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    Introduction 
 Equal partitioning of the replicated genome by the mitotic spin-

dle is essential to avoiding aneuploidy. The spindle assembly 

checkpoint (SAC) improves the likelihood that each daughter 

cell receives a normal complement of chromosomes by ensur-

ing that anaphase onset does not occur until every chromosome 

becomes bioriented at the spindle equator. The kinetochore, 

which is the structure on each sister chromatid where micro-

tubules attach to the chromosome, is the site at which the local-

ization and activities of SAC components are integrated into 

a  “ wait anaphase ”  signal when necessary ( Musacchio and 

Salmon, 2007 ). Chromosome biorientation stretches the chro-

matin between kinetochores attached to microtubules emanat-

ing from opposite poles. Although it remains unclear whether 

tension signals directly to the SAC ( McIntosh, 1991 ;  Pinsky 

and Biggins, 2005 ), there is strong evidence that the generation 

of tension is a prerequisite for anaphase onset in normal mito-

ses ( Li and Nicklas, 1995 ;  Biggins and Murray, 2001 ;  Stern and 

Murray, 2001 ). The traditional readout for tension is changes in 

interkinetochore distance, which is the distance between two 

sister centromeres ( Waters et al., 1996 ). However, it is not clear 

whether chromosome biorientation also causes stretching of the 

core kinetochore structure and, if so, whether this physical 

change is detected by the SAC. 

 Results and discussion 
 To investigate the physical changes that occur within the kineto-

chore structure itself, we generated a  Drosophila melanogaster  

S2 cell line, which we have deemed K-Tensor (kinetochore ten-

someter and orientation) cells, that expresses both centromere 

identifi er (CID) – mCherry and Ndc80-GFP (C-terminal label) to 

mark the inner and outer layers of the kinetochore, respectively 

( Fig. 1 A ). [ID]FIG1[/ID]  The existence of movable elements within the kineto-

chore was fi rst indicated by the fact that the distance between 

the inner and outer labels of the kinetochore changes between 
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 Figure 1.    K-Tensor  Drosophila  S2 cells exhibit detectable changes in the distance between the inner and outer layers of the kinetochore.  (A) Representa-
tive micrographs of prophase and metaphase K-Tensor cells expressing Ndc80-GFP (green) and CID-mCherry (red). Ndc80, CID, and merged images are 
shown for the highlighted kinetochore pairs (white arrows). Line scans for each of the kinetochore pairs are shown to the right of each pair, with the red line 
indicating CID-mCherry intensity and the green line refl ecting Ndc80-GFP intensity. (B) A single frame from a dual-view imaged K-Tensor cell (Video 1, avail-
able at http://www.jcb.org/cgi/content/full/jcb.200808130/DC1) showing simultaneous imaging of Ndc80-GFP and CID-mCherry. The inset shows 
enlarged images of the Ndc80 (green) and CID (red) signals for the highlighted kinetochore pair (white boxes). The distances between the two brightest 
pixels for each pair are represented by  � Ndc80 and  � CID. (C) To calculate delta ( � ), which is the distance between Ndc80-GFP and CID-mCherry,  � CID 
is subtracted from  � Ndc80 and divided by two. Bars: (A and B, inset) 1  μ m; (B) 10  μ m.   
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taxol to S2 cells caused cells to arrest in mitosis for 153  ±  52 min 

with monopolar spindles ( Fig. 3 A  and Video 5, available at 

http://www.jcb.org/cgi/content/full/jcb.200808130/DC1). These 

structures were not amenable to investigating delta because they 

lacked bioriented chromosomes. Time-lapse imaging of taxol-

induced bipolar spindle collapse led us to hypothesize that this 

process required minus end – directed motor activity (Video 6). 

Indeed, we found that the percentage of taxol monopoles signifi -

cantly decreased after RNAi of two different minus end – directed 

motors: dynein heavy chain (DHC) or nonclaret disjunction (Ncd; 

 Fig. 3 B ). The data indicate that DHC and Ncd share functional 

redundancy in the bipolar spindle collapse mechanism, albeit 

Ncd is the dominant minus end – directed motor activity involved 

in this process. DHC RNAi taxol bipoles maintained focused 

poles, whereas Ncd RNAi structures had unfocused kinetochore 

fi bers. The Ncd RNAi structures that were classifi ed as bipolar 

consisted of bioriented chromosomes largely aligned between 

unfocused kinetochore fi ber arrays ( Fig. 3 B ). 

