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Wind«Elow over Water Waves

by

‘Peter J. Bryant

1. Introduc:iqn

When a turbulent wind begins to blow over an infinite
horizontal water surface, the initial disturbances in the water
are due to the turbulent stress fluctuations at the water surface,

However, as soon as a wave pattern is generated, there will be a

coupling between the motion of the water surface and the air

motion, modifying the surface stress patterﬁ, This investiga-
tion is into the nature of this coupling, A complete review of

the subject of wind generation of water waves has been made by

Phillips (1962).

It has been the custom to assume that the air motion is
laminar and that the turbulent fluctuations contribute only to the
shape of the mean velocity profile. This assumption is examined,
and a form of justification attempted. |

When this assumption has been made, the.air motion i4
described by the Orr-Sommerfeld equation. In orde; to derive a
qualitative solution, the inviscid motion of separate parcels of
fluid is exﬁmined, and deductions are made from the solutions
obtained concerning the real sﬁate, in the manner suggested by

Lighthill (1962)..



2, Equétions for the air motion

. The water surfacé ié assumed to bé of the form
77 = a am /?(x/ct)

where'a, is a slowly varying function of time. This can_be
intérpfe;ed as being one'Foﬁrier component. of the real sur-
face, because interactions between ﬁhese Fourier components
are ﬁohwliqear, and in this-investigacion non-linear inter-.
actions ggézbeing neglectedov The y~-axis is chosen to be
verticéliyfupwardsg with origin in the mean free surface, and
the motion is assumed to be two dimensional. This is not
strictly true for the turbulent fluctuétions, but the fluctua-
tibns_ap?earing here may be considered as theIZameans,of the
actuai_fluctuaﬁiéns°

The equations to be considered are therefore

BU» .t.g—-——(u, "'—_(LL‘V): --;T—gf__"_vvl
glt/- +2 3 (wv).,.__(,,, ): __é__‘%% +’}vv% (2.1)
au 31/ = £
'Bx 5 0

. H
The mean of these equations will be taken in two ways.

If f(x;y,t) fepresents one of the functions appearing, define

X

——x Lin
= X“"""‘Ix’j fdx @
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aéd _ = "‘_IT/ 7Cd,t'
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, .
~where - da o —7’-.- << p,

ot
/1 being the wave frequency. To be more precise, | can be chosen
to be an integral number of periods, satisfying the relation. It

has been assumed here that the development time of the amplitude

"is very much greater than the wave period, and physically this

can be seen to be true, provided that the wind is not too strong.
The origin in x is chosen to be travelling with the wave
velocity ¢, so as to reduce the wave motion to a near steady state.

Let - -
' u(x,y,t) = U(Y) -c+ ul(xsy> +-u2(x3}'at) ’

v(x,y,t) Vl(xs}') + VZ.('xsy’t) (2"3) .

plx,y,t) = B(y) + py(x,y) + pa(x,y,t)

where, using £ as above,

—X —t : —t
£, = f£ = 0 ie f = f - f

2 . 2 2

: : (2.4)
£, = 0 fe £, = F -F

f; is that part of the air motion which is coupled with the water
motion, and £, is the random air motion.
1f £, g are any two such functions, not necessarily dif-

férent, then

. (2.5)
X
=zt _ °z

the latter equality arising from the properties of homogeneity in

the x dizection and near stationarity for the random air motion.
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Also fi s fg s f; arefiﬁ@ependent of x, and vary only

slowly with t. ‘(When'there is no cqgﬁusidn; thé meané@

variéble'willvnot-be indicated.) |

| The boundary conditioné are takén‘to be

i us Vl’ p1 —> 0 as y —> oo and ug, vy = 0 onys= O
Taking the means of equations (2.1) in the various

ways,_and carrying out integration, obtain

X X
U-'1./2 -+ U“.ZVI =0 .

441& o (2'6)

T R
(0~ i) = v 4 e

(U~e) %% M%%q-%(l{, )+5-a— —Lw) —-Sf. AP, @.9)
(95t () (-T)e-F v o

Equations (206) could p:obaﬁly have been assumed initially,
'ﬁéut were not sincevthey follow from the assumption% ;1ready made.
"Equation (2.7) gives the variation 6f the mean p:essure, which
here is the driving force of the system. Equatién (2.8) will be
integfated Below, since it contains a singularity at the critical

layer. Equations (2.9) (2.10) (2.11) with the non-linear terms

Lo 0 L2
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excluded, are the Orr-Sommerfeld equations, and are the‘justifi-
“cation for the assumption of laminar air motion, but with the

mean velocity;profile dependent on the total fluctuations,

3. Description of the air motion

The motion represented by the inviscid Orr-Sommerfeld
equation (the.Rayleigh equation) is now examined. The sub-
script 1 is Qmitﬁed,__and the origin of co-ordinates is fixed
in space.

