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Editor's Preface

This volume contains a restatement by the pre-doctoral
participants of the‘summer program‘s first lecture series. It
represents their view of the relative importance of points raised
in the lectures and their view of matters neglected.

Following these notes, the abstracts of a two-week sym-
posium on recent work in turbulence theory and a two-week sym-
posium on the frontiers of theoretical oceanography are recorded.
They attest to our long summer exposure to non-linear fluid
dynamics.

Some of the quick-ripening fruit of our labors has been
pressed already, and appears in Volume II. However, it is hoped
that more profound inquiries may emerge after reassessments in
solitude of the many brash proposals concerning the turbulent
world of geophysical fluid dynamics.

Mrs. Mary Thayer has done all the work in assembling and
reproducing the lectures. We are all indebted.to her for her
remarkable efforts in keeping the summer course running smoothly
and to the National Science Foundation for its financial support

of the program.

Willem V.R. Malkus
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Lecture #I
Dynamics of Rotating and Stratified quias

Heat sources and dissipation will be neglected in the
subsequent work and our attention will be restricted to laminar,
inviscid fluid flow.

Though air is a mixture, the composition of which is

variable (variations in the concentration of ng CC&, HLC) affect

" the amount  of radiation absorbed by the atmosphere; condensation

of water produces latent heat) it will be regarded as a perfect gas

obeying the law

dQ=CydT+ pd(7)

Now

. dQ_~rdp dp)y_ R
s . "—']’-""'CV(‘FE‘—éE>"‘Td.F

For adiabatic changes d_Q =0

P = kR ?Y ( k is some constant),
Cy+R
where ¥ = i:V
Y-
Hence Te< P 44
For air S~4 > and

an increase in P is accompanied by an increase in _T' .
Define the potential temperature 6 to be the temperature of

a gas when compressed adiabatically to a standard pressure Fg (usually



1012-4 mb
6 dynes
1-0124 x 10 -ﬁz— )

© is related to T and p by the relation

taken to be 1 atmosphere-

o

T-o(k)"
I
T .
g(cvﬂ?)
= <CV+R)2m3 6

so that © 1is a measure of S

The entropy S = 5

4

dé
g

Isothermal Atmospheres are such that

7~ = const,

Consider a parcel of gas in hydrostatic equilibrium under

the forces shown

-
1
60O

M

= R

The scale height HS = -.> is the vertical distance in which the
density(pf an isothermal atmosphere) falls off by a factor &

This is usually of the order of 10 km.



Adiabatic Atmospheres are such that

e = constént
Again %:E = “‘6("

F
aT de
Also —%: ?I% L -

s 0

o dT _ %=l 8.
dz R

]

lapse rate
~10°C/km for the atmosphere,
i.e. temperature decreases linearly with height in an adiabatic
atmosphere.
A typical mean temperature distribution in the atmosphere is

the following:

11mb 30 km 240°K
Stratosphere
250 mb 10 km
} Troposphere
102 mb 0 km

250°k 288°K

99% of the mass of the atmosphere is in the tropo- and stratosphere.
In the stratosphere the temperature is essentially constant with

height, a very stable configuration ( © increasing with height).



The ocean is composed of water and salt (3% by weight or 34-37 ©/00).

The density is a function of pTS.

p = p (@TS)
Changes in e due to variations in p , are small . . 4% (L)
Changes in e due to variatioms in | , are smaller . .4%
Changes in e due to variations in § , are smaller . .2%

The‘potential density P* is defined to be the density of a fluid

Ky

when it is brought adiabatically to standard pressure (1 atmosphere).
The adiabatic temperature gradient of the ocean is approx-
imately .1°C/km.

The normal temperature distribution of the ocean is like this:

: 2°¢ 59¢ 23°¢
.05 km? v S }-this thermocline has seasonal
_,//{ R : : variations
1 kmt e \ main thermocline

L e 4

5 km; !
Depth

‘Note that salinity decreases with depth and has a destabilizing-effect.

The vertical stability of atmosphere and oceans.

Consider a parcel of air which is displaced from 2 — & + g
. , . ) !
and let the change in density be Q(Z} —3 P Cz + C) . Let @' = the

density at Z+ C had the displacement been an adiabatic one. Then



“ | (” =0 [%4,

v:{’ [l+-\;l—b—°zl.[% C-@-—J

(-pler C)=p @) 42 - 42)Cro(C)

~ p@ 8 dz

424

g

The buoyancy force per unit mass is S(F- 6(2 + C))
— Hence

5 (p-perl)=-C

and the resultant motion is simple harmonic with frequency

No= /L de

o da
/N is the Brunt-vaisala frequency.

A similar calculation for the ocean yields

: V&
) __i._olé‘.]
V= [ o de|

‘“’ where Q* is the potential density, defined in a similar manner

to the potential temperature so that the ocean is vertically stable
provided e* decreases upwards. The periods are of the order of

5 - 10 min. which is very small when compared with the periods of

large-scale phenomena, e.g. rotation of the earth = 1 day.

These notes submitted by

.- S.George Philander
John. L. Robinson
Matthias Tomczak
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Lecture #11
Small Amplitude Waves in the Atmosphere
We investigate small amplitude waves in the atmosphere:

Let the basic (unperturbed) state be characterised by p (2);@,(2),

and zero velocity field.

« Hre e

(1)

Consider a perturbation which is such as to cause motion in the

x- z-directions only and assume

B
. <-—.—-
e V<< 53
: D .2 .
in the operator 3t ~5% +LL -V

simplify to — =

1P, G

° ! o | d‘eo___'_,,_d_.@. =0
.Lp;--‘-ec-fw(tﬁs;zr; 2 ¢a>

(2)

Momentum

Continuity

Eq. of state

=

» . / ! 1
The last equation may be written—--’:Pt -—'@- €t+W-é—° Y



We seek solutions of the form
IR, ~ ~ A n ¢ (kx-wt)
ww'p e' = Re [{u (z)w(z)p(z)e(z)}e i :,

Substitution yields

Isothermal atmospheres

2% a
For an isothermal atmosphere C s N s ;45

pendent of 2 . Consider the solution which has

W =20 everywhere.

A | d&" L.(AJ ) LK&. ?
+ ——— —-f o - A -
Wat ¥ T <x RTM)?;" ©
A
Lop P w21 d&YW .
R Pﬂ_ﬂ%‘? 7 ( ) ‘B.Za)re-r
Put
A A
p=f P
n @ -1
W=33'P.,1VV(2)
Note that CL::XIQT; (speed velocity of sound)2
N S
N =.§; f%é% (Brunt-V&isHlé frequency)2
2
Fg(z): £ scale height
Y4
Then

are all inde-



]
-(¥-7) .,
For this case E = F; =l ( 'Z/Hs
. .
and U)g‘?ﬁ KLC : (a)

The magnitude of the horizontal velocity fluctuation

A $|
|| = "&\%‘ \e,_,
P,
K 8

= o &t

However, the kinetic energy per unit volume
'\: .
e}w]—eo oL 2 —> o0
i.e. the energy density decreases upwards and the total energy
(from 2 =0 to ©0 ) is bounded. This is a Lamb wave, it is
essentially a sound wave, confined to a region near the ground with
the hélp of gravity. The level surface at 2= O supports pressure

fluctuations and plays an essential role in the wave mode.

The 1sotherma1 atmosphere permits another type of motion.

: ‘-m'i-“
Assume 'f ; W e

: a A
Then the kinetic energy density -« (‘g [ 'a.l + lWI ]

J_f ‘2- and is independent of °

Corresponding to (a) we have

()= )= o (55F)



S s
(i) if 0)2'7 N then in fact UU“)(KL-k W'I”)Ckand the wave
speed > the speed of sound.
: 2
If in addition (KL-F YH?)HS.}}] i.e. the wavelength <« < the

scale height

N |
s — << 1
(K*+m=)C* (k% m?) H;

and we have acoustic waves.

2
(11) 1€ w < N and (K3m)H, >y 1 then Wien™ . and
|

the waves are internal gravity waves.

w!
2 (2 ynf
U.): k C) m - - _fy_) T.}?
Lamb waves
2
m >0
acoustic modes
m.,..,._hw,.v./..,.-,-wﬂ"‘“' ///m4‘< O
2 - //’
Wl |- —mmo — - T o
,/’xﬂ/ ... m4>0
= gravity waves «
>

These notes submitted by

S.-George Philander
John L. Robinson
Matthias Tomczak
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Lecture # IIT

. Boussinesq Approximation

Consider a motion with typical velocity, length, time,

V, L , T , respectively. If

>> ] then D = Ww-v and we have steady motion

VT
L

LL]Z ~ 1 then L =-22 +W-V and we have non-linear motion
L. Dt =

1%97454 1 then D =-;EL~ and we have linear motion.

‘ 2
In a compressible atmosphere the significant parameters are ( ,
2.
Fis 5 A/ and Y .
*% * *
Denote typical values of these quantities by c, ’45 s N

and form the dimensionless parameters

2 a2 2
v L L v

- —Z - T ol Tz g
ok B W e ML

In the linear model with which we have so far been dealing, the

corresponding dimensionless parameters are
[ 2.
w , | . w

(kBm?)** 7 fewmT W, T VT

We obtained pure internal gravity waves when the first two parameters
were taken to be much less than 1, while the third one was approx-

imately equal to 1. We now assume that

1. ViO’L —9:— << ]
c* ok T

2. A << L

\"" O’L-—\«/{-i-—;" Nl

o N*"'-T 2 /V:_ L
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(1) == that the medium is essentially incompressible so that

e

(2) —> A <<l (&P = change of $o over the height

scale of the motion)

o

1 de Dw
whence WQ i <L 53

These approximations enable us to write the continuity

equation

ux+bV%=O (1)
In the momentum equatioﬁ set
!
P=1Pé +F - P/Po<<1
! ’
= A= -
P=6+°P (%o<<1

Then, as we have seen in Lecture II

ow, 1 4¥ .
e T 6 42730 2)
/0/

i.e. we neglect the ratio except where it is coupled with

o
the gravity term.

Similarly
L. DP _ L DP_y
¥p Dt € Dt

becomes

/ .

| DP _ I D, I db

— s — o o =0

¥f Dt @ Dt & ="

and since
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|

we ignore ——

i
¥Ff Dt
]

7 ‘ |
2,148, 0. | (3)

Equations (1), (2) and (3) are the equations for , Boussinesq liquid.

We now justify these approximations by doing a scale analysis:

Let
n ._:’2*}2\ + EH*.':'.’ where Z*Ii is a mean height (4)
| Y is dimensionless |
t = 7N* (5)
= EN*H'W | | (6)
= R(RI+EN R *‘LP( | 7
% 1
P=p (?H E/O*/\/"‘ H P’(r:t ) (8)
where

' *
e2)=F+ 2%@ H' +0(EY) -
d
B(a):y"-t-ﬁ R H*a' + £ 1—{1 H'2"*+ 0(£*)
Define the basic. state to satisfy the hydrostatic equation at

all heights, so that

A _gg, L8 . -qdE,
L% T in

Substitute (4) ... (8) in_ the equations
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e—’%"— Vp+ggk =0
1De g _
stk =0
1D 1D .
~ yP‘-bﬁ e pr =°
Then .
ENVH ¢ +OCE)}

H,V{Pf&%H2+£2J-%€H 24 (oN*H P+O(E)}+

. 3{€’+;ﬁHa'-+eN H " ¢4 0(2")} e = 0, 2o

Equating coefficients of powers of & ,

d

/ v

* -

Zero order: -IE-G—%Q"'OJ V";‘; = 0.
®

! / De’ 2,
1st order: Z;——“:':-{-VF'-PQ}_(:Oa:i?*N w=0.

The last three equations are known as the Boussinesq equations for

an inviscid liquid..

These notes submitted by

. S.Géorge Philander
John L. Robinson
Matthias Tomczak
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Lecture TiIb.

We take the Boussinesq equations derived above, in the form

Dy |
% + = 1
e tF VP HoK=0 S
(7;%:0 (2)
Do~ 2
= =N U-k_ .
= (w®) (3)
vf’
where ¢~ is the buoyancy force per unit mass: 0" = 3~t§;
9 8.
and where N = 9, * é:d?i

S 2
We linearize them, using an x, z-plane with N = /V(é)a Then

ua‘*‘jI-TPx =0 (4)
Wi +j';?2+o'=o (5)
Uy +Wz =0 (6)
0L -Nw =0 (7)

By differentiating (4) with respect to Z , (5) with

respect to X , we get after subtracting the resulting equations

2 (1) oz o
We note here, that o~ influences the change of the horizontal com-
ponent of the vorticity only. |

By differentiating (8) with respect to T and (7) with
respect to X and adding we get an equation between W and W
This we differentiaﬁe with respect to X and substitute Wgy
from (6) which was differentiated with respect to # before.

As a result there is an equation for W :
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ARV R
ot

This equation can be treated further when we make certain assump-

tions. An easy case is when

NE—?—') = const.

A {(cx+mz —wl)
We assume U. = &(%e ) and get
fard
K?‘
2 2
- — 10
w N k1+m1 ( )

as we obtained when studying gravity waves in a compressible
atmosphere.

From the continuity equation (6) we see that

'l:k-(;:_:O ie. WLK (11)

we have transversal motions. From (l0) we see that always
)w, = ]Nl . If =0 , then lw,: 'N, , the wave number is
horizontal, the motion vertical.  If, on the other hand, 'M :f-‘ o ,

we are concerned with the following case:

Along the lines of
the motion, there is
no pressure gradient.

We have w =Moo 7.
If a parcel is moved a distance § , the buoyancy force,
which only works in the vertical, is proportional te Scv On

The oscillation of the parcel is due to the component along the



- 16 -

' 2
wave front which is =~ 8 ¢4 2 so that the parcel's frequency

% B
is ~v Y ess™ Hence, in the case ’\}__)._72.7 we get, as it is to be

expected, fully horizontal motion:

% 2 N K
42<<m w~"2 0,

But this case is the case of hydrostatic balance. We have from (6)

A ‘ 2
_V!)= K 50 and Yo K. 50 from (5)
or m gl ™
So V\/t can be neglected, and (5) goes over into
1 : = e,
TP‘+6‘_O,%60L (12)

- If O varies slowly with 2, X and t , we might consider also a

np L(kx4mnZ-wT)
group velocity. We have now w=R (U(X'E»ﬁe ) .

_ w
The definition of group velocity 9’9 is C3= %Q',;“T = VK"U, while

Ve’
[%Y] .
the phase velocity QP is Sszz’k .
Because W depends on K/.m but not on (KT—W]U , gﬂ is normal to }:\: ,

as is seen in the following picture:

/
m

2

Qs"Vﬁ:w

e S K

The magnitude of Q_g is }Qajz%mﬂ} . Hence, when

,‘}_>___7;: then tw -—» O so

V=0 w —>N

SN
c, 5N e, >0
Pk =9

g%-—? O means that, when there are at any place slow variations of
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amplitude, they will stay there for all time.

Nq(-%) =+ const.

~ "(kx -wTb)
We assume 'wzo?(w(%)e‘“ ) and get from (9)

A % :
Tk (2o a3

~ :

1f there are two boundaries at which W has to vanish, we get

- for a given K - a set of eigenvalues w,,wz,wj... , all

of which are real and smaller in absolute value than the pre-

vious ones. If we think of N* being constant for the moment,
Fal ]

we have W :Asm‘m;e with mH:mT , where H is the distance

between the boundaries and N 1is an integer. For W we have

2 Kz 2 . . .
w = W N , which looks like equation (10), but here holds
+
only for special®, namely
- KN
NPT (14)
+=NT -
H
The horizontal component of Cﬁ becomes d‘w c(n’\} It is
dK \/Kz ne TT"

easy to see what happens with N varying in the follow1ng way

2 2 2.
> If W 7 N we obtain waves
2 N (=)
L FL =T —
of exponential type from
2.
€13), while w < N gives
2z ——
us waves of sinusoidal
shape in =

In order to combine both types and get a smooth curve for
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GV C%) decaying as 2 ;e>t_oo , a restriction on w is
2 /Vz 2 e
DT < max and w >»ﬁ4hm mt]2|=.00:

but, for given I , there is an infinite sequence of discrete
values within this range, which may be ordered by the number of

nodes in W7(2) .

These notes submitted by
. - S.George Philander

John  I.. Robinson
Matthias Tomczak

Lecture #IV

Lee Waves behind Mountains

This is a very common phenomenon, often made visible by cloud
formations. References containing photographs of such formations
‘are given at the end of this chapter.

We consider linearized, steady, two-

L} s H dimensional flow with _Frm <
W Take UJ independent of 2 . Then
3 h(=) D=y2e .
Dt. U%x

3 ax '
The equation is: |J -,a—-a-;é(wix-f- W22>+/\/1\')\fxx =0.
The boundary conditions are: (i) w'=0 of 2 =H
dh
(ii) w= U7y of 2=0

(iii) W = O ok X —) ~e0

o
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We make mo assumption for W as X —>e0 .,

The waves can be argued to appear downstream in the follow-
— ing way. The phase speed CP=—'U (relative to the air) for sta-
tionary waves. C3<CP for this geometry, as pfeviously demonstra-
ted. Thus the energy is travelling relative to\ the air with a
velocity less than u ; SO ‘it is moving downstream away from the

mountain. oo

L ‘Take WJ° X‘)i):J‘bff('.hJa‘)e‘:h*J.k .

-5
’ -~
As - does not tend to O as X - oo we expect singularities in Wr’.

The boundary conditions are:
L (i) 4r=0 af 2=H
Py ' N
(i) W= cRUL (R)m 2 = o

. 5 ke o
f The equation becomes Wza + -L','; =
_ : : A . N ‘
The solution is W= - _1:}? Uhal k) M(\/ﬁ [2-HJ> | £=_/K ‘
. 1 B
- . nlei-En) whee 5=
Note that for & »—9#0 s or/Q — /9: , (U~ remains bounded.