 The presence of bioriented kinetochores in the Ncd and 

DHC RNAi conditions allowed us to measure interkinetochore 

distance and delta under high taxol conditions in which kineto-

chore – microtubule attachment was not evidently compromised 

(Fig. S1, available at http://www.jcb.org/cgi/content/full/jcb

.200808130/DC1). RNAi of DHC or Ncd alone had minor effects 

on metaphase interkinetochore distance and delta ( Fig. 3, C and D ; 

and Fig. S2). In contrast, addition of 1  μ M taxol to Ncd and DHC 

RNAi cells reduced both interkinetochore distance and delta 

( Fig. 3, C and D ; and Fig. S2). Note that for both DHC RNAi and 

Ncd RNAi, taxol treatment reduced delta without reducing inter-

kinetochore distance below the 20-nM taxol level ( Fig. 2, D and F ). 

This is further evidence that the mechanical linkages between cen-

tromeric DNA and structures within sister kinetochores are not a 

simple arrangement of linear Hookean springs. 

 In the absence of taxol, DHC RNAi induces a mitotic delay 

(Fig. S3, available at http://www.jcb.org/cgi/content/full/jcb

.200808130/DC1) because Mad2 is retained at attached kineto-

chores ( Griffi s et al., 2007 ); however, Ncd RNAi does not cause 

an increase in the mitotic index or slow mitotic progression ( Fig. 3, 

E and F ). Importantly, addition of 1  μ M taxol delayed Ncd RNAi 

cells in mitosis for 150  ±  47 min, indicating that the SAC was 

active. Thus, suppression of microtubule dynamics in Ncd RNAi 

cells with 1  μ M taxol reduced delta and activated the SAC with-

out clearly disrupting microtubule attachment. 

 To further understand how interkinetochore distance and 

delta are related, we used molecular perturbations to alter inter-

kinetochore distances and assayed how delta was affected. 

The Rod – ZW10 – Zwilch complex member ZW10 is a bona fi de 

SAC regulator that is required to target dynein and Mad1/Mad2 

to kinetochores ( Starr et al., 1998 ;  Basto et al., 2000 ;  Buffi n 

et al., 2005 ). In addition, ZW10 has been implicated in regulating 

centromere stretch, kinetochore – microtubule attachment stabil-

ity, and tension sensing ( Famulski and Chan, 2007 ;  Yang et al., 

2007 ). In agreement with previous fi ndings ( Basto et al., 2000 ; 

 Kops et al., 2005 ;  Famulski et al., 2008 ), ZW10 RNAi in S2 cells 

led to loss of SAC activity, as the mitotic index of ZW10 RNAi 

cells treated for 18 h with colchicine was fourfold lower than 

control cells (unpublished data). Furthermore, ZW10 knockdown 

prophase and metaphase kinetochores ( Fig. 1 A ). Live imaging 

of K-Tensor cells ( Fig. 1 B  and Video 1, available at http://www

.jcb.org/cgi/content/full/jcb.200808130/DC1) allowed us to 

monitor interkinetochore distance by measuring the distance be-

tween the peak CID intensities of a sister kinetochore pair and 

intrakinetochore distance (delta). Delta was calculated by mea-

suring the difference in distance between the Ndc80 and CID 

signals for a pair of sister kinetochores divided by two ( Fig. 1 C ; 

 Wordeman et al., 1991 ;  Schittenhelm et al., 2007 ). This method 

corrects for errors caused by lateral chromatic aberration. 

 We fi rst wanted to establish baseline measurements for 

mitotic progression, mean interkinetochore distance, and mean 

delta in K-Tensor cells without microtubules compared with 

metaphase cells under normal conditions. Spindle microtubules 

in mitotic S2 cells completely depolymerized within 1 h after 

the addition of 25  μ M colchicine to the media (Video 3, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200808130/DC1). 

Most S2 cells are capable of arresting in mitosis for at least 4 – 5 h 

in the presence of colchicine ( Fig. 2 A ). The interkinetochore 

distance was 720  ±  110 nm and delta was 65  ±  31 nm for 

colchicine-treated cells. These values defi ne the rest lengths for both 

interkinetochore distance and delta in the absence of attached 

kinetochore microtubules ( Fig. 2, B and C ). In comparison, 

spindles in control K-Tensor cells progressed through mitosis 

(defi ned as the time from the onset of chromosome condensa-

tion and anaphase) in 51  ±  19 min (Video 2). The interkineto-

chore distance for control cells at metaphase was 940  ±  130 nm, 

whereas delta was 102  ±  27 nm ( Fig. 2, B – E ). The mean centro-

mere stretch, or increase in distance over rest length, was 220 nm 

between chromosomes with unattached kinetochore micro-

tubules (colchicine treated) and bioriented chromosomes (con-

trol metaphase). The mean intrakinetochore stretch in control 

cells was 37 nm above the rest length distance of 65 nm in 

colchicine-treated cells. 