The frequency of oscillation of a‘parcel of air seen

by an observer moving with the mean wind is k(U(y) - c)e

Hence the vertical velocity, v,>and the displacement, h, of

this parcel are given by

- ) v = v (y) cos k(U-a)t (3.1)
» h = M 392 .
s vo(y) T (U-0) ( )

The equation of continuity shows that

| d%ly) | o N de( 4
-;u’ Q(g)- -a;y'a' ‘#‘Mn /V(u C)t Vo@)z(—v@-écm'j (U"d>t' (3.3)
“where € (y) is the phasé and is defined by

T ; o /e{u.-c)t ;k[x«ct)—»é(y) (3.4)

o~ ¢ - The vorticity W is

s : o _ ¥ _du
- o @ T Ty
n & 3 (y-h

-
- mas

-
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by the Kelvin. Helmholtz conservation of vort1c1ty,

1

ie : w

% g
to the first order. -

Taking the mean of the horizontal equation of motion,

and using the equation of cohtinuity

au = : |
‘3%= n (w) wV ,_ (3.6)

all these terms being of the second order.

it

v = W) hy |
| ny oy 2 sim 2 k(U-c)t
W(y ve (y) l’?([,{—c)

" > 7T§] "[ck | ¢
)%ty 7 3,(;9) ( yyse c>

1

1
=

1,',? U (jc) v (7 ) &(y-99) | (3.7)

where the relation used is

sin et = lim gip gt = 7/"096_-) (3.8)
2 ' t-+ @ g

and Jzé)is the Dirac 5 -function, defined as a generalised

function.

Integrating (3a6)

U (gc) c
W=E§ V(H) W% (3.9)
. . .

H > Ye

H

2 : ! !
+h "5 | ¢ B T
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where the boundary condition WU = uoo s YV~ 0 as v —yo00
is used.

Also, direct from (3.1), (3.3) -

1 odely). -,
uv = -2k % 'VZ <9)

aL ( * - T qu( c) 1 ) j
jéj)% (W‘ I m%a% Qjc) Yy (3.10)

=0 ‘ ‘ ‘ Y 7>é/£

———

Hence

ie‘ %>>O for 'Héyc
and & (lj)= constant“y >y

At 3-.5(: s E(:j)takes two‘ vallues:differi’ng,b.y 7T N
depending on whether £7c  is approached'f?om apove or bglow; ]
This discontinuity ié digﬁated by physiéaizéongiderations, having
the consequence thét equation (3.1) musﬁ hav§ the,two‘so1uti§ns
viy)= 2y ly)
at the critical léyere' ' ‘

The streamlinevpattern, seen by aﬁ-observer riding with the

surface wave train, is shown i the figure.

The streamlines in the figure'indicaté the pressure distribu-

tion on the wave, and it is seen to be éuch as to cause a positive
transfer of ho;izontal momentum from the air to the water waves.
The.critical layer has the 'catseye' structure, which also appears
at the criticai layer in:stability>probleﬁs,£énd it shows how this

layer is one of concentrated vorticity. .




. We can now integrate equation (2.8) to give

a, + U, - %15 % oo Y >ye
VAL L T T Wiy
*1—9 + Ua¥s /Y (Hc>

| U.(ch) 2 ue
‘The total stress, T (Xl 3) is defined as , ‘Lj 3

Hence

—



™ : - and all terms on the right of equations (3,11)'are positive.

The stfeam function for the flow is ‘
V=% () e k(U-)t RS

where 0 ' .
v=gh, w=-ghrly

H . - L "'(LL‘C)'—_' - Uy - (3.13)
| ' and thén replacing W .
= -TOE-'-'(L:C %ﬁ-—k—»ul(j>%<7)>m'mk(d‘c)t‘
L L, U-c dely) -
A0 -I-;L es0 ko (U-c)

The part of the pressure containing sin k(Uf;)t is in

(3.14)

;fﬁ phase with the displacement, and is the part which c¢an lead to

Kelvin-Helmholtz instability at the water surface. The term con-

;El - taining cos k(U-¢)t is in quadrature with the displacement, and

_ describes the transfer of horizontal momentum from the air wave

L motion to the water wave motion. To obtain a measure of this
M transfer, consider the mean horizontal pressure component, which 1is
| Poh o -T7-Ly ) ¢

— : —_—— = - ¢ - .. €3.15

0 9x 2k o(y‘) /gyc> (a5

Loy
after some calculation. Thus, except at the critical layer, the
horizontal component of the pressure is equal to the Reyﬁolds stress.

The Rayleigh equation is

x>




- 10 -
2* - " o
—é—gwa_ R"LP L_Lc Y=0 (3.16)

éubstituting for LV , and reducing, obtain
fi1é ' QLC( u / Co ;
(% *ﬁg @(J W = 7%@mk(u-c>t

+.JI, LL”

This curious equation becomes
for y >ﬁc

Lty _ |
Erab i R

for O« v_/_yc

(3.19)

| where U g 1/ ( c>

. Thé mean of the left hand side of (3.17) is zero for all y,
including the critical layer, and the apparent time dependence dis-
appears. . The effect of the phase change appears explicitly in

equation (3.19).

