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Editor i S Preface

This volume contains a restatement by the Fellows of the sumer

program i s first lecture series. The lecturers, Drs. Howard, Stern and

Veronis, have introduced the participants to several aspects of geo-

physical fluid dynamics at the frontiers of current research. Their

choice of topic and its development was to serve, on one hand, a

pedagogic function and, on the other, to suggest a variety of allied

unsolved problems.

Following these notes, the abstracts of the sumer research

seminars are recorded. These were prepared by their authors and range

from brief assertions of progress to short, but complete, manuscripts.

The editor's request for an extended abstract, clearly noting novel

content and with proper references, has been achieved only in the mean.

Manuscript records of the research lectures of the Fellows appear

in Volume 110 In most instances the Fellow felt that "just a few more

weeks" would have permitted him to construct a far more complete document.

That is to say, Volume II is a product of enthusiams, yet to be quenched

by sober afterthoughts.

Mrs. Mary Thayer has done all the work in assembling and repro-

ducing the lectures. We are all indebted to her for her remarkable

efforts in keeping the sumer course running smoothly and to the National

Science Foundation for its financial support of the program.

Willem V.R. Malkus
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The Figure of the Earth (a)

Melvin E. Stern
Iio l"'\ \

NJ¡wton first solved the problem of calculatiAg the eccentricity

of the earth assuming the earth to be an ellLpsoid of revolution. Eval-
\

uating the contour integral of the forces along t.wo perpendicular columns

centered on the minor and major axes he arrived at the figure of ~ for

the ellipticity. He did not show that the ellipsoid was an equilibrium

configuration. of a rotating mass of fluid. Measurements of the ellip-

ticity yielded a figure of:r. The difference was attributed to dif-

ferent moments of inertia about the two axes.

We calculate the equilibrium figure of the rotating earth assuming

the density e to be constant" The pressure force is everywhere balanced

by the gravitational force and the

-n(;-p+
Here "P is the pressure, ~ the

centrifugal
w~~~J = 0

force, i. E1 . ,

I

ve lodty and 'R the d is tance of

gravitational Potentiai,

a point from the axis of

W the angular

rotat ion"

On a free surface P = const"
'aR"J

Hence ~ ft. (.~ = const" on a free surface 0

We now apply an incorrect perturbation theory, neglecting the non-

unifotm mass d:istribution within the ellipsoid, and assuming the rotation

'rate to be small, The centrifugal acceleration is then balanced by the

local gravity and the ellipticity
b-a
-i- ~~ 1,

b = maj or axis
a = minor axis

We then have an exact equation
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').f ..

~ 6- - OJ:i ;: ~a.

and an incorrect equation

¡6- - Io. ~ 'â (b-o)
The two togetheryie ld

-8- a. = ws.&- ~ wò.
-6 :i~ 2.~

Puttinß in the numerical values one obtains
b - a

b
1

500
This shows

that the change in potential between two points is not just due to their

different distances from the center of mass but that the non-uniform mass

distribution within the ellipsoid produces a first-order effect of the

same order.

We now consider an ellipsoid of revolution with a non-uniform

mass distribution:

~ tr "

~
The potential at a point Jt on the surface of the ellipsoid is. given by

~ (í~-G ~ I t~t 1

where dp.s = an element of mass with radius vector "$ The volume

integral can be separated into an integral over the sphere of radius ~and

an integral due to the "bulge":

- (.4) G kß ol).s: G fß d.JA$P Jt = - ))/n - ~ I - m fir - s I
sphere

of
radius a.

bulge



tha t Jl (e).: 0. + 6/L L e) ,

-Gl I:lI =

We now assume

Then

-3 - .

where e =

~o?Gf3
a. t 6 Ji

latitllde.

Expanding S 1-
and neglecting terms of the order ( :.)

I

/+ 6')10.

. rt6 c1)A sG)) ¡it-51
-=_' 4; pGa.'2+ lf~ . tGa.1.(Ó:)

sphere

Evaluation of, the bulge-integral B.1 0

B,I.

where

No'w

r6/1(0") ocs'

-epGfda- ¡it-51
sphe re 0-

ctCS= element of area on the surface of the sphere

$/ = variable vector and with i -;, i ~ a.
a. + d/t (0") Clri dli(9)
( d. s':. cL S i
) ¡ rL - s i J eñ: - š)' ,a. a-

d It Ccr)-
.J '2 0. "'(i - t./3) \

we have:
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expanding I with)l :a.+á'lland s':o.+Js up to the first order.
.¡(;l_~)'i.'

Hence

B.I.
tG
.f ~

(Ie)da-
.. I-Cb!3 \

sphere

We also have
w?-R'i

2.
= w?-.. '2"...'. e rV\ vv" + w'2. òft. a. ~ e

2.

up to the first order.

~
w'Jt?'a~ = const. then gives the following integral equation:

= !L íî tG a.'l( Ólt) _ ~ a (~) d.o-:;. a. iî jj (1-~/3'
6./" a 1. CA'- e

.2

neglecting terms of the second order.

The first term. in this equation represents the variation of the

gravitational potential with latitude, the second term the part of this

potential due to the local displacement from the center of mass and the

third term the correction due to the non-homogeneous mass distribution.

These notes submitted by

Moiz Rasiwala.
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The Figure of the Earth (b)

Melvin E. Stern

Solution of the integral equation:

We solve the integral equation by reducing it to än eigenvalue

equation. The bulge is pressed back on the sphere and we look for the

inhomogeneous mass distribution k (e) on the surface of a sphere of

radius Q. We write

kJe). ft, ~ ki (a-) clcr

i/ i - c. l3 \
,

this being Laplace's equation on the surface of a sphere. À-,; is a

constant. Having the mass distributions Ki. ( e) we may write

& it = ¿ A . K . 

(e) ,a. i. I. A cons t .

.I f 1fi: is the potential corresponding to K. , we havei

\72.~. = 0 outside the surface, and

r ~ ¥ItL Ja.+ ~

L u - 411G Ki: (e) on the surface.a._

This latter equation is equivalent to the condition:

1V ~ - ,,~ #
i~~ (cr) da-

~ 1-~¡3'
(I)

We separate the variables:

~ :: 'R.: (Jt) Fi: (.we) where the
)

F S are Legendre

polynomials.

Then
Ki ( e) ;

F~ (sJ e)

41TG

a.+

t~~ j a._
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Writing explicitly Laplace's equation:

-L fi"l "d1J. + i
all õ n, CI e ~. e ol1i: = 0o,e ~ Ò S

we have
. L

'R 'i.

cL ni dTt¡ ::d. n -e I.- -
Fi:

d. ( :i d.

dT 1-r)-LF~=!\L
/'r.where cons t .

and ç sin e.

Now,

) I i 1"i..3F¿ (( . =. a.~ + a.~ r +- a.~ r + a.~ ç + ...

F/ ( ç) = a.~ + .2 a.~ r + .3 a. ~ r+ . . .

filice) = + ~~). + ~ Qt; r + ...,

. -. -/\ L a.~ t a.~ r + a.i ('+ .. .J = -1 r r a.~1 + 1 a.~ r + 3 cl3 ç ~ · .. J ,.

+ (, - ç ). ) ( 2 o.~ +- ~ () ~ C + . . .)

This equation is satisfied only if the corresponding coefficients of

the various powers of r are equal. Hence,

. ,
- a.~ /\ i. = 2. a.~

l
L A,

0., ( \.
, .

-= -.2 a.; .¡ b a.JI '.1\ L11. '- a,~ ~: - ì Cl,2 - :l Q.~ + /2. a.~

Looking for the lowest terminating solution, we have,
i. 1\ - . i.

. .. Q. ~ = 0) , f \ ~ :: 6) a. i,:a ': - 3 Ci ~

,

(.o.i = 0

.. F, (~ e) = 1 - 31O ::~ up to a constant factor

= 3 ~~e -..2
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cL i-'¡ cL'Rl =b RFrom the equation (f H ølii i

we now have '2

1( :. n.i

..3o. Jt

-i = (3~e-:¿)
(~t
(11 ))

ll~~Hence

It ') a. \

and I~i(e)= - t¡;G f (3Cù~9 -2)

Introducing these two expressions in I:

( :i) ~- If J~~e(a-)-.2 da-3 ~ ê -2. == t¡ íi c¿?l- ') (1- C,¡j'

If we now put for the lowest solution in ~

1£ = A (3 c,NJ2. S- 2) + JA ;j
A::const.

normalised so that it vanishes at the poles, we have from the

integral equation:

W ? ~~ = j 7T F G tt :i (3 A) _ r: G ~ 0. 'J ( :3 A )

I' 5- "3W· . 3A = T6 jTfG
- ów?i; a- -- 0

1
or, introducing numerical values, :3 A l: 230

(ellipticity)

local gravity

This compares with the best present figure of
i

297

These notes submitted by

Moiz Rasiwala
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EFFECTS OF ROTATION ON WAVE MOTIONS

Effects of Rotation on Wave Motions

Louis N. Howard

We shall consider three main aspects of small oscillatory

motions of a rotating fluid: a) oscillations of a self-gravitatirig

homogeneous 'rotating sphere, (b) shallow water theory in a rotating

system, and c) tides on the surface of a sphere 0

The problem of an oscillating non-rotating liquid sphere was

first considered by Kelvin, and we begin by sketching his theory.

Take a spherical body whose radius is given by

r~a,+rCe;cp)

~J~I~~ (1.l)

as a function of angular coordinates. The geometry is that of Figure

~r Jf ç ol n == 0 .
l, and "a" is a "mean radius" such that

r

Figure 1.

It is necessary to know the gravitational potential ~ on the surface:

The density ;0 is assumed constant (thus prohibiting internal waves).

Poisson 1 S equation applies and the potential is found from the volume

integral

I J.V
= G ~ '..f .P ,i 'f - '(' i

f o.+- r
'= ¡;G d n J

o ý
i':d '

'( rI" \rlo+'r -2\"'r'CD)"
(102)
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where J n is the usual element of solid angle.

This may be conveniently rewritten as
&t.l ,

~ .pGr~í\dSl r
o

(yo Yr t J (r 1r )

j ( '(')1 r' '1+ r -1.y;CJ1
(1.3)

Recall that the denominator maybe expanded in terms of the Legendre

polynomials, i.e 0,
_~ øo

'(ltX).-2.èX) = 2;XY'lri (-l) (1.4)

(This is most easily seen by directly expanding the square root and

regrouping terms.)

Therefore
'r~a. t r

~=J'G r' )iiJJlr l" (cn t) r (;T+l d (~')
o

(1.5)

Performing the radial integration gives

;¡ . G r't. (( Ph (cod) ! 0. + r)Y'+' d.n~ P (J)) n +3 \~ r (1. 6)

For r C:-C a. this may be e:Kpanded as

co (( 'P (Cf 1)"Y+3 r
æ ~ pG r2.r)) ~-r3, (~) (i + (n+3) -a ) cln

J ~ (¡r ri+3~ Ift,Gr~(7)+lGrt.¿;)) ((ê;q;)~C~¥)~(~) d.Sl (1.7)

On the surface the approximation V- = 0. may be used in the first-order

terms of (l. 7) since this produces a second-order error. So on the

surface we may write

~ ~ f 1TpG rJ~3r +;6 Q. t r( p~ r ol n.

i -: l 1r IG a. 'l (I - -£ ) + . . . (1.8)



- lO -

Next we will need the integral relation between surface harmonics

5n and the Legendre polynomials:

)) sn 1" m (ca Y) eLfi. ~Jm~ i"~ I Sn (1. 9)
where $'rY\ is the Kronècker delta. Also we will decompose t into

surface harmonics:

r: ~ C1 (e1cp)
(1. 10)

Hence the surface potential becomes to first order

QC 00
;i:: l"íi pGa.'l _ H! fG:o. ?"" en + ~pG.a. ~7T r~ 3 ;; I I 4\1 t I ri (1. 11)

or
øø

~:: Jj /I pGa'J+ ~íT pGQ.Z, ç~ J .3 i 'f 2.Li-n)
lYl+/ ( 1.l2)

and on the surface

C/
y-= a + 2: r 'n

i

With the result, we can now proceed to the oscillations of a

(1.13)

liquid sphere. In the equation of motion we neglect non-linear terms

and so use

L4 + V (~ -p) = ~ ~ ( 1. 14 )

( P = pressure, J' = density, LL = velocity, subscripts denote partial

gravity is attractive 0)

~ :r
v ~ is taken with positive sign,-- ~
For irrotational motion U = n 1

sincederivatives. Note that

and so

~ + *"P- ~ = ~~) = 0 (1. 15)

The surface boundary conditions are
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CPt - l ~ 0

cpl"- (t-= 0 (1.16)

Inside the sphere every harmonic function is expressible in

terms of surface harmonics, which we call ~~ ' i. e . ,

cp: 2: (~ f (gi (ei(l¡t) (1. 17)

Substituting into the previous expression (l.l2) for the gravita-

tional potential and utilizing the orthogonality properties (1 ~9) gives

CR = /. ÎÎ P G a. ~ (,- n) ('i.; ~ VI + I n

~cp:: arYl~ ~ ()t

(1. l8)

(1. 19)

and therefore

r = il íT f G :i~ (I - 'f ) çn tt 3 :i Y1 + I Yl

or

.( = +ntt
2. ri (1-11) l'

(-i:fî+l) ~n (1.20)

where

~:.tj:fGa.
( 1. 21)

So we find that these oscillations are harmonic with a frequency

spectrum given by

w..:. iÌ' a. 1Y\(Yl-I)
~n+1 (1. 22)

Therefore there is a degenerate set of "oscillations" with W:= 0

obtained from lì :: 1. These are simply displacements of the whole

sphere. The lowest real oscillation is with'l;:.: and

W?. = !L 1. rr lJ G2 .!t 3 r ( 1. 23 )
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This is approximately the period (about 90 minutes for the earth) of a

satellite orbit at the surface of the sphere. This type of relationship

is expected on dimensional grounds for any self-gravitating spherical

system,

Now add rotation. The equations of motion of a system rotating..
with angular velocity W k are

UttU' VU +2W(t.'I i:) + Q(f -1 w\)(2.+~?)) = V ~ ( 1. 24 )

.. ..
for W = constant. For small amplitude motions U..\1 u. is small and we

neglect it, (This does not necessarily mean that W is small.) The

problem of the surface of a rigidly rotating body such as the earth. is

described by

.. _ .. W'l(x.~t L/"J) = ~ + c..'p;i d (1. 25)

At the surface if there is no motion, since

X-i ~ ')= '(~Wr l.e = r" (I-~'è~ e)
:: r? ~ (,- ?~(c&~ 9)) (1. 26)

with e as the co-latitude, we have

-lW"''í~l (I-'~)= ~ +~, (1. 27)

and for 'rø 0.

.L Ú) "Ja.?. l. ::3 ': i- ~ fG. 0. (~. ç ...J (1. 28)

or

r_ ,!- " i" ci 'l i:- - -- vv -- -r ':
~ 3

At the pole 1'..(0) :. 7 , at the equator 'P~ (.;):: - -i '

in ç2. between these regions may be expressed as
6£~ =- ~ (f w;ø.) = I~~ :;

(l.29)
and so the difference

( 1. 30 )

These notes submitted by

William C. Saslaw
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Osc~llations around Rigid Rotat ion

Louis N. Howard

From our previous results we may write the radius and surface

potential as

'( a. S W.ia.'i r + L r
= T ~:i Y1 (2.1)

~
"2 '2 ~ U -'()- ~a.+ 1- wa. p +~¿ r 'f.- (2.2)3 ~ :i .2 '( + I

The equation of motion is

i.o\ +.2 t.~ 'I U. + ivTI = Q (2.3)

where

íi:= : - 9? -1 tJ/"("",¡ ~4) (2.4)

and also
..

\7.u.=o (2.5 )

On the surface if we consider W to be small and neglect the

displacement of the surface due to rotation we have

- ;i I "-o¿ . ..1/ :: - :L - ~ W 0. 4V e (2.6)

and therefore

'f 2(1-'f)71= ~. + 3 i .1 YI+/ r h (2.7)

The linearized boundary condition on the surface is

f ~,.
J :: n.u.t (2.8)

-"
where n. is the normal to the surface. We can use 1T instead of 0.

velocity potential. d iReplace the operator ôt by the operator (. r: .
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Then

io- i1 + 2 W t x û. + \j iT = 0 (2.9)

Taking the cross product with ~
~

and solving for I. gives

~ i t' -u. = ~ t. 0- \7. 1\ +
(J - 4w'"

\0'- -t.- \.
~;iTi ~-1W'R x\71T J (2. LO)

where we have assumed 'i ;¡
cr =F LjW (2.11)

Using (2.5) gives

\7'" rr

4 w" -
(J ~ 11 ~i. = 0

(2.12)

which is the fundamental equation for rotating osclllations.

For no rotation this reduces to Laplace i s equation, and this

is still true to first order in W/rS Since there is a, first-order

term (in UV/a-) in the boundary condition, we may get a first-order

perturbation of the modes, even though the equation is unchanged. We

consider this further, working only to first order.

Next expand

íT =- ~ (f r TI n (2.13)

--II(appropriate since is harmonic to this order)

with

(0. d iT) :: Y' 'I Yiô.r h
(2. l4)

on the surface. Multiplying the boundary condition (2.7) by La-

\ _ A__.-r ~.: lY'-I)
i CT 1/ ::~. + ~ T :t Yì + I (~ ,ct)n (2.15)

shows that the n i th component is
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· l.(n-l) (r..û.)
A. fJ ITy\ = ~ ~ Yì + I i 'r

_ ci ?. (Y) ..I) i rLo- ã1T + .2w oíf +- d 'i\1"¡/ (a-~-'1W'l) L ~ a. ôlr
+ 4w" CC e(CbS õ¡¡ IJG díT)ìÚr ôr ~ ôG J'r (2 . 16)

since ..
~I X 'k " \71\ = - AJ e r ~ e ~: (2.17)
i

Divide by A.o- and consider W ~ ¿ 1. This shows that there is incr
fact a first order effect of rotation of the form

W :L aíT
cT -t~ ;;rp (2. 18)

Using the surface condition (14) gives to first order

4. IT :: i ;i ('f - ,) fnl1 + ~ w ( (1 íì ) )
rJ 'n a. ~'t+1 ' 'r to- dcp

n
(2.l9)

The surface hormonics n Y) may be expanded as

~ Lrn ip m )TIvi=-=Arne 'Prl (~e (2.20)

and therefore

cr~= cr? (/+2 r; *') (2.21)

where
'2:: ~ 2.( Y' -I)

0- ø:1' ~'f+1 (2.22)

The location of the three roots of this cubic are shown graphically

in the schematic figure on the following page (16). The root with

small r: is such that ~ (" 1 and its position should be distrusted

since our analysis holds only for :: .c~ 1. This rotational splitting

of modes is reminiscent of the Yeeman splitting of the energy levels

of an atom by a magnetic field.
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a;

A procedure for investigating second-order effects is to

begin with the basic equation (2.12). Denote the surface value of

(2.23 )

We have

:z "
\J iT= 0 ,

o
TT :: t on surface (2 . 24 )

\7:zp =
.- 0

1\ ~ë J -p - o on surface (2.25 )

To solve this we use

?.( ¡') 0
'\ I.r 11 ¡æ == 2 IT è ê (2.26)

A particular solution which satisfies the boundary condition is

p ~ ~ 1i~ - H (2.27)

where H is a suitable harmonic function.

In future discussion we will need to use the following fact:
..

Any "reasonable" vector field U can be determined from three

scalar "potentials" X., "l) W , which are essentially unique,

according to
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.. .. (.. '\.. aw ~u.=r;X 'fX\rxJ+~x\lip+ ôr r., (2.28)

This is analogous to the two-dimensional result:~ ~
u. =- ncp .+ 'V)( ('I 0/) (2.29)

Now

v. L1 = - ~ 1\ X + ~2 ;r(r~;~) (2 . 30)

where /\ is defined thr.ough

v"J-:
i a ('1 'a_i
y-1. d r r --/ t ;1 1\ (2.31)

Also the surface harmonics of degree "r are eigenfunctions of 1\

1\ 'In +Yl ("f + i) y = 0 (2.32)

and

v X ïi = -~ X (~ 'A \) (r :r ( ~ ))) +

+ \j("o~ (x+w)) X ~ + ~ (-+..1\ 4i) (2.33 )

..One representation of the general solution of '\- u. =0 can be

obtained as follows:

First select lj and X. arbitrarily. Then W may be determined

(up to an additive function of angles) from

with, if one wishes

--(Y--i ~\ = 1\ "X'dr ôr)
.. ..also U°-n = 0 on '(= a.

(2.34 )

(incompressible flows in a

sphere) the boundary condition
'Ow
Õ '(

:: 0 for r: a. , (2.35)

These notes submitted by

William C. Saslaw
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Low-Frequency Oscillations in a Rotating System

Louis N. Howard

We recall the basic equations of motion~ .
U-i + 2. w ~ 'l ct -+ Q IT = 0 (3.l)

-A ..
\1.1)=0 (3.2)

where, on the surface

1I = Ci £ ~(Yl-i) rd 2.-r+1 '( (3.3 )

In second order the change in shape produced by rotation is given by

where

1 + do. n r = ~, û.t.. .. -' rL,l is the velocity normal to the surface. The term /). \J ~
W 'i a. and indicates the eccentricity of the rotating

(3.4)

is of order
~

fluid.