 Next, we wanted to test how intrakinetochore stretch is re-

lated to centromere stretch. In S2 cells, spindles assembled with 

aligned and bioriented chromosomes in the presence of 20 nM 

taxol (Video 4, available at http://www.jcb.org/cgi/content/full/

jcb.200808130/DC1). Surprisingly, these cells exhibited the 

same kinetics of mitotic progression (51  ±  19 min) as control 

cells ( Fig. 2 A ). Thus, the SAC is satisfi ed in S2 cells in the pres-

ence of low doses of taxol. In the presence of 20 nM taxol, the 

mean interkinetochore distance was reduced to 740  ±  120 nm, 

which represents only 9% of control centromere stretch. Addi-

tion of 20 nM taxol slightly reduced delta compared with DMSO-

treated cells to a mean value of 97  ±  27 nm ( Fig. 2, D – G ). The 

distribution of values for interkinetochore distance after taxol 

treatment was similar to the distribution for colchicine-treated 

cells, whereas the distribution of delta values for 20 nM taxol 

was very similar to control measurements ( Fig. 2, D – F ). These 

data indicate that the intra- and interkinetochore elements are not 

linear Hookean springs connected in series but rather exist as a 

more complex mechanical arrangement. 

 In many vertebrate cell types, addition of higher doses of 

taxol stabilizes microtubule dynamics and preserves kinetochore 

microtubules while inducing a near complete reduction of cen-

tromere stretch and activating the SAC. Addition of  > 20 – 50 nM 
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 Figure 2.    Microtubule poisons differentially affect interkinetochore distance and delta.  (A) Selected frames from time-lapse imaging of GFP-tubulin –
 expressing S2 cells after treatment with DMSO, 25  μ M colchicine, or 20 nM taxol. DMSO control cells progress through mitosis (as defi ned by chromosome 
condensation to anaphase onset [AO]) in 51  ±  17 min ( n  = 124 cells). Spindle microtubules completely depolymerize within 1 h after the addition of 25  μ M 
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ception of ZW10, which lacks a functional checkpoint, activated 

the SAC ( Fig. 5 B  and Figs. S2 and S3). Collectively, these data 

demonstrate that levels of the tension-sensitive 3F3/2 phospho-

epitope correlates inversely with delta (high delta = low 3F3/2 

and low delta = high 3F3/2) rather than simply centromere stretch 

( Fig. 5 B ). Furthermore, SAC activation correlated with a reduc-

tion in delta rather than centromere stretch. 

 The mechanical elements responsible for intrakinetochore 

stretch in control metaphase cells exhibited a much different be-

havior than those for centromere stretch. The latter exhibited a 

wide range of length changes dependent on biorientation, sister 

chromatid linkages (SMC1 depletion), and suppression of micro-

tubule dynamics with taxol. In contrast, intrakinetochore 

stretch did not behave as a linearly elastic element. Thus, it is 

possible that the kinetochore contains a molecular switch with an 

 “ on ”  conformation for distances between 65 and 87 nm and an 

 “ off ”  conformation for deltas near 100 nm;  “ on ”  corresponds to 

high levels of 3F3/2 phosphorylation and an active SAC. Strong 

yet fl exible fi laments of fi nite lengths that connect the inner and 

outer kinetochore may limit intrakinetochore stretch to  � 100 nm 

as the centromere becomes stretched above its rest length. 

 Changes in delta could partly be explained by structural 

rearrangements within the kinetochore after microtubule attach-

ment, as previously observed by electron tomography ( Dong 

et al., 2007 ). Because microtubule depolymerization with colchi-

cine yielded a mean delta of 65 nm, whereas 1- μ M taxol treat-

ment of Ncd RNAi cells had a mean delta of 78 nm, microtubule 

attachment alone may account for  � 10 – 15 nm of intrakineto-

chore stretch at metaphase. How is the remaining 20 nm of intra-

kinetochore stretch generated? 1- μ M taxol treatment reduced the 

majority of both centromere stretch and delta. In contrast, 

20 nm taxol, which also greatly reduced centromere stretch, did 

not dramatically reduce delta. This indicates that force genera-

tion, driven primarily by plus end dynamics of kinetochore 

microtubules, generates the necessary intrakinetochore stretch that 

contributes to 3F3/2 phosphorylation and SAC activity. Further-

more, this stretch is likely to require low levels of force that can 

still be generated by the signifi cantly dampened microtubule dy-

namics in 20 nM taxol that we believe are completely suppressed 

by 1- μ M taxol treatment. Our data do not exclude the ability for 

tension generated by centromere stretch to produce intrakineto-

chore stretch; however, it does show that intrakinetochore stretch 

occurs at very low levels of centromere stretch and requires dy-

namic microtubules. 