. \ ‘1 ; — 4
- The singularities are poles for \/f?o"k H =Y\TY mn= l’ 3-;3 s
LN 2 % )

“" these occur for k-—kn where 7%" H = h:H *h“"IT . Thus the number

. : L e
of such poles occurring on the real axis is dependent on /Qo H .
We will ignore decaying modes.

N 1 have (U~ & R () + conti functi
ear a 0oLe we ave = concinuous uncccion.
P k-%n

b '
The Riemann-Lebesque Lemma: g _F“v etk&d_ k —>»0 as
. S

/X.{ —> 0 % Q’J )-F(é)l d‘k exists.

- We will use this lemma to study the lee waves at large
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distances from the mountain.  The lee waves come from the neigh-

bourhood of poles in the complex k—plane.

\.1‘0‘

- "
o %R/:fm
n“i ’

In order to obtain a zero W for X £ © we must close the inte-

e-amdk o x| o -

gral in the following manner for all kn

k

N,
7 N\’ 7

A A
If )’)(k) =]r1 (*h) , @ symmetric mountain.

wlig)= -= UL (| s 172 os fio- 2 x

CIf t(’?):-(\:\ <'k‘>

Note: a) We have a finite number of wave trains. The number of

' k, v
these = integral part of f_H = D/!'? . b) For a point mountain
‘ I [}

A 5()() . The limiting process assumed here is
| jhdx-‘:/q:w‘ﬁ‘d/t,hg<<],amdh—7w.
A

27

the shape. The vertical velocity is at a maximum directly above

h ()

.ooA :
Then h = The wave amplitude depends on the area, not on

the mountain.

—

___.\/“\ The wind velocity has its maximum

& > X in the lee of the mountain.
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A physical argument for this: Tf the mountain has width of order
L , the time for the air to pass over it is T= L: . 1f
’ U
TN «< 1 , the buoyancy forces will have a small effect and to

a first approximation we have irrotational flow.

To the next approximation the buoyancy forces give a downward
acceleration and the air has a resultant downward velocity after
passing the mountain which can set up a long wave-length wave
motion.
When kn L is either much greater than, or much less than

unity, the amplitude of the lee wave will be small as it is de-

‘ A
pendent on h,(h“) . For many mountain ranges knL“‘] for some

v and this increases the importance of these waves.
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Lecture #V-

Lee Waves with Varying U
The linear analysis of standing gravity waves can be amended
to include the effect of a wind speed varying with height. Suppose
N* ‘
= const., and the incident wind speed is L’(%) . Then the
two-dimensional equations for the perturbation quantities uuuﬁ/%ﬁ-

are

U(z)%% + wf-b—g + .2 (__B__) -

L) %}‘%’T co b (.ﬂ.) -0
©

in the Boussinesq approximation. The second term in the first
equation represents the only new effect - the vertical convection
of zeroth-order momentum by the perturbation flow. The perturba-
tion quantities can be Fourier transformed in the x-direction as

N
before, and the equation for the Fourier coefficient Vvé%;k)is

A Nz uae k&]A
- - - W= 0
Wai i [u(!f' U/2)

A

As long as N —ilugi is positive, that equation is essentially the
P

:same as the one obtained in the last lecture. 1In fact/V*WAlezcan

‘be considéred the square of an effective Brunt-Vaisald frequency.

N
The W equation is usually written

\:/\\/&i + [[‘(@) */‘{1]\2\\/' =0



where 2
N " %
SA Uez =4 (2)>0
U u
What is the physical meaning of the new term uié/“l in
A
the W equation? Suppose the vorticity LL% decreases upward,

S0 u‘a% is negative: =
A N

Suppose a parcel of fluid A\ is moved upward. It carries excess
vorticity into its new location and induces a secondary motion.
Parcels like @ move upward on the left, and parcels on the right
are swept downward. ¢ carries vorticity positive with respect to
its surroundings; b carries a negative vdrticity. Both . and
b tend to sweep %\ back to its original position, and the net
effect is that the locus of positive vorticity tends to move up-
stream. The lee wave pattern, which must stand stationary with
respect to the mountain exciting it, is thus helped along into the
incident airstream by the displaced vorticity. 1If Lizz is positive
the shear disturbance tends to propagate downstream against the

gravity waves, and the effective Brunt-vaisdld frequency is driven

up.
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Non-Linear Theories for Mountain Flow

1. Long's Inverse Approach

By using streamline displacement as a dependent variable,

Long derived an equation of motion both exact -and linear for a very

restricted class of flows. Consider a motion two-dimensional, steady,

frictionless, and adiabatic governed by the Boussinesq equations.
The continuity equation implies - and W~ can be found from a
stream.functiop q}‘,

w =Y,

W= -‘lV)(

and steadiness means

]

p=r¥) \

for a liquid, or
6=6(y)

for a gas. The vorticity equation is

(%.v>v'zq} = -.g_‘ M

P ox
where notation appropriate for a liquid is being used. The right-

hand term can be written

de o __8 de o9 2P juv)e
AU e G

since Q is a function of L}) only, and (E_L‘V)z ::&_UE=W’ Now Vt}}

is perpendicular to the streamlines, so (E&ivv J = O.  Likewise

(£ 9)F(9)= g (4T =0

for any F', Hence the vorticity equation becomes

.
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(uV)V\V (ULV 9?{ %z)

That can be integrated along streamlines —

const. along streamlines

F(¥)

To get beyond this an important geometrical assumption

|

B N
A Al

H

must be made. Assumé all streamlines extend to X =2 = &€ ywhere

they are unambiguously identified by their height #4 . Thus

4) must be a function monetonic on ?., , and we assume

EL__LE = u.1 651) > 0O
da,

where the subscript ] means far upstream from the disturbing

mountain. Then
Viy=v (i\:\?i‘) iq)v z,-:—OW(Va)

Since = LL = LL #® and
LPZ' 192 LP%‘%T 4 e

w-a— -ée-::m_ﬂ_f’f_ d‘___l. N‘m
e* dy e dz, d¥ U,

the equation of motion becomes

Va, - “/‘\“/T +JL ‘ﬁua (Va,) Flv)= ?(z

As X~y ~oo B —>2,and <\721)~?1 ﬂ]z)—?Oo Thus, evalqating the

left-hand side of the equation at X —3 = OC to get ﬁg(%“) , we find

73 -t (eoa)e L Al (92 1] -

Let the displacement of a streamline from its original height be
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r = 2‘"‘21

Then Vg, = V=—VC —-VC Vaq::—'v (;, and

7 g € = e [0 255 )

The equation for g} becomes simple and linear if Aﬁ/{i is
1
d.un_’o

independent of 2, and.—“* kot

Wy 0‘-?4
U.1= const.

/\/1= const.

Thus for

the equation. is

s
u: [=0

exactly the same equation as that obtained for \44x in, the linear
analysis. The boundary condition at the ground is still non-linear;
since the lowest streamline must follow the mountain surface L)(X),
((Eq = h(x)

But any solution to the linearized problem is a solution to the
non-linear problem for some mountain shape, and Long simply tailors
the mountain to the solution. He confirms his work with £low
visualization experiments over models shaped to fit existing solu-
tions to the C equation.

In practice, the assumption hardest to meet is that all
streamlines emanate from Y =) =&@ . As the amplitude of the
mountain is increased, the §= solution. ceases to cover the entire

x - z-plane, and closed.streamlines appear:

T
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I

/e -- ///22%/-’7// T

Physically, a rotor or dead air region like & 1is plausible.
Fluid around region /% must be both raised and accelerated over
the mountain - its kinetic and potential energy must increase.
Hence enefgy for region )4 must: come from some other4part of the
flbW, so the flﬁid around 13 both stagnates and drops aown to
ﬁeet the requirement. | ”

Though Long's equation gives éuch solutions, théy undermine
the assumptions on which: the equation is based. As the dead air
regions become more prominent, Long's solutions diverge frpm the
experimental flows. As the mountain height is increased further,
a stagnation region of fluia which never gets over extends upstream.
That‘phenomenon of blocking completely escapes Long's formulation,

and a radically different approach is required to explain it.

2. The Hydraulic Model

If an analogy between the flow of an atmosphere over.a moun-
tain and free-surface channel flow can be constructed, the concepts
of hydréulic engineering will be at our disposal. To show how this
can be done without too much mathematics, we shall consider the sim-

plest two-layer model. The physical situation is illustrated below:
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W, — Q h,

g _ .
interface /‘L”_—\”T\\___

u,— m 2
T I 77T /// ez /,’e;/

I

/

Assume : h: < 1

et

and (O, s @_ are éonstant in their layers. Since the density is
cons’tant the vorticity in the layers can remain zero (remember the
Boussinesq vorticity equétion wt = Ox ), and we can cénsider the

case LL,:U-,(X.). Bernoulli's equation just below the interface is

2
fé_‘:+ _E’Z_L_}-g(hq-‘q') = const.

Just above,

P&‘L_], h.{.h)zconstq
i

'since fractional changes in upper layer are very small for hy'h<< 1.

The continuity equation for the lower layer is
U,.H. = const. = Q

and the three equations combine to give

| h‘(x)+gh (x)= B~ 3%(7()
with ' f°—/°q_
t ] _ 5 “j_?_-

ey

[
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and B a constant. That equation gives h,(ﬁ) implicitly.
The character of the flow depends critically on the upstream

value of the Froude number

) _ &7-
Fi= g

Let us draw a diagram of the left-hand side of the equation

for H‘ :

an

The curve has a minimum at F;S 1 . 1If the flow far upstream has
f{ > 1 (situation Q. ,'a super-critical flow), then as h increases
and we move down the curve, h increases as well. Thus the inter-

!

face streamline bows upward:




- 30 -

If the flow begins subcritically at b the interface drops over the

mountain:

—_ /4;/
7, ///W% 7

But: if h is increased beyond the point where the maximum Froude number

has risen to 1, the flow changes completely, and blocking begins:

f'raye/'lriy ./.“( mp

sl ndmg hyn/rau}n'c jumk
& {

Qa —7

S S LY
— 5ubcﬁﬂfa/ y

: {
T ITT 7777777777

Su per- ————)!%— su bcrﬁ?&a. | —
eritical :

The hydraulic model thus indicates what may happen when it is no
longer energetically possible to move all the fluid over the mountain.
Whether or not the predicted hydrauiic jumps are observed is a matter

of current controversy.

References
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Lecture #VI

Dynamics of a Rotating Fluid

Three questions should be considered in the future:
1. What exactly do we mean by energy density and radiation stress?

If one solves the time dependent lee wave problem, a per-
turbation to the initial velocity will propagate upstream. If the
mode isyleaky, then this upstream wave will radiate energy and the
associated drag is not understood.

Understanding this upstream radiation may shed light on
what happens if the velocity profile reverses sign at some
height 2z,
2. Neglecting the blocking effect and considering lJCz) and A/l
constant, what happens to Long's solution if you put on a small
time dependent perturbation? What would happen to any of the
theories considered? In fact, what is the connection between all
three?
3. What happens if one considers three-dimensional flow around
mountains? . A suitable model to try would be a uniform ridge with

a sine height perturbation.

Dynamics of a Rotating Fluid

ref: Squire, Surveys in Mechanics; Eliasser and Kleinschmidt,
Handbuch der Physik, 42. :

1, Equations:

Consider an inviscid incompressible fluid: the continuity

-~
equation becomes: V- =0 .
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In the following rotating coordinate system:

A
ﬂ Z = unit vector
in  direction

A

X
where fl is assumed to be constant, the Navier-Stokes equation
for the motion ohserved in the rdtating frame is:

D .3y [_E 1 0*x™ “];o
R Rl (x™y")

where

—_— —
2 00 X UL = coriolis term

centrifugal term

| ?-<7. 3
L Q5 (K+y)
- If the pressure is not explicitly involved in the boundary conditions

we can. define a new effective pressure
4 %
- P4l oyt
P=P+d el (x™y?)
Let us scale the problem in terms of:

U - velocity scale
L. - 1length scale

T - time scale

then consider the relative sizes of the first two terms in the N-§

DU J=_ 5_ L _T

—‘I‘)'E/ﬂXU‘ T'J- Q'L
= - U
aT 0L
-.-.-Rossbjd#

equation:
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If the Rossby number is
large - rotation is a small perturbation on the motion.

small - rotation is dominant.

2. Two-dimensional flow on the x, y plane

Two-dimensional flow implies that 9é£=-0 ,. and since the
flow is inviscid and incompressible we may write the X and U

components of L as
TERA
=-U,
where

%’= stream function, independent of %

, -
* Plugging these components of W into the coriolis term,

——

20 xu 251[%2'\'“)%%4'0]'

v(20y)

Thus :Dlj- 7’
= = S +2009)=0
Dt ”7( 729y

Therefore, in the two-dimensional case we can absorb the effect of

"

rotation into an effective pressure term provided the pressure does
not appear in the boundary conditions. Hence the dynamical effects
of rotation. disappear.

Note: this is true for all Rossby numbers.

3. Vorticity Equation

Vorticity in the rotating frame is defined as the curl of the

—
velocity field: j’ = U« i
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the conservation of vorticity is expressed by.the equation:

H-(3eemyee

which says that the change of vorticity is due to stretching

= s
and twisting of the vortex limnes of the totalvvorticity,j4‘251;

-2

by the. velocity field WL . Writing the two terms of the r.h.s.

of the vorticity equation. as two separate terms and remembering

s A
that we have defined Sl as constant in the 2 direction, we have

> -
- 'a -
E:(TV h+20-—0
Dt oz
From the definition of vorticity we see immediately that:

—

jNU/L
Therefore comparing the size of the two terms on the r.h.s. of the

vorticity equation we ‘have:
3.0 U.l, |
(Sp)n_ T ?
25 %?g NORRY/ QL

which is the Rossby number again. Thus if the Rossby number £< 1,

the stretching and twisting of the basic frame dominates the picture.

Note:  For two-dimensional flow E%;ﬁ=0 , and, since all fluid motions

“are in X, j planes, .j is parallel to # . Therefore:

—_ _ _-a;‘ﬂ
J-v= f*a:_» >0

hence R
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4. Geostrophic Balance

Considering small Rossby numbers, the N-S .equation becomes:
— Y P,*
28 x+v(E)=0
Take curl of this equation:
vx (25.xT) =0

which implies that 2L o

Semmemesants.

0z

Thus the flow is independent of & and becomes two-dimensional.
G.I.Taylor did an experiment which showed this property quite
well. ' el

rotating tank

Py

l

DY

| 1

towed block —

The column of fluid diréétly above the towed block moved with the

block. A top view would be:

A qualitative explanation might be that if the energy required for
a vortex to shorten and hop over the obstacle is greater than is

required to swirl around the side, then the fluid will take the lower

energy path.
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Taylor did not investigate what happens if viscosity is

present and/or the tank is very tall.

5. - Linearized plane waves in a rotating fluid

ref: Chandrasekhar, 1961, Hydrodynamic and Hydrdmagnetic

Stability, p. 85-86.
stapillity, p

Consider: ~l-—> .L_).
. T 77T
Then: —':L‘V<<—a'f
and the equations are: .
BU. Y - P)_
ou 4o xw +V /=0
ot

V-l

]

o

Look for solutions of the form:
N ‘_/\ L(i:-?-w‘t)

-g _ Re. {I/j\el:(f?r"wt)}

plugging in we get:
(i) ~lwlr 2 xb+lkp =0
(ii) kK.lL=0

now dot (i) with‘?

and cross (i) with K
(iii) *LwaQ+2f“\z—(F.gﬁ)_£} =0
dot (iii) with O |
(K'gﬁQQQQ =0

hence we must have:
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A A A A
Uprdp-Uirdi =0

. ' A
where real part of W

. o AN
imaginary part of (L
: . A -
These conditions imply that LLrﬁL fliand from the continuity equa--

tion that: N " Py
kLl Ly

Now taking the real part -of (iii),
— -sd

wlk|=x (k-28)
Hence the dispersion relation is

K20

w =
| K|

-
0D depends only on the direction of K and not on its magnitude.

This property is reminiscent of gravity waves and the reason is similar.
Just as the Brunt-Vasala frequency was the constant of the medium in
the gravity wave case, so the rotation frequency is the constant in

this case.

P = const. in the plane of the wave w =25em »“)"jl'Q_L

-
where: Klj_ is conponent of N perpendicular to the plane of the wave.
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The motion is simple harmenic and the particles travel in circles
 perpendicular to the plane of the diagram.

The group velocity Cg=V, w is:
: 1%

» Cﬁ = -?T;% sim @ perpendicular to L(__
we -see

if 6 =0 Cqg—o0
w — S

ir 8 —>T, Cqll 02
W
_— LL
q <<!

This may be compaied to the casé of the gfévitvaaﬁes and
one sees that in the two cases the direction of C:g is opposite and
in the gravity wave case the particles execute linear simpie har-
monic motion. |
These "inertial" waves can be connected with Taylor columns
by considering that the column is simply an inertial wave with
e =0 , for which the reflection time is much greater than the

period of the wave.

These notes submitted by

John R. Booker



Lecture #VIT

Viscous Boundary Layer Effects

1. The Ekman Spiral

Consider a homogeneous liquid bounded below by a plane
rigid surface. Orient the coordinates axes as in Fig. 1, and
assume that the system rotates with constant velocity éz. , the

direction of which is not necessarily vertical.

Adjacént to the surface there exists a viscous boundary layer, the
thickness (5) of which is to be determinedl. Above this layer assume
the motion is uniform and in the x-direction, i.e.

%:—4")——(1;;0)0) 3

where U is constant. Within the boundary layer we shall seek

l1e may be noted that since the system is rotating there exist solutions

for a viscous boundary layer of uniform thickness, whereas without rota-

tion, diffusion of the layer upward would cause the boundary layer

thickness to increase downstream.



- 40 -

steady-state solutions of the form

=[u@),v (3,9

while at the surface we shall adopt the no-slip condition
' u = 0.