Uiye) o, | )
: ”LL[y) (yc/ d @—yc) (§°17) |

R

(—
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4, Conclusions

The mean value in equations (3.7) is. taken over £ from

t =0 to © , and presupposes that i%;, = 0.

I1f instead, the
mean value is taken from t = 0 to T, as in equation'(2,2), a
broadened and 'slightly distorted éa—function‘is obtained,
leading to a distortion of the step function in equations (3.9),
éﬁd a small difference in the algebraic results. prever; the
overall descripiion‘of the flow remains unchanged, and it is

a matter only of algebraic manipulation to make the cortection.

" The general effect of viscosity is to reduce velocity
gradients. So it may be expected that the infinite gradients
appearing at the critical layer would be reduced symmetrically,
leaving a broadened <§ -function as a description of the loss of
momentum- from the mean air flow fo the air wave flow. Dissipa-
tion would also lead to an increase in the area under this function,
comparéd with the true é’kfunction. The effect of viscqsityvon
the normal stresses at the air-water interface‘i% negligible, and
viscosity becomes important only in thé calculation of the.tangenc
tial stre;ssesv

To summarize:A the concentrated vgrticity at the critical
layer'éauses transfer of horizontal momentum froﬁ the mean air

motion to the air wave motion. This transfer may be described

mathematically by the term QOUA/ ih_equation (3.6), which Light-

hill (1962) called the vortex force, and showed its usefulness in




_]_2 -

‘describing the phyéical brpcessés‘aﬁlthe critical _layero
.This horizontal momeﬁtum is then.carried down to the water
‘'waves as a Reynolds stress on the coupled wave motion iq the
air, and the air»Reynoldé stress is tranSmitted'diréctly.into
the water Reynolds stress at the water'§ﬁrfacé. Equation
(3.10) indicates that a necessary conditiqn for the existence
of such an air Reynolds stress is that thé phase of thé aig
wave motion is changing, ie _.j) # O The figure “;
- ghows the stream lines produced by this type of motion, and
‘makes it clear why an observer riding with the wave experiences
a driving force from behind.

An equivalent description is to rebresent the air pres~

- sure at the water surface as being the real part of
' ™
P=(x+iplptiry BN Y

‘Equation (3.14) indicates how this represenﬁation'is related to the
" flow charécteristics. U1 here 1s‘a scaling velocity, and C‘,/& are
‘functions of /. , the wave frequency . “This is the description
taken by Miles (1957), and seétion 2 indicates that to obtain the
total fluctuating pressure, one need -only add to equation (4.1)
_thé turbulent pressure fluctuations. |

This investigation is a development of some of the ideas

expressed by Dr. M. J. Lighthill in the lecture which is referred

to below.

N
|

(N

Lo
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An Attempt to simulate the Cromwell Current in the Laboratory.

James R. Holton

1. Introduction

The Cromwell Current, or equatorial undercurrent, is an

intense ribbon-like zonal jet centered about the équator in. the

Pacific Ocean. The transport of the current is comparable to
that eof the Gulf Stream, yet its existence was not sﬁspeéted
until about ten.years ago.

That the Cromwell Current has only recently.been discovered
is due, no doubt, to the paradoxical nature of the circulaﬁion in
the equatorial Pacific. The surface water drifts slowly west~-
ward driven by the mean wind stress,vbut only a few mete¥s~below
the surface the Cromwell Current flows eastward, with velocities

of 50 to 150 cm/sec in its core at about 100 meters depth. The

vertical scale of the current is about 200 meters, its latitudinal

extent is about 1°5 degrees 6n'either side of the équator3 and its
1ength:is several thousand kilometers.

Because the core of this easterly current ié ét ﬁhe equétor
itsJangﬁiaf momentum exceeds that of the earth. This haé.led to
occasidhél statements  in the literature that a west to eaét pfessure
gfadiént ié’reguiréd to maintain the cufrent against frictionél
dissipationo‘ Howeﬁér,‘it would be possible to maintain aﬁ easterly
current at thevequétor without a pressure gradieht if thére existed

horizontal eddies which t#ansferred net momentum equatorward through




a negative correlation of the velocities u', v' (where u' and

v' are departures from the spatially averagéd zonal. and meri-

dional velocities respectively)q‘ Similar eddies. are important
momentum transfer agents in:the atmosphere and occur in quasi-
geostrophic circulations when the streamlines are tilted so

‘that u' is larger when v' is negative than when v' is pesitive.

(See Figure 1).

. Figure 1,

-Streamline field for net equatorward momentum flow.

‘:T§~evaluate.the pqssigle importance éf this momentum»transport
‘mechanism. in. the oceans would require syn@ptic observations
which are not now available. Thus, in the studies of the Crom-
well Current to date the zonal pressure gradient has been. the
explicit driving,force‘and the eddy  flux mechanism has not been
considered. ;n fact, it»is,known.frgm observations that a west
to east pressure graaient does exist along the equator in. the
region.of the Cromwell Current, and further, this pressure gra-

dient disappears east of the Galapages Islands, as does the

:Cromwell Current.