 Our data also show that changes in delta rather than centro-

mere stretch correlate with 3F3/2 phosphorylation. Importantly, a 

reduction in delta also correlates with SAC activation when a func-

tional checkpoint pathway is present. Furthermore, we believe that 

any SAC mechanism that is regulated by intrakinetochore stretch 

caused cells to progress through mitosis faster than control cells 

(36  ±  13 min vs. 51  ±  17 min;  Fig. 4 A  and Video 7, available 

at http://www.jcb.org/cgi/content/full/jcb.200808130/DC1). We 

found that the mean interkinetochore distance was reduced from 

940  ±  130 nm in controls to 860  ±  130 nm after ZW10 RNAi 

( Fig. 4 B ). This represents an  � 40% reduction in centromere 

stretch as previously observed ( Yang et al., 2007 ). ZW10 RNAi 

yielded a broad distribution of delta distances with a mean delta 

of 87  ±  30 nm ( Fig. 4 C ). Because ZW10 targets a population of 

dynein to the kinetochore, we hypothesized that dynein could be 

responsible for generating delta. However, DHC RNAi produced 

a smaller reduction in delta than ZW10 RNAi and did not reduce 

the mean interkinetochore distance (Fig. S3). Thus, although we 

cannot rule out some contribution of dynein to intrakinetochore 

stretch, the effects of ZW10 RNAi cannot be explained solely by 

the reduction of dynein levels at the kinetochore. 

 SMC1 is a component of the cohesin complex, which helps 

to physically link sister chromatids until anaphase onset ( Nasmyth 

et al., 2000 ). We found that SMC1 RNAi caused an increase in 

the interkinetochore distance to 1,400  ±  320 nm ( Fig. 4 E ), a 

threefold increase in centromere stretch over control metaphase 

cells, without signifi cantly perturbing kinetochore structure or 

mitotic progression ( Fig. 4 D  and Video 8, avai lable at http://

www.jcb.org/cgi/content/full/jcb.200808130/DC1). How ever, 

the  “ hyperstretched ”  centromeres of SMC1 RNAi cells did 

not impact the delta distances (101  ±  24 nm), which were in-

distinguishable from control cells ( Fig. 4 F ). These data show 

that normal delta is produced even when the physical linkages 

between kinetochores have been altered by loss of SMC1. 

 The 3F3/2 phosphoepitope serves as a molecular readout 

for kinetochore tension during mitosis whereby low-tension con-

ditions exhibit high levels of kinetochore 3F3/2 staining that be-

come reduced upon biorientation ( Gorbsky and Ricketts, 1993 ; 

 Nicklas et al., 1995 ). Because we could control delta and inter-

kinetochore distance experimentally, we next set out to determine 

which of these parameters correlated with 3F3/2 staining ( Fig. 5 ). 