For steady motions we have..
..wk'x U +~ Ti:: 0 (3.5)

and therefore
~
1c.~1T=O (3.6)

-l
Crossing (3.5) with 1l gives:

-i ..
2WLk(Æ'.ï:)-uJ +1tx\7 Ti = 0 (3.7)

For convenience define ~ I ~ ..u. =-kx\7íT (3.8)1 ",W

This is a two-dimensional (horizontal) velocity field. What we have

demonstrated is the Taylor-Proudman theorem: Slow, linear, steady

flow (in a rotating system) is two-dimensionaL. These are called

geostrophic flows. Its streamlines are circles. Furthermore, since
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U:i = t (r-lJ e) ~
(3.9)

Â
where ~ is a unit vector in the azimuthal direction, u. is determined

by a single function of a single variable.

To solve for a dispersion relation, ',replace .a~ by ~c: and obtain

(as before) the harmonics

¡t e J Jio-'Vrr+-1W' Ti? k-:iwk X n iT)0--40) l i() j
Forv~~ /.(W'2 (i.e. of comparable magnitude)

(3. lO)

( :'U, "J)íîd:.. 2.('1-1) r 0. dI\ _ 2W 'ôíf _cr,W Y) a. (:2n-lI)~t or i.(J ôcp

_ 4w2. a. ~ e (Ô7L\ )
()'2 ~~ ï JY'

(3.10a)

~
w a. /;' 1Now for ,'-

~
the left-hand side

the right-hand side of (3. lOa) is much larger than

and may therefore be equated (approximate ly) to

zero. Doing so gives the following sort of diagram for the dispersion

relation:
geostrophic
rotation

W 7JS~O

J
",'Y

61

IX
Q"

Y):;l Yl=3 cr

These notes submitted by

William C. Saslaw
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Theory of Shallow Water Waves

Louis N. Howard

We shall consider an incompressible fluid contained in a

shallow bowl rotating with angular velocity wk. ~ is the unit

vector in the z-direction, and gravity acts in the z-direction.

~
W

t !!

The equations of motion and of continuity are

Y:t + 2 w !1 )( u. + V (~ ) + ~ ~ :: 0 (3.11) ,

iJx + V~ + Wi! = 0 (3.12)

Let r (X) ~)t) be the displacement of the free surface above a mean height

H. Neglecting the inertial acceleration of the fluid with respect to

the gravitational acceleration, the vertical component of (3. ll) yields

the expression

F=f~(r-'Ž-).
The remaining components then give

u't. - .. w V'.¡ ~ r X = 0

Vi: + " W lJ -+ ~ r ~ = 0

(3.13)

(3.14 )

A horizontal continuity equation may be derived by the following

argument.
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According to the Taylor-Proudman theorem, the vertical velocity

component may depend only linearly on ~ Furthermore, it must satisfy

the restrictions

WI2!"H -= W
bottom, say

w Ir=( :: rt

It follows that, to lowest order in J: ~
H

W=rt(I+~H)-~Wbr- ottom (3.15 )

Also, for a fluid particle to remain on the surface, we might have

~(~+H)=O (3. l6)

Now W
bottom

:Da
- JJt

hence vi = -1)"\7H
bot tom

Thus, using (3.12) and (3.15) we obtain

(Ux + V~ ) = S
u..\7 H+

H

i.e. , \71.(~H): 't

where \1' indicates the operator (~ ' i) 0).~ õ~ (3.17)

Let us now assume axial symetry, and write

r () ¿rn e
') = cp r e , us ing

It follows from (3.13), (3.14) and (3.17)

cylindrical polar coordinates.

that for a paraboloidal basin

(H =Ho(\-r/a.~) , assumed fixed independent of () )

1,r(/- ~:) ~~) + l- ;.o (1- ;~) -~m ;i; + y- cr;~~J 'l = a
(3 . lS)
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Write 4w'"_l-"rw _ +d- 0."" 3 No

':
() ::

~ Ho

.ici
~ Ho (3.19)

and so

cl (( Y"oa) dq:j L m..( Y..) a;:i J '- Y' 1-- ~ + -- 1- T + -r (0= 0at y a... Cl r , í ¡: ~ Ho 1 , (3,20)

This is of the same form as would be obtained in a non-rotating system.

Expecting ~ to be of the form
DO

~:: l"/Ã¿ Ck (.ì",)K~~=o a. (3.21)

regularity requirements at the center lead tolJ = 1m I

then obey the formula of recurrence

i

The C/(.5

c = _ Yn~(lml+k)(lYYI+k+2)+
~+'- (k+2.)(K+2+2rt)

'2 -i
0; 0.

-p C K (3.22)

Searching for a finite series (21), we demand the numerator of (22)\ . vto vanish for some value of ~ , which implies

( ~_ fm)

a.~~ J. .~ (K + /m)(K + 1m I + :1) - \'"

~ (K)
Only even values of k can contribute to finite series (21) since

(3.23 )

the sole cutoff condition, (23), involves even terms alone ( Co has

to be non-zero because of the regularity requirement at the center).

The lowest non-trivial eigenvalue còrresponds to m ;: :t 1) K = 0 :
C:t1)

(a;~~li ~ 1.

(-1 1)

). (;¡~~) = 2. ~ Hq /~'-

Co)

(3.24 )

with its two eigensolutions

'r :t Úp') .. e 1" 01
r ~Y-

i

r~ ~ ~

(3.25 )
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which describe the space-dependent part of "sloshing" motions.

Solving (23) for larger values of "l and Æ and expressing

2-
()o again in terms of 0- and W we find that the dependence of ~ on

IN may look like (see eq. (3.19)):

10'1

w

Rotation splits up each eigenfrequency of the liquid; the eigen-

frequency 0"= 0 appears to be infinitely degenerate and related to

low-frequency Rossbywaves belonging to non-axisymetric modes only.:i .i 1.
Curves crossing the line 4 W -õ.: 0 correspond to values of f(

and 'Y obeying

k (2. jmj + k + 2) = 0 ~ K = 0 -- m :f 0 (3.26)

(see (3 .l9)). They originate from the lowest points on the (d-) -axis

of the diagram and represent "Kelvin" wave types of motion.

These notes submitted by

Joseph I. Silk
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Effects of Rotation on Shallow Water Motions

Louis N. Howard

To examine the effect of rotation on a fluid moving in a bowl

of general shape, z = -H(x, y), we consider velocities of the form¿rr-C() )
~ :; e u. eX, ~ ) /felt, ~)I -w

.¿ a-u :: .2 w v + ~J.l = 0
,

1- CJ'l :: .2w'U + ~ 1'J = 0

~crr + (Hu)l. +(HV)~= 0

and the equations

(4.1)

(4.2)

(4.3)

which contain the x and y components of velocity only. Combining these

into a two-dimensional vector y",.:(u,V;O) , we have to express the

usual boundary condition that the fluid velocity at the surface of the

bowl be tangential to the surface, by a condition onU:i and !J.i

the projection of the surface normal into the (x, y) plane. We choose

the formulation:

H u . n. :: 0 on the surface of the container.-2 -2. (4.4)

~ ..
(Thus U.,,"Yl:i bounded on a sloping beach, ~ on a vertical wall).

Insertion of (3) into (1) and (2) yields, with ~ == (O,OJ 7)

cr 'U:i - 2 t.' (J W ~ X 11 2. + ~ 7 9. (H ~ ~) :: 0 ( 4 . 5 )

Are waves possible in the "general" case? How would the frequency spec-

trum look?

We define an inner product of two vectors a and £ by

(~)!! ) = r H l .ly oft c0?
J)

1) being the domain of the (x,y) plane that is delimited by the inter-

section with the bowl i s surface. Thus, we have
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(Ç! ¡ i Æ x ~) = r H 9: '* i (~x ~ ) cb ~ = -;r i Ii ~ · (~ X a.* ) rlr. ~ ~

L = r H (t ~ x ~)*. P: dx ~ = (1.' ~ X ~ J It )~ . (406)

and

(~)'V\/(Ht~= rH~*'\7V,(H~)d'tc1 =

~. r v' (H4'7.(Ht2d.~ - rt¡'(Ht)I7'(Hf )d.d-' ;~ D
here the first integral on the right vanishes for all vectors O-~

(4.7)

satisfying (4).
,

Also, for a.;: a. + t. Cl. ·_ --r - 1.

(q;J k X a.);: -2 i (~i ) K)(~.,)_ (4.S)
Operating J ot¡t~ ¡. y.:'.. .on eq. (5) and us.ing (7) and (S) leads to

::

(07 + 

ia¡YCy-, , Y-,)- 4 ("r t; ci¡)w (Hg'i 6s. y,~,.) cLx ~ -D ~ (4.9)
-~rI\7-(H~,)1 c1x~:: 0

Jl ¡

the imaginary part of which reads

:i': ci"i (y-, ,~,) = 'I i a¡ w rH Yoi i · (is X ':i r) alx.tU ·

1)

For a¡ + 0 (10) can be used to transform the real part of (9) into:

(4.10)

(d; -'S~ )(':,' i¿,)- 2fT; (y",y.,h r IV, (Hy.,) ldt~
D

which allows for the only solution 1L1=(O,¡O.O).

= 0 (4.11)

To obtain non-

vanishing velocities we consequently require 0: .: 0 , i.e. all possiblet
waves will be stable. Rewriting (5) in the form

J-1 ~:i= o-'l~ 2. (4. 5a)

and using (4), (6), (7) and a" = real, the operator J-L is found to be

self-adjoint 0 J-I contains a parameter O(::~ l. which, if small, suggests

a perturbation calculation to describe the effects rotation induces in
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the oscillatory modes in shallow basins of general shape. We put

Jif = -3 \/7. (Hk)+2 l.'o( l)( k :: )-iQ ~ -t 0( J-, t

and calculate the influence of rotation on a particular normal mode

1)0 of J-Lo' with eigenvalue (a-°t . o
Let 1f be non-degenerate and

normalized. Expanding 1:" and a-:~ in powers of 0(

c 1 .. 2-
U~:: ~ + Ql 1f + 0( ~ + . . .

cr '2 __ ( (j0 ) '\ eX À i + ex" ~ ~ + . . .

gives the equation of first order in 0( :

(J~o-(o-~/")~ = (Ài-Jl,)y/.
(4.12)

Since Jio is self-adjoint,

(U: l (J.Lø- (6" 0/" ) y)) :: 0)
(4.13)

consequently

À I (1.., il): (y.', J/ ¡l )=i ¡¿. ~ 2 i (!: X il) d.t ~ = 0

o ,~ 0 0
as non-degeneracy of U implies U ~ U = . Thus, rotation has no- --

(4.14 )

effect of first order on the wave frequency. To obtain the effect

on the velocity fìe1d, we :lepresent '~ by the eigenvectors of 1-(1

(which, being self-adjoint, possesses a complete set of eigenvectors).

All of those vectors corresponding to non-zero eigenvalues (If U. II) are-l'
irrotational as can be seen from

.i
)to 'Yn = - 8 íJ ï¡. (H 1&n) = ( d- 1' ) M- M ;

the eigenvalue (J:. 0 has eigenvectors (Ii y.," ) with \/.(H 11')

stant which (4) indicates to be zero. For these 1l~ ' then,

a con-

1J :: i- \l t. a. :: .1(7 0/ X k )_n J. - H -
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in the two-dimensional case, with 'l an arbitrary function constant

along the boundary.

Inserting
y1 := ~ en ~h + ~ (\I 41'x .~ ) (4. l5)

into (12):

?; ClrJnf-(t;°f")C'tY:h -(~l)f -/(v tj'x K)= -21. K X "y0,

multiplying this by H ~ and integrating determines en

(4.16)

CY¡ ::
-1 í C?ln , ~ X Jl'1)

(crnr-- (a-0r-

(4.l7)

the component of ¥ parallel to 'YtJ is obtained by a normalization

condition. Operating \) X M .. on (12) leads to

( G-o f-n X Ci \J 0/ 1)( \~ ):: :i i \7x (I~ X ti0) (4. iS)

or

(~O) ~\). (~ g 41' ) = -2 i \J. 1! (4.19)

,
which has to be solved subject to ~ = const. along the boundary.

Neglecting centrifugal effects, one can use the resulting gJ. ~
to calculate the second order perturbation on the eigenvalues Ci .

The second order term in (Sa) is

(JH - Ccre. t )U1.:: - '1 U' + i1 u.0_ JI/i_ '2_ (4.20)

'which gives, by the above arguments,

Àa:: (-i )-í¡1d1)::

:: 2: (~Oil ì K X Cl' ~l')+ (go¡ ii ~l( (-v \flx ~)) =

= : 4 ~ j (~&ì £f ~ '!n ) r- +- 1d-°)'Jfi(7 y; 1*). (M '\J) I ~ti ((j'f)'- (a-0 ? ~\ ) H v T a. it
:D

(4.21)
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since

~ i r gO"; (Kx 'V tjX n) rLd¿ ~). ¿ ri/*. 'V t¡' d;t ~ "~ ~
= 1¿1 V '1/'. dm -.2iftj'a. u'* dx'0 =~ D ~

: 0 = (cr') r ~ (711"*)' (" lj ') dx ~ '

:p

where (19) has been used.

These notes submitted by

Johannes Schmid-Burgk

Supplement to "Effects of Rotation on Shallow Water Motions"

Louis N. Howard

The qualitative features of the waves in a paraboloidal bowl

and the effect of rotation on them would appear to be pretty much

typical of more general cases. Here we consider briefly the case of

"Rossby" waves at high rotation rate, which for the paraboloid have

-f
(j _ W ' We shall see that similar modes can be found in general.

a. 'JW~ %
This limit, - ., ') 1 and CTl.\ ¿¿ 1 is however physically somewhatß Ho ""
artificial, since to achieve it in an actual "bowl", the bowl would

have to be itself a very deep and slender paraboloid in order to pre-

serve the depth parallel to the z-axis at 110(1- ~2.) - under such

circumstances one might wonder about the relevance of shallow water

theory. But there is no particular difficulty with this limiting
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case regarded as a mathematical device, and similarity between the

paraboloid and a more general ease in the limit suggests similarity

for more moderate values of a.1W~ Ho

Le t ""=tA . ll Ho . _I d' d d . . 1 . b 1 .v ' - ~ an intro uce imension ess varia es in
a? oJ

as length scale and ¡..: Hò -t (!~. ..).the basic equation (4.5) using ~

Then we ge t

:: j) tt-2ifl r X 71 +\J\l-(f- Lt) ~ 0 (4.22)

We are interested in modes for this equation with ~ of

order I and 0-
W

sma 1 1 . It thus seems natural to drop the first

term and consider

-,2 ip. k ¡( 11 + 7\i. (A tt) : o.

(Warning: we shall see presently that this is in fact a singular

perturbation" )~ 7.
so 1. = \/l/x K. ,

-
Taking the curl of this equation shows that n. U = 0

and ¡; ;. i1 :: \l 1l. Thus -2. i¡1J + i: .(n tt) = 0, since the

constant of integration can be absorbed by ~
..

But since 'Y. U :: 0,

this now becomes

0= -2~p-ì.+û.t¡~ = -:i¿pìf+(J~'l\l-t).\J-i (4.23)

If fi is arc length along a line of constant 'i and,8 = I \Jli, I '

(4.23) becomes

()ll _ l
ß O~ - ~ f.p. i¡ ( 4 . 24 )

Now in general this equation presents a problem, for we must

usua 1 ly expe ct closed contours of ii in bas ins, and inte gra t ion of

the above first order equation around such a contour will not in general

return one to the same value of 1/ This can be achieved for a

particular contour by choice of p. , but in general will not then work
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for other contours. In the case of the paraboloid it happens to work

for all contours at once, but this is not usually true,. This would

suggest perhaps that the disturbance must be localized along a par-

ticular contour, depending on jU , but the situation is in fact dif-

ferent. To clarify it we must reconsider the first term in (4.22).

The reason that neglecting it is a singular perturbation is that this

~
forces \1. /) = 0 which then reduces the order of (4.22). This can be

seen more clearly by writing the equation in terms of the surface

elevation r
~, which is re lated to ~ by

i1= 2w rVç~'k+~() nlJ()2._t¡u/' L :2W) (4.25 )

One finds from this that ~ ~ )
pC:; u. -1¿ iê '/"d = iL\j r

W

so (4.22) may again be integrated to

t1gC+\7'(j,-a)=o~ or

l 0(q-~) ( - i- n. (h \l () - (í X \l fi)- \l C == 0
(4.26)

.It is clear in this equation that dropping the term i:\J"(~\l ') reduces

the order and constitutes a singular perturbation. Furthermore, if

this term is dropped, along with the one in o-~'I , we get exactly the

equation (4.24) with r replacing ~ But (4.26) now shows that a

special contour along which (for given ~ ) the reduced-order equation is

satisfied, plays the role of a turning point, ~ being exponentially

decaying on one side and sinusoidal, with scale J %' times the overall

scale, on the other. The reader is invited to examine this more fully

in the axisymetric case.



- 3l -

Spherical Tides

Louis No Howard

We shall now extend the results of the previous lecture to

apply to shallow water tides on a solid sphere.

Motions normal to the spherical surface are neglected, and

the velocity is written

LA = U. ~ i + If ~\ , in spherical polar coordinates.

i

For generality, we shall include a forcing term in the formulation of

the problem, to represent external influences due to sun, moon, etc.;

however we shall only solve the equations for the case of free oscil-

lations.

The equations of motion are

where

~t + 2 w ~ X ~ + + \J P

~ = (th e) sJ e) 0)-
w'ia,

We suppose that ~ and

+ ~~ :: forcing term (Sol)

If
Wa. are small compâred to unity,

and deduce from the radial component of (5. l) that ¡o=.~ ~ (C -"')where

r ~J e) Cf, t ) is the displacement of the free surface above the mean height,
and H (r; ¡ cp) is the mean height of the shallow water above the sphere.

The radial coordinate r is measured from the mean height leve 1.
..

Representing the forcing term by 3 \J ç (9) C?) , we find for the

remaining components:

Ut - :l w ~ e V t ~ a ~ (( - f) = 0
d ( ~

Ý-t t~W Ct e u. + ctl-e ?Hf (- ()= 0
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Considering only axisymetric vibrations, of period a- , we obtain

LCJLA -2w~ 8t.+ i l(r - f) - 0a. ()8 S -
L(J¡f + 2w C- e t¿:I 0

(5.2)

(5.3)

We also require to make use of an equation of continuity. This may

be obtained by considering the flux of fluid through a surface element

-r"d. e d cp. Note that the surface density per unit area is (1- + ~ ) p.

Therefore we must have

lrrF (HlOJ+I7. L fi=(HT oj =0

Assuming that ~ c(.. 1 ' we obtain (with t = constant and H = H(e,/p))

La- ( -t Gt ~e â~ (r-i u.~ e)= 0 (5.4)

From (5.2) and (5.3) it follows that

-i \. i. ' Q d (7 7)
cr u. - 4wu. em G - La- -' ae ~ - ~ = 0 (5.5)

These equations are the basis of Laplace's tidal theory (axisymetric-
case). We now take ç = 0 , considering only the free oscillations.

Then from (5.4) and (5.5), for the case of uniform mean depth, we find

that '2 a.:i H "0 L '
(j?Je (u..sV G)J = 00- u-'1w u.~e+~

a," ô e _SJ e

l,?- ,. ~ :. o-"i(2l1
Now de fine 'ì:lt ~if ' and

~ H

and so

(~Ii d.1 (u.s. e~+ (ÌI- 'i iie) lL = 0

write u:: Vs, e, ¡.:: ca e , and then

-g
olê

Finally,
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-6 L( I-P.')VJ+ (À -~p-')ü" 0

Multiply by V(i-;.) and integrate with respect to ¡U from

U-:"¡ i to 1)= -I, whencel- +1 r +1+1 oL '2
A S (i¡L')Vd.,u ~ i r fdl-p.)ü~1- + r L * (l-p.')VJdf!-I -I -I

This is a variational equation for 1l For a trial function

we take U= 1+ 0(jJ"i,.. .. ) and we obtain for the approximate value

of .Â : i:
it,: 2-t-:.b

For illustration, let us calculate the frequency for the earth.

6
We take for the mean depth of the ocean H -- 5000 m, a "J 6. LO m

_11

and WN 10 radians/sec. It maybe noted that rotation effects are

necessarily of importance, since the time for a long wave -length

earth approximately a.
d is turbance to travel a round the is

VßH
)

4or 3.l0 secs.., of the order of a rotation period.

if .. "8
Then we have that 't

OJ () .. ? and the fre-::
9 H

- so,

quency cr is given by

l) -- / ~ 'Ye \ IT -- 22 If :c · I. ~'l:: 11 II 4U~1

Thus the lowest axisymetric mode has a period of about 7 hours.

Also, in the vicinity of the equator, we have approximately that

i: + (). -V')1f = 0
This equation is that of the quantum mechanical simple harmonic

oscillator. The solutions have appreciable amplitudes mainly inside

fA ~ J À~I which is indeed small compared with 1 if the frequency is

small compared to the rota tion rate. Thus low frequency axisymmetric
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free tidal oscillations have their significant motions mostly restricted

to the neighborhood of the equator, and look like Hermite functions 0

The surface displacement r may 15-e expanded in spherical har-

monics
r (/J):: r Cl~ ~ (Ik)-

From equations (504) and (5.5) we obtain

d
Ò¡U ( ~-ßlL-i~J=-ir_.£ - À1 d).

L/w" ,-

(5.6)

where (as before) '2 -:
Ll UJ 0.

i = 3H

Using the identity

t ((I-)L~)l: J= -n(f1+I) ~ )
we obtain from (5.6) /

i ( ci"2 _ '2) -: en PI1

rCn Pn=-i 4w') p- ¿, '((-n+i)
We now utilize the identities

2 Y1 + I I ? -I) pI = P _ P

7l(n+l) r 11 n+1 'n-Ii I
(:in+I)Pn = "l+i --l-i

The result is the equation

( ~ jJ t i I 1~c ~' -1+ rw1.-1 '::L Cl'"P'f.2 7vi_2. .. 2(~Y\+1) 'P'
n n l' ( i 'f¡ c-.i) t nO' ~Ml 2n +3 + '-l' -I - (in.')( 1n.J) n

Thus the coefficients en are related by

L = Cvi_2- +en h (211-:')( '2\1-i)
c ('(+~ Yi~)..