L Lo
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In view of the above disciission, it would be inappropriate

to use’an.eddy7viscosity coefficient to represent the effects of

‘horizontal mixing, because not only the value, but even the sign

‘of such a coefficient is in doubt for the larger eddy scales, and

for the smaller scales the large vertical shear assufes the

dominance of vertical eddy dissipation.

2. A Physical Model of the Cromwell Current
The equation of motion. for the steady state zonal component

of the Cromwell Current may. be written as,

u_a_%. \/%.,_w_‘é&-{iv = -,E£+v&
ax ' 3y EES dx dz>

where Y is the eddy coefficient of viscosity for vertical mixing
and the other symbols have their usual meanings. At the equator
f = 0 and the above equation indicates that a balance will exist

between thé pressure force and the inertial and viscous terms.

. However, the extreme smallness of the RosSby'number fof”large'scale

ocean circulations indicates that the circulation. is quasigeostrophic

even very close to the equator, and that the Cromwell Current may

‘be an essentially geostrophic jet with an inerto-viscous boundary

‘layer at the equator.

" A possible model for the maintenance of this geostrophic
current is the following. ‘As’ shown by Stommel (Deep Sea Research.é}
the mean easterly windstress creates a divergent surface Ekman layer

at the equator, because the surface current is to the right of the




wind in.the Northern.Hemisphere and to-the left in.the Southern
Hemisphere. This divergence forces an upwelling to presérve
confinuity; The upwelling and enhanced wertical mixing raise -
the thermocline at the equator and a core aof cold dense water

is maintained at 100 meters depth (see Figure 2).

|

“.Figure 2,
Dashed lines represent isotherms. Arrows show the pattern.of

meridional circulation.

Ihe result of this isotherm spread is a pressure gradient.in the
-y direction pointed away from the equator in both:hemispheres,
which is balanced by an eastward moving geostrophic current;

. In summary, it appears that three physical effects are
necessary,for_the formation and maintenance: of the equatorial
undercurrenﬁ (1) the sign reversal of the Coriolis force, (2) a
west to east pressure gradient, (3) divergence of the surface

Ekman- layer.

L
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Dr. Faller for modelling ocean circulations. This sector was

3. A Possible Laboratory Analogy to the Cromwell Current

In the rotating dishpan it is not possible to model the

‘sign change of the Coriolis force. However, the author thought =

that it might bé.poSsible to produice a current analogous to the

Cromwell. Current along the outer radial boundary wall of a sixty

- degree cylindrical sector which had previously been used by

placed in the large rotating tank with its apex at the cepter of

the tank. A wind stress was applied in the clockwise direction

.as the tank was rotated counterclockwise. A two-layer fluid

system was used in the sector, witﬁlﬁhevléss dehSeffluidsgt the
top. The qualitative 'expéctatibn was that the sﬁffécé:Ekman
diﬁergehcéﬁét thé'equétofiél‘fiﬁ (forced by the kinema£i¢ con-
straint of the wali) would create a verticéi up&eiiiﬁé,toiﬁfé=
serve continuity. 1In a matter analegous to the Cromﬁellvcdr;ént
this effect was expected to raise the level of the denser layer

near the rim and create a radially inward pressure gradient which

_together with the zonal. pressure gradient caused by water piling

up at the western.boundary would force an easterly quasigeostrophic

current along the wall. Note that since the Coriolis force doesn't
change signs,the presence of the'wélliis'hecessary to the formationm
of a jet, otherwise thé:Ekman.layér divergence would ténd“td”produce

a vortex. The proposed model is indicated'schémétically'iﬁzFigure 3.
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Figure 3.

Arrows. indicate the meridional circulation.

4,._TﬁelExperiﬁental Proqedure

| :The wind stress Q;s first calibrated>5y using the full
cylindrical,tank to obtain yelocity;prqfiles as.a funﬁtion ofv
radius; From the theary of Ekman.boundary‘layers it may be
shown that '

; a ’t’e=j”)%ﬂ%\/e'
where T;; \49_ are the wind stress and,velqcity is the zonal

direction. .Eight stationary blowers were used to adjust the
CETE S

L

wind stress. so that —%—2~ -fit a sine curve to a reasonable

‘approximation.
As a control experiment the sector was used with a wind
stress - driving force and a single homogeneous layer of water.

A weStérn boundary current was produced as predicted by Stommel's

theory of western intemsification, The flow pattern is indicated

schematically in.Figure 4.
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-may-be written

Figure 4.

