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Editor's Preface

This volume contains a restatement by the pre-doctoral

participants of the sui):imer program i s first lecture series. It

represents their view of the relative importance of points raised

in the lectures and their view of matters neglected.

Following these notes, the abstracts of a two-week sym-

posium on recent work in turbulence theory and a two-week sym-

posium on the frontiers of theoretical oceanography are recorded,

They attest to our long sumer exposure to non- linear fluid

dynamics.

Some of the quick-ripening fruit of our labors has been

pressed already, and appears in Volume II. However, it is hoped

that more profound inquiries may emerge after reassessments in

solitude of the many brash proposals concerning the turbulent

world of geoPliysical fluid dynamics.

Mrs. Mary Thayer has done all the work in assembling and

reproducing the lectures. We are all indebted to her for her

remarkable efforts in keeping the sumer course iLunning smoothly

and to the National Science Foundation for its financial support

of the program.

Willem V.R. Malkus
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Lecture :/!=i

Dynamics of Rotating and Stratified Fl4ids

Heat sources and dissipation will be neglected in the

subsequent work and our attention will be restricted to laminar,

inviscid fluid flow.

Though air is a mixture, the composition of which is

variable (variations in the concentration of 03? COi, ~2.0 affect

the amount of radiation absorbed by the atmosphere; condensation

of water produces latent heat) it will be regarded as a perfect gas

obeying the law

Now

f ~ RfT

dQ~CvcLT + pd(+J

.- .
d. Q = Cv ( d p _ 4£) - Ji cd PT F e J

dQ = 0For adiabatic changes

whe re

. ,
l =- R l

y:

't
Cvt "R

=
CV

To(
p't- V(

0..1,4 ~ I and

( k is some constant),

Hence

For air

an increase in p is accompanied by an increase in T

Define the potential temperature e to be the temperature of

a gas when compressed adiabatically to a standard pressure po (usually
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taken to be 1 atmosphere lOl2 . 4. mb

= 1.Ol24 x 106 dynes)
cm¿

The entropy

e is related to T and l by the relation

)"-1

T = e ( :0 ) T

5 = S d~

" i (Cv t R) d.ee

:: (CvtR) ~ e
so that e is a measure of S

Isothermal Atmospperes are such that

T = const.
Consider a parcel of gas in hydrostatic equilibrium under

the forces shown

~ = -('~

= - J fiR i
- ~ ~ Jl, T

/, P = Po e /

-~~/rn
f :; r;e

The scale height 11$ (= 'I) is the vertical distance in which the
3

density(of an isothermal atmosphere) falls off by a factor e

This is usually of the order of LO km.
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Adiabatic Atmospheres are such that

e cons tant

Again
elf

~5ttl~

Also J. cl T L ola + bl. ~
T (f~ -e ~ y p ,'i

Y-J io - -"y RT

d. T õ' -I ..
d.~

- --_.. . '( R

:: lapse rate

~ iOoC/km for the atmosphere)

i, e. temperature decreases linearly with height in an adiabatic

atmosphere,

A typical mean temperature distribution in the atmosphere is

the following:
11 mb 30 km 2400K

i02 mb o km

Stratosphere

250 mb LO km

Troposphere

2500K 288°K

99% of the mass of the atmosphere is in the tropo- and stratosphere.

In the stratosphere the temperature is essentially constant with

height, a very stable configuration ( e increasing with height).
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The ocean is composed of water and salt (3% by weight ot 34-37 %0).

The density is a function of pTS.

t = f (pTS)

Change s in f due to variations in p , are sma 1 1 4% (l)

Change s in t due to variations in T, are smaller .4%

Change s in f due to variations in .s , are smaller .2%

The potential density t*

when it is brought adiabatically to standard pressure (l atmosphere).

is defined to be the dénsity of a fluid

The adiabatic temperature gradient of the ocean is approx-

imately .ioC/km.

The normal temperature distribution of the ocean is like this:

-i100: :1

i

I..
5 km'

~
Depth

20ç: ~OC 230c
_.J

,/~
,~/'

) this thermocline has sea~on~l" variations
-1 main thermocline

//
//

(

Note that salinity decreases with depth and has a destabilizing effect,

The vertical stability of atmosphere and oceans.

Consider a parcel of air which is displaced from 2 -7 r + r

and let the change in dens ity be e(2) ~ P (7: + Ç) Let /
~ = the

density at 2+ ç had the displacement been an ad¡abatic one. Then
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el = t (I'(Hcit'f (:è)

(l+~p i~ c + ...J= t

Hence

~ ~~) (tl- l (i! t C));: - ¿

and the resultant motion is simple harmonic with freqyency

N=lB d.e'Ei cli'

JV is the Brunt-Väisälä frequency,

A similar calculation for the oc~an yields

N=
( 9 d *) V,.
-- .~

~* d.:_

where ~* is the potential density, defined in a similar manner

to the potential temperature so that the ocean is vertically stable

provided t* decreases upwards. The periods are of the order of

5 - LO min, which is very small when compared with the periods of

large-scale phenomena, e, g, rotation of the earth = 1 day,

These notes submitted by

S ,George Philander
John L. Robinson
Matthias Tomczak
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Lecture ://=11

Small Amplitude Waves in the Atmosphere

We investigate smaii amplitude waves in the atmosphere:

Let the basic (unperturbed) state be characterised by fQ(r);t.,(r),

and zero velocity field.

-l l. + ~ :: 0
to cti' ( l)

Consider a perturbation which is such as to cause motion in the

x- z-directions only and assume

u. . 'í .." .lõt (2)

in the operator .. = 1. + u. . 'iJ) t õt --
The relevant equations

~~ + + 'í P + ~ k- = 0

.1 .De + \I . l. :: 0p 1) ,.
/ .Jp .L ~ :: 0

7P :Dt f IJt

Momentum

Cont inui ty

Eq. of state

i i Jsimplify to LL-/ + ff Px = 0
J, I i P 0w+-F~+~-=t tCl fa

, I. * i , w'_i"I e + _ 0 W + UK + ~ - l.
-¡ t t~ :e\0 d

, i' '( I dfo _ 1. ~):: 0
-k Pt - p a + W lf ër lø d.i:1,,, \~

. I' i' / I d. t7c
The last equation may be written 0 ~t --¡ t'/ + VI -e -e-d1Ø \C) /) = O.
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We seek solutions of the form

U '" A A ( "()L ¿ (K1 - w t)Ju.IW'pl~l:: RR LLU(è)W(i:)p ?)~ ~. je .

Substitution yields

A I c1b" (¿W 'K"") pA 0
W +- -r~W- - -RT.! -2- l' Po ~ "c 'd W ---

1\

-l P t --_ 1. - (i: w + .... d. Go ).Æ = 0

Po 2 YRT P, . LiP é" -e RT
Put 1\ .I

~ = P: l (i!)

VI = ~ Po-l W (2)

Note that
')

c:: t R To (speed velocity of sound)2

Nt. =.1 cl e~
e c 0. =ë

(Brunt-Vãisãiä frequency) 2

:2

Hs ('i) = .f
1~

scale height

Then i ?-
t + + (+-i)i-,-l (1- ~)W = 0s Hs CoJ
IAI I (i ..) W i H (). w"1)Vy~ - H- t - 2. . t i. 'S L K - (2. .l = 0

Isothermal atmosphere:

:i ': H
For an isothermal atmosphere C , N, . s

pendent of l! Consider the solution which has

w:= 0 everywhere,

1 (0)

are all inde-
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For this case
( \ - I)

l 0: Fo e - '" T ~/ H s

and (;'3; K~C~ (a)

The magnitude of the horizontal velocity fluctuation

"

\ û.1
= .. il

'w to

:- L Po~ 11'\
bJ flo

-7 DO OA. z.~.c

However, the kinetic energy per unit volume

t!il(-70 M ~~ 00
i. e. the energy density decreases upwards and the total energy

(from ~ = 0 to 00 ) is bounded. This is a Lamb wave, it is

essentially a sound wave, confined to a region near the ground :with

the hélp of gravity. The leNel surface at t = 0 supports pressure

fluctuations' and plays an essential role in the wave mode.

The isothermal atmospheTe permits another type of motion,

Assume f W . LI'"æ~ e

Then the kinetic energy density ,. Fa L i û. (' t I w I~ J

.. -'.. I i. and is independent of2

Corresponding to (a) we have

(. W ~ 'l \ ( N? ) ... ) ( 2. _ Y ):i

\. c. 'l - k ) i - ë. = m + Hs:4 :¿ '(
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(i)
:i AI'-if W '/ IV then in fact :i / W"'l ,) ":() ) l/\ + \Tl~ C and the wave

speed / the speed of sound.

If in addition (/(:i+m~H:;:)l i.e. the wavelength ':-:the

scale height

N'J

Q~ 2-+ 'fL ) C 2-

.( .t
I

CK~+ m7.) H;

.(.( 1

and we have acoustic waves.

., ) .: w': t. ,,:iIf w":.t IV and (K+m~ Hs )) 1 then --N-
K")+r.'l'a

(ii) and

the waves are internal gravity waves.

w

m?-,) 0
acoustic modes

:i
i. i l-:;-Y) Iw:"c¡m=-Cî H¡

/amb waves
../ yy1. "' 0./-----...,..-~~-,_.....--..

w=N
//') /

,7;:/--=~avity
yy'2.:o

wave s
)K

These notes submitted by

S ..GeQrge Philander
John L. Robinson
Matthias Tomczak
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Lecture =1/= III

Boussinesq Approximation

Consider a motion with typical ve locity, length, time,

V, L -r , respective ly, If

UT
?) 1 then -lL = i¿' \!nt

VT ..1 then -- =~ tLA'V'T J)t êJt- -
VT¿~ 1 then -i -i-
L Dt - ôt

and we have steady motion

and we have non-linear motion

and we have linear motion,

2.
In a compressible atmosphere the significant parameters are C ,

Hs ' N'- and "( ,

Denote typical values of these quantities by c* , H* N*s '
and form the dimensionless parameters

~ -:)V L .- 01 -- ': ,)
(*' :i C"" T

L

H;
I

N"? T"" Oi"

V,.

N*:i L:o

In the linear model with which we have so far been dealing, the

corresponding dimensionless parameters are

'l
W

(i~ 7.+ y)"l') C* 'J

i

Vk" +Yì'J' H..

2.
uJ

N*'-

We obtained pure internal gravity waves when the first two parameters

were taken to be much less than l, while the third one was approx-

imately equal to 1. We now assume that

1. V"- o- L'J ;l.t i-:
C*~ c* T':

2, ~ ~~ 1
I V2.

3. N;""-:;' 0'---- r- 11- L"
No
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(l) ? that the medium is essentially incompressible so that

i k.(-: \¡. LLt at -
(2) ~ l:fo ~.c 1 (6. t = change of fo over the height

fa scale of the motion)

whence w'~.. cLfo ~('OW
,.. l.t à2'

These approximations enable us to write the continuity

equation

lÀ)( + ilV'e :: 0 (1)

In the momentum equation set

I

P=Pó-lp l/lo 4( ~ 1

fÍ'o c: ~ 1
i

t::~4-p
Then, as we have seen in Lecture II

i, e. we neglect the ratio

d. i IJJW + -i ~ + ~ -l :: 0
:Dt fo d. ~ Fe

(/1-
tr.

(2)

except where it is coupled with

the gravity term.

Similarly

I TIP
r~ TIt

i. J)f = 0
t J)'t

becomes
1

-l TIP _ i- nt +
(f ~ J)t fa 'Dt

i J 60 W :: 0
ê 0 --

and since
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~ -. af''õi! .)

f~ 5j'LC:f. ~
we ignore .J D p' getting

'l p~ J)t J.

_~ 'Df' +.L dao w = O.
te J)t 60 oL =-

L pi
1f fci

(3 )

Equations (l), (2) and (3) are the equations for.. Boussinesq liquid,

We now justify these approximations by dòing a scale analysis:

Let

l -: '# ~ + f. H*i where 2* ~ is a mean height (4)

i

t is dimensionless-
"t ': t.ï N*

Nol ~. It. ': e: H ~

f :. fo(i)+cN*"I-tf~t f'(!; t)

~ ~~ (~)T ~f*I'~H.j;I(!':r)

(5)

( 6)

(7)

(8)

where

fo(:i:) =- f¥+ £. 4f 1.,1tiJ, + o (c..)
i ool " d.': 'I

Po (~) = p~ + f.l: H*~' + E ~ ø.~ ~ H1l~I~ + 0 (E. 3)

Define the basic state to satisfy the hydrostatic equation at

all heights, so that

cLR'i ~
- - ~ Fa

d.i! - .J

d.'. p; ~ dito""

~ eli''\:: - J -e ~
Substitute (4) ." (8) in. the equations
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Du.
e:M: +Ç7p+~('k =0

i- ~ t\7.u. =0t:Dt -
i Be _.. D: :. 0
~p "Dt" e:Dt

Then

Ë N*"Hirtt*+O(~)J ~t +

+ ~H~ 'V't P~t£~H~/+¿2.k f~~*~l\ é~t~fI~H*~~'.¡ o (f?)) +

+ 3ktf.~H'i!'t€N'H.ttt/+O(e'))~ = 0, it.

Equating coefficients of powers of £

lst order:

cL t + 0 ei/ ~ 0 ) \J ( ii :: O.

ih cJ
i

:D ¡l + \7 pI + t' k:: 0, 'Dei _ Tý/2V1 = o.
:it' - ~t

Zero order:

The last three equations are known as the Boussinesq equations for

an inviscid liquid,

These notes submitted by

S ,Gèorge Philander
John L. Robinson
Matthias Tomczak
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Lecture TIlb.

We take the Boussinesq equations derived above, in the form

.Di¿ + +VP +(Jk.:oJ)t -' "'
\7. ~:. 0
:Dcr :: N:1. (tA k)-:t -..

( l)

(2)

(3)

where cr y'is the buoyancy force per unit mass: rs:: 3 ..o

and where N?- :: co-'
e~

d. eo
d:i

? -:
We linearize them, using an x, z-plane with N :: N (2), Then

Iu.~ +y l)( -: () (4)
Wi: + t l~ + a- = 0 (5)
u.x + We ~ 0 (6)
eJ-i-N"'w::o (7)

By differentiating (4) with respect to z. , (5) with

respect to ?( , we get after subtracting the resulting equations

'õ~ (u~- Wf. ) - ö; = 0 (8)

We note here, that 0- influences the change of the horizont~l com-

ponent of the vorticity only,

By differentiating (8) with respect to t and (7) with

respect to l( and adding we get an equation between /. and W

This we differentiate with respect to 'X and substitute U ~x

from (6) which was differentiated with respect to r before,

As a result there is an equation for VI :
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'- i.
~(WX'l -Wu\-+ N ('i) W)(~ = 0ôt'i ) (9)

This equation can be treated further when we make certain assump-

tions, An easy case is when
..

N(æ) = const,

.- 

( ;. ¿' (i(~ .¡ Yr i! -wt) )
We assume L) = u'" i; e,.

'l :i K~
w:=N k"'+YY~

and ge t

(lO)

as we obtained when studying gravity waves in a compressible

atmosphere,

From the continuity equation (6) we see that

. ," "-(.l\'u.=O,.
Ai.e.u..K.. (11)

we have transversal motions. From (lO) we see that always

)w I ::lNI
If '(():::O , then lwl =-/NI the wave number is

horizontal, the motion vertical, If, on the other hand, yn * 0 ,

we are concerned with the following case:

K-
Along the lines of
the motion, there is
no pressure gradient,

x

We have OJ:. 1' CA ,J,

If a parce 1 is moved a distance S , the buoyan~y force,

which only works in the vertical, is proportional to S~ rJ

The oscillation of the parcel is due to the component along the
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wave front which is -v S ~:: V so that the parcel's frequency

is ~ ~ ~""V-' Hence, in the case,) -- 'i we get, as it is to' be.i
expected, fully horizontal motion:

1? ':~.c m'; w,.!J -;? 0 .m

But this case is the case of hydrostatic balance. We have from (6)1\ W. ~
I W) = K -70 and ~.. t ",.. -? 0 from (5)o rn f Pi: \1-'

So VVt, can be neglected, and (5) goes over into

l l-e + d- :: 0) ~.e.cL.
(l2)

A
If U.

group velocity. We have

e¡ X. and t , we might consider also a

(" . ) ¿ (,.'1..'( i -wt)\now u. :: Ot U ( 'X li:, t e J ·-- .
£~= (W\Õa~= \7t(W' while

varies s lowly with

the phase velocity f,p

ve locity S ~ is

w
is f l' = 8" . ~

The definition of group

Because W depends on ~/'Y but not on (K +- m') , f ~ is normal to ~

as is seen in the following picture:

~
yY

k..

K

The magnitude of £. d is jc a J :: ~ ~,J .
.. d I ~i

Hence, when

17 -? .:
2-

11 -) 0

then W ~ 0 so C r-l 0 but C Q -).!". ""G m
W -'1 N £ F -) ~ £ d -Ì' 0

~d-? 0 means that, when there are at any place slow variations of
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amplitude, they will stay there for all time,

"2
N Lt):: const.

JO (A C) l;(t-x _wt))We assumeW:: V\ W 'i e

d."w .¡ I\? (/1 (~) _ lì0 :: 0
d.i:'" w'" ï

and get from (9)

(13)

A
If there are two boundaries at which VI has to vanish, we get

for a given k a set of eigenvalues W/,Wi.iW3...' all

of which are real and smaller in absolute value than the pre-

vious ones. If we think of N'1 being constant for the moment,

we have W =AS;m~ with mH::YlíT, where H is the distance

betw~en the boundaries and ~ is an integer. For LU we have

~ K'2W ::
K..+YY"-

only for special~,

tf~, which looks like equation (lO), but here holds

name ly

W :: kN

JK :a.. Yì 1. :r..,H"
of C becomes d.~:: IV ~,;. It is

", ~ ci K j K2+y1' lL'" '2. . H"
with tV varying in the fol¡owingway:

(l4)

The horizontal component

easy to see what happens

IJ(~)
'2 N~

If W "? we obtain waves

of exponential type from

'2 N:l
(l3), while W ~ gives
us waves of sinusoidal

shape in ë:

In order to combine both types and get a smooth curve for
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w (~) decaying as t -~ 1: 00 , a restriction on W is

-:
W"'c: N

YYax

': AI..and W ~ fVmin at I i!l =- 00 )

but, for given k , there is an infinite sequence of discrete

values within this range, which may be ordered by the number of

nodes in Vv (ê) .

These notes submitted by

S .George Philander
John L, Robinson
Matthias Tomczak

Lecture 1fIV

Lee Waves behind Mountains

This is a very common phenomenon, often made visible by cloud

forrations, References containing photographs of such formations

are given at the end of this chapter.