C2.ri+S)(2\'t3) ;c),

We take Co~O so that the perturbation gives no total volume change,

and this formula then holds also for 'Y = J , if we define C = O.-,

Here L'r is given by
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L :;
11

-:Ü -J
-- ?
Yl(YI-II)

+
.2

(2Y1-I)(¿Yl-+3) ~

The above formula can be used effectively to calculate the normal

modes by suitably truncating the infinite system of equations for the

c.~ For instance, for the lowest mode we have

C-J C,3 eeL. - Cj ,,' C1 C L c!.~
C,Li- --- 7.5 -=o~ oi i /7.5'::0;- 3.5-+ 1 3- 11.'1=0

and so on. Truncating at the first step we find L = 0, which is easily
l

seen to lead to Ì\ =.1-\ i/S, as in the simple variational calculation

above. The next approximation gives

L,
¡

- 7.5- 0=
i

L .3-3,5"
Le. L= S/- L"

, :3', 5-1 :3
Using the 1st approximation to evaluate s we

find

Q.l:l~ J _ / /2 ~~
Ì\ := ;2 + 1)/5 + 3':;:5'7 (i ~~ìi. + ~ _.. - .2 + ilS - 3!)- :LQ -+ 7.f

i ~/J''t n iii
For the earth, this correction term increases the period of the lowest

mode by about 3%. Thus convergence appears to be ~uite rapid, at least

for the low modes" This approach is also useful in calculating forced

motions. For classical references see Lamb"

These notes submitted by

Joseph I. Silk
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Hydromagnetic Planetary Waves

Willem V.Ro Malkus

ABSTRACT

A study is made of hydromagnetic oscillations in a rotating

fluid sphere 0 The basic state is chosen as a uniform current parallel

to the axis of rotationo This state is stable or marginally stable

to axisymetric disturbances for all values of current, rotation,

viscosity and magnetic diffusivity. It is found that the non-dissi-

pative normal modes are described by a modified form of the Poincaré

eigenvalue problemo For small rotation rates, the lowest non-axissym-

metric modes are unstable. For rotation rates of geophysical interest

all normal modes are stable 0 The introduction of ohmic dissipation

produces a hydromagnetic boundary layer problem. Solutions for the

boundary layer are outlined indicating its role in altering the free

periods, damping the oscillations and producing external poloidal

magnetic fields. Dispersion relations are derived which establish

that the zonal phase velocities of both "fast" hydrodynamic and "slow"

hydromagnetic waves can be of either sign. Observations of the secular

variations of the earth's magnetic field indicate motion primarily

towards the west. A mechanism for selective excitation of the observed

motion is discussed.
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ANALOGY BETWEEN ROTATING AND STRATIFI~D FLUIDS

Steady, Two-dimensional Motion

G~orge Veronis

The plan of this series of lectures is to develop the theory of a

non-rotating, stratified fluid in parallel with that of a rotating, homo-

geneous fluid in order to emphasize the striking similarities between the

two systems 0 Parts of the material on the stratified problem in lectures

4 and 5 follow a presentation of the same problems by R, Dickinson in a

term paper which he wrote for a course on rotating fluids by H, Greenspan.

I, Basic Equations .~

The Navier-Stokes equation of an incompressible, viscous fluid becomes

~+(t.V).t+2gxi= - j V''P-~K+YV2.)L
when the fluid is placed in a uniform gravitational field and is made to

rotate at a unifonn angular velocity. V is the kinematic viscosity and

all other symbols have their usual meaning.

The equation for the conservation of mass is
õ.P + 0V. V ': O.
-at J - .

and the heat equation, with the viscous heating and compressibility neglected,

is 'dT + y.nT:: K \;?T,

t1t ..
where K. is a function of the thermal conductivity -k , i. eo

-I
I( == yep .

Note: If the temperature is composed of a fluctuating temperature, T ,

plus a constant imposed temperature gradient in the z-direction, we may of

course write -i - T + .Ë t\ TI total - L J
and

ó)Ttotal
"at

bí 2T
+ "t'\1T + T-W :: K \7 .
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We shall be considering cases where the density varies primarily

in the direction of the gravitational field (the z-direction). Then we

write
y()()~)~, t)= 70 (z,) + y'(~¡d/~~ t)

-PllC)~)~)t):: t:(r) + p'(X.I~)7!Ji:)i iwhere.f and P are small perturbing functions and "Po is defined

such that ~ "P~~) = _ :H'ò ('-)

Under these conditions, in component form, the Navier-Stokes equations

be come

U-t'tX.\7U.-,2,nlF= -~ p)(t-vV'2.'U

I '0 t.
-i + V. 'i v + .ì.n 1J = - - í i- .lV 'V '1t .. .. 0
LÙ-i+..-vur

iI i ~ J
= -jit.+vVur- 97 l

where u.. if and u. are respectively the y.) ~ and i! components of the

velocity.

If now, in addition, we apply the Boussinesq approximation, ~

i

becomes"p , leaving g only in the gravity term. The equation for
o

the conservation of mass takes the form of the continuity equation for

incompressible flows.
dY'V. V = 0 and - = 0-- d,t

Finally if j is given by ~(I-c;T)we substitute (-r:foT) for /

II. Steady Motion

We shall be considering the small, steady motions of an incom-

pressible

rotating, homogeneous non-rotating, stratified

fluid which is now considered to be inviscid and non-conducting.



- 39 -

In two dimensions the equations describing this system are

!(u.1Å~ -I WUi- - :2$1 
V) = ~ f¡(

J( 1.W1- + w W.¿) "' - Pi: - ~ f

l (v. Ut. + tJ 'l¡,) :: - "Pit

'p(v.W't + () Wr) := - 'P:¡ - ~¡

U;c +Wr = 0

.. -= con sta.'Yt

U-t + w~:: 0

-u'P;t tW~=O

Le t p) J
-"

and V be expanded in a serie.s in terms of a small

parameter 6. such that "P and,j have zero-order contributions while

~
V does not; i" e. the zero order state is one of no motion.

00

(Pi.l) == ¿ E'r (p, j') Y1
1,=0

v ;= ~ e'n V
-. Yl

Y\=I

Then the zero order system reduces to the statement of hydrostatic

equilibrium.
'P :: 0oX

-Po r :: - j fo

Using the above conditions the first order system reduces to

;t .n Vi :: J "'i X

~nî. = 0 ~1J =0i I
o = P¡x

o = p =) ìi = 0Ii.' ~ -jJI :: r;ë

"l1X t wl'i:: C ~ WI'ò -: 0 1J1~ + w,~ = 0

W, ..Oi! :: 0 :p Wi = 0

Higher orders only give the same equations with differing subscripts.

Consequently we conclude that the system is

geostrophic in one dimension hydrostatic



- 40 -

In three dimensions, expanding variables as before, we again

find hydrostatic equilibrium at zeroth order

-p~)( = ~ ~ :: 0

?~il == -3 f",

To first order

~n.v¡= ~ -lx=l?ix, ci
:2.n iA, ::- l' 'Pi ~

o=r;=t=9 ¡)1t.::Vj;=O

'U1X+ Ví~ + wi:a =0

and we find

O='P1)(

, Ö : "?~~

-~!¡ :: ~i:

lA,x + V;~ +W,~ = 0

w,JOi! "" 0 ~ Wi :: 0

'ïJ1x + iJj :: 0

That is, the two systems to this order are horizontally non-divergent

with the flow satisfying the Taylor-Proudman theorem, i. e.,

geostrophic,

not varying in the direction of

rotation and moving as columns of

fluid following contours of equal

height. (The Taylor column was

illustrated in the laboratory by

Dr. A. Ibbetsonand an example of

this type of flow is seen in the

Gl)rtler-wave experiment of the

second lecture. The column appears

below the oscillating disc.)

hydrostatic and

moving in a horizontal plane.

(This constraining effect of

stratification is sometimes

called blocking. The fluid

moves in horizontal layers. A

laboratory demonstration was

arranged to illustrate this

flow,. )
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The equations to second order in e are

i (U'\lÅIX + 1. '\,~ -2n~) = - "P2.'I

f ( ii.v;ii + V;V¡j + 2rL "U.1): - E.;¡

! (u,uJ't +ìrWL~) = -"PH:

'l:i )( to 1. j + W2 a :: 0

Yo (U.I1lI)( +V; u.'.!) = - 'P2.iC

Yo (1l \ 1Íi + 'V tr ;i) :: - 1;)

== -P.2.~

U~lC +Vi.~ -:

WI/ =02.)o~

3J2-

o

As conditions on the second order velocity components we find after

some cross-differentiation and no work at all, that

manipulation, that

u2)C t 1lj t: fyt (%;)

l1:ir' llí! ) l.2.:e -l +ri (i:)

U'2)l+ ir"j :: 0

£.2- = 0

Up to this order then, if we consider time dependencies to be of

order ê (and higher),

and upon taking u.~"o¡v¡=O

1Lt+UUx+V-U.j -;¿n.V:: ., ~ 'P¡i

ll + 11 ~ + irVj + 2. si u ;: - ~ ~

:. -.. l. -Q.f i! ..Wt + ii W)( -r -iWj

.l (H. tV .\iu)= - Pxo "" ,.hon-r

-?(lJ+tnorli .nir)=-13

j J :: - "Fe

Ux +Vj +W¡, -= 0 w- 0 , t." + Vj :: 0

We note simply that the flowWe may integrate the last equation

to give:
/ clh

= --¡ E
thickness of the

is hydrostatic to 3rd order

Ux +1)

where h(~¡'jit) =
and horizontally non-divergent

to 2nd order.
layer of fluid. Cross-differentia-

ting the full equations to get rid

of pressure and using above equation,
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we derive an equation for the con-

servation of potential vorticity,

f+2. _ ìl~-'U.:+-i.n'n - h
cl (~-l~.!ì =-0.

clt h ï

Again in three dimensions, but this time for the combined

rotating and stratified case, the equations are

f y".\J1l - 2 nj1. = - ~

J'f.VV\f -+ lSl,?1A ~-1j

J 't 4 \J uJ ~ - p~ .. J J

\1- V = 0..

'l-V.f==o

To zeroth order the system is hydrostatic.

'Pox :. "POj = 0

Po~=-3jo
To first order it is hydrostatic, geostrophic, horizontally non-

divergent, with no vertical velocity

:i n ~ 'U1 -: - 'P
~

U/X + VI;! : 0

Differentiating and combining the first three equations

l,~ :: -Sf,
2 n-E V; ="P~ ,

Wi = 0

2n.CJo~U¡ +.. Vjg) = - .93/)( ~

~n.(go?: u,+Jo 1.1-:) ~. Cl P ..
.. .; ~j .

If the system is Boussinesq, we drop Jo~ (~' ) and get the thermal wind
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relations
in ~ Vi¡. = - g.?iy,

2nJo '111: ': 9 .Plj

Once again, the second order equations are

.? (1) ,v., ~ l V; 1J';i) - 1 .n.l V'') ~ - ~)(

Jo (u.i ~¡( t ii V;;i ) + '2 n 30 tL~:: - 1;;:

~j:1= -P':.l
'U.2 + v;.; t w.i f:== 0

1l1J:x +V;.fj +W2.JÓil :. 0

and to this order, including first order time derivatives

lL't + Xi-. 'lu. - 1 n V = - ~ p¡(

1ft + 'ij, .. \Iv + :2 n. u. :: - t rj

j ¡ :: --p~

,

These notes submitted by

Lorraine S. Whitman
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Erte l' s Theorem

George Veronis

In an inviscid non-diffusive stratified fluid with density J

and velocity V , measured relative to axes rotating with uniform..
angular velocity )l , and in which the equation of state may be written

the quantity

ôs (
õt+~'VS::OI $:$ ~.f)

(V)(;i-i:i,ß . '15 is conserved following the motion of
.f

( l)

fluid elements,

Proof. The inviscid form of the Navier-Stokes equation is3 i-V+V.\lVt2.0y.1/ =---í/P
at,. .. .. -,., J'

(2)

The vorticity equation may be written

õOr ~ a. + \J ~ (~o.)( ~) :: \l p X \l (-7 )
w = VxV+2.o_ 0- "" '-

(3)

where

The scalar product of (3) with n¡ and use of (1) and (2) then

give s

('ò; + X:. V)( ~~; \7 5 ) : t V S . V P X V' G )
zero if 5 :S(p¡?) as assumed.which is

Modes of Oscillation in Rotating and Stratified Fluids.

These may be found by linearisation of the equations of mo~ion,

We first examine motions which are independent of space.

1) Rotating: Inertial Oscillations

By elimination of ~ between the two linearised space independent

equations 'õu. _ 2n. V: 0
'( t'l

we find a v + ('l n.)2-v- :: O.
ô-t ~

frequency 1..n.

and 'at,; + ').nu. :: OJ

at
Motion is therefore oscillatory with

If we take the local value of .n on the Earth, the
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period of inertial osciLlations varies from half a day at the poles to

infinity at the equator.

2) Stratified: Buoyancy Oscillations

From the two equations

ÔW-
'ò l:

+ -L ::0
~

and Clf 'dJo w..o
'()(: + d~ , we obtain

-¡ow ( :3 0.90)
òt~ -.9 'òž! ú):: 0
(_ ~ àjo~Uù::O, the Brunt VMis~lM Frequency"
\,.f Ð%-)

If we allow spatial variation of the waves in two dimensions

Motion is oscillatory with a frequency

the modes are modified as follows:

1) Rotating: Inertial Waves

The equations of motion become

N - 5 .eiu.s.

ÎJ1: - 2 .n V = - Px

V;+:i5lu=O
Wt :: - ~

continuity u.x+Wj!=O, whence we define a stream function 'f so that

11 :: 1f.¡' I.:. - ~ )(

Elimination of P and '" then leads to

\72-4Jtt + 4 d 4J~it :: 0

L(irt+k¡(.j\"~)
lpd. e the dispersion relation becomes

.. i. n""n'a(J :: ~ i.+ '( ..

We note that whenYl/ìk, i.eo, when the motion is largely in horizontal

and if

layers, the frequency approaches that of pure inertial oscillations.

When !-(;)'))', Le., when the motion is in vertical columns, the fre-

quency approaches zero, the flow thus becomes steady and the Taylor-
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Proudman conditions are approached. This type of wave motion was

illustrated by an experiment in which a disc was oscillated along the

axis of a vertical cylinder of water in solid body rotation. The

wave motion was made apparent by its effect on a suspension of alumin-

ium particles in the water illuminated by a vertical sheet of light.

The shearing motions in the waves rotate the aluminium particles and

the waves were seen as alternate dark and bright bands aligned with

the wave crests. Waves are possible if the disc frequency is less

than twice the frequency of rotation of the cylinder and radiate away

from the disc in a cross pattern, being reflected at the cylinder

boundary.

2) Stratified: Internal waves

The equations of motion

loU1:+~ -:0

Jo W-i + "Pe :; -.9 J

'"x + l.~= 0 (whence U = ii), Lù == - \. )'12- )t
and J. + dYo CD:= 0t Q~

~ 9 ê).fmay be reduced using the Boussinesq approximation to V ~t ~ ~ O~ ~~~ i

I d L II l " (cs i! + k X .. 'f ~ )and if S;:.. ~ is constant and 'lo( e the dispersion90 d:t
OJ

re la t ion is 12 - .: s k .
() ':= J(~ -+ Y1 ?-

(These waves were produced experimentally in a stratified brine solution

with a nearly constant density gradient by slowly oscillating a block of

wood at one end of a tank containing the fluid. A film of the internal

wave rays produced in this way, made by Dr. Stewart Turner, was also shown.
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The experiments mentioned above were set up and demonstrated by

Dr, Alan Ibbetson,)

The Analogy between Rotating and Stratified Fluids

The analogy between two-dimensional flows of a homogeneous fluid

relative to a rotating frame and the two-dimensional flows of a strati-

fied fluid with a constant mean density gradient in cases when it is

appropriate to make the Boussinesq approximation is now extended by

a study of the equations of motion including the effects of viscosity

and diffusivity. The two sets of equations are non-dimensionalised

and are then as described below.

l) 2-D rotating homogeneous flows (SL constant).

Scaling all lengths with a length scale L , time with
I

2-D. 0 '

velocity components with a speed V and pressure with 1.S V.. L, yields

the equations

LA t + W;a = o

I

¿¡~+Ë;¿.\71)-V:; -rx + EV2.u.

dVt+E.;¿.\lv+u:: E\7i.1.
J Wt .¡ 6;¿' 'V uJ = - ~ + E Q ') W

where X:: (1.A..¡ V; w), E:: :2 i. i.'l is the Ekman number ( ~ 2. = Taylor number),

E = ~ is the Rossby number and ~ is, as yet, at our disposal,:in t.
2) 2-D stratified fluid; Boussinesq Approximation.

Lengths are scaled with a length L. In the basic state the

temperature is -T + -è D. T where the temperature difference between top

and bottom of the fluid is l: T and the corresponding density difference

is -cUi l\ T The tUne is sea ied by ~ J _~"',, T " proportiona i to the
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reciprocal of the Brunt-Vl:isl!Ul frequency. b 1è is a scale of the

temperature fluctuations driving the motions from the basic state and

we write T::6TcS. The pressure is scaled with -f L3o( LITe (corres-

ponding to the change in hydrostatic balance) and the velocity compo-

nents J \ L) Tc The equations becomewith -,30( Ló T ~T

J U-t + 6 ;¿ . \Iv. :. - "P)( + crJ.E \7')1,

ÓWt: + E 'L . \J W
IA 2-

:: -P-:+Cl E\7 W+9 II
óe-t + EX.\1G :: - W + CJKi Ë \J ~f)

u,x-+ uJ~ :: 0

_ ¡ Y l(\ Iwhere E - ~3o( LiT i-'â (E"

.y
õ :: - the Prandtl numbeL

K

6Tc
is the Rayleigh number), G": D. T ' and

Notice the similarity between the equations of sets I and II.

'UIWJX,tand 1.on set I correspond to W/,l.)rIX and e , respectively,

in set II. The equations are then exactly analogous with 6 and E

as defined, except for the presence of the Prandtl number, cr , in set

II. At unit Prandtl number or in small steady motions (when in II we

~-Y:o p __ ro
may define '- II

)

-Y?ors e:. (t ) the analogy between the rotating and

stratified systems becomes complete, provided that the boundary conditions

may similarly be matched and made to correspond. Results deduced in one

system may be applied directly to the other.

These notes submitted by

Stephen A. Thorpe
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k
E 2-Layers in Rotating and Stratified Systems

George Veronis

Consider first a stratified system with unperturbed tempera-

ture gradient 6T/L. The total temperature is written \eQ.h ~i-6T+r-aLiTc)T

where Li ~ is a scale factor for temperature perturbations, cr is

the Prandtl number Y /K , and -r is the dimensionless temperature

deviation. We will be considering steady two-dimensional motions so

that the quantities l1b) ù., i: are set equal to zero. Furthermore we

consider 6 = t: Tc Ä i small, enabling the non-linear terms to be dropped.

The basic equations are then

o =

- ..
- r'~ + I: íl (.

E \7"T

- l)( + E \72.tL

u. = 0~

( 1)-T=
'(== (2)

(3 )

u~ + (4)

J \t: :: .9C1VL~ T is the reciprocal square root of the Rayleigh number.

Velocity is measured in units of J ~o( LtiT(tiTctir) and pressure in units

of o-VjJ L ~oC ~ Tc.'

First application (buoyancy layer).

l Consider a boundary at X:: 0 of indef-

~ ~ temperat. ure
~ ~ increased by
~ amount 10

inite extent in the z-direction. The

stable stratification of the system is

perturbed by applying a constant temper-

a ture deviation, -ç , at the boun~ary.

:/
/x: : 0

x
The temperature deviation vanishes at

large x. The above equations are to be
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solved subject to the boundary conditions

T::\o , l.:=o
T"" 0, u. =-0

ci )( = 0

at 'f ~oo

Since the applied temperature is independent of r we seek a solution

in which all quantities are independent of ~. Hence the relevant

equations are
'l

EoLW-+T=O
oL x. "I

(I' )

E c1"¡ _ W"" = 0 . (2')
clx: 2-

,

Multiply the first equation by i and subtract the second equation,

letting ~;: w"'¡ LT. The result is ¿ E ~ ~:ï + cp :: 0 , for which

the solution is ("XeL'iT/if_\ (xe.f'¿ir/~\
~:. C, etp W) + C~ e-tf IT ) ,

But since e"i1Ç=(1 + í.)/ff has a positive real part, the condition that

u. and T vanish at X=- 00 implies C, :: O. At)(:. 0 , 1:: i. l":: C:i '

hence _.. .iL

cp :: úJ + i. T =- L 10 e m e IP
or

)(

i;: 1e -Jf
_'X

w= T e jfo

Cb (~/m) ì

Wn (x/M) r

(5)

This solution shows that the temperature adjustment and corresponding

flow are confined to a relatively small "buoyancy layer" where X ~ fi~ .

In the interior of the fluid where X ';) v'- ~ conditions remain

the same as before the perturbation was applied. The accompanying

sketches of T(x) and u.&.) show how the temperature is raised adjacent

to X = 0 (with relatively minor subsequent oscillations) and how the
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fluid rises close to X ==0, but maintains LJ=Oon the boundary.

