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Wind Flow over Water Waves

1iY

Pe ter J. Bryant

1. Introduc tion

When a turbulent wind begins to blow over an infinite

horizontal water surfaca J the initial disturbances in the water

are due to the turbulent stress fluctuations at the water surface.

However J as soon as a wave pattern is generated, there will be a

coupling between the motion of the water surface and the air

motion, modifying the surface stress pattern# This investiga-

tion is into the nature of this coup1in8ø A comlete review of

the subject of wind generation of water waves has peen made b~

Phillips (l962).

It has been the custom to aSSume that the air motion is

laminar and that the turbulent fluctuations contribute onl. to the

shape of the mean velocity profile. This assumption is ~mined,

and a form of justification attempted.

When this assumption has been made, the air motion iA

described by the Orr-Sommerfeld equation. In order to derive a

qualitative solution, the inviscid motion of separate parcels of

fluid is examined, and deductions are made from the solutions

obtained concerning the real state. in the manner suggested by

Lighthill (1962) O.
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2.E~uations "" for theairntôtion

The water surface is àssumed to be of the form

~ ~ a..- Ir (x -c t)
where CL is a slowly varying function of time. This Can be

interpreted as being one Fourier cQm.ponent 0;1 the real sur-

face, because intercic tions between these Fourier components

are non-linear ~ and in this investigationnon-lineë;r inter-"

ac tions are "being neglec ted 0 The y-axis is chosen to be

vertically, upwards ~ with origin in the mean free surface, and

the motion is assumed to be two dimensional. This is not

strictly true for the turbulent fluctuations, but the fluctua-

tions appearing here may be considered as the z-means of the

actual fluctuations 0

The equations to be considered are therefore

-au. + l- (. u.:i) T _.".d (LL -v) =

õt: cti:. d¿jU,
011 e3"(.) Ó 2-
ôt: +-ox u V + êJ~ (v ) ;:

Õlu. + d'V = 0
ox. õ~

- -l ~ 01- ìJV2.lL

t è)x

--L k +)) v'2-y\ o~
(2,1)

The mean of these equations will be taken in two ways.

If f (x;y , t)represents one of the functions appea"ing ~ define

and
-t"t

-x
f =

~ : fftLt
o

.&X~CO" ~~
+x

J fclx-y.

(202)
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where J

-a rLa. c:oe -l ~c: n

cLt: T. J
n being the wave frequency. To be more precise, ir can be chosen

to be an integral number of periods, satisfying the relation. It

has been assumed here that the development time of the amplitude

. is very much greater than the wave period, and physically this

can be seen to be true, provided that the wind is not too strong.

The origin in x is chosen to be travelling with the wave

velocity c, so as to reduce the wave motion to a near steady state.

Let
u(x,y,t) = U(y) - c + u;i(x,y) + u2(x,y,t)

v(x,y,t) = vi(x,y) + v2(x,y,t)

p(x,y,t) = P(yl + Pi(x,y) + P2(x,y,t)

(2.3)

where, us ing f as above, .

-x -1; -t'
f2 = f2 = 0 ie f2 = f f

-X -1: -xf1 = 0 ie fi = f - f
(2.4)

fi is that part of the air motion which is coupled with the water

motion, andf2 is the random air motion.

If f, g are any two such functions, not; necessarily dir-

ferent, then -t
fig2 = 0

(2.5)
-:'t ~X
f2 =

£2

the latter equality arising from the properties of homogeneity in

the x di~ection and near stationarity for the random air motion.

0."
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-x
Also f2

1 fTX, 2
z.t "\, .
f2 are independent of Jt ,and vary only

slowly with to (When there is no confusion, the meaned

variable wHlnot be indicated i)

The boundary condi tions are taken to be

"

ul' v l' Pi -7 0 as y -- 00 and u2' v2 Il 0 on y = 0,

Taking the means of equations (2. l) in the various

ways, and carrying out integration, obtain-x --x.u., 1i"+ 1)2."1, = 0-l("v1i =0 (2.6)

~/:2 + ;.: = ~ _ -p,(~) + ~:i.. ff 200
~. ( U- ,1/, + u.:1~) .=- V -a? u"~~. " 3~~

(L(-e) ~ tv, ~ +* (;.~)+ ~(ILIY, -¡¡)= -r ~ + V V ~Ul

(U-~~ +~ (LLIV,)+#("l-"?....t ~+"V"vi

~U.I + d¥i .0XÔ~

(2,7)

(2,8)

(2.9)

(2.10)

(2.11)

Equa tions (2.6) could p.robably have been assumed ini UaUy ,

,
but were not since they follow from the assumptions already made.

Equation (2.7) gives the variation of the mean pressure D which

here is the driving force of the system. Equation (2.8) will be

integrated below, since it contains a singularity at the critical

layer. Equations (2.~) (2.10) (2.11) with the non~linear terms

"'\';:'.
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excluded, are the Orr-Sommerfeld equations, and are the justifi-

cation for the assumption of laminar air motion, but with the

mean velocHy.jprofile dependent on the total fluctuations.

3. Descrip tion of the air motion

The, motion representëd by . the' inviscid Orr-Sommerfeld

equation (the Rayleigh equation) is now examined. The sub-

script 1 is otnit'ted P, and the origin of co-ordinates is fixed

in space.

The frequency of oscillation of a parcel of air seen

by an observer moving with the mean wind is k(U(y) - c).

Hence the verticalveloci ty, v, and the displacement, h, of

this parcel are given by

v = Vo (y) cos k(U-c) t (3.1)

h = vo(y) sin k(U-c)tk(lJ-c) , (3.2)

the equation of continuity shows that

u.. U(~)- d~~) t.¡ k(/.-.)t-'VD~~ tCl k(U-è)i:M y ~ (3.3)

where e: (y) is the phase and is defined by

k (u..c)t 1: k (X -ct) -+ E C~) (3.4)

'Jhe 'Vorticity W is
ô¥ du.

W = 'd-di

:: _ au (~--hi

...~

'.-".1

..'"



- 6 -

, ~:~,~::.':':'

,.
by the Kelvin Helmholtz conservation of vorticity~

õu. h o~u. \ie W = -;: +
o ~ ~ ~2. (3.5)\

to the first order.

Taking the mean of the horizontal equation of motion,

and using the equation of continuity

oü. õ (-)
èlt: ~ -'õ~ u.V:. wV (3.6)

all these terms being of the second order.

,

si c2 ~ (u. - c)t

.t ~ (U-c.)

:: Ll' (~ht(~ 7T ¡¡ (~- ~c) ( !j :: :ie).

~~ u' (~c.) a. u= Co

iT U'J(yc):2 r( )
:::i~ U'(jc) ~ (ye) òj-!jC

:. til(~) h V

:: u.ii(~) 1I:(~)

WY

(3.7)

where the relation used is

sin ilt = lim sin zt = Tl ¡~)e t~ ø E
and ¡(~) is the Dirac 3 -function, defined as a generalised

(3.8)

function.

Integrating (3.6)-
LA V

'I¡) i.~ Ui~c -Vo(u c)
:: -L I' U: (~c) -.
::.0

~ ~ ~C
(3.9)

~~ ~C

,
-'
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where the boundary condi tion U. ~ U 00' 11 ~ 0 as ~. ~ DO

is used.

Also, direc t from (3.1), (3.3)

Hence

u V _ _.. cL1 llj) 1/""1 ),:¿R. ... ~ 0 '¿j

d.1lLV v. '-( ) = _ ífU'1 (we) ~( )
'J 0 ~ U i C'd c.) t d c.

:. 0

- L¡ ~ l.c'd V (3.l0)
~ -; ¿j Co

ie dG.C~) ;; 0 for U ~ l..C

d.;j .J v
~ L~) = constant. ~ )- ;j C

At :3 ~ tJ c , Ë ('j takes two values differing by 7T ,

and

depending on whether .! C. is approached from above or below.

This discontinuity is dictated by physical considerations, having

the consequence that equation O.l)ìnust have .the two solutions

~ L~ ) : i ~ Cj)

at the critical layer.

The streamline pattern, seen, by anobse:iver riding with the

surface wave train, is shown iñ the figure.

The streamlines in the figure indicate the pressure distribu-

tion on the wave, and it is seen to be such as to cause a positive

transfer of horizontal momentum from the air to the water waves.

The critical layer has the 'catseye i structure, which also appears
ì

at the critical layer in stability problems, and it shows how this

layer is one of concentrated vorticity.
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i

,c- -
I

~
~

1

-,- - _. - -, E lj)

--~.
preSSure ll-reSSû1!e

~,:;-

We can now integrate equation (2.8) to give

-- + u. 11 =)) ~ LL_ + t. '\/.lYI ~ i ~ .1 .: 00 :J .~ ~ c:

'" ~ ~ + LJi:V2"" + f Ii' ('d~) v."(~,)
, ,J u.' ('1 c.) .t C

The t.otalstress, 't('J,~)isdefinedas :J ~

.() d.ll _rT "jj :: V ~ - /;11

Hence -
"C Ct.) ~) = - u. ~.:( lO ~:; ~ Co

:: - LA2,'\'i . _.1 UtI (ye. ~ó-i(u¡~)
~ :ik. u-' (~c.) J ~L ~e (3.11)
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and all terms on the right of equations (3.11) are positive.

The stream func tion for the flow isI . (
lt= :r1l0) lwk u. - c)t (3.12)

where dlt_ dip
'V -= ÔX ) f.- - CJj+ u'(!j)

Substitution in equation (2.9) gives

~ = (u.-e);; . - U'", (3.13)

and then replacing ~

f: CL/ rl:~C~ - t U'Cj)1l 0)~1i (U-e)t:
. + U 'kC v. C!j) l1~~) OM Ie (U -c.)t

The part of the pressure containing sin k(U~p) t is in

(3,14)

phase with the displacement, and is the part which cá.n l~ad to

Kelvin~Helmholtzi,nstability at the water surface. The term con..

taining cos k(U-c) t is in quadrature with the displacement, and

describes the transfer of horizontal momentum from the air wave

motion to the water wave motion. To obtain a measure of this

transfer, consider the mean horizontal pressure component, which is

P eihf~ - 7T ~ 0= - UA/ - î"~ (~c) ò (~-~c) (3.15)

. Co)

after some calculation. Thus, except at the critical layer, the

h01;izontal component of the pressure is equal to the R.eynolds stress.

The Rayleigh equatiqn is
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01. . II~ - k.2.qi - -- tp = 0d~ U -c: (3 . 1.6)

Subs ti tu ting for i¡, and reduc ing, obtain

(L d ~ (~) _.1 V:(IJ) 
(cLr¿(0f 

'a. Uti 1,,\)k. . ¿'3" ~ () (J cl'¿) - 'RAt~) - Ll -c T Vo(~)1l k (U -c )t

+ f Utl(~e) v.0¡c) i G -!jc) = 0 (3.17
¿¿'LYf.)

This curious equation becomes

for :J ~je

cl1l G ) ,. ¿¿II:i .'1 - k -v (:;) -U-c 11 (1. ) = 0~-i J (3. l8)

for 'O~ ~ ¿: !jc
~d..11 ((1) _ ;2 Lt' A:2

. cA:/ k 1/0 (~) - 11 -e, Y,(y) -C". (~)j = 0

where It. TiU':(Jc)1I~ ( c)
U-L~d ~

(3.19)

Thé mean of the left hand side of (3. l7) is zero for aii y,

including the critical layer, and the apparent time dependence dis~

appears. ., The 'effect of the phase change appears explicitly in

equation (3. 19) .