With these restrictions on the motion, the basic set of

equations becomes

—2Q,Ur + i( ) yaw (1)

50 93* |
2 Ly
205U+ 2 (-re-) ¥ % @
20,V + gﬂ%fu_ +—§-5(_g. =O (3)

where {2“ =‘Cf%&9 19}

'f%}> The terms of the continuity
equation, as well as the convective acceleration terms of the equa-

tions of motion vanish identically. Above the boundary layer, vis-

cous forces vanish and geostrophic balance obtains. ‘Therefore,

L = (U,OJ O) implies

3/} |

5?<%>=O - (%)
Q2 /P -

5’;‘(‘%’)’ 2Q§U9

and our governing equations reduce to

A =)
2) L Pk
2,().5@.—%)-1) e . (6)

(7)

ey
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Multiplying (6) by L= Y21 and adding (5) yields

Letting
w+Vy

?(@)r F

eqn. (8) may be rewritten

d2 . .
'\)Z—g'i-—z_QDZL +-2-Q3L—O

~with b,c. : - z2=0 at é-‘—‘o ‘ (9

Zz-] as 93— .

The solution of (9) is
v
2 £02\% 1,0
2= l-axp ["< Y] ”) Py 3]
with real part

Re(2)=1-2mp|- (%3‘%] :

. !
“3
The quantity 6}765%) . is called the boundary layer thickness.

Transforming z gives the components of motion

7y
- - %
W= U(7 € -6-:“>

=V
v =V (e wim i)

The hodograph for this solution is the Ekman spiral illus-

(10)

trated in Fig. 2. At ;:O , by applying 1'HOpital's rule, the
slope is found to be 1, i.e. the direction of flow at the bounding
surface makes an.angle of 45° with the x-axis. The physical inter-

pretation of the Ekman spiral is as follows:



- 42 -

Fig. 2

Above therboundary layer the Coriolis force,z.fzjlzr, tends
to accelerate particles to the right of the flow, i.e., along the
negative y-axis; while the pressure gradient forceégl- <;E_) acts
equally, but along the positive y-axis as prescribed by geostrophic
balance. Thus, the motion of particles above the boundary layer
is restricted to planes pafallel to the x, z-axes. As we shall
see, this is not so in the boundary layer. Eqn. (3) implies that

%?ﬁL-is independent of 9,. Therefore, since the Coriolis force
is less .in the boundary layer due to viscous stress2 while the

pressure gradient has the same value throughout the liquid, parti-

cles in the boundary layer tend to drift along the positive y-axis.

2The,surface stress T; is given by

o -(ugg s B0)- 27 (1),

s

and at 3.:;_5f , the stress reduces to
0 =U(L1).
Z
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The Coriolis force acts in turn to the right of the particles.

3

The exponential decrease of this effect” between the surface, where

‘the crossing angle is 45°, and ©© , where the crossing angle is

zero, combined with the S.H.M. due to rotation, leads to the turn-

ing of the flow in the boundary layer.

3If we define the volume flux Q as

9= [ [ u)ey frg]

then since the integrals are convergent (i.e. they decrease
exponentially) :
g =Yl [-1.1] | (1)

- 2

Because of the ageostrophic component of flow in the boundary layer,
a flux deficit exists in the x-direction as can be seen from (11).
There is an apparent contradiction between the second boundary
condition (7) and the fact that the motion becomes approximately
geostrophic at 9 = é~° This, as well as several other ramifica-

tions of the Ekman spiral, are discussed, for example, in

.Hess, S. L., 1959:  1Introduction to Theoretical Meteorology. Holt,

Rinehart and Winston, 362 pp.

These notes submitted by

W. Alan Bowman



- 4 -

Lecture #VIII

- The Effect of Two Ekman Layers

Next let us consider the case where a top is placed on the
liquid and, for convenience, the axis of rotation is parallel to
the z-axis.  Adjacent to each surface, there exists a viscous
boundary layer. These two Ekman layers are separated by an interier
region where the flow is geostrophic; We shall Be interested in the
flow betweén these two parallél plates.

Let the rate of rotation be given by Q , the distance
between plates by F} , & characteristic horizontal wvelocity by U
and a characteristic horizontal length by L . For the problem

outlined above the scaling approximations are

v

R, =51 £ £ 1 (12)

P |

& YE £<L ] (13)
) 1 (14)
ol “< :

where %Q is the Rossby nomber and (12) and (13) represent horizontal

and vertical Taylor numbers respectively. In addition, we assume
3
23

region. Our rather heuristic approach to this problem will be to

wee W, V" throughout the liquid and H << 1 in the interior
construct the flow in the interior and in the Ekman layers, and then
to match the flow at the two intermediate 'boundaries'.

Zero-order approximation. In the interior region we assume

geostrophic balance. The liquid then moves uniformly as Taylor



columns, the equation of motion for which reduces to

-~

20X U+T5 =0, (15)
| (2,2 .
where %:(M.)V,"G)and V= 3L 759) 0O). By defining a stream func-

= - b

tion
(g q) 257-P

&
eqn. (15) becomes

U= -KXTW, - - (16)

In the boundary layer, the vertical component of motion takes on

small values, in contrast to the interior region (where it is zero).
From the continuity equation, the vertical motion at the edge of

the lower boundary layer is

w330+5m=—v.@;-e,racfv"%(x,%) 5 (17)

|
RAY . SV
where éw(*ﬁj) , Q is the volume flux and V 7{)‘ is the ver-
tical component of relative vorticity of the basic flow. ' Notice,
when the vorticity is zero, the volume flux and the vertical motion
4

also become zero~. For the upper boundary layer, the vertical

motion is similarly

=187 (by) (18)

3_—,]-'-500
which is equal and opposite that of the lower layer. If this result

is true, the matching condition for the interior region requires the

4Indeed, the fact that " is proportional to vorticity is a conse-

quence of so-called "Ekman layer suction", which refers to the drawing

away of the boundary layer by motion normal to the boundary.
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basic vortex lines in the interior to shrink, thus compressing

the Taylor columns. But this implies that the motion of the in-
terior fluid cannot be entirely geostrophic. We therefore proceed
té the next apprbximation.

First-order approximation. - In the momentum equation

% Yoy (e v)u+zﬂ><u+v—ﬁ

let =L "f‘hL.':—_K_XVL]—i-\—u.'

-0

B o= -+
and ) P Pc P‘l
where the subscript zero refers to the zero-order solution dis-

cussed above and subscript ! is a correction. Then

du, P } y
=2+ U, VU + 20X U+ 2 593 u, Vvi=0 - (18

the terms in brackets being zero by (15), thus

~(%+@a»v)%c+zgxg,+v%=o (19)

To eliminate the pressure term in (19) we take the curl

(—3{ +gté-\7>(<7x %0)_29,’%%1 -5

and for two-dimensional flow
9 2 DLy 4 20
24w, )Y k)= 20 2L (20)
which gives the individual rate of change of vorticityf The verti-

‘cal componént of (20) is independent of ;, and may be integrated

to give

o~
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3= H -4 oo

H Da “ 2
w " eV %OV (y) @D
3= C3+‘§c0 | |

which represents the stretching of the Taylor columns. Equation

(20) then leads to the prediction equation

o .
which expresses the rate of change of vorticity by viscous decay.
For the problem of flow in an inviscid interior region bounded on
bottom and top by an Ekman layer, the vertical motion is non-zero
at the intermediate '"boundaries'. This allows the. Taylor columns
to shrink as the basic relative vorticity decreases, and thus
avoids the contradiction. found for the zero-order approximation.
On the other hand, for an entirely inviscid liquid eqn. (22) in-
dicates that the Taylor columns conserve their vorticity, just as
in the zero order case.

In order to guarantee that the analysis above is internally

consistent let us consider the following. For linearized motion

vT < 1
L.<

where 77 is a characteristic time corresponding to U and L . Equa-

tion (22) is then

with solution5

5The time 7" = given by (23) is called the spin-up time, and

I
20 ¢’

represents the effective time required for a fluid, initially rotating

with uniform speed () , to reach a state of solid rotation with speed

Q+ A L1, after having received an impulse ACL . gere T=T
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2 +
\V wo=(\7”“w°)t oxp(-29 £t (23)
=0 ) o
The vertical motion scale W is
U [ ) <
W = ‘E(?f) ar)<< U,
as required. 1In the interior region where the flow is initially

irrotational

%=<%’%)
V'p=o0

and

and to this order of approximation the viscous effects vanish.

For non-linearized motion, the inviscid case, for example,

requires
Vs
< T =
_QH< -~ ~ 1
with vertical motion scale
W =0

i.e., the vertical component is the only component of vorticity.
© To verify the consistency of the prediction equation (22) we recall
(18) in thevform
D. ( ) | (
+ X(U+U,)+—= + = 0.
3tla_l_a Qg_?_— sV 21 eV’bﬂ F1

The corresponding inhomogeneous equation for viscous flow is

Bhte 20t ), V)07 g ) 5449, -

-[B—;@ﬁ@o-@cw

Now we wish to compare the magnitudes of terms based on the approx-

vT

imations T ~ 1

|
...-]—— P = . e
=~ £ SL

(24)
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For example

vy

VP, . I _ »T _ ¥ | HY %
Do ko v L* Q- gk ?
Dt T

which, by (13), is very small. Therefore it is permissible to
drop the first term from the right-hand side of (24).  To find the

magnitude of W, we consider (19). 1In the interior region

Ve, =0
and ‘
du, , Iv, __‘:?wq_g< D f
9% 33 T3 HAlAL
or
i (E%EJ =UET,

and (13) implies
. L_J'.'1 < l.‘..Lo

which was also required. 1In the boundary layer

20xw+Lop-pdL éiua”&)-?ég_ . (25)
¢ 33% \ D> Bgm Dt

The terms on the left-hand side are comparable in magnitude if
‘ L
aN* 9 \
% 93
while the Coriolis acceleration and individual change of L are

of the same order when
M o<y .
L L

Therefore, the last two terms of (24) may also be neglected. That

is, equation (19) as well as the prediction equation (22) are in-

ternally consistent with the zero- and first-order approximations.

These notes submitted by

W. Alan Bowman
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Lecture #IX

Spherical Case

Let us consider a thin, spherical, rotating shell. Exclude

the equatorial region and consider an inviscid fluid.

15 « . U
/E L let: m<<l

Ny

The fluid will move in Taylor columns of length

H
= = (except near equator)
Sm &
with horizontal extent, L. as these columns move their length

will change. The change in vorticity is:

pl . _20 4L
DE £ dt
= 25 ool e"gﬁ?

- 20 alet

SNy

RV

IR

2.0 X northward displacement

R

A -plane approximation

-—

There are several ways we may take the variation of C with

" latitude into account. One of the most common methods is to map the

spherical surface onto a plane:
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42 = basic stream function

V'Y, = basic vorticity

- If we neglect stretching of vortex lines we have:
Do

eV Y=0

and rotation drops out. However, suppose we allow C to vary

linearly with BA :

Do o2y o zncote] -
Dtv% [ R Veam e

1et/3=-’29R——am—e

EARREYN
where: X subscript denotes differentiation w.r.t. a Coordinate
pointing east.
Now consider anvolﬁme V' on the sphere ﬁhose projected area
is Q; , and whose boundary is M
v = 4€$bw 65 =3H
define -F: 2 LLsim 9.
then -g« . <-»v‘1yo +1)
BoﬁhA:; and rﬂ_are conserved during the fluid motion and hence both

Y and the vorticity are also

B w0
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which leads to the previous result if é£=ﬁ , ﬂ taken indepen-

dent of j . a points north.

See N. Phillips: "Reviews of Geophysics".

Rossby Waves:

F VYA =0

linearize with L{F <o

D . .
== VV+AY =0

now- assume plane wave solution of the form:
(kx+? —wt)
1}/=ﬁ} Re. {e d

we get:

A

lwl-r3)b hgied 20

and hence we have the dispersion relation:
k.
= - 1+£'»

with phase velocity:

-8
CP - /?.9"/’4&’ CkJﬁ}

- - A wz(ﬁ?n{)

.'s the X-component of the wave always propagates westward.
A simple physical argument is to consider the relative

vorticities induced by a northward displacement of a fluid parcel.



G

& A0 onc]ma.l displacement

-E

The original displacement is from /q to B ; this induces a clock-
wise circulation around 13 . Parcel C will be swept south and par-
cel D will be swept north. It is evident from the diagram that

the secondary circulations induced by the displacements of C and

D will tend to sweep the originél parcel back to its position /x
It is also evident that the northward displacement of D repre-
sents a progression of the phase to the left or west.

We get an inconsistency when G —2 L .
£
/6 —~ R

.'.E'v/ﬂ‘ W<< 1

s0 we have a further restriction on the regime of validity of this
analysis.
One interesting observation has been made about these waves,

that is that the energy flux is not parallel to the group wvelocity.
C, = ow ).'aw)
g =(3k * 32

(k {2)2(4€ C?-Kf)

this is at some angle 8 with respect to the phase velocity. The



= 54_

energy flux is Gauﬂ ﬁ V) and is parallel to the wave fronts and
hence not parallel to Cgll. One finds, however, that CQ only
differs from the energy flux by a non-divergent vector.

See: Longuet-Higgins, Deep Sea Research, 11, p.35, 1964.

These notes submitted by

John'R. Booker

Lecture X

Rotating, Stratified, Boussinésq Flow
We shall look briefly at the linearized problem when. both
Z
rotation and stratification are important. Suppose N~ = const.

The linearized equations are

I —
WUy +29:xg:+—(;‘v,a+o-f._ o)
%
5%../V %=‘é1= C
v‘bk=o
where fé need not be parallel to é. . .There exist plane wave

solutions of frequency &} and wave number 41 such that -

. 2 (£-h) 7. (e%20)
—- 7 — P -~
U)'.-/V [— ’ﬁlz, :}+ ’;e“'n.

The first term is the square of the frequency for gravity waves and

the second is the square of the frequency for pure inertial waves.
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Accelerations from the two kinds of restoring force simply add.
2 2 . .
In the atmosphere () << N , 80 the effect of rotation
- is unimportant unless the motion is nearly horizontal. But sup-

pose the wave propagates nearly vertically:

Y

’AS 9=> 0,

and rotation begins to dominate. Only (L - k., the vertical com-
ponent of 11_ , can affect the vertical vorticity, - stratifica-

tion cannot.

Hydrostatic Approximation

_ When the horizontal length of the disturbances L is great
compared with the depth of the fluid F{ , some terms can be dropped
from the compressible flow equations.  Consider a compressible atmos-
phere at latitude (angular elevation above equator) ¢), Then the

x- and z-momentum equations will be truncated as shown:

- Q.é‘:-/—zﬂ%géw- aslsime v+ 6!(2)38}; =0

i L 3p
9*9'9”&“ +€o(z>%% 0
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Two assumptions have to be made -
(1) vertical acceleration is negligible
(ii) horizontal component of 43: is unimportant.

The continuity equation is

ot
G (®
If we exclude vertical bouncing by assuming Mr’vlfﬁij where U

| dp |
+ — WUy ¥ Ve Wy =
@?@‘ xR =0

is a typical horizontal speed, then the two assumptions can be

made more precise as follows:

5 2oL 2w | HDe
1) 2 H ot L Dt
Dw e Du ,Hz.
tfaﬁ;— “"Z; "%%%T < —[;<<<'1
g2 6
20cnbu _H 20ubu . H 22U
é‘”e L Ip L 204m¢v

&

< ¢-HL_-,;<< 1
The < sign comes in because L aeé must be the order of the
A x
larger of Du'/Dt‘ and QQW(P V.
Near the equator C&t¢-¢»co , and the second of the hydro-

static assumptions cannot be taken for granted. But if the Rossby

number is small enough the érgument still goes through:

2_ng§w~~nZH o 2 o

Du
Tt
20 . H 20uagu _ H 2Qeagu
L P, ) L = Du
: ATH . OHN 2t
~ £L<L
L 1

Hence near the equator the hydrostatic assumption requires
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TH ¢q fLH £4 2

(i1) R,= &

L

u

For the atmosphere SLH ~9-\/'zb7n/%nand for the sea,.QH ~1 k/'m/ﬁﬂ'

Hydrostatic Waves

Let us linearize the hydrostatic equations and assume

- Boussinesq flow to simplify the algebra.

Assume

NQ_

is a func-

tion of 2 alone and set {: 2.sty)¢ The equations become

oo b=

o
th#“fi’?”a =

o

o

C+gmf =0

e

o + NEWw =

The functions can be separated -~

o

O

W= W;:,(2> W‘*(X, gﬂr)

-(,’-’;-(. =P, (2) P (x,4,t)

and so on. The equations in the starred functions become

Uy -V + B
Aot

RV
Wt Vgt gz R =

iy

1]

o
o
o

2 .
where the separation constant C,, plays the part of an eigen-

value in, say, the equation for bt)‘n (2-):
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d*w Mca):
fe) Rl W, =0
d=a* * o

if §== O , the shallow water wave equatioﬁ is recovered:

27 o) [ 2w BV*)_
<at? C"VXM foy )= °

In the ocean, the first mode - the barotropic mode -

depends on the motion of the free surface and has a charactéris—
tic speed f‘ ~ fé-? —~ ZOOM-/s, . The second and higher modes -
the baroclinic modes - are internal waves and have characteristic
speeds from a few meters per second on down.