~T
To

Î
X ~ 1í rEI;:

'I

The net upward flux (for unit length in the y-direction) is
cP

í w-(x)clx = -rJro ~
For comparison purposes with the analog for the rotating case it is

instructive to plot W vs. T with X as parameter:

T

Rotational analog of the buoyancy layer: The Ekman Layer

The equations for small steady two-dimensional motions in a

rotating system are

-1) =- - ix + EV?-ii

u:: "2

f \7 V
(6)

o = - '2 + ~ \/2- Uft
1))C + Ll-a -: 0
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Let a constant wind stress be applied at the surface 2:=0 parallel

to the y-directiön. The boundary conditions are then

dV _ T
~i! - 0

'I: 0

dU.
a~
u:: 0

=' 0 o. r- =0

or'i::-oo.
Again, these conditions imply a solution having no x-dependence. The

solution to the first two equations in (6) satisfying the given bound-

ary conditions is

u =Jf t t th (~/5E) - .c (æ/¡;)J ex p (7J//.) J

V = rr \0 1 ~ (i:/lIT + Wr (r IIi) ) ex- t (?:!ß. ~ \).

(Note: the positive z-direction is taken to be vertically upwards.)

Plotting ir versus iL yields the Ekman spiral:

-i wind direction Î

b1 surface current at 

450
to the right of
the wind

\J

To compute the net transport we write ìj = 'd%a- and t = ~%t

Then the first two equations in (6) become

But since ~
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which shows that the net transport is at right angles to the stress,

Since we have assumed a constant viscosity throughout the fluid, the

inclusion of t inside the partial derivative in Eq. (S) is trivial.

A more detai.ed analysis in which the eddy viscosity coefficient is

variable, leads to equations having the same form as (S). The sub-

sequent derivation then shows that the net transport depends only

on the surface conditions and is independent of detailed structure.

(cf. GFD Lecture Notès 1961, p.S3).

Buoyan£z layer for ~ non-uniform temperature perturbation

If the applied temperature at the walls is not uniform, but

is a slowly varying function -ç (= ), we can consider to what order

in ( various quantities will be affected. The complete form of

Eq. (1) is
- T;; - '" r + E (W'x y. + Wi! =- )

Since u-x:: O(~-l) but W'i!i: =. 0(1) we are still justified in neglecting

the term ();ia' But what about t ? To learn about this we return

to the continuity equation

UX~-W;:: -(~:)e -x/ñ"sJ (X/ii)= - ~ ~~ Uf.Thus ø
Uoo :: - i. d. ï; ( uJ d t ~ - jt 01 ~ ,io a~) :i 01 i!t) 'I..

hence implying a horizontal flow of order E .

Alternatively, u.¡(::-~ ~~ i.:: 0(1) and using the stretching

E'I"ei du. d)L r I/. )transformation 'l:. 5 this shows n~ =ô~ UX= O,-J~ i , and

the re fore "U ': oC E 'I). ) .

Now going back to Eq. (3):

êl 't d
~ :: E ô)C 1. :: E"§ (-~ )
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But Wi -= 0(1), hence -p := o( E). It is therefore justified to neglect the

term t in Eq. (1) in comparison with the other terms, which are of

order 1. In sumary, we have found

úJ = o (i: 0)

T :: o (Eo)

"' :: 0 (f)
11=0 (ËY2)

i. :: 0 ( E V,.)

where ll is the stream function associated with the two-dimensional flow.

(i.e.ii="à%i:implies 4J and 1. are of the same order.)

Temperature perturbation applied throughout the fluid.

A converse problem to the one just considered is the following:

For t..O the system is in the base state of stable stratification with

a linear temperature gradient. At t = 0 the fluid is heated up by a

uniform amount lÍ ' but the boundary is maintained at the original

temperature distribution. Describe the resulting steady flow.

From Eq. (1) we see that in the interior?c =: 1: The pair of

equations to be satisfied throughout is therefore
ol'')ur

- T:: - To + E d ~"

E ~2.TWufo:

The boundary conditions are

T::O) W-:o a. ~=O

T:t-)l-::O a. 'l-:0t
It can readily be checked that the solution is

( ( ) -x/12 JT:: -ç I -Cl X/¡æ e

W' : - -r s1 Lx. / Ii-E) e -X/Jr
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The time-dependent Ekman layer.

When linearized acceleration terms are added to the equations

governing the Ekman layer 'We obtain

'li - V = E ì..z ~ ~

~ -1L ::£Vt~.

The initial conditions areU ::V= 0 at t= 0 , and the boundary con-

ditions for 't ~ I: are the same as stated following Eq. (6). It can

be shown that the solution to this problem is

_ 1' r- rt Wn 'S e - r'XE:r cL Ju - oJTf l-
o

V:: 1: r¡J' t ~:f - ~'fi:JIoÝTf (f e OfJ.
o

(9)

(For derivation via Laplace transform techniques see GFD Lecture

Notes 1961, p.85.)

The evolution in time of the current at any particular depth

can be studied by plotting V versus U. from Eq. (9) using t as

parameter. For example, at the surface"':: 0 :

U. -: Yo rrftsi l' d r = ~ Jî S (/: t/iï \)if i'
o

V:: tJfJE' C (/~ )

where C and 5 are the Fresnel integrals (Abramowitz and Stegun,

Handbook of Mathematical Functions, Section 7.3). The plot of 5

versus c: is the familiar Cornu spiral. Since

dv/cl'l: (dv/olt) /(el u./clt) :: co t)
vertical and horizontal tangents occur where t =.QUoU"l ii/2 'l t=od ïi/:i

respectively. The dimensionless time t -: ïi/1 corresponds to % Sì:: ~

of a pendulum day. At the end of one pendulum day the velocity at
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any depth is within 20% of its final value. Hence the time scale for

the development of the Ekman layer is t == 0 (1).

'I

wind r
direction

3--._-- ...// '"/ \/ 1-6I // J
/ ,- -1-"/I ~

i

time marked in
pendulum hours

u.

Time development of the surface current.

The limit as"t -? o: is Yoo=-(UQO)VO")= (ì'!f :i t/f).

Since it was previously shown that the horizontal velocity 11= O(EV,) when

the temperature perturbation i; is a slow 1 y varying func t ion of t , it

can be seen that portions of the fluid which lie at distances of orde r 1

( -'/from the boundary will not be affected until t=.O E 2.), i.e. an extremely

long time after the perturbation is applied. For a full treatment of the

corresponding problem in a rotating system (the spin-up problem) see

Howard and Greenspan, Journal of Fluid Mechanics, 1963.

These notes submitted by

Dudley H. Towne
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1/3 1/4
The Role of E and E Boundary Layers

George Veronis

Before going on to discuss other possible boundary layers let

us put the equations describing small, steady, stratified fluid motion

into a more convenient form. Previously, in two dimensions, we found

E"V""i.
í!

-.
r¿ \J LVx

EV2.T - -i.;¡
11)( -r W~:. 0

:: "PX

= - -p~ -l T

Eliminating the pressure

£ ,,/-l LV ~ T.x

E \7'JT ;: - tV"

Finally, combining these two equations we get

Ei\7bcj:: - cP where q, ÍA.~ LV o- "p,xx

When variations with respect to the coordinates are 0 (1) and

E ":G 1, the last equation reduces (-ie, 0 (£:1)) to
A- -: O.
'-)( '1

From this equation we derive the interior system

T- = 0 ¡ 'P -a : T~ W = 0 ì U X = 0 ,
y" ,to ~ are 0 ( E'" ,-) , the term Ea~)(~With variations with respect

"2

balances the term ~ l, and the system of equations for the buoyancy

layer results (a~, ~ ~:.) .

The interior plus the buoyancy layer are sufficient to describe

flows which have infinite vertical extent and which do not require

horizontal boundary layers in which to complete the circulation. Most

problems are bounded in the vertical and it is then necessary to
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consider the possible occurrence of boundary layers adjacent to

horizontal boundaries or in the vicinity of abrupt variations in the

vertical structure 0

One obvious boundary layer to look for occurs when ÒX=O(~ and

the z-coordinate is stretched so that the principal balance is

?bA\ ~ 0
E ab~ 't -+ 1.)I)( -:

b
Letting di-:= E' ~t where Dt =c(i), we conclude that

b = - ~
To complete the descritpion of the boundary layer, we note that, if

this boundary layer is to connect to the side boundaries, it must

be capable of transporting the same amount of fluid as the buoyancy

layer. It is then possible to consider flows where fluid is trans-

ported along the buoyancy layer, turns a corner (we cannot describe

c- Y.3i: layer.the flow in this region as yet), and then flows along the

(This requirement is plausible but is also somewhat arbitrary. It

turns out that the results are useful and for this reason we pursue

the argument.) Thus, sumarizipg the above two points we require

thatd~ ': O(E -~)and that I. == 0 ((;1/2 ).

The heat equation is

- 'l E 113 ~ T
l: 'V Ll ~ - Òn Lll:. t.

Since dl :.D(i) and 4J '" O(EYj we deduce that

T= a(E 'ft)
From similar arguments using the remaining equations we derive the

following magnitudes and equations:



- 59 -

'Or := OCE~\~)

lu - OrrYtø) E v:) ~~r u. =- - dx--P

w - 0 o=- y:/ )
EV3T :: d P

~

-r :. 0 (E )t)
£ 'I'Jó~ I ;;wn

? :: 0 (E~) EY';òl(u+ dr(" :: 0

tp = 0 (IF Y:i)

At th is point it is useful to recall an additional result

derived from the analysis of the buoyancy boundary layer. When the

imposed temperature at the boundary varied in the z-direction, we

found tha t 'U -)(;'~"TlAr - '" ~ w0J lt i :: F'i To

where the subscript I refers to the interior (away from the buoyancy

boundary layer). Now this type of balance must exist at the outside

edge of the buoyancy layer if the flow is to be connected to the

buoyancy layer 0 Ys
It is clear from the balances derived for the E

layer that if the layer is to be capable of transporting the neces-

sary amount of fluid from the buoyancy layer (i. '= Q(EX)) , then

T: o (r:'4) and the above requirement cannot be satisfied. The ques-

tion is: does a boundary layer exist which can adjust the temperature

as required by the above relation?

We consider the heat equation

yJ~ :. E \7 -i T

dê~E~Ôl"L,¡ c. ~ 0
If we stretch ~ by

we derive \-2.e. .. T~=-E òriii
and we note that with C ": ~ we have
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ll
~

Thus if l. = 0 (E II).) )

Ii "" T
= - r: "'a l'~ .-

T Í. O(¡=l:),i.e., we can adjust T as r~quired.

To complete the system as before we note that from the sixth-

order equation we obtain to lowest order

lxx :: 0,
and the remainiD_g balances of the E Ylf layer are

ó. - o (i:-U¡)e.

') - o (IE V..) o =,'õ¡c 'P

w - 0 (t: Vi.) E'4T == ãr¡P

i :: 0 (fO ) E~~;~ T = W

'P - 0 ( r; Vi+) EV~dX\.+O~W::O

lj - 0 (E Y2.)

It should be noted that the EV~ layer involves only a limited

amount of variation in r It can adjust the temperature but cannot

satisfy aii of the dynamical requirements. For the latter it is

h E- YJ layernecessary t at an be used 0

To exhibit the ideas presented above we treat two simple flows

which are forced by temperatures imposed at the lateral boundaries.

The mathematical problems are identical to those which were treated by

Stewartson for the exactly analogous situation in rotating fluids.

However, the method which we shall use is much simpler mathematically

and makes use of the foregoing results. The procedure is essentially

that used by Dickinson in a term paper at M.I.T.

We wish to find the characteristics of the steady flow between

vertical boundaries which may occur when the boundaries are maintained

at the temperatures indicated in the diagrams
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(a) Symetric Problem
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"'_J.1,,, :i
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/'./

/'//
r--..- 2..///
r :=0

i; - l.. ¡

::
)t =-0

(b) Antisymetric Problem

There is a discontinuity in the wall temperature at z = o.

For z + 0 the wall temperature is constant. In the earlier analysis

it was shown that the interior horizontal velocity, Ui = - rr .;i; ..

Proceeding formally to the limit in which the temperature is a step

function we find here that

Ur;; r rr Ó (i!)near 'l =- 0

and tL - ÆJ(X) )( = 1T (problem (a) ).. - near1- 2-

or 1J; -: - rr Ò(t.) near y. ~ IT (problem (b)) .

now wish to derive the horizontal
-Y3

We t boundary layers which

will conduct the flow in the region z = 0, taking the values of iL¡

found above to represent the horizontal components of the flow at the

edge of the boundary layers 0
"- ,

From the equation E \l 'U -: -Ux 'X ' we deduce as before that in

the horizontal boundary layer

õl.

~r¡
?Ji-

U + a )(~ u.;; 0 whe re
"0

~ 't
= EY~i.

(J 2-
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00

.. ( ) ( L$'S dTaking the Fourier transform of 'U; 1. X i S = J _ u e j ~ we find
-QC--

that the equation for U is

with boundary conditions
..
'U =

and "' =

" "' "'
-5 u. t u)C)( : 0

(deduced from 1. '" 1) i.~
- J:¡ at x. =-0

+ r- od X=TT for
- J""

atX-=O,i\)

(a)
problems

(b)

The solutions for the stream functions may then be written (using

U :. Ô Lj ) as" r 00

(problem a) 4!~m: 2111Æ r
-oc

(problem b) Ij~"ti=- hi ft r
-oø

s. h C -k' ('t - ir/:i ) J
Wnh(~3¡ïk)

Wn-hr dk
'k

~'\ (R '(t. - rr/2 )J
~h (-k31l/~)

sN -k 1 cl k
:-k

(This is the solution valid in the interior region near z = 0.)

Making the substitutioIi -Æ '1 =1., we evaluate the solution at the

edge of the boundary layer when ! -'7 00 -

and tv rtk cM((f)3(~-~)J
j-ho J ~h((:LY' % J_co r

we find that, since ê) £f :. ~
ôx: r -?:I 00 1-7 fOI

~ Ô lPs\J WI lr-\ - _ wI -: j: 2- FJ~~~ ~ ~ - . n ~

Since 00 :3
.t ( slYi L (f) (x - ~)J
j' -¡cø j. s:n h ((.e )3 'fY1- J-ao r

and .f
j-'7iOo

ei 4' 0t-t
õ x. :. - W:c = 0

OC

s. L cU = x- %." ( su~ ,U-e iT/2 ) t
-00

;: '2 (x. - '%.)

~-e ~ t : if
.e

'e- .,
?J'..

in problem (a)

in problem (b)
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where WI. is the vertical velocity component at the edge of the

Y3 layer.

Thus we note that in the anti-symetric problem all of the

fluid ejected from the right-hand buoyancy layer (because of the dis-

continuous boundary temperature) is transported by the E ~ layer

across to the left-hand buoyancy layer. In the symetric problem

fluid is ejected to both buoyancy layers. Hence in the latter

situation the E V3 layers must receive fluid from the interior.

The combined flow patterns of the
r:v' £ ij.c ~ and 3 ¡ayers is

therefore as follows:

-,~~ T:i~ '1-; Y"2 i"'Y2- T::O -r-~

I l .J l l r i l
2: =0 !;iO

i
t 1 l' l'

l l i
T= ~

T~ - Y:a -r ~ - Y') r::-~ f.-~2-

)(.,0
)l :, i1 ';:=o X=iT

(a) symetric (b) antisymetric

As things now stand in the s~netric case warmer fluid is being drawn

from above and cooler from below, which would imply a temperature

-0discontinuity of order E across r-:'O Since this cannot occur

there must be a compensating flow in an EY"I layer on both sides of

= ~O . No such requirement need be satisfied in the antisymetric

case, since the fluid in the E;Y.: layer is drawn from the E: Y2. layers

at X:: if and is at the mean temperature.
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- it
To determine the I: t. layer required in the symetric problem,

observe that the equations o)(p ",0 andd1P=E'/TimP1Y 1/1=0, Le.
l1 '

that T (the temperature associated with the E 'I layer) is indepen-

dent of X 0 Let ìb be the temperature at the boundary (X = 0 c- ii)

E- y~attributable to the layero Thus for ?? 0 the net temperature at

I - T itemperature Y:2 , or Ib + ::3:'

obtairt W,(=-o = -rrTb:: -Æ(i-T)

the boundaries must be the imposed

Now from 1.=('à1l) = --1£ õTb weoë x=o -1-; 3r
and by similar reasoning III == f- (1. _ T '\ .

't¡(""ir ~ î :i )

But in a 14 layer o/~)( = 0 , and we can see that the solution sat is-

fying the conditions at X :: 0) il , is

y; = (-I + i~ )( ~ - T)jl.
h L . E- 'I.. -I - ú. - _ IIIT en appea ing to ~~ - - '"j.'

we obtain T 17 :: "i (T -"¡)J

and the solution which behaves properly as ~ ~ 00 a.nd satisfies

T,: 0 at '1::0 is
T= i: (1- nl (_i:.i ~/fT)J ("i ~ 0)

Likewise starting from T + 1b:. - l for ry '" 0 we obtain

'T:: -l G -e.~ p (i. V.¡ y£ 1m) J (~~o).

It is to be noted that the r:YIo layer succeeds in producing a continuous

matching of the regions 1.:.i QO between which there exists a temperature

difference of order one"

Substituting these expressions for T back into the previous

equation for the stream function yields

((-1+ 2;)fl ~ (~~V4~/fr)

41 =

(-1- o.;,)!l ~~p (-i'\lir)

~ ~O

ï76°.
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The streamlines for the net flow look something like the following:

¡:

~d E~

These notes submitted by

Stephen A. Thorpe
, Dud ley H. Towne
Lorraine S. Whitman
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An Application of the Foregoing to a Stratified Flow Problem

George Veronis

We end this series of lectures on stratified non-rotating flows

with a sketch of an analysis of the flow generated by the situation

shown below in Fig. (a)" The flow is caused by an inflow along the

left half ap.d an ~utflow along the right half of the bottom boundary.

The fluid fs injected and withdrawn at the temperature of the bottom

boundary and must travel over the. barrier from the left to the right"

Shown in Fig. (b) is the analogous situation for a rotating homogeneous

fluid.
'¥.. 0, 41;¡:: 0, T:: 0 ~ = 4l~ :: 11 :: 0

1
lj:o
~:o
T::O

0/= 0 ,lll" 0

T=O

lVlc =0

iii lJo
T" ': íi

V"~ c:

i- =-/ (J
lP=O

~:o
T:=o

l- ~=~ =v=oL-
~=i¡¡."V..o

~=o
\l "lJo
~ iT
"i::O

)t=-iT
a:O
i¡ =0;t
í=O
!l :: _ wol( n

x::()

1.~::o
T=O
ll ~ We't '1

Fig..(a)

ì(" ii

o/ -: lJi' :. V:. 0

Fig.(b)

We shall use an obvious notation for the different regions.

Interior regions are denoted by I J E ~

layers by m and E y~ layers by rr '

IT. f Y3boundary layers by .

Also subscripts L i R. T, 'B

correspond to regions on the left, right, top and bottom. The dif-

ferent regions are shown in the accompanying Fig. (c).
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1-1

í~ 0

IITL 11 TR,

1Y 1" L- :r í R

! T j3L-
ii IBR 11 R

IIIi.i. R
ì

T: - 1: " IIRL.
I:: Toi

j
,

I

I

!l13 L. JJi: 'R

1Ia/. tI-a ~

Fig. (c)

A brief description of the expected flow (and a schematic

diagram of it, Fig" (d)) follows: The fluid enters the lef,t half of

the container and the E ~ layer there takes up the fluid and redis-

tributes the flow
LV!

so that the fluid essentially flows out of the cL V,/ L ~The i: layer receives the flow from the i: i layerlayer uniformly.

and diverts the fluid into the buoyancy (f Yii) layers liLt. and TI i.~ .

The fluid flows up along the left boundary and the left side of the

dividing barrier until it reaches the E ~ just below the top of theYi ~
barrier. This £ i. receives the flow from the E ~ layers and Jeeds

-X
it to the ¡: ~ layer which exists at a level just above the top of the
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barrier. The
-~
C ~ layer receives the fluid from the left half and

transports it to the right half of the tank at the leve 1 i! :. I and

ejects it into the f X, layer, In the right half of the tank the

picture is the reverse of that of the left half" (The only possible

iX
difference may be in the details of the inflow and outflow in the t: :J

layers at the bottom" For the steady flow that we have in mind the

only requirement is that the net inflow at ¡::: 0) - ii ~ X L O¡, be

equal to the outflow at ~:.O~O~)(~ 1í, Superimposed on this there

could be inflows and outflows (no net flow) at each boundary which

could alter the details,)

The temperature of the fluid in the left interior is - -To , and

that of the right is i: The difference in temperature is to be ex-

pected because of the configuration of the system. The value of ~

must be related to Wo .. the amplitude of the net inflow and outflow

at the left and right bottom boundaries respectively,

"
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The procedure for analysis is based on the following steps:

a) Assume an interior solution involving the unknown constant

temperature e

b) rYi layers along the sides 0 ~ 2 ~ I and along the barrier are

computed connecting the interior solution with the boundaries.LX C~.2c) i: i. layers at ~: 0 deflect the inflow into the ~ layers.

The analysis for the E X¡ layer relates the arbitrary 1; to the

mass inflow.~ ' F ~d) f i¡ layers at ~ =/ suck fluid out of the ,. 2. layers
c-Y.

left and eject fluid into c: 2. layers on the right 0

r- )I
e) An i: 3 layer at r:: I takes the fluid from the left

on the

carries it over the barrier and pumps it into the right

XE i- layer
¡:Yy layer.

f) E~ layers at the bottom satisfy the bottom boundary condi-

t ions 0 In the special case which we cons ider, viz., W"Wci/Ti ,

-ij ¿X S. 0 ; w :.-W1íi' O~)(~ if these E~ layers at the bottom are

not necessary in lowest order 0

Using the results of the previous lectures we have the fol-

lowing results for steps a) to f):

a) u. I =- wI = 0 ) T=-o lm IT' TO' - Tc 1. Is/., T., -r 0 '\1 T B~'

b) W :: S To sÎm ~ ef ? T".t, (I-~l;ei)
where 3

x+ iI
6-= -I

.