.'
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4. Conclusions

The mean value in equations (3.7) is taken over t from

dCL _t = 0 to 00 , and presupposes that d1= - O. If instead, the

mean value is taken from t = 0 to T, as in equation (2 . 2), a

broadened and-slightly distorted J- func tion is obtained,

leading to a distortion of the step function in equations (3.9),

and a small difference in the algebraic results. However, the

overall descriptioIlof the £\ow remains unchanged ~ and it is

a matter only of algebraic manipulation to make the correction.

The general effect of viscosity is to reduce velocity

gradients. So it may be expected that the inf;nite gradlertts

appearing at the critical layer would be reduced symetrically,

leaving a broadened g -function as a description of the loss of

momentum from the mean air flow to the air wave flow. Dissipa-

compared wi th the true

tion would also lead to an increase in the area under this func tion,

g -function. The effect of viscosity on

the normal stresses at the air-water interface is negligible, and

viscosity becomes important only in the calculation of the tangen-

tial stresses.

To summarize: the concentrated vorticity at the critical

layer causes transfer of horizontal momentum from the mean air

motion to the air wave motion. This transfer may be described-
mathematically by the term ~WA/ in equation (3.6), which Light-

hill (1962) called the vortex force, and showed its usefulness in
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describing the physical processes at the critical layer.

. This horizontal momentum is then carried down to the water

waves as a Reynolds stress on the coupled wave motion in, the

air, and the air Reynolds stress is transmitted dir~ct1y into

the water Reynolds stress at the water surface. Equation

(3.10) indicates that a necessary condition for the (:xistence

. ~~: t.

of such an air Reynolds stress is that the phase of tlie air

wave motion is changing, ie ci E (ij) 1: 0 .. The figureciy .
shows the stream lines produced by this type ofmot:fon, and

makes it clear why an observer riding with the wave experiences

a driving force from behind.

An equivalent description is to represent the air pres-

sure at the water surface as be~ng the real part of

p = (c( + ¿l') f U~ k ( (4.1)

Equation (3. l4) indicates how this representation is related to the

flow characteristics. U1 here is a scaling velocitY, and 0(/19 are

. functions of n , the wave frequency ,this is the description

'..

taken by Miles (l957) ) and section 2 indicates that to obtain the

total fluctuating pressure, one need~n1y add to equation (4.1)

the turbulent pressure fluctuations.

This investigation is a development of some of the ideas

expressed by Dr. M. J. Lighthill in the lecture which is referred

to below.
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An Attempt to simulate the Cromwell Current in the Laboratory.

James R. Holton

1. Introduction

The Cromwell Current s or equatorial undercurrent s is an

intense ribbon-like zonal jet centered about the equator in the

Pacific Ocean. The transport of the current is comparable to

that of the Gulf Stream, yet its existence was not suspected

until about ten years ago.

That the Cromwell Current has only recently been discovered

is due, no doubt, to the paradoxical natur.e of the circulation in

the equatorial Pacific. The surface water drifts slowly west-

ward driven by the mean wind stress, but only a few meters below

the surface the CromwelL. Current flows eastwards with velocities

of 50 to 150 cm/sec in its core at about 100 meters depth. The

vertical scale of the current is about 200 meters, its latitudinal

extent is about 1.5 degrees on either side of the equator. and its

length is several thousand kilometers.

Because the core of this easterly current is at the eqnator

its àngular momentum exceeds that of the earth. This has led to

occasional statements in the literature that a west to east pressure

gradient is required to maintain the current against frictional

dissipation. However, it would be possible to maintain an easterly

current at the equator without a pressure gradient if there existed

horizontål eddies which ttansferred net momentum equatorward througb
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a negative çorrelation of the velocities u U ~ v' (where u.' and

v' are departures from the spatially averaged zonal and meri-

dional velocities respectivelý). Similar eddies are important

momentum transfer agents in the atmosphere and occur in quasi-

geostrophic circulations when the strea~1ines are tilted so

that u' is larger when v' is negative than when Vi is positive.

(See Figure 1).

" ... J~+~~~'~,., J""..."~,,'~.~.~~- .,. .."-_.--

. Figure 1.

Streamline field for net equatorward momentum flow.

To evaluate the pqssible importance of this momentum transport

mechanism in the oceans would require synoptic observations

which are not now available. Thus~ in the studies of the Croni..

well. Current to date the zonal pressure gradient has been the

explicit driving force and the eddy flux mechanism has not been

considered. In fact, it is known from observations that a west

to ,east pressure gradient does exist along the equator in the

region of the Cromwell Current, and further i this pressure gra-

dient disappears east of the Galapagos Islands., as does the

Cromwell Current.
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In view bf the above discussion, it would be inappropriate

to use an eddy viscosity coefficient to re#resent the effects of

horizöiital mixing, because not only the value" but even the sign

of such a coefficient is in doubt for the larger eddy scates" and

for the smaller scales the large vertical shear assures thé

dominance of vertical eddy dissipationo

2. A PhysicaLModeL. of. the Cromwell Current

The equation of motion for the steady state z;onal compønent

of the Cromwell Current may be written as"

I, dtA V°u. + W~u.-tV :=Ôx T 3~ Oå
:2

ÈJ + )) Õ LlaX. òa'i

where )) is the eddy coefficient of viscosity for vertical mixing

and the other symbols have their usual meanings. At the equator

f = 0 and the above equation in,dicates that a balance will exist

betweerithe pressure fOrce and the inertial and viscous terms.

. However, the extreme smallness of the Rossby niimberfor'large scale

ocean circulations indicates that the circulation is quasigeostrophic. .
even very close to. the equator , and that the CrômwèlL Current may

be an essentiåÎly geostrbphic jet with an inertò':vJ.cous boundary

layer a tthe equator.

A possible model forthemäintenance of thisgeostrophic

current is the:EollÒwing. As shbwri by Stommel (Deep Sea Research .§)

the mean easterly windstress crèateså. divergent $urfâê"e Ekman layer

at the èquator, because the surface currertt:is to the right of the
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wind in the Northei;n Hemisphere and to the left in the. Southern

Remisphere. Tl:is ~ivergence forces an upw~iiing to preserve

continuity. The upwelling and enhanced verticaL mixing raise

-- - ~~-:~J~e-~~" ~..__ .. ~ : ~ '..~___
- .. "" -, ~I L-" - - - -"' - - -'

= h

the thermocline at the' equator and a core of cold dense water

is maintained at 100 meters depth (see Figure 2).

20N lON Òo i9S

z = 0

Z9S

Figure 2.
Dashed Unes represent isotherms. Arrows show the pattern of

meridional c ircula tion.

l'he result of this iS9t1:ermspread is a pressure gradient in the
I/

ydirection pointed away from the equator iri both' hemispheres.

which is balanced by an eastward moving geoi;trophic curren,t.

¡n sl,mmary , it appears thatthree phyi:ical effects are

necessary, for the form,ation and maintenance of the equatorial

underc1Jrrent (1) the sign reversal of tl1e Coriolis fQrce, (2) a.

west to east pressure g:iadient, (3) divergence of the surface

Ekman layer.
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3. A Possible Laboratory Analogy to the Cromwell Current

In the rotating dishpan it is not possible to model the

pign change of the Coriolis force. Rowever, the author thought

that it might be. possible to produce a current analogous to the

CromwelL. Current along the outer radial boundary wall of a sixty

d.êgree cylindric'al sector which' had previously been ùSeJ by

Dr. Faller for modelling ocean circulations. This sector WaS

placed in the large rotating tank with its apex at the ce¡n:ter of

the tank. A wiud stre~s was applied in the clockwise direction

as the tank was rotated counterclockwise. A two-layer fluid

system was used in the sector ~ with the less dense fluid at the

top_ The quålitative expectation was that the surface Ekman

divergence at the equatorial rim (forced by the kinematic con-

straint of. the wall) would create a vertical upweÚing to pre-

serve continuity. In a matter analogous to the Cro1Twell Current

this effect was expected to raise the level of the denser layer

near the rim and create a. radially inward pressure gradient which

together with the zonal pressure gradient caused by water piling

up at the western boundary would force àn easterly quasigeostrophic

current along the wall. Note that since the Coriolis force doesn't

change signs the presence of the wall is necessary to the formation

of a jet, otherwise the Ekman layer divergence wòuid tend to produce

..

a vortex. The proposed model is indicated schematically in Figure 3 q
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~ ~ ~
J1 t~

T

f~ (~Pi) l' \

.. \
.; '"r ~

Figure 3.

Arrows indicate the meridional circulation.

4. The Exper;imental Procedure

. The wind stress was ;frst calibrated by using the fuH

cylindriçal tarik to obtain veloc:jty profiles as a funçtion of

radius f From thethßQry of Ekman boundary layers it may be

shown that
.k 1/

Le = J)):i Jl'/:J Ve

where Le) Ve are the wirid stress and velocity is the zÇ)nai

direction. . Eight stationary blowers were used to adju,st the

"ò Lewind stress so that fit a sine curve to a reasonable
ô~

approximation.

As a con tro 1 experiment the s ec tor was us ed wi th a wind

stress driving force and a single b,qmogeneous layer of water.

A v;estern boundary cllrreQt was prod\lced as predicted by Stommel' s

theor~ of western intensifiçation. The flow pattern is indicated

schema tically in, Figure 4.

i
3
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Figure 4.

It is an interesting digression. to compa.re quantitatively

the western boundary current experimentally observed with the

pt'ediction of Stommel's theory (see Trans.of A.G.U. 29). For

the experimental system the conservat.ion of potential vortiçity

may .l:e written

R 'V~ tp + (3 ~ ::
i-T dtx

o~

R =1 ~~f
, andwhere y; is a geostrophic stream function

:i ~

height in the radial direction due to rotation.

ß ~

?-
.. ""0

approximates the mean change of the free surface

This equa tion

simply states that the vorticity gain due to wind stress curl

equals the vorticity loss due to frictional drag at the bottom

plus the vorticity change due to the change of height in fluid

columns moving in the meridional direction. This equation is
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easily solved only for a rectangular basin~ but it has been

shown by Munk and Carrier ('Iellus l) that a triangular geometry

-produces only small quantitative differences in the circulation.

The width of the observed western boundary current agreed

well with the theoretically predicted value of 3 em. (The

sector radius was lOO cm. and the rotation rate was 8.23 r.p.i;.

for these experiments)) However, the observed velocity in the

boundary current of 1 cml sec was only half the value predicted

by the theory. For better quantitative predictions it is

apparently not permissible to neglect the dissipation against

the side boundary and the inertial terms as done in the above

theory.
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Rossby number and Richardson number in the model and the

prototype.

For the ocean the Richardson number is approximately:

F? ~ Ci T L.aL p = u.~ = (i03) (2xiO-4) (20) (2xi04)

(50) 2

40

Whereas in the model if a salt concentration of 10 gm/litre

and a rotation rate of 5 r.p .mo are used the Richardson number is

given by

RLtr =
ß 5 L~ :

u.2.