Let us use a ﬁ—plane approximation for / and position

the plane directly on the equator. Then

F=ry

and we must accept the limitation 7% L < ] explained in the last
section. The coefficients in the starred equations depend on 3

alone, so a further separation is possible:
A ((hx-wt)
V¥ = Rae {V lyle

I3 A .
and so on. The equation for V is

2
d*v w* a2k > Byl
4gz ‘+_{'c: /6 w k' C: V=0

When the coefficient in brackets is greater than zero, 0 (j) is
oscillatory. But for large jz the coefficient becomes negative, so
solutions can be found which dééay rapidly as g —» + o¢. Thus the
/3 -effect traps these Rossby waves in a band around the equator.
The natural length for the modé under comsideration is /?ggj

- el
and the natural frequency is-{/@C} . Define R and W as follows:
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k=’}/::1/20_’:‘ W:Z}Vﬁc\q\

4

b

Tﬁen functions V = decaying toward lj:'—'}-t O can be found pro-

viding

gt

B -=~KR22m+1  ynz=0 1,2, "

They have the form

902 At ) o (4 42)
"'E" ]

where LJ are the Hermite polynomials. As =2 06 and the number

m

of oscillations in the y-direction increases, 1t becomes easier
to see the physical significance of these solutions. ‘That limit

will be explored in the next lecture.

These notes submitted by

Steven Crow



Lecture #XI

Special Cases

We shall now consider the asymptotic case Wl —> ©0O . The

dispersion relation is -
e B /Q N
w —~&_——;—=.‘?m+1+/a

from which it can easily be seen that in this limit either w

N

or Té%- is large. We shall consider the two cases separately.
w
a) o large

The dispersion relation then takes the form

D R2+2m +1

e
and el < 1 . 1In this case in the equation
2
- A
GLU‘ |: ﬂ ka “p] = O
d,% w Cn

the term /@ %%~ is neglected. Because in this asymptotic limit
the y-component of the wavelength vector is so small that.ﬁ may
A

be regarded as constant over a single wavelength, V¥V becomes sinu-
soidal in character and the dispersion relation is

we Fr (R4 0)e]
where 1? is the wave number in the N-S direction. We see that
locally the /3-effect is not important; these waves are inertio-
gravitational waves.

These waves are trapped in the equatorial regions. That

this should be so can be seen by the following argument:

]

™
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2

Consider northward-travelling waves. &2 and Aé will both. be
‘ 2 v
constant but -; increases with latitude. ' Hence £ must decrease
2 z
and if <# becomes sufficiently large -g must eventually become
zero which means that é turns to the E-W direction. Since Qc}
is. parallel to ﬁ; the wave energy cannot propagate beyond this
latitude. For barotropic motions ( N = 1 ) the above considera-
tions must be viewed with caution.
2 T SRS 1
If 7E L< Ch(k + Z) the modes are pure gravity waves.
2 2 2

The case ; >> G, (ﬁzU+ ¥4 ) describes "inertial oscillations"
whose frequency is independent of wavelength. - These motions have
been detected in moored buoy experiments but it is not understood

why they should be excited to such large amplitudes in the ocean.

Ch
The transition between these two extremes occurs when L e,
Latd
b) . o large
2

In this case = will be‘neglected in the equation for
n

and we obtain locally
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W= -4k S
R+ L% 43/c:

These are 'Divergent Rossby Waves". It is worth remarking that

this derivation does not assume geostr0phy, (a)<<3¥) and is there-
fore valid for motions near the equator. It is, however, illumina-
ting to rederive this relation in a manner which clearly illucidates
the way in which the dynamics affects the problem. The vorticity
equation is

o

—_— (A= |~ v*-fu +v‘>=O

'at( 3-%) Av-f ety
If we suppose that w << then _3... Ahy =V,

PP 70 /at( 4 )‘)

()

is .no bigger than

and hence

/uxﬂ@) << /“g' )4)

Therefore, to a first approximation, we can introduce a stream

function to describe the horizontal motion:

M‘"Wy » VE =Y o
Kinematically the motion is approximately non-divergent, but the
horizontal divergence can, in some cases, play an important role in
the dynamics of the flow through the stretching of the vortex lines.
Consistent with the assumption ¢O‘<<1$ we can neglect the time deri-
vatives in the first two tidal equations which can then be integrated

to yield

‘FW"‘ -P,

to within a constant of integration, which has no physical significance.

Substituting this into the third tidal equation gives

A,L)L‘I'U'CLI = %Wyt' .



—
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The vorticity equation now becomes
%
9 oy K
-2 + -y =0
at%wﬂ\yx cy
This is the equation for divergent Rossby waves. - If we Fourier

transform the equation we recover the dispersion relation

We shall now show that even in the equatorial regions where %- is
small and €O ;i.? the dispersion relation derived above tends to
the correct limit as # —> O«

Lo
We are considering the case __é_ = _//2__ ¢ >> 1 . That is, the
o owon
frequency W is very much smaller than that of gravitational waves

of the same wave number. Furthermore, from the tidal equations,

if % is small
WP
-———-ﬂ’a' ’

P <
bk

}u,ﬁvg]»v

. w* '

Hence ’u%wg] ~ o ] << )»u_x} .

R™Cy,
Similarly ).LLX + V:‘j’ L < /'U'j] , which means that in this case the
horizontal divergence is dynamically unimportant too.

The vorticity equation is now

9 ( ‘

— (AL -LP>._ V=0

Bt g X ﬂ H
which describes mon-divergent Rossby waves. Introduction of a stream

function and Fourier transforming leads to the dispersion relation
R+ L

It is not the gravitational restoring force which is providing



the essential dynamics. When Aly +1a == ' we have area-preserving
motions and the vertical component of vorticity is conserved. Omn

the equator although $==O N /3 is non-zero and a fluid parcel still
appears to have a relative vorticity as it moves north or south, and
the‘Rossby wave‘mechanism still exists.A The divergence will be un-

i
important dynamically provided g3 <R+
n
l.e. |__4<_C_‘:L.

If the horizontal divergence is dynamically significant, it
can be seen from the dispersion relation that its effect is to de-
crease the frequency.. Qualitatively this result can be understood
in the following way: " When a fluid parcel moves north it will ex-
hibit a relative anticyclonic spin which means that the pressure
will be highest at its centre. This must have resulted from a
horizontally convergent motion which causes a stretching in the
vertical direction of the vortex lines. The absolute vorticity is
increased. Then the relative anticyclonic spin must decrease which
decreases the Rossby restoring force, and hence the frequency.

For long wavelengths (UO"\J + ﬁch)we find by comparing the

time scales, that our hydrostatic approximation is still good if

v/ -%‘B ﬂl.: < <& ) , where R is the radius of the earth.
n

For very short length scales the approximation is good for
inertia waves but for Rossby waves: it breaks down near the equator.

We can no longer set &+G"=O but have

g+<s-—?-:zﬂcwojo,u.=o



Fortunately, however, the last term does not play any role in our
treatment of the problem, because vertical displacements drop out,
producing a decoupling between the horizontal layers. The hori:on-

tal wave motions are then independent of the vertical structure.

These notes submitted by

Douglas Gbugh
Hans C. G. True

Lecture #XIT

Non-Linear Motions
Measurements at the Meteorological Office in England have
shown that it is not a good approximation to regard atmospheric
motions as a sum of linearised Rossby waves. We are therefore forced
to consider non-linear motions.

We shall now consider geostrophic motions with the Brunt-

vaisdl8 frequency a function of 2 only and, for convenience, assume

that the Boussinesq approximation can be made. The equations of

motion then. take the form:
A
9.{}><gg+-é—;VP+a‘z}J =0

A
where Z is a vertical unit vector. Eliminating the pressure by

'taking‘the curl we obtain the vorticity equation:

ZCQ.V>% — = % X Vo .

- From the equation for the vertical component, L.V w=0, we see



that w~ is independent of position along a line parallel to the

rotation axis. The equétions for the horizontal components are:
QQ'VLL:G'.j 4
29:'7’[}‘:"6; .
H w’tsp << ] , these reduce to
L ,
20.9m P dg =0y
Qﬂwj’)u‘i :“’6;"

These are the "Thermal Wind Equations'". By means of these equations
it can be found that for a typical value for the temperature gra-
dient in the atmosphere (227— "/D Q/lmokﬁawe obtain a velocity
gradient @& ~ 30”/5,&6 PULIOKM . This gives a difference in

B2 J
westerly wind from ground to troposphere of 60 knots, which is
large compared with the ground wind speed. Note that this has come
from a vorticity equation. Gravitational forces are feeding vorti-
city into the system and this can be balanced only by variations in
the Coriolis force. .The thermal wind equations are a good approxi-

mation when Zi'<3<1 . However, they are not predictive equations;

we cannot determine from them the time development of the system.

In order to do this we must take higher order equations into account.

For sunp11c1ty, we shall consider an inviscid, Boussinesq

liquid with .r. Q.Q SW) CP constant. ﬂ -effects and viscosity could

easily be considered, however, provided they are not so large as to
destroy the basic balance assumed below, but the essential physics

is contained in this simple model. We assume that the Rossby number
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based on the vertical component of the Coriolis force,Ro=£E<<l 2

and that—lzl-cb‘ty<<l , but that L ~ ]

vT
The vertical vorticity relative to the rotating frame is
U v.. v
of order - . Hence the order of its rate of change isEl._.»\—_E,

which is assumed to be comparable with the stretching of the
, , L% W v W
vortex lines N-F—,g; N'j: T Thus-—E —~ ‘F H and so
_V_V_ —~ -g- .
H L R
This means that to lowest order in Ro,ux-r Vé = QO . Motions
are horizontally non-divergent. We now introduce dimensionless

variables and let primed variables be the dimensional quantities.

We set

X—L
ccC
1
—
Ve
X
ek
~r
v -

2'= H=a X,La are of order unity
‘t’:: J:—t'
V

. The horizontal velocity

= U[{Jﬂ,-i- RQ*;'_-' + O(R:)] ’

= W[ Rujro(RY]

JUL [?O+Ro?\ + O('R:)] ,

o = U [meRrg 1 0(RY)]

.&
>

g
i

<

l

-0
X

Ry N H®
Nez) = PRy
L
/
The non-dimensionalisation of —E%; is suggested by a balance of the

pressure scale with the Coriolis forces. We are also interested in

having gravitational forces and Coriolis restoring forces approximately



in balance. In the linear case this occurred when Eﬂi ~ 1. But
Ch'v/VFiand so we would expect that Zy{% ~1 . Thisbgonsideration
motivates our choice for the non—dimensionalisation of the Brunt-
Vaisdld frequency. By substituting the dimensionless quantities into
the equations of motion, the continuity equation and the adiabatic
equation»and equating terms in the same power of the Rossby number
we obtain two systéms of equations, one of zero order and one of first
ofder in 7Q° .

a) - Zero-Oxder Equations

We have already. shown that to zero order in fRo
Aoy *'153 =0
Hence we may introduce a stream function to describe the horizontal
motion and write

)
Mo=Z x VY, (x,y,2, 1),
The horizontal momentum equation is
.—-Vﬁwo’,'v,‘.-Po :O,
which implies that ‘

V= P+ fr<z)f)7 where F is an arbitrary function.
-]

A
Butg %V\-Po depends only on V% ').Vo and so we may choose Wo such

that
YR
In the equation for vertical momentum we can neglect the
term-—}g- CD‘TSVW3 and obtain an equation for hydrostatic balance:
TZZ'+07 = 0.

The lowest order adiabatic equation is
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D, 05

= 0,

De -

Dt TP

tity wy , and so the zero-order equations cannot be closed with-

Dt
where +u, oV . " This introduces the first order quan~

out appealing to the first-order system.

b) First-Order Equations
The continuity and horizontal momentum equations are:
W%+ C‘U/U‘{;L,:

- Dou. 3
.DE L H d5t37uj'x + Z)<t11+ Vo P =

where 2& is a unit vector pointing towards the east. ©Note that
there is no vertical convection of momentum. We must neglect the
second term in the momentum equation because we have assumed that
— coif?7<ﬂ< 1. rTaking the vertical component of the curl of

this equation we obtain

Qa;v{'%-.tclwu,:o :

Dr -
Hence @D_z_vg‘]/g = w,
31 Deos
22 LN? Dt

_3 [._L_ Do
22 LAN%e) Dt M*] )

using the potential voerticity equation.

We have

32[N=Dr ] ’ww)] (a%> SATSNE

The last term vanishes because
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Do _ S
é;; = é\x‘?ﬂ%a

which is perpendicular to the horizontal gradient of 7&51H3% .

Hence

2 [ % 2 (%)) - 0

This, together with the boundary conditions on the level surfaces:

w; =0,
. | D
L&, 'N":_ ‘fo‘t -‘-yo:a_ =0

D _
:th“—’o°

are the "Quasi-geostrophic Equations'.

- The quantity \7*1}{) +% 7:/—& wpz)_ is called the potential
vorticity. The first term is the vertical component of relative
vorticity and the second describes the change in length of vortex
lines due to gradients of potential temperature. The quasi-geo-
strophic equations express the conservation of potential vorticity
as a fluid particle moves. Note that if we had an Ekman layer the
boundary condition should be modified to take account of the Ekman

layer suction.

viz: %Wag :}fv:’% ?
Lo
Where =12 (—)7‘

Comments
1) The horizontal motion is non-divergent; 1Lo::§’X(Q LA and

the vertical motion is an order smaller in the Rossby Number. So



we obtain j = "—IE% .
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jw%} <<',HD.V".' There is no vertical transfer of momentum.

J2
= -’,}aéé(?t‘ X Vﬁ%)] Yo Yo H“’“v%q;
='*‘(§v X Vﬁ%z)'vﬁ%a+ ”*"°°v%§

k== %O.vo-;.

2)-%(9:0.\76‘):% ‘V°_+IP_L°‘V%%—_

This shows that the variation of M, with height associated with
the presence of horizontal temperature gradients does not comn-

tribute to the term %(QO'VF>. This allows us to invert the

operators—;- —)-—.* and -:99-
oz N Dt

3)  Let j be a small vertical displacement of a fluid element.
2
The buoyancy force, 0= N f . Using the hydrostatic approximation
o= - S5z \\/z_a
N

21+f°- Consider now the motion of a vortex line

2, ;_x,-a»)’, element. The fractional change in verti-

cal length as line element moves is

1 3(3%)

Calling the vorticity before the displacement § , the vorticity
-
after the displacement will be & +Vﬁ W . On the other hand, this

must be equal to Q["‘—i (WJ)] . If in the basic state
o2 Ty~
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= =28 i icit we - then obtain the
Q -'[ :)'QVerT/caJ (no relative vorticity) ‘
equation

ARG IEL

Note that ;ﬂ=l in our non-dimensional units.

4) 1In oceanography the potential vorticity for a homogeneous

fluid is defined in another way. We consider the translation of a

Taylor column.

{=ﬁw:wc where 7 is the
latitude.

curl 44 is parallel to é}

curl@i4—2€£_is the absolute
vorticity.

louwd e+ 20 2. oud u+f

The quantit =
1 v %mwf +

as the column moves, and is called potential vorticity.

is conserved

In the /B -plane we can write the potential vorticity in the

s ss LY g2 (3 )

5) For any motions of an inviscid, even compressible fluid
for which there exists some locally conserved quantity ® , which
is a function of pressure and density alone, and which in our case
is the potential temperature, we can derive the following equation:

i[(wﬂu-}—z&l)-v e]:O,
Dt -~
which expresses the conservation of potential vorticity in general.

It must be emphasized that no geostrophic assumption is involved.
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The Balance Equations

The quasi-geostrophic equations were first derived by Charney
for the purpose of numerical weather forecasting. He formulated
them to remove gravity waves from the problem since these can lead
to. severe numerical instabilities unless a prohibitively small

grid-spacing is employed. Gravity waves can be eliminated by

» Y L<L 1 , but it is not necessary to assume

TWNH WA

geostrophy. Near the equator non-divergent Rossby waves can exist

assuming that

which are not geostrophic, and cannot be found from the quasi-geo-

strophic equations. A geostrophic motion implies that -
Ju+rB =0,
---F'u’ +?'J = 0
and if we can regaj:d _'P. as constant, then 7C(_U_x + V‘j) =
A gepstrophic motion, therefore, implies non-divergence on an

% -plane; but the converse is not necessarily true. It is perfectly

consistent to consider —V’—K_ <U lmj’ Y <# 1 . This situation

produces the "balance equations'", a generallsation of the quasi-
geostrophic equations. Let us, therefore, assume that-%g;ul and

A/H £< ] and that the hydrostatic approximation is valid. Take

_p\/_\(', 44% , in fact %(' ~(-m) % . As a consequence of this

,}L%) separately and so we may introduce a stream func-

A
tion Y for the horizontal motion: AL, = 2 X9V VY. . Also
jUJ‘§%{<k}LL_- ‘ which implies that there is no vertical transport
of momentum.

The vertical component of the vorticity equation is
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fDE(VfW*‘C)‘@*V‘W)%- (mwa‘,’“) v =0
! | ;‘

I
¢ t

N"

U Y vy
L* T WH 2 NH

where the orders of magnitude of the indicated terms are written
below. ' The term involving ‘Qﬁ disappears, as previously, in

. view of the hHydrostatic approximation. Although:- vy may be
small we retain it at this stage in order to include the possibil-
ity of non-geostrophic motions. Having neglected all other small

terms we obtain =

AU

1
ATt P2

function for the horizontal motions.  In order to complete the set

Also W =- " and the pressure no longer provides a stream-

we must go back to the horizontal momentum équation
Dy
+ Z'KLL — Ty P = 0,

s AR ]

with: .

)

"~

4y = ZXVAW

Taki'ng‘ the divergence of the momentum equation leads to

a 4 . A % I‘ -
V- [(ﬁwg VIV)-(;NW) -f VL V+8Y, +—e;v% p=0.
If the scale of the motion is very much smaller than the radius of
the earth we may neglect ﬁ WX in this equation. As a reminder,

W is the stream-function describing the horizontal motion, P

. * ,
the perturbation in pressure, F a standard constant density,
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-f- is the Coriolis parameter Qﬂs;mﬁp, where 50 is the latitude,
/3::22%- which is assumed constant and the operator VQ% is
(B ,_EL) . Z is:a vertical unit vector.
o’ ~
- The only difference between the balance equations and the
quasi-geostrophic equations is the inclusion of the acceleration
terms in the former. Charney believes that the balance equations
may have some validity in equatorial regions to describe motions
from which gravity waves have been filtered. But we have ignored
latent heat of condensation of moisture, heat transport and turbu-
lent momentum transfer, all of which may be significant.
We have derived these equations for a Boussinesq liquid,
but this approximation is walid only when the thickness of the layer
considered is very much smaller than the pressure scale height.
When H is comparable with the scale height the Boussinesq equations
can still be used if pressure is used as the vertical coordindte.