II Lt-.-
- f:H:'

IJ
,

11 i- R.~
X J = -I tm= 6€ i

~
..~ ó = +1

i

IIRl-=
r':E'

:i t.

~
K-ñ

J:. +1
i rr~R=

n2. t: ·

im



- 70 -

where

_ :2 Vii .: _ 2.V'l 'è
c) í -; áTo 0 - e ff f l'l); ~"" ÐTø (1- ~~\)~ e -l T1~_ _~i

W,. -ó 2;ffe 7r i:~
cS ~ - I ~ 'Uß i.

+ i if I5I3~ .

Hence
-r _ W'0 -~.liæ'
Thus the influx must be of order E Y;i to keep the problem

o

L WW:o. l.. d X

fi
:. 2- Tc. i¡ î =- WoFrom these results we conclude

'Where

linear (flows of O(l)), ,2",, (i-a)
'J\/~ 1.) ), r- I I 1\ - m WIN

d) T:óH(I-ë)i:(i-e-7W -I:Y* ; Y;:~H6-~ ttÍ\,I-i;¡e.

6 : -I 'vr 11\L.

= + \ 'lJ IiTl\ .
II;;

e) The details of the flow for the E layer just above r.:: I

may be derived from the following boundary value problem:

~

d 4J + 4JKi( 0: 0H

If =: ; /2 (i - ?-~I )

ll;5 =-0

lfn~~:: 0
oI'Ç = 0

tV and all derivatives -:/ 0 as S ~ 00 .

The condition 4J:r'; 0 follows from the fact that u.:: Lj2'=O(EY'l

from the solution of the EY'l layer (see (d) above), and in the E V~

layer we look. for solutions with u. :o( E'Yt). To the latter order,

u. :. 0 The solution may be derived by expanding lJ in a Fourier

cosine series in X and solving the problem in t by means of a

Laplace transform,

f) For the special case of t.::~ Ix \
II

rY; .
at ~ =0, no r: boundary

layer is needed átthe bottom,
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Problems in Turbulence Theory

Robert H. Kraichnan

ABSTRACT

Turbulent flows typically display two related features. First,

an heirarchy of instabilities whereby the laminar flow breaks down into

large-size eddies which in turn break down into a chain of smaller

eddies 0 Second, a strong enhancement of the transport of a property

like heat or momentum 0 Many of the gross properties of turbulent shear

and Boussinesq flows can be successfully described by mixing-length

analyses based on the observation that the characteristic break-down time

of an eddy is the order of its circulation time. These approaches are

illustrated by deriving Kolmogorov's spectrum law using mixing-length

arguments.

A mathematical description of turbulence can be based on the

infinite sequence of moments that arise from considering a statistical

ensemble of flowso Such a description is natural because, as a con-

sequence of the heirarchy of instabilities, it is not possible to predict

the detailed evolution of a single turbulent flow no matter how much

effort is lavished on controlling the initial ßnd boundary conditions.

Ordinarily, only a few of the moments are of interest in a given appli-

cationo However, because the flow equations are nonlinear, the dynamical

equations of all the moments are .coupled 0 It is unclear to what extent

accurate values for the moments of interest can be extracted by finite

and well-defined mathematical operations, short of finite-difference

integration of the flow equations for each member of the ensemble 0
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Outlook for Turbulence Theory

Robert Ho Kraichnan

ABSTRACT

An attempt is made in this talk to assess the promise of

some of the schemes that have been proposed in recent years for

systematic evaluation of the statistical moments of turbulent flows 0

The underlying trouble in turbulence theory is the lack of a general

method of handling nonlinear differential equations. The only gen-

erally applicable systematic technique now available seems to be

expansion by perturbation techniques about a soluble linear problemo

In incompressible Navier-Stokes turbulence this leads to expansions

in powers of a turbulence Reynolds number 0 These expansions appear

to have zero radius of convergence, but to provide valid asymptotic

approximations for very small Reynolds numbers or very short times

of evolution of the flow 0 The case of interest is large Reynolds

number, and here direct calculation from the perturbation expansions

is hopeless 0 Approximations that appear to be successful for iso-

tropic turbulence at high Reynolds numbers have been constructed by

performing (implicitly, through integrodifferential equations) certain

partial sUTI~ations of terms from all orders of the Reynolds-number

expansion. This is a priori an unlikely event: It is to be expected

that attempts at partial sumations are almost certain to lead to

disaster, and most attempts for isotropic turbulence have, in fact, not

worked 0 The existence of successful and accessible approximations for

incomp:t'essible Navier-Stokes turbulence appears to be intimately con-

nectedwith the simplicity of the inviscid constants of motion. In
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Turbulent Magnetic Fields

Robert H. Kraichnan

ABSTRACT

The evolution of a weak, rartdom initial magnetic field in

a highly conducting, isotropically turbulent fluid is discussed

with the aid of the exact expression for initial growth of the mag-

netic energy spectrum. Equipartition arguments, the vorticity

analogy, and the known turbulence approximations all are found

inadequate for predicting whether the magnetic energy eventually

dies away or grows exponentially. This is true for any ratio of

magnetic diffusivity to kinematic viscosity. Equipartition arguments

fail because they shed no light on a crucial balance between two com-

peting processes of comparable magnitude: enhancement of local mag-

netic spectrum level by interactions local in wavenumber, and sweep-

ing-out of the magnetic energy to highwavenumbers. The vorticity

analogy fails even if diffusivity and kinematic viscosity are equal

because magnetic energy transfer suffers no constraint analogous to

that imposed on vorticity transfer by kinetic-energy conservation.

If the possibilities of eventual growth and eventual decay are

both admitted, then, for each, it is possible to estimate the form of

the magnetic energy spectrum. by simple dynamical arguments 0 The results

for large ratio of magnetic diffusivity to kinematic viscosity are as

follows 0 If there is growthi the magnetic spectrum below the ohmic
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cut-off eventually reaches equipartition with the kinetic energy

spectrum roughly in the fashion predicted by Biermann and SchUlter,

w.ith the principal exceptions that the spectrum of kinetic energy in

theequipartition inertial range evolves to the form k-3/2 and that

eqi.ipartition is maintained, with rapidly falling spectrum, through

part of the ohmic dissipation range. The -3/2k spectrum occurs,

rather than the Kolmogorov k-5/3 spectrum of hydrodynamic turbu-

lence, because, when the energy in the large-scale magnetic turbu-

lence is sufficiently large, the small-scale turbulence takes the

form of weakly scattering Alfven waves propagating along the lines

of force of the large-scale field.

If the weak magnetic field decays instead of growing, then

a steady spectrum can be maintained by supplying magnetic energy

at low wavenumbers. In the hydrodynamic inertial range, the mag-

netic energy spectrum has the form kn, where n has a value

between l/3 and 4 . A more precise determination of n is not pos-

sible without detailed dynamical calculations.
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The Wind-driven Ocean Circulation (a)

Melvin E. Stern

The purpose of this first lecture was to develJo:p a general
i

theory for the Ekman layer and then use it to build a model of the

'wind-driven ocean circulation, Because of the variety of physical

processes which can naturally occur in the ocean and, in fact, may

distort the effect of a wind stress, it is necessary to make several

assumptions. The first is to consider only a homogeneous liquid of

constant density. This effectively eliminates thermodynamic processes

associated with a baroclinic system and may be justified by the obser-

vat ion that the average density gradients are quite small in the mixed

surface layer (top lOO-200 meters) where the wind-induced viscous

stresses are large" The second is to argue that the major flux of

momentum from the impressed wind stress at the surface occurs in the

vertical direction. This is more difficult to rationalize since the

generation of surface waves by even a homogeneous wind field lèads to

turbulence with both local horizontal and vertical l'eddy" stresses,

However, a detailed description is not wanted or needed and with the

vertical scales of motion typically smaller than the horizontal, the

predominant diffusive mechanism for horizontal momentum is the vertical

transport of turbulent momentum. The problem is thus reduced to find-

ing an average picture in some sense for the response to a possibly

turbulent diffusive mechanism.
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The Ekman Relationship : In 1905, V. W. Ekman showed with a

( p = const. ~

d. u. _
at -

S. equations

dir = w =- idt aY. ~ i-:: 0)
ô~

siWplified version of the N.

that the wind-driven current in deep water decreased in ve locity and

changed direction at regular intervals of depth. The wind also drove

a net-horizontal transport which is only a function of the magnitude

of the surface stress and the local corio 1 is parameter and which is

directed to the right of the stress in the northern hemisphere.

Stern derived this last result with a different argument.

Consider an infinite ocean rotating with a basic angular velocity of

.. . An axisymetric surface

.~2k ~
) ¡i

e

stress is applied in the azimuthal

direction. ~~û
In order to conserve mass in a circular ring element,

õ~ fÜ~(2Î1Jè)Jil1'o
Since Stern was not interested in the detàils of the momentum exchange

in the liquid away from the surface, he considered that all the local

pròcesses could be represented in a turbulent eddy stress function

e(1:). The local steady torqùe balance on a thin ring of width cSrL

and thicknêss J~ is then

2ÎTn Óh J~ ;'i (n.pe)=

= (torque exerted by azimuthal eddy stress) = (radial flux of angular

momentum) drdnt. (lL(l1i.n) rJ1op(v-+nn); ').

The angular momentum flux arises from two sources: the first being the
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direct transport of local angular momentum and the second, transport

i

of "planetary" angular momentum. Even though a particle is at rest

in the rotating coordinate system, the angular rotation of the ref-

erence system gives each particle an intrinsic angular momentum of
'.1'

f' -r Y' 'R,

in inertial space which must be conserved in the absence of any torques.

With the surface wind the only source of momentum, the eddy

stress must vanish as the depth is increased. Neglecting any free

motion, the horizontal velocities must also vanish as r -) -00. This

requires the addition of a mass source at the origin to match any net

radial flux.

An expression for the surface stress is obtained from the ver-

tically integrated torque balance:

e (,,) /, = ~ ~ õ ~ (fl'): V d n + n: n J: IL d" i

The radial velocity Ll must be £~) to satisfy continuity so that

€l(a)I."*- tit fnfj(;'v di!1 + ~i"-r S:ndHnr d~~2d

r() - 0 g ~ Co-t'ri.\ï~:. e(ê)\t ~f (i!)fñ ()"V) d ~ + ¡.n J ,ud r-ll -QC I)
The first term behaves as O(~) so thatforJt-7DO,t9(i!)1(;~2.nr¡udlt.

-0.
For large il , the radial transport of "planetary" angular momentum

just balances the applied wind torque with .2 n as the coriolis para-

meter f The important Ekman result is derived that a surface stress

drives a net mass flux of magnitude
e(o)
r

and is directed towards the

right of the stress.
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The same result can be generalized for the case of an arbitrary

smooth stress on a large deep non-homogeneous ocean. Decoupling the

velocity field into its geostrophic and, surface wind driven components,

~ ..
1)d' + U¡o' the local horizontally averaged Navier-Stokes expressions for

the horizontal momentum balance reduce to"" ..
+ 'h X .( t 1)3 /~ '= ~ 'Ç~ p)~

r k )( (~ :j.o A :: i. ( e)T O~ ~and

for

a) aquasi-steady wind stress (g~ t.~ 1)

b) small motions so that ~ ~~ ) ': 0
~

c) 'Uh vanishing with depth.
ò

Then ,'. (k. X r 0( fil.4)h oliO s ~ š\ I .. to

o _00 r-=O
Identifying r ~ e i1~)li as Ms' the net wind-driven horizontalmass

~oo
transport, then the Ekman result is ~

Ms =

~ ~Lxiø

f
The geostrophic and surface velocity's fields are implicitly coupled

..
in the determination of 't

The Sverdrup relation relating the integrated mass transport to

the change
~ ..

f k ~ tAs=1ro and utilizing

in the coriolis acceleration is derived by taking the curl of~
the continuity condition \1- Ms .: O.Á ~ ~ Ôl /\

# k. r'V )((f k X Ms)J=fv.Ms+ ~ M~~) =(wJT:Ð).-k.

~ Nh).: c. t ."" lïs c
~
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The quantity ~ is called Beta (f3) in oceanographic literature 0
'aM

The equilibrium state represents a balance of applied torque with the

northward motion of a fluid column in the surface layer up the

"planetary" angular momentum or vorticity gradient.

A simple model for the wind-driven ocean circulation can be

built using the Ekman theory. The Atlantic basin is roughly triangular

in shape with the trade winds blowing westward in the southern zone

artd the westerlies blowing eastward in the northern zone, These winds

drive an Ekman surface flow toward the mid-latitudes where a surface

convergence is formed in the mixed layer 0 Continuity requires down-

welling and a horizontal divergence under the surface convergence 0

The spreading out of a fluid column underneath the thermocline gener-

ates negative vorticity which can only be balanced by a southerly

motion down the planetary vorticity gradient. A. western or eastern

boundary current with its higher order dynamics will be necessary to

close the circulation, Although we know that the Gulf Stream has no

eastern counterpart this simple Ekman-Sverdrup theory can only pre-

dict the north-south interior flow and not the position and nature of

the re turn current.

However, we can use the Ekman-Sverdrup result and continuity to

predict the net flux of the return current, The Sverdrup equation can

be integrated along a latitude circle through the interior region to

give the net interior meridional flux. The return boundary current must

match this flux to complete the circulation and conserve mass. Using a

value of r:: 1 ~/rJ"" for the average wind stress in the Atlantic, the
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Gulf Stream transport should

L.
be '~
(wr 7:).1t :: 30- J Q'brr3 AU,4
place the actual transport through the FloridaThe most recent measurements

Straits at 35,5 + L2xi06m3/sec.l and that off George's Bank at between SO

6 3 2to l50 . 10 m I sec. While there is some uncertainty in the wind stress

value, the measured transports do seem to be significantly larger than

predicted and suggest that some other mechanism is complementing the wind-

driven circulation 0

Recent observations of neutrally buoyant Swallow floats have demon-

strated the existence of large-scale eddies with kinetic energy densities

of 102 to 104 above the mean wind-driven field.3,4 These eddies appear to

be more energetic in the western half of the Atlantic basin although as yet,

the data is insufficient, Their characteristic time scales are in the order

of a few weeks so they should be in quasi-geostrophic and hydrostatic balance ,

Not much else is known about these eddies 0 Their special extent,

their propagation characteristics, and most important, their source of

energy and dissipation mechanism are all unanswered questions 0 The re

are several rather suggestive theories, one viewing these eddies as a

3Swallow, J. C. and B. V. Hamon. 1960.

current in the eastern North Atlantic."
"Some measurements of the deep
Deep-Sea Res., ~: l55-l6S.

4
Crease, J. 1962.
North Atlantic.

"Velocity measurements in the deep water of the western
J oGeophys .Res. !2:3l73-3176.
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Rossby wave resonance excited by very low frequency wind stress varia-

tions, and another considering them as Rossby waves radiat:lng,from a

somewhat unstable Gulf Stream. However, their identity as actual

Rossby waves has not been confirmed, only inferred by the time and

length scales, so the nature of these eddies is still quite unknown.

The formation and decay of these large-scale eddies may exert

a profound effect on the overall Atlantic circulation. If the inertial

terms tend to rectify the eddy motion, a secondary flow could be gen-

erated which may significantly enlarge the overall Gulf Stream trans-

port. The next lecture will consider the energetics of moderate scale

hydrostatic eddies.

These notes submitted by

Robert C. Beardsley

The Wind-driven Ocean Circulation (b)

On the Interaction of Wind Stress with Hydrostatic Eddies

Melvin E. Stern

In this lecture we shall consider the effects on the "hydro-

static" (large scale) eddies in the deeper water of the wind stress

applied on the surface and transmitted through the mixed layer by

"small scale" turbulence.

We start with the equations of motion subjec;t to the hydrostatic

and Boussinesq approximations.
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( 2 T -i. v \ v +f \i x V = - l- \71' - ~ pi k + 0. e7Jt ') - - - ~o ~ - a Z!

\j. U. :: ()

(l)~'t

(2)

Here u.== V+R.W, Le. V is the horizontal and W the vertical

~

from its basic state (which is

and stably stratified below), ~

is the mean density 0 ¡ifì(-xi ~J Z:J t) is

the lateral turbulent stress with e ~,~iOJt):: I. We assume thatG

decreases to zero by ~.: -~()(IJ)t); Le 0 that an Ekman-type layer does

lJ= constant in the mixed layer,

Thermocline

exist 0

In the absence of wind stress we may have an inertial motion

I i which satisfies the equations
.i ()

(ô) I i- + i. . 'V V 't f ~ X V :: - - Vp - -l kõt - fì -0 - -' Po ~ -
\J. .io ': 0

(3 )

(4)

We see from the vertical component of (3) that

:dy.. O' \
..:: UY ?:)o-n.

'0 j!
(5)

and hence from (4) W" is a linear function of a in the mixed layeL

The boundary condition at the surface will be Wo (x.)~) 0) t):: O.

We now introduce a wind stress and assume that for a weak

â_ft1n practice the inertial motions we shall consider will have a scale

of 0(10 km), and (1) will be the result of aveaging over a scale

O(L km) 0
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interaction between this and the inertial motion we may write the total

velocity ~:: ~o + Y=b' where g.o satisfies (3) and (4) and the frictional

component 1lb vanishes for ~ .c - ~. ~\i;:Yb 1- ~ Wi, satisfies

; ~ + n.f l¡. lt, + \!¡, Y. T !&, J!" ) + f. ~.l ~ = ~ ~ (6)

\7 - 1&h :. 0 (7)

where we neglect pressure on the hydrostatic assumption, and denote

l\7.(~2)J¿ = \/- (~bJ
The boundary condition on the vertical velocity at ~:.O is

Wo(x...~\o)t) +Wb(X)~..Oi b) =0 (8)

i.e. the inert.al motion satisfying (3) and (4) is driven by the

"suct ion ve loc ity" Wb (X) ~ l 0) I: ) .

The second term in (6) may be written as

\7; r.Y. V, + Y¡ Yo + Y, JI'J + ~ ("'..\, .¡ 1', .!. + W. .!. 1

where \71 ::(/)-t ? ~ ~ 0)

Thus on integration of (6) from r=---? to e:. 0 and writing

11 = (0 ~b cL 'i
-i(1C'~Jl:) 0

~ t + \7~. fli.J1 T (1 y" + iii,:l' c:~ 1 + w,(o) li +'¡!t ~~ = I (9)-~

using (5) and (8).

Integration of (7) gives

''' ..1, + W'r (0) = 0'2. _ (10)

and so (9) may be written

:~ +f!i'ti'¡i1..r~,ti+.t.\.+ r;,y,d..,y ,!+y, 'l'ij
-I,

(11)
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The Ekman-Sverdrup theory is obtained on neglect of every term

in (11) exceptr ~ i/! and 1: .

eii) is a momentum equation in which

vo.l represents transport of frictional momentum by inertial velocity- ..
.J IlO represents transport of inertial momentum by frictional velocity

_l¡,y,il.repre sents transport of friet iona 1 momentum by frictional ve loci ty

\J · r Yo ~ + d :io J

n.lfY'b ~1 c:: J

is termed the bilinear interaction term

is termed the self-interaction term.

Vo g. t' represents transport of inertial momentum by the suction velocity,- -
i 0 e' momentum is redistributed in the vertical between the frictional

and inertial motions 0

If we assume horizontal homogeneity and take the space average

of (11) we obtain

ò i t ~ + t ~ X ~ ~)- :- I + (. Yo \J. (j )
(12)

If there is a correlation between to and ~. ~ we may estimate

the relative orders of magnitude of I and .( ta \l.-t ')

Take h ..loom..l/.Yb\"V fOcm'l~. ....\tll-- I05'er'7s.,

With a horizontal scale ..10 km \l./j..¡O.IC/lSU.)

l"" ' I CI,.1 ~ 2..I i't) I .. i 0 CJ!¡Q

I Yo 'V .. ~ I

i "G J

.. . '~I

and so if

This may be regarded as a rough upper bound, and shows that the term

(Yo \/.11) may be of importance in considering the Ekman transport,
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Small Wind Stress Approximation

For small values of i: we assume that the self-interaction term

in (Ll) is negligible compared with the bilinear interaction, and that

this assumption is valid uniformly in time. Then we may obtain a com-

plete set of equations by taking (ll) without the self-interaction term

(valid in 0 / ? 7 -h), the thermocline equations, the continuity equa-

t ion for y'o in the mixed layer, which is
àh + h 'V.. . V" = - 'V . VVòt .. - -

(obtained from integration of \1. Y-o=O through the mixed layer) and

the boundary condition II (x.llr¡O; t):: r:. ~ ..

From these one would hope to investigate the slow transfer of

energy to the inertial component 0

This small wind stress assumption will certainly not be valid

in homogeneous non-rotating systems, as the shear will in the course

of time produce a Yb of the same order of magnitude as Vo How-

ever, in the case we consider the constraints of rotation, and buoy-

ancy beneath the mixed layer, impose a kind of rigidity on the inertial

motion 0

Part II

To give further weight to the ideas that a) wind stress can

feed energy into hydrostatic eddies and b) neglect of the se1.-inter-

action terms in (Ll) is justified, we consider the following less phy-

sically relevant but more mathematically sound modeL.