(i03) (001) (5)

(1) 2

50

where S denotes g¡s. salt per gm. of water.

The Rossby. number (== u./:i.n L) is estimated to be of the

order 10-2 in the equatorial oceans (except extremely close to the

equator where .. ... 0). If U- = 1 cml sec is a typical velocity

scale in the model similarity would require a rotation rate of

5 r.p.m.

5. Results of the Two Layer Experimenti:.

Various conditions of wind stress and rotation rate were

used in an attem~t to observe a boundary current along the equa-

torial rim. In most cases the results 'were negative. A few in-

stan,ces of transient counter currents were observed, but thei:e were

no doubt a result of thermal circulations due to heating or cooling

at: the walls. Numerous difficulties were encountered in working

wi th the two layer model. I t required several hours to produce the

desired two layer system, then the systemhad to be accelerated up
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to 5 r.p.m.at anextremelys:1owrate 'to prevent ~turbulent mixing

of the. layers... Another .few'hours were required for the primordial

bal;uclinic .circulations to disappear ; In fact~' inmost cases the

experiment had tobeabandonedhefore 'a st:.eadystate' was reached.

.Inonlyone .experiment was a ste.ady state defini telyachieved.

.In tha.t 'casethe rotation rate was 5r.p.m. and noblowerswe.re

'used, so. that the .onlywind stress was that due to the relative

motion ofthetank.Thes~te.ady statecirci.lation showed,noev.i-

denceof an equatorial boundary current. In the top layer there

was a nearly symmetric gyre driven by the wind with a mean veloci,ty

of 1 cml sec. In the bo t tom layer the motion was very slow (nearly

an . order of magnitude less than the top layer) indi~atingnearly

complete pres:sure .compensation dUf;toa sloping interface.
cOne possible explanation of the failure of these experiments

is that the wind stressappliedcto the ',surface may serve to contin-

uallyexç i tebaroc 1 inic ins tabil ityso that trans ientmo tions wi 11

always dominate the system. . Longer experiments at very uniform

temperature and humidity conditions wou1dbeneededto testthis

hypothesis. Hówever, theevidenc e ,todates eems. to vitiate the

hope of finding a boundary current anàlogousto the Cromwell

Current in the system described.

References
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In troduc tion

In the dynamics of i;tmospheric and oceanic systems an

important rçile is played by the release of energy by dynamically

unstable mean flow systems. What is usually meant by such mean

systems is a flow with negligible zonal variation. The perturba-

tions which grow from such unstable systems have fundamentally two

energy sources, the horizontal (north-south) shear of the mean motion.

and the available potential en~rgy associated with a north-south

density gradient and a vertical shear 0

One of the simplest physically reproducible models that con-

tains these elements is the two layer system shown here in Fig. 1,

~A
cl

~ ~
..'

--
pi )'Pi ~-u:

.'''.....~~--

.. \~

11
t.

It :i

t2.) 1'-i J1J~

'-, -......
""--"--.

r

Fig. 1

The flow is taken to be gravi ta tionally s tablf1 (fi c: ti.) a.nd the pressure

is determined hydrostatically while f is constant in each layer 0
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(l-) (a) P 1 = t 1 g (h - z) h ;; z;: h2

(b) P2 t 2(h2 - z)g + tighi h2;: z ;; 0

Consider a situation where the flow in the system is only in the

x direction and is a function of y only and is geostrophically

balanced

(2) (a)
t i t Ul = - ~ ~' = - ('18 ~ ~

U. := - î. ~~i t 'è~(b)

If LL,2 = 0

(3) (à)
dt:. ~h d1i ~Pi t -p dO
~ = 0:: t' q ~.¡ f:¡ ~.. co t' Q -r +- 2- l" Ii ~"d ij .J 0!j a:1 i j J C1 !1 p,. i a. -i 'ò:J

Ó ßi~ = --L 3 ~ = +L t u.
'ò ~ f=i- t' Ô ~ Li (' T. i(b)

In the usu¡:l case where 1 .: c: I we see that a vertical shear

produces a large tilt of the interface between the two layers and

an energy source for the disturbance. The lines of constant pres-

sure and density are not parallel and the flow is baroclinic.

I Equations of Motion

One can show that for a layer system the equations of motion

in each layer are the conservation of potential vorticity and the

(1. l)

of volume,

(a) D~ (F. t£) :; 0

(b) .1 /l-) + -t d..N- t. = 0tn \.

conservation
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where -h is the layer thickness, Æ = ~ -U j . and %t is the

two dimensional substantigl cle;llva.tive.

The system becomes closed if we assume that the frequency

scale of tHe motion U (U is a characteristic velocity and L.
L

a characteristic length) is small compared to the earth rota-

tion frequency f/.z' In such systems the flow is geostrophi-

eally. òalançed during the motion and

(l.2)
Px~

r .. LÇ - UJ :. (i t ~
ff

this assumption with the assumption of hydrostatic vertical

balance closes the system.

For the mean state whose stabilitywe wish to. investígate

we take ~ U,~M i (~ ) ; IT.2 ~ ü.~ (~) ; ü; = u¡ : Q We superi~pose

small perturbatioP$ on the system of the form: (~is to total

height)

(1. 3)
D 0 ¿k(-x-c.t)
ñ. = F1(~,) e

.~ g ¿¡¿ (-X -c;t)
lL¡ :: nii~) e .. .v ,

In these expressions C is in general. a complex number

and the linearized perturbation equations corresponding to (1.1)

are

(1.4)

J,.

(a) (J, - i!(O'.~')f, + 0 - 1.')1 -t '1)l)H, (iJ - 0 )(p,'r..)

, .. ~.
(b)(Uz - O)(D'- ~')" + ~ - i4:JJ -1 ~ )",.,J~H, (i1 - eXp,- r' )
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''I'"

where li =
I

fi-r~
fL g'

~ ~ -L ~ D == %~ )
. td-

~' = ~ f¡f ~

and we have assumed ~ L~ I.p.
If we scale the variables in the following manner:

(XI:1 )::(x'~) ~i) L if;; OSL

~ i
LL ( p) - 4, U (I, '2)

I

C ~ Uo c

H .:
_.. Uot HI

ß i '- ~

The non-dimensional equations are (after dropping the primes)

(1.5) (a) (P::t):1)fl t(~o-U'Y:J-f,HI~)(:~C) -F,~i-:-F;f~

(b) (0:"0( :l)f~ + (ß/fto- ~:i.:j -E-H~ J(l: c:) ~F; ¡O2..;: -1- Pi

_ L2.L". tL.. U' (")'l 'i
F :: 0-_ C) - - G~ 1. 8 / H~ 2. - l)l)~ . 9 I 1-11'2 -. R-o .fIJ :2

10 __ Uo1\0 'kL

J= p.. ': I);~/I H I, ;¡

Fpr convenience define the y derivativè of the meanpoteptial

vorticity: in the c'tiayer as:

d~ ~ ==((3//t U ¿Yl. - F¿ H ¿ a).Ôd 0 J --
"* '-"~'-'1~

If F1) :i is of order uni ty we see that the mean flow is subcri tical
in the hydraulic sepse.
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Tiie phasevdocity c. is in gepèral complex; C = Ci' + ¡ CIJ

(C¡¡and C¡, real) and the: flow is unstable if Ci.;- O.

II Necessary. Cond,itions for Instability

Thé perturbation equations can be written as'

(2.1) (a)
d . .

(D"2 _ r:"J ) fi + ~.h - ~ ~ :: .. F, 1O:id ~ ù- c . i I ¡ r

(b) (6.~~-i)~:i + dq,'i -b. - F: 'lc :: - F. 1:r d~ U~-c ~ I :1 :i , i

*
M:u1t!jpILy (2.1) (a) by 1'1 (complex conjugate of pi ) and subt.rac t

from that the conjugated equation to obtain

(2.2) (a)t- (t~* -rl~)+2C¿~i-1 ft =-F, Cl'2r/~-fíl:)j' ~ 'Cf' Òj IU,-c.i:l
Similarly for layer two

"1

(b) -f, (t~~ ~- h~ ~) + :i c ¿ ~ ~..¡. """- i= (ti r: -~4. t I *)o.~ ": r. ~, Ôjl u2-cl .

Integrate (2.2) (a) and (b) between two points Y1 a~d y~ where

Pl and P2 go to zero. We eliminate the coupling term on the right

hand side and obtain (where C ~ Cit'¡ ¿ Ci.' )

r ~:l

. d. c ,C' .... ii
i., J F, ;i ~

~I

Ifir + ~
It)i';cl~ 'd f

. I . ~ J.- 'f.. ) = 0
tJlJ~,.et .

(2 .~)

~:. . .
~ C~ ..ft HN- di-n

11=1 2l~
~,

or
."

lpN'l :. 0
JÛ~ ;.~I~
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-',

Tharetore - if Ci= 1= 0 the potential vorticHy must "be positiva

in sQmeregions and negative ii; others for instability to Çlccur.

It is not true that it must be zero some place in the fluid s~nce

the Uow is discontinuous. It is clear also that equation (2.3)

çan be generalized to apy mul tipleiayer modeL. In the simplest

baroclinic model where horizon,tal shears are neglected as well

asß
"a,~1 F. H
- - - 1-. IY ~ Q and constantdj - d

~t'" = -EH£ ~;I 0 and eon.tant

In the case where lÓ f/ ¿, I Hi~~ - l- j
equation (2. J) tells us thentha,t

(~ .4)
1 fl'l:a

!(),-cl:¡
+ -l

ju:z-cl-:
= 0

or
~o:lln :
i~i"

ilJl-CI~ :.
IUJ.-c.\~

:a

Il.h~\- -
I LJ2 ru¡:2

OK

\

so that

(2.5)
'2 I ~

JtL I ~ K Urv)

and the amplitude oft.he pressure perturbation in each layer is

proportional to the relative wind in that layer.
. "è q.,Consider the case where neglecting A ~ ~ 0

("I -aul~ (I+ tLd.~~ - f, u. i ~ 0

and L/ 2:: 0

\,' '.
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since in~ç:m-dimensiQnal units Hi~' -= - Llt .

So that in a region with a. wall (at y = 0) marking the

northernmost extent of the fluid:

,. + .,ViuI) = e -.
i

-OO~~~O

Now

H:i:1 = -Hi :: = u.i , and does not change sign so that
equation (2..3) yields c¿:= 0 , and the flow is stable, However

let us consider putting into our system a bottom slope of the

form

'\ -.'- '" - - - lib' , '\ "," "-,, .~. i- ~
~: 0

Fig. 2

s'hown in Figure t.

In this case if the bottom slope is chosen correctly, the

flow will satisfy the necessary condition for instability. So

the addition of a bottom slope which is in this case in the ¡S

"sense" appears to be a destabilj.;¡ing influence. In any case, we
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~an al;bitrar:Ly change the potential vorticity in the lowest

layer, th\,s changing the stability properties of tl:eflow ø

w"ithout altering the kinematics of the mean fJow, (e~g.) a

symmetric flow over asymetric (in y) mountain will have

asy~etric stability properties, 'the flow beipg more unstable

on the northern slope for a westerly shear.