We briefly illustrate how this is so.
z

\ P=CMﬁT We now take 11 to be a

function of P

Sz
3% Ak

4 x

7

On the surface of constant F: .-a?-g‘é‘x + %E \52 =0.
z

2 =apmat, = ‘
_.§_;=_(?g§ ’ 2= ey, x=congl”
S ey

Le. (‘aﬁl,: 3'9(2) i
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The R.H.5. is a term which occurs in the momentum equation.

7z We now consider the continuity equation. It is assumed that
4

the slope of a constant pressure sur-
face is small. H<< L . The mass con-
tained in the element between the two

constant pressure surfaces is

-é—(ﬁ—?‘>5 , where § is the pro-
jection of the element onto a hori-
zontal plane. This is also the "volume" in pressure coordinates.
Conservation of mass is equivalent to conservation of "volume'", using
this pressure coordinate, which implieé that the continuity equation
in this system will be the same as for a Boussinesq liquid.

We assume:

1) * Hydrostatic approximation,

!

rxyzt) ¢

RO

2)

With an analogue pressure defined as ——,\0*3 [f\ (}o)-—ﬁl,(P)J

and an analogue Brunt-Vaisila frequency Aéf: ~55%§é%§;- the equations
of motion are exactly those for a Boussinesq liqu;d. Using this
definition, \A/i%aries by a factor of 25 between the ground and the
troposphere and not merely a factor 2 which is usually assumed to be

the case in liquid modelling of the atmosphere.  The analogue W”

which is required to complete the equations is proportional to the

P
analogue 'E;E . The boundary condition at the ground is not, there-
fore, w™ = 0 . Physically the ground behaves as though it were elastic

~—
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in the analogue system. The atmosphere behaves like a liquid of

finite height on a horizontal membrane.

I
04‘2%)
as #, —>»H , where f} is the analogue height of the fluid layer.

’ 2z
There is a singularity at the top of the layer. /Va_ﬁJ 2
In the quasi-geostrophic approximation the elasticity of
the ground can be ignored and we may assume it to be rigid, but

for the balance equations this simplification cannot be made.

These notes submitted by

Douglas Gough
Hans C. G. True

Lecture #XIII

The Baroclinic Instability
We wish to examine the stability characteristics of a
westerly air stream. - The wind velocity U is assumed to be a
function only of the northward coordinate lj and the height & |,
and it will also be assumed that the quasi-geostrophic equations
' %
apply. /v is a function of & . The stream-function ﬂy‘ may be

decomposed into the basic flow, ?C«jﬂ-) and a perturbation 7(}(%,%1’):

Wy = q?'*jf 5 -?g = =U.

The basic potential vorticity is

Q:WWJF%(]IF%)"’ ‘V‘o*‘ﬂﬂ

where .}7-6 is the value of {: at 3:0 . Hence
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%93' = Uy~ 5% (7 Us) + 8-

The first term is the gradient of relative vorticity of the basic
flow, the second is that part of the potential vorticity gradient
which is directly associated with temperature gradients and the
third is the gradient of vorticity of the earth's rotation. On
linearisation, the conservation of potential vorticity is ex-

pressed by
(*+Uax>[\7ﬂ90 ’az(/v 502} _g:O'

Although the flow has no definite boundaries expressed by

y = const., in order to obtain a well-defined problem we shall
postulate the existence of such boundaries across which we shall
assume no fluid flows? i.e. Efy= O on y.= const. The condition
.that there is no flow through the ground at Z= -1 is expressed by

Dow - . . ,
Dt,q; 0O . The linearised form is

(—%—+Ua)‘>g U% 0 m z2=-]
As we approach the top of the atmosphere, in pressure cbordinates
/V%ﬂg oo it is mnecessary to impose the top boundary condition at a
singularity. The difficulty can be overcome by means of a radiation
condition. For simplicity, however, we shall regard A/Zas finite
and bound the atmosphere with a rigid lid. The results are qualita-

tively the same as those obtained by doing the problem properly and

exhibit the essential physics. We therefore take

-,-J%—ny%‘—ro o 2=+l .
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We look for normal mode solutions. In order to study the
stability of an arbitrary disturbance it is necessary to obtain a
complete set of normal modes, but usually the problem does not yield
a complete set and we cannot determine the complete stability char-
acteristics. For the special cases A/%E const. and A/mc< 2 the
set has been completed and it was found that the stability charac-
teristics were unchanged. We thus set

g = ?‘(g)%)el.k()t“cr)
The mode will be unstable if gyh(b): Ce >0

Substituting this form into the potential vorticity equation

78+ g ok 3 -K}F -0,

with | ‘(u~c)gz*usz=o on 2 =+ 1
Fo e g0

This equation has been solved only under restrictive conditions.

leads to

1f L)=luﬂg7only R

{%E%:f /9-—‘J%% is independent of 2 and separable solutions

of the fornxfﬁ:{(!)j(?) can be found. The function %Z(a) turns out

to be the vertical structure for internal gravitational waves in. a

stratified atmosphere. jéi)is essentially the same function that

arises in Rayleigh's inviscid analysis for the stability of a homo-

geneous non-rotating liquid with U= chg)o The flow is stable unless
44

/6-— Ug? changes sign somewhere in the flow, i.e. if Cij is single-

signed everywhere, the flow is stable. Since the only effect of
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2
gravity is through N , which does not appear in this case, there
can be no potential energy available for the disturbance. The
energy of the disturbance is drawn entirely from the kinetic energy

of the basic flow.

when U = U(® only,

. 2 :
if we furthermore assume that /N = const. and /6== o,

A
then %%gl _is independent of j . We can take é = é?(ﬁ)&ﬂﬂ'9ng

Fut [ - 3025 -

This is again the equation which arises in Rayleigh's problem but

and obtain

now the boundary conditions are no longer the same. In our problem

U

2
the boundary conditions are é\Vi = 32 =0 at 2= I | whereas in
the Raylgigh problem 4} =C on 2 =11 . Our boundary condition
corresponds to a free surface in the Rayleigh problem, that is, one
on which there are no pressure perturbations. In the Rayleigh
problem lji%’= O is necessafy for instability with rigid bound-
aries, but for free boundafies this is no longer true.

It is thought that our major weather systems are driven by

the baroclinic instability.

The Eady Problem

This is a simplified model which can be solved analytically

and is designed to exhibit the important features of the baroclinic

instability. We consider the stability of the flow in the x-directionm,
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U = 2z , of a Boussinesq liquid in a rectangular channel which is

rotating with an angular velocity n =-é.F about the z-direction.

2 . R .
Furthermore N =71 , /3::0 in our dimensionless coordinates, and

we take N =1 too.

=
‘\’ja_ 2
£ Z P

B2l v gt
<

a}

7 - — -~ -~ /

Vg Gt - _ ,! P e
Z\z/ ’/G) - P {

:/ — - - - ’I,'

R - /4/ _ - A

I/ N // - /
Yy _ - - o

B —

/ _ - - - /

7} —_ // ;

/ <7\ -
Bz =1/t = g
- e LTSS ,/'/j

thermal wind
direction: U=2

lines of const.
potential temp. 6

In physical space the slope

of the lines 6 = const.

YR
is f U£<<~1 where a prime
12

denotes dimensional quantities.

The basic potential vorticity lQ, is constant because

Q= ‘UW%("‘

If we introduce a sinusoidal wvariation in the x~direction the equa-

tion for the perturbed stream-function becomes

A
?;z-(/?ﬁ'i'eq)? f—_D ’

which has the solution

'
~where /Q and o are constants and = k&4'£f

$ = Aesh n(z -)

-3

The constants are determined from the boundary conditions

A
Fo tamba(zs) =

i

1}
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Eliminating o yields an equation for C .

weT= 1+ 2t esth 23 .

A+ 2 eoth 2

0.3 >X
—o3 - -—= : .

2,
For ¥« 1,2 , C < O and the mode is unstable. This is a case of

a "'short-wave cut-off". Long waves are unstable, The mode is un-

stable if F—?:E?;+9v’
%:F'—
!

If the rotation rate is increased, 4. is increased and the flow

< 1.2 -

is unstable to smaller and smaller wavelength disturbances. The
“cut-off wavelength' is independent of sz , and hence the horizon-
tal potential temperature gradient, although this is the cause of
the instability, but the horizontal potential temperature gradient

t |
does determine the true growth rate which is 'V-%% %Eg-v-x’c‘.

The Neutral Solution

It is of interest to examine the flow pattern for the neutral

solution:

g

Note that normally there is a basic westerly wind superposed on this

il

/.2 amd o =0

i}

A csoh Mz ek x Sim fy :

—

o
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solution which does not change the stability but carries the solu-
tion. to the east with a constant velocity.

5/ is a pressure perturbation which is an even function of 2
O = -—502 is odd in & anaqfis even.

The following flow patterns are as seen looking down onto the

disturbance.
|
pvrrspisos i s s )
| | : y=T14
|
m—/
I [ [ — ‘ ,
Top half | L ——— basic molion
e
i | - | o
e /' S / i -
I
! | o
! ' | ) x
I i | ) Y,
/////r s PP ' 3__}@
|
M
| : I e
Bolfom half | B <——— Jusic molion
M =
[ ! L -
P P 7T =0

1

For clarity we isolate a single mode in each of the top and bottom

halves respectively. f

Top hal} |

L7 y<o
2 Dt
- ryre le. W <O

viyp<o
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Taking the boundary conditions wr=0 at Z=1 1 in consideration,
the values of W7 tell us that at the dotted line in the diagram
above, there is rising motion; & > O in both halves.

Let us now consider the density field.

w=0 oo vertical displacement

displacernent may,
c >0

S
g
w th .
tow 3 £ high pressure
pressure |~'L' § b
&
NS wr=0

displacemeaT min

Bothom )ml} l

| <o

The rate of working of the buoyancy forces G aF is zero for these

ar

steady motions since ¢ and W~ are - out of phase.

Growing Disturbances

jﬁ is no longer an even function of # . We then have the

following expressions for ¢~ and WJ :

T wlket

i

-A?/(sim%yz(zw«)m’kxsim dye

i

w = ikco+6g Gy~ Ty 9y -

Hence CL?E:I‘/? €T % and since [Ke € O for unstable disturbances

wor < C. Rising motions are, on average, associated with negative
C™ which means that potential energy is being converted into kine-

tic energy of the disturbance. For small growth rates, the flow

pattern looks qualitatively like the neutral solution only with the

top pattern displaced slightly to the left (west) relative to the
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bottom. Although this model is very idealised, the solution
qualitatively agrees with observations of the atmosphere. This
is the only justification for bothering the reader with the
analysis.

1f we have a small ﬁ-effect, then %_Q # This

0
RN
introduces a term ~t?§z into the equation for ~?7 which causes
a singularity when € is real. This drastically changes the
form of the motion; now all modes are unstable, but the growth

rate for a given ﬁ is very much less than that due to the

normal baroclinic instability where we set /3: 0

These notes submitted by

Douglas Gough
Hans C. G. True
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Lecture #XIV

A Physical Explanation of the Baroclinic Instability
Because of its simpler physics we shall now consider a two-
layer model to explore the baroclinic instability and later com-

pare it with the Eady model.

a=xf
? We assume U is a func-
- s . .o ¢ s 4—‘
P - i A /! PV, s ‘ 4 tion of 2 only, /v is
fUl S} ’)‘VP ‘
’f]a.qmll v Al constant, P, < £ with
U, @ ﬁj’W - /2-h << 1 , and that
foxm 2 o Ca Pa+(9
éfw“ R e A ’ﬁV each layer is homogeneous.
—>Y

The slope of the interface i1s assumed to be small. All the gravita-
tional restoring force is at the interface between the two fluids.
If 7?c<311 ,, each layer of fluid moves in Taylor columns which do
not have constant length because j7=,f(5). The equation for con-

servation of potential wvorticity in the upper layer is

j% [V,;-W,"}' ,;Yr} =0, ignoring /j’-effects.

expresses change of vorticity due to slope of
interface.

The stream functions qﬁ ,1¥1 in the upper and lower layers are equal
to the pressure perturbations from the basic state divided by den-
sity; but this pressure is due only to the height of the interface.
Hence, - '1.})1-'1}‘(' —S '

Thus | %(V;l}/"f"%_—w,):O “
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O in the lower layer.

W

smitarty 2 (W, -
Similarly oy (V% v, ‘ W.{{"W,)

.Choose axes moving such that Lﬂ

(1}

- U, . The gradient of potential
2 I%

vorticity of the basic state is then

dQ __y  -(v,-Y,
dy T T (V- th)

2\, because U 1is constant.

1

dQ= _ _ .,

“Also =

o
We shall now examine the stability of the system by considering

disturbances of the form
_ ~ [(kx+ly-Rel)
-M=m+&ﬁe ,
, ,
, A Lk +€lj—kcf)
V=¥ +®ye
2 2
where H£ 5 1g; are stream functions for the basic state. By sub-
stituting these expressions in the equations and matching the
.solutions at the interface, application of the usual boundary con-
ditions yields the dispersion relation
an
N

c* = U=

2
a EN % R
where X = ,43 +£ . ¢ is real only if A > 2 . Once again we
have a. '"short-wave cut-off" - the motion is unstable for long

waves. It turns out that
U+

s ————

v-c.

-
-

#ﬂ¢®

For stable modes, ¢ 1is real and f and %’ are in phase, but have

different amplitudes. For unstable modes, however,f ﬁjl = /?#/

but they are out of phase.
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The similarity between the results of this and the Eady
problem is very marked. In the two-layer model the instability

arises from variations in the potential vorticity which are absent

in the Eady model. The Eady model, however, contains variations in

potential temperature which are absent in the two-layer model. On
considerable reflection the distinguished lecturer thought of
these temperature variations as regions of extremely concentrated
vortitcity.

The natural boundary conditions to apply at the upper and
lower boundaries is Wﬁi = const, independent of X and ﬂ ,, which
is achieved when there are no horizontal potential temperature

= (
radients on the boundary.-— ) = O implies that will con-
g V5 (Yo p LA
tinue to be the same constant for the perturbed flow. Hence
LY. 0 on the bound
;Z;-— on the boundary.

However, the basic flow L}=‘2 of the Eady problem does not

satisfy thdés condition, but it could =

., s s Ay
be achieved by flattening the velo- _____9,____ﬁu

city profile such that U is con-

stant in. an infinitesimally small

layer near the boundary. In doing

this we have removed the horizontal potential temperature gradients
at the boundary but introduced an infinitesimally small region of
highly concentrated potential vorticity. Although we have modified
the precise statement of the problem by changing the basic‘equili—

brium flow, it is believed that the important physics determining

pr—
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the instability is the same. This change in the problem has
introduced delta-functions in 2 into the basic potential wvor-
ticity in the neighbourhood of the boundaries.  Mathematically,

we have thereby removed that part of the cause of the instability

~arising from the boundary conditions and transferred it to the

interior flow field.
Since /Vl is constant the stream-function is related to
the potential vorticity by

%= '\V)(x*wg'j * Yaa

This may be solved by obtaining a Green's function, G which is

a solution of , vﬂG ~ 5(1)3)%) ,

and satisfies the boundary conditions: 6;2:0 on 2 =+ 1. As
in eléctrostatics this Poisson equétion may be solved by the
method of images - the image system required is an array of
equally-spaced images on.a straight line paraliel to the z-axis.
This may be represented by Fourier cosine series in 2Z

We now do the same with the two-layer model. Take
_vﬁ-
% %WI-I-%—% >
g X
%a:-Y7%1ﬂ,+WM -IVL .

Set ~ ,
;=%~Lcﬁ=k)<cm?g s L= l2,

V) = 4+ G s
(V=)W -¥,)= ¢~ Fa -
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/\l_{_a;z

Hence w' +Y, = v
%% -
- - 2
and '\)/' -, = ﬁ where Xz R4+ 4"

For short wavelength disturbances Y +32 = X>, and if %1-_- o,

~ b

] X*

and \'Pz O .

From this it is clear that a disturbance of small wavelength
originating in the upper layer is almost entirely confined to
that layer. But this is not true of large wavelengths. - Because
the boundary condit‘ions are 'W{o’z =0 at 2=+ 1 , the image system
.for a single vortex element is an array of vortices oriented in
the same direction. Hence, if %‘ = —%z’ we have a line of dipoles
which induces velocities whose long wavelength components 1argelyk
cancel. - If %I= gz we simply have a line vortex and "lH "‘1}’2‘)")1{‘3. :

We will now attempt to follow in detail the dynamics of a

horizontal disturbance in the two-layer model.

7‘0/’ YO A Yy,
da _
—> U ® - O + ® iy =2
L - dQ __
BolTom VA T A A e
w E
Top S N S D?sp/acemen'rs
BeTlemm S N S 3[5‘,7 lacemenls

This diagram qualitatively represents the excess of vorticity created
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in the two layers by an initially sinusoidal distribution of
horizontal displacements. A northward displacement in the upper
layer gives rise to a negativé excess of vorticity which causes
an anticyclonic rotation. - In the bottom layer, however, the
opposite is the case. The plus and minus signs represent the
sign of the excess potential vorticity and the arrows @, @

the direction of the cérresponding flow. The potential vorti-

cities are equal and opposite in the top and bottom layers.

LA A A

1

!

,'_?:%(f—%)— 2—?—{2 where Z‘z?jp:-?)‘l.