Microtubule depolymerization with colchicine, which reduced 

both interkinetochore distance and delta, induced the highest lev-

els of 3F3/2 staining. In control metaphase cells, 3F3/2 levels 

dropped two- to fourfold (a mean of 2.4-fold) relative to colchi-

cine-treated cells. Experimental conditions that yielded delta near 

control levels on bioriented chromosomes (20 nM taxol and 

SMC1, DHC, and Ncd RNAi) all had 3F3/2 staining near control 

levels, and, with the exception of DHC RNAi, which fails to re-

move Mad1/Mad2 from kinetochores, all satisfi ed the SAC even 

though interkinetochore distances varied 30-fold. However, con-

ditions that yielded  > 40% reduction in intrakinetochore stretch 

(colchicine, Ncd RNAi + 1  μ M taxol, DHC RNAi + 1  μ M taxol, 

and ZW10 RNAi) had elevated levels of 3F3/2 and, with the ex-

colchicine, which causes cells to delay in mitosis for at least 4 h ( n  = 40 cells). Cells treated with 20 nM taxol progress through mitosis with the same 
kinetics as control cells (51  ±  19 min;  n  = 121 cells). (B – G) The distributions of interkinetochore distances (left) and delta (right) values are shown for all 
treatments. (B and C) Colchicine treatment causes reduction of both interkinetochore distance and delta, defi ning the rest lengths for each parameter ( n  = 
156 kinetochore pairs). (D and E) Taxol treatment ( n  = 228 kinetochore pairs) causes a reduction in the interkinetochore distance; however, delta is not 
dramatically reduced relative to controls ( n  = 346 kinetochore pairs). (F and G) Comparing taxol and colchicine treatments highlights the fact that 20 nM 
taxol causes the interkinetochore distance to approach rest length without dramatically reducing delta. The mean values  ±  standard deviations and the 
two-tailed p-values for all conditions are shown in each graph. Bars, 10  μ m.   
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 Figure 3.    Treatment with 1  μ M taxol reduces delta and activates the SAC.  (A) Selected frames from time-lapse imaging of a preformed taxol monopole (top) 
and an MG132-treated bipolar spindle collapsing into a monopole after the addition of 1  μ M taxol (bottom). Taxol monopoles delay in mitosis for 153  ±  
52 min. (B) Taxol-induced spindle collapse is mediated by minus end – directed motor activity. The graph shows the percentage of each indicated structure 
with representative images after treatment with 1  μ M taxol for 1 h. (C and D) Treatment of Ncd RNAi structures with 1  μ M taxol ( n  = 240 kinetochore pairs) 
causes a reduction in both the interkinetochore distance and delta relative to Ncd RNAi alone ( n  = 95 kinetochore pairs). Ncd is undetectable by Western 
blotting (inset) after dsRNA treatment (96 h). (E) Ncd RNAi does not cause an increase in the number of mitotic cells in a cycling population. (F) Ncd RNAi 
cells divide with normal kinetics (51  ±  17 min;  n  = 100 cells), but addition of 1  μ M taxol delays them in mitosis for 150  ±  47 min ( n  = 77 cells), indicating 
that the SAC is activated. The mean values  ±  standard deviations and the two-tailed p-values are shown in each graph. Error bars represent the standard 
deviations. Bars, 10  μ m.   
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localization of regulatory factors within the kinetochore. Future 

investigation of this hypothesis will have signifi cant implications 

for kinetochore structure, mechanics, and SAC function. 

 Materials and methods 
 Cell culture and RNAi 
  Drosophila  S2 cells were cultured at 24 ° C in Schneider ’ s medium supple-
mented with 10% heat-inactivated FBS (Invitrogen) and 0.5 ×  antibiotic – 
antimycotic cocktail (Invitrogen). For RNAi experiments, media was 
aspirated off semiadhered cells at 25% confl uence in 6-well plates and re-
placed with 1 ml of serum-free Schneider ’ s medium containing  � 20  μ g 
double-stranded RNA (dsRNA). After 1 h, 1 ml of fresh Schneider ’ s medium + 
FBS was added to the wells, and they were incubated for 4 d at 24 ° C. 

must be upstream of kinetochore-bound Mad1/Mad2 for two rea-

sons: (1) ZW10 RNAi, which prevents Mad1/Mad2 from binding 

kinetochores ( Buffi n et al., 2005 ), fails to arrest cells even with 

reduced delta and elevated levels of 3F3/2, and (2) DHC RNAi, 

which prevents stripping of Mad1/Mad2 from kinetochores 

( Griffi s et al., 2007 ), causes a mitotic delay even with high delta 

and reduced levels of 3F3/2. 

 In conclusion, we postulate that intrakinetochore stretch is 

generated by the translocation of protein elements in response to 

the attachment of dynamic microtubules. Furthermore, this move-

ment may behave like a low-tension  “ mechanical switch ”  that 

controls SAC activity by changing the relative proximity and 

 Figure 4.    Interkinetochore distance and delta can be experimentally uncoupled.  (A) Selected frames from time-lapse imaging of GFP-tubulin cells after 
ZW10 RNAi treatment. Cells progress through mitosis in 36  ±  13 min ( n  = 141 cells) in the absence of ZW10, which is faster than control cells (51  ±  
17 min). (B and C) Reduced levels of ZW10 cause interkinetochore distances and delta ( n  = 777 kinetochore pairs) to be reduced relative to controls. 
Western blot analysis (inset) reveals effi cient knockdown of ZW10 by RNAi (96 h). (D) Frames from time-lapse imaging of GFP-tubulin cells after SMC1 
RNAi. Similar to control cells (51  ±  17 min), SMC1 dsRNA – treated cells progress through mitosis in 48  ±  15 min ( n  = 222 cells). (E and F) SMC1 RNAi 
increases the interkinetochore distance without affecting delta ( n  = 451 kinetochore pairs). SMC1 is nearly undetectable by Western blotting (inset) after 
dsRNA treatments (96 h). The mean values  ±  standard deviations and the two-tailed p-values for all conditions are shown in each graph. AO, anaphase 
onset. Bars, 10  μ m.   
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ferential interference contrast objective (Nikon). Most K-Tensor data were 
acquired using a 100 ×  1.4 NA plan-Apochromatic differential interference 
contrast objective on an inverted microscope stand (TE2000-U; Nikon) with 
the 1.5 ×  Optivar in place and equipped with a beamsplitter (Dual-View; 
Photometrics) attached to a camera (iXON EMCCD; Andor Technology) to 
simultaneously image mCherry and GFP. Some K-Tensor cell data were ob-
tained by acquiring near simultaneous confocal fl uorescence images at 
488 and 568 nm. This technique yielded results similar to the Dual-View 
imaging technique. Images were processed in Photoshop CS3 (Adobe). 

