLOW

Pierre Welander

The effect of bottom topography has been studied for a two-layer frictional
/3 -plane ocean driven by (a) a steady wind stress and (b) a concentrated
source in the lower layer balanced by a slow upwelling through the interface.

In the model (a) the interface is a material surface, with no diffusive
processes acting. The dynamics is linear (Ekman type). It turns out that inter-
face stresses always are needed (except when the integrated wind-stress curl is

non-zero). The circulation in the upper layer looks much the same as in the

S

U
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one-layer solution with uniform depth derived by Stommel (1948). The

motion in the lower layer is driven by interface stresses that are concentrated
at the western side. When the lower layer is deep compared to the upper one,
it can be shown that the motions in the lower layer are small, and the problems
for the two layers decouple. One can first solve for the upper layer assuming
the lower layer at rest, compute the interface stresses and then apply these

to the lower layer. The lower layer problem then formally looks like the
one-layer ocean, with a depth given by the distance from bottom to the (non-
horizontal) interface, and with a wind stress driving in a narrow western strip.
The lower layer circulation is confined to a recirculating boundary current
when —- (¥%4 where f is the COFIO]IS parameter, H the lower layer depth and
y a northward coordinate. |If <o 3 ({VH)T7 O there is a directly forced boundary
current at the western side and a free boundary current at the eastern side,
joined by an interior flow along f/H contours. If-%a (¥/@)<.O changes sign in
the basin these two solutions apply in their respective parts. Along the

line —'B% (’F/H)"O a free jet crosses over the basin.

In interior regions where closed f/H-contours occur,corresponding local
gyres are added to the lower layer. In the North Atlantic such a region is
found at the Azores and the theory predicts a local anticyclonic gyre in the
deep water, but it is expected to Be weak.

In the model (b) the lower layer shows the general poleward geostrophic
drift and the equatorward deep boundary current, as predicted earlier by
Stommel. It is shown how the calculation can be extended to basins of arbitrary
geometry. The transport in the boundary currents can be simply related to

the distribution function A(f/H), where A is the horizontal area between a
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standard contour (say, the equator), and an arbitrary contour for f/H. Different
examples are worked out.

In particular, a model of the North Atlantic with realistic topography
and deep water source in the northern part is considered. |In this case a deep
boundary current should run along the western edge, and another such current should
run at the eastern slope of the Mid-Atlantic Ridge. These currents start both
going southward from the northern end but as water leaks from the ridge current
westward, the boundary current amplifies, while the ridge current diminishes.
South of a certain latitude the ridge current will instead be fed by water flowing
northward across the equator. Since the boundary and ridge currents are treated
kinematically, and no dynamic model for them fs used, the solution can only be
sketched. Support can, however, be found from a simple laboratory experiment using
a circular rotating basin with a ridge inserted. The geostrophic deep flow com-
puted by Wiist and Defant for the 2000 db level in the North Atlantic shows also

some general agreement with this proposed circulation.
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SEA LEVEL FLUCTUATIONS ACROSS THE STRAITS OF FLORIDA

Carl |. Wunsch and Donald V. Hansen

Sea level variations of less than inertial frequency are expected to be
closely related to the surface current speed in highly geostrophic flows like
the Florida Current. Power spectra and coherence were computed from simultaneous
tide records at Miami, Florida and Cat Cay, Bahama lIslands; at Key West, Florida
and Havana, Cuba; and at Key West and Miami, Florida, as a measure of statistical
vafiability of this contribution to the Gulf Stream. Diurnal and semi-diurnal
tides.account for over 80% of the power in sea level variations at all stations,
and approximately half of the remaining power isiin the annual variation.
Power levels are generally higher on the left side of the current, but no sig-
nificant powef peaks were found between the annual and the tidal frequencies.
Coherence is generally .low between all stations, but where significant coherence
is found, it occurs with essentially zero phase, indicating that sea level tends
to rise or fall together on opposite sides of the Straits. Power in sea level
difference is therefore intermediate between that at individual stations spanning

the Straits. The zero-phase coherence suggests a common response to local

- weather events, so a multi-channel Wiener optimum filter was used to apply

linear corrections for the effects of wind on sea level. Although very low
coherence was found between atmospheric pressure and sea level, essentially an
inverse barometer response was deduced for fluctuations of periods greater than
ten days. At shorter periods the deduced response is direct barometric, for
which we have no explanation. Coherence between vector wind and sea level was’
also low, so that removal of linear weather effects accomplished little reduc-
tion of total power, and does not material]y influence coherence levels or

phase. A sharp result is obscured by the general lack of coherence between
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records, but major conclusions are that the Florida Current is very steady,
r.m.s. modulation at all frequencies amounting to perhaps 10% of the mean,
and that linear weather effects have only a minor influence on statistical sea

level.