The time development of this pattern is governmed by the equation

3@' [_U+29.J” 2%,
ot dy 24T 9x

-v +2’§¥“] %cl—f;'* '

u

Since (.B%:EL o('%ﬁi\- and 0&‘ is sinusoidal in X% , the distribution
of ?%%% is 7tél out of phase with %' . The sign is determined
by the sign of the term in parentheses; we note that the first

term is greater than the second and the situation is dominated by

advection of -potential vorticity by the basic flow. The effect is

most easily seen by returning to the diagram.
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N ) N TInitel Displacemenls
. 5w .o
l
7-29}0 £L L |’ Ll ' PRI

5t
| T - T @
<—VuVUe —~ o 4+
b [
'Bomm// 1~ 7 ' ST i
! ]
2. N S )
3t* N 0

Diagram (1) represents the initial situation as previously
illustrated.

Diagram (2) is the difference between the situation at time At
and the initial state; it represents the first time
derivative of the flow which is dominated by the
advection of potential vorticity by the basic flow.

Diagram (3) shows the displacements induced by this time develop-

ment of the initial displacements.

It is clear that the displacements have the same sign in the two

layers and are such as to reinforce the initial disturbance. The

flow is therefore unstable.

But we have not explained the '"short-wave cut-off". The

velocities arising from the initial displacements compete with the
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basic velocity in advecting vorticity. In obtaining (3) it has been
assumed that it is the new induced vorticities which dominate over
the basic advection in determining the displacements which ensue.
This must be justified.

The difference in advection between time T= O and T=41
is estimated by

) BQ\
(a?n [U-I— ol ']q,x =2V
> |
oy
because now Sf = 50 and Z, =%, and so y = _?E.'_ . + The equation
[ 2 ! 2 | xm

2
_is dominated by advection due to the perturbation if X <2 in

which case situation (3) ensues.  The flow is thus unstable. TIf
}(2~>\2 , this physical mechanism is removed. Advection is dominated
— by the basic flow and this instability is no longer evident.
Thus we see how the two—layer model exhibits a qualitatively
correct physical explanation for the instability mechanism arising

in the Eady problem.
These notes submitted by

Douglas Gough
Hans C. G. True
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ABSTRACTS






SOLAR CONVECTION
Edward A. Spiegel
A short review of observations of solar convection was
presented and physiéal interpretations of several of the phenomena

were suggested.

LARGE -AMPLITUDE CONVECTION
George Verohis
The stream function and the temperature fluctuation in
the two-dimensional sysfeﬁ of equations for Bénard convection are
expanded in a series of eigenfunctions. The series is then trun-
cated and the resulting set of ordinary non-linear differential
equafioné is integrated nuﬁerically to derive the steady-stdte

solutions. Comparison is then made of the heat flow for a given

‘Rayleigh number for different numbers of terms in the expansion.

Convergent results are derived for values of the Rayleigh number
which are 30 times the critical.

It is shown that the most severely truncated system corres-
ponds to ordinary second-order theory in the Malkus-Veronis expan-

sion scheme and that more complete representations (more eigen-

functions) yield heat transports which are more than twice the value

derived from the second-order system. Different values of the
Prandtl number, ¢~ , yield different heat fluxes with the maximum

(the change is very small) values occurring for small ¢ .
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MINIMUM AND: MAXIMUM PRINCIPLES FOR VISCOUS FLOW
Joseph B. Keller

Helmholtz considered the rate of energy dissipation in a
slow steady flow of an incompressible viscous fluid acted upon by
forces derivable from a single valued potential. He asserted that
this rate is smaller than that of any other incomptessible flow
satisfying the same boundary conditions, but he proved phly that
it is stationary. Korteweg proved the statement when the veloeity
" is prescribed at the boundary. ' In this lecture the theorem is
proved for other boundary conditions and generalized to include
‘flows containing moving solid objects, liquid drops or gas bubbles.
From these results it follows that the flow in question is unique.
It also follows that the Stokes flow yields a lower bound for the
“drag on- an object, that laminar flow inh a pipe has a ‘lower resis-
tance coefficient than turbulent flow and various other facts.
It is shown how these results can be used to obtain uppér bounds
- on the effective viscosity and sedimentation velocity of a sus-
pension and a lower bound on the velocity of rise of a gas bubble.
The results are also used to clarify some aspects of the principle
“of the minimum rate of entropy production. 'Finally it is shown how
corresponding maximum principles can be proved and used to obtain

opposite bounds on various quantities.
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NONLINEAR WAVES
Frederic E. Bisshopp

The equation,

Vo 3%, oV
It a3 T !

which becomes the Klein-Gordomn. equation when V*=.%.qf', was con-

sidered for the purpose of illustration of some properties of non-
linear waves. When YV has a relative minimum at @ = O (say), there
are 'plane wave' solutions

p=f(kx-wt), w k=1, L34V ()= E;
where prime denotes differentiation with respect to argument, and
E is a constant. The problem treated here’wasvthat of 'almost
plane waves' where the quantities ku W, and E exist and are slowly
varying functions of pesition and time. - A quantitative measure of
slowness of variation of the appropriate quantities can be intro-

duced by defining two scales of variation according to the ansatz:

p=¢(x.T, S, €) X=-ex, T=et, 9= Plx.T€)/ .

. "Almost plane' waves are then ones for which

€0, }gf'&::@(]),wz—'PT= o(1).

The key point in the determination of asymptotic solutions in
the above limit is the requirement that for any fixed X and T , the

approximation to q9 should be a bounded function of A9 . It follows

that CPN-F('\Q;E>+G-F\9("Q)E)3('\'O»E)

where

.
| -

-i]cr\g+v-('F)"E, ’19-"‘"% .

The slowly varying quantities, 7> and E , are determined by the

relation E-=E(3')w*3um. —J-(E)=§-FA90L.F..
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T is the ‘action' and its dependence on X and | is determined
by (wT) +(k3‘) = 0,Wy,t k =0, w’L R*= 1
The periodicity of the oscillation is J\ = 'J CE)

and this determines the local wavevqumber and frequency, which are
R/ amd WA -

" The phase is given by

P KX -wT-ed, (x;T)

_where. )

(U){\QTJ( R,y >+ | [ '(wg)r':_(k%x di_ _

£
° £
Jw

-F(EE) o} ‘Ff EE)>O 1= -0,

Finally 3 (9, E) %(0 E)+(w,&,.r+k.\9” &+j @T;(&dz

where %(C%E>can be obtained, with difficulty, from initial data

at 1=0 (say).

The exact form of the ansatz introduced to describe ‘'almost
plane' waves was suggested to me by Martin Kruskal. The results ob-
tained here display one or two intriguing points of similarity with
his detailed results for Hamiltonian systems of ordinary differential
equations. Indeed G.B.Whitham has pointed out on several occasions
that the equations governing k;, w and J can be derived from an
averaged Lagrangian density of the original problem, but his formula-
tion does not-produce equations for the first order quantities, mpa
and 2

References

Kruskal, Marfin, 1962: J.Math.Phys. 3, p.806.
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AvyARlABLEwDENSITY MODEL OF THE GULF STREAM
Stanley Jacobs

The equations governing a‘variable—density boundary current
on a meridional boundary are transformed so that Y' s % , and T
are the independent variables, where Y is - a stream-like function,
.% is distance measured northwards, and | is the temperature
above the mean temperature. - It.is found that when a certain non-
dimensibnal parameter o is small, corresponding to strong stable
stratification, solutions can be obtained by making an ordinary
pertufbation expansion in & in a region away from the upper and
lower boundaries of the system. Since the vertical velocity in
this region is of order O , the flow inrthe main body of the fluid
to lowest order is planar.

It is found that the vertical velocity as computed from

the ordinary- perturbation expansion does not vanish at a horizon-

tal boundary surface unless this surface is isothermal. As the
temperatﬁre of the ocean surface is non-constant, it is inferred
that the ordinary perturbatioﬁ expansign is invalid near the sur-
face, and thét the region near the surface is a boundary layer in
which fléw varies sharply with changes in -7~. - This boundary layer
is identified as fhe main thermocline of the ocean. The thermo-

cline equations are formulated but have not as yet been solved.
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FLUCTUATING: OCEAN CIRCULATION
. Joseph Pedlosky
. The unsteady motions of a homogeneous bounded ocean on the

/3 -plane are studied. Both the free normal modes énd the forced
solutions for the linearized problem are compuféd. The non-iinear
- response is computed by a perturbation analysis. LOf particular
iﬁtereét is the steady (timé-dependent) circulétiohs prdducea by a
fluctﬁating wind stress with zero time-mean due:té the non-linearities
'of‘the‘dynamics; It is shown that the struéture’of the resulting cir-
culations, their strength, and their sense are strong functions of

the frequency of the forcing,stfess.‘ Dependiﬁg on ﬁhé‘magnitude of
the freqﬁency the resulting cifculations may have: 1) only a western
boundary layer (1oﬁ frequency), 2) no boundary layers (frequencies
‘1ess than a typical Rossby wave frequency for the basin), 3) boundary

layers on both eastern and western walls (very high frequency).

HYDRODYNAMIC STABILITY OF THE EKMAN BOUNDARY LAYER
Louis N.fHowafd

This lecture reports some results of a numérical study of the
stability of the simplest Ekman layer, the non-divergent one; In addi-
tion to its interest in geOphysicai fluid dynamicé this pfoblem is of
basic interest in hydrodynamic stability theory since the non-divergent
Ekman flow is in.fact an exact‘solution of the Navier-Stokes equations,
and thus its stability problem.appears as fundamental as that of the

Couette flow between rotating cylinders, the Poiseuille pipe flow, and
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the two-dimensional channel. flows. 1Indeed, it appears to be the
only. steady exact solution of boundary layer flow for which the
parallel flow assumption is rigorous.

The problem is however not very easy, and the present study

. was undertaken in part because of the availability of a fairly con-

venient and efficient program developed originally for the study of
boundary layer stability problems based on the Orr-Sommerfeld equa-

tion by R. Kaplan, and adapted for use on the M.I.T. time-sharing

- system by M. Landahl and L. N. Howard. The use of this program, or

family of programs, is however also the principal limitation of this
study, because the actual stability equations for the Ekman-layer
problem form a sixth-order system which while similar to the Orr-
Sommerfeld problem is not identical with it. - However, V. Barcilon,
in his study of the problem by the asymptotic method, showed that
the Coriolis terms, while essential for the basic flow, are of rela-
tively small importance in the stability problem when the Reynolds
number is fairly large, and this appears to be the case of main inter-
est. - When these terms are neglected, the sixth-order system splits

into the. fourth-order Orr-Sommerfeld equation with a basic velocity

profile which is the projection of the Ekman flow onto the plane ortho-

gonal t9 the wave crests, and a second-order equation. - The stability
characte;istics can then be obtained by studying the Orr-Sommerfeld
equation alone. However, a precise estimate of the errors implied
by this neglect of the Coriolis terms is not yet available, and the

results must be taken with this in mind.
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Calculations were made for wave angles /5 between 60° and
105° in steps of 7.5%; here /? = 90° corresponds to a wave whose
crests are at right angles to the direction of the geostrophic flow
above the Ekman layer, and with this definition Failer's experiments
gave for the average /9 of the observed waves a value of about 75°.

The lowest critical Reynolds number found by the calculation

o
and a wave number

wasg about 84.8, corresponding to /3 = 89
d . = 0.485. This value of the wave number agrees pretty well

with Faller's observations. His critical Reynolds number was some-

:what larger, about 125, and the wave angle sémewhat smaller. It

is probable that the observed waves would correspond to slightly

amplified rather than neutral waves in the theory, and in fact the

wave angle for the most unstable wave does decrease somewhat from

89° as the Reynolds number is raised.

OVERSTABILITY IN A COMPRESSIBLE ATMOSPHERE
Edward A. Spiegel

It was demonstrated that in a compressible, convectively

unstable atmosphere, thermal dissipation may destabilize the acoustic

modes.

peremy

oy
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THE MOTION OF A SPHERE THROUGH A ROTATING, VISCOUS FLUID
Tony Maxworthy
We are studying the effect of adding a Coriolis force to
the forces normally acting on the fluid particles in a viscous
flow field. Two parameters are important: a Taylor number (T),
representing the relative magnitudes of Coriolis and viscous forces
and. a Rossby number (RO), a measure of the relative magnitudes'of
inertia to Coriolis forces.
In the present work two approaches have been follawed:
to study very viscous flow in which rotation merely causes a small
perturbation from Stokesf flow and an extension of the previous
observations on the motions in a fluid of small viscosity, where
thetwork‘discussed by Derek Moore, in the notes of the 1963 Geo-
physigal Fluid Dynamics Programme, is centered. Thevformer is
described in detail in J.F.M. Vol. 22, so that only the latter, un-
published work, will be abstracted here.

Measurements of sphere drag at large T and varying R, show

that at small R, (~ 0.1) the drag is only a function of the inviscid

‘parameter R,- At large values of Ry ( > 1) the drag is less than the

drag with no rotation. For all values of R, > 0.1, the drag is a
complicated function of R, -and T. Dye studies of the wake structure

of a- sphere at small Ry indicate a growing stagnant slug ahead of

the body as R, is decreased. At R,< 0.2 the slug reaches a limiting

length which is then only a linear function.of T, for the small range

of T available. The slug formed behind the body shows no such
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tendency to é limiting length andkat émall Ry is probably as long
as the maximum length of test séCtion (~ 5 feet). Both wakes are
rotating withireSPect to the sphere, which under most circumstances
is itself rotating at the same speed as the baéic rotation. Thus
complicated rotating boundary layers are formed fore and aft of

the sphere in order to satisfy the noh’slip boundary Conditions
(see sketch).

The "hydrogen-bubble technique' has been used to further
study thevflow field produced by the sphere. A thin platinum wire
and the sphere are towed along together through the rotating fluid.
At a given instant of time a short pulse of D.C. power is applied
to the wire. The'water in contact with the Wire isvhydrolysed and
a thin line of Hy bubbles formed; these are swept off and distorted
by the flgw and.when'photographed a short time later indicate the
velocity field created by the éphere. ‘These show a waké—like struc-
ture extending beyond the slugs mentioned above. At low R, the
velocity profile in the forward disturbance has many features in
‘common with the theoretical calculations. However the rearward wake
has a rather different structure which requires more analysis before
it-is completely understood; At moderate R, it is rotating very

répidly (~ 6 times the basic rotation rate), a state which persists

until R, becomes quite small in which limit it approachés more closely

to the preédicted form. Further work is to be carried out on these

latter aspects of the problem.
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HYDROMAGNETIC INSTABILITIES OF THE SUB—ALFVEN.EQUATIONS
Willem V.R. Malkus

- A class of hydromagnetic instabilities is found which may
be related to the observed secular variations of the earth's mag-
netic field. This study was suggested by recent experiments on
flow in precessing spheroids. - Tt is observed that steady pre-~-
cession induces zonal (toroidal) flows with sharp changes in slope
(jets). Within a part of the laboratory range of parameters, quasi
two-dimensional wave-like instabilities occur on these zonal jets.
These ''planetary'" waves move only to the "east', drawing on the
energy of the toroidal flow to strengthen a poloidal circulation.
In this study, an experhnental'situation is visualized in which a
toroidal magnet%c field is imposed on the existing precession-
induced flow. Appropriate equations are derived for velocities and
frequencies small compared to those of Alfvén waves.  The conditions
for thefgfowth of hydromagnetic'instabilities ié explored.  The
problem proves to be non-singular in those terms responsible for
electrical dissipation. The characteristic equation for marginal
stability sets bounds on the basic zonal fields and determines a dis-
persion relation for the disturbances. The significant bound set on
the mggnetic field is that instability is possible only when the
- Lorentz force is less than the Coriolis force.  The growing poloidal
disturbance tends to stabilize itself by non—linear interactions which
increase the underlying toroidal field. ~ All disturbances move to the

"west" relative to the jet which produces them. A concluding thought

Jr—



- 109 -

is. that interaction of the poloidal fields with the boundary may
increase the boundary stress sufficiently to reestablish the destabil-

izing jet flow, hence providing a closed description of a geodynamo.

A THEORY OF THE EQUATORTAL UNDERCURRENT
‘Allan R. Robinson | :

A uniform wind blows across a horizontal infinite ocean:of
finite and constant depth. All horizontal variation is due to the
variation of Coriolis paraméter ( /9 -effect). Various natural
scales and regions occur. Far from the equator the Ekman-Sverdrup
flow determines the zonal pressure gradients and the transports which
are latitudinally indépendent. At the equator the flow is studied,
firstly for a zonal wind, whence the vertical and zonal velocities and-:
the meridional velocity gradient at the equator form a separable
problem. The constant eddy viscosity result yields qualitatively-a
Cromwell current. To inquire-more precisely into the validity of this
result, a turbulent model is developed free of independent parameters.
The model»is‘calibfated by Von Karman's constant and the proportionality
constants for the variation of Austausch with Richardson number for low
stability. This model indicates that the wind can account for the
undercurrent -phenomena. -Further qualitative results are obtained for
constant  eddy viscosity but more general wind and pressure gradient

forcing.
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PROBLEMS OF GALACTIC. DYNAMICS - NOTABLY SPIRAL ARMS
C. C. Lin
I. General Background
1. Galaxies of stars are usually classified in terms of
their appearance into elliptical galaxies, normal spirals, barred
_spirals, and irregularvgalaxies. Most galaxies (about 70 per cent)
are normal spirals whose side view is a disk with a central bulge.
2. The main contents of a galaxy are the stars, the gas, and
_the associated magnetic field. Components which are less important
from a dynamical point of view are cosmic ray particles, (including
high energy photons), other electromagnetic radiation of various
wave lengths, dust, etec. The basic equations governing these main
components are
(a) the equatiqns of stellar dynamics, which consists of
the collisionless Boltzmann equation, and Poisson's equa-
tion, with mass density contributed both by the stars and
the gas, and
(b) the equations of hydromagnetics, including both the gas

dynamical equations and the Maxwell equations.

The gas is '"infinitely conducting" because of the large scales involved.