 Live cell imaging 
 Cells were seeded onto Con A (Sigma-Aldrich) – treated acid-washed cover-
slips (Corning) for 1 h. The coverslips were assembled into rose chambers 
containing media and imaged at room temperature. GFP-tubulin cells (pro-
vided by G. Goshima and R. Vale, University of California, San Francisco, 
San Francisco, CA) were imaged on an inverted microscope stand (TE300; 
Nikon) equipped with a Yokogawa spinning disk confocal head (CSU10; 
PerkinElmer) attached to a cooled charge-coupled device camera (Orca 
ER; Hamamatsu Photonics) using a 100 ×  1.4 NA plan-Apochromatic dif-

 Figure 5.    Generation of the tension-sensitive phosphoepitope 3F3/2 correlates with changes in delta.  (A) Representative micrographs from each of the 
indicated conditions. In the merged images, DNA is blue, CID is red, and 3F3/2 is green. (B) The ratio of fl uorescent intensities for 3F3/2-CID signals 
versus centromere stretch, intrakinetochore stretch, and mitotic progression is shown for each experimental condition. The 3F3/2 levels ( n  = 373 pairs from 
seven experiments), centromere stretch, kinetochore stretch, and mitotic progression for control + DMSO cells were each assigned a value of 100%, and 
all other experimental conditions were normalized accordingly. Colchicine treatment results in a 2.4-fold increase in 3F3/2 levels ( n  = 522 kinetochore 
pairs from nine experiments) and a reduction of kinetochore and centromere stretches to their minima (rest lengths) as well as a mitotic delay. 20 nM taxol 
does not cause a mitotic delay or elevated levels of 3F3/2 ( n  = 102 pairs from three experiments) despite an  � 90% reduction in centromere stretch. Ncd 
RNAi + DMSO (3F3/2 measurements:  n  = 154 pairs from three experiments) behave similar to control cells; however, addition of 1  μ M taxol to Ncd RNAi 
cells causes a 2.4-fold increase in 3F3/2 levels ( n  = 161 pairs from three experiments), a 65% reduction in centromere and kinetochore stretches, and a 
mitotic delay. ZW10 RNAi cells ( n  = 189 pairs from three experiments) have 1.8-fold higher levels of 3F3/2 and an  � 40% reduction in both centromere 
stretch and kinetochore stretch but progress through mitosis faster than control cells. SMC1 RNAi cells have levels of 3F3/2 staining similar to controls 
( n  = 144 pairs from three experiments), hyperstretched centromeres, normal kinetochore stretch, and normal mitotic progression. The error bars represent 
the standard deviations. Bar, 10  μ m.   
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 Interkinetochore distances and delta measurements 
 K-Tensor cells were analyzed using MetaMorph version 6.3 software (MDS 
Analytical Technologies). The single line region tool was used to draw a 
straight line between the brightest pixels of each kinetochore pair for the 
GFP ( � Ndc80) and mCherry ( � CID) spots. The length of each line was 
then calibrated based on a units/pixel value assigned by imaging a cali-
bration micrometer. The delta value (delta = [ � Ndc80  �   � CID]/2) was 
calculated for  � 200 – 800 kinetochore pairs per condition. Because of pix-
elation, we believe that the measurements for each condition may overesti-
mate the actual distance between fl uorophores by  ≤ 10%. The mCherry-CID 
construct was provided by S. Moutinho-Pereira and H. Maiato (Instituto de 
Biologia Molecular e Celular, Porto, Portugal). Genomic DNA for amplify-
ing the Ndc80 gene was provided by G. Rogers and S. Rogers (University 
of North Carolina at Chapel Hill, Chapel Hill, NC). 