I,et us define the following functions for the unstable.,

now regime;

(2.6) rD - 1'1
1/ - L)-c:

1

) ~i. = l'~
U - c;i

Then equations (2. l) may be re-written a,s (if we ignore ¡3 )

:z '2
(4.7) (a) 'ò~ It.~~ ~~ _O(:J(()~C) ~ +LU¡-C)(U.I-U'.)~=('Lrc)(pI-l2.)~

: (1.j.-C)(u.I-c)(Ø, -~~)+Cu.,-u.j,) c., (u. -c)

(2,7) (b) ~~ (U-2.-cl'iØI _.;;2 (i.~-~Y~"ø +(u -i!)fu.-i- ')'P. ;(I.;...(!VIr2.~JJJ)':17~ F-; ~ F,..i ~ \,1... J,2 'At V.
= Cu,-ctf.,¡- c)(4'¡. - 411) t (Uz. -u.,) Cf2.( tl,2-c.)

multiply (2.7) (a) by CPI~ and (2,7) (b) by'CPt" andintegrate betw~en

y 1 and y 2' and add the resul ting equations

_i,/f1~ fc\c; ll4t(t ot~¡dJt (ytil~LI:"~/ ~.lJ J =(2.8) ~ (-
~ J~,-c)(ii.-c) rJ~'¡ Ip~ rp; - ~ ~: + /iP, I. J Jj
ji jY'"

=. (u.i-c.)(u.¡-(:) lø'-~4./-id:;;1. ..
= -Pi-lL(U.r")-(U,-j~ (,,,~)':(U..-C)J 1.\ 1f..1 ij

y,
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(Z.9) + r~ ("-,cttt?J + rt:,-C)' L~.Jd. ~+ (7u¡-LL/ J~y, ~I ji
where ii\ 9~ and J are positive definite quantities.

The imaginary part of (2.9) is
l

(2.10) f~~ f~lCi (t.l- C/¡) ~ ~ + (u.:¡- CA) ~~ ~ li 0~I ji
The real part of (Z.9) yields:

(Z.U) t~1l,~ t r~: ~.~ ~:¡(Al;.lL,..~.ii:)d." CA'Jl~1 +q2)~

:11 ji ~\ ~i
(J~ j~ ~-e"/tl¡+Q.)~' r (,,~-l-i) J J.j~ Ji

Let a bar denote integration between Yl and y 2'

Then using (2. LO), (2.11) becomes

(2.12) ~~~I + U~41" =(ct"¡Ci.?)(r~;I+Q~) + ~;¡-tJl):r

Now let both Ul and U~ be bounded from above by a and from below

by P,.., Then the following l.nequalityholds

'(2.13)), ; O~ (U.I..O')(v.--)~, +- (()2.-a.)Cu.i.-b)~:2 s

-: Ll~t. "u.¡c.i.-(~I,+~J(~+b)+a.bL~I+().i
,

Substiti.ting :Jrom (2.l0) and (2.13): i'
".. ."
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(2 .14)O~ (c: +Ct)(QllQ2)" ClQ +b)(~ I+Q.J t rJ.~+~~) t(U.1-v.1t.T

or equiva1entJy, since (U,, _u.,)'1 j .' 0

(~).i _.. i. /a.+b))f ~(2.15) .. "\. Cl\ ~ \.-T I) + c¿

. The complex. phase speed lies wtt¡hiÍna semicircle o:E

diameter a - b' (t~e differençe betwe~n the velocity ß~tre~es)

~lb
and the cLrc'le is oentered .on the real i;xis at "T the

inedian veløcity(fig. 3).

b- a.+"-r. cL

Fig. 3. (semicircle which contains phase speed)

This .type theorem was first pr.oven by lloward for continuoup1y

strati;fied shear fløws'ln two dimensional flow in whicl;. the hQri-

z.ont.a1 divergence is zero.

We cart doa.1i ttle more with this. ,Let

(2.16) (l;) 111 ~ u.i !:Q.,

"'2,~. lJ,& ~ a.
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Then instead of (2 .13)(wè havBv:

(2.16)(b) C~ u.~~,+~Q,~ LL,6tlca,-tbl)- L(i(Q2.LQ.i+b2.ì + alb/~I+~b~Q2.

or using the relatiqns (2.10) and (2.11)

(2.16 )(c) 0"" (~+CLj(~1 +~i)-(ai+ b,)cL (~) + 4"h,icSl+ ~J

-r U2. 6?'l (0., + h, - (Ç(2+b, ~l 'l;. -tbz.))

+ ~2. (ci~h,. -(41 b, )

The inequality in (2. l4) is still valid if u.~ is replaced by its

minimum value b2, if ai + bi ~ a2 + b2 and if ai + bi ~ 0

(i. e. if the median value in layer 1 is grea ter than that in

layer 2).

(2.7) reA - o.:ko: c: £.e,~b;J f I!;-ifi. ("',. b~ )(b, - b,. )

If bi = b2 (4.17) reduces to (2.15) since ai and bl. are then the

velocity boun9s for both layers.

Consíder the following ca,se ~

bi .: b2

ai ~? a2

Equation (2 p l5) would. yield a semicircL.e bound as indicated by

the ~figure below.
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--

b,

-. -. from eq. (2.15)

OJ,
eq. (2.17)

Q1tb, Q,

Equation (4.17) tells us that the limiting bound is actually-

less since , 1J2 (a., -b"; ') (b¡ -bi.) ~ (0. If b2 c: bi then we
. ., a,+~:i

have a limitfngsemicircle whose diameter is larger than i~

the case b2 ~ bi, This implies the flow is more unstable (or

is at least capàble of greater growth rates) if the minimum

value of the velocity is in the lower layer and the maximum

in the upper layer, a not very surprisin~ reEitll t.

If f3 is reintroduced in the potential vorticity, equa-

tion (2.1Q) becomes ( cL;i 0) ,

~(2 .18) '" ( 11, + ~.)= lJ,l\, + tM~ - ¡, ¡ 14i,l : i~/' J

equation (2.12) (a):becomes:

(2.19) U; ~ + !,~~2. =. LIJ,-US:r + (C:tCì "')(~i+ ~2.) tf3 (uJJ~/:u" 1 it()

Finally equation (2. l5) becomes

1.a.-h):J r Hb)" '¡ L ( GL'*hilh/:i ¡; t'ltbir¡¡2 J(2.20h.T Z(C¡- T +C~ '¡~,+~i. U,'¡T) "l -tt.lA"rn-¿; lP"
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If U, :2 0 and Ù,2 ? 0 the semicircle theorem (equation,

(2, l5)) is still valid for the problem when ¡. :f ,,; The semi..

c.ircle diameter will be smaller (but never larger) than the bound

given Py (2.15) especially for ~ small.

III Sufficient Conditions for Instability

... Consider the class of flows for which there exists

extrema of the vorticity in layer land the velocity is Zero

in layer 2. Further let the extrema in layer 1 occur for a

:point or points of constant velOCit~1"( U,:. Ç'S) . If:

o ~ d'bIÆiJd :: k, CiA) ¿ QOLl i - Cs J(3. l)

(3.2) ¡,.~ 0"" °i2./ó~ !! K~ Cj) L co
-Cs

i.
(3.3) A .:

A2 possesses a maximum ~ K+
Im~x

This maximum occurs where 0 tr = 0
Ô'fi

tional condi tions are equivalent to

K2. rn~id~\iCh is positive,

and - = 0 .Thesevaria..
Ófz

the equations (2.1) (a) and (b)

if A2max is associated with~ c: 2 and C = CS' A neutral aolution~ . Atherefore exists for ~ = 1\ax and C:: Cs and l' == l' satisfying. the
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equations

(3.4) (a)

. . '\
( .. ""12) /i d~r.1 A Ao - ~ 1', + - - F; fi =- - r; h:¿_ a 3 ~ -~ . r
( .. "" '" \ A ~~. II AD .. Q( -l fJ J. .l ~ .. - F; b;; .. - ¡: ,foi~ U~-G r 'Jl")(b)

. c'on,si.aer some disturbance at a wave number 0( near
t"
oc.

(3.5) (a) (D"" . ,,\ d~i_ P.-0(/("1 ,+ ~~c. - F,ti : -F¡ l:i

(b) (p-:cx'4).ø,- + Ôii. -l - F; ~~ = -r-i..A,¡U; ÕtJU,-c. r.. r
~J

"" ';0
Mul tiply (3.4) (a) by ti ' (3.4) (b) by f,-, ; (3.5) (a) by pi

(3,5)(b) by 12. and obtain after integration over the range

(Yi.' Y2) ~

0:: _._1 (ex 2: ~') li l~ + ) (rX -z ~~) f~ fi +~. 1 1J¡1.1 S .-c '....t..1-, .:: .r. j ,', (u.I-c.u, -c.J

+ ~ f,. l~ (c-cs)
'O.: LUi. -C)(Y.L - C.. )

and

(3.6)

or --
K"2(~') f~ 17-K, (~) ,fJl pi +

i ( !. 0(:: ~ 2- F; ( U, - c) F:i (U'2 ..c) '..', . , )
(3.7) =

C - CJj " "
p~ pi + l¿ Fi-

F¡ F'2'2 "''2 9Now let o(~ 0( C --?c.s such that m C ;: 0 .
One obtains
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These integrals are discussed by Lin (1955) .where it is

shown the~ that

(3.9)
(t:J "- A..;' B

c.: C!,s

where a1l .that is important is that B ~ 0 , A and BbounGed.

We see that

(3.10) d.cc cd eX 2 A-t,B
A')tB".

So. that if cx~ decreases slightly Cv becomes positive and the- s-
flow is unstable to wavelengths slightl,y longer than, L.:i:: (2:;).

As an. example consider the flow (in non-dimensional units)

(3.11) u.1
",2. :i

- ,. Ij=- e.

Now

(b)

1. =-
'C ::

dq.1. ::
OJ

4

(.:i . . ¿¡ ~)... -!j2.-r +F; - r .:~. . e
(3,12) (a)

'2 2-

_ F: e-r 'j:;

The potential

+,11:+".,..- -:'
.2 Y'

vorticity in the top, layer vanishes at

y C. 1&
We see that this jet flow satisfias the criteria

listed at the beginning of this section so that a neutral solution

it.
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(1=; of 1. r ?)e2t;(sts with a phase speed Cs=- e, and a neighboring

unstable solution also exists.

We have tacitly assumed tl:at zjc. lies in the interval

of the flow. this is certainly true for an unbounded flow,

However if the ;int;erva1 in y is restricted 11 (say)

..l.£ y ~ 1, then it is necessary that

v F, +¡Y' ': .c .' Y''i

for ~c. to be in the interval. This is true for sharp jets

( Y"~ large) bût not for diffuse jets (Y"~ small) so t):at sharp

'gaussian jets will be paroclinical1y unstable but it is not

necessarily true for diffuse jets since they satisfy a neceasary

but not sufficient condition for instability.
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Hans Thomas Rossby

In troduc tion

A fluid contained between two infinite. horizontal conduc ting

planes is capable of transporting larger quantities of heat by con-

vection than by conduction alone. Theoretical analysis shows that

the heat transport is a function of two non-dimensional parameters ~

the Rayleigh number and the Prandtl number. There is however some

confusion about the importance of the latter. Two theories have

been developed for the fully turbulent convec tion. One, the Mâlkus

theory, says that the Nusselt number, H/Ho' is independent of the

Prandtl number,cr The other approach is a mixing length analy-

sis by R. Kraichrtan in which he distinguishes between low and high

cs For high 0 :; 0.1, the Nussel tnùmber is independent of

o ,but for'(V': O.L it is proportional to d-l/3. For large

Rayleigh numbers. there is close agreement between the two as long

as cr ~ O.L. The large scatter of experi~ental datâ allows no criti-

cal examination.