SUBTROP{CAL COUNTERCURRENT

Kozo Yoshida

Recent observations appear to provide some convincing evidences of the
presence of an eastward flow just to the north of 20°N in the western Pacific,
which had first been suggested from the results of a theoretical computation of
wind-driven transports (Yoshida et al., 1967 a, b) as well as of an earlier phase
of the CSK (Cooperative Study of the Kuroshio) cruises. Although the detailed
structure of this current-like feature is not yet known, an analysis of more
recent data of CSK shows that the eastward flow, well separated from the Kuroshio,
may appear to exhibit a form of multiple eastward streams of banded structure,
with the most stable stream axis along latitudes between 21°N and 24°N.

Our earlier prediction from a wind-driven model was for the eastward trans-
ports associated with a singularity (a trough near the maximum of the negative
wind stress curl) in the wind stress field near the boundary between the Westerlies
and the Trades. The origin of this singularity is, if at all real, suspected to
be in the quadratic (or nonlinear) law of the wind stress function. |If this
interpretation may be valid despite the uncertainties in the computed values of
the wind stresses, we may be led to a possibility that the eastward current may
not be a locaj but a global phenomenon. The computations from winds indicate its
occurrence also in other parts of the oceans, somewhat similar to the north and

south Equatorial Countercurrents. In fact, similar eastward flows have been



- 191 -

observed in the mid-Pacific regions from VITYAZ cruises during 1957-8 and

from the cruises of the Trade Wind Zone Oceanography Pilot Study near Hawaii
Islands (Seckel et al., 1968), and by Voorhis and Hersey (1964) in the Sargasso
Sea of the Atlantic.

On the other hand, a possible explanation may not necessarily require
this singularity in the wind stress field. Stommel suggests a possibility of
constructing a simple model which may yield a geostrophic eastward flow at these
latitudes by some mechanism due to an interaction between the Ekmaﬁ drift and
the thermal structure of the mixed layer. In this case, the Subtropical Counter-
current might be suggested to be a manifestation of one of the very basic

features of the ocean circulation. The wind stress singularities might incor-

“porate as well with such a mechanism.

Although further evidences with more systematic observations should
obviously be needed to establish the'rea]ity of the new current, this curious
feature as obtained would deserve some attention in view of ocean circulation
theories.
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ON THEORETICAL MODELS OF THE THERMOHALINE CIRCULATION

George Veronis

The thermohaline circulation of the oceans is modelled in terms of
geostrophic dynamics and a heat equation which incorporates all of the con-
vective terms plus vertical diffusion. This model has been the subject of
several theoretical inquiries in the past. The present paper discusses some
of the general features contained in the formulation and then goes on to sum-
marize the significant results which have been derived analytically in earlier
studies. The mathematical problem is formulated in terms of the pressure
(Needler, 1967) rather than Welander's (1959) integrated density function. This
allows the retention of the barotropic part of the pressure and velocity fields.
A1l of the known, analytical, similarity solutions of the model are then derived
by the me thod proposed by Kozlov (1966) in which the differential equation in
terms of the similarity variable is divided into two parts each of which is
satisfied by a common solution. The inverse ﬁower law solution of Fofonoff (1962)
and the exponential solution of Blandford (1965) are special cases of the two
solutions which emerge from the present approach. Since Blandford's solution

with diffusion exhibits a remarkable similarity to Welander's non-diffusive

solution, the two are compared in order to determine the role of vertical diffusion.

It is found that Welander's model can satisfy all of the surface boundary condi-
tions that Blandford's diffusive model satisfies. |If Welander's model is extended
to include barotropic velocities at great depth, a deep upwelling velocity is
present also in his model. Hence, vertical diffusion in Blandford's solution is
relegated to a role of secondary importance. The generalization of Fofonoff's.

solution is found to be applicable only to cyclonic gyres. With data from selected

o
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stations to determine the scale depth of the thermocline region the value

of the vertical diffusion coefficient is found to lie between 0.15 and

2.0 cmzsec—]. The corresponding upwelling velocity at great depths is about

L cm day_] which is higher than the maximum value deduced by Stommel and

Arons (1960). The general exponential solution of Needler which is also closely
related to Welander's solution is usea to determine the effect of variable
bottom topography on wind-driven circulation. It turns out that the upwelling
velocity beneath the thermocline replaces the Ekman suction velocity in the
determination of the abyssal flow. Finally, a simple model including horizontal
diffusion of heat only in the east-west direction is shown to introduce an

additional physical process which can balance vertical upwelling of cold water.