 Immunofl uorescence 
 Coverslips were briefl y washed in BRB80 and fi xed in 100% methanol at 
 � 20 ° C for 10 min. The coverslips were then incubated in PBS + 1% Triton 
X-100 for 10 min. Next, they were washed briefl y three times with PBS + 
0.1% Triton X-100 before blocking with 5% boiled donkey serum for 
30 – 60 min. Coverslips were incubated in primary antibodies diluted in 5% 
boiled donkey serum (1:100 CID [Abcam], 1:500 3F3/2 [Boston Biologi-
cals], and 1:150 DHC) overnight at 4 ° C. The next day, coverslips were 
washed three times for 5 min in PBS + 0.1% Triton X-100 before incubating 
them in secondary antibodies (Jackson ImmunoResearch Laboratories) di-
luted 1:200 in 5% boiled donkey serum containing 0.1 mg/ml DAPI. The 
coverslips were then washed three times for 5 min in PBS + 0.1% Triton 
X-100 and mounted in a solution of 90% glycerol and 0.5%  N -propyl gal-
late. For 3F3/2 staining, 10  μ M microcystin lysine-arginine (Sigma-Aldrich) 
was included in all buffers. Aliquots of 10-mM microcystin stock were 
stored at  � 80 ° C and added fresh to each of the buffers. The DHC anti-
body was provided by T. Hays (University of Minnesota, Minneapolis, 
MN). The ZW10 antibody was provided by M. Goldberg (Cornell Univer-
sity, Ithaca, NY). The SMC1 antibody was provided by S. Bickel (Dart-
mouth College, Hanover, NH). The Ncd antibody was provided by 
J. Scholey (University of California, Davis, Davis, CA). 

 Fluorescence quantifi cation for 3F3/2 and DHC was performed 
similarly to previous work ( Hoffman et al., 2001 ); however, the larger 
and smaller regions were drawn manually in MetaMorph, and all mea-
surements were normalized to CID staining. The following equations 
were used: background signal = (integrated fl uorescence intensity big area   �  
integrated fl uorescence intensity small area )/(area big   �  area small ) and total in-
tensity = integrated fl uorescence intensity small area   ×  (background signal  ×  
small area). 

 dsRNAs 
 dsRNAs were synthesized from DNA templates using the T7 RiboMAX Ex-
press Large Scale RNA Production System (Promega). Templates were gen-
erated from pQE30 (QIAGEN) or the cDNA constructs for ZW10 
(CG9900), SMC1 (CG6057), DHC (CG7507-RA), or Ncd (CG7831). 
The following sequences were placed after the T7 promoter sequence 
(5 � -TAATACGACTCACTATAGGG-3 � ): control forward, 5 � -AACTCCATCTGGAT-
TTGTTC-3 � ; control reverse, 5 � -GTTGTCCATATTGGCCACGT-3 � ; ZW10 
forward, 5 � - ATGGAGGAAGAGGCGCCGCG -3 �  ;  ZW10 reverse, 5 � - CT C-
CTGGAGGCTCTGCTGCA -3 � ; SMC1 forward, 5 � -CACATATCGGAT-
GCCATTGA-3 � ; SMC1 reverse, 5 � -ACGTCTACACATTTACTGGC-3 � ; DHC 
forward, 5 � - TGCCCAGGCGAATAGTTGGT -3 �  ;  DHC reverse, 5 � -CAAGTTT-
AAAGTATTTCATT-3 � ; Ncd forward, 5 � - ATGGAATCCCGGCTACCGAA -3 �  ;  
and Ncd reverse, 5 � -GTGGAAGCGGGCCTTGAAGT-3 � . 

 Online supplemental material 
 Fig. S1 shows that kinetochore fi bers are present in 1- μ M taxol conditions. 
Fig. S2 characterizes the effects of 1  μ M taxol on 3F3/2 levels, interkineto-
chore distance, and delta in DHC RNAi bipolar spindles. Fig. S3 shows a 
comparison of ZW10 and DHC RNAi conditions. Video 1 shows time-
lapse imaging of  Drosophila  K-Tensor cells with both the GFP and mCherry 
signals imaged simultaneously. Videos 2 – 8 show time-lapse imaging of 
GFP-tubulin – expressing S2 cells after various chemical and molecular per-
turbations. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200808130/DC1. 
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Supplemental Material