In the inviscid two-layer system shown

~-~
~ +Vf

a horizontally uniform body force ~ (~)-- acts in the upper layer to produce an

Ekman-like shear flow with velocity
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(IJ(~)) V (a.)) 0 ,In the upper layer we impose a small long-wave (hydro-

U~ t + e~ + wt)
static) disturbance on this with L.tl;: e u.(~).i 0

Then if we linearize about the basic state, the equations

(~+ U -l + V "; \J.'+w' ,au _ rv': _ 31"at o~ ~. li t ~
(-i+ u ~ -+'1 d ~Vl + Wi dV + r Ii' ~ - -aftí1t a~ õ~Î" -- õ~

*ò pi =. 0
ò~

-au. + dV1 +dW'::O
dìC d~ 'Or

give
,

Ln u. -fv = L ~..p-w U
i

~ SL V ~tlJ :: - i.ep - w V

c1w +i.ku,+i.tv::O
d.~

eLl' - 0~-I '_ olU &.V
where U)V - d-r' d'i and J)(:):: Wt k.U+1V

Hence, eliminating LL) V

(n'--t) i~ -w (u'(~n.. Ltl)d(iI -¡~f~= ¡ fS1 (~"+t') (13)

,', 1~ f w( n'-- .t).l~pJ If C k~~~ tfV '()J d. r j

:: . LS)P (~\~:l) ;¡'a (~ i.f( i' v'l- e 1/) d r (l4)

(.n"'_f:lflA r , Sl"--f2--H . a~
The boundary conditions at ?-~ OJ -H are i.(o):: 0 and w(-H)= -ò I; :;

where n I is the increase in depth of the upper layer 0 Then

'P = const 0 = ßI t./ where ~/:. ,qCit
Po

. I,0. l =w(-H)~
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Then on integration of (13) from i?:. -11 to ': = 0 , using the

above conditions and U(-H) =V(-¡.)::O we haveo '!
G "_f.~)-Y:i= (~/.n(k"+e.~) r Lt(~V'--e U') d. r dOJ J w (si"-r')"k ~ H ..'" _ + i. , T:

We note that if U:: V= 0 we have the dispersion relation of

ordinary inerto-gravity waves

w~= uJ: =f '"+ ~IH (kll+ .e)

We now take.l:: 0 (without loss of generality) and calculate the way

in which a small shear will modify this by writing S ()) S V for U) V

and expanding in powers of 5 U 1 d V The frequency W" + á W is then

given by

dW :: ~
~ ¡. Wo

"

) J V d;¡ + real
-H

o

coeffi,cíent X r ii Ud ;¡ .

-H

Thus waves propagating with a component of velocity upwind may

grow with time, the growth rate being given by

The term

lmi-tw):-
o

in r Ó U ol ~

-H

t-~ fjVd~
2Hw.

-/.

(15)

mere ly gives a change in phase speed 0

(l3) is a two-point eigenvalue equation for W (a). From a solution

of this we can obtain ~(t)) V(&) which may be split up into inertial com-

ponents u.O) VO independent of ~ and frictional components U.b(~)¡ Vb (i-)

such that I.b(-~)= 'Ib(-H)= Q.

The frictional and inertial components u.o l '10 both grow at the

same rate (at least until the linearization breaks down) and so the

ratio between them will remain small if it is so initially. This would

appear to support the small stress approximation. In what sense the
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stress must be small can be found by estimating the relative magnitude
!l

Ident ifying f g V 01 ~

-¡.

out that the relevant non-dimensional parameter for inerto-gravity

of LLD) Ub in an eigensolution. -= lI,.l. it turnsf

"2

. h ,Lo. t. C'waves wit I' f" ~/H is c. ==

mation requires E..c: 1 .

t 'i i. -i. r, _1/. ~l H - '"In the oceans "',.f! ~ , Ti--/O ,(., .-10 CIt I -'2 I
~ /V iÕ C/ ~ , and so t: -- iõ which is small enough.

L

~r-H , and the small stress approxi-

and

However, some observations indicate a large contribution to the

spectrum of hydrostatic eddies from waves with frequency very close

to f. These are precisely the waves which grow least quickly accord-

ing to (15) and moreover for these very long waves ,the small stress

approximation breaks down (as can be seen from (13); as (A -) f it is

no longer a valid first approximation to neglect the secçmd term for
cLwp

~ will not be small and nor will
d.~

Nevertheless, it is possible that the presence of a density

smal i Ó U ¡V, hence
¡

~
. lu.ol ),

gradient in the lower layer might lead to long wavelength motions in

the upper layer growing more rapidly than shorter wavelength motions,
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These notes submitted by

Christopher J. R. Garrett
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The Closure Problem

Steven A. Orszag

, ABSTRACT

A theory of turbulence is described which is based on pre-

serving all the known invariances, conservation laws and symetries

of the exact problem. For homogeneous, isotropic turbulence in an

incompressible fluid these requirements include conservation of

moment.um and conservation of energy (when Y = 0); Galilean invariartce;

invariance under rotations, translations and reflections in space;

preservation of a complete set of "realizability" inequalities (the

simplest of which is positivity of the energy spectral density); and

existence of inviscid, equipartition solutions (that is, a solution

(when .y 0) corresponding to equipartition of energy amongst the

various modes).

At the level of fourth-order cumulants these requirements appear

to uniquely define a closure of the hierar~hy but at higher order,

there are many possible closures consistent with the above conditions.

Therefore, a more systematic t€chnique of closure was sought. This

technique involves finding the "most probable" closure consistent with

the known information about the turbulence. The more precise formula-

tion of this idea is shown to lead to a problem of evaluating certain

functional integrals. These functional integrals are evaluated and

the resulting closures are shown to possess all the consistency proper-

ties described above. A discussion is then made of the problem of
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.i.rr.evers,ibility in the theory of turbulence. Irreversibility enters

the exact problem in at least three ways: (1) through the obvious

action .of viscosity on small modes; (2) through phase mixing processes;

and (3) through overall energy flow in Fourier space. It is shown

that the third process is probably dominant over those regions of the

spectra uninfluenced by viscosity. This is because the modes of

ordinary turbulence are known to be essentially critically damped.

Approximate Techniques in Turbulence Convection

at High Prandtl Number

Jackson Herring

ABSTRACT

The problem of thermal convection at infinite Prandtl number

is considered from the point of view of the statistical theory turbu-

lence. Several approximate techniques available to treat this problem

are compared in a set. of numerical experiments. The analysis is per-

formed for free boundaries and for a Rayleigh number of 4,000. The

methods investigated are:

(1) Direct numerical integration of the equation of motion.

(2) The quasi-normal approximation.

(3) The mean field or quasi-linear approximation.

(4) The direct interaction approximation.
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First of all some results of a direct integration of the Navier-

Stokes equation are presented. The goal here is to establish a basis

for assessing of the results of the statistical study. The static solu-

tions for squares, hexagons, and rolls were presented for Rayleigh number

up to i04. The plan-form which transported the most heat-flux was the

roll, and that which transported the least, the square. The hexagon

transported a little less heat than the roll, but appeared to be catch-

ing the roll at the larger Rayleigh numbers.

The next (3) methods may be best discussed simultaneously since

they represent various prescriptions for treating the random aspects of

the turbulent process. Also, as it turns out, once one is able to solve

the direct interaction equations, the other methods may be obtained by

repressing one or another of the terms in the equations.

These methods (i.e. 2, 3 and 4) may be briefly characterized by

the way in which they treat the eddy diffusion and eddy dissipation

effects associated with the fluctuating self-interactions. The mean

field system deletes both effects, while the direct interaction and

quasi-normal approximation give approximate treatments of both effects 0

The quasi-normal approximation uses a simpler approximation to repre-

sent the effect of the eddy dissipation. All these methods treat the

mean-fluctuating interactions exactly.

The numerical integrations (which at present are preliminary)

indicate that the direct interaction gives satisfactory results. The

relaxation of the system from initial conditions predicted by this

method is satisfactory. The Nusselt number predicted by the direct
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interaction method is about 5% larger than that found by method (1),

and about LO% larger than that predicted by the mean field modeL.

The relaxation of the mean field system is satisfactory, but not as

plausible in its detailed prediction as the direct interaction.

The quasi-T1.ormal approximation does not appear to be a sat is-

factory statistical procedure for this system. The numerical results

indicate, for example, that the response functions for the tempera-

ture fields fail to remain properly bounded.

PROBLEMS IN GALAY FORMTION

Review of Past Work and Present Status, the Results of

the Linear Analysis, and Types of Instabilities

Richard W. Michie

ABSTRACT

When the types of old stellar systems are ranked in decreasing

mass, there occur the clusters of galaxies, "normal" galaxies, dwarf

galaxies (with prototypes exemplified by NGC 205 and Fornax), and the

globular clusters. (The latter are not necessarily aii dynamically

bound to a larger system.) The available observational evidence does

not provide strong support for or against the assumption that these

types of stellar systems are the maxima in a mass spectrum from around

14 . 410 to lO suns. In this sense it will be questionable whether a

theory of galaxy formation can be checked by its prediçtions concerning

a mass distribution. Regardless of frequency of mass, it is important
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t.oaccount for the relatively few irregularly shaped systems (a much

harder task?), quasars, strong radio galaxies , large mass ellipticals,

etc. (It is also noted that the globular clusters in our galaxy are

segregated into two groups . Beyond approximately 10 kpc, these c lus-

ters all seem to possess stars whose atmospheres are deficient in

"metals" . Within this distance, there is a wide range in chemical

composition. )

To list just a few broad requirements, a theory of galaxy forma-

tion must account for the positional and velocity distribution of stars,

the rotation curve, the nuc leus of the systems, the type and spatial

distribution of old clusters within the systems, and should make

definite predictions concerning such things as the era of galaxy forma-

tion, age of galaxies, etc.

The observational data available for construction of a theory

are very sparse. At the present epoch, the density of luminous matter

has been estimated by Oort to be around 7xlO-3lgm/ cm3, while the non-

luminous intergalactic matter has an upper bound placed observationally

-29 3at around 10 gm/cm but this matter may even be absent. The

temperature of the intergalactic gas has been estimated to be around

510 degrees (Sciama; Ginzburg and Ozernoi; G. Field), but this is un-

certain also. The temperature of what appears to be cosmic black body

radiation is presently around 3 degrees Kelvin. The chemical composition

of the gas is largely hydrogen. The amount of helium may be 10 to 20 per

cent by weight if the., theoretical estimate by Peebles is correct, but

the current observations (e. g. W. Sargent) favor a smaller percentage.
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Ohe of the Friedman model universes may give an adequate repre-

sentation for the smoothed-out matter, but it has not been possible

yet to determine the type" The curvature is not known, nor is the

value of the cosmological constant. Lastly, the inverse Hubble con-

stant, Ho -1 is around 1 to 2 times 1010 years, and this fonns a time

limit to any process of galaxy formation.

The Initial Development: The Non- linear Growth of

Perturbations in an Expanding Universe

Richard 'W. Michie

ABSTRACT

Instabilities in an expanding universe have been studied by

Bonner using linearized Newtonian equations, and by Lifshitz using

the linearized field equations of General Relativity. The latter author

found three types of waves. There was the classical wave with a per-

turbedgravitational field due to a perturbed density. This mode

reproduced Bonner's results, and served to strengthen the validity of

the Newtonian approximation for the development of a small perturbationo*

The other two modes are peculiar to General Relativity: One has a per-

turbed gravitational field due to a perturbed velocity field and the

~"If the radius of the patch is small compared to the radius of the
universe, then the metric will be locally Minkowskian. If in addition
GMhc L. .( 1, the field is weak, and with ('%) ~.c 1 it is changing
slowly in time. Finally, with a non-relativistic gas, we can expect
to be able to use Newt.onian equations for the patch.
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other gives gravitational radiation due to (at least) a quadrapole

mass distribution. The results indicate that adiabatic growth rate

is so slow, that this mechanism cannot account for the development of

a small (o..P!? '" /O-:¿) amplitude perturbation which may later develop into

a stellar system.

The study presented during this lecture eliminated two approx-

imations, and thus includes a non-linear dissipative flow, The radia-

tive dissipation occurs by free-free, free-bound, and bound-bound

radiation. Heat conduction also is included, The mathematical tech-

nique employs moments over the whole system giving equations for the

change with time of total energy and mechanical energy. The virial

equation completes the set 0 Comparison with full numerical solutions

of the fluid equations for spherical flows indicates the accuracy of

the approximate technique, The error between the two is probably not

more than 5% generally, but at some phases it can be larger. There

can be a difference as much as 20 - 30% for very short times (during

phases of maximum compression), but the solutions always recover and

then continue within a few per cent of each other.

The results indicate that small amplitude perturbations of jP

and i' around 0,1% or more are unstable, and will rapidly grow to large

amplitudes in cosmological time scales. At cosmic densities around

10-27 gm/ cm3 or less the opacity plays a minor role since cooling by ex-

pansion is so important, At higher densities, if the temperature is

around 107 degrees, again opacity (and to some extent chemical composi-

tion) is not important, since the system radiates almost entire ly due



- 97 -

to free-free transitions for most of the total energy loss. The

chemical composition of the cosmic gas becomes much more important

(because of the radiation rate) if at these relatively early epochs

the cosmic gas is at a low temperature. For example, at a cosm.ic

density of iO-25gm/ cm3, and temperature of 60,000 degrees or less,

if the gas is pure hydrogen then at most a growth of ~Jf.. 2.0

can be achieved. But this is not nearly enough to obtain fragment~'-

tion, and this is because the initial outward motion of the cloud is

not reversed.

Fragmentation: The General Problem of

the Fragmentation of Gas Clouds

Richard W. Michie

ABSTRACT

Viewed within the entirety of the whole problem of galaxy

formation, the collapse of a small amplitude perturbation in an ex-

panding universe is a small achievement. One hopes to account for the

origin of the initial large scale and small amplitude perturbations, as

well as the processes by which the cloud will at some time break up

into subunits. If this latter process can occur fast enough, then

there is the hope it will lead to the formation of stars. The process

is often called fragmentation, and was first seriously considered by

Hoy le .

Hoyle seemed to feel that a cloud would inevitably form subunits,
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and. his argument was simple: when the cloud is collapsing, its

development will be isothermal and the condition for gravitational

binding (physically equivalent to the Jeans criterion) will hold for

smaller masses as the cloud becomes more compact. Also, since a

greater rate of energy may be released when the cloud is composed of

a group of smaller systems themselves contracting, Hoyle felt it

necessary that fragmentation will occur.

Hunter, and together Savedof and Vila, studied the fragmenta-

tion of a cloud using the linearized fluid equations, a prr) relation,

and a freely falling parent cloud. (Hunter's cloud was uniform, while

Savedof and Vila used a poly trope .) Both studies yielded similar

results: the amplitude of the perturbation (b..P/p) became nearly equal

to one after the cloud density increased by around 2xl03, if initially

~f/f -2.. lO 0 This is a slow rate of growth, but the results are

important for they indicate that if the initial perturbations are

present, the initial phase of growth is quite easy to obtain. Hunter

found that a second iteration indicated (to this order) that the non-

linear development is not any slower.

To study the effects of the radiative energy dissipation, heat

conduction and non-linear flow, the moment equation technique is again

used and this time the shape may vary between prolate and oblate. The

tidal force exerted on the isolated fragment by the cloud is included,

for it often is comparable in magnitude to the self-gravitational force,

A study of the effect of initial conditions indicates the following

playa relatively minor role, within reasonable limits: the trajectory
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of the fragment in the cloud, the time o£ origin, the place of origin,

the initial amplitude, the initial shape (and therefore the tidal force).

For example, . there is. not much difference in the solutions for initial

amplitudes varying from (say) 00 l% to 10%. What is found are two im-

portant things. First, following the development in time, the ampli-

tudes of the perturbations are very unsymetrical about the line 6.tl.-O,

the perturbations spending about twice as much time at larger positive

amplitudes as compared to the smaller negative swings 0 This type of

oscillation, (expected of a non-linear flow), allows an enhanced rate

of energy loss through radiation and keeps the fragments distinct in

the cloud until it has reversed its expansion and starts to fall inwards,

Second, at this later stage, the cloud is rapidly releasing gravitational

energy and the conditions are favorable for the perturbation to rapidly

grow. Rather figuratively, at this later stage there can be a transfer

from the global (cloud) instability to local instabilities. In an ex-

ample given, it was an easy matter to obtain growth of a LO~~ frag-

ment in. a lOllMø cloud, with the perturbation starting its development

very soon after the cloud started its development in an expanding universe 0

Because of these results the usual hierarchael picture of frag-

mentation in the sense of large fragments breaking up into smaller ones

may be incorrect" It may be more realistic to consider the cloud as

being in. an initial turbulent state, and through enhanced energy dissi-

pation most of the larger turbulent elements remain distinct and then

later grow. A larger element, containing a group of smaller ones (present

from the start) will definitely grow first; but still the growth of the

smaller ones will not lag appreciably behind.
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The Era of Galaxy Formation. The Chemical Composition

and Temperature of the Cosmic Gas

Richard W. Michie

ABSTRACT

lapse and this may take a lot of time. The results indicate that

one cannot expect galaxy formation to have occurred past that epoch

when the cosmic dens i ty was around LO - 25 gm/ cm3 . (Howeve r, the growth

of large scale perturbations can easily have occurred since this time.)

Since the cosmic matter and radiation field became uncoupled when

the matter density was around 10-20gm/ cm3, the era of galaxy formation

must have been when the density was between 10-20 and iO-25gm/ cm3. This

is an outside limit, and may be more narrow if the cosmic gas during this

time was at a low temperature. If, when;o was ,. 10-23 to 10-25gm/ cm3

the temperature of the hydrogen were less than around 60,000 degrees
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(which allows some range in possible heating), then the gas would

have been weakly radiating and perturbations would have grown by an

order of magnitude but they would not have entered into collapse.

However, starting at a density of 10-2lgm/ cm3, growth to large ampli-

tudes within .- 109 years can be easily obtained for sufficiently

large masses ( .. 109MG) or more) even for pure hydrogen so cool it

is essentially not radiating. Such a growth is essentially adiabatic,

and simply requires a perturbation in the density or velocity fields

to allow a lessened rate of expansion causing later a reversal of the

motion and hence collapse 0 The gas in the cloud is then heated and

ionized. Thus perturbations can grow in a cool hydrogen gas starting

when the cosmic gas was around iO-2lgm/ cm3 . But when the background

density falls to 10-23 to 10-25gm/ cm3, in order to get collapse within

a short enough period of time the gas must be either hot if "pure"

hydrogen, or otherwise must contain sufficient enrichment of other

elements so as to allow radiation at low temperatures. This also will

narrow the era of galaxy formation depending on the amount of helium

relative to hydrogen. Another important point is that the determination

of the era of galaxy formation also requires a theory of fragmentation,

and this cannot be accurately formulated without some knowledge of the

temperature and chemical composition of the cosmic gas during these

"early" stages of development .of the universe. Finally, the process of

initial condensation and fragmentation to stellar systems is not sensi-

tive to the particular type of Friedmann model with zero cosmological

constant.
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Galactic Bores

Edward A. Spiegel

ABSTRACT

In recent attempts at explaining the spiral arms of galaxy,

Lin and Shu have made plausible the idea that the arms are density

waves. The question dealt with here is that of the nature of such

waves as they occur in the interstellar gas when they are of suffi-

cient amplitude to be quite nonlinear. The work reported was done in

collaboration withD. W. Moore, NRC Senior Postdoctoral Fellow, N.A.S.A.

Institute for Space Studies, and, for my part, received financial support

from the Air Force Office of Scientific Research.

The ideas of shallow water theory are used to describe flow of

the interstellar gas, in treating the gas as an isothermal ideal fluid.

This means, that in general, the fluid is hydrostatic equilibrium in

the direction normal to the galactic plane. (This direction will be

called here, the vertical or z-direction.) Even in this approximation,

a number of sorts of waves can propagate through such a medium in

linear theory; in particular sound waves (p-modes) and gravity waves

(g-modes) with the appropriate modifications due to rotation can propa-

gate. We may ask what happens to such waves as they steepen and reach

finite amplitude.

If a sound wave traveling in the horizontal direction, steepens

into a shock, it is possible to discuss in the usual way the jump condi-

tions across it. If we apply the jump conditions, we find, in general,

that behind the jump the conditions of hydrostatic equilibrium are
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violated. In such regions the ideas of shallo'Wwater theory break

down and large vertical velocities arise, so that a phenomenon much

like a hydraulic jump occurs.

On the other hand, if the wave which steepens is a gravity wave,

it also gives rise to a hydraulic jump when it steepens into the non-

linear regime. If the flow ahead of the jump is shooting, generally

speaking it is also supersonic, since the gravity wave speed in an

isothermal gas is rJ vgwhere H.-C2/g. Thus, the jump is also a

transition from supersonic to subsonic flow as in a shock. Therefore

we see that both sound waves and gravity waves, in the interstellar gas

steepen into compressible hydraulic jumps, for which, perhaps, the term

bores is a more appropriate name.

In this work the jump conditions for galactic bares are developed

for an ionizing gas of pure hydrogen. The bore provides a source of

turbulence for the gas behind the bore, and causes ionization and

heating. A tendency for the gas to achieve a maximum density jump is

noted and this occurs when the gas flows into the bore at speed of

'i,;j:¿I/'Y/i :: 5"lk't/~, where I is the ionization potentia,l.

The 3-~pC arm detected in 21cm observations provides a possible

qualitative check of some of the qualitative results of the bore picture.