Take U independent of ~ .

J2 ;; u ~ .
JJt 'õ X.

The equation is :U~i:; (WXx + W'~2) + N~'lx == O.

The boundary conditions are: (i) W" =: 0 CI -t:: H

(ii) VV'': U-~_' cLt t =0

~

~ ,.
h(~)

lH

We consider linearized, steady, two-

dimensional. flow with h.£i) c: c: ').

Then

u -)

(iii) w:: 0 o. )C ~ -iQ
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We make no assumption for (J as X ~ eo .

The waves can be argued to appear downstream in the follow-

ing way. The phase speed Cp= -U (relative to the air) for sta-

tionary waves. C~.c Cp for this geometry, as previously demonstra-

ted. Thus the energy is travelling relative to the air with a

velocity less than U so it is moving downstream away from the

mounta in,

Take

QO

tA (x.) t) = J W- (k. ) ~) e ¿ l( it J k.
-QO

'"
As ur does not tend to 0 as 't -7 oø we expect singularities in u. 0

The boundary conditions are:

(i) &:0 a: ~==H/I .. ((Ü)w:¿-hUJi k)m~=o
A (N'1 La) '"

The equation becomes t. + - - f( W' -= 0ili! U2

The solution is . W :: _~k u'R ( k) Wy.,IJt-k2 Lè-HJ) ~ l ~ N
S)(¡k.~-k1H) \11) () LJ

Note that for h -r1r + , or L _;: 1(, û: remains bounded,o r~ 0
/ '2 L'l\The singularities are poles for ~o - rf H:. 'i íí 'Y = It ~,3 ;

these occur for 1t ~ ~n where ~: H;l :: R.~ H" -b?" iri.. Thus the number

of such poles occurring on the real axis is dependent on k: H ~ ,

We will ignore decaying modes,

A "" R'r CYì~ i)
Near a pole we have W"= ~-~n + continuous function.

Riemann- Lebesque Lenna: ~p r ( ll) € i k. d. k ~ 0 as

. ¡xl ~"oo ~ j\t w i c:~ exists.
0.

We will use this lemma to study the lee waves at large

The
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distances from the mountain, The lee waves come from the neigh-

bourhood of poles in the complex -k -plane,
~éE

W '" ~ "R'( f -- e¿kl(d. h ~ 1)11-7 QO .

kYl- l; .

In order to obtain a zero u. for )( "' (; we must close the inte-

gral in the following manner for all kn

k'n'-) )
" "

If h (k) ': ~ (-~), a synetric mountain.

w(~ ~)= -~ if ií~r:U h (I ~~Dsi

If t O~):: - ~ (- \a)

níi~ ~ jk?- 11"11'" X-l ø H'

) - U-r U I (I ), Yiïi~ ~:N' i'~'l _ ll"'It~"W(;S -r= - ~.. 7 Ii ~ .. ~ 1\\' \,W H .." I h 0 --"'

Note: a) We have a finite number of wave trains. The number of

I\H NH
these = integral part of - :: -. b) For a point mountain

Ti U1f

h (X) -= A Sex) ,

f h dx :: A :: ~ , ~ (~ J ~ aJ n -t ad .
Then h -:..

." iT

The limiting process assumed here is

The wave amplitude depends on the area, not on

the shape. The vertical velocity is at a maximum directly above

the mountain.

u-)o~...
The wind velocity has its maximum

, ) X in the lee of the mountain.
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A physical argument for this: If the mountain has width of order

t'::.h 0
V

1: N "', 1 , the buoyancy forces 
will have a small effect and to

L , the time for the air to pass over it is If

a first approximation we have irrotational flow,

..~"'._._.._--~"..-
To the next approximation the buoyancy forces give a downward

acceleration and the air has a resultant downward velocity after

passing the mountain which can set up a long wave- length wave

motion,

When k~ L is either much greater than, or much less than

unity, the amplitude of the lee wave will be small as it is de-

pendent on
'"
h.(~YI) , For many mountain ranges k L..1

11
for some

~ and this increases the importance of these waves,

References

1. Sawyer, J,S., 1960: Quart.J.Roy,MeLSoc. 86, 326,

2. Frit~, 1965: J.Atmos.Sci.
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Lecture 1/=v

Lee Waves with Varying U

The linear analysis of standing gravity waves can be amended

to include the effect of a wind speed varying with height, Suppose

N-i = const., and the incident wind speed is U C~.) Then the

two-dimensional equations for the perturbation quantities ~)~fJai

are

U -au. '"ÒU d(:)--- + VJ'- + -"'ax. a~ Õ-x (?) = 0

LLlz) ~r +(f + lr (~*) = 0

au. +dw:: 0
"ò x. 0 T

Uc.r)d() - N"ur _. 0
'ò x.

in the Boussinesq approximation. The second term in the first

equation represents the only new effect the vertical convection

of zeroth-order momentum by the perturbation flow, The perturba-

tion quantities can be Fourier transformed in the x-direction as

before, and the equation for the Fourier coefficient VV~ ;~) is

W t r N_.:i. - .Ui!-Ë.. - k'JJ w ~ 0a~ Lu.(~). Uta)

As long as N"-UU:;'t is positive, that equation is essentially the
,¡

same as the one obtained in the last lecture. In fact N -'L.All i!o! can

be considered the square of an effective Brunt-Väisälå frequency,

A
The W equation is usually written

W-C~ + CCCil) -Æ"Jw ~ 0
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whe re N?- U~~
::

U'" U.

ot
), (~.) '? 0

What is the physical meaning of the new term ~ III in

A
the W equation? Suppose the vorticity u.~ decreases upward,

so U-e:e is negative:
ž!

a.

'f~. "'.-"..

A

r
/ ~....

....

¡
b

~ U

Suppose a parcel of fluid A is moved upward. It carries excess

vorticity into its new location and induces a secondary motion,

Parcels like ~ move upward on the left, and parcels on the right

are swept downward, a. carries vorticity positive with respect to

its surroundings; b carrie s a negative vorticity. Both a. and

b tend to sweep A back to its original position, and the net

effect is that the locus of positive vorticity tends to move up-

stream, The lee wave pattern, which must stand stationary with

respect to the mountain exciting it, is thus helped along into the

incident airstream by the displaced vorticity. If LLæ~ is positive

the shear disturbance tends to propagate downstream against the

gravity waves, and the effective Brunt-Väisåiä frequency is driven

up,
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Non-Linear Theories for Mountain Flow

l. Long is Inverse Approach

By using streamline displacement as a dependent variable,

Long derived an equation of motion both exact and linear for a very

restricted class of flows, Consider a motion two-dimensional, steady,

frictionless, and adiabatic governed by the Boussinesq equations,

The continuity equation implies ~ and ~ can be found from a

stream function 41 ,

u. .= lj e

v.r :: -ll~

and steadiness means

f'=¡iCLP)

for a liquid, or

è :: eClt)

for a gas, The vorticity equation is

(u. . \7) v'¡ 4/ =. _t .£.. p* 0 X.
where notation appropriate for a liquid is being used, The right-

hand term can be written

i eLt ò ll '7. _ -L AL w- :i -3~ d.p (lA' V) i\lil . i;1V Òx f* cil. t* d.4J ~
since ~ is a function of .4- only, and (~'V)l :~. ~:: lA.r Now'Vfl

is perpendicular to the streamline s, so (y:.:' \)) ll :: 0, Likewise

(tt.\7) F(LV) =; -& (~. \1)0/ = 0
for any F Hence the vorticity equation becomes
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(~.\1)\I'-0(= (~.v)( ~~ t i!)

That can be integrated along streamlines

~ Q d.P:: =\7 tV + JJ_ -- ~
p* d. i¡

canst 0 along streamlines

-- F(4J)

To get beyond this an important geometrical assumption

must be made 0 Assumé all streamlines extend to X --) - oc where

they are unambiguously identified by their height i!1 Thus

~ must be a function monotonic on r, , and we assume

cLd._ tp = U1 l'r1) ;: 0

.e,

where the subscript 1 means far upstream from the disturbing

mountain. Then

\J ~tt = \70 (do'l \) ~ ).: -r \1:i:i + 1. (v:z '\?.cl i., 1 cL~,"" d. ~ ~ 1 J

Since lf i-1 ': U1 , lf=t1~ =- u,., ai and

-1- .: = --Í ~ ~ = lj\'"
. t'* d. lj ~14 ol ~ \ cL lt u.,

the equation of motion becomes

\7~1-~U.~'" 't+ u.1 '1~1 (\l?:S'::F(4i)= T(-l1)1 1 1
,.

As X -7 - (0) 1!1 -7 e 1and (V'è,J -' 1 ? \7~i-ìO 0 Thus, evaluating the

left-hand side of the equation at X ~ - 00 to get "j (:;1) , we find

'2 M"- () ¡ cL u. l- ( )i. ~
\7 ~1 -,~ ~ -~1 + - --" n~l - 1 =: 01)1 u,\ (i :r1

Let the displacement of a streamline from its original height be
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r :: r -~1

Then \J~1 :.'V~ -\7 ç = ~-\l ç ? 'V~'\ = _ \7'1 , ?
')

'1 ,-( + N~ r = +- g. U-i r(\J ,p-- 2. Èl Ju., li 1 cL::, L ~ e
The equation for ç becomes simple and linear if IV /11, is

and

independent of r,
Iand -

U"
4ldi : 0
d. "i 1

U,=

N,=

Thus for

const.

cons t .

the equation is

'1" + ~~ r ~ 0
,

exactly the same equation as that obtained for \i)( in. the linear

analysis, The boundary condition at the ground is still non- linear;

since the lowest streamline must follow the mountain stlrface h LX))

'(=&1=0)= hex)
But any solution to the linearized problem is a solution to the

non-linear problem for some mountain shape, and Long simply tailors

the mountain to the solution. He confirms his work with flow

visualization experiments over models shaped to fit existing solu-

tions to the , equation,

In practice, the assumption hardest to meet is that all

streamlines emanate from y. ~ - oa. As the amplitude of the

mountain is increased, the r solution ceases to cover the entire

x - z-plane, and closed, streamlines appear:

r-,
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:~? /l,/ij/7/X1/// /Í

~ -- ~....///i/,.. ."/.,/ 'i//''/,/. '///,:,'/l .
. ,"'/;//'~J;~;;//i? iil

Physically, a rotor or dead air region lik.e;a is plausible.

Fluid around region;; must be both raised and accelerated over

the mount a in its kinetic and potential energy must increase.

Hence energy for region A must come from some other part of the

flow, so the fluid around 11 both stagnates and drops down to

meet the requirement,

Though Long's equation gives such solutions, they undermine

the assumptions on which .the equation is based. As the dead air

regions become more prominent, Long's solutions diverge from the

experimental flows, As the mountain height is increased further,

a stagnation region of fluid which never gets over extends upstream.

That phenomenon of blocking completely escapes Long's formulation,

and a ràdically different approach is required to explain it,

2. The Hydraulic Model

If an analogy between the flow of an atmosphere over a moun-

tain and free-surface channel flow can be constructed, the concepts

of hydraulic engineering will be at our disposal, To show how this

can be done without too much mathematics, we shall consider the sim-

plest two-layer model, The physical situation is illustrated below:
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u.i ~
t2.

h .i

\'2
inter. a.e

f¡ . ;-
~/ .L/~-,

-(

Assume h, L. L: 1
L

~ .(0( 1
h",

and ~I i t~ are constant in their layers. Since the density is

constant the vorticity in the layers can remain zero (remember the

Boussinesq vorticity equation ~t = ~ ), and we can consider the

case LL,:: VLitX). Bernoulli's equation just be low the interface is

~12. 4- ~ + ~ (h+hJ = const.

Jus t above,

'--i

Lli hi = const. = q

and the three equations combine to give

with

~ L + Cl/hi (ìC)= B - (/h (x.)h~ (it) r) d
,~' : 3 f(-tf-i
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and 13 a constant, That equation gives hi (h) implicitly.

The character of the flow depends critically on the upstream

value of the Froude number i.

F: - -1i - ß' h73

Let us draw a diagram of the left-hand side of the equation

for hi

o:Q 'h
h7: -t ~ i~ ,

F, ? 1
F: ct 1

i

hi

The curve has a minimum at~ = 1 If the flow far upstream has

¡= ~ 1 (situation a. , a super-critical flow), then as h increases

and we move down the curve, hi increases as well, Thus the inter-

face streamline bows upward:

7 ~~
/////.///////0/ . //a/ -///?////////
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If the flow begins subcritically at b the interface drops over the

mountain: -- -~ ~ij////////~7 /: ////////7
But if h is increased beyond the point where the maximum Froude number

has risen to l, the flow changes completely, and blocking begins:

!S l.m41n3 h9 ¡".tlle j""'P

GJd -'r

//////////////
~ 5 u.hc.Y'itlc-o/

q~
i

)I~ S.U t?~Y"-
i cr/11c.o./

The hydraulic model thus indicates what may happen when it is no

longer energetically possible to move all the fluid over the mountain.

Whether or not the predicted hydraulic jumps are observed is a matter

of current controversy,
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Lecture =I/=Vi

Dynamics of a Rotating Fluid

Three questions should be considered in the future:

l. What exactly do we mean by energy density and radiation stress?

If one solves the time dependent lee wave problem, a per-

turbation to the initial velocity will propagate upstream. If the

mode is leaky, then this upstream wave will radiate energy and the

associated drag is not understood,

Understanding this upstream radiation may shed light on

what happens if the velocity profile reverses sign at some

height e,

2. Neglecting the blocking effect and considering U(~) and AI~

constant, what happens to Long's solution if you put on a small

time dependent perturbation? What would happen to any of the

theories considered? In fact, what is the connection between all

three?

3, What happens if one considers three-dimensional flow around

mountains? A suitable model to try would be a uniform ridge with

a sine height perturbation.

Dynamics of a Rotating Fluid

ref: Squire, Surveys in Mechanics; Eliasser and Kleinschmidt,
Handbuch der Physik, 42.

L Equations:

Consider an iuviscid incompressible fluid; the continuity

equation becomes:
~

\1. U :: 0 .
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In the following rotating coordinate system:

1\
i! 1\

~
1\
2 = unit vector
in r direction

1\

X

where Il is assumed to be constant, the Navier-Stokes equation

for the motion observed in the rotating frame is:

Dit + 1 a x ii + \J r P + -l 5l~ (x ~ ~?) J -: 0.J)t t l
where -' -'2.iLxu coriolis term

L d (X7.+ ~l.) centrifugal term

If the pressure is not explicitly involved in the boundary conditions

wè can define a new effective pressure

pI = p+t tst (x. '1+ ~'-)
--

Let us scale the problem in terms of:

U - velocity scale

L - length scale

T - time scale

then consider the relative sizes of the first two terms in the N-S

equation:

.J Qln )( ü
:Dt

L T
= T? Y. n. L
.. i :: U.fT Jl i-
== Ro.ssb~ ;j
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If the Rossby number is

large rotation is a small perturbation on the motion,

sma 1 1 rotation is dominant.

2. Two-dimensional flow on the x, y plane

Two-dimensional flow implies that %2'" 0 , and since the

flow is inviscid and incompressible we may write the X. and ~

components of Ü. as

LL= tfd.

V.: -ll¡(

where

LV = stream function, independent of t .
~

Plugging these components of UL into the coriolis term,

Thus

2ñx U :: 2.5 ( 4J)L X + 4J~ 9 + oJ '

= \7 (1. nty )

Du. +v('-p + 
2 SLY;' = 0JJt t /

Therefore, in the two-dimensional case we can absorb the effect of

rotation into an effective pressure term provided the pressure does

not appear in the boundary conditions. Hence the dynamical effects

of rotation disappear 0

Note: this is true for all Ros&by numbers.

3, Vorticity Equation

Vorticity in the rotating frame is defined as the curl of the

velocity field:
-"
J=\lxfÌ
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the conservation of vorticity is expressed by the equation:
-i

:Dr (-' -'_,
-:. J+'-SLJ.r¡u~J)t .

which says that the change of vorticity is due to stretching~ -'
and twisting of the vortex lines of the total. vorticity, J+2Sl..

..
by the velocity field LL Writing the two terms of the r,h.s.

of the vorticity equation as two separate terms and remembering-" A
that we have defined Sl as constant in the ~ direction, we have

1)1 (1 ~~ "0 -'
-- = J" \l u. + 2 51-- ():Dt Oi!

From the definition of vorticity we see immediate ly that:
~
1 "- U/L

Therefore comparing the size of the two terms on the r,h,s, of the

vorticity equation we
..

(J.'I)ii =

:2 si 'ò i.òa
which is the Rossby number again.

have:
JL.l..UL L
n. U/L

u
,- ill

Thus if the Rossby number .("' l,

the stretching and twisting of the basic frame dominates the picture,

Note: For two-dimensional flow %?: ~ () and, since all fluid motions

are in X. , ~ plane s ,

--
J is para11e 1 to ê , Therefore:

-- fÒ'f,,\!= )--~OJ â 1:
hence -"

.D :)-~=O
Dt:
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4, Geostrophic Balance

Considering small Rossby numbers, the N-S equation becomes:
, '*

211 X ct.¡ 'J ( ~ ) :: 0

Take curl of this equation:

V'x (2.D Xu.) := 0
which implies that ..

ô u. ::. 0
'Oil

Thus the flow is independent of 'i and becomes two-dimensionill,

G, I. Taylor did an experiment which showed this property quite

well, .11.

~
rota t ing tan.k

1-(-

l~i;
10(-'"~i
I-EI

towed block (f /,// i

The column of fluid directly above the towed block moved with the

block. A top view would be:~~
f-ø ~~-"--~-~

A qualitative explanation might be that if the energy required for

a vortex to shorten and hop over the obstacle is greater than is

required to swirl around the side, then the fluid will take the lower

energy path.
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Taylor did not investigate what happens if viscosity is

present and! or the tank is very tall.

5, Linearized plane waves in a rotating fluid

ref: Chandrasekhar, 1961, Hydrodynamic and Hydromagnetic
Stability, p, 85-86.