Maresca and Salmon, http://www.jcb.org/cgi/content/full/jcb.200808130/DC1

Figure S1.  Kinetochore fibers are assembled in 1 µM taxol. Representative micrographs are shown of structures from control + DMSO, DHC 
RNAi + 1 µM taxol, and Ncd RNAi + 1 µM taxol conditions. Kinetochore fibers and aligned kinetochores are evident in each example. Tubulin is shown 
in green, and CID is shown in red. The graph shows quantifications of tubulin intensity from kinetochore fiber regions adjacent to kinetochores relative to 
the CID signal. All measurements were normalized to the control ratio (1.0 6 0.5; n = 67 measurements). Both the DHC RNAi + 1 µM taxol (n = 49) and 
Ncd RNAi + 1 µM taxol (n = 62) had slightly higher kinetochore fiber signals than control cells (1.4 6 0.6 and 1.25 6 0.5, respectively). Error bars 
represent the standard deviations. A.U., arbitrary unit. Bar, 10 µm.
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Figure S2.  1 µM taxol causes a reduction of delta and an increase in 3F3/2 levels in DHC RNAi bipoles. (A) Interkinetochore distance 
is not reduced after DHC RNAi in S2 cells. (B) DHC RNAi causes a moderate decrease in delta. (C and D) 1-µM taxol treatment reduces interkinetochore 
distance (C) and delta (D) in DHC RNAi cells. (E) Addition of 1 µM taxol to DHC RNAi cells causes an approximately twofold increase in 3F3/2 levels rela-
tive to DHC RNAi cells treated with DMSO. Error bars represent the standard deviations.
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Figure S3.  The effects of ZW10 RNAi on interkinetochore distance, delta, and 3F3/2 levels cannot be explained simply by the 
mislocalization of DHC from kinetochores. (A) Representative micrographs of the indicated dsRNA-treated cells fixed and stained for DNA (blue), 
CID (red), and DHC (green) after a 1-h colchicine treatment. Note the reduced levels of DHC signal after RNAi of either ZW10 or DHC. (B) Quantification 
of DHC signal relative to CID signal. ZW10 RNAi causes a 2.5-fold reduction in kinetochore-bound DHC, whereas DHC RNAi yielded a >10-fold reduction 
in detectable levels of DHC at kinetochores. (C) DHC RNAi causes a mitotic delay that leads to an z3.4-fold increase in the number of mitotic cells in a 
cycling population. (D) DHC RNAi does not cause a significant increase in 3F3/2 levels. (E) The effect of DHC RNAi on interkinetochore distance is signifi-
cantly different than ZW10 RNAi. (F) Delta distributions for ZW10 RNAi and DHC RNAi differ significantly. The mean values 6 standard deviations and 
the two-tailed p-values for all conditions are shown in each graph. Error bars represent the standard deviations. Bar, 10 µm.
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Video 1.  Fluorescent time-lapse imaging of a metaphase Drosophila K-Tensor S2 cell using the 
Dual-View beamsplitter attachment. The Ndc80-GFP signal is projected onto the top half of the image, 
whereas the CID-mCherry signal is on the bottom. Frames were collected every 1 min. Frame rate = 10 frames/s. A 
single frame from this video is represented in Fig. 1 B. Bar, 10 µm.

Video 2.  Confocal fluorescent time-lapse imaging of a mitotic Drosophila S2 cell expressing GFP-
tubulin treated with 0.1% DMSO. Frames were collected every 1 min. Frame rate = 8 frames/s. Representative 
frames from this video are shown in Fig. 2 A. Bar, 10 µm.

Video 3.  Confocal fluorescent time-lapse imaging of a mitotic S2 cell expressing GFP-tubulin that 
was imaged for z5 min before adding 25 µM colchicine to depolymerize the microtubules. Frames 
were collected every 2 min. Frame rate = 10 frames/s. Representative frames from this video are shown in Fig. 2 A. 
Bar, 10 µm.

Video 4.  Confocal fluorescent time-lapse imaging of a mitotic S2 cell expressing GFP-tubulin that 
had been treated with 20 nM taxol for 1 h before imaging. Frames were collected every 2 min. Frame 
rate = 8 frames/s. Representative frames from this video are shown in Fig. 2 A. Bar, 10 µm.

Video 5.  Confocal fluorescent time-lapse imaging of a mitotic S2 cell expressing GFP-tubulin that 
had been treated with 100 nM taxol for 1 h before imaging to induce assembly of monopolar 
spindles. Frames were collected every 2 min. Frame rate = 8 frames/s. Representative frames from this video are 
shown in Fig. 3 A. Bar, 10 µm.

Video 6.  Confocal fluorescent time-lapse imaging of taxol-induced bipolar spindle collapse in a 
mitotic S2 cell expressing GFP-tubulin that had been treated with MG132 to arrest the cell with a 
metaphase spindle and imaged for z5 min before 1 µM taxol was added. Frames were collected ev-
ery 2 min. Frame rate = 8 frames/s. Representative frames from this video are shown in Fig. 3 A. Bar, 10 µm.

Video 7.  Confocal fluorescent time-lapse imaging of a mitotic S2 cell expressing GFP-tubulin after 
ZW10 RNAi. Frames were collected every 2 min. Frame rate = 4 frames/s. Representative frames from this video 
are shown in Fig. 3 A. Bar, 10 µm.

Video 8.  Confocal fluorescent time-lapse imaging of a mitotic S2 cell expressing GFP-tubulin after 
SMC1 RNAi. Frames were collected every 2 min. Frame rate = 8 frames/s. Representative frames from this video 
are shown in Fig. 3 D. Bar, 10 µm.
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