It is an interesting digression,to'compare quantitatively
the western boundary current experimentally observed with the

prediction of Stommel's theory (see Trans.of A.G,U. 29). For

_the experimental system the conservation of potential wvorticity

| 3
Vi -+ EL‘U_::,——-—‘—%
RVIY * 2 5% f oy
where ;LP ié a geostrophicustfeam function K =\/t2¢ ‘3 and
= v o o

height in the radial direction due to rotation. This equation

approximates the mean change of the free surface

.simply states. that the vorticity gain due to wind stress curl

4equals the vorticity less due to frictional drag at the botteom

plus the vorticity change due to the change of height in.fluid

columns moving in the meridional direction.  This equation is




easily solved only for a rectangular basin, but: it has been
.shown by Munk and Carrier (Tellus:2) that a triangular geometry
-“producés only small quantitativé differences in the‘Circulation.
The width. of the observed western boundary current agreed
well with the theoretically predicte& value of 3 em. (The
sector radius was 100 cm. and the rotaﬁion rate was 8.23 r.p.m.
. for theée experiments)) . However, the observed velocity in the
boundary current of 1 cm/sec was only half the value predicted
by the theory. . For better quantitative predictions it is
apparently not permissible to neglect the dissipation against
the side boundary and the inertial terms as done in the above
theory. .
Experiments were then conducted with a two layer system.
This system was. produced by/filling the sectoriwithh6 .cm. of
fresh water, then slowly adding a one percent solution of barium
chloride through a glass tube whose outlet was one mm, abéve the
bottom boundary. With a flow rate of about 100 cc/min a sharp
vinterface‘could be achieved with the salt solution . spreading
oﬁf along the bottom. | |
Iﬁ all wind stress ekperiments with the sector the main
tank was filled up to the’rim'of the sector (13vc; deéth) ﬁov
eliminate.the possibility.df‘eddies causéd by the flow of:éir
over ﬁhe secfor walls.
| .The rotation réte and stratification were gelected to

attempt to meet the similarity requirements of equality of the

sy
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Rossby number. and Richardsen number in the model and the

‘prototype.

For the ocean the Richardson number is approximately:

RL - 9T la _ (103 (x10"%) 20) (2x10%) . 40
P e (50)2

Whereas in.the model if a salt concentration. of 10 gm/litre
and a rotation rate of 5 r.p.m. are used the Richardson number is
given by

. 95 Ly . o) ones) = 50
mouR (2

where S denotes gms. salt per gm. of waﬁer,

" The Rossby;number (= lJ[QJx\_ ) is estimated to be of the
order 10"'2 in the equatorial oceans‘(except extremely élose to the
equator where 41;—9 0). If W=1 ém/sec‘is a typical ﬁéiocity
scale in the model similarity would réﬁuire a rotatién rate of

5 r.p.m.

jun

- Results of the Two Layer Experiments.

Various conditions of wind stfess and rotation rate were
used in. an.attempt to. observe a boundary current along the equaé‘
torial rim. In most cases the results were negative. ‘A few in-
stances of transient counter currents were observed; but these were
no doubk a result of thermal circulations. due to heating or cooling
at the walls. Numerous difficulties were encountered in working
with the two layer model. It required several hours to produce the

desired two' layer system, then the system .had to be accelerated up
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“to 5 r.p.m. at an extremely slow rate to prevent turbulent mixing
i of ‘the 'layers. -Another few hours were required for ‘the primordial
baroclinic circulations to disappear. In fact, in most cases the

'»experiment'had»to:be’abandOned before a steady state was reached.

-In only one experlment was a steady state definitely achieved

" In that case ‘the rotatlon rate was 5 r. p-m. and no blowers were
used, so~that'the~dn1y wind»stress>wa31that due ‘to the relative
-motion of.the-tank.f ‘The steady state circulation showed1n§‘evim
dence of an~equatoriai:bouhdéfy current. In the top layer there
’was,a,neariy'symmetriC'gyre‘driven,by thé wind with a mean velocity
of 1 cm/sec. In the bottom layer the motlon was very slow {(nearly
an- order of magnltude less than the top 1ayer) 1ndlcat1ng neariy
com?lete pressure compensatlon due ‘to :a sleplng interface.

| One pos31ble explanatlon of the- fallure of these experlments
is ‘that thé wind stress applled to -the 'surface may ‘serve ‘to contin-
‘ually -excite baroclinic instability 'so that ‘transient motions will
always dominate the system. -Longer experiment; at very uniform

temperature. and -humidity -.conditions would be needed to test ‘this

. hypothesis. ‘However, the evidence ‘to ‘date ‘seems’ to vitiate the

‘hope ‘of finding a boundary current analogous to the Cromwell -

Current -in- the 'system described.

References

Several papers dealing with the Cromwell Current may -be - £ound

in Deep -Sea Research 6 (1960).
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Baroclinic Instability in Two Layer Systems

.Joseph Pedlosky

Introduction

In thé dynamics of atmospherit and oceanic systems aﬁ
important role is played by the release of energy by dyﬁamically
unstable mean flow systems. What‘is usually meant by sucﬁ mean
systems is a flow with negligiblé zonal variation. The perturba-
tions which grow ffom such unstable systems have fundamentally two
energy sources, the horizontal (morth-south) shear of the mean motion,
and the available potential energy associated with a north=south
density gradient and a vertical shear.