This paper discùsses the results of some experiments that were

done in an attempt to get a better picture of this Prandtl number

influenceon the heat transport both at very low Ra (laminar con-

vection) a.nd highRa (turbulent convection). The results are compared

with two other experimental 'papers.
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The experimental method.

The experimental apparatus iß, with slight changes, a new

model of the .one used earlier by Malkus (1953). The fluid is con-

tained between two aluminum llates by a surrounding plastic ring,

which is also used for the yertical spacing. Next to. each o:f the

;plates a large aluminum block is glued with a thin formica sheet

in between. See fig. l. When the lower block is heated i;ndtpe

upper cooled symmetrically around room temperature, they will act

as heat capacities and the difference in temperature will set up

a flow of heat through the fluid. Close to both sides of the formica

plates are four thermocouples of: copper-constantan. These are electri-

cally isolated from the plates, but by filling the a.rill holes .with

merc4ry they are in good thermal .contac t. All the constantan leads

are connec ted and by correC t swi tching one can measur.e the temperature

differ.ence across the fluid, T3 - TZ' or between theblQcks T4 -T1.~

Assuming that the system is in a steady state, çme cian very

quickly compute the heat f.ow if the. conductivity of the formicaplates

is known. This is an important advantage, that is to say, the;effective

conductivity is known simply by comparing the temperature across the

fluid and the formica plates. (In .most earlier experime¡nts the heat

transport has. been meai:ured by the electric energy input in a heating

coil.) However, in this case, the blocks are slowly changin.g .their

temperatures due to the heat flow and the steady state is never com-

pletely achieved. The basic condition is therefore that the logarithmic

'-~'
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rate of decay must be small compared to the characteristic thermal

diffusion time of the system. Because of the slight time-dependency

it becomes necessary to establish how much the heat capacity of the

aluminum and formica plates, as well as that of the fluid, can change

the steady state estimate of the heat flow. lh order to do this we

assume the distance between the boundary plates is d and that the

heat capacities per sq.cm. of the fluid, aluminum and formica plates

are (dpC)L' (eyC)Ae and (fJC)F' The vertical coordinate is

z and the lower surface .is "z"= 0, . tlie"'.upper z ;: d.

The one-dimeni;ional heat equation is

?)T k d'lT
fC~::- ~a.L (l)

We assume that in a quasi-steady state the left side can be written:

~ f, ir- ~
fC~T\2:,t)=;C1tL(I-i)lj (1:)+l T2.(t~ (2)

(?) in (l) and integrating in z gives:
.

k IE.) ;: -~ (fl..) + J C i! ?T3 _ yC .~ 7. l(-r _ T \- \Òèa ~ ~ 2:0 'at IT 'i't '3 2. ) (3)

Integrate once again from z ;: 0 to z;: d and divide by d:

(T:i-1j) !òT) C d. Õi: /", d. ~ i ì-k -r =-I\\~ +.t T ;¡-flTÒ!.t \T;-TJ.
"" - ,.,..-",

(4)

For z ;: d we have from (3)

(a T) .. (d T \ C d. Ci ( \- *- O'? c;; -t\ :ó)i!~(7 J î 1t i; 1- T~) (5)
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(4) rewritten:

-Ie (~:) :: ~ (-r3~ï~ì - pC: ;~+ JC t lf (r; - T:- ) (6)
2~o

(4) and (5) give:

_",(âì\) ~k(-r-t-).LJC l- d~ ;- oc.42- IT -1:\
'\dz ~:.J. ct T .2 'ò-t / 'at: L 3 '- ) (7)

Add (6) and (7):

_L ridT).. +(òT) .J _ 2k. tì -72) -fC. cL · L (T3- T ) (8)It L \. ôr2:~Ö :t~i?~d: - cL b 'at: 2

Assuming that there are no gradients in the aluminum plates,

we have:

(ie e) ò J:i := _ tlIT) +k Öi \Ae ë)t. ô~ ~"'cl Ftô?-I _ d. ; (9)
~ - +.. At

(f'Ct)Ae doT~ ~ -k (~:.)".o - ¡'A~ ), ~ - fAt (10)

Subtract (9) from (lO):

(fC~e l(r-.):k~;~t: ~r)"J-kF~:L~kFC~L.+eil (11)

Using (8) and the equivalents of (6) and (7) for the two last

terms of (ll) we have:
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(net) i (?3""7;) = -ik(~ ~7~) + ie ~ k l73 -T~)+
'. i. 'At 'òt

+ ;r (C T¥ - 1; ) -(r;- T,)J+~ .(1' Cl))lt + t.(yCl),: k ~ (-i-T,)- (r- 128 +

~ , :~

T~JT,-r.ì-(T,-T,il-l(ll)F ~~¡ +\ (J'CL)Flc rr(l.-í,)-cr;-1)j...(12)

The heat flow is then

H:k t;/,) : :lJ(lI.s T -A T)-A k (l.T)+:B ;t (Ae T +:41) ) (13)

where

A = t (lfJcl~r- ~~:)

B = !e" -g .(11 c) I::
ÆF ~

Ls 8 T =7; - i- c:r=-T-T.3 :i

The effective heat capacity' of the fluid is tne ~tal

capacity divided by the Nusselt number, hence the factor Nu in A.

This formulation gives the average of the heat flow in and out of

the fhiid, If thE¡ system is changing its mean temperature very

slowly, due to some 5lsymmetricheat loss, its effect pn H will

be cancelled out.

As aluminum is only 25 times as conductive as mercury, it

is necessary to make corrections for gradients that are present

in the boundary plates when the latter is used.



- 6 -

If. the steady state heat flow can be written

H5.S.
= (CT)l, 1 :.

7 0 T(efl
(ÓT)Ae

clAe
k~e. (14)

and

(¿)T¿ + (6T), - (6T)i. i4t (15)

(LST) = measuredT3.-; Ti

(ò T)e = temperature drop across flu;id

(6 T~e temperature ørop across aluminum

We get:

(~T~ =-
D. T

I + (~t) ~ (t ~

(l6)

.
This never involves more than a 4% correction and within limits of

h. I. ,
e. Ie ~l) i-¿.

It el1/ri

. = Nu . __ Ra1/3

,

can be considered as constant forerror the ratio

,. d( turbu1en t convection).

The electric system consists of aKei thley microvolt ammeter

to which a Leeds-Northrup recorder is connec ted. The accuracy of

the microvol t meter' is .: 2% of full scale, which is .a little large

when switching ranges and the scales do i;ot ove,rlap. The linearity

of the recorder was kept to better than l%,, .
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It is not obvious t.hat at any arbitrary moment during the

thermal decay, the system is ~ true representa.tion of the steady

statecoIlvection. However, if there is some unspeci:Eied hysteresis

during the decay, it should have the opposite effect if the tempera~

tureacrossthe fluid is increased instead. Assl.ming that this

would be a good test of the validity of our results the following

was attempted. Two additional cylindrieal aluminum blocks were

added to the original system, one heated and the other cooled.

By. having formic a plates sandwiched at the surfaces of contact,

one can regulate the heat flow and the rate of change in tempera-

ture across the fluid. Since it is difficult to heat and cool

e~actly symetrically and add the blocks at exactly the same time ,

the original system is started in a reverse state, e.g., with

Ti ;: T4. Then, hopefully, by the time T3 ~ T2 the total system

will have found a symetric temperature distribution, if the added

formica plates have exactly the same effective conductivity. The

results are discussed later.

Laminar convec tion

The three fluids and their physical properties are given in

Table. /11.
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Table 1H. (at 250C)

I

..'

Mercury 1.5 cs. 1000 cs. Aluminum Dim.
Si1.oil. Sil.oi1.

,
--_. -

,

,

(J .0257 l8 8500 -
.. '.-- c__

V .001126
,

.015
,

LO cm2sec-l'. ...
\

X .0438 . 000847 .00118 .8 2 -1 .
. ,cm sec . i.

,

k .Ol97
i . 00025 . 00038 ". . 5 cal cm-2sec- lKt.cm-l)-l

--

f 13.54
,

.853 .972 2.70 g.cm-3.

C .0332 .346 .332 ,215 cal g-lr,.i
.

iex . l8l8'10-3 . 00134 . 00096 rl. . .
I 23. 1200 850 1.25 cm-2)( sec. ,

01: t 3630 10340 80 d-3r1
)(: y

MercUFY has a very low Prandtl number and its physical

properties do not change very much with temperature. The region

" around and apçve the critical Rayleigh number'was studied for two

geometries d = 1, 2 cm, see fig. 2.* The scatter in the apparent

Rac for different runs was small and-is not studied.
... ..

d (cm) 6T (Rac) Ini tial Slope Sec. Sec .Sl. :intël1sec. Max.rate d )(

min. max. slope wi th.Corid" Slope of decay. T-.. . .. .

1 .4750C 1.07 1.16 1.46 R. = 2360 .: .04% .044

2 .0590C 1.03 ¡. l2 1.42 7t = 2610 .: .02% .on

*
Observe that the axes are reversed. Nu Ra can be called the normal-

ized heat flow and is plotted as a function of Ra.
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The recQrded temperatures were corrected i;nd re-plotted on

a log temperature vs. time curVe . This compression makes it easier

to smooth out the wiggLes in the data due to the limited conductivity

of the aluminum. Ln spite of the large scatter :!om the wiggles, the

agreement is satisfactorY. The intersection of the second slope with

,

the conduction line is not so well defined, but they overlap within

+ 5% which is leSs than the maximum variation due to the wiggles,

. The character of the wiggles is 4ifferent in the two slopes. In the

second, they are very roughly periodic of l-2 min. length, whereas

in the first they become seve:ial min. long and aperiodic Suggesting

a slow final readjustment to a linear temperature profile in the

fluid as it approaches the critical Rayleigh number during the decay.*

S.everal attempts to increase the temperature, a.s described

earlier, were done aridthe most successful one has a few ~oints

plotted in fig. 2,

They do not lie on the line because the rate of increase is

too large for the system to readjust i~se1f. As soon as the rate of

change becomes small, theriall points lie within the limits indicated

ilnd during the r~st of that run there was no distinguishable hystere~is.

Because of the difficulties and lack of time this technique was not

repeated.

The initial slopes for the two silicone oils were also studied,

but lack of time did not allow any repeat runs to check consistency.

Contrary to the studies with mercury, the time corrections involved

'1Thed:ti:ße C:cdnstänt"fof the electric system is L. 2 sec.
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for computing the heatif1ux became very large (lO-L5%). Another

very important correction was due to the heat transport. parallel

with the fluid through the coritaiher wall. To simplifythedå'ta

pr-Dcessing the conductive slope was computed frOm the hancibooJ2 value.