Thus, the equations goyerning the magnetic field essentially state
~that the magnetic flux is frozen into. the gas.

3. The dimensions of a normal spiral galaxy are of the order
of 104 parsecs in radius and 600 parsecs in thickness outside of the

central bulge and excluding the hato region. Thus, to a first approx-
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imation, it may be regarded as an infinitesimally thin disk.
(One parsec, (1 pc.) is approximately 3.24 light years or the
distance covered in one million years at the speed of one kilo-
meter per second.)

4, The stars are in differential rotation.about the center
of the galaxy.  Indeed, for a major part of our own galaxy, the
linear speed is nearly constant at 250 km/sec. The period of
revolution about the galactic center is about 250 million years
for our vicinity.

5. Besides the circular motion mentioned above, the indi-

-vidual stars have peculiar velocities, like the molecules of a gas.

These velocities are however only of the order of 10 per cent of
the circular velocity.
6. It is known that the contrast of stellar density between

the spiral arms and the inter-arm regions is small. The contrast

.in gas density may, however, be as large as 3 or 4. The brilliant

young stars are mostly associated with the gas.

7. It can be shown, by an estimation of the orders of mag-
nitude of the various forces, that the magnetic field might be
important for the sgale of a spiral arm, but is definitely not im-

portant for the scale of a whole disk.
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TURBULENCE MICRO-SYMPOSIUM

THE DIRECT-INTERACTION AND LAGRANGIAN-HISTORY
DIRECT-INTERACTION. CLOSURE APPROXIMATIONS FOR TURBULENCE
Robert H. Kraichnan

The expansion of the velocity covariance as a power series
in the turbulent Reynolds number is discussed in the context of
isotropic turbulence. The direct-interaction approximation for the
covariance is obtained by a modification of the lowest non-trivial
truncation of the power series. At very low Reynolds numbers, this
approximation is presumed to be asymptotically exact. At all Rey-
nolds numbers, the direct-interaction equations have certain invariance
and boundedness properties in common with the exact dynamics: = Con-
servation of energy by the nonlinear interaction, the existence of
formal inviscid equipartition solutions, and non-negativity of the
turbulence energy spectrum.

The analytical and numerical consequences of the approximation
are discussed and compared with experiment. There seems to be fairly
good quantitative agreement at modest Reynolds numbers (those of lab-
-ératory wind-tunnel experiments), but the approximation gives qualita-
tively incorrect predictions for the inertial range at high Reynolds
numbers. - This trouble is traced to failure of the approximation to
preserve a further property of the exact equations: invariance of the
dynamics under a uniform translation of the flow system which changes

randomly from realization to realization.



- 113 -

In order to incorporate this ipvariance property, it is
necessary to expand the formalism.so that Eulerian and Lagrangian
statistical quantities can be treated simultaneously. ' This is done,
and the direct-interaction approximation then is altered in such
a way that the history of the energy-transfer process is traced

along the particle paths (Lagrangian-history) instead of at fixed

. stations in space.  The resulting equations incorporate the desired

invariance property and give inertiél-range predictions in quanti-
tative agreement with experiment.

The significance of these studies seems to be the following:
No convergent expansion schemes for high Reynolds number turbulence
are known,‘and consequently it is not possible to construct turbu-
lence. approximations whose errors are assuredly small. TIn. this
situation, it is very important that the approximations which are
used preserve as far as possible the fundamental invariance and
boundedness properties of the dynamics. This gives a hope of satis-
factory qualitative behavior, and the latter, together with quanti-
tative accuracy in some limit (low Reynolds number), gives the hope

that. errors will stay within reasonable bounds at all Reynolds numbers.

References
Kraichnan, R. H., 1964, ' Phys.Fluids 7, 1030.

Kraichnan, R. H., 1965, Phys.Fluids 8, 995.
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THE‘SELF—CONSISTENT FIELD APPROACH. TO TURBULENCE
| Jackson Herring

A self-consistent field type perturbation theory is developed
to treat the dynamics of stationary and homogeneous turbulence. The
method consists in expanding the full probability distribution function
about the product of exact single-mode distributions. The theory is
used in second order to find expressions for ‘the turbulent energy
spectrum and associated response frequencies. The results for the
energy spectrum are identical to a simplified form of the direct inter-
action approximation of Kraichnan, and closely resemble the results
of the generalized random. phase approximation of Edwards. The relation

of the present method to both the above approaches is discussed.

OPTIMAL PROPERTIES,OF THE MEAN. FIELD EQUATIONS
| Willem V.R. Malkus

Korteﬁeg established that solutions of the Stokes equations,
for any body force derivable from a potential,:had a smaller mechan-
ical diseipation rate than any other velocity field satisfying the
divergence conditions»and the boundary eonditions.v Keller considered
a general body fofce; and established that the dissipation rate minus
twice the total rate of work done by this force was a minimum:for
solutions of the Stokes equations. In this study the class;of-velocity
fields considered is limited further by the general steady state inte-

gral condition that the mechanical dissipation rate must equal the
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total rate at which work is done. - Hence, solutions of the Stokes
equationé set an upper bound on the rate of work done by the im-
posed force. If the imposed force is the buoyancy in the Bous-
sinesq form of the Navier-Stokes equations, then the Stokes solu-
tions set an upper bound on the convection of heat. ' A similar
study is made of the solutions of the Boussinesq form.of the heat
equation. It is found that, for a given velocity field, the rate
of entropy production is an extremum for solutions of the thermal
mean field equation.  The constraints on the comparison tempera-
ture fields are that they satisfy the boundary conditions and the
general steady state integral condition that the thermal dissipa-
tion rate equal the total production of the thermal fluctuations
by the advection. For'boundary conditions leading to either max-
imum or minimum entropy production, the convection of heat is a
maximum. for solutions of the thermal mean field equation, the vel-
ocity being given.

Despite the suggestive oeverlap of these two theorems, Howard

has established by example that a joint solution of both the mechan-

ical (Stokes) and thermal mean field equations does not upper bound

heat flux under the imposed boundary and integral constraints.
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ON THE LARGE SCALE DYNAMICS OF THE OCEANIC MIXED LAYER
Melvin E. Stern
We consider the weak non-linear interaction between hydro-
static eddies and the turbulent Ekman flow which is produced by a
uniform wind stress ( f‘) acting at the top of the mixed layer.
The‘théoryvdesctibes the space-time fluctuation in the local Ekman
transport due to interactions of a barotropit'componént ( y;‘) of
the total velocity with T , and the effect of those fluctuations
in amplifying the l{o
- - It has been applied to the problem of the generation of
inertia-gravity waves in a two-layer density mode 1 driven,by1a con-
stant T . “We show that pléne waves oriented at right angles to
[ , and propagating upwind, are unstable. The possibility of an
experimental test of the theory and its controversial hypothesis is

briefly discussed.

A WAVE-GUIDE MODEL FOR PRESSURE FLUCTUATIONS IN A TURBULENT SHEAR.FLOW
Marten T. Landahl
A theory is presented in which the pressure fluctuations in
a turbulent boundary layer, or other almost parallel shear flow, are
expressed in terms of integrals involving squares of the fluctuating
velocity components. - It is shown that the resulting fluctuations,
to a good approximation, may be represented by a superposition of vor-

ticity waves of random phases and directions, i.e., the mean shear flow
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acts as a wave guide for the disturbances created by the non-
linear turbulent interaction terms. The wave propagation:coﬁstants

L ‘are determined from the solution of a modified Orr—Sommeffeld sta-
bility problem for the turbulent mean velocity profiie, Numerical.
calculations have been carried out for a flat-plate boundary layer.
In this case it was found possible, without any additional assump-
tions, to predict the rate of decay of the turbulent eddies with

:; . : downétream distance, and their propagation speed, which both are in

excellent agreement with measured values.

OBSERVATIONS ON .OBSERVATIONS

Erik Mollg-Christensen
L A discussion of experiments on transition and turbulence,
selected to illustrate the facts that:

(a) Transition, under ideal conditions, and with excitation to
lock in the-phase, often consists of a sequence of quite orderly
processes.

- ' - (b) Even in fully turbulent flows, the flow may be instantaneously
quite reguiér'Spatially, and, it is often possible, using suitable
methods of observation, to discern large scale regular flow fields.

(¢) A harmonic oscillation with randomized phase and amplitude,
may look very much like turbulence-as far as the lowest order statis-
‘tical measures are concerned.

The examples chosen were:



- 118 -

" Klebanoff's observation of boundary layer transition,‘Browand's
observation of a free shear layer, Kresa's measurements of the

large scale‘stxucture of turbulent’cylinder wakes, Kholman's pic-
tures qf,Gouette Flow turbulencejand Coles' observations of turbulent
Taylor cells.‘

,‘v_ In thg,secondwlecture, mgthpds of observation of turbqlence
and data processing wereubriefly govered,»apd results of jet tur-
bulence measurements dispussgd, - In particular, the covariance of
pressure fluctuations within frequepcy bands were shown, showing
‘how certain frequencies are unstable for limited ranges of correla-

tion distance.

: UNIFORMLYSSELF-SIMILAR.SPORADIC TURBULENCE
Benoit_Mandelbrot
. At- very high Reynolds numbers (oqegns, atmosphere), turbulence
presents features that make it:very doubtful whether it can be repre-
sented as a stationary stochastic process, and therefore mean. that
great care mustbbe exerted in interpreting measured spectra. Turbulent
.flows'are indeed an alternation of laminar an@ turbulent_regions; how-
ever, any region that seems turbulent when examined With slow instru-
kmen;s_purnsrout,‘when inspected gtxaxfinerdscale, tg contain a number
_ of 1amina;,inserts, so that the distinctiqn between laminar and turbu-
lent is at best hard to establish,empij:ically° Moreoygr,vwhichever
the unit of time, successive time un;ts contain widely‘varying amounts

of total turbulent energy.

sy
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The "uniformly self-similar sporadic random processes” are

a new family of (generalized) random functions, specifically con-

— .structed to account for those properties (and some others). It has

already proved to have predictive value as well. It is described

in (1), and it may be noted that it was originally inspired by
certain fluctuation phenomena in electronics (2), that appear
extremely close in structure to turbulence in fluids.

Lg It may be noted that the overwhelming bulk of the models of
turbulence is a continuation of statistical mechanics, and attempts
to construct explicit mechanical mechanisms, thanks to which the
results of macroscopic experiments may turn out to be predictable.

- On the contrary, the self-similar sporadic processes provide a'

L "model" of turbulence analogous to the model of matter provided by

thermodynamics (3). The latter is known to deduce a substantial

body of experimental results from very few "principles', that draw
their value from their predictive and organizing power rather than
from any close relation with the core of physics that is constituted
by mechanics.

Among the ”principles” of the present approach to turbulence,

“““ the main one is that of "self-similarity". ~Its roots go back to the

Kolmogoroff theory (whose dimensionality considerations are also

hardly at all "physical").  This idea has been reinterpreted and

strengthgned, and it has been required that it hold "uniformly', that
is, over the whole frequency range. This was. shown to imply that

turbulence must by "sporadic', a concept that expresses an extreme
. by P P P
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form of "intermittent'" (on-and-off) character. - Not only such a
chance phenoménon cannot be stationary in the usual sense, but its
theory turns-out to require a special (but very natural) -general-
ization of the concept of random function.

One of the basic properties of self-similar sporadic pro-
cesses is the Kolmogoroff law, that the measured spectral density

(when properly interpreted) is proportional to. an inverse power of
P
. - 73
the frequency.  But the factor that multiples"K is no longer

a constant (designated by E;%@ in Kolmogoroff's'theOry);'however
long one's sample of turbulence may be; ‘this factor is the product
of a random variable and of a term that depends upon the method by
which the spectrum:was defined and measured. It is possible to speak
of the spectrum of: £ and experiments appear to confirm the pre-
dictions of the self-similar theory on this account.
Notes:

(1) B. Mandelbrot, "Sporadic random functions: a generalization of
spectral analysis and conditional self-similarity" (or some closely

approaching title), Publication expected in spring 1966 in Proceedings

of the Fifth Berkeley Symposium on Mathematical Statistics and Proba-

bility, held in 1965, University of California Press.

(2) B. Mandelbrot, "Self-Similar Error Clusters in Communications

Systems, and the Concept of Conditional Prebability', Iustitute of

Electrical and Electronics Engineers, ' IEEE Transactions ‘on. Communica-

tions Technology, Vol. 1 .COM-13 (1965), pp. 71-90. ~Concerning the

~spectra of such phenomena in electronics, see B. Mandelbrot, 'Noises
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B ‘
with an _l/¥ . Spectrum as Bridge between Direct Current and White
Noise'", a privately circulated memorandum to appear, and B. Mandel-
brot, "Time varying channels, l/?l noises and the infrared catas-

trophe", Conference Record of the First. IEEE Communications Con-

Vention, Boulder 1965.

(3) By speaking of. "thermodynamics", I refer to the new variety,
statistical but not mechanical, that I have expounded in B. Mandel-
brot, '"Derivation of Statistical Thermodynamics from Purely Phenom-

enological Principles'". Journal of Mathematical Physics, Vol. 5
g P

(1964), pp. 164-171.

STATISTICAL MECHANICS OF FIELDS
Joseph B. Keller
- According to classical statistical mechanics, all the proper-
ties of a Hamiltonian mechanical system in thermal equilibrium are
determined by its Gibbs distribution. - In this lecture this principle
is appliedkto fields satisfying liﬁear equations of motion in bounded
domains. - First infinitely many pairs of canonical variables are intro-
duced to represent the field. Then the Hamiltonian is found and seen
to be a quadratic function of the variables. Therefore the Gibbs
distribution is Gaussian. - In terms of it the generating:functional
of the field is defined, from which all moﬁents of the field can be

found by functional differentiation. For linear fields this functiomal
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is evaluated. explicitly in terms of the two point, two time cor-
relation function of the field.. Then an expression for this cor-
relation function is obtained: To exemplify the result this expres-
sion is evaluatedlexplicitly for fields. obeying the one-dimensional
wave equation in a finite, semi-infinite or infinite interval. These
explicit results pertain to the displacement of a vibrating elastic
string, the vector potential of an electromagnetic.field, or the
velocity potential of .a:.compressible fluid.

The correlation function is found to be piecewise linear with
the discontinuities in slope occurring on certain charactéristics of
the wave equation. Therefore the correlation function of two deriva-
tives of the field is zero except on these characteristics where it
is infinite. - Conseduently the energy density is infinite. - This
infinite energy dens1ty is a consequence of the excessive excita-

‘tion of the hlgh frequency modes, which is manifested by the Rayleigh-
: Jeans law of spectral distribution of black body radiationn When
classicallmechanics:is replaced by quantum mechanics this 1aw is re-
placedvby‘the Planck distribution law which leads to finite energy
density, This suggests that in attempting to'apply statlstical
mechanics to a fluid in order to descrlbe turbulence, we should intro-
Vduce a‘modification of the Gibbs distribution to obtain a finite
energ§ density;v>1n‘analogy.with‘Planck's law, it.should involve a
'constantvlike Planck'siconstant h . The product/u_L. of VlSCOSlty

/A and the cube of a typical length L has the same dimensions as H
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TURBULENT THERMAL CONVECTION WITH A SMALL MEAN SHEAR
Andrew P. Ingersoll
We consider thermal convection between rigid horizental
— plates which move relative to each other with constant horizontal
velétity. We have been able to approximate this situation in the
laboratory and to measure the vertical fluxes of heat and horizon-
tal momentum at Rayleigh numbers up to 3x107. The experiment'Was
only feasible for small rates of shear, and therefore it was not
- possible to model the turbulent shear layer of the atmosphere near
the ground. Rather, convective turbulence dominated the flow in
this experiment, as in the atmosphere above the shear layer during
unstable conditions.

At high values of the Rayleigh number, R , the data are con-

L sistent with the behavior /Vu. - O“\/n' M R Yy
i o T 2

“where O; is the Prandtl number, /VL_is the Nusselt number, and AAo
is the dimensionless momentum flux analogous to the Nusselt number.
Thus the dimensional fluxes are independent of the plate separation,
»GL , for aL large, and it is reasonable to apply similarity arguments
in analyzing the flow near the boundaries. Kraichnan's mixing length
theory of turbulent thermal convection* was extended to the present
experiment with shear, and the observed asymptotic dependence, given
above, was obtained. The success of this method gives considerable
support to Kraichnan's concise treatment of convection, and suggests

that it is applicable to a variety of other flows as well.

B *R. H. Kraichnan. 1962. Phys.Fluids 5, 1374.
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A.BILINEARSAPPROXIMATION FOR TURBULENT CONVECTION
Edward A. Spiegel
An approximate general form for the fluctuaﬁing inter-
actions in turbulent convection was presented. The resulting
equations have not yet,been completely solved,vbutian approximate

2 I
solution yields J o R %
: , /\/___'1. _

T R+ R,
where A/'is Nusselt number, ¢~ is Prandtl number, 7Q'is Rayleigh

number, and T{C is critical Rayleigh number.

BOUNDARY: LAYER TREATMENT OF THE MEAN FIELD EQUATIONS
Louis N. Howard
By a change of scales the mean field equations are written

in the form:

-}
P~ + (1-we)w = 0
2 2
(@ w=@
-1 7l
with P-‘—'RQ}’/V and N7 = (1 "W@>d_‘2-
. o
The solution of these equations is then explored, in the case
of free boundary conditions, asymptoticallyifor 7%_9 <2 using the
methods of singular perturbation theory. The "inner solution'", valid
. _ , ) Ty 12'
off the boundaries is found to satisfy (D—Q)W:@ , WO =1, with
W:D1W=O on 2 =0,1. It is thus necessary to solve .{-(D’.:af).(:ja
on (O,l) with -F- = D‘F =0 on the boundaries. This can be done effec-
tively with good éccufacy using a sine-series representation of ~F s

suitable care being used because of the somewhat singular behavior

fonn]
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of -F near the boundaries.