One of the simplest physically reérdducible models thai‘;onm

tains these elements is the two.layer system shown here in: Fig. 1.

Fig. 1

The flow is taken to be gravitationally stable (f|<: ﬁi> and the pressure

is determined hydrostatically while ﬁ is constant im each layer.




(1) (2) )

P1 gth - 2) h>z> h,

(b) Py ﬁz(hz - z)g + (1gh; ho> 2z >0

.Consider a situation where the flow in the system is only in the
x direction and is a function. of y only and is geostrophically

balanced

@ @  pfw= r' - 035y

If U,= 0

In the usual case where 1%; L < | _wexéee that a vertical shear
produces a large tilt of the interface between the two layers and
an energy source for the disturbance. The lines of constant pres-

sure and density are not:parallel and the flow is baroclinic.

I Equations of Motien
One can-show that for a layer system the equations of motion
.in each layer are the conservation of potential wvorticity and the

conservation of volume.

1.1 - (@) Bt

I

L




“balance closes the system.

where ¢1 is the layer thickness, § = L§-uj , and €>6t' is the
two dimensional substantial derdvative.

The system becomes closed if we assume that the frequency
scale of the motion JZL_( U is a charéctefiéﬁié Qéiocity and L.;
a characteristic length) is small compared to the earth rota-
tion: freduency fzz . In such éyspems the flow is geostrophi-

cally balanced during the motion and

(1.2) £=5-Uy ”'%‘ci‘“ —*‘*’-—/;E

this assumption with the assumption of hydrostatic vertical

-For the mean state whose stability we wish to:.investigate
we take: U-,-‘-‘u.(j), U, = U—.&(j); L=U =0 . we superimpose
small perturbations on the system of the form: ('¢bis to. total

height)

, ' L <ot
(1.3) 4 - g,(g')e k(xoet)

%l 3 Al OJJ etl/‘i (X—c‘t}ﬁ ﬁ,

In these expressions C is in general a complex number

and'tﬁe'linéarized pertﬁrbationbequations cbrresponaing,to (1.1

are

e @ U-IE)p B, %i—ﬁ)/% 5{7( G-e)(F-Fs)

9 e Tyt e (B0




where

=L, b=y =269
4 Pz g0 377
and"we have ass_uged %441

If we scalé‘;he variables in the following manner:
TN _ .
(xy)=(xy') L k=2
. . .‘ ‘v» - . : l
— = — C = UOC
Uqa =%

. Uﬁ /
H_"j = —3—€ Hnj

-The non-dimensional equations are (after dropping the primes)

F, b =-Fpa

.5 (aP=)p +(% - M/w FH'S(U

(b)(D—-O( )1’1+</3/R uz‘lﬂ 2 2\7)(’—" TFp 2R :.F/

- L FL L u:_(_'_% *
fat 3'Ha2 Vo g'Hn. 'R'o) FA’JQ
R, = f—,_—

- .U

Fibz dg'ng

For coenvenience define the y'derivativé'of the mean potential

th

vorticity in the € 7" layer as:

—39—“ “(ﬁ//f Ueyy = F ﬁ:ﬂ)

*

if F; 2 is of orderfunity'we see that the mean flow is subcritical

.in the hydraulic sense.

Lo
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2.3

The phase velocity C; is in general complex;, € = C}f*z Cy -

- ( Cr, and Cy real) and the flow: is unstable if € > C.

II Necessary Conditions for Ihstability

The perturbation equations can.be written as-
an @ e T

® (G- e g -np

Uz_" c

Multiply (2.1)(a) by 19f'(coﬁplex conjugate of pi ) and subtract

from that the conjugated equation to obtain

"3y Ju-ef

o0 o (7 pd) 2o L Rt

Similarly for layer two;‘ni.
o *J.' 9,. e -
OB R ‘59' B RbERE)

Integrate (2.2)(a) and (b) between‘two points'yl and Yo where
p; and py 80 to zero. We eliminate the coupling term on the right

hand side and obtain (where ¢= S +LC. )

or




‘Therefore if € 7# 0 the potential vorticity must be positivé

in some regions and negative in. others for~instability to oceur.
It is not true that it must be zero some place in the fluid since
the flow is discentinuous. It is clear also that equation (2.3)
can be generalized to any multiple layer model. - In the simplest

baroclinic model where horizontal shears are neglected as well

as /3

o
SN

= - FH? >0 and constant

= “FH and constant

N 2y “

’@‘g @Jl
;

"In the case where AF/P L& | | 'ﬂ” -sz

equation (2.3) tells us then that

(2.4) = ._‘..E.I_—:_ + “91!._. = O

[ui-¢| [u-ef?

D e ’lu,fcl

so~£hat
(2.5) }ﬁl = }UMQ)

and the amplitude of the pressure perturbation!in’each.léyer—is

proportional to the relative wind in that layer.

Con51der the case where neglectlng/3 S = 0 and[42: o

g ° ﬁ«:? ‘ 21 ﬂ"

L

[



‘ 1: since in non-dimensional units H‘ lj = -U,-
_ So that in.a region with a wall (at y = 0) marking. the .
L northernmost extent of the fluid:
™
(] ~ +E s £y £
= Now §
]
™
L ' sz = —}4,j =U,, and does not change sign so;that
M , equation (2.3) yields c = © , and the flow is stable., However
i ~let us consider putting into our system a bottom slope of the
—
b form
™
{
—
L
n
™ rFigo 2
L
L
— ; , , S : .
P shown in Figure 2. ‘ By
In this case if the bottom slope is chosen correctly, the
- ' . : : =
| flow will satisfy the necessary condition for instability. So
— the addition of a bottom slope which is in this case in the /9
o "sense" appears to be a destabilizing influence, In any case, we




can arbitrarily change the potential vorticity in the lowest
“layer, thus changing the stability properties of the flow,
without altering the kinematics 6f‘£HE'mean'flow, (e.g.) a
symmetric flow over a symmetric (in y) mountain will have
asymmetric stability properties, *the flow being more unstable
on the northern slope for a westerly shear.

Let us define the following functions for the unstable ..

flow regime’

| P I
@6 . P = V-¢ Pa = e

Ug—€

- THen equations. (2.1) may be re-written as: (if we ignore/ﬁ ) -

F,
= (U= =€ )(9,-9,) + (-t ) &) (w -¢)

2,7) (b) 2 (__;_C_ 4% o ‘“*;_“%s + (=) (- ) (U sp) »

= Cuk ..c_k/u.,1 c)(9,~9,) + (u.-w,) QL(LL c)

multiply (2.7)(3) by @j and (2. 7)(b) by qD and-integrate between

(2.7) (a) 23 (u CD 0%& u%&'}%ﬁlq"'C"»’C)(“:‘Uz)d)ﬁ(H.,—c)ool—f)z)___

‘,y]T and Yo and add the resultlng equations

{(u C)[ " 2 ‘Plj (_u.l-c)[cl% 9’1]}

ooty <offal- 00704 + o * ey

J Yo

RS COICEI LN Y
.5;

fj g[(‘i'@ ~(u;-<) (u.-c) (- C)}I‘P CP) dj

(2.8) JI



by abw,:Then the following inequalityﬁholds

1

(zé) +fdﬁ(u ‘)[] ‘ (“z‘) @ajd‘i f(“ -uy’ Jdy

g

where §%J @, and J are positive definite quantities.

The imaginary part of (2.9) is

Ya " 4 v |
(2.10) ¢ J<“"c">“‘d +‘f 2!}.2"@\) 92 GL;] =0
N Pt N[

The realvpart ofl(2°9) yields:

Let a bar denote integration between-y1 and Yoo

~ Then using (2.10), (2.11) becomes

2.12) I]_',‘;' ruzg, = (6 cf)(é).w;) # () T

Now:let both W, and W., be bounded from above by a and from below

@.13)) 02 (W-a)(mb)§, + Wra)(w,b)G, =

%

w9, = (4,8,+ 18, ) (a+b) +ab (§,+0,)

Substituting frem (2.10) and (2.13):
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(2.14) 02 (c,f+ cf)(c—p,:é) -Cla +b)(m ¥ aey,@+§z) +(u. z.ulf'_;-_g» -

or equivalently, since (U,—u.,)"T 20
-b¥  (a+b\V B 2
(2.15) (9-"5_’) 2 <CA,,'f <T) + <

~The complex phase speed lies winhmn a sem1c1rcle of
diameter a - b (the dlfference between the veloc1ty extremes)
atb

and ‘the circle 1s centered en the real axls at - the

median ve10c1ty (Fig, 3)

b ath &

z

‘Fig. 3. (semicircle which‘cqntainé phase speed)

This type theorem was first proven by Howard for continuously

stratified shear'flows”in,two dimensional flow. in which the hori-

zontal divergence is zero.

We can do-a little more with this. .Let

(2,16) (2) b g u &a
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~Then instead of (2.13) we havh -v:

(2.16) () 0z u g +UG - U8, (@46)=u, G, (ar+k) + 08+ 2,59,

or using the relations (2.10) and (2.11)

(2.16) () o>(q:fc&)(,9+(§;z )»-(a+b)C. (6?,+4>2)+a,/9 (8,+8.)

+ U, 6, @. +b, = (4,1b,- (ﬁ;‘f}’ »

8, (a.b,-a,b)

The inequality in (2.14) is still valid if W, is replaced by its
minimum value b2=‘ if. a; + by 2 ag .+ b2 and if ag +v b.1 > 0
(i.e. if the median value in layer 1 is greater than that in

layer 2).