The difference in the conductive slopes was assumedcompletelý a.ttri-

butable to the transport through the wall and proportional .to T3-T2'

The slope ,2.58, agrees very well with earlier experimental data

(Silvestori). Strangely, the critical transition did no~ occur at

the computed critical temperature, but at Ä. 50% higher trT2.

The physical properties, specially the viscosity, were checked and

agreed with handbook values. Dr . Melvin Stern suggested that the

fluid might be contaminated by some minute foreign particles which

by stratification could have a stabilizing effect. This would not

necessarily affect the initial slöpes.

The initial slope for thelOOO cs, fluid is less, 2.23, but

it is not reliable. for the rate of decay was .02% or less and

~~ = .0003, which are comparable.

d (L'T)Rac Slope "Transient Slope" Rate of
Decay

)(
cL7-

1.5cs .5cm O.20C 2.58 4..03% .0035

i03cs i.cm 2.66°C 2.23 1.92 " .02% .0003

*It is not possible to give limits of error of physical significance,

but ~~5% is a conservative estimate of the experimental errors if
the correc tions are correc to
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In both cases there is a "trai;si tion" slope. See fig. 3,4. This

ha~ been observed by Malkus in his earlier experiments, but Sil,..

veston does not mention it although his data does scatter somewhat

in a similar way. It would be particularly advantageous to go

through this transLtion while increasing the temperature to check

its consistency.

Turbulen t Convec tion

~ercury was studied extensively for high Ra under varying

çonstraints. Two runs weredonewith d = 4 cm, one with d = 8 cm,

and one at d = 4 cm, but with a plastic dtvider that sectioned the

Uuid into four vertical compartments. In fig. 4, NuRa is plotted

againstRa. It Íß clear that as the ratio d to.e (diam.eter!) is

increased the heat transport becomes larger. This is very inter-

esting showing how a simple geometric constraint on the fluid will

give rise to an increase in the heat transport. The best values are

for d = 4 cm without the divider. The original data was smoothed on

a logarithmic plòt. Then the heat transport was plotted against the

Ra on a linear diagram. Corrections were made for gradients in the

plates and the Nusseltnumber was computed at variousRa numbers.

These were plotted to give fig .. s. It is not quite clear why the

slope :is not 4/3 as it should be. Pf'obably as Ra decreased, the

eff ec ts from the poor geome try of the sys tem became more s ignif ican t ..

The line from Globe & Dropkin is plotted for comparison. . For these

Ra their geometry die was 0.26 which is somewhat better than here,
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0,4. As the best data scatters around their line, but still shows a

trend towards smaller. Nu, it is possible that thecoeffícien:t in the

line equation NuRa= O. 051'Ra4/3 is slightly large. Kraichnan's

mixing-length analysis predicts the coefficient to be 0.048.

The results from the silicone oils are more difficult to

in terpre t.

cr d Ra ours Globe & Silveston Mull & Kraichnan Malkus Rate of
Dropkin Reiher Decay

l8 8 24.2' i06 2l.:: .28.4 - - 25.7 22.9 .: .02%

8500 8 395' iOJ 6.65 LO.O 6.3 "' 6 . 3 6 .5 5 .8 c: .02%

8500 12 i; l4' i06 8.9 l4.0. - /'8.4 9.3 8.3 c:.02%
(air)

0=0.7

r
Nu
..Á

"\

Unfortunately the corrections for the heát transport in the

contafnerwalls fere very large 20 to 30%. Since these values are

from single runs it is not possible to specify the limits of error,

but.: lO% for processing. errors is certainly sufficient. How Globe

and Dropkin ~et such large Nussel t numbers is not clear. They use

one container with d/ e ~ .4 and heat the silicone oils to large-

temperatures where the fluids no longer are Boussinesq.

For the l.5 cs. silicone oil, or= 18, the Nusselt number is too

low. It is possible that the ratio d/l is unfavorable. Or, it may be

that the 50% difference between the computed and observed (Ra) crit. is

significant. All this is speculation, but it might be added thatG1.obe

and Dropkin computed their Ra without making observations of Racrit'
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Also, they did not. discuss what corrections they had to make, for

example, for losses from the heating unit OJ;, more likely, for

the heat conduction in the container wall. Unless the geometry

of the fluid container was a very serious constraint on the tur-

bulent convection it seems difficult to understand their high

values. The values reported here seem to lie rather close to

lCraichnan's computed values,. but they cannot be considered as

conclusive. It is nevertheless well established that there is

a strong (j influence at low () at both ,low and high Ray-

leigh numbers.

It is interesting, nevertheless, how the geometry of the

't,

container will affect the heat transport for low and high (T .

As d/.e increases, the characterii;tic size of convective "blobs"

becomes smaller. For high õ this increases the viscous dissipa-

Cion whereas at low () , the viscous .dissipation being less signifi,-

cant, the convec tionbeco~es more organized.
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Summary: A rapid review is given of different methods that can

apply to the study of finite amplitude conveçtion.
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in the "stable" fluid. The argument referred to above as to the

direction of the convective heat transport is not relevant for

the motion in the stable region which may transport heat downwards 0
..

This is suggested by extrapolating to the stable region the mixing

length theory estimation of the convective heat flux. This extrapo-

lation is of course questionable, but the idea receives some support

from a r.ecent study of penetrative convection by Dr . George Veronis.

In the situation considered by Veronis ,the fundamental mode of

steady motion does not transport heat in the same ,direction through

the entire volume .of the. fluid.

In any case, the knowledge of. the convective conductivity

is the maÍ,n problem related to thermal instability, besides the

extensively-studied conditions of stabiHty. This knowledge can

only/be obtained through the consideration of thenon-'linea,r coupling

between thediffere.nt .modes of motion . Though this problem is gen-

erally attacked by introduc.tionofphenomenological assumptions, a

more direct approach has ,been developed by Malkus and VeronÍ,s(l958) .

. Following Malkus and Veronis, we will sketch diffe,rent ways .toob-

tainformalsolutions of the system of non-'linear equations describing

thefin:4e amplitude convection in the Boussinesq approximatioIi.

i

To illustrate the procedure, we will consider instead of the

exact system of relevant equations, the followingsystem~
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I
(\76_ À \JJ.1.)W "" F; (Wi VI W)-d- G. (W) w)

+ boundary connitions at g o and z 1..

where

d'Z+-Ôl~

F2 aridF 3 arehomogen~ous functions of order. 2 and 3 in W arid the

derivatives of W.

Th~linear partofsystem I is identical to the linearized

equation fortlie vertical cQmponent of the velocity of the Boi.s-

sinesqsystem, if )¡ is the Rayleigh number and J- the vertical

coordinate. The non-linear part is somehow suggestive of the way

the)?randtl numberocçurs in the Boussinesq system, if cs repre-

sents thePraudtl number. As regards to the horizontal bòunnary

conditions, we will :restrict to cellular-like patterns of given

horizontal wav~ number 0( . The eigeri functions of the linear system

are then separable, and the set of eigen values is descrete. We have

(l) (\J" - l1 "'9 ~~) cp = 0
l" ~

where
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(2) frp,.~: Xr- (~) 419 (",~)

L \7: 1j~. - C~0()~lj9 ("'~)

rl and 9 being any non-zero postive integers.
The lowes t eigei; value, i. e. Ìl , is the cri tical Rayleigh

II

number associated with 0(. We will admit that the CPr- ~ provide

a complete set o.f functions compatible with the boundary conditions.

The solutiOn of I canno.tbeobtained èxplicitly, but clearly

in the vicinity of marginal stability, i. e. for À:: \, ' the ampli-

tude of W will be small (disregarding the possibility .of finite

amp'litude disturbances). The system I then becomes quasi-linear,

a situation well known in celestial mechanics. A procedure then

consists in expanding formally W in powers of some func tioi; € of

the small parameter, splitting the system into an infinite number

of linear non-homogeneous systems. These systems generally have. no

solutions (Le. no solutions compatible with the boundary conditions)

but the procedure introduces arbitrary. constants: constants of integra-.

tions, and constants involved in. the definition of e. Different

choiC,es of these .constants can be made so that.all the systemshavè

solutions.

Let us wri te I

s (Cv' -À" \J-;)W ' J Ìi W + F3 - +- F;. 1" (W).

L + boundary conditions
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where Ó À = À - À11 is to be considered as small, and is in fact the

small parameterof physical interest. The parameter of the expan-

si.on will be some function of bÀ , and it is convenient to write

the relationship under the form

(3) ò). = J,A (é) = w, é + ~ e:2.-+ W3 E3 + .. L ·

the Wi beingçoefficients to be defined.

. Writing

(4) W:. W,6 + W" €': + Wi €,3 + W~ E:4,. . . .

in S , and equating to zero all the powers of g , one gets the

systems

S If

. + boundary condi tions

(v~- Ìlll \1: ) Wlf -= ï: (Wry_1 JW,;_~ . · · ¡ W, )

where

(5) T. ~ Cw~~ -F~(~'JW)l +.L ~ (w. w' WJ.)
'l . l+J1lrl . ~ ~+J+~:'ii . l J n

4
HJ~"r

n=~
¿ ~I

,

f.~
J ~ i

Since ~. depends only on Wl" and UJ~for r.JJ ~ -c ') , S'n is a linear
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homogeneous system depending on the solutions for S,. for r-.c 'i.

.For S'f to have a solution it is clearly necessary, that jl"be
orthogonal to ~ , that is:.. . . 1/
(6) f dJo ~ (lt~) t lW(1o)1 =Q

,.
cP being 

the c.onjugate of rl .

If (6) is verified , then

(7) Wf( : Cif (li + r ~o G (/tIAo) ~

is solution.of S"i ' where Cl'is an arbitrary constant of integra-

tion and where the Green 's functionG (~ø) is readily seen to be

(8) G (n/t ) : 2:o (I .1, rtrl
~ 1 (llo) rp~1 (11)

(~Q()~ 0i - ÌI¡i~ )

Eq. (6) is then a necessary and sufficient condi don forS'nto have a

solution. Once Wf' is found for I ~ ¡i ~ ?1 , the two constants C1'

and W11 can be chosen so that S l) + i has a soluti.on. Malkus and'

Veronis choose (,=1,C,.= 0 fOt rl;: 0, and can then determille

the Wi from (5) and (6). With a standard notation, they have;

;¡ c: CR j.Wi ~;: -:L UJ¿' c: ~iij~) +-l,2- ~ LR /G ~ 7~ ~ ~ )i: ?M n t lJ ::'l i. ti ~'/+-I Ii '-l .i+-~,:'n~ 11

Other choices of the Ci' are possible which lead to other expan~

sions. For instance, for the Rayleigh Boussinesqproblem with free-free
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boundary conditions, it turns outthat one can determine the elf

with the requirement Wr-= 0 for r-:f 2 and W:i = A. W is then. i
an e:Kpansion in, powers of ( t).)' :

(9) w: W, (åÁ)l + W,. (~À) + WJ($Æ)i;+. . .

No es'timationof the radius of convergence of the possib¡e

expansion has yet been fourtd; Bu't comparingthe results can prp..

vide some-information, the different expansions: being equivalent

if convergent in some vicinity of $). = o.