Consider: ~)o? UL

.. C3
Then: LL' '\ ~.: at;

and the equations are:
ò"U +.2 Ax û. T \7 ( I:) = 0~t ~

-'
v.u. =0

Look for solutions of the form:

~ (/\ Uk. 
x -4!t))u.=ReLy:e J

P _ R ( 1\ i Cft.x.-wt))__ e.¡pe.t '
plugging in we get:

(i)
. A -' A . i. '"-L wg.+.2fl X!:+L"P :: 0

(ii)
~ ..
k.g.==o

-'
now dot (i) with k

Lk')ptk .(2ñ'l ~)= 0
..

and cross (i) with k

(iii) -LwkX;+.2:fl-lko2n)g::0
A

dot (iii) with !d

(1í'.2n)~.Q ::0
hence we mus t have:
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1\ 1\
u. . ltL "" 0-r -A 1\ 1\ "-

LA 0u. -u.. -Lt-l =' 0- ,r _ r _ ~ _
where

A

~r
1\real part of ~A 1\

y.¿ imaginary part of ~1\ "
These conditions imply that ~ri. ~¿ and from the continuity equa-

tion that: ~ 'ti A
k 1. ~r.l gL

Now taking the real part of (iii),
WI)(I =1= ("k.i.n)

Hence the dispersion relation is.. ..
1\-2.11

I KI
w =

~
ú) depends only on the direction of k and not on its magnitude,

This property is reminiscent of gravity waves and the reason is similar 0

~ust as the Brunt-Väsäiä frequency was the constant of the medium in

the gravity wave case, so the rotation frequency is the constant in

this case. J1

--
k

l' = const, in the plane of
..

where: n 1 is conponent of Jl

the wave oJ = :iS1~ d=.2S2-i

perpendicular to the plane of the wave 0
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The motion is simple harmonic and the particles travel in circles

perpendicular to the plane of the diagram.

The group velocity Çd=\7~W is:

:2 Sl Wn e
lklCß :: , per.pendicular to k"~

we see

if e -/ 0 Cs -? 0

W -ì .Q

if e -/1ih ~II O~

~ C:~ 1..
This may be compared to the case of the gravity waves and

one sees that in the two cases the direction of C~ is opposite and

in the gravity wave case the particles execute linear simple har-

monic mot ion,

These "inertial" waves can be connected with Taylor columns

by considering that the column is simply an inertial wave with

e -= 0, for which the reflection time is much greater than the

period of the wave.

These notes submitted by

John R, Booker
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Lecture =INn

Viscous Bo~ndary Layer Effects

l, The Ekman Spiral

Consider a homogeneous liquid bounded below by a plane

rigid surface. Orient the coordinates axes as in Fig, l, and

assume that the system rotates with constant ve locity II , the

direction of which is not necessarily verticalo

~~-~.,,~.,-..,-_..~"',

~
""" .-'-. .'_-'-__".,_~.."'"-.._"""c

!¡t

Jl1-~~~--- ~=oo

I ---'_'_--7
--, . "-. ,----:;

"-
~ '- '-

,
t
d~~ I-'-

'-

, .
_~_~~~_,~ '(=8.. .. a~ fi ~ .~ ..' .. ..,f tl q lo

j"'O
Fig, 1

Adjacent to the surface there exists a viscous boundary layer, the

thickness (ó) of which is to be determined l. Above this layer assume

the motion is uniform and in the x-direction, i,e,

Ll = Y (V; 0) 0) ,

where V is constant, Within the boundary layer we shall seek

lIt may be noted that since the system is rotating there exist solutions

for a viscous boundary layer of uniform thickness, whereas without rota-

tion, diffusion of the layer upward would cause the boundary layer

thickness to increase downstream,
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steady-state solutions of the form

u. = (u. Cd) ) 1J~ L ~) J ~ )

while at the surface we shall adopt the no-slip' condition

~ = O.

With these restrictions on the motion, the basic set of

equations becomes

2-

- 2D.~1f+ ~~ (t) = -J :J~

.1D. u. +~ (..) = ,) 'ò"'V-~
J t" ~ ~ f 'd'J ¿,

-~nx.V + "ntLJ +;~ C~):= 0

(l)

(2)

(3)

where n -. (fix.? .n~j nJ) , The terms of the continuity

equation, as well as the convective acceleration terms of the equa-

tions of motion vanish identically. Above the boundary layer, vis-

cous forces vanish and geostrophic balance obtains, Therefore,

~:: (u) OJ 0) implies

i(F). ::0dX t
~ (if) = -2ûJlJ,

and our governing equations reduce to

J
(4)

. .~ "i-i.
""Q ~ir:: -y-- ~ ~ o~~

.2 SL-; Co- -1.;kv ~.. ~..

(5 )

( 6)

with boundary conditions

u. = Cl at ~::O
IL-) 1! as ~ -"? 00

(7 )
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Multiplying (6) by L = Y- and adding (5) yields

2. n. (u. +V'i._Î ~ _ -i g (U.-t V'i.') - ;2 .o--L = 0~ V') a~ll V d (8)

Le tt ing

r(~) =
LA -l Vi.

V
eqn; (8) may be rewritten.

~

V ~ti - :I.1;i ?c + 2l't i = 0

with b. c. : :è =- 0 o: ~:: 0

t -71 M. â- -') 00. J (9)

The solution of (9) is

:i n )Y30 . J
? := 1 - ~f L - (-iJ ~ 1 ;~ ~ '

with real part

The quantity

"Re(~): 1 -UpL - (~)~~J ·

(-J ~
; = \Q ) is called the boundary layer thickness.

ß

~ gives the components of motionTransforming

:3/; )
U,:: lJ(1-e- th i.. ó

( -~ 1 )y::Ve ¡¿7
(lO)

The hodograph for this solution is the Ekman spiral illus-

trated in Fig. 2, At d = C , by applying l'Hupital's rule, the

s lope is found to be l, i. e. the direction of flow at the bounding

surface makes an angle of 450 with the x-axis. The physical inter-

pretation of the Ekman spiral is as follows:
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o =íí'¡

t'l'l

l. tr -? 1
o

Fig, 2

Above the boundary layer the Coriolis force,Zild V, tends

to acce lerate particles to the right of the flow, i, e" along the

negative y-axis; while the pressure gradient force ;La (t) acts

equally, but along the positive y-axis as prescribed by geostrophic

balance. Thus, the motion of particles above the boundary layer

is restricted to planes parallel to the x, z-axes. As we shall

see, this is not so in the boundary layer, Eqn. (3) implies that

~ r is independent of d' Therefore, since the Corio 

lis force

is le.ss in the boundary layer due to viscous stress2 while the

pressure gradient has the same value throughout the liquid, parti-

cles in the boundary layer tend to drift along the positive y-axis,

2The surface stress La is given by

Z =. (¡u 'òu- 7 ¡U d LÏ) = ¡U V (i 1)ó 'OJ "'! !" ) ~
1TJ

a nd a t ~ -= 4 the stress reduces to

GjI = vei, 1) ~

'1

;i'
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The Corio lis force acts in turn to the right of the particles,

The exponential decrease of this effect3 between the surface,. where

the crossing angle is 450 , and c: where the crossing angle is

zero, combined with the S,H.M, due to rotation, leads to the t.urn-

ing of t.he flow in the boundary layer.

3If we define the volume flux Q as

9 = L )00 ( LL - V) ~) s: ~ Jo 0
then since the integrals are convergent (i, e ,they decreElse

exponentially)

g=~(-li1J (11)

Because of. the ageostrophic component of flow in the boundary layer,

a flux deficit exists in the x-direction as can be seen from (ll),

There is an apparent contradiction between the second boundary

condition (7) and the fact that the motion becomes approximately

geostrophic at å = ~ This, as well as several other ramifica-

tions of the Ekman spiral, are discussed, for example, in

Hess, S. L., 1959: Introduction to Theoretical Meteorology. Holt,

Rinehart and Winston, 362 pp.

These notes submitted by

W. Alan Bowman
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Lecture =I/=Vin

The Effect of Two Ekman Layers

Next let ~s consider the case where a top is placed on the

liquid and, for convenience, the axis of rotation is parallel to

the z-axis, Adjacent to each surface, there exists a viscous

boundary layer, These two Ekman layers are separated by an interior

region where the flow is geostrophic .We shall be interested in the

flow between these two para11è 1 plates.

Let the rate of rotation be given by I2 , the distance

between plates by H , a characteristic horizontal velocity by V-

and a characteristic horizontal length by L For the prob lem

outlined above the scaling approximations are

V-0 :=- L.~1
l\o .. L (l2)

C -=.g-H~.(~ 1Q

iJ L. .l 1
'1L2

where K.o is the Rossby nomber and (l2) and (13) represent horizontal

. (13)

( l4)

and vertical Taylor numbers respectively,

dUf.c-c /.) ïJ throughout the liquid and H'a ~

region, Our rather heuristic approach to

In addition, we assume

.cc: i in the interior

this problem will be to

construct the flow in the interior and in the Ekman layers, and then

to match the flow at the two intermediate "boundaries",

Zero-order approximation. In the interior region we assume

geostrophic balance, The liquid then moves uniformly as Taylor
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columns, the equation of motion for which reduces to

t ion ~~

2 n X ~t + \7 ~ = 0 ~ (l5)

\J = (~ ~: ) 0), By defining a stream func-
~

)1) - - -l'1e, _. :2n p

where u. -:(U¡V; c) and

eqn, (l5) becomes

t: = - ~ 'l \l LVo .
(l6)

In the boundary layer, the vertical component of motion takes on

small values, in contrast to the interior region (where it is zero),

From the continuity equation, the vertical motion at the edge of

the lower boundary layer .is

W3.:o+â~ = -V'.61= - ~ifV'~1.o (X)~) .) (ll)

where á = ( ì)-k.D. q is the volume flux and \7 i. -i" is the ver-

tical component of relative vorticity of the basic flow. Notice,

when the vorticity is zero, the volume flux and the vertical motion

also become zer04. For the upper boundary layer, the vertical

motion is similarly

W- .r = + cf \7 ~-io (J) l.) (18)~=-H-OCi d
which is equal and opposite that of the lower layer. If this result

is true, the matching condition for the interior region requiresthe

4Indeed, the fact that úr is proportional to vorticity is a conse-

quence of so-called "Ekman layer suction", which refers to the drawing

away of the boundary layer by motion normal to the boundary,
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basic vortex lines in the interior to shrink, thus compressing

the Taylor columns, But this implies that the motion of the in-

terior fluid cannot be entire ly geostrophic, We therefore proceed

to the next approximation.

First-order approximation, In the momentum equation

ê) 1b + (1)0 'i) u. + 2..nX CL +\l-r -= 0)ât - - - - \
let ~= ~o + .!::h = - 5. XV ~ + Il¡

andP = lo -+ P1 "
where the suhscript zero refers to the zero-order solution dis-

cussed above and subscript 1 is a correction, Then

ò~o + f)o.\lu. + r2rLX u-ø+G74 J tiûx LLi+'ili:: CJ (l8)

õt - -0 L - - , - - e
the terms in brackets being zero by (l5), thus

( ". .. u.o" ,,) I I + 2. n. XU. + \1 11 ': 0ôt - ) :'0 - - i f (l9)

To eliminate the pressure term in (l9) we take the curl

C;t +'do.r;)(iilX ~o)- iJ1. ÕJÔ':1 ': 0
d

and for two-dimensional flow

(;t +~, -\7 )(17'lj, U = - 2 si - ~'d~'

(20)

which gives the individual rate of change of vorticity, The verti-

ccll component of (20) is independent of b- and may be integrated

to give
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~: H-¡oo
H D

:::;n :P~ t7~ 1po = J '7:L~ eX; ~)
j.= Oti3oo

(21)wi

which represents the stretching of the Taylor columns, Equation

(20) then leads to the prediction equation

f.v )l
~~ \7'J~ =-~l.nHll n V?.lfø (22)

which expresses the rate of change of vorticity by viscous decay,

For the problem of flow in an inviscid interior region bounded on

bottom and top by an Ekman layer, the vertical motion is non-zero

at the intermediate "boundaries", This allows the. Taylor columns

to shrink as the basic relative vorticity decreases, and thus

avoids the contradiction found for the zero-order approximation,

On the other hand, for an entirely inviscid liquid eqn. (22) in-

dicates that the Taylor columns conserve their vorticity, just as

in the zero order case.

In order to guarantee that the analysis above is internally

consistent let us consider the following, For linearized motion

VT l-~ i
L

where T is a characteristic time corresponding to V and L . Equa-

tion (22) is then
i

i ti '2)11 =- -.2 Jl E"' V:2ì.~1: v ~o 0
with solutionS

5The time i- == 2n'r¿V'l' given by (23) is called the spin-up time, and

represents the effective time required for a fluid, initially rotating

with uniform speed .n , to reach a state of solid rotation with speed

.f+ t:.D , after having received an impulse .6 D-, Here T:: r .
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t71.i-c = (\7'21IOt=O øxp(-2Sl £lt) # (23)

The vertical motion scale VV isi ...
W == t (1)2: =vbf)~~~ If.?

as required, In the interior region where the flow is initially

irrotational

and

~: (Cfy.' r~ )

V?cp =,0

and to this order of approximation the viscous effects vanish,

For non-linearized motion, the inviscid case, for ex:ample,

requires
'£= 0

jlw -V 1H ':0: I L -
with vertical motion scale

w::o
i. e., the vertica.l component is the only component of vorticity,

To verify the consistency of the prediction equation (22) we recall

(l8) in tha form

:00 IL + ~ Q. X (u.o + .!1) + -l \7 (l. 4- f'1) :: O.

.Tt - 0 - - \.
THe corresponding inhomogeneous equation for viscous flow is

~~!do +,-n.X(ldo+ b!,).+t V&Il+ti)::-iV(Y::Y:1)t6~ +~D.'V~O-

- ro+(~ii+~i\' Vlr¡; HL \
~t ' V ~ l~D -1)

(24)

Now we wish to compare the magnitudes of terms based on the approx-

imations VT "" 1L i
.. .- E"' Jì .T
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For examp le

irv
V V:i¡¿ c :: -- ==
Do 1,", Y.
J) t" -r

which, by (l3), is very smallo

))T
L'2

::
.J

.n L')
i

£ )ii.
f- "& 1-

=l" E.;¡

Therefore it is permissible to

drop the first term from the right-hand side of (24), To find the

magnitude of ~ 1 we cons ider (19). In the. interior region

\J. ld 1 := 0

and

or

du, dV; _ -= OW; _ If (. V \~
ox. + ô ~ - ôå- - H 11 L'l)

U. "J V L (.: ) := V £ ii i-.n L2. :;
and (13) implies

~1 £. ~o
which was also required. In the boundary layer

2ßX \1 + ~. ï7 ~ -)) â~ := v(ëiQ. + o~u. ) _ J)~ .\ o~~ Ò~:i ô~~ Dr (25)

The terms on the left-hand side are comparable in magnitude if

( )\ d \~ ~ 'ò~ )~ L
while the Coriolis acceleration and individual change of L. are

of the same order when
Jl .( '" i
.. L

Therefore, the last two terms of (24) may also be neglected, That

is, equation (19) as well as the prediction equation (22) are in-

ternally consistent with the zero- and first-order approximations 0

These notes submitted by

W, Alan Bowman
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Lecture :flX

Spherical Case

Let us consider a thin, spherical, rotating she 11, Exclude

the equatorial region and consider an inviscid fluid.

let: jlUL ~z 1

1: 4( c: i
R

H

Ji .c "- 1
L

Ji.cL 1
R

The fluid will move in Taylor columns of length

.. = s: e (except near equator)

with horizontal extent, L . As these columns move their length

will change, The change in vorticity. is:
-"

.D C = 2.D eLl-- ItI: t ..
:: 'lnoo e dedT
= 2n oo et

. t. ç :::i n x northward displacement

'R

ß -plane approximationI ~
There are several ways we may take the variation of , with

latitude into account, One of the most common methods is to map the

spherical surface onto a plane:
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~o = basic stream function

G''1-q. = basic vorticity

If we neglect stretching of vort€x lines we have:

:Do ':
J)t 'V ¥D:: 0

and rotation drops out. However, suppose we allow ç to vary

linearly with e

~:v~'¥o: (;in;t e JVs. e
let j3 -: 20R~e

~ t7 il'\o := -ß tp'l

where: X subscript denotes differentiat ion w. r, t, a coordinate

pointing east.

Now consider a volume If on the sphere whose proje~ted area

is S , and whose boundary is r

v:;ls1eS=SH
define t = ;¡£LsJ e

then g = (- \7 ~1Y + t )

Both Sand r are conserved during the fluid motion and hence both

ir and the vorticity are also

. '. ~ (- \7~lf + f J = 0
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which leads to the previous result if l£= /. ,
cL'á f.. (3 taken indepen-

dent of
~

~ points north.

See N, Phillips: "Reviews of Geophysics",

RossbyWaves:

;t V2.1p + ß 'lll ~ 0

linearize with UT~.( 1
L

~ 7~LV + ß-lx = 0

now assume plane wave solution of the fOiL:

/\ r .i:Uie.l+e~-~t).ììl=W&i- J
we ge t :

. (lA:i :i)..: '"-I. W - r( .¡ e I.?+ ß ~ -k l¡ ;: 0

and hence we have the dispersiop re lation:

1!:~~w = -

with phase velocity:

C.1o=~(ÆL)í k"f'¿~ J

= - (~t~l.(~~ h t)
.00 the X-cOmponent of the wave always propagates westward.

A simple physical argument is to consider the relative

vorticities induced by a northward displacement of a fluid parcel,
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N

n
J) i

B~
t

I

A 6 Ofi9iYlQ.1

c
~
\V

T=p
~ i'spla.cemeYlt

E

The original displacement is from A to B this induces a clock-

wise circulation around 13, Parcel C will be swept south and par-

cel J) will be swept north, It is evident from the diagram that

the secondary circulations induced by the displacements of C and

J) will tend to sweep the original parcel back to its position A

It is also evident that the northward displacement of .. repre-

sents a progression of the phase to the left or west,

We get an inconsistency when W -') .Q .

..
,/ ". tt

..w "V ,. L "' L -" -" '1
· ..Q .n R ..-

so we have a further restriction on the regime of validity of this

analysis.

One interesting observation has been made about thes€ waves,

that is that the energy flux is not parallel to the group velocity,

c~ = (~It ~ ~~ )

- OZ~l2y('k~e~';ke)

this is at some angle Ei with respect to the phase velocity, The
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energy flux is (r ~) P V) and is parallel to the wave fronts and

hence not parallel to C ~ One finds, however, that C~ only

differs from the energy flux by a non-divergent vector.

See: Longiiet-Higgins, Deep Sea Research, .., p,35, 1964,

These notes submitted by

JohnR, Booker

Lecture X

Rotating, Stratified, Boussinesq Flow

We shall look briefly at the linearized problem when both

rotation and stratification are important, Suppose N ~ = const.

The linearized equations are

~t + ~~ X ~ + e* V P +~~ = 0

(Jt _N-i~.~:: 0

\l.u.=o"'

where ~ need not be paralle 1 to k.. There exist plane wave

solutions of frequency u. and wave number .1: such that

~_ N"r1 - (!-&JJ + (e::¿fl)'lW- - L- )tl2.. i.ei~.. ..
The first term is the square of the frequency for gravity waves and

the second is the square of the frequency for pure inertial waves.
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Accelerations from the two kinds of restoring force simply add,

:i N:2
In the atmosphere Jl ~~. , so the effect of rotation

is unimportant unless th~ motion is nearly horizontal, But sup-

pose the wave propagates nearly vertically:

-- /tr- !
'-

..
..