This solution is then matched to the "boundary layer

. solution", which is expressed in terms of the variable E:P”Z. ,

and is of the form:

W=P W, (1), 0-7®, ({)
The principal term in Wl is simply ) { , where h:;ﬁ(o),

®, satisfies: d_z® PR
4 dlf;-’%(@l*h("o_

- &
. The relevant solution of this equation is @1 =R zg (73‘ C) P

Xan L
where ?()L) =4 xfe (1- ta) #OL_Z_
Using this one finds for the Nusselt number: /\/ (lK) 3(/2 @)3R3

where = L (3/ .
| izl o)

Fairly accurate calculations of /E as a function of a. ,
followed by maximization of /\/ with respect to & give for the

maximum heat transport:

N= 003:—5 RILB.

 with a maximizing a of about 1.8 7 . Recent accurate numerical

7

calculations of Herring for R = 106, 10" and 108, when extrapolated

to ¥ "= O are in almost perfect agreement with these numbers.

The present treatment has similarities with the analytic approx-

imation study of Herring and with the investigation of Orszag reported

in the 1964 G.F.D. notes, but differs from them in that their treat-
ments make use of the boundary layer character of the solutions to
get a fairly good numerical approximation while the present strict

boundary layer approach gives the exact asymptotic result.
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The case of rigid boundaries appears to introduce certain

essential differences.

OCEANOGRAPHIC MICRO-SYMPOSTIUM

LINEAR HINDCAST OF WIND-GENERATED.WAVES
Stanley Jacobs
Wave heights at the Lake Michigan Research Tower off

Muskegon, Michigan, are hindcast using the Neumann energy spec-
“trum. - The procedure consists of: = (1) obtaining reprgsentative
vélues of the wind through analysis of Qeafher map§ 0f ship reports,
(2) estimating the fetch and duration of the wind field, (3) using
empirical and theoretical filters to find the frequency band of

the waves, and (4) calculating the wave heights using standard
statistical methods.

- Hindcasts were‘made for periods of two weeks in August and
two weeks in September of 1964, and the results compared with
measurements. For strong winds and large amplitude waves the hind-
cast wave heights are in good agreement with observed wave heights.

© For light winds the agreement is poor.

i
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NONLINEAR RANDOM WAVES
David J. Benney
Given the initial statistical properties of a weakly non-
linear system of dispersive waves one can derive a set of closed
integro-differential equations governing the asymptotic behavior

of the spectral functions.

GENERALIZED EKMAN MODELLING. OF THE OCEANIC CIRCULATION
. Pierre Welander

The.ﬁroblem of the wind-driven oceanic circulation is con-
sidered in the following simplified form. A rectangular basin. in
the /3 -plane contains a two-layer fluid (no mixing of mass and
heat across the interface, but momentum can be transferred bybpres—
sure and interface stresses). At the top a steady wind-stress acté;
the curl of which vanishes at the nofthern and southerﬁ boundaries.
The solution to this problem is derived in the case where the dy-
namic equations are of the Ekman type (balance of Coriolis force,
pressure gradient and friction forces due to vertical sheaf), and
the lower layer is much deeper than the upper (in the oceaﬁ a depth
ratio of about 1:10 seems realistic). The boundary conditions are
vanishing normal transport at the vertical boundaries for’each of
the two layers, vanishing Velocity at the bottoﬁ, ahd vanishing
vertical velocity at the top. The tangential stress at the top is

further given by the wind stress.
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The solution has the following genmeral characteristics. The
circulation in the upper layer resembles the one-layer solution
derived by Stommel (1947), apart from a geometric distortion due to
‘the interface changes. In the lower layer motion occurs only at the
western boundary'and takes the form of a mnarrow boundary gyre with
the same sense of rotation as the upper gyre. This lower gyre in-
tensifies the shore-side transport and creates a counter-transport
at the edge. This is in general agreement with the Gulf Stream
picture recently suggested by Worthington, but the model is cer-
tainly too simplified to allow any closer comparison.

It is of interest to note that a solution exists only in the
case of a non—vanishingbintérface‘stress, From the potential vorti-
city equation one can showvthat interface stresses must occur also
if non-linear acceleration. terms are inqluded‘(the argumentvis
analogous to the proof that bottom stresses are requiréd in a one-
layer model, one has only to replace the bottom by the interface).

The argument is, of course, only valid in the absence of lateral fric-
tion. If one includes lateral friction the solution degenerates to

a one-layer solution: né motion. exists anywhere in the lower 1ayei'°
The solution thus becomes identical with the one giﬁen by Munk (1950).
References:

. 1. Stommel, H. (1948). The westward intensification of wind-driven

.ocean currents. Trans.Amer.Geophys.Union  29: 202-206.

2. Munk, W. H. (1950). On the wind-driven ocean circulation.

J.Met. 7: 79-93.
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3. Welander, P. (1965). A two-layer frictional model of the
oceanic circulation. 1. Wind-driven motion in a rectangular
basin. Tech.Rep. WHOI, Ref.65-23.

(The works in Refs. 1 and 2 are also summarized in Stommel's book
"The Gulf Stream'". Ref. 3 covers the material presented in the

seminar.)

THE THEORY. OF FREE INERTIAL. JETS: PATH AND STRUCTURE
Allan Robinson and Pearn P. Niiler

The general problem of three-dimensional jets in a rotating
fluid of variable density is developed. Transforming to tempera-
ture as an independent coordinate, a first integral is obtained.
This is the potential vorticity, which is a function of the tempera-
ture and a stream-like function which gives the horizontal velocities
weighted by the inverse stability. This functional may be expanded
about its mean value, downstream in a coordinate system following

the path of the jet. This is the structure problem. ' The path of

" the free jet is controlled by bottom topography, /5 -effect, and the

exchange of mass with the geostrophic enviromment. The vertical
vorticity equation integrated. across the cross section of the jet
provides an equation for the jet axis. Simple examples are studied.
A formal two-scale expansion is made separating the meander scale
from the divergence scale, and providing a closed problem for both
structure and path. A result of particular interest is that a

meandering baroclinic jet in equilibrium with its enviromment imposes
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a geostrophic divergence with the scale of the meander. Numerical

calculations are in progress employing real Gulf Stream topography.

EXISTENCE AND STRUCTURE OF INERTIAL BOUNDARY CURRENTS
Stanley L. Spiegel

- An investigation is made of the properties of inertial bound-~
ary currents in a stably stratified, inviscid, non-diffusive ocean.
The Boussinesq and /g—plane approximations are adopted. The equa-
tions are transformed so that density replaces the vertical coordinate
as an independent variable, and after a suitable non-dimensionaliza-
tion of variables, the various fields are expanded as power series in
the-downstream_coordinate 'n . - The motion is shown to conserve poten-
tial vorticity. The equations and boundary conditions are obtained to
or&er 'ﬂl and are solved in the region of formation of the coastal jet
(i.e. the case of no mass flux through the plane'q = 0) for several
simple forms of the potential vorticity function. It is found that for
a constant depth ocean, a boundary current can exist only if the geo-
strophic drift at the boundary layer edge is westward at all depths.
This constraint, which holds for any potential vorticity consistent with
stable stratification, is relaxed if the depth increases rapidly enough
in the downstream (nofthward)vdirectionn For slopes just. in excess of
‘this critical value, a deep onshore countercurrent is predicted. Solu-
tions of the first order problem using realistic values of the various
-parameters have been computed, and are found to be in-qualitative agree-

ment with observed features of the Florida‘Current,
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AN INERTTIAL THEORY.OF THE FLUCTUATING OCEAN CIRCULATION
Joseph Pedlosky

The response of a simple bounded ocean model to a surface
wind stress which oscillates at or near one of the resonance fre-
quencies of contained Rossby waves is investigated. Both the
vfluctuating and resulting steady éirculations are found under the
assumption that the amplitude of the response at resonance is
limited primarily by non-linear, finite-amplitude effects.

The resulting amplitude-frequency response curve shows many
interesfing features in common with the characteristics of simple

non-linear mechanical oscillators.

THE DEGRADATION. OF INTERNAL WAVES
Owen M. Phillips
This paper is concerned with a mechanism that may account
for the appearénce of isolated turbuleht patches in the stably
stratified fluid below the thermocline. It 1s suggested that these
may be the result of sporadic local instabilities in the large scale,
low mode internal waves that are capabie of propagating in ﬁhis layer.
It is shown that the maiimum rate of shear and the minimum local Rich-
ardson number occur in such motions at the point where the density
gradient is strongest. TIn these motions, the wave frequency ¥ is
mﬁch less than the maximum value AAM of the Brunt-vaisalé‘frequency

in the layer; the stability criteria then approximate those in steady



= 132 -

stratified flow.  For a single wave component, the motion is poten-

tially unstable at the wave crests and troughs when the wave slope
Koo = 2n/Np,

This mechanism places an upper limit on the spectral density
of lowest mode internal waves inva way analogous to that in which
breaking imposes an equilibrium range limit forvsurface waves. - In
.its saturated state, the two—dimensionallspectrum of the vertical
‘displacement ié showﬁ to be proportionalkto K-zwhen thebdepﬂn d
of the thermocline isk such that Kd<<1and to K-B when KGLv>> 1.

. The corre3ponding frequency spectra. are pf0porti§nal to Yﬁ-' and n‘a.

Thé patchés of turbulencé so formed.flatten out iﬁ tﬁé stable
ambient deﬁsity gradient to form pancakes or 'blini’'. Thefprocess
seems also to provide a mechanism for the vertical mixing in a

stable layer, below the direct influence of the surface stirring.

NUMERiCAL—EXPERIMENTS;WITH;LARGE—SCALE SEASONAL FORCING
- Eric B. Kraus

© Experiments with six different heating fields in. a numerical
general circulation mddel are described. Three different vertical
heating gradients are each used once with and once without variations
on the continental/oceanic’scale along parallel circles. - The zonal
and ‘the meridional heafing fields are.forced to vary seasonally.
- Integration haé beéh cafried out over a simulated period of one
. century for one particular configuration, and over periods of five

years for each of the five other configurations.
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Results - which may be represented by an electrical ana-
logue - are rather similar to actual general circulation observa-

tions. They also show stronger summer westerlies and North-South

temperature gradients in the model without schematic oceans and

continents. Dynamic lag effects cause differences between the
"climates" of spring and fall. 1In all experiments there was a break-
down in fall of a predominantly zonal circulation, accompanied by
the development of "equinoctial storms".

Lag correlations computed for the mean zonal thermal wind in
the 100-year experiment show persistence in summer between successive
ten-day means and significant negative values over longer lag periods.

No significant lag correlations were found during the winter months.

THERMAL INSTABILITY’OF‘A,WIND-DRIVEN.OCEAN.CIRCULATION
:Elliott E. Schulman

The basic state is driven by a constant east-west wind and a
longitudinal temperature gradient known to be necessary for upwelling
in the mid-ocean thermocline. The effect of wind is to force a ver-
tical velocity at the bottom of the Ekman layer, and the resulting
flow consists of a meridiomal and vertical circulation. - Instabilities
with respect to thermal advection, i.e. potential energy release, are
investigated.

. Low wave number disturbances are stabilized by vertical heat

diffusion and only for ?e H/L v >120 is amplification possible, where
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H = height of ocean, L. = width of ocean, ™\ = north-south
wave number, and 12 = Péﬁlet Number, Wind towards the west is
found to be destabilizing. The growth rates of these distur-
" bances however, are very slow (an e-folding time of a few years)
and an analysis pivoted around the high wave number limit is
required.

For 'm > 1 but B «< 1, e.g'° £ == 100 km, disturbances
having a growth rate and frequency of the order of three months are

found, where

iy
n.

. Burger number = Rym>= CDR/f)l

Rossby number of basic state

=3
[+
It

Dr
¥

Instabilities in the lowest vertical mode are possible only

Deformation radius «= 50 km for ocean

Wave length of disturbances

when g = le'n/m\ < 6.6 and have a maximum growth rate for g: 4,]_,
where e’= ratio of east-west to vertical temperature differences,
and N = east-west wave number.

These waves appear to correspond to the Swallow eddies ob-
sérved in the North Atlantic. For JB << 1, the growth rates are
proportional to v , but we anticipate a high wave number cut-off

as € approaches to deformation radius.
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MIXING -NEAR THE SURFACE.OF THE OCEAN
Eric B. Kraus and J. Stewart Turner
Many theoretical models have been proposed to explain the
structure of the upper mixed layer in the ocean. These have
usually invoked horizontal advections, vertical mixing due to
shear and the earth's rotation in wvarious combiﬁations, and have
dealt with the steady state rather than the time dependent beha-
viour. ~ We have developed a one-dimensional model based on much

simpler but previously neglected processes, which can however be

~used to predict the seasonal changes of the temperature and depth

of such a layer. One of us approached the problem through a
laboratory experiment and the other using a more general theoreti-
cal a?gument, but in essence the results are the same.

It is supposed that all the heat and mechanical energy
affecting the water column are put in near the surface, and propa-
gated downwards, with no advection effects, horizontal velocities or
rotation. In the‘experiments the process is an intermittent one, with

buoyant fluid being added in discrete amounts to simulate the storage

of heat, and then mixed downwards by stirring mechaniéally with an

oscillating grid near the surface which simulates the effect of the
wind. In the theory heating can be continuous, and additional stir-
ring can be provided by convective processes near the surface. For
é fixed stirring‘rate the behaviour is determined completely by the
variations of heat input. Dufing»periods of increasing rate of heat~

ing, the depth of the well-mixed layer is decreasing. When heating
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is continued but ﬁt a decreasing rate, the depth of the layer in-
creases slowly but its temperature can continue to increase. During
periods of surface cooling the layer depth increases and it also
cools.

Many features observed in the ocean are thﬁs reproduced well
in theée experiments. The.depth and temperature dependence of the
upper mixed layer, and especially the phase relationships to the
heating and éooling cycle aré in good qualitative agreement. An
impotrtant difference from previous approaches, which can easily be
tested, is the prediction that mixing should only be significént in
the layer directly affected by surface processes. Thué features of
the density structure below the topmost density interface could be
laid down early in fhe heating season, and persist until the well-

mixed layer reaches them again late in the winter.

PENETRATIVE CONVECTION IN: THE SOLAR ATMOSPHERE
Derek W. Moore

Penetration of motions in the solar convection zone into the
stable layers above is of interest in explaining the observed solar
photosphere. The purpose of the present work is to examine what
meteorologists have learned about penetrative convection by direct
observation of the earth's atmosphére and by laboratory experiments.

Iﬁ particular the buoyant vortex ring model of a penetrating

convective element is discussed.
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STRATIFIED FLUID FLOW OVER AN. OBSTACLE
Kathleen Trustrum

The problem is to determine the steady two-dimensional £low
of a Boussinesq liquid between parallel horizontal planes over a
vertical strip. This problem has been solved recently by Moore
and Drazin for an incompressible stabley-stratified fluid. They
assume that the density gradient far upstream is constant and that
the horizontal velocity v - satisfies the condition ‘fljm = constant,
where /p is the density. Under these conditions the non-linear
-equations. reduce to a linear equation. Their solutions for' the
Froude number /: smaller than a certain constant 7\ , show that
behind the obstacle there is a jet, which winds ‘its way through
rotors and whose intensity increases with the height of the strip.
They also  show that it is possible to find a solution for a strip
of any height, which contradicts some earlier work by Long.

However, the assumption of uniform upstream conditions for

[f < A\is unlikely to be realistic for theoretical reasons and from

_experimental observations. If the hydrostatic approximation is made

in the equations of motion for a Boussinesq liquid, it can be shown
that non-linear, non-dispersive long waves can be propagated upstream
for ;: <L h.. This suggests that initial uniform upstream conditions
will be disturbed in. the limit of infinite time by such long waves.

A solution is obtained to the above problem by solving the

initial value problem with-an Oseen. approximation to the non-linear
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inertia terms. :Unfortunately there are insufficient conditions to
determine all the arbitrary constants in the solution for infinite
time. This difficulty is resolved by assuming that for flows for
which f:.>~7\, the solution is the same as that obtained by Moore
and Drazin. This is justified as disturbances cannot. propagate up-
stream for Fr>*;L . - Assuming that the constants are 'continuous'
functions of f? ,; the -solution for F:<f )k can be obtained. The
solution for a line source on the bottom of the channel satisfies the
above assumptions. The solution has the  properties that it reduces
to the irrotational solution in the limit of infinite Froude number
and to the 'Taylor column' solution for zero Froude number. Calcula-
tions have still to be done to determine how the flows are modified

_ for /:4:>\ ,. from those obtained by Moore and Drazin.

BJERKNES. FORCE
G. Brian Trustrum
-For a considerable time it has been known that a small sphere

pulsating in an oscillating pressure field experiences a Bjerknes

force, tending to make it migrate in a particular direction. According

to an oversimplified theory, the instantaneous tramslational force
‘equals the local pressure gradient multiplied by the volume of the
sphere. . The Bjerknes force is the mean of this product. Such a
simple calculation neglects the interaction between the motion of the

sphere and the external pressure field.
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When the radial acoustic mode of vibration of water in a

_spherical container is excited, any small air bubble in the water

will pulsate. - There will usually be positions at which the Bjerknes
and gravitational forces on the bubble balance each other. - A calcula-
tion is described for finding these positions.  The water is assumed

to be inviscid and irrotational and using the Proudman-Pearson tech-

< nique, inner and outer expansions are made about the bubble. A dif-

ferent length scale is used for the two expansions and the expansion

_parameter is a Mach number for the water based on the bubble radius.
' To first order the results are identical with the over-simplified

_theory.

Trapping of bubbles near the centre of radial sound fields has
been observed experimentally, but it has also been noticed by M. Stras-
berg and others that the bubble becomes unstable when the amplitude
exceeds a critical level depending on bubble radius. - These instabil-
ities are discussed but are not yet properly understood.

The speaker acknowledges helpful conversations with-Dr. T.

Brooke Benjamin, who is also interested in these problems.