A more direct method oan be developed writing S into the

equivalent form

s* rW(n.l= c tl + r J, (; (ILl.,) l' fVV (/)')3
~ + boundary condi tions

C being a constant determined by the boundary conditions. One can

substitute into the boundary conditions the equation:

~ cp / T (w) ~ = 0
/1

so that 5* can be written:

s'*

W(n.):: CCf11 + r4.o G(~/!ì~)T(w U:ø))

5tL 7ó d- ( W) = 0- 0 7"

*..
3 can 

be iterated in a straightforward way:
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S.~..."" ...o . Wo.': CO~,

s~ (Wi:' C, CP + r JÅo G (!21'30 ) j: (Wd)I L ~ CR, I dr (Wd ) ;- ~"

- ,-,,--,,~._---,.~,"~_._'_ -_: - ~ ~ - - -~._.- _.c_ - ._'-,'-' _ - - -.---. --i.'- ~'-

-i..
Sh

~/~ ,~C'nC¥11 +rMQGJ1Á~)d-CW'f_1)

L Cfi r~ C W ff .1) / :: 0

* * *

The author intends. to examine the coefficients introduced at

each step and to compare the ditferentmethods of solution,



Fini te Amplitude Evolution

of Large Scale Atmospheric Disturbanoes

by

R. T. WíUiams



Firiite Amplitude Evolution of Large Scale Atmospheric Disturbances

R.T. Williams

,Introduction

Recently a number of studies have beeri madeinwhfch more

complicated equations than thequasigeostrophic ones arè employed

(see:, for examplé,Hinkelmann (l959) ,whQ. solved the tiydrostatic

primitive equations numerically). These studies havebeenstlmu.. .

lated in part by inadequacies in operational quasigeostrophic

,
fOrecasts, In this paper some of the effects on the growth of

an atmospheric disturbance, which are not included in the q~asi-

geostrophic approximatiôn, will be studied. ¡hese e'ffectsare

essentially non-linear, and will bei,nvestigated with ä ~inité

amplitude expansion. To simplify the probhim, . only perturbations

which have no latitudinal variation will be considered, arid finhe

di:Eferences will be used in the vertical to construct atwo-Îèvel

model.

Governing. Equations

.. As indicated above we are only considering Disturbances which

have no northward variation. That is, the velocity components and

tl:e deviation froIIthezonál mean of the tempèrature an'd geopotential

are takèn as. constant in latitude. Also, friction, heating, and the

variatiÖn of the.'Coriolis parameter are neglected.

These restrictions ont:heHowhave several important coiise-

quences. Since t (theCoriolis parameter) is constant, there can
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be no Rossby waves, and the barocli,nic stability criteria will

be modified. No convergence of the poleward fluxes of heat and

momentum can occur as these quantities do not vary with latitude.

Thus, in .this model the latitl.di,nal temperature gradient must

remain constant. In a bounded system a convergence of this

poleward flux is expe~ted, and this would reduce the poleward

temperature gradient, and tend. to stabilize the flow. The lati~

tudii;ally constant momentum. flux:. iniplies that i;o poleward varia-

tions in the zonal wind can develop, and therefore that horizontal

barotropic instability cannot occur. . The neglect of -heating. and

friction in the model will be important whEm longer time periods

are considet,ed..

aowever, the constant f does not change the gross baro-

clinic stability r.elationshi,ps, and it does .allow the unstable

dii:turbances to have a i;impler, more symmetric yertical sti:uatU:le,

The exclusion of the f~ux cOnvergence processes permits the isola-

tion of other physical effects.

We shall employ the. two-level model used by Eliassen (1956),

:?-nd Smagorinsky (l958). In this model pressure Í,l.sed as.a verti,-

ca.l, coordinate, and the atmospherei,s divided into four layers of;

con~tantpi:essure differential ~ L\ p. The boqnding p;resi;ure levels

are n.umbered from Oto 4, where level. 0 corresponds to. the top of

the atmosphere, wheref = 0, and level 4 corresponds to the earth's

sll;rface where P 2 6. p, Applying the equations of motion and the
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cont:inuityequation at levels 1 "and 3, approximating vertical

derivatives with finite differences ,and combining, we obtain:

~u., t U. â u.; + c,t¿, (ui ~u.~) = _ ãc:, + f tVat' '-; ò)C ~ ~ -¡ ./ , (1)

dYJ3 -+ lJ ê) t.) _ d u.~ ~1-l.3)ô't ~ òt. W :L:: õu. r
- :? + r V; "àx. (2)

,'d1J +Li1dtJ + õU.1 (Vi-1I) = _ ~~l -Pl.I~õ't . ôx. øt..2 ii .. (3)

~i -tU dir~ _ óòu.¡ (v;-1-l ': - òil) -f. lJJ'
õt ~~ t-:2 Ò' ~ (4)

where ~ is the geopotential. Here the usui;l meteorological

cartesian coordinates are employed, which means tbat the terms

involving the inverse of the earth iS radi\ls have peen neglected.

The subscripts on the dependent variables :indicate the avpropriate

pressure levèls.

Ln this model the vertically averàged continuity equation

takes the form:

i (tJ¡+Lt3):: 0
~x. OJ)

This implies that the vertical mean divergence is zer9. and results

from the assumption that the individual pressure chan~e at the earth's

surface vanishes. This is a good approximation for all but the

planetary scale motions in the atmosphere. Also. this assumption

fil ters external gravity waves out of the model.
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If -1tl - ~~ + f (u, +~) and(;¡ -t ii) are i;,ero,thenthe

time ;'Variation of u.¡+ U-s must also vanish (the bar indicates the

horizontal mean). We shall consider only such casc:s, and since the

frame of reference is arbitrary we shall take:

U. i +1)3 = 0 . (6)

When the thermodynamic energy equation is appUedat level

2. , and the hydrostatic equation and the continuity equation

are employed, we obtain:

i(~_ø\+(1I+13) d (~..4l)1- il(_È.\ ó:1 =0 Jò"t 13) 2 . ~ \.' 3 - 2.)(. a~~ x. (7)

where

R gas constant,

e potential temperature,

Cp = specific heat at cOt1stant pressure,

¥,
R

cp

The measure of the static stability in this model, (- l~).2 , is

taken as horizontally constant, but will be allowed to vary in time.

By horizontally averaging the equation:

3.(l!\ = 0
"'f d:c) .

and applying finite-differences an expression for. this time variçition

may be found.

In order to separate out the mean fields, and simplify the
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_equatipns we introduce the following new variables:

Ll, :; -i.3 = U +Uo (t:) + U(K.;"t)

i à rP¡ i Ò ÅI_IJ :: -r ô~ Co T ~

lw; -11) = ~

i (V;-Vj) ~~(t)-+ V'T ('Jit)

(9)

(10)

(11)

(12)

* ($, "'~3):' q,¡ . (13)

Now U1 ~ I VT l and ~T have zero horizontal averages.

Before rewriting the equations let us non..ditlensionalize

with tpa following J:elations:

)(:of) t..~ l ip:ft if: v::tJif: l,,:¡t UL.'i 11 :¡.iJli'¡ lAo =fl U i,. (l4)

leu
The Rossby number is ? -: T ' where lt is a wave. numpel: for the

flow. Another non-dimensional number is given by: .

'd :::~: (- ~~ )f -lA /f(r). .(l,5)

Thus; ')(0 is the product pf a Richardson's number and the Rossby

number sCtuared.

On introducing the new dependent variables and n(m..dimensibn-

aliz;ing, the system of equations mi;y .be written in the foUowing'toi;¡n:
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'd1fY1 + d;;11 =.p r_ U.O d'V'f _ l (.!J "-T ) L ::' /'

ô't X L J'l oj. ~ ~
, . .., ÕlV: ..'~ + () ~ + U. cÄA L- u" -, - LA d:;M + u. dÒ~' J = Nat -¡ ,-- (j'l ìG X - l

'2 dUo diP'f .r - 0)J ~t +"'-vT- ,
õcA ~ _ -, dt. _- - 1Ím .l er - -¡ O"' = P'd1: t- aX. ~
p~ d.:~ -uo =p~V~ _ T,

cLua _ 11 = 0
d. t'

i~ - 2.~~Al = -- 2,P LVI nlt; J - q ,

(16)

(l7)

(lS)

(19)

(20)

(2l)

(22)

where the primes have now been dropped. Notice that the left-hand

sides of the above equations contain all the linear terms, and

that the right-hand sides are non-linear, and a~e denoted by M, N,

l, T, and Q, respectively.

With the scaling used in this analysis all quantities eKçept

~ and '(0 should be of order one for large scale i;tmospheric. flow.

For such motion p- is usually of order . i, and ~ is one or less.

Lf we neglect all terms of first and higher order in the Rossby

number," we, obtain the usuaL quasigeostrophic system of equat:ons.

Notice that the quasigeostrophic equations in this case are com~

pletely .linear. A hígher order approximation can be obtained by

.includingtheterms of. first order in ;i Such a formulation

might be called a balanced system since it includesnon-geostrophic

effects, but does not allow gravitational-inertial motions. Note
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that all the non'-linearterms in the above system are of the first

order in the Rossby number.

In discussing the physical meaning of the termS in the above

equations, it is useful to note that since the y variatior:vof the

velocity is zero, LA is the divergent part of the horizontal

velocity, and V is the rotational part. Thus, the non-linear

terms in equations (16) and (17) which do not involve ~ø , repre~

sent the vertical advection, and the horizontal advection by the

divergent part of the wind, of the rotational component of the

velocity. ,As will be seen later, these terms cause an energy

cascade which can drain kinetic energy from the energy-producing

modes of the system. Such a process cannot occur with the quasl-

geostrophic approximation, in this case. because the governing

equa tions are linear. Wi th two horizon tal dimens ions, a cascade

may occur in the quasigeostrophic model, but as Phillips (l959)

has pointed out, this energy transfer appears to be small. Thus.

one of the major differences between the quasigeostrophic equations

and the primitive equations. may lie in the rate of energy transfer

to shorter wave lengths.

The terms involving U.O in equations (16) and (17) represent

the advection by the non-geostrophic part of the zonal mean wind.

In equation (l9)., P indicates the change in the vertical advection

of potential temperature, due to a time vaniation in the static

stability. The non-linear term in equation (20) shows the effect on

the meridional circulation of a mean vertical flux of 1r momentum,
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since 'dU-
~ is proportional to the vertical velocity. In equation

(22), the static stability varies according to the met'dional

circulation and the vertical heat flux.

Solution Procedure

We will obtain approximate solutions to the above system

of equations by using a finite amplitude expansion similar to

that employed by MalkL1s and Veronis (l958). However, they

sought steady state solutions, while we are interested in the

time evolution.