In observing this arm in certain galactic longitudes one is able to

observe tangent to the arm and thus see a cross sectiön of the wave in

a plane which is probably nearly parallel to the flow. One sees in

particular that outside the arm there is ionized gas while inside the

arm the matter is neutral. The ionized matter has a large vertical



- lOL. -

extent, and if the picture is that of radial outflow, the observed

phenomena seem to resemble qualitatively the situation in a strong

compressible bore.

This suggests as a possible model of the 3- kpC arm, that we

may consider it crudely as an axisymetric ring which represents a

density wave (bore) in a steady radial flow. The source of this flow

is not specified here, though we may note that motions outward from

the galactic center are observed interior to the 3- ~pC arm. The

basic flow interior to the arm, if taken to be axisymetric, is

described by equations much like the solar wind equations with the

inclusion of angular momentum. The flow, initially supersonic, begins

to decelerate in its outward motion, and in order for it to decelerate

through the Mach line, a discontinuity must occur, if the usual aero-

dynamic ideas are to be accepted. This discont inuity, according to

the foregoing discussion, must be a bore, for which the jump conditions

have been worked out. Hence the matching across the jump may be carried

out. A complete solution for the flow follows, giving temperature,

density, velocity. The general picture obtained is in qualitative

agreement with many aspects of the observations 0 But there is a striking

exception: the present model assumes that angular momentum is conserved

by each parcel of fluid while the observations indicate that this is not

the case. Magnetic configurations exist which appear to redistribute

angular momentum in the required way, but this requires field strengths

rather in excess of those observed.
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DYNAMICS OF DISK GALAIES

Alar Toomre

This series of four lectures on the stability and dynamics of

thin, rotating systems of self-gravitating material was divided into

two nearly independent halves . The first two lectures, reviewing i)

the criteria for the avoidance of outright gravitational (or Jeans)

instabilities, ii) some free and forced density waves in such sys-

tems, and iii) the galactic spiral problem, were in essence concerned

with displacements only within the planes of these disks 0 The last two

lectures, on the other hand, dealt with i) various bending oscilla-

tions, and ii) certain new buckling instabilities of such model galaxies,

and thus involved significant motions at right angles as wello

Lectures I and II: Gravitational Stability of Thin Disks;

Forced Responses; The Spiral Problem

ABSTRACT

This review began by noting that the elementary gravitational

stability of any disklike galaxy involves two distinct length scales,

One of these is the familiar Jeans wavelength (or adaptation thereof),

below which the clumping tendency of the self-gravitation may be success-

fully resisted already by gas-kinetic or magnetic forces, or by the random

motion of the material, The other is an approximate upper bound stemming

from the fact that, even in the absence of such pressure-like forces,

just the rotation of the thin disk tends to secure it from gravitational

instabilities at large enough length scales 0
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It was remarked that these two critical lengths together provide

a readily understood criterion for the stability of a disk of gas or

stars again.st simple gravitational clumping: In essence, that clumping

will be avoided provided the Jeans length which itself is of order

2 ~ times the thickness in the case of a gas disk (e .g., Ledoux 1951)

exceeds a certain fraction of the rotational length scale. The rela-

tively "local" analyses of Toomre (1964, for a star disk) and of Gold-

reich and Lynden-Bell (1965~, for certain gas sheets) were both re-

viewed in this light, and it was noted from them that the critical frac-

tion appears to be about one-quarter.

It was cautioned, however, that as yet there exists not a single

stability analysis either proving or denying that a smooth, self-con-

sistent disk of stars or a comparable gas disk could be fully saved

from instabilities of all scales by sufficient random velocities or

gas pressure. In this sense , the outstanding problems include whether
_.~

a bar-like density disturbance couJd develop in an otherwise stable,

axisymetric disk of material, and also whether that system might not be

prone to mild instabilities, or at least waves, of a distinctly spiral

form.

The latter possibility, initially advanced by B. Lindblad, has

recently been seriously reopened by Lin and Shu (1964, 1966) ,who indeed

have found some asymptotic indications of just such an instability.

Lacking the aforesaid complete analyses, however, probably the fairest

comment on Lin and Shu i s spiral wave hypothesis is that it is as yet

unproven, and also that it probably won i t be applicable to the very chaotic-
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looking spirals in any case. On the other hand, in its favor it must

definitely be said that it appears almost impossible to attribute the

most orderly large-scale spiral structures to any forces other than

(primarily) the stellar gravitation.

An alternative approach to the problem of the spiral structures

of the more chaotic sort was also reviewed in these lectures. Whereas

one can be almost certain that the typical stars in present-day galactic

disks would by now be protected from the most obvious (or Jeans) insta-

bilities by their more or less automatically acquired random motions,

it was pointed out that even that assurance is lacking as regards the

interstellar material. This is due both to our ignorance of the actual

gas pressures as well as to the various dissipative processes that are

to be expected in a gas.

It was therefore suggested that in possibly quite a few of the

ga laxie s and regardless of the existence of any really large-scale

waves in the combined star and gas disks the gas might have been

forced to adopt a distinctly uneven or lumpy distribution already by its

own gravity. In such situations, it was emphasized that the approximate

spacings between maj or gas fragments would not necessarily equal any

Jeans length, but would rather be determined by the appropriate rotation-

governed critical length scale mentioned above 0 Several elementary

examples were offered supporting this contention. An important conse-

quence is that, since the length scale in question happens to be propor-

tional to the projected density of the gas, the typical fragment spacings

should themselves be roughly proportional to the fractional gas content
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of a galaxy. That correlation, of course, is in qualitative agreement

with observations.

Finally, mention was also made of some related calculations of

Julian and Toomre (1966) concerning the gravitational effect of any single

orbiting mass concentration (such as one of the aforementioned gas "lumpsl1)

upon a differentially rotating disk of stars possessing a velocity dis-

persion more than sufficient for local stability.

These calculations, to some extent foreshadowed by Goldreich and

Lynden-Bell's (1965£) analyses of shearing wavelets in a gas disk, showed

even such a stable star system to be remarkably responsive in a spiral-like

manner to localized forcing. These forced spiral waves are not to be con-

fused, of course, with Lin and Shu's fully self-consistent density wave

proposals; however, together with the latter, they certainly contribute

to the impression that the spiral phenomenon even on the intermediate

scale is probably explained mainly by gravitation.

Lecture III: Large-scale Bending Modes

Alar Toomre

ABSTRACT

It has been known for some time (Burke 1957, Kerr 1957) that the

layer of interstellar atomic hydrogen in this Galaxy is curiously warped.

Although remarkably flat over its inner half, it becomes distorted upwards

by as much as 700 pc (or about 5 per cent of the radius) near one sector

of its rim, and is turned down by a like amount at the opposite longitudes.
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In cross section, the hydrogen disk thus resembles a shallow integral

sign.

It was first thought that this might simply be a tidal distortion

of our entire galactic disk (gas and stars alike) due to our presumed

satellite galaxies, the Magellanic Clouds. However, already Burke and

Kerr felt obliged to dismiss that possibility as numerically implausi-

ble by one or two orders of magnitude 0 Later workers (e, g., Lozinskaya

and Kardashev 1963, Mrs. Avner 1965, Elwert and Hablick 1965) have either

concurred outright, or else have had to invoke some special resonances

in their attempts to explain the observed displacements as a direct

tidal result of the Clouds at their present distance.

An ingenious alternative explanation was advanced by Kahn and

Woltjer (1959): They noted that a not implausible motion of our Galaxy

with respect to any intergalactic material would for fairly reasonable

densities result in pressure forces adequate for displacing our gas

layer from a plane by about the right order of magnitude. However, Kahn

and Woltjer's suggestion was not worked out in very convincing detail

(for instance, all gyroscopic effects were neglected, and solutions from

incompressible hydrodynamics were used to describe the exterior gas

motion) and it is perhaps fair to say that their idea enjoyed consider-

able vogue chiefly because nothing else seemed to work any better.

A third possibility, suggested by Lynden~Bell (1965), is that the

observed deformation might represent a travelling wave analogous to the

free or Eulerian nutation of, say, a coin thrown spinning into the air.

Lynden-Bell noted that such a rapidly forward-travelling mode in a
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non-rigid, self-gravitating disk of constant angular speed of revolution

would at any instant also be exactly plane; however, in more general

disks, the corresponding mode would necessarily appear somewhat warped.

He conj ectured that one such disturbance might indeed have persisted

since the formation of this Galaxy.

It was mainly this last suggestion which recently prompted

Christopher Hunter and myself to undertake a more comprehensive study

of the bending oscillations of thin, self-gravitating disks of negligible

pressure. Our mathematical technique consisted largely of adapting

certain Legendre polynomial expansions used previously by Hunter (1965)

to study disturbances within the planes of certain model galaxies, and

of numerical evaluations of the eigen-values and -vectors of (strictly

speaking) infinite non-symetric matrices.

The main conclusion of this work has been that the "Eulerian"

mode is by no means the only nor even the mos t 1 ike ly candidate:

We have found many disks with relatively sharp edges to exhibit a variety

of other bending modes, including one relatively slow, retrograde-travel-

ling mode of the desired integral-sign cross section. Because of its

comparative slowness of precession, the latter mode in our Galaxy appears

to have been especially susceptible to excitation by external tidal forces

such as those from the Magellanic Clouds during some past close passage

at, say, one-half their present distance. Indeed, by assuming their mass

to be one-tenth of that of the Galaxy, we have satisfied ourselves that

almost the full observed amplitude and shape of bending could have been

established during a single such passage, and would subsequently have
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persisted at. least for several galactic "years". That amplitude of

distortion, by the way, is of the same order as the angle of precession

öf a comparable rigid disk under the same circumstances.

Lecture IV: A Kelvin-Helmholtz Instability

Alar Toomriç

ABSTRACT

The Kelvin-Helmholtz instability in ordinary hydrodynamics refers

typically to a situation where two adjacent, semi-infinite, inviscid

fluids of the same density slide relative to one another with an unper-

turbed speed of, say, 2 Uo It is then well-known (e. go, Chandrasekhar

1961, po 481) that the vortex sheet that is their contact surface is

prone to a lateral instability with an exponential growth rate cr = Uo~

where 0( is the relevant wave number of the spacially sinusoidal Per-

turbationo

Closely related to this instability is one which arises when two

very thin, counter,.streaming laminae (or extremely flexible hoses) of

inviscid fluid are laterally

~
..;X

constrained to move as one:

~o ~
,f? ~.

Then, in teris of the supposedly infinitesimal displacement (h(x, t), it

is clear that a typical element of the moving to the right experiences

a vertical acceleration (and hence a force per unit mass) given as
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(ô~ +~
d 2 ~
aX, j ~:: htt T 2 t? lii:~ + 1JÐ ~ l' ~

and that the leftward stream feels a similar acceleration with only

the sign of Uo reversed. If one further assumes the two streams to be

of equal intensity, and to possess no bending stiffness or other ex-

ternal restoring forces, it follows that their accelerations must every-

where sum to zero, or
Att. + U~ tj(1' := 0

Thus, even the growth rate of sinusoidal disturbances turns out to be

the same in this example as before 0 Note that this example also gen-

eralizes to the case of many parallel, thin streams merely by the above

u; becoming replaced by the mean-square speed of all the laminae. Some-

thing like this in plasma dynamics is aptly named a "hose" instability.

Our star disk itself may be thought of as consisting of a multi-

tude of similar but in this instance interpenetrating streams

of material. We wish now to show that it would likewise be vulnerable to

a centrifugal instability if the root-mean square stellar velocities, say

CJ;a , at right angles to the disk were very small compared to the typical

random velocities in the horizontal.

The essential thing to recognize is that the necessary lateral

cohesion would in this case be automatically provided by the gravity of

the stars. For instance, if any group of stars were laterally displaced

an increment Ò h. in excess of the local mean, they 'Would be returned with

an acceleration of O(i¡íiGpøLl~, where Po is a typical volume density of

the star disk. It is obvious that, if the corresponding "rattling" fre-

quency Wt =( IfnG ~ f were large compared to others such as UoO( , the
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different types of stars comprising the disk would be locally con-

strained to move very nearly together in any z-displacements. But such

would be precisely the case if the vertical dispersion were very small,

since for any prescribed surface or projected density, the volume den-

sity 1'0 and hence Wt would become arbitrarily large as cY¡ ~ O.

This strong cohesion, of course, would not be the only effect

of the stellar self-gravitation, Any extremely thin sheet of supposedly

constant surface density )J would, when laterally displaced like

~ ()tJ t) :- H ( t) ~ C( X ~

itself cause a vertically-averaged restoring force per unit mass,

~' =- -2 Tt 6p C( H(t) CD ex X ,

that would tend to restore it to a plane, With this milder restoring

force included, and assuming the displacements at any given location

again to be described by a single function hex, t) for the reasons men-

t ioned above, we obtain 'i. ..
Htt - 0'1- ex 1-:: - 2n Gjt ~ H ~

where OX denotes the r .m. s. random velocity in a given horizontal

direction.

From this last equation it emerges that the gravity of any

extremely thin (or low C1 ) star disk alters the earlier result only

by stabilizing sufficiently long wavelength disturbances, while the

shorter bending disturbances still remain unstable. (Curiously, in

this context the critical wavelength, or~¡lap, proves to be identical

with the Jeans wavelength for instability with respect to horizontal

disturbances in a non-rotating star sheet!)
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Of course, the above analysis and hence the instability con-

c lus ion become inapplicable at wavelengths so short that even a very

small thickness of the sheet can no longer be neglected. Since that thick-

ness is itself of O(cr; /6,P), it must be suspected that all instabilities

of the buckling kind may be avoided provided the ratio 1St/a- is large

enough.

The latter conjecture seems indeed borne out by a detailed analysis

involving the collisionless Boltzmann equation: The critical'r.m.s. veloc-

ity ratio for a stationary star sheet with Gaussian distributions of veloc-

ities in both the vertical and horizontal directions has been provisionally

calculated as 0.30. Not very surprisingly, it has also been estimated

from related but more complicated numerical calculations that a reasonable

rate of rotation of the star disk should not alter this minimum required

ratio by more than about ten per cent.

By contrast, the observed ratio of the velocity dispersions for

many classes of stars is roughly 0.5 - 0.6, and thus is apparently well

clear of this stability boundary.
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Topology of Magnetized Fluids

David Finkelstein

ABSTRACT

Suppose, for instance, that all of space is filled with perfectly

conducting fluid, at first uniformly magnetized, B = Boo Subsequent- -
fluid motions can twist this uniform magnetic field into very complex con-

figurations, but there is an integer K, a topological invariant we call

the number of kinks, defined below, that is conserved so long as (a) the

magnetic field is a continuous function of space and time (no shocks,

please) and (b) the fluid can be regarded as perfectly conducting.

Initially K = 00 If after some time, however, there are seen localized

distortions, call them "galaxies", between which the magnetic field is

approximately equal to its asymptotic value ~o' but within which there

may be large departures from ~o' then each "galaxy" can be assigned a

conserved kink number Ki, and

~ Ki = O.

A specimen of a single kink (K = +1) is the magnetic field

B(r) = rexp (ce r X)l Bo'tI A" L ." ~,.
where the exponential of the linear operator ~ r ~ (cross-product) is'"
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simply a rotation about a radial axis, through the angle of rotation

e:: cXY', r;: Irl. We demand that ~ = 0( (r) be such that

e -~ 0 r -, tx

-) 2. íT /' -~O

in order that B satisfy the boundary conditions at 00 and be

continuous at 0, 0( ~ - eX yields the anti-kink (K = -1).

1
The kink number K is defined as follows in general. Because

B( r) 1s carried with the fluid, B is never zero, and defines a mapping""N -
of r -space into "punctured" B-space. The boundary condition at ~ = cc.. ..
makes it possible to regard x: -space as a three-sphere S3, and the

number of kinks K is the number of times the field point ~ surrounds the

origin B = 0 as f" ranges over its S3... --
The concept of kink applies for other boundary conditions as well.

For example, a magnetized fluid in a conducting toroidal chamber with

tangential boundary field (Stellerator) can be assigned conserved kink-

numbers.

lD. Finkelstein~ Kinks, J.Math.Phys., July, 1966.
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Spin-Orbit Coupling in the Solar System

Peter Goldreich (and Stanton Peale)

ABSTRACT

Several theoretical discussions of planetary and satellite

rotation rates have followed the recent radar determination of Mercury's

rotation period (Pettengill and Dyce 1965). (Hereafter we only refer

to planets, although our results may be applied to satellites as well.)

In the first, Peale and Gold (1965) showed that in an eccentric orbit

tidal friction could bring an axially symetric planet to an asymptotic

rotation rate which is somewhat faster than its orbital mean motion.

In the asymptotic spin state the tidal torque averaged over an orbit

period vanishes. For a broad class of tidal torques the maximum torque

occurs at perihelion, and the final spin velocity will lie between the

mean motion and the instantaneous orbital angular velocity at perihelion.

The precise value of the final spin is determined by the amplitude and

frequency dependence of the planet's Q, where l/Q is the specific dis-

sipation function (MacDonald 1964).

Colombo (1965) has suggested that Mercury may be spinning with

an angular velocity of precisely l. 5 n, where n is its orbital mean

motion. Subsequent investigations have shown that a sufficient devia-

tion from axial symetry would .stabilize this re.sonant spin (Liu and

O'Keefe 1965; Colombo and Shapiro 1965; Goldreich and Peale 1966a). The

existence of other resonant spin states at rotation rates of p'l , where

f is any half-integer (negative or positive), has been suggested by the

latter two sets of authors .We have shown that the excee~ingly small
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value of (B~A)/C ~10-8 would suffice to stabilize many of these

resonances against the disruptive influence of the solar tidal torque 0

Here, A, B and Care the principaL moments of .inertia in order of in-

creasing magnitiide. For the moon in its present orbit with the known

value of (B A) /C -: 2xiO-4, stable resonant spin states exist at rota-

tion rates of 0.5n" h, 1.5n., 2ñ., 205rt and perhaps at several others,

Thus for Mercury and the moon, stable spin states appear to exist with

rotation rates which are both faster and slower than the observed values.

Almost certainly Mercury and the moon must have bypassed some of these

stable resonances on the way to attaining their present spins, Similar

strong indications that satellites may pass through stable resonances are

provided by the observed synchronous rotations of several satellites of

the major planets. Of special interest is Iapetus, because of its weak

tidal torque, relatively high orbital eccentricity, and well-confirmed

synchronous rotation (Widorn 1950).

What conditions must be satisfied if a planet is to be captured at

one of the resonant states? The present investigation is devoted to answer-

ing this question, In the following., approximate equations of motion for

a spinning planet are derived by averaging the complete equation of motion

over an orbit period, From the averaged equations criteria for the stabil-

ity of resonant spin states are established. Details of the capture into

stable spin states are emphasized, and techniques for calculating capture

probabilities are developed. Capture probabilities are calculated for both

the synchronous and the l. 5 n resonance and are applied to ,Mercury and the

moon. Similar techniques are used in a discussion of the Venusian spin,
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which may be commensurate with its synodic mean motion. A stability

criterion is determined, and the possibility of capture into such a

resonant state is considered. As a check on the validity of the aver-

aged equations of motion the complete equations of motion were directly

integrated in several cases, and the results were shown to agree with

those derived from the averaged equations.

Relativistic Cosmology

James L. Anderson

ABSTRACT

The problem of formulating a consistent description of the

gravitational interaction of matter is essential for all cosmological

considerations since, as far as we know, gravity is the only force that

is operative on the cosmological scale. Historically, the first descrip-

tion of the gravitational interaction was given by Newton in terms of

an instantaneous action-at-a-distance between gravitating masses. Later,

after the experience gained with the electromagnetic interaction, the

gravitational interaction was re-expressed in terms of a gravitational

field. This state of affairs was satisfactory until attempts were made

to describe the gravitational interaction within the framework of special

relativity. The simplest possibility appeared to be to describe the

gravitational interaction by means of a scalar field, However, such a

description predicted a precession of the planetary perihelia in the
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opposite direction to that observed. Before other attempts were made to

des.crihe the gravitatio.nal interaction within the framework of special

relativity Einstein proposed a description that we now call the general

theory of relativity" Basing his development on Mach's principle, the

principle of equivalence and the principle of general covariance he was

lead to associate the gravitational field with the underlying geometrical

structure of physical space-time. Much later it was found that all known

gravitational effects could be described within the framework of special

relativity by using a second rank symetric tensor to describe the gravi-

tational field.

In constructing relativistic cosmologies then, one has two alterna-

tives: one can use the full mechanism of general relativity or one can work

with the special relativistic theory described above. It is important to

recognize that the general theory involves two universal constants, one the

gravitational constant, G, and the other the velocity o.f light, c. In the

limit G ~ 0 one obtains from the general theory the special relativistic

theory. On the other hand, in the limit l/ c ~ 0 one obtains the Newtonian

theory. Thus a cosmology based on the Newtonian theory neglects both the non-

linear effects of the general theory and the velocity dependent effects

which are essentially special relativistic in origin. One sees then that

Bonner's considerations concerning the stability of an expanding universe,

based as they are on a Newtonian theory are included in the treatment of

Lifschitz which is based on the general theory" It would be interesting to

study a special relativistic cosmology to see if the non- linearity of the

general theory plays any essential role in such stability considerations.
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One other feature of the gravitational interaction in both the

spec.ialand the general theory is worthy of mentiono In any field theory

one must impo.se suitable boundary conditions. In most treatments one

imposes Sommerfeld radiation type boundary conditions which lead to the

usua.l retarded solutions of the wave equation. However it is not necessary

to do so and in particular the statistical arguments of Wheeler and Feynman

for the elimination of the advanced solution in the electromagnetic case

involving, as they do, the concept of a complete absorber and not appli-

cable in the gravitational case since there are no gravitational absorbers.