.. ....-~
"..

As e ) 0, --
w-:i ') N :ie~ + (2.1.: IJ )'J

and rotation begins to dominate, Only il . k. , the vertical com--- -
ponent of -r , can affect the vertical vorticity, stratifica-

tion cannot,

Hydrostatic Approximation

When the horizontal length of the disturbances L is great

compared with the depth of the fluid H , some terms can be dropped

from the compressible flow equations, Consider a compressible atmos-

phereat latitude (angular elevation above equator) ~. Then the

x- and z-momentum equations will be truncated as shown:

~~ +2SL;øØ W--~nsJ~ V+ ~o(t) ~ :: 0

Ji 2. Q. r; ø u + & ¿~) + t~(') Wi = 0
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Two assumptions have to be made

(i) vertical acceleration is negligible

(ii) horizontal component of Jr. is unimportant,--
The continuity equation is

A + i. ~ W+u.~+ Vi.-+"" = 0(i ti-) to:ë d
If we exclude vertical bouncing by assuming W--V~L' where 11"

is a typical horizontal speed, then the two assumptions can be

made more precise as follows:

(i)
Pa. -. L.

!1 H
J)wXl "' ll -iJ. p~ La

t.,
~ncøchV' r- cg cl H .(~ 12!l,Q ø V L
:i n. CC a; i. .. 1: 2 fH..iJ- tP IA ~ H :2.Q ~ ~ /.
J. Pi! L..J f) - L 2.0 ~ ~VFa to cN,¡H~~ 't I.:~ (" 1

1)w- "'
J)t

J- 1) u-

L 1)i:
DlA ..
~~ ~ ~). l:~l
eo IX

(ii)

The ~ sign comes in because ~o "ò%x. must be the order of the

larger of Du./Dt and 2nWn~ V,

Near the equator ~~ ~ 00 , and the second of the hydro-

static assumptions cannot be taken for granted . But if the Rossby

number is small enough the argument still goes through:

~n.wo ØW- _ nTH
7)u. L
7H

2-n ~ ø i, --

.. P.,
f'c:

oi ..t. .(~ 1u
lL '1n.~rJ /J ". JiL ..R L

to )(
",fl T H 01 n J. ¿ (. 1L U

2Q.~ øù.
:Du.

J)t

Hence near the equator the hydrostatic assumption requires
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(i) Ji .(.( 1
L

R.o= ÛZH ~ AJ-- ¿c. 1(ii)

For the atmosphere n.!-- ~ I/o:br/fv and for the sea n H ""1 km/9v.

Hydrostatic Waves

Let us linearize the hydrostatic equations and assume

Boussinesq flow to simplify the algebra, Assume N"- is a func-

tion of : alone and set t:: 21l.s ø' The equations become

L4 - ~ V +~ Px - 0

V 1( + t u. + ~,. R; :: 0
I = 0Õ +- ~ Pë

\.~+ V~ + W;a:: 0

-i
ö; + NCa)VV ~ 0

The functions can be separated

w-= w;/~) W'*lXj ~jt)

p* ': Ph (r) p~ (x. J ~) t )t
and so on, The equations in the starred functions become

.. ,l '* ~LLt - U" V +- Px :. 0

V~ + lil + lr = "* I *Uxt V~+ c.7; ~ ~ 0
, VI

~where the separation constant C~ plays the part of an eigen-

value in, say, the equation for lA'f ("t):
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d.'lw\'
d.-a'2 +

Nc~)2. Wn = 0
e.,?

1ft:. 0 , the shallow water wave equation is recovereq:

(:t: - C~ 'J~(~~* t ~t) = 0

In the ocean, the first mode the barotropic mode

depends on the motion of the free surface and has a characteris-

tic speed ei ..¥ ~ 2,DOm'¡S. The second and higher modes

the baroclinic modes are internal waves and have characteristic

speeds from a few meters per second on down.

Let us use a f3 -plane approximation for l and position

the plane directly on the equator, Then

t = /3l¿

and we must accept the limitation R. ¿.: 1 explained in the last
~

The coefficients in the starred equations depend on y

alone, so a further separation is possible:

section.

*' '" r'\ I ) ¿ (~'t-wt)JV :: ir.Q L V L ~ ed V~an so on. The equation for is

d 2. V ,.(. w. _ A Ji _k-i_ ß"'~2-J V = 0d/A'2 C'" /'" w C~d ," h
When the coefficient in brackets is greater than zero, V L~) is

oscillatory, But for large ~2- the coefficient becomes negative, so

solutions can be found which decay rapidly as ~ ~ :t 00.

¡. -effect traps these Rossby waves in a band around the equator.

The natural length for the mode under consideration is ¡ Ci' Ir; "" _ ßand the natural frequency is Ý ß Ci'. Define /i and W as follows:

Thus the
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k=k¡L
en

,. r-\w = c.-v ,ß C\'1

A
Then functions V decaying toward ~:::! 00 can be found pro-

viding ,.
/' -W2._ W-h:¿.::2n-+1 _/'= ci -11 +2. ~.''', )- ,- ,

They. have the form

v C~)~ A Hm(g )YJf' (--i E-)ß ,
where Hm are the Hermite polynomials. As YY-~ 00 and the number

of oscillations in the y-direction increases, it becomes easier

to see the physical significance of these solutions, That limit

will be explored in the next lecture,

These notes submitted by

Steven Crow
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Lecture =I/=Xi

Special Cases

We shall now consider the asymptotic case ~ -7 00. The

dispersion relation is
~~ k
to --;

W

""o;
:: ~m .. 1 4- Ii

from which it can easily be seen that in this limit either LV 2-

kor __ is large, We shall consider the two cases separately.
w

a) W-: large

The dispersion relation then takes the form

Ú)" ~ k'.+ ~ YY + 1

and r-: ..w - 1 In this case in the equation

:i

cL ""0- + r ~ -13 1:. ~ lEa ~ + ~ J V = 0d.:j LCn W en
the term f3 ~ is neglected. Because in this asymptotic limit

the y-component of the wavelength vector is so small that t may
A

be regarded as constant over a single wavelength, 1/ becomes sinu-

soidal in character and the dispersion relation is

W :i:: fla + (1'..+ e ~) C ~

where -f is the wave number in the N-S direction. We see that

locally the ¡. -effect is not important; these waves are inertio-

gravitational waves.

These waves are trapped in the equatorial regions. That

this shoûld be so can be seen by the following argument:
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Consider northward-travelling waves.

constant but f

LV and Ie will both be

increases with latitude. Hence l,2. must decrease~ ~
and if t becomes sufficiently large l must eventually become

zero which means that 1r turns to the E-W direction. Since ç t

is parallel to n the wave energy cannot propagate beyond this-
latitude. For barotropic motions ( n = 1 ) the above considera-

tions must be viewed with caution,

If (! '2 ././ .Ch'2C 1.':+ oZ.)I '-- r~ L the modes are pure gravity waves,

The case t'2)- '/ C'y2. (-k i. + .l:¿) describes "inertial osci llations"

whose frequency is independent of wavelength. These motions have

been detected. in moored buoy experiments but it is not understood

why they should be excited to such large amplitudes in the ocean,

L ~ ~n .The transition between these two extremes occurs when

b)
h-i large

w~
In this case Cn~ will be neglected in the equation for

and we obtain locally
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W :. -jJÆ
-k'1 +.e ""+ .fl''l

Cl'

These are "Divergent Rossby Waves". It is worth remarking that

this derivation does not assume geostrophy, (w .(.(f) and is there-

fore valid for motions near the equator. It is, however, illumina-

ting to rederive this relation in a manner which clearly illucidates

the way in which the dynamics affects the problem. The vorticity

equation. is

~ ('u~-v;) - ßV-f(Li)G + 1):: 0
If we suppose that w.(¿ t then I ;t(iA~ .~) I

and hence

is no bigger than

i f ( ~x-r i) i
/~x + ~ ¡ ~~ l,u~ -1i )

Therefore, to a first approximation, we can introduce a stream

function to describe the horizontal motion:

). - )/1- 'f~ ~ 1):: -l1- .

Kinematically the motion is approximately non-divergent, but the

horizontal divergence can, in some cases, play an important role in

the dynamics of the flow through the stretching of the vortex lines,

Consistent with the assumption W -:c: ~. we can neglect the time deri-

vatives in the first two tidal equations which can then be integrated

to yie ld

.p'l=-"P~

to within a constant of integration, which has no physical significance,

Substituting this into the third tidal equation gives

ÅA)I + i = i -l t
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The vorticity equation now becomes

.i

i i7i-¡IJ +. A)11 - J_ "l1J = 0
òt vA '1 I.. 'ft c;""1;

This is the equation for divergent Rossby waves, If we Fourier

transform the equation we recover the dispersion relation

-¡JÆ
k ,,+l-'h+ ../c~

We shall now show that even in the equatorial regions where f is

6J ::

small and û) ~ t the dispersion re lation derived above tends to

the correct limit as f ~ O.
We are considering the case

"-
g- = i. c )0)0 1w W l' That is, the

frequency W is very much smaller than that of gravitational waves

of the same wave number, Furthermore, from the tidal equations,

if t is small

J M.y. + ~ ) -. W'P;.d P C\1

ILl~ \ A; t ft ~ ~

Hence 1~+11 ~ R~;~ I-u~i.(~ )-L1-1

SimilarlY/JJ¡t+~i ~c: Illl

)

, which means that in this case the

horizontal divergence is dynamically unimportant too.

The vorticity equation is now

Gdt (.u~ - vx) - ¡3 V = 0 J
which describes non-divergent Rossby waves. Introduction of a stream

function and Fourier transforming leads to the dispersion relation

-¡3Æ
k 3.+ .e 2.

w =

It is not the gravitational restoring force which is providing
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the essential dynamics, When lUx + 'i .~ 0 we have area-preserving

motions and the vertical component of vorticity is conserved. On

the equatot although t=-O, l3 is non-zero and a fluid parcel still

appears to have a re lative vorticity as it moves north or south, and

the Rossby wave mechanism still exists. The divergence will be un-,~ '1 .l_ 2. a :i
important dynamically provided C~ ~~ ~ + ~

n

L. eLL ~ c\' .. . f
If the horizontal divergence is dynamically significant, it

can be seen from the dispersion relation that its effect is to de-

crease the frequency, Qualitatively this result can be understood

in the following way~ When a fluid parcel moves north it will ex-

hibit a relative anticyclonic spin which means that the pressure

will be highest at its centre. This must have resulted from a

qorizontally convergent motion which causes a stretching in the

vertical direction of the vortex lines. The absolute vorticity is

increased. Then the relative anticyclonic spin must decrease which

decreases the Rossby restoring force, and hence the frequency.

For long wave lengths (W;" ~) we find by comparing the

time scales, that our hydrostatic approximation is still good if

l- H
V c- L: .c.c 1 , where R is the radius of the earth.

For very short length scales the approximation is good for

inertia waves but for Rossby waves it breaks down near the equator,

We can no longer set ~ + d- -= 0 but have

~ +().- 2.n ~ TAL :: 0
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Fortunately, however, the last term does not play any role in our

treatment of the problem, because vertical displacements drop out,

producing a decoupling between the horizontal layers. The horLon-

tal wave motions are then independent of the vertical structure.

These notes submitted by

Douglas Gough
Hans C. G. True

Lecture =I/=xii

Non-Linear Motions

Measurements at the Meteorological Office in England have

shown that it is not a good approximation to regard atmospheric

motions as a sum of linearised Rossby waves. We are therefore forced

to consider non- linear motions.

We shalL now consider geostrophic motions with the Brunt-

Våisäiä frequency a function of 'i only and, for convenience, assume

that the Boussinesq approximation can be made. The equations of

motion then take the form:

1\

where i3

~

2n.)(u.+~\JP+cr2- =0"- "" t"7 ~
is a vertical unit vector. Eliminating the pressure by

taking the curl we obtain the vorticity equation:

i( -D. \J)~ = - ~ X \7a- ·

From the equation for the vertical component, SL . '\ W = 0 , we see
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that fA is independent of position along a lin~ para11e 1 to the

rotation axis. The equations for the horizontal components are:

2.. . \7 .. =- C)~ ~

.2.Q . \1v :: -~ "

These are the "Thermal Wind Equations". By means of these equations

it can be found that for a typical value for the temperature gra-

dient in the atmosphere (1~ ~ -IO(JC//f(XJkm)we obtain a velocity

gradient ~~ -: 30 '(/SJ p.1()~W\ This gives a difference in

westerly wind from ground to troposphere of 60 knots, which is

large compared with the ground wind speed. Note that this has come

from a vorticity equation. Gravitational forces are feeding vorti-

city into the system and this can be balanced only by variations in

the Corio lis force. The thermal wind equations are a good approxi-

mation when "R.L-( 1 However, they are not predictive equations;
()

we cannot determine from them the time development of the system,

In order to do this we must take higher order equations into account,

For simplicity, we shall consider an inviscid, ßoussinesq

liquid with -f -:.lQ .s f ' constant.
f' -effects and viscosity could

easily be considered, however, provided they are not so large as to

destroy the basic balance assumed below, but the essential physics

is contained in this simple model, We assume that the Rossby number
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based on the vertical component of the Corio lis force,"Ro:: .tL .(.(1 ,

and that t ct~ "' c: 1 , but that uLr - 1 .

The vertical vorticity relative to the rotating frame is

of order JL
L

Hence the order of its rate of change . U uo¡is-"-- ,LT e
which is assumed to be comparable with the stretching of the

f~w U'"vortex lines"" Oi!..r * Thus ~ -- f' tf and so

W_Y.'R .H L.'
This means that to lowest order in RO) I.)(+ iI~ =0 Motions

are horizontally non-divergent, We now introduce dimensionless

variables and let primed variables be the dimensional quantities,

We set
1 I

X, ~. -=

i

=. ::

.t' =

L (x.¡ ~) ;

H '2

.b t .
U

Xi ~ are of order unity

The horizontal velocity

.g A. = u ~o + Ro Y: f + 0 (Ro~ ) J '

W' = Jd~ ( Ro Wi to (Ro?) J '

-f '= fLJL (10 +"Ro li + OCR: ~ J

cr' = f ~L La; + ~/)o¡ + 0 (R~)J

.. _ N1).(=ë) H ~
Nt:;) - Loa f 2.

The non-dimensionalisation of -p
e*'

is suggested by a balance of the

pressure scale with the Coriolis forces. We are also interested in

having gravitational forces and Coriolis restoring forces approximately
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Ch ..NH and

In the linear case this occurred when enNH tL
so we would expect that - --1. This

fL
choice for the non-dimensionalisation of

r- 1. Butin ba lance.

consideration

motivates our the Brunt-

Väisälä frequency, By substituting the dimensionless quantities into

the equations of motion, the continuity equation and the adiabatic

equation and equating terms in the same power of the Rossbynumber

we obtain two systems of equations, one of zero order and one of first

order in Ro

a) Zero-Order Equations

We have already shown that to zero order in ~o

A.ox. + i.~= 0

Hence we may introduce a stream function to describe the horizontal

motion and write
Á

1&0 = ~ X nìjo (X)jJ~; t).

The horizontal momentum equation is

- \7~ l.o + \J~ "P :: 0,

which implies that

î.:. 'P + F ('l;t), where F is an arbitrary function."
'"

But î l \l \t 0 depends only on\7¥i 1jo and so we may choose i. 0 such

that ~=Po

In the equation for vertical momentum we can neglect the

term t cd tl 1j~ and obtain an equation for hydrostatic balance:

~ì! +a; = Q.

The lowest order adiabatic equation is
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JJo u; N ~ ) ""
-- - l ~ u. = v.l

h 1)0 - '0 jJ \"were J)f: == "hi: .¡ ",0 . V This introduces the first order quan-

tity ~ ' and so the zero-order equations cannot be closed with-

out appealing to the first-order system.

b) First-O~der Equations

The continuity and horizontal momentum equations are:

'W¡'2 + cU Y:ï = 0

Do !lo ~ ;.
DE' + t ct:J w¡ ~ + ~ X ~J + \)t. 'Pi = 0

"
where X-- is a unit vector pointing towards the east. Note that

there is no vertical convection of momentum. We must neglect the

second term in the momentum equation because we have assumed that

~ en r ~"" 1, Taking the vertical component of the curl of

this equation we obtain

1)", \ï" "¡If + J..l := 0
1)1: Vt. ~ ""I

Hence :n 'V;-i :: Ul=-:t h. 0 '"
= .: r-i- -:~ a; J'ail N' 'Dt

__d ri DoW;J
- 'a? LH"'(i:) :11: o~ )

using the potential vorticity equation.

We have

ir~~ìPJ-J)o r2.(i-ìlJ )~_(~~o) \1 (i "\11 )
"ò-r LN2 Dr 02' - 'Jt L"ò~ IV'" 'iOt 0 'a'ê. v~ "" 'loe .

The last term vanishes because
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'd M. "
~:: ièx \7 1/""ò:: - 'J

which is perpendicular to the horizontal gradient of ~?. ~o 'è .

Hence

~; (\7: Vo (jda (~~ ~O~) J :: 0

This, together with the boundary conditions on the level surfaces:

tv :: 0 .:
. I J)". /I - 0
t.e. N'- Ift '1 O't -

') Do 111 - 0

1)t 'fo~ - .:

are the "Quasi-geostrophic Equations".

The quantity \7J.tt +;ë (~~ 1foe) is called the potential

vorticity. The first term is the vertical componept of relative

vorticity and the second describes the change in length of vortex

lines due to gradients of potential temperature. The quasi-geo-

strophic equations express the conservation of potential vorticity

as a fluid particle moves. Note that if we had an Ekman layer the

boundary condition should be modified to take account of the Ekman

layer suction.

viz: ~Ot lVot :=)- \l!:1f ?

where

I

X == + :2 (-JJi)~
H2o

Comments

l)
1\

The horizontal motion is non-divergent; A1 = 2 X \7 111 and~O /Y 11 To

the vertical motion is an order smaller in the Rossby Number. So
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) t.~\ ('c: 11:", \71' There is no vertical transfer of momentlL1l,

2) 'ò"ò., (JJe; . \J fJ 'i = "d*ø . 9~ +,uo . \1 dO"-z\"' / 'õ. - Õi:

=: - L~i! (~ X \7~ ìfo)J \J~ '4¡. t ~o . \l ~

= -(~ X \)A 1po~). V~ '!oi + ~o .\1*

:: ~o .\7~ .

This shows that the variation of Il ø with height associated with

the presence of horizontal temperature gradients does not con-

tribute to the term ~ 6~o. \l(í), This allows us to invert the

d I Dooperators -- -'i and - ·Ò¡. N 1)1:
3) Let j be a small vertical qisplacement of a fluid element.

N2. 'tThe buoyancy force, c:= ) Using the hydrostatic approximation

õ= dP
- == -~ )n~ 'ê

we obtain 'f _ -2- .
J - N'J

~'V::+:'
?I

Consider now the motion of a vortex line

element. The fractional change in verti-

cal length as line element moves is

?" + :f~ -(r¡ + T¡ )

¡t~ - t¡
I j'~ - 1;::.+-

2;~-:.1

= I -~(î) ,'õë N"J

Calling the vorticity before the displacement Q , the vorticity

1-
after the displacement will be Q +\7.¡ Ll On the other hand, this

must be equal to Gf( 1- ;:a C ~:i)J. If in the basic state
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Q = f ': :iStver1ic.a.1 (no relative vorticity) we then obtain the

equation
\7;V++ ;: (~~) = 0

Note that t = 1 in our non-dimensional units.

4) In oceanography the potential vorticity for a homogeneous

fluid is defined in another way. We consider the translation of a

Taylor column.

The quantity
I cw,y oj 2.£1

-t Ur f

l .: ~. CO 1 where Cl is the
Ül.titude.

curl -l is parallel to .ß

curl ,U + 2 n. is the absolute
vorti~ity .-

:: l. wA ;¿ +..
-h

is conserved

as the column moves, and is called potential vorticity.

In the ;3 -plane we can write the potential vorticity in the

atmosphere as .. d (
+ + \7~ Y +-F Ôi! ~'Jl.¡j).

5) For any motions of an inviscid, even compressible fluid

for which there exìsts some locally conserved quantity e , which

is a function of pressure and density alone, and which in our case

is the potential temperature, we can derive the following equation:

:e L(CW~+2.g).\l~ GJ = 0,
which expresses the conservation of potential vorticity in general,

It must be emphasized that no geostrophic assumption is involved.
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The Balance Equations

The quasi-geostrophic equations were first derived by Charney

for the purpose of numerical weather forecasting, He formulated

them to remove gravity waves from the problem since these can lead

to severe numerical instabilities unless a prohibitively small

grid-spacing is employed. Gravity waves can be eliminated by

L U
TN H ' NH c(c: 1

but it is not necessary to assumeassuming that

geostrophy, Near the equator non-divergent Rossby waves can exist

which are not geostrophic, and cannot be found from the quasi-geo-

strophic equations, A geostrophic motion implies that

f-/ + p)( - 0)

-.( V +"P'j ~ 0

and if we can regard t as constant, then f(ux + V~) = O.

A geostrophic motion, therefore, implies non-divergence on an

t -plane; but the converse is not necessarily true. It is perfectly

consistent to consider ~ (f( ¥ b- t~ 4= 1 This situation
produces the "balance equations", a generalisation of the quasi-

geostrophic equations. UT
Let us, therefore, assume that 1:""1 and

Take
NU H ¿ "" 1 and that the hydrostatic approximation is valid,

YL ~.c.b, in factH L.
i Wi/(c( I U)(1 ) I v~ i

"
tion i. for the horizontal motion: A. = ž! X \I "\~O ,.
)w- ~ l~~ I~f~ i

Yi _ (JL) UH tlH-C As a consequence of this

separately and so we may introduce a stream func-

Also

which implies that there is no vertical transport

of momentum,

The vertical component of the vorticity equation is
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~(n~'A'i+t) -(f+Ql-l)~l; - (:2£-~+ ~~). \j~W- = 0I i Ii I iI .
I

i

1.
I)

L2
U2JL
i: II i-

U i. U

-- ii

where the orders of magnitude of the indica"ted terms are written

below. The term involving -ß t2 disappears, p's previously, in

view of the hydrostatic approximation. Although t ~~ may be

smalL we retain it at this stage in order to include the possibil-

ity ofnon-g;eostrophic motions. Having neglected all other small

terms, we obtain

,It (\1t?¡ +-0 = t ~

Also uJ,::- ~': :t Pi! and the pressure no longer provides a stream-

runction for the horizontal motions. In order to complete the set

we must go back to the horizontal momentum equation

1),u t. fi I
- + f r X LL J .¡ 0* \J Ii ? :: 0JJt .l --i" \ n ~

with 'I

1dfi = !X 'Off.

Taking the divergence of the momentum equation leads to

\7- ~~+ i 'V\j)'(iXíl1¡~-f I7t1J fß ~ f t v;p = 0 .

If the scale of the motion is very much smaller than the radius of

the earth we may neglect j3 lfx in this equation. As a reminder,

\p is the stream-function describing the horizontal motion, p* . .
the perturbation in pressure, p a standard constant density,
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f is the Coriolis parameter .2J2SÚ j, where ~ is the latitude,

ll =:! which is assumed constant and the operator \7h isr o~ A
~ ' o~), ~ isa vertical unit vector.

The only difference between the balance equations and the

quasi-geostrophicequations is the inclusion of the acceleration

terms in the former, Charney be lieves that the balance equations

may have some validity in equatorial regions to describe motions

from which gravity waves hi:ve been filtered, But we have ignored

latent heat of condensation of moisture, heat transport and turbu-

lent momentum transfer, all of which may be significant,

We have derived these equations fora Boussinesq liquid,

but this approximation is valid only when the thickness of the layer

considered is very much smaller than the pressure scale height,

When H is comparable with the scale height the Boussinesq equations

can still be used if pressure is used as the vertical coordinâEe.

We briefly illustrate how this is so.

Z'

p:.cl'sT We now take h to be a

function of p
~(x.)

x

On the surface of constant p) ~ I Jx. + * \ $1Z = O.

r=~. X:=~

-((~)
. 8.~ _ 'ò)( ,

, . 6'l - ¥ê')
.

l,e. (.£) _ I (ip'0)( p - Sf(ê) ôx.
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The R.H.S. is a term which occurs in the momentum equation.

z We now consider the continuity equation. It is assumed that/G~
......,"...._",...,,',. II u .ô rr i- - -r 'ii

ifl!!/i.~ /Ull
.. '-1-'

the slope of a constant pressure sur-

face is small, H.co: L The mass con-

tained in the element between the two

constant pressure surfaces is

t(íi-f¡ )S
jection of the element onto a hori-

where 5 is the pro-
x

zontal plane. This is also the "volume" in pressure coordinates.

Conservation of mass is equivalent to conservation of "volume", using

this pressure coordinate, which implies that the continuity equation

in this system will be the same as for a Boussinesq Liquid.

We as sume :

l) Hydrostatic approximation,

¡://XJu¡z"t) piL.Q ~ - .c.l 1
tci (ë.) fo

With an analogue pressure defined as -t?Bl'h(r)-AÐ(p~

and an analogue Brunt-V~isäiä frequency No.1. = pX'" ~~ the equations
fa ( ë)

of motion are exactly those for a Boussinesq liquid. Using this

2)

'l
definition,N varies by a factor of 25 between the ground and the

troposphere and not merely a factor 2 which is usually assumed to be

the case in liquid modelling of the atmosphere. The analogue u.

which is required to complete the equations is proportional to the

JJ P

Dtanalogue The boundary condition at the ground is not, there-

fore, W- == 0 Physically the ground behaves as though it were elastic
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in the analogue system, The atmosphere behaves like a liquid of

finite height on a horizontal membrane. , -;
There is a singularity at the top of the layer. N tt '" 1~.2

\.11 -'?ciJ

as -rct ~H , where H is the analogue height of the fluid layer.

In the quasi-geostrophic approximation the elasticity of

the ground can be ignored and we may assume it to be rigid, but

for the balance equations this simplification cannot be made.

These notes submitted by

Douglas Gough
Hans C. G. True

Lecture =I/=Xin

The Baroclinic Instability

We wish to examine the stability characteristics of a

westerly air stream, The wind velocity U is assumed to be a

function only of the northward coordinate ~ and the height e ,

and it will also be assumed that the quasi-geostrophic equations

app ly, N'J is a function of 2: The stream-function l- may be

decompößed into the basic flow, -p CJ)?) and a perturbation ~('/J ~¡~J t):

Y=I-+! I :: - U .
~

The basic potential vorticity is

q :: ìf ~~ + ;~ (~ fr:) + to + l3 ~

where t6 is the value of t at ~:: 0 ' Hence
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'0 Q _ _ Uuu - ~ (i. u ) + a

Ò ~ - dO 'õ t N'J ~ ¡V .

The first term is the gradient of re lative vorticity of the basic

flow, the second is that part of the potential vorticity gradient

which is directly associated with temperature gradients and the

third is the gradient of vorticity of the earth's rotation. On

linearisation, the conservation of potential vorticity is ex-

pressed by

(;t +U ~J') L\7¡g j-~ G2 ~~)J+ ql ~~ = O.

Although the flow has no definite boundaries expressed by

~ = const., in order to obtain a well-defined problem we shall

postulate the existence of such boundaries across which we shall

assume no fluid flows, i,e,
': )1= 0 on ~ =

cons t . The condition

that there is no flow through the ground at r = -1 is expressed by

~t '% = 0 The linearised form is

( :1: + U ;)() ~2- - Va ~~ :: 0 aY 'l::-1
As we approach the top of the atmosphere, in pressure coordin~tes

"2

N --~ 00 it is necessary to impose the top boundary condition at a

singularity, The difficulty can be overcome by means of a radiation

condition, For simplicity, however, we shall regard N:z as finite

and bound the atmosphere with a rigid lid. The results are qualita-

tively the same as those obtained by doing the problem properly and

exhibit the essential physics, We therefore take

i ì II :: 0 Q' ~;: + i .
'J t 'fia
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We look for normal mode solutions, In order to study the

stability of an arbitrary disturbance it is necessary to obtain a

complete set of normal modes, but usually the problem does not yield

a complete set and we cannot determine the complete stability char-') "2
acteristics, For the special cases N = const 0 and /I o(:ž the

set has been completed and it was found that the stability charac-

teristics were unchanged. We thus set

cP - fj ( ) i.k(X.-ct)J - J ~)~ e .
The mode will be unstable if 9 Y1 (c) :: CL'? O.

Substituting this form into the potential vorticity equation

leads to

i (.. -') A. ri- lQ _ k-'\ A
'0 i! . N~ ~ + 1~ ~ + (u - C -'0 ~ 5 f :: 0 -'

with A '"
( u - c) Sf%! - Ua 0/ :. 0

1=0 Oï d =0) ïi/e. ..

em r =f.l

and

This equation has been solved only under restrictive conditions.

If U =UC~) only ,

-# '= ß - U~'â is independent of ~ and separable solutions

~ '"
of the form :J =f (rÎ j (if) can be found. The function t (:;) turns out

to be the vertical structUT€ for internal gravitational waves in a

stratified atmosphere, ~(~) is essentially the same function that

arises in Rayleigh iS inviscid analysis for the stability of a homo-

geneous non-rotating liquid with LJ ~ U (~), The flow is stable unless

¡3 - U~~ changes sign somewhere in the flow,
Le. Of M . ° 1i d. J is sing e-

only effect ofsigned everywhere, the flow is stable, Since the
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7-
gravity is through N , which does not appear in this case, there

can be no potential energy available for the disturbance. The

energy of the disturbance is drawn entire ly from the kinetic energy

of the basic flow.

When U:. U (:e) only,

if we furthermore assume that N'l= const. and ß== 0'" ~ 0
We can take q ,: 3' (e.) sl 1. ndthen

dQ
~ is independent of J

and obtain ~ t:
:J;¿~ + L i~~ - (I~ \ y) i.~~) J~. :. 0

This is again the equation which arises in Rayleigh i s problem but

the boundary conditions are

are no longer the same. In our problem

t; tJ~ a,

o/i: - ü: ) = 6 at i'': :t 1 whereas in

now the boundary conditions

the Rayleigh problem 4, = 0 on ~ = T 1. Our boundary condition

corresponds to a free surface in the Rayleigh problem, that is, one

on which there are no pressure perturbations, In the Rayleigh

problem U'!'r:: 0 is necessary for instability with rigid bound-

aries, but for free boundaries this is no longer true.

It is. thought that our major weather systems are driven by'

the baroclinic instability.

The Eady Prob lem

This is a simplified model which can be solved analytically

and is designed to exhibit the important features of the baroclinic

instability, We consider the stability of the flow in the x-direction,
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U:: ~, of a Boussinesq liquid in a rectangular channel which is

rotating with an angular velocity Jl = lf about the z-direction.

Furthermore N; 1 , ¡. = 0 in our dim'ensionless coordinates, and

we take ÎÎ :: 1 too.

n =1:1-

2::1 r: '" /' "".. ,'/, ,__ /'''" .-/1---.... ..
~---- ."0--

'//..///--
'"/'

In physical space the slope,/

Î- --
Î

ë=-ll"-,////,,
~=o

S
thermal wind
direction: U =i'

,-- --,/ ----
~

,/ --
.-

- -- --

-- ,/ I
/
/
I
i
I- /

" , / / / ~ :: iï/(

N

'"

of the lines e = const,
i I

f uis -- l-~ 1 where a prime
N'2.

denotes dimensional quantities 0
--

/' /;: //1

lines of const,
potential temp, e

The basic potential vorticity Q is constant because

q :: - U~ t ada (~,. ty~) +fo'- '-
::0 -: 0

If we introduce a sinusoidal variation in the x-direction the equa-

tion. for the perturbed stream-function becomes

~ (~fJ'3) ~
1ir - (i, + L. :J:= 0 I

which has the solution ~
:f :: A ~ f((z. -())

~ 1. ') eiiwhere A and 0( are constants and )( :: 'f + '

The constants are determined from the boundary conditions
~

1: = ì(1f t¡ Xl: -~)
y

ul \= - = ---- 0ì ?-= 1u-c I-C ,

\
01 e- :: -1:: +c .
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Eliminating 0( yields an equation for C ,
X '2 C. ..:: 1 ty( 'J - 2.)( c. 2)( .

I + )( "'- :L ll c. .2)(

-i

--(0.3)

)(

'2
For )( L. 1.2, C -: 0 and the mode is uns tab le , This is a case of

a "short-wave cut-off". Long waves are unstable. The mode is un-

stable if
ì( =

J k~e~'H Nt

f i
.: 1.2 .

r'If the rotation rate is increased, T is increased and the flow

is unstable to smaller and smaller wavelength disturbances. The

11 cut-off wave length" is independent of U? ' and hence the horizon-

tal potential temperature gradient, although this is the cause of

the instability, but the horizontal potential temperature gradient

.t 01 idoes determine the true growth rate which is .. - -l ¡ -X'2C"".
NI d.'i

The NeuLralSolution

It is of interest to examine the flow pattern for the neutral

solution:
)( = I.i ~ c: = 0

:f:= A Cltl Y(r~h X ~YJ tJj .

Note that normally there is a basic westerly wind superposed on this
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solution which does not change the stability but carries the solu-

tion to the east with a constant velocity.

:! is a pressure perturbation which is an even function of i? '

(J = -Pi! is odd in ~ and uris even.

The following flow patterns are as seen looking down onto the

/ ///~/// //////1/// //// //) // // / /I i
i

I

i

I
Ii i . ........ I _////// /./////// /////////////~_oI I Ii I

I

disturbance,

Top ha./,f

~ =- íVt

;:
,

) basjc vno1ìon

'/

;. )C

/////://///////1//////////(///// ~ =. h

I

i, ¿
Bottom ha1k (. basic Ynoti~Y)

(.I i I
/////i/////////í'////////(//// ~=o

For clarity we isolate a single mode in each of the top and bottom

halves respectively.

Tor h~ a
~

'flf~O

9'?-~.oo
,
i

I

I, i5 \1 ')41~ 0

I ¿,e. W"i! ~ 0

I . ~
ft\1 "4::0
11.ß,. w..:: 0

I

I

130ttm ha.\t
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Taking the boundary conditions CA = 0 at i!:::t 1 in consideration,

the values of UL~ tell us that at the dotted line in the diagram

above, there is rising motion; ur ~ 0 in both halves.

Let us now consider the density field.

I

L

i

o
I~ ii.fow ~t;o
I '" \I

.fmsure.~ ~bI i.-S:;,~I ::
13riitrn ha1l '

w= 0 ()O( ve-rea./ dísplwment

displo.cerneri1 rna.x.
() ~ 0

Top ~all

tiÎ9h ¡:iressur'e

d- .. 0

The rate of working of the buoyancy forces a-ur is zero for these

steady motions sincecs and u. are 1C
.2

out of phase.

Growing Disturbances

jP is no longer an even function of ~ . We then have the

following expressions for (J and l::

A i 9 ( ) A~ ' l - i. KetCJ :: - n sun n 'I r -0( c.1\ X su ~ e

u.:: ¡ -k c cr + cs ~ ~ - ~ fx .

Hence ~=i/ic? and since ikc.c 0 for unstable distiirbances

ûJ ~ O. Rising motions are, on average, associated with negative

cr which means that potential energy is being converted into kine-

tic energy of the disturbance. For small growth rates, the flow

pattern looks qualitatively like the neutral solution only with the

top pattern displaced slightly to the left (west) relative to the
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bottom. Although this model is very idealised, the solution

qualitatively agrees with observations of the atmosphere. This

is the only justification for bothering the reader with the

analysis.

introduces a term ß
U-c
C

¡J -effect, then 'aQ =1 0d1j ~
into the equation for jt

ThisIf we have a small

which causes

a singularity when is real. This drastically changes the

form of the motion; now all modes are unstable, but the growth

rate for a given ~ is very much less than that due to the

normal baroclinic instability where we set ¡B = 0

These notes submitted by

Douglas Gough
Hans C. G. True
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Lecture =lI=XIV

A Physical Explanation of the Baroclioic Instability

Because of its simpler physics we shall now consider a two-

layer model to explore the baroclinic instability and later com-

pare it with the Eady model.

n"'tf

/ d ,nr
We assume U is a func-

Ui ø

~~'" ,', / "'
S

~Pi
-J

?rJ~

/////11

11

-itioo of r only, N is/ "

IU,0
f CL~ J i

._,~ i ,¡e' ,/ ,~'
If'Jt~, /'"..// /' /~N

constant, Pi ¿ t'l with

¡; -/7 ~.( 1 ' and that

f'2+~
each layer is homogeneous,

:; '1

The slope of the interface is assumed to be small. All the gravita-

tional restoring force is at the interface between the two fluids.

If R,.t.c 1, each layer of fluid moves in Taylor columns which doe

not have constant length because J -= J (~) . The equation for con-

servation of potential vorticity in the upper layer is

J2
J)t L\7~2.1V +1. r 1 = 0 ,"

expresses change

ignoring l3 -effects,

of vorticity due to slope of
interface.

The stream functions 1f, ~ -i i. in the upper and lower layers are equal

to the pressure perturbations from the basic state divided by den-

sity; but this pressure is due only to the height of the ïnterface,

Hence, ÎI) - ì. = 5 .T': i
~(\7;1l+'J~-ll):: 0 ~Thus
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Similarly ;t (1J~1J'l ~ì.'L+i-1):: 0 in the lower layer.

Choose axes moving such that U¡;' - U:i' The gradient of potential

vorticity of the basic state is then

~~' :: - V1~ -(l/~ -O,)

:: 2. V? because U is constant.

Also d Gl o;-=
cL~

-.2U.

We shall now examine the stability of the system by considering

disturbances of the form

_ A ¿(K)(+~-kct)
1.,:: 11 -t 6t 11 e ~
. 1\ L (r.l( + e~ -kct)
'o:i=- If + ~ cP e, )2.

where ''If '1lr are stream functions for the basic state.
~I ? ~~

By sub-

stituting these expressions in the equations and matching the

solutions at the interface, application of the usual boundary con-

ditions yields the dispersion relation

k. "'- ,.

C?- = V" yt'l..:2

~ p_ ). ":
whe re X 0; N. -+ e

~
C. is real only if ìt ) 2. ' Once again we

have a "short-wave cut-off" the motion is unstable for long

wave s , It turns out that '"

1; :: ~+~
!. U -c.

is real and :r and r2, are in phase, but have

For unstable modes, however, I ~') :. Jf:i.J

For stable modes, C

different amplitudes.

but they are out of phase,
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The similarity between the results of this and the Eady

problem is very marked. In the two-layer model the instability

arises from variations in the potential vorticity which are absent

in the Eady mod~l, The Eady model, however, contains variations in

potential temperature which are absent in the two- layer mode l, On

considerable reflection the distinguished lecturer thought of

these temperature variations as regions of extremely concentrated

vorticity.

The natural boundary conditions to apply at the upper and

lower boundaries is ìfr = const, independent of X and ~ ' which

is achieved when there are no horizontal potential temperature

gradients on the bOUndarY'j)~ (~t) ~ 0 implies that 1t~ will con-

tinue to be the same constant for the perturbed flow, Hence

d. U~ = 0 on the boundary.

However, the basic flow U: l: of the Eady problem does not

satisfy thæs condition, but it could

f , ( / / / /
be achieved by flattening the ve lo- u

city profile such that U is con-

stant in an infinitesimally small

layer ne.ar the boundary, In doing

this we have removed the horizontal potential temperature gradients

at the boundary but introduced an infinitesimally small region of

highly concentrated potential vorticity. Although we have modified

the precise $tatement of the problem by changing the basic equili-

brium flow, it is bèlieved that the important physics determining
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the instability is the same. This change in the problem has

introduced de lta-functions in ~ into the basic potential vor-

ticity in the neighbourhood of the boundaries, Mathematically,

we have thereby removed that part of the cause of the instability

arising from the boundary conditions and transferred it to the

interior flow field,

Since N). is constant the stream-function is related to

the potential vorticity by

Cf -: ~X)( + 1'~~ + LYi!i!

This maybe solved by obtaining a Green i s function, ~ which is

a solution of
v:2G == 6(:x) ~):r) ,

and satisfies the boundary conditions: G~= 0 on ë. = ::1, As

in electrostatics this Poisson equation may be solved by the

method of images the image system required is an array of

equally-spaced images on a straight line parallel to the z-axis,

This may be represented by Fourier cosine series in z: ,

We now do the same with the two-layer model, Take

::

i 1= \JA ìl1 + -i -1l

~
9r ': :: '\ t, l/.. + -i - -i 2. .

Set Á
i¿ = ~i. ~kx~l~ "

Vl¡(~ + 1JJ ~ ii+ i?. ,

(~i:'~)(1l-ì.~)= i,-Cj?. ·

i

i. = I) 1. .
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Hence 1/ + îl ='I iL
î, +~~

)t o¡

and
A 1'

IV - ìY:: 'f, - ~~, :l )I'i+2.
~ ~_ '2 0 "2

where YC :: 7( + 1: .

For short wave length dis turbance s )( ~+ 2. -: )(::, and if 9:h -: 0)
~

'l,~ìI )(2-

and \¥:¡ ~ 0 ·

From this it is clear that a disturbance of small wavelength

originating in the upper layer is almost entire ly confined to

that layer. But this is not true of large wavelengths. Because

the boundary conditions are îl~ = 0 at 2 -: t. i , the image system

for a single vortex element is an array of vortices oriented in

the same direction, Hence, if ~, = -~2.' we have a line of dipoles

which induces velocities whose long wavelength components largely

I

cance l. If z; J = t:i we simp ly have a line vortex and i. ". Y2 Ci )(~ .

We will now attempt to follow in d~tail the dynamics of a

horizontal disturbance in the two-layer model.

Top //""", / ///////
) U €9 - o + ø cLQ :1 U

cI~

c~ N

d.Q:-2U
cL~///// //

E

D;Sf Jacmi tYlts

~ U 0 + ø
130Tt 0 m / /' / / ,// "" / "" / /,/ ,,/ / / ,/ ,/ / ./ ,/ /'

W

8

Top 5

80 Trom 5 N 5 'j í S/' I~ cemenTs

This diagram qualitatively represents the excess of vorticity created
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in the two layers by an initially sinusoidal distribution of

horizontal displacements, A northward displacement in the upper

layer gives rise to a negative excess of vorticity which causes

an anticyclonic rotation, In the bottom layer, however, the

opposite is the case. The plus and minus signs represent the

sign of the excess potential vorticity and the arrows G) ø

the direction of the corresponding flow, The potential vorti-

cities are equal and opposite in the top and bottom layers,

J;~ -~:J.

1 = ; ( r: - ~) ::
9r

.2+~3.
whe re

~ = 1;,:: - t'2. .

The time development of this pattern is governed by the equation

~
at

=: r_u+dQ1.. Jl.
L õ~ 2+)(" ~ X.
r - LJ .¡ ~J ô a.i'- L 2 +x -i --.â )t

II

da., Ói-iSince -- ex ~ and i! is sinusoidal in X , t.he distribution
of ~ is 1í/.2 out of phase with CJ.1, The sign is determined'ò't f5
by the sign of t.he term in parentheses; we note that the first

term is greater than the second and the situation is dominated by

advection of potential vorticity by the basic flow. The effect is

most easily seen by returning to the diagram,
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Diagram (l) represents the initial situation as previously

illustrated.

Diagram (2) is the difference between the situation at time h. t

and the initial state; it represents the first time

derivative of the flow which is dominated by the

advection of potential vorticity by the basic flow,

Diagram (3) shows the displacements induced by this time develop-

ment of the initial displacements,

It is clear that the displacements have the same sign in the two

layers and are such as to reinforce the initial disturbance. The

flow is therefore unstable,

But we have not explained the "short-wave cut-off". The

velocities arising from the initial displacements compete with the
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basic velocity in advecting vorticity. In obtaining (3) it has been

assumed that it is the new induced vorticities which dominate over

the basic advection in determining the displacements which ensue 0

This must be justified.

The difference in advection between time t'=: 0 and 1:= 6 t

is estimated by

(~i ~ ~ u)

because now f = c. and q~ ': 'L and so CO = ..,J-i Ó i a i J i ì( ~
2-

is dominated by advection due to the perturbation if X ¿.. in

Ô'fi _ L u + -aQ, i-l CL

7Jt -L ô~ X~ lJi¡(
The equation

which case situation (3) ensues. The flow is thus unstable, If

2-
k ;:1 , this physical mechanism is removed. Advection is dominated

by the basic flow and this instability is no longer evident.

Thus we see how the two-layer model exhibits a qualitatively

correct physical explanation for the instability mechanism arising

in the Eady prob lem,

These notes submitted by

Douglas Gough
Hans C, G, True
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ABSTRACTS
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SOLA CONVECTION

Edward A.Spiegel

A short ,review of observations of solar convection was

presented and physical intexpretations of several of the phenomena

were suggested.

LARGE - AMPLITUDE CONVECTION

George Veronis

The stream function and tpe temperature fluctuation in

the two-dimensional system of equations for Bénard convection are

expanded in a series of eigenfunctions. The series is then trun-

cated and the resulting set of ordinary non-linear differential

equations is integrated numerically to derive the steady-state

solutions. Comparison. is then made of the heat flow for a given

Rayleigh n~ber for different numbers o~terms in the expansion~

Convergent results are derived for values of the Rayleigh number

which are 30 times the critical.

It is shown that the most severely truncated system corres-

ponds to ordinary second-order theory in the Malkus-Veronis expan-

sion scheme and that mOre complete representations (more eigen-

functions) yield heat transports which are more than twice the value

derived from the second-order system. Different values of the

Prandtl number, a- , yield different heat fluxes with the maximum

(the change is very small) values occurring for small (J.
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MINIMU AND MAIMU PRINCIPLES FOR VISCOUS FLOW

Joseph B. Keller

Helmholtz considered the rate of energy dissipation in a

slow steady flow of an incompressible viscous fluid acted upon by

forces derivable from a single valued potential. He asserted that

this rate is smaller than that of any'other incompressible flow

satisfying the same boundary conditions, but he proved only that

it is stationary. Kcirteweg proved the statement when the velocity

is prescribed at the boundary. Ih this lecture the theorem is

proved for other boundary conditions and generalized to include

flows containing moving solid objects, liquid drops or gas bubbles,

From these results it follows that the flow in question is unique.

It also follows that the Stokes flow yie lds a lowerbourid for the

drag on an object, that laminar flow in a pipe has a lower resis-

tance coefficient than turbulent flow and various other facts,

It is shown how these results can be used to obtain upper bounds

on the effective viscosity and sedimentation velocity of a sus-

pension and a lower bound on the velocity of rise of a gas bubble.

The results are also used to clarify some aspects of the principle

of the minimum rate of entropy production, Finally it is shown how

corresponding maximum principles can be proved and used to obtain

opposite boundsonva.rious quantities,
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NONLINEAR WAVES

Frederic E. Bisshopp

The equation,
Ò 'Jai. ~ ÒV'_
ôt;J - ax.') + of - 0 J

which becomes the Klein-Gordon equation when '\ ~V == 2. cp , was con-

sidered for the purpose of illustr.;tion of some properties of non-

linear waves. When V has a relative minimum at t::: 0 (say), there

are i plane wave' solutions

( 2. ~ 12 ()'P=-f ~x-wt),w-k=l,if+vf =E;
where prime denotes differentiation with respect to argument, and

E is a constant. The problem treated here was that of 'almost

plane waves' where the quantities k) W) and E exist and are slowly

varying functiops of position and time. A quantitative measure of

slowness of variation of the appropriate quantities can be intro-

duced by definipg two scales of variation according to the ansatz:

? = cp (X , T) A9 iE:) 'l X :: G X J l:: é t ~ .. = P (X J T1 l=) ~ .

'Almost plane i waves are then ones for which

E..O) k::~:;o(1))W"=-PT= 0(1).
The key point in the determination of asymptotic solutions in

the above limit is the requirement that for any fixed X and T , the

where

approximatiQnto cp should be a bounded function of -- .

q; ~ f (J) E) + G f ~. (,. i E) ~ (,J ~ E )
.,

~ f r. + v( f):: E, lJ ~ "Pli

It follows

that

The slowly varying quantities, P and E , are determined by the

relation f = E(r).~ I(E)= 1ft9d.f ~
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'J is the i action' and its 
dependence on X and T is determined

by (wT)T+(k.'J)X=' O?W,,+ k-r= 0, W'i_n'a= i

The periodicity of the oscillation is J\ = ;¿'o: 'J'(E)

and this determines the local wave number and frequency, which are

~/J\ ~ wlA .
The phase is given by

'P'V K X -w T - ~ l-o ex;r)

whe re ùA

(W~T + ~-iox)+ a ~ J

9:ffJ. ¡ :o t
and f( LE) = ():~ ff (L E) ~ 0 oÌ t =0. ,f

Finally ~(-3¡E)=~(o¡E)+(tJ,9oT+k../l)()".+J (wg)í+~A.J)X d. r

o f~
where~( O¡E)can be obtained, with difficulty, from initial

at T = 0 (say),

(w 9)T+(k9)x d ~

ri. s
E

:= 0 ~

data

The exact form of the ansatzintroduced to describe 'almost

plane i waves was suggested to me by Martin Kruskal. The results ob-

tained here display one or two intriguing points. of similarity with

his detailed results for Hamiltonian systems of ordinary differential

equations, Indeed G ,B. Whitham has pointed out on several occasions

that the equations governing ~, Wand:r can be derived from an

averaged Lagrangian density of the original problem, but his formula-

tion does not produce equations for the first order quantities, r.e¡

and
~ .

References

~ruskal, Martin, 196Z: J.Math,Phys. l, p. 806,
Whitham, G,B" 1965:J,F.M, 22, p,273.
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A V.ALE DENSITY MODEL OF THE GULF STREAM

Stanley Jacobs

The ,equations governing a. variable-density boundary current

on a meridional boundary are transformed so that Y , ~ ' and T

are the independent variables, where Y is a stream-like function,

~ is distance measured northwards, and lï is the temperature

above the mean temperature. It. is found that when a certain non-

dimensional parameter â is small, corresponding to strong stable

stratification, solutions can be obtained by making an ordinary

perturbation expansion in á in a region away from the upper and

lower boundaries of the system, Since the vertical ve locity in

this region is of order ~ , the flow in the main body of the fluid

to lowest order is planar,

It is found that the vertical velocity as computed from

the ordinary perturbation expansion does not vanish at a horizon-

tal boundary surface unless this surface is isothermal. As the

temperature of the ocean surface is non-constant, it is inferred

that the ordinary perturbation expansion is invalid near the sur-

face, and that the region near the surface is a boundary layer in

which flow varies sharply with changes in T. This boundary layer

is identified as the main thermocline of the ocean, The thermo-

cline equations are formulated but have not as yet been solved.
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FLUCTUATING OCEAN CIRCULATION

Joseph Pedlosky

The unsteady motions of a homogeneous bounded ocean on the

¡. -plane are studied. Both the free normal modes and the forced

solutions for the linearized problem are computed. The non-linear

response is computed by a perturbation analysis. Of particular

interest is the steady (time-dependent) circulations produced by a

fluctuating wind stress with zero time-mean due to the non- linearities

of the dynamics. It is shown that the structure of the resulting cir-

culations, their strength, and their sense are strong functions of

the frequency of the forcing stress, Depending on the magnitude of

the frequency the resulting circulations may have: l) only a western

boundary layer (low frequency), 2) no boundary layers (frequencies

less than a typical Rossby wave frequency for the basin), 3) boundary

layers on both eastern and western walls (very high frequency),

HYDRODYNAMIC STABILITY OF THE EKM BOUNDARY LAYER

Louis N, Howard

This lecture reports some results of a numerical study of the

stability of the simplest Ekman layer, the non-divergent one, In addi-

tion to its interest in geophysical fluid dynamics this problem is of

basic interest in hydrodynamic stability theory since the non-divergent

Ekman flow is in fact an exact solution of the Navier-Stokes equations,

and thus its stability problem appears as fundamental as that of the

Couette flow between rotating cylinders, the Poiseui11e pipe flow, and
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the two-dimensional channel flows, Indeed, it appears to be the

only steady exact solution of boundary layer flow for which the

parallel flow assumption is rigorous,

The problem is however not very easy, and the present study

was undertaken in part because of the availability of a fairly con-

venient and efficient program devEloped originally for the study of

boundary layer stability problems based on the Orr-Sommerfeld equa-

t ion by R, Kap lan, and. adapted for use on the M, I . T, time - sharing

system byM, Landahl and L. N. Howard, The use of this program, or

family of programs, is however also the principal limitation of this

study, because the actual stability equations for the Ekman-layer

problem form a sixth-order system which while similar to the Orr-

Sommerfeld problem is not identical with it. However, V, Barcilon,

in his study of the problem by the asymptotic method, showed that

the Coriolis terms, while essential for the basic flow, are of rela-

tively small importance in the stability problem when the Reynolds

number is fairly large, and. this .appears to be the case of main inter-

est. When these terms are neglected, the sixth-order system splits

into the fourth-order Orr-Sommerfeld equation with a basic velocity

profile which is the projection of the Ekman flow onto the plane ortho-

gonal to the wave crests, and a second-order equation, The stability

characteristics can then be obtained by studying the Orr-Sommerfe ld

equation alone, However, a precise estimate of the errors implied

by this neglect of the Coriolis terms is not yet available, and the

results must be taken with this in mind.
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Calculations were made for wave angles ß between 600 and

l05° in steps of 7.5°; here¡3 = 900 corresponds to a wave whose

crests are at right angles to the direction of the geostrophic flow

above the Ekman layer, and with this definition Faller's experiments

gave for the average j9 of the observed waves a value of about 750,

The lowest critical Reynolds number found by the calcuL.ation

was about 84.8, corresponding to ~ 890 and a wave number

de = 0.485. This value of the wave number agrees pretty we II

with Faller's observations. His critical Reynolds number was some-

what larger, about l25,and the wave angle sClmewhat smaller. It

is probable that the observed waves would corresP9nd to slightly

amplified rather than neutral waves in the theory, and in fact the

wave angle for the most unstable wave does decrease somewhat from

890 as the Reynolds number is raised,

OVERSTABILITY IN A COMPRESSIBLE ATMOSPHERE

Edward A, Spiègel

It was demonstrated that in a compressible, convectively

unstable atmosphere, thermal dissipation may destabilize the acoustic

modes,
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THE MOTION OF A SPHERE THROUGH A ROTATING, VISCOUS FLUID

Tony Maxworthy

We are studying the effect of adding a Coriolis force to

the forces normally acting on the fluid particles in a viscous

flow fie ld, Two parameters are important: a Taylor number (T),

representing the relative magnitudes of Coriolis and viscous forces

and a Rossby number (Ro)' a measure of the relative magnitudes of

inertia to Corio lis forces.

In the present work two approaches have been followed:

to study very viscous flow in which rotation merely causes a small

perturbation from Stokes' flow and an extension of the previous

observations on the motions in a fluid of small viscosity, where

the work discussed by Derek Moore, in the notes of the 1963 Geo-

physical Fluid Dynamics Programme, is centered, The former is

described in detail in J.F .M. Vol. 22, so that only the latter, un-

published work, will be abstracted here.

Measurements of sphere drag at large T and varying Ro show

that at small Ro (~O, l) the drag is only a function of the inviscid

parameter Ro' At large values of Ro ( ;: l) the drag is less than the

drag with no rotation, For all values of Ro ~ O. l, the drag is a

complicated function of Rand T, Dye studies of the wake structureo

of a sphere at small Ro indicate a growing stagnant slug ahead of

the body as Ro is decreased. At Ro~ 0.2 the slug reaches a limiting

length which is then only a linear function. of T, for the small range

of T available, The slug formed behind the body shows no such
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tendency to a limiting length and at small Ro is probably as long

as the maximum length of test section ("' 5 feet). Both wakes are

rotating with respect to the sphere, which under most circumstances

is itself rotating at the same speed as the basic rotation, Thus

complicated rotating boundary layers are formed fore and aft of

the sphere in order to satisfy the non-slip boundary conditions

(see sketch) 0

The l1hydrogen-bubble technique" has been used to further

study the flow field produced by the sphere. A thin platinum wire

and the sphere are towed along together through the rotating fluid.

At a given instant of time a short pulse of DoC. power is applied

to the wire. The water in contact with the wire is hydrolysed and

a thin line of H2 bubbles formed; these are swept off and distorted

by the flow and when photographed a short time later indicate the

velocity field created by the sphere 0 These show a wake-like struc-

ture extending beyond the slugs mentioned above. At low Ro the

ve locity profile in the forward disturbance has many features in

common with the theoretical calculations. However the rearward wake

has a rather different structure which requires more analysis before

it is completely understood. At moderate Ro it is rotating very

rapidly (~6 times the basic rotation rate), a state which persists

until Ro becomes quite small in which limit it approaches more closely

to the predicted form, Further work is to be carried out on these

latter aspects ~f the problem,
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i
HYDROMAGNETIC INSTABILITIES OF THE SUB-ALFVEN EQUATIONS

Willem V.R. Malkus

A class of hydromagnetic instabilities is found which may

be related to the observed secular variations of the earth's mag-

netic field. This study was suggested by recent experiments on

flow in precessing spheroids. It is observed that steady pre-

cession induces zonal (toroidal) flows with sharp changes in slope

(jets). Within a part of the laboratory range of parameters, quasi

two-dimensional wave- like instabilities occur on these zonal jets.

These "planetary" waves move only to the "east", drawing on the

energy of the toroidal flow to strengthen a poloidal circulation.

In this study, an experimental situation is visualized in which a

toroidal magnetic field is imposed on the existing pirecession-

induced flow. Appropriate equations are derived for velocities and

frequencies small compared to those of Alfv~n waves. The conditions

for the growth of hydromagnetic instabilities is explored, The

problem proves to be non-singular in those terms responsible for

electrical dissipation, The characteristic equation for marginal

stability sets bounds on the basic zonal fields and determines a dis-

persion relation for the disturbances, The significant bound set on

the magnetic field is that instability is possible only when the

Lorentz force is less than the Corio lis force, The growing poloidal

disturbance tends to stabilize itself by non-linear interactions which

increase the underlying toroidal field, All disturbances move to the

llwestl1 relative to 
the jet which produces them, A concluding thought
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is, that interaction of the poloidal fields with the boundary may

increase the boundary stress sufficiently to reestablish the destabil-

izing jet flow, hence providing a closed description of a geodynamo,

A THEORY OF THE EQUATORIAL UNDERCURRENr

Allan R. Robinson

A uniform wind blows across a horizontal infinite ocean of

finite and constant depth. All horizontal variation is due to the

variation of Corio lis parameter ( ~ -effect), Various natural

scales and regions occur. Far from the equator the Ekman-Sverdrup

flow determines the zonal pressure gradients and the transports which

are latitudinally independent, At the equator the flow is studied,

firstly for a zonal wind, whence the vertical and zonal velocities and

the meridional velocity gradient at the equator form a separable

problem. The constant eddy viscosity result yields qualitatively a

Cromwell current. To inquire more precisely into the validity of this

result, a turbulent mode 1 is deve loped free of independent parameters.

The model is calibrated by Von Karman is constant and the proportionality

constants for the variation of Austausch with Richardson number for low

stability. This model indicates that the wind can account for the

undercurrent phenomena. Further qualitative results are obtained for

constant eddy viscosity but more general wind and pressure gradient

forcing,



- 110 -

PROBLEMS OF GALACTIC DYNAMICS - NOTABLY SPIRAL ARS

C, C, Lin

I. General Background

l. Galaxies of stars are usually classified in terms of

their appearance into E:lliptical galaxies, normal spirals, barred

spirals, and irregular galaxies. Most galaxies (about 70 percent)

are normal spirals whose side view is a disk with a central bulge.

2. The main contents of a galaxy are the stars ,the gas" and

the associated magnetic field, Components whi.ch are less important

from a dynamical point of view are cosmic ray particles, (including

high energy photons), other electromagnetic radiation of various

wave lengths, dust, etc, The basic E:quations governing these main

components are

(ä) the equations of stellar dynamics, which consists of

the collisionless Boltzmann equation, and Poisson's equa-

tion, with mass density contributed both by the stars and

the gas, and

(b) the equations of hxdromctgnetics, including both the gas

dynamical equations and the Maxwell equations.

The gas is "infinitely conducting" because of the large scales involved.

Thus, the equations governing the magnetic field essentially state

that the magnetic flux is frozen into, the gas,

3. The dimensions of a normal spiral galaxy are of the order

of i04 parsecs in radius and 600 parsecs in thickness outside of the

centrctl bulge and excluding the hato region, Thus, to a first approx-
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imation,it may be regarded as an infinitesimally thin disk,

(One parsec, (l pc,) is approximately 3.24 light years or the

distance covered in one million years at the speed of one kilo-

meter per second.)

4, The stars are in differential rotation about the center

of the galaxy, Indeed, for a major part of our own galaxy, the

linear speed is nearly constant at 250 km/sec, The period of

revolution about the galactic center is about 250 million years

for our vicinity,

5. Besides the circular motion mentioned above, the indi-

vidual stars have peculiar velocities, like the molecules of a gas,

These velocities are however only of the order of LO per cent of

the circular ve locity.

6. It is known that the contrast of stellar density between

the spiral arms and the inter-arm regions is smal l, The contrast

in gas density may, however, be as large as 3 or 40 The brilliant

young stars are mostly associated with the gas,

7. It can be shown, by an estimation of the orders of mag-'

nitude of the various forces, that the magnetic field might be

important for the scale of a spiral arm, but is definitely not im-

portant for the scale of a whole disk,
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TURBULENCE MICRO-SYMPOSIUM

THE DIRECT-INTERACTION AND LAGRAGIAN-HISTORY

DlRECT~INTERACTION CLOSURE APPROXIMATIONS FOR TURBULENCE

Robert H, Kraichnan
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In order to incorporate this invariance property, it is
,

necessary to expand the formalism so that Eulerian and Lagrangian

statistical quantities can be treated simultaneously. This:is done,

and the direct~interaction approximat~on then is altered in such

a way that the history of the energy-transfer process is traced

along the particle paths (Lagrangian-history) instead of at fixed

stations in space, The resulting equations incorporate the desired

invariance property and give inertial-rànge predictions in quanti-

tative agreement with experiment.

The significance of these studies seems to be the following:

No convergent expansion schemes for high Reynolds number turbulence

are known, and consequently it is not possible to construct turbu-

lence approximations whose errors are assuredly small. In this

situation, it is very important that the approximations which are

used preserve as far as possible the fundamental invariance and

boundedness properties of the dynamics, This gives a hope of satis-

factory qualitative behavior, and the latter, together with quanti-

tative accuracy in some limit (low Reynolds number), gives the hope

that errors will stay within reasonable bounds at all Reynolds numbers.

References

Kraichnan, R, H., 1964, Phys .Fluids 1, l030.

Kraichnan, R. H., 1965, Phys ,Fluids~, 995,
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THE SELF-CONSISTENT FIELD APPROACH TO TURBULENCE

OPTIMAL PROPERTIES OF THE MEAN FIELD EQUATIONS

Willem V,R, Malkus

Korteweg established that solutions of the Stokes equations,

for any body force derivable from a potential, had a smaller mechan-

ical dissipation rate than any other velocity field satisfying the

divergence conditions and the boundary conditions, Keller considered

a general body force, and established that the dissipation rate minus

twice the total rate of work done by this force was a minimum for

solutions of the Stokes equations, In this study the class of velocity

. fields considered is limited further by the general steady state inte-

gral condition that the mechanical dissipation rate must equal the
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total rate at which work is done, Hence, solutions of the Stokes

equations set an upper bound on the rate of work done by the im-

posed force. If the imposed force is the buoyancy in the Bous-

sinesq form of the Navier-Stokes equations, then the Stokes solu-

tions set an upper bound on the convection of heat, 'A similar

study is made of the solutions of the Boussinesq form of the heat

equation. It is found that, for a given velocity field, the rate

of entropy production is an extremum for solutions of the thermal

mean field equation. The constraints on the comparison tempera-

ture fields are that they satisfy the boundary conditions and the

general steady state integral condition that the thermal dissipa-

tion rate equal the total production of the thermal fluctuations

by the advection. For boundary conditions leading to either max-

imum or minimum entropy production, the convection of heat is a

maximum for solutions of the thermal mean field equation, the vel-

ocity bei~g given.

Despite the suggestive overlap of these two theorems, Howard

has established by example that a joint solution of both the mechan-

ical (Stokes) and thermal mean field equations does not upper bound

heat flux under the imposed boundary and integral constraints,
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ON THE LAGE SCALE DYNAMICS OF THE OCEANIC MIXED LAYER

Melvin E. Stern

We consider the weak non- linear interaction between hydro-

static eddies and the turbulent Ekman flow which is produced by a

r.
uniform wind stress ( L ) acting at the top of the mixed layer,

Thethéory describes the space-time fluctuation in the local Ekman

transport due to interactions of a barotropic component ( Yo ) of

the total velocity with 7: , and the effect of those fluctuations

in amp lifying the Yo

It has been applied to the problem of the generation of

inertia-gravity waves in a two-layer density model driven by a con-

stant l, We show that plane waves oriented at right angles to

t, and propagating upwind, are unstable, The possibility of an

experimental test of the theory and its controversial hypothesis is

briefly discussed.

A WAVE-GUIDE MODEL FOR PRESSURE FLUCTUATIONS IN A TURBULENT SHEAR FLOW

Marten T, Landahl

A theory is presented in which the pressure fluctuations in

a turbulent boundary layer, or other almost parallel shear flow, are

expressed in terms of integrals involving squares of the fluctuating

velocity components, It is shown that the resulting fluctuations,

to a good approximation, may be represented by a superposition of vor-

ticity waves of random phases and directions, i.e" the mean shear flow
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acts as a wave guide for the disturbances created by the non-

linear turbulent interaction terms. The wave propagation: constants

are determined from the solution of a modified Orr-Sommerfeld sta-

bility problem for the turbulent mean velocity profile, Numerical

calculations have been carried out for a flat~plate boundary layer.

In th~s case it was found possible, without any .additional assump-

tions, to predict the rate of decay of the turbulent eddies with

downstream distance, and their propagation speed, which both are in

excellent agreement with measured values.

OBSERVATIONS ON OBSERVATIONS

Erik Mollø-Christensen

A discussion of experiments on transition and turbulence,

selected to illustrate the facts that:

(a) Transition, under ideal conditions, and with excitation to

lock in the phase, often consists of a sequence of quite orderly

processes.

(b) Even in fully turbulent flows, the flow may be instantaneously

quite regular spatially, and, it is often possible, using suitable

methods of observation, to discern large scale regular flow fie lds,

(c) A harmonic oscillation with randomized phase and amplitude,

may look very much like turbulence as far as the lowest order statis-

tical measures are concerned,

The examples chosen were:
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Klebanoff's observation of boundary layer transition, Browana's

observation of a free shear layer, Kresa' s measurements of the

large scale structure of turbulent cylinder wakes, Kholman i s pic-

tures ofCouette Flow turbulence and Coles' observations of turbulent

Taylor cells,

In the second lecture, methods of observation of turbiÜence

and data processing were briefly covered, and results of jettur-

bulence measurements discussed, In. particular, the covariance of

pressure fluctuations within frequency bands were shown, showing

how certain frequencies are unstable for limited ranges of correla-

tion distance,

UNIFORMLY SELF-SIMILAR SPORAIC TURBULENCE

Benoit Mandelbrot

At very high Reynolds numbers (oceans, atmosphere), turbulence

presents features that make it very doubtful whether it can be repre-

sented as a stationary stochastic process, and therefore mean that

great care must be exerted in interpreting measured spectra. Turbulent

flowsa.re ind~ed an alternation of laminar and turbulent regions; how-

ever, any region that seems turbulent when examined with slow instru-

ments turns out, when inspected at a finer scale, to contain a number

of laminar inserts, so that the distinction between laminar and turbu-

lent is at best hard to establish empirically. Moreover, whichever

the unit of time, successive time units contain widely varying amounts

of total turbulent energy,
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The "uniformly self-similar sporadic random processes" are

a new family of (generalized) random functions, specifically con-

structed to account for those properties (and some others), It has

already proved to have predictive value as well. It is described

in (l), and it may be noted that it was originally inspired by

çertain fluctuation phenomena in electronics (2), that appear

extremely close in structure to turbulence in fluids,

It may be noted that the overwhelming bulk of the models of

turbulence is a. continuation of statistical mechanics, and attempts

to construct explicit mechanical mechanisms, thanks to which the

results of macroscopic experiments may turn out to be predictable.

On the contrary, the self~similar sporadic processes provide a

"model" of turbulence analogous to the model of matter. provided by

thermodynamics (3). The latter is known to deduce a substantial

body of experimental results from very few "principles", that draw

their value from their predictive and organizing power rather than

from any close relation. with the core of physics that is constituted

by mechanics.

Among the "principles" of the present approach to turbulence,

the main one is that of "self-,similarity", Its roots go back to the

Kolmogoroff theory (whose dimensionality considerations are also

hardly at all "physical"). This idea has been reinterpreted and

strengthened, and. it has been required that it hold "uniformlyl1, that

is, . over the whole frequency range, rhiswas shown to imply that

turbulence must by "sporadic", a concept that expresses an extreme
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form of "intermittent" (on-and-off) character, Not only such a

chance phenomenon cannot be stationary in the usual sense, but its

theory turns out tó require a special (but very natural) general-

ization of the concept of random function,

One of the basic properties of self-similar sporadic pro-

cesses is the Kolmogoroff law, that the measured. spectral density

(when properly interpreted) is proportional to an inverse power of-~ ..,
the frequency, But the factor that multïples k is no longer

e ~/3 in Kolmogoroff i s theory); howevera constant (designated by

long one's sample of turbulence may be; thisi factor is thè product

of a random variable and of a term that depends upon the method by

which the spectrum was defined and measured. It is possible to speak

of the spectrum of Ëand experiments appear to confirm the pre-

dictions of the self-similar theory on this account,

Notes:

(l) B, Mande lbrot, "Sporadic random functions: a generalization of

spectral analysis and conditional self-similarity" (or some closely

approaching title), Publication expected in spring 1966 in Proceedings

of the Fifth Berkeley Symposium on Mathematical Statistics and Proba-

bility, held in 1965, University of California Press,

(2) B.Mandelbröt, "Self-Similar Error Clusters in Communications

Systems, and the :Concept of Conditional Probability", Institute of

Electrical and Electronics Engineers,. IEEE Trapsactionson Communica-

tions Technology, VoL. lCOW-13 (1965) , pp, 71-90. Concerning the

spectra of such phenomena in electronics, see B, Mandelbrot, !iNoises
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wi' th an il-,('E7 Spectrum as Bridge between Direct Current and White

Noise", a privately circulated memorandum to appear, and B. Mandel-

brot,. llTime varying channels, l/f noises and the infrared catas-

trophe", Conference Record of the First IEEE Communications Con-

vention, Boulder 1965,

(3) By speaking of. "thermodynamics", I refer to the new variety,

statistical but not mechanical, that I have exponnded in B. Mandel-

brot, "Derivation of Statistical Thermodynamics from Purely Phenom-

enological Principles". Journal of Mathematical Physics, VoL. 5

(l964), pp. i64'-l7l.

STATISTICAL MECHANICS OF FIELDS

Joseph B. Keller

According to classical statistical mechanics, all the proper-

ties of a Hamiltonian mechanical system in thermal equilibrium are

determined by its Gibbs distribution. In this lecture this principle

is applied to fields satisfying linear equations of motion in bounded

domains. First infinitely many pairs of canonical variables are intro-

duced to represent the field. Then the Hamiltonian is found and seen

to be a quadratic function of the variables, Therefore the Gibbs

distribution is Gaussian. In terms of it the generating functional

of the field is defined, from which all moments of the field can be

found by functional differentiation, For linear fields this functional
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is evaluated explicitly in terms of the two point, two time cor-

relation function of the field, Then an expression for this cor-

relation function is obtained. To exemplify the result this expres-

sion is evaluated e:Kplicitly for fields obeying the one-dimensional

wave equation in a finite, semi-infinite or infinite interval; These

explicit results pertain to the displacement of a vibrating elastic

string, the vector potential of an electromagnetic field, or the

velocity potential ofacompressible fluid.

The .correlation function is found to be piecewise' linear with

the discontinuities in slope occurring on certain charactéristics of

the wave equation. Therefore the correlation function of two deriva-

tives of the field is zero except on these characteristics where it

is infinite, Consequently the energy density is infinite, This

infinite energy density is a consequence of the excessive excita-

tion of the high frequency modes, which is manifested by the Rayleigh-

Jeans law of spectral distribution of black body radiation. When

classical mechanics is replaced by quantum mechanics this law is re-

placed by the Planck distribution law which leads to finite energy

density. This suggests that in attempting to apply statistical

mechanics to a fluid in order to describe turbulence, we should intro-

duce a modification of the Gibbs distribution to obtain a finite

energy density, In analogy with Planck's law, it should involve a

3
constant like Planck is constant h . The productfL L of viscosity

fA and the cube of a typical length L has the same dimensions as h
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TURBULENT THERML CONVECTION WITH A SMALL MEAN SHEAR

Andrew P. Ingersoll

We consider thermal convection between rigid horizontal

plates which move relative to each other with constant horizontal

velocity. We have been able to approximate this situation in the

laboratory and to measure the vertical fluxes of heat and horizon-

tal momentum at Rayleigh numbers up to 3xi07. The experiment was

only feasible for small rates of shear, and therefore it was not

possible to model the turbulent shear layer of the atmosphere near

the ground, Rather, convective turbulence dominated the flow in

this experiment, as in the atmosphere above the shear layer during

unstable conditions,

At high values of the Rayleigh number, ~ , the data are con-

sistent with the behavior ii I Y. )13
IVu. .. U- :ilVo --"R ,

where a- is the Prandtl number, NLL is the Nusselt number, and Mo

is the dimensionless momentum flux analogous to the Nusselt number.