. For convenience, we obtain the following eqqation whose

linear part contains only tJ :

. r, ..?;'1 a"j ) ã~ I 1. ò-i . a:i. .. J
i.(vr) = L(A'&õt2. -00 ôt-i +1 òt.-' - \t ~ -(f()~1. -I):x.-i 1ÎT

_ c)7.P( 1. êl"- . ò"',\?JN ~ ~ õ... . ò7. 1'\ 'dM
: L:: ~X'àr +t (ft'L -~ Ò't.") nt: ..t( at?" - ~ ;'t! -I; (3 X '

(23)

. where i. is a linear. operator and L is a function of the non,.

linear quantities P, N, and M. Similarly, with l.ø we obtain:

r;. ".£ +il u. :: TL clt'i ~ 0 (24)

a small constant parameter E , in the following manner:

N:: i! (1)6: .. -i(V6:2 + I' (~) ë + L
't = ¡/"e + l"&' + ¡ft.) E' + . J

(25)

Now we shall expand all dependent variables in terms of
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with similar expression,s for the other quantities. Substituting

these relations into equation (23) ~ and equating the coefficients

of like powers of E: Ð we obtain the following system of linear

equations~

i (VTU)) :: 0

i- (VT(L.)) =- L"

,

(26)

.J

J.(1f./:3)) = LI2. + Lz.1

i (v~))

j-i
= ~ L/Q.i-~

R= i

where(1A V)jR means (u.(iJ1T(i?)). Notice that the first equation is

homogeneous, and that the higher equations are inhomogeneous. Pro-

ceeding in a like manner with equation (24) yields ~

r ~ d. '2 J (i)
t-cLt'l + I U.o -=.0 J

(27).
, I

r, '; oL"J + ,lu.(j) =. ~ 't '_~~ d.:t1. j 0 IX:! RJ

These expansions must also be s\lbsti tuted intó. equations (16), (17),

(18), (21), and (22) 0 Now the system of equations may be solved

by starting with the lowest order expressionsÐand an example of

this procedure will be given in the next section.

Solution for a Particular Case

To solve the time dependent problem, . the initial conditions

must be specified. At this.time we\will nUlt give these conditions

e~actly. but will indicate the general structure of the fields
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initially. For very small disturbance amplitude, we req~ire that

the solution behave like the exponentially growing linear solution.

. AlSo, we desire that tAD)11) and 0 be of smaller order than the

other variables at this time.

The first step in the solution procedure is to obtain a

solution to the equation

r e3"i -a7. .. 0."a-i ?;7.) (j'lJ
i. ('I(I~= L(/A..at;'£ - ~ dl:). +D;"t~ -\p- àt"i - ~ It-a -I d)(i- = o. (28)

For motions of period 2. 1f in X equation (28) has solutions of

. (A. X+YI't )the form, A e , where ri satisfies the frequency equation:

C(,u~n'J + 't + I)h~ t (tL';r¡ '2 + 'l -I) J = 0 .
(29)

When Yo is less than one, equation (29) has two real roots and, .
two imaginary oneis; the form~r correspond to baroclinic meteorologi.,

cal modes and the latter to gravitationál-inertial modes.

We choose the solution of (28)~

/i (i):: A c.os X eYi tT (30)

where ~ L I and n is the real positive root of equaticm (29)..

The corresponding solutions for the other field variables are:

(I) A' ntiJrn -: - Wf X e
n

Y)L
= D1;¿ s~r¡ ;x e. (3l)

(\) (l-)A 'ft' C Y1 t
t. = - h + n c. X e := /:3 em ~ e

(I) r. ii t õ\ X '(i-
~i~ ¡l~(n"+/)-lI.AStnXel = .v1'lS/YJ e ,

(32)

(33)
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(I) ~ (I)Also we will take z;erosolutions for U.C i ~ 0 ~ and '6 .

The lnitial amplitude for the first term ln the series for

~ with this solution is 6 IJ. ;In the higher order equati~ns,

we will take only the inhomogeneous part of the solution, so

that the amplitude of each higher term in the series will con-

tain G A to the corresponding power. Thus, it is nå tural to

take ~ equal to the amplitude of the first term in the series

for 1fT ~ and this makes A equal to one.

To obtain the second term in the expansion. we must

solve the equation:

.p i. (ij).. L -:"0 ~P,i ! ,. êJ'; _ 'l ~ ) èJ N¡\ _ (.i. d:i ,. 'l.. -/)..~. (34)d.~1I / - 1/ (j" ~t + t ~'t'" 0 Ôt-~ at: i. W o3l.1l dl-

(i)In this case~i vanishes since i :: 0)

G (')'dlv(0 .(1) du:Cij).lI = _JA U. .. - u. ~ ::11," d)t ò l- po 10)1 t
- i Cß~.2 COS:zX e ) (35)

and

è) ( (I) (i) '4nt"
/VII ~ -¡V~X . L( VT ) ::.~ Cl) $1 n 2. X e ) (36)

where the C 1 and J)~ are defined in equations (31) through (34) .

Substituting these relations into equation (34), we obtain

the inhomogeneous solution:

(i) _ .. C;31.T:: ~ r. 2.(If..n1o-r~) nll/:i +-(11 Jln ~ 4 ó'o -.J) J .l¡it 1i:lit".. .. . CN ,2)( e:; C ~~:i e ) (37)
(). '1 tf r¡''"+ i.~ H)n 1-+- (~1.'1 Y' 't t.~ ..1) ~\

..

\..,
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where the homogeneous portion has been excluded. Also, the

foll()wing solutions may be obtained for the.. other space dependent

variables:

(1. .. ,.) ~rit "-l''t
lJiv ':~ (i..c.ii+/J CI'a Sm 2. e :; .D2~.s\ri.i~ e ~ (38)

tJ \ 2.'f t- . 2.n t
u-(:l):; (-2.'( Ç'2.lc-:1 D~~.. "'C13 DI'J)~ 2,xe r:C.23~:LX e .)

(,; /':i .. .'). .in t D e 2. '( t'
~ T = l- '(~ Cz-; + :l Ci.i SIl'.2X e ;;:¿it SIY .:x - .

(39)

(40)

I .
It should be pointed out that the CJ and D~ employed above are

func tions only of ;L and ~ .
ON

To obtain LL~ we must solve the equation

rJ;i,ol1. +ilu.())-:T :".J ('iLl("'lO))_ u C1JD1'J l-~l'1:. (41)
C oIt:~ ~ 0 II r-. oX WI - -,. .2 '-

The desired inhomogeneous solution is

L'1

U-Q :.
CI:5DI~ 21't i 2.t'

e. =-...e
~('tn:i).'1+I) .2'

(42)

. The other two dependent variables are given by:

(2j "2,( t"
~ -: 2.:n T:¡ e (4~)

and

(;¡) A.. .D \ UJ 1: E '-'f t ..
¥ =- ~l¥hf4:r'2-Cn i~)e :: ~e . (44)

In a similar manner one may show that the third order

solutions have the following form~
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N
( C31.!

COs J'/ + C3/1 cøs X) e
-'11r

'1T := ., (45)

(3
) 3ntril" = ( D3'23

SI'13X + D3 .i J S L Y\ X e ) (46)

t~)
,3' VI t

(c cos:3)(
+ C33JCO.s x)e (47)l. .. 3~i ")

~
(D.3ll3S/Y1 3X ) 3n t'cbT :: ., D.3lll.5 m X e (48))

(J) ("3) ~(3)=
(49)Uo = ~= 0 d

. ThuEi we see that our expansion is essentially a power series in

eht , and for that reason it must diverge ;for sufficiently large

.
t . Also it can be seen that a solution of order J will inclüde

.
spacial wavenumper J and possibly some longer waves . In the next

section a physiçaL. discussion of the solutions will be given,whèn

tb,e above coefficients are computed for particular valueEi of,M

and 00 "

A Particular Example

The coefficients derived above are sufficiently complicated

that it is difficult to study the solutions in general. Therefore,

we will present the solutions for particular values of l. and 'to

whii;h are reasonable for' large scale atmospheric flow. We choose

'(0 = .322, and )L =

d 2.¿L -_ 6..106secon, n¡ A
f :: 10-4 (seconds) - 1.

.111, which cOrrespond to U = lO.6 meters per

"de
meters, - - :: SO per 100 millibars, and

Õ p

We shall display the solutions in terms of V,:, and 1J,

instead of 1/ and ~., since the former quantities are the ones
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observed on weather maps. The first three terms in the spatially

varying part of V; are:

1f-~ = EéntLI.'73 SI'()(+35.~e)- .96sJn(2~-.s3.3°)(IO-€e\'j

+ (-.80 sin (3X + 3~ 0)_ 1, Ot, Sin (j 1" 'Bfø5°))(/O.le e.'(t.~ + J : (50)

. wheren = . 7l2. Due to symetry the 1. part of the solution

will be of the same form, but the signs of the phase angles will

be :ieversed. Notice that the expansion is in fac t in powers of

(lO-l€ eV'"C ), which might be expected since the Rossby number is

the coefficient of the non-linear terms which determine the

higher order effec ts. Thus the series should con,vergefor åt

'ft " ~e'rtleast G e = 1, and should diverge for; ~10. Equation

(50) implies that the non.;linear effects do not become very. impor-

tant until f e'ft exceeds l, or lO meters per second.

The first term in equation (50) represents the infini-

tesimal amplitude linear solution. The second term shows the growth

of wave number two due to non-linear interaction. The distortion,

of the first order solution by the second is of such a form as to

make the maximum north wind stronger than the maximum south wind,

at the upper level. The; distortion also gives shar'per troughs aI1d

flatter ridges. Growing atmospheric disturbances often, have these

prope:ities, although other explanations are possible. The third

harmonic which appears in the third order expression is a distortion,

which is created by the interaction of wave numbers one and two.
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The other term. in the third order expression represents the

first feedback on wave numper one, and is due to several physical

effects. The contributions of the respective processes are:

o~1.69sin (X + 65 )

.82 sin (X.. 11.80)

.405 sin()( + 67.5°)

(static stability. increase)

(mean zonalwiriß shear increase)

(interaction between different wave
numbers).

The static stability increase makes the largest contribution. and

cauaes the overall growth rate of wave number one to be reduèed.

This behavior might be expected from the change in the linear

growth criteria, due to an increase in the static stability: The

zonal.wind shear change causes wave number one to increase, which

isreasonag.le since the linear growth rate is proportional to the

zonal wind shear. Finally, the interaction between different wave

numbers tends to decrease the amplitude of wave number one, since

the amplitudes of the other waves are growing,

To beconsistant with the above discussion the solution for

~ must give an increase in the static stability from the second

order term, This Is the case, and it should be expected i;incè a

vertical heat flux must accompany the energy conversion in the

first order solution. Also, the first order solution has the proper

form to give a vertical flux of V momentum, which ul timately in-

creases the mean zonal wind shear through the Coriolis force. This

latter process is not thought to be important in the actual atmosphere
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since thE; meridional circulation-would reduce the poleward tempera-

ture gradient, and consequently the zønal wind shear.

. Conclusion

The solutions obtained with this expansion technique, appear

to. be valid until the disturbances reach a substantial amplitude.

Tl)e non'"linear prøcesses both distørt the form of the infinitesimal

amplitude solution, and modify its growth rate. The most important

stabilizing influence arises from the time variation ofthestatic
stability, The solutions also indicate an energy cascade ,which

could not occur in a quasigeostrophic model with no yvariation.

Amore complete discussion of the physical processes should

be given, with special emphasis on the energetics. Some indication

of the effect of two horizontal dimensions is 
needed, and might be

,

0,btained from a .similar expansion, These studies could be general-

Also, heating and friction might be included, and steaçlystate..solu-

izeq. by. allowing f and the static stability to vary in the horizontal.

tionG sought. However, in cønsidering the desirability 'of such ex-

tei;sions, the increased c'omplexity in the procedure must be kept in

'mind.
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