(2.17) (C‘A— a—”’?): C:s@';ﬁ = N (0-,-52 >(b, -1>»,_>_,

1f b1 = b2 (2.17) reduces to (2.15) since a; and b aré then. the

1
velocity bounds for both layers.
-Consider the following case:

bl <, b2

al >V az

'Equation (2,15) would yield a semicircle bound as indicated by

the ‘figure below.
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from eq.(2.15)

\—\—from eq.(2.17)

] i g
Q.;’*b;,_ a,tb, ‘ Q,
Fig. 4

.Equatlon {2.17) tells us that the limiting bound is actually-

'1ess s:aneQ@2 (a,-b,)(b-b,) & . If b2 < b; then we
have a 11m1t'1ng semicircle whose diameter is larger ‘than in
the case»b2 > b;. This implies the flow is ‘more unstable (or
is at least capable of greater growth ra’tés)’ if the minimum
value of the velocityﬂ is in the lower layer and the maxi-iﬁumv
in the upper layer, a not very surpri‘sihgv reé_;;lt.

1f ﬁ is reintroduéed in the potential vorticity, equa-

. tion (2.10) becomes ( C; #O),

218 G (97 %)= 08+ LG 4 e lg™)

equation (2.12) (a) becomes:

(2.19) UG +Ug,=(u, U T + GO+ 9, )+6 () /+“z”’l>

Finally equation (2. 15) becomes

Q. 20)(0' b) { a+b}+c +A [u +°‘ﬂ’5’¢f (M +q+b))[¢ ) ]

! )
el
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,'m If U > O and U, >0 the semicircle theorem (equation.
| .
Lo i

(2.15)) is still valid for the problem when /3 # O : The semi-
f circle diameter will be smaller (but never larger) than the bound
_ﬂ ' given by (2.15) especially for & small.

IIT Sufficienthonditiohs.forllnstability

Consider the class of flows for which therelexists

— "extrema of the vorticity in layer 1 and the velocity is zero

in layer 2. Further let the extrema in layef 1 occur for a
B point or points of constant velocityv(uw=.§§>vo Lf:

0
= (3.1) = o< _%L@g-— K ('j) Z oo
[ : "CS
| (3.2) § o< by = Kaly) 4 o0
~Cs

then we can. show that 4 neutral solution of equations (2.1) exists

— with phase speed Cs-
Consider the'fuhctional A2 defined byv
‘ . Kl) Qp

o BNA= &
L ' }’cﬁg(' ‘#">
— hn -
- 2 < . " ‘
. &
L A® possesses a maximum &£ Kimax t Kz'hafgduch is pOSlthe
— . This maximum occurs where éﬁ? = O ‘and —li = 0 aThese varia-
Ik p df |
" tional conditions are equivalent to the equations (2.1)(a) and (b)

if Agmax is associated wiﬂmicKZ and C = Cs - A neutral solution

L ~ - » A
therefore exists for ® = A_, and €2Cg and 70 = 70 satisfying the
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equations
q_/\,vz_ A 3 , 4, A .,
G4y @ (O=%%)p + —‘,*i———F:rom_-ﬁ/é‘,__

35 ) u;‘C'J

o A
®  (DR&¥p, + %_%31 B ifegp]

vC’on91der some dlsturbance at a wave number o( near °<«~

(:‘3“5)(3) (D- f ,;%_ Ff - f
. (D Mm)f/ + "‘%":"L— -f rm = 1?I

: ) A L A - .
Multiply (3.4)(a) by f, , (3.4)(B) By 4, 5 (3.5)(a) by fo, and
(3.5)(b) by 192 and obtain after integration over the range

(¥1,.55)¢

;(3 .6) O-;___—’—(u o<)f», ,+-——(°< “}7317"2

1% pbu ()
?j [U2"°>Cu?-—c‘s>

77' g (u c)(u —Cs)

or — N A
Kb Kl et
ot PV _F,'(U,—c) Fq CU,,_-C).:
(3.7) = . —
C - C A A
* 70‘ ' + - PZ
Fi Fa

2 Ao . ,
Now:let o —> o(* ; C.'—-—7Cs such: that 9'm cC > 0.

One obtains

St




-(3.8)
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_ oK@ (RY . Kt (Fu)
(¢M‘> A £ (U-©)

Cio A2, : ~ 2

ey (Pt (f))
| | % TR

These integrals are discussed by Lin. (1955) where- it is

shown then that

. X
(3.9) %) = A+c B
C:CS

-where all that is;.important is that B > 0 , A and B bounded.

We see that

a0 4 - r‘?

So that if oX* decreases slightly Cu becomes pos:Ltlve and the
Na ZT\'
flow, is unstable to wavelengths slightly longer than L™= = /-

‘As’ an’eXampié consider the flow (in non-dimensional units)

-r7y
(3.11) W = e

Now

7.

(3. 12)(3) —g— '(27‘ TF-*Y“?H:‘)C

2
(b) Eiﬁ: _er—\" )
X

2

The potential vorticity in the top layer wanishes at

EFar

'Jc." - 2>

. -We see that this jet flow satisfies the criteria