Thus the dimensional fluxes are independent of the plate separation,

d. , for cL large, and it is reasonable to apply similarity arguments

in analyzing the flow near the boundaries, Kraichnan' s mixing length

theory of turbulent thermal convectioni, was extended to the present

experiment with shear, and the observed asymptotic dependence, given

above, was obtained, The success of this method gives considerable

support to Kraichnan' s concise treatment of convection, and suggests

that it is applicable to a variety of other flows as well.

*R. H, Kraichnan. 1962. Phys ,Fluids~, l374.
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A BILINEAR .APPROXIMATION FOR TURBULENT CONVECTION

Edward A. Spiegel

An approximate general form for the. fluctuating inter-

actions in turbulent convection was presented, The resulting

equations have not yet been completely solved, but an approximate

solution yields () R~ Y:3

N:f . 1 ( cr R + RJ

where N is Nusselt ni.ber, a- is Prandtl number, R is Rayleigh

number, and Rc is critical Rayieigh nurber.

BOUNDARY LAYER TREATMENT OF THE MEAN FIELD EQUATIONS

Louis N, Howard

By a change of scales the mean field equations are written

in the form:

-P-/(JJ~Q.-i)(f + (i-WfE) W : 0

(if- a. ~) 7- \l == (£

P ;: Ro.'l/1 and N -10: S' (1 - W (f) d. i: .
()

with

The solution of these equations is then explored, in the case

of free boundary conditions, asymptotically for l'--~ 00 using the

methods of singular perturbation theory, The "inner solution", valid

off the boundaries is found to satisfy(n:.a." j W = (J , W(f =- 1, with

W=-p2.W=O on ~ =0.)1. It is thus necessary to soivef(n:ci5(=1

on (0 )1) with f =- n:if .: 0 on ,the boundaries, This can be done effec~

tively with good accuracy using a sine-series representation of t

suitable care being used because of the somewhat singular behavior
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of f near the boundaries.

This solution is then matched to the "boundary layer

.J
solution", which is expressed in terms of the variable r::"P i.2 ,

and is of the form:

w ~ p-~ ~ ( ç )) (f = -p.t (E 1 (ç )
i

in Wi is simply k ç , where h=r (0), andThe principal term

d.2.rJh _ k&.7~ + k r = 0
d r7. ? '1 l¡

-II (.i )
The relevant solution of this equation is dPi =- k '¡~ 1ë ': r ;

I1 - i x,lIt i
where ~(x.)=-lx. e ~ (l-t,)--ldt04. k i

N:: ('- 'K)- 3(1~ Q.)J R"5

~1 satisfies:

Using this one finds for the Nusselt number:

'2

where k:. * r (~/4) .

Fairly accurate calculations of ~ as a function of a. ,

followed by maximization of N with respect to a. give for the

maximum heat trapsport: J.
N: o. 3:lS 'R'

with a maximizing Cl of about 1. 8 1T . Recent accurate pumerical

calculations of Herring for "" = i06, i07 and i08, when extrapolated

-l
to 7? :: 0 are in almost perfect agreement with these numbers.

The present treatment has similarities with the analytic approx-

imation study of Herring and with the investigation of Orszag reported

in the 1964 G,F.D, notes, but differs from them in that their treat-

ments make use of the boundary layer character of the solutions to

get a fairly good numerical approximation while the present strict

boundary layer approach gives the exact asymptotic result.
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The case of rigid boundaries appears to introduce certain

essential differences.

OCEANOGRAPHIC MICRO-SYMPOSIUM

LINEAR HINDCAST OF WIND-GENERATED .WAVES

Stanley Jacobs

Wave heights at the Lake Michigan Research Tower off

Muskegon, Michigan, are hindcast using the Neumann energy spec-

trum. The procedure consists of: (l) obtaining representative

values of the wind through analysis of weather maps or ship reports,

(2) estimating the fetch and duration of the wind field, (3) using

empirical and theoretical filters to find the frequency band of

the waves, and (4) calculating the wave heights using standard

statistical methods.

Hindcasts were made for periods of two weeks in August and

two weeks in September of 1964, and the results compared with

measurements. For strong winds and large amplitude waves the hind-

cast wave heights are in good agreement with observed wave heights.

For light winds the agreement is poor.
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GENERALIZED EKM MODELLING OF THE OCEANIC CIRCULATION

Pierre Welander

The problem of the wind-driven oceanic circulation is con-

sidered in the following simplified form, A rectangular basin in

the f3 -plane contains a two- layer fluid (no mixing of mass and

heat across the interface, but momentum can be transferred by pres-

sure and interface stresses). At the top a steady wind-stress acts,

the curl of which vanishes at the northern and southern boundaries.

The solution to this problem is derived in the case where the dy-

namic equations are of the Ekman type (balance of Coriolis force,

pressure gradient and friction forces due to vertical shear), and

the lower layer is much deeper than the upper (in the ocean a depth

ratio of about l: lO. seems realistic), The boundary conditions are

vanishing normal transport at the vertical boundaries for each of

the two layers, vanishing velocity at the bottom, and vanishing

vertical velocity at the top, The tangential stress at the top is

further given by the wind stress.
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The solution has the following general characteristics, The

circulation in the upper layer resembles the one-layer solution

derived by Stommel (l947), apart from a geometric distortion due to

the interface changes, In the lower layer motion occurs only at the

western boundary and takes the form of a narrow boundary gyre with

the same sense of rotation as the upper gyre, This lower gyre in-

tensifies the shore-side transport and creates a counter-transport

at the edge, This is in general agreement with the Gulf Stream

picture recently suggested by Worthington, but the model is .cer-

tainly too simplified to allow any closer comparison,

It is of interest to note that a solution exists only in the

case of a non-vanishing interface stress . From the potential vorti-

city equation one can show that interface stresses must occur also

if non-linear acceleration terms are included (the argument is

analogous to the proof that bottom stresses are required in a one-

layer model, one has only to replace the bottom by the interface).

The argument is, of course, only valid in the absence of lateral fric-

tion. If one includes lateral friction the solution degenerates to

a one- layer solution: no motion exists anywhere in the lower layer.

The solution thus becomes identical with the one given by Munk (l950),

References:

¡. Stommel, H, (l948). The westward intensification of wind-driven

ocean currents. Trans.Amer.Geóphys,Union 29: 202-206,

2. Munk, W, H, (l950), On the wind-driven ocean circulation,

J,Met. 7: 79-93.
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3. We lander, P. (l965). A two-layer frictional model of the

oceanic circulation, I, Wind-driven motion in a re£tangular

THE THEORY OF FREE INERTIAL JETS: PATH AND STRUCTURE

Allan Robinson and Pearn P. Niiler

The general problem of three-dimensional jets in a rotating

fluid of variable density is developed, Transforming to tempera-

ture as an independent coordinate, a first integral is obtained,

This is the potential vorticity, which is a function of the tempera-

ture and a stream-like function which gives the horizontal velocities

weighted by the inverse stability, This functional may be expanded

about its mean value, downstream in a coordinate system following

the path of the jet, This is the structure problem. The path of

the free jet is controlled by bottom topography, ¡S -effect, and the

exchange of mass with the geostrophic environment, The vertical

vorticity equation integrated across the cross section of the jet

provides an equation for the jet axis. Simple examples are studied,

A formal two-scale expansion is made separating the meander scale

from the divergence scale, and providing a closed problem for both

structure and path, A result of particular interest is that a

meandering baroclinic jet in equilibrium with its environment imposes
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a geostrophic divergence with the scale of the meander. Numerical

calculations are in progress employing real Gulf Stream topography,

EXISTENCE AND STRUCTURE OF INERTIAL BOUNDARY CURRENTS

Stanley L, Spiegel

An investigation is made of the prop~rties of inertial bound-

ary current.s in a stably stratified, inviscid, non-diffusive ocean,

The Boussinesq and P -plane approximations are adopted. The equa-

tions are transformed so that density replaces the vertical coordinate

as an independent variable, and after a suitable non-dimensionaliza-

tion of. variables, the various fields are expanded as power series in

the downstream coordinate 'l . The motion is shown to cons~rve poten-

tial vorti~ity. The equations and boundary conditions are obtained to

iorder YJ and are solved in the region of formation of the coastal jet

(i,e. the case of no mass flux through the plane ~ ~ 0) for several

simple forms of the potential vorticity function. It is found that for

a constant depth ocean, a boundary current can exist only if the geo-

strophic drift at the boundary layer edge is westward at all depths,

This constraint, which holds for any potential vorticity consistent with

stable stratification, is relaxed if the depth increases rapidly enough

in the downstream (northward) direction, For slopes just in excess of

this critical value, a deep onshore countercurrent is predicted. Solu-

tions of the first order problem using realistic values of the various

parameters have been computed, and are found to be in qualitative agree-

ment with observed features of the Florida Current,
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The response of a simple bounded ocean model to a surface

wind stress which oscillates at or near one of the resonance fre-

quencies of contained Rossby waves is investigated. Both the

fluctuating and resulting steady circulations are found under the

assumption that the amplitude of the response at resonance is

limited primarily by non-linear, finite-amplitude effects.

The resulting amplitude-frequency response curve shows many

interesting features in common with the characteristics of simple

non- linear mechanical oscillators.

THE DEGRADATION OF INTERNAL .WAVES

Owen M. Phillips

This paper is concerned with a mechanism that may account

for the appearance of isolated turbulent patches in the stably

stratified fluid below the thermocline. It is suggested that these

may be the result of sporadi~ local instabilities in the large scale,

low mode internal waves that are capable of propagating in this layer,

It is shown that the maximum rate of shear and the minimum local Rich-

ardson number occur in such motions at the point where the density

gradient is strongest. In these motions, the wave frequency ~ is

much less than the maximum value N'( of the Brunt-Våisäiä frequency

in the layer; the stability criteria then approximate those in steady
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stratified flow. For a single wave component, the motion is poten-

tially unstable at the wave crests anq troughs when the wave slope

Ko. .: :uyNm .
This mechanism places an upper limit on the spectral density

of lowest mode internal waves in a way analogous to that in which

breaking imposes an equilibrium range limit for surface waves, In

its saturated state, the two-dimensional spectrum of the vertical

k-.2 Jdisplacement is shown to be proportional to when the depth a.kJ k-3 d.of the thermocline is such that (h¿,.oland to when k :;) 1.

-I -3Yì and n .The corresponding frequency spectra are proportional to

The patches of turbulence so formed flatten out in the stable

ambient density gradient to form pancakes or iblini i. The process

seems also to provide a mechanism for the vertical mixing in a

stable layer, below the direct influence of the surface stirring.

NUMERICAL EXPERIMENTS WITH LARGE - SCALE SEASONAL FORCING

Eric B, Kraus

Experiments with six different heating fields in a numerical

general circulation model are described, Three different vertical

heating gradients are each used once with and once without variations

on the continental/oceanic scale along parallel circles, The zonal

and the meridional heating fields are forced to vary seasonally,

Integration has been carried out over a simulated period of one

century for one particular configuration, and over periods of five

years for each of the five other configurations,
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Results which may be represented by an electrical ana-

logue are rather similar to actual general circulation observa-

tions. They also show stronger sumer westerlies and North-South

temperature gradients in the model without schematic oceans and

continents, Dynamic lag effects cause differences between the

"climates" of spring and falL. In all experiments there was a break-

down in fall of a predominantly zonal circulation, accompanied by

the development of "equinoctial storms".

Lag correlations computed for the mean zonal thermal wind in

the lOO-year experiment show persistence in sumer between successive

ten-day meaTlS and significant negative values over longer lag periods.

No significant lag correlations were found during the winter months,

THERML INSTABILITY OF A WIND-DRIVEN OCEAN CIRCULATION

Elliott E. Schulman

The basic state is driven by a constant east-west wind and a

longitudinal temperature gradient known to be necessary for upwelling

in the mid-ocean thermocline. The effect of wind is to force a ver-

tical velocity at the bottom of the Ekman layer, and the resulting

flow consists of a meridional and vertical circulation. Instabilities

with respect to thermal advection, i,e, potential energy release, are

investigated,

Low wave number disturbances are stabilized by vertical heat

diffusion and only for -Pe H/L m)o 120 is amplification possible, where
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11 = height of ocean, L = width of ocean, m = north-south

wave number, and "Pe = P:clet Number, Wind towards the west is

found to be destabilizing. The growth rates of these distur-

bances however, are very slow (an e-folding time of a few years)

and an analysis pivoted around the high wave number limit is

required,

For'm::~l but 13 ~c:l, e.g. t:: lOOkm, disturbances

having a growth rate and frequency of the order of three months are

found, where

B Burger number = Rom.1:: (JJ'R/t)..

Ro Rossby number of basic state

D~ Deformation radius ~ 50 km for ocean

t Wave length of disturbances

Instabilities in the lowest vertical mode are possible only

when ~ .: Ie -nlm \ ¿ b.' and have a maximum growth rate for 8:: 4.. i i

where e = ratio of east-west to vertical temperature differences,

and h = east-west wave number.

These waves appear to correspond to the Swallow eddies ob-

served in the North Atlantic, For.B~.c 1 , the growth rates are

proportional to m , but we anticipate a high wave number cut-off

as ~ approaches to deformation radius,
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MIXING NEAR THE SURFACE OF THE OCEAN

Eric B, Kraus and J, Stewart Turner

Many theoretical models have been proposed to explain the

structure of the upper mixed layer in the ocean. These have

usually invoked horizontal advections, vertical mixing due to

shear and the earth's rotation in various combinations, and have

dealt with the steady state rather than the time dependent beha-

viour. We have developed a one-dimensional model based on much

simpler but previously neglected processes, which can however be

used to predict the seasonal changes of the temperature and depth

of such a layer, One of us approached the problem through a

laboratory experiment and the other using a more general theoreti-

cal argument, but in essence the results are the same,

It is supposed that all the heat and mechanical energy

affecting the water column are put in near the surface, and propa-

gated downwards, with no advection effects, horizontal velocities or

rotation, In the experiments the process is an intermittent one, with

buoyant fluid being added in discrete amounts to simulate the storage

of heat, and then mixed downwards by stirring mechanically with an

oscillating grid near the surface which simulates the effect of the

wind. In the theory heating can be continuous, and additional stir-

ring can be provided by convective processes near the surface, For

a fixed stirring rate the behaviour is determined completely by the

variations of heat input. During' periods of increasing rate of heat-

ing, the depth of the well-mixed layer is decreasing, When heating
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is continued but at a decreasing rate, the depth of the layer in-

creases slowly but its temperature can continue to increase, During

periods of surface cooling the layer depth increases and it also

cools.

Many features observed in the ocean are thus reproduced well

in these experiments. The depth and temperature dependence of the

upper mixed layer, and especially the phase relationships to the

heating and cooling cycle are in good qualitative agreement, An

important difference from previous approaches, which can easily be

tested, is the prediction that mixing should only be significant in

the layer directly affected by surface processes, Thus features of

the density structure below the topmost density interface could be

laid down early in the heating season, and persist until the well-

mixed layer reaches them again late in the winter.

PENETRATIVE CONVECTION IN THE SOLAR ATMOSPHERE

Derek W, Moore

Penetration of motions in the solar convection zone into the

stable layers above is of interest in explaining the observed solar

photosphere, The purpose of the present work is to examine what

meteorologists have learned about penetrative convection by direct

observation of the earth is atmosphere and by laboratory experiments,

In particular the buoyant vortex ring model of a penetrating

convective element is discussed,



- 137 -

STRATIFIED FLUID FLOW OVER AN OBSTACLE

Kathleen Trustrum

The problem is to determine the steady two-dimensional flow

of a Boussinesq liquid between parallel horizontal planes over a

vertical strip. This problem has been solved recently by Moore

and Drazin for an incompressible stabley-stratified fluid. They

assume that the density gradient far upstream is constant and that

~
the horizontal velocity V satisfies the condition f U = constant,

where l is the density. Under these conditions the non-linear

equations reduce to a linear equation, Their solutions for the

Froude number F smaller than a certain constant À , show that

behind the obstacle there is a jet, which winds its way through

rotors and whose intensity increases with the height of the strip.

They also show that it is possible to find a solution for a strip

of any height, which contradicts some earlier work by Long.

However, the assumption of uniform upstream conditions for

F .: À is unlikely to be realistic for theoretical reasons and from

experimental observations. If the hydrostatic approximation is made

in the equations of motion for a Boussinesq liquid, it can be shown

that non-linear, non-dispersive long waves can be propagated upstream

for F.¿ À. This suggests that initial uniform upstream conditions

will be disturbed in the limit of infinite time by such long waves .

A solution is obtained to the above problem by solving the

initial value problem with an Oseen approximation to the non-linear
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inertia terms. Unfortunately there are insufficient conditions to

determine all the arbitrary constants in the solution for infinite

time, This difficulty is resolved by assuming that for flows for

which F ;: ~ , the solution is the same as that obtained by Moore

and Drazin. This is justified as disturbances cannot propagate up-

stream for F:; Ä, Assuming that the constants are 'continuous'

functions of F , the solution for F ¿ ,À can be obtained, The

solution for a line source on the bottom of thechanne 1 satisfies the

above assumptions, The solution has the properties that it reduces

to the irrotational solution. in the limit of infinite Fròude number

and to the 'Taylor column' solution for zero Froude number, Calcula-

tions have still to be don.e to determine how the flows are modified

for FL. Ì\ ,from those obtained by Moore and Drazin.

BJERKES FORCE

G, Brian Trustrum

Fora considerable time it has been known that a small sphere

pulsating in an oscillating pressure field experiences a Bjerknes

force, tending to make it migrate in a particular direction, According

to an oversimplified theory, the instantaneous translational force

equals the local pressure gradient multiplied by the volume of the

sphere. The Bjerknes force is the mean of this product. Such a

simple calculation. neglects the interaction between the motion of the

sphere and the external pressure field,
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When the radial acoustic mode of vibration of water in a

. spherical container is excited, any small air bubble in the water

will pulsate, There will usually be positions at which the Bjerknes

and gravitational forces on the bubble balance each other, A calcula-

tion is described for finding these positions, The water is assumed

to be inviscid and irrotational and using the Proudman-Pearson tech-

nique, inner and outer expansions are made about the bubble, A dif-

ferent length scale is used for the .two expansions and the expansion

parameter is a Mach number for the water based on the bubble radius,

,

To first order the results are identical with the over-simplified

theory.

Trapping of bubbles near the centre of radial sound fields has

been observed experimentally, but it has also been noticed by M, Stras-

berg and others that the bubble becomes unstable when the amplitude

exceeds a critical level depending on bubble radius. These instabil-

ities are discussed but are not yet properly understood.

The speaker acknowledges helpful conversations with Dr. T,

Brooke Benjamin, who is also interested in these problems.