The possibility exists therefore that the gravitational interaction between

two bodies might involve both advanced and retarded solutions 0 It is

proposed that such an interaction could be observed by careful measure-

ments of tidal forces of the moon on a resonant system of the type employed

by Weber for the detection of gravitational radiationo

Problems of Relativistic Hydrodynamics

James Lo Anderson

ABSTRACT

The relativistic analogue of the Eulerian equations of motion for

an ideal gas have been long known. 
1 Two extensions of these equations are

of considerable interest, especially for some astrophysical applications:

the inclusion of gravitation effects and the inclusion of transport processes.

lsee L. D. Landau and E. M. Lifschitz, Fluid Mechanics, Chap. XV (Pergamon
Press, London, 1959).
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In this lecture we discussed the problems that arise when. one attempts

to make these extensions 0

In our first le.cture we showed how gravitational interactions

could be taken into account in special relativity by a symetric tensor

field hfLV 0 By a standard method of the NQether theorem one can con-

)J Y
struct a stress tensor, ~G ' for this field and it, together with

'Tß Y (T'-Y tJ.-Y)the matte.r tensor 'M ' must be conserved; i. eo\. M + G ? y:: O.-)-Y T,uv f. :\
If 1M is the matter tensor of an ideal fluid, given by 1M :: iGtlJUJAu."-P?,uv

where G- is the internal energy, l the pressure and u.L the four-

velocity of a fluid element, we obtain, from these continuity equa-

tions, the relativistic analogue of the Eulerian equations for an ideal

fluid including self-gravitating forces. These equations, together with

the number continuity equation (n u,t) i "M:= 0 , the equations of motion

O (h)ÁV I Yj)J)!h h(l()) _ )( -r.l~\ -3 ¡per - f'
equation of state E "" 6(Yl¡ p) constitute a complete set of equations for

for the gravitational field, and an

E n rJ l-and h.uy ..J ),- J

An alternate, and more satisfactory, approach to the problem of

including gravitational effects is to make use of the mechanism of gen-

eral relativity. The gravitational field, now denoted by g))y , is

assumed to satisfy the Einstein equations 'R). ~~ ~M.Y R = ìC T1/A. Y where,

b f h d . .h . . d .. -i lJ '¡ . f T:')~ ,L 0ecause 0 t e contracte Biaac i i entities, M must satis y M ; v =

(semi-colon denotes covariant derivative). With -t).:: (E+'P)~U.Y - p 9,ù)l

these latter equations give the "Euler" equations of motion for the fluid.

If we make a weak-field approximation ()L small) so that 3t.V::~l-:'¡T'hflY,

we recover the special relativistic equations discussed above 0 On the other
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hand, if one makes a "slow-motion" approximation, i.eo, makes an

expansion in powers of llc .where c is the light velocity, one appears

to obtain an essentially different set of equations of motion, first

given by Chandrasekhar.2 The first set of equations allows for arbi-

trary motions of the fluid but requires that the gravitational fields

are weak. The second set restricts one to motions with small veloci-

ties but takes account of non-linear gravitational effects ° It appears

that the physics of the situation wilL determine which equations one

is to emp loy 0

The problem of including transport processes in a re lativistic

framework is still, to a large extent, an unsolved problem, due chiefly

to the fact that one does not yet possess a satisfactory kinetic theory

of a relativistic system of particles. To date two approaches have been

proposed, one due to Eckart3 and the other to Landau and Lifschitz ° 1

In the Eckart approach one maintains the number continuity equation

(nv.IJ ))p- ': 0 and modifies the stress-energy tensor by adding to it,J, v ~;J jJin the case of heat conduction, a term 1) i -\1) fjwhere q; is a heat

flux vector satisfying U~ t~ : 0 In the Landau-Lifschitz approach

one retains the form of the stress-energy tensor but modifies the number

continuity equation to (f'l.u"¡'l~),)~=Owhere V,u~==O and ~ is the

proper-mass density of the fluid. Only in the limit where t/(G+/=) is

small do the two approaches agree. Further progress on the problem will

require a relativistic Boltzmann equation.

2S. Chand~asekhar, Apol. 142, 1488 (1965).

3C. Eckart, Phys.Revo, 58, 919(1940).
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Galaxy Formation

George B. Field

ABSTRACT

The. problem of growth of density fluctuations in a Friedmann

universe containing radiation can be discussed conveniently by dividing

the history of the universe into three distinct phases. During Phase I,

extending from a few hours to about 103 years, radiation dominates matter

both in terms of pressure and in terms of density. In Phase II, lasting

up to about 105 years, pressure is due to radiation, and density is due

to matter. Phase III occurs after the radiation and matter decouple at

105 years; the density is due to matter, and pressure which affects hydro-

dynamic motions is due mostly to the matter also.

phase III can be discussed with Newtonian mechanics according to

BonnoL Density perturbations of the form Jt Ip = h (t) (sM ~ r ) /'k r

h(t) =t'r~

I S' (I! :J4 L ~:i 2. l2.Yn:i ~ - T:! T 1- :iS f(o Cso tø )
if the gas pressure obeys l = t~' where C oS is sound speed and "On refers

to the moment to (=103 years) when radiation and gas density are equal.

Hence there is growth like to/a for wavelengths much larger than the Jeans

( ~ ri )\/~
ÀJ:: C So :3 Ii to

corresponding to a mass of about i05M(! for To = 80,0000K and lo = iO-16g cm-3,

have the solution

where

length

numbers which are consistent with observationo It is shown that such a

growth starting from a perturbation it at time t can be projected approx-

imately into the non-linear regime, de itself (as against dt;f ) starting
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t -~to increase at 71= I.lth and ultimately rising sharply as t-7ztfr

presumably to form a galaxy. Hence if galaxies are to form at ",108 years,

a l% perturbation is necessary at the beginning of Phase 1110

Phase II is not yet we 11 understood, Approximate Newtonian solu-

tions by Peebles indicate that perturbations present at the start of

Phase II are "frozenin" by radiative drag if their wavelength, and

hence optical depth is small. General relativity is necessary for long

wavelengths, but the only treatment available (Lifschitz) has not been

worked out in detail for the equation of state valid for adiabatic

changes in Phase II: P"RAD
=

t'RA D ~ flVAT

grow secularly

!!
dp

Sufficiently large objects may in density during Phase

II, but objects of intermediate size may oscillate.

Phase T has been treated by Lifschitz for sufficiently large ob-

jects ~"fYt!) where d.¡:/cle ~ :t c"Z 0 He finds an early period of growth,

h \h t:; C, t l C:i , followed by oscillation in time with constant amplitude,

corresponding to acoustic waves with speed, (ejR), where C. is the speed

of light 0

In sumary, the theory so far developed suggests that galaxies can

be formed by the growth of density perturbations, However, a finite per-

turbation ( ~ ii) is needed at 105 years, and since there is no exponential

growth at previous times, the source of such a perturbation is a problem,

Since the order of magnitude of h does not change much during Phases I or

II, growth to -l% is required in the very earliest phases. This can occur

only if ~t (t -70) is finite, which seems to mean that the perturbation

must be put in as initial conditions,
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Similarity Techniques applied to Taylor Columns.

Source Flows in a Stratified Fluid.

Bruce R. Morton

ABSTRACT

The purpose of these two seminars was to exp lore some of the more

important physical characteristics of steady flows produced in extensive

regions of rotating or stratified fluid by sources (or sinks) of mass or

momentum. The order-of.,magnitude and similarity arguments used serve to

identify properties of special regimes of flow with a minimum of math-

ematical detail, and also bring out the significance of mass flux and

flow force (defined as longitudinal momentum flux plus pressure perturba-

tion) in the various flows. More complicated systems may then be inter-

preted in terms of the elementary source flows; for example, the Taylor

wakes produced in a rotating environment by slow motion of a body along

an axis of rotation may be related asymptotically to the flow due to a

doublet formed as the limit of a flow-force source and sink combination.

The flow due to a point source of mass in an environment otherwise

at rest is spherically symetrical with mass flux constant and flow force

decreasing with increasing radial distance, while that due to a point

source of momentum has increasing mass flux and constant flow force with

increasing axial distance. Flows due to mass sources in rotating or stably

stratified environments suffer an additional lateral constraint which gives

rise to strongly preferred asymptotic directions of outflow parallel to

the rotation axis or normal to the gravitational field: such flows tend to

be narrow, and viscous forces are generally significant far from the source 0
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The background rotation or stratification also impose a constraint on

inflow from large radial distances producing a modified pattern of en-

trainment 0 Most previous solutions (particularly those for mass sources

in a rotating fluid) have neglected viscosity.

An.order.,of-magnitude analysis of the Navier-Stokes equations for

s.ource-like flow in. a rotating or stratified environment may be based

on. the singleas.sumption that the flow subtends a small angle at some

virtual source. In tenus of local scales for the disturbance pressure

and for each coordinate distance and velocity component, a flow may be

characterised locally by a local Rossby number (the ratio of scale inertia

to scale Cori.olis forces) and Reynolds number (based on flow along the

column), and as a whole by overaii Rossby and Reynolds numbers based on

the source strength. (In stratified fluids the Rossby number is replaced

by a Richardson or internal Froude number.) The Reynolds rather than

Ekman number is chosen to represent physical effects due principally to

the source and not the boundaries of the flow region, though it is neces-

sary to determine subsequently the degree to which these may be separated

in actual cases. If the equations are now taken (for the case of ambient

rotation) in the order: continuity, azimuthal momentum, longitudinal

momentum, and radial momentum, special flow regimes are obtained repre-

senting laminar regions of inertial-viscous force balance, inertial-

Coriolis balance, and Coriolis-viscous balance; in the first two cases

there are two types of regime according as the longitudinal and azimuthal

equations are or are not pressure coupled, while in the third there must

always be pressure couplingo The one additional relationship needed fully
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to determine the similarity structure in each of these regimes is provided

by a 'source strength relation' representing constancy of mass flux for the

mass source or of flow force for the genexaLised momentum source 0 Exist-

ping solutions for swirling jets in still and vortical environments fit

into this classification, and additional solutions have been obtained by

Herbert (PhD thesis, University of Manchester, 1965) including especially

the Coriolis-viscous jet produced at small Rossby numbers from a source

of flow force directed along a rotation axis of the environment (J. Fluid

Mechanics, 1965). This Herbert solution has a number of interesting prop-

erties: while the flow force is independent of axial distance as in a

simple jet, both the entrainment flux at large radial distance and the

axial mass flux in the jet are zero as a consequence of the lateral con-

straint of ambient rotation; and the flow force is transmitted predom-

inantly by the pressure field since the velocity disturbance is weak.

There are two types of Taylor column: longitudinal Taylor columns

produced by slow motion of a body along an axis of ambient rotation, and

lateral Taylor columns due to motion of a body normal to the rotation

axis 0 The latter type is most naturally treated as a wave phenomenon

(c.f. ship wave patterns), but the former may usefully be treated as a

wake problem in the normal aerodynamic sense (and in this case a better

term might be Taylor wakes) 0 An order-of-magnitude analysis may again be

carried out for flow in the Taylor wake under the assumptions that the

spread angle of the wake is small and that all disturbance velocity com-

ponents are small relative to the speed of translation of the body (although

the Reynolds number for motion of the body need not be small). These
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restrictions exclude a region of flow in some neighbourhood of the body

but a good deaL of physical insight may still be gained from consider-

ation of the more distant flow. Inertial-vis.cous, inertial-Coriolis and

Corio lis-viscous regimes of flow may again be identified in both upstream

and downstream wakes, generally of unequal strengtho The similarity

structure.sare in each case determined finally by the drag contribution

of the particular wake (and it may be noted that Taylor wakes serve the

purpose of transmitting the force exerted by the body on the fluid via

the flow-force field towards the boundaries). The most interesting

regime is again the Coriolis-viscous flow, where the solution proves to

be identical with the Herbert vortex jet 0 Thus at low overall Rossby

numbers the upstream Taylor wake has the asymptotic structure of a viscous

vortex jet corresponding with a source of positive flow force and hence

has anticyclonic relative vorticity, while the downstream Taylor wake is

a cyclonic vortex jet corresponding with a negative source or sink of

flow force. The drag experienced by the body is transmitted by a posi-

tive upstream pressure perturbation and a negative downstream pressure.

The distant flow field of a source in a rotating or stratified

environment depends strongly on viscous forces, has an essential pressure

coupling of axial and azimuthal velocity fields and has axial and azimuthal

velocities of comparable magnitude. These features appear to be incom-

patible with the assumptions on which Stewartson, Barua and Squire have

previous ly based solutions for a mass source in a rotating environment.

Moreover, the asymptotic solutions indicate that when the flow force is

constant the mass flux is zero, while if the condition of constant mass
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flux is imposed then either the flow force must necessarily be an in-

creasing function of axial distance, or there must be axial pressure

gradients in the outer field 0 A simple experiment to test some of these

ideas has been carried out in the WHOI Hydrodynamics Laboratory during the

sumer with the help of Mr. Robert Frazel, in which a time-dependent, two-

dimensional source flow was produced in a stratified environmenL A long

narrow tank was stratified stably with a linear density gradient using

salt and water, or water and ethyl alcohol, and dyed source fluid was

run in slowly through a porous pipe fastened horizontally across the

tank at middle depth. The density of the source fluid was equal to that

of tank fluid at the level of the source axis, and flow visualisation was

provided using electrical release of dye lines from vertical wires in a

tank coloured with thymol blue. Although this is an unsteady flow, it

exhibited many of the anticipated features. When the source was turned on

and maintained at steady mass flow, a velocity field was generated which

extended horizontally (and vertically) some distance beyond the lens-shaped

contact surface enclosing the fluid released from the source; the thin

layer of outflow, both within and beyond the contact surface, was sandwiched

between upper and lower layers of reversed flow; the whole velocity field,

in both outward and reversed layers, decreased in magnitude away from the

source, and for the period of useful observation was very small near the

end walls; no visible effect had been produced in a dye sheet extending over

the end walls of the tank up to times at which the source-fluid lens ex-

tended through about half the tank length; the pressure head required to

maintain constant mass flux increased steadily as the lateral extent of the
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flowincTeasedo The sink flow produced by extraction of fluid at

constant rate through the pressure pipe was in most respects very

similar to the source flow with reversal of all flow directions; and,

in particular, the pressure head necessary to produce a constant outflow

increased steadily with time after the flow was started 0 These and

other experiments with related theory will be described in greater

detail elsewhere.

Stochastic Equations and the Theory of Turbulence

Joseph B. Keller

ABSTRACT

In the analysis of the propagation of sound waves, electromagnetic

waves or other waves in turbulent media, linear partial differential equa-

tions with random coefficients are encountered 0 The statistical properties

of the coefficients are determined by the turbulent motion of the medium.

For the purpose of analyzing wave propagation, these statistical proper-

ties are assumed to be known 0 Then the statistics of the propagating

waves are sought in terms of them. The theory of turbulence, on the

other hand, seeks to determine the statistical properties of the tur-

bulent flow itself. Since this flow is governed by nonlinear equations,

it is not susceptible to the same type of analysis as the wave motion,

which satisfies linear equations 0 In this lecture we present a theory of

linear stochastic equations, i.e 0 equations with random coefficients, and
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show how it can be applied to the Navier-Stokes equations to yield a

theory of turbulence.

LetL (0: be a linear operator depending upon a random variable

0( with probability distribution r C O()" Then we write a linear sto-

chastic equation as

~u. =~ (1)

Here ~ is a given non-random vector and UL is the vector to be found.

If L is invertible, as we assume it to be, the solution of (1) is

-\
U. == ~ 3 (2)

also random. The mean value of any function of ~

i- does, so U. is

, say F(O() is
From (2) we see that U. also depends upon eX since

denoted by (Fì and defined by

( F) : r F ( 0( ) F L O() cL 0( (3)

Thus from (2) we obtain

.1(u.)= (L ) ~ (4)
-1 -1

Multiplying (4) on the left by (L) yields the following equation

for (LA) :

( L-' )-1 (Vl) = ~
(5)

Suppose LL is a vector function of the vector X and let

UL (X) denote a component of LA . Then the two-point correlation

matrix of I., denoted by C ('/1 Xl) , has components Ctj ('lj'X i.) defined

by

C¿J (X l 'Xi,) = (u.~ (X) LlJ (~i.)) ( 6)
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In matrix form (6) becomes

C(X)'fi)= (u.()()u.(xl.)) (7)

By using (2) in (7) we obtain

C (X.'i1) :: (C\X) ~ (X) \.\t1)~ ('/1)) (8)
-1

Here L (x) denotes the inverse operator evaluated at X 0 If we intro-

duce the convention that an operator acts only on a vector with the

same argument as the operator, we can rewrite (8) as

C (X\X1) :: (C1(x) L:1 (Xl)) § (X) ~(Xi) (9)

-1 -1 -1
Multiplying (9) on the left by (L (X) Li (i) ) yields for C the equa-

tion
-'1 ..i, -1

(L(x) L (X)) C(~~XJ.):"~(¡()~(lCl.) (lO)

Similar equations can be obtained for higher order correlations of LJ

To make the equations (5) and (10) practically useful, we

assume that L is the sum of a non-,random invertible operator M and

a smaller random operator \I

L=M+V (11)

Then by using the binomial theorem, we can write

-~ 1' 'Y
C\/'I(I+M-1V)=(I+M-iV) IV(.=~n (_M-1V)M-1. (12)

Taking the mean of (12) yieldsoø )'V
(C1) ~ ~o (( _M-1V )M-1 (13)

Inverting both sides of (13), using the binomial theorem again, leads to

(~-1'5 = M ~ (-t, ((- M-lV T;)'t (14)
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The first .few terms in (14) are

(L/-~M+(V)+(V)M-1.(v) - (VN\-i.v) 
+ 0 L(ivi-~V) J (l5)

From (13) we have
oø

1V-1:: ~ L"l) _. ?;, ~ (-M-1V5')M-1

M~1This equation can be solved by iterations for in terms of

(16)

(L-1) .

However to the order shown in (15) it suffices to use (16) as it stands,

on the right side of (l5). This yields

(tlt- Mt ,V) + (V)(L"ll(V) - \v (Ciì V) 4- 0 L (/V-1v1J
(17)

By using (l7) in (5) and omitting terms which are o((M.~V)J we obtain

CM+(V)t(V)(C'")(V) - (V( i.~)V~ (u) = ~ (l8)

In a similar way, we can evaluate (c1(x-) C:i ('/J.))-1 and rewrite (10).

When (V) :: 0 , the result simplifies to the following

CM/Vì-~~ ~ C:) v;ì M-Mi (V( i:/)~)-M/Y(C~)(L)ViìifC(X/\L)~ d~l (l9)

Here a subscript "one" indicates the argument Xl ' while no subscript

indicates the argument X 0

To determine (C.1 ì , which occurs in the final equations (18)

and (l9), we multiply (17) on the right by (L-l) and drop the or((M'~VJJ

term to obtain

(Mt~Vì+(V;(L..ì(V)-(V(L/1 V~(L) : I
(20)

Here I denotes the identity operator . This equation, (20), is a non-

IL-1\ .linear equation for \ I Its solution can be used in (18) and (19),

which are equations for (lJ) and C. When (V) :: 0 , which is the condition
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already used in simplifying (l9), both (l8) and (20) simplify to

rM-(V(L-3)V)J(u-ì = ~ (2l)

CIV-(V(C~)v)J(Ll)=1 (22)
It is corrvenient to introduce the Green's matrix ~ (~\ X ')

associated with L 0 It is defined by

lG (i)x') :Ió(x-X')
-1

In terms of G we can write ~ as an integral operator

(23 )

L1~(X)=)6 (¡(¡x')fi (XI)d.X.' (24)

From (24) it follows that (L..iì is an integral operator with kernei(G) J

(C1)h (X) = r (G (xJ)(¡)ì~(lI)dx' (25)

Then (22) becomes an equation for (G), which we can write as follows

M (X)(G(XJ'I)) - )(V('t)( G (X) '11')) V(X 'J)(G (-X \~'/'))d. y"/I :: I S (x -X') (26)

Once (G) is found from (26), then (21) and (19) are equations for (LA.)

and C.

To apply these results to turbulence, let us consider the

velocity V' and pressure fJ p of an incompressible fluid of density

P with kinematic viscosity Y and external force per unit mass t
in a domain Il bounded by a surface S . The Navier-Stokes equations

for tr and p can be written in the form

dt - -V ~ + V.'V " v f
-- ÎJ 'D (27)

\/. o ~ o

As initial and boundary conditions, we assume that V'is given throughout
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.: at t = 0 and on S for t ~ 0 . These conditions determine the solu~

tion of (27) up to an additive constant in p . This problem is of the

form (I) if we take U. to be the four vector '\ p and L to be the matrix

operator in (27), which itself depends upon "1 We now define M to be

the same as L. with 'V replaced by ~V). Then V is given by

v= ((1r:(Vì)'1I :J (28)
When M and V are used in (26), it becomes

(!t~At(\l).nJGie(ì/¡(')+ ~i'¿G~€(tJl'~- )(Cilx i1-(vz(x.))(\J (x 

1/)8 ~~L(G~j('t))t ij~,

:ò¡£~ \Gdi(XI~'l.))d-ll/:: ó¡,e ó (,,-Xl),

~ i G~e (x¡'lI) :l ~ecS (.l -)(/))
i.

(29)

,

L = 'j 2.,.3

.e : 'J ~j ~ i-

(30)
t; 'j :t¡3¡ l.

In these equations X denotes both space and time coordinates and the

sumation convention applies over the range 1, 2, 3. The initial and

boundary conditions on G follow from those in the original problem above.

The equations for (u.) are similar to (29) and (30) while those for C

are somewhat different ò This set of equations is similar to that obtained

by using Kraichnan's "direct interaction" approximation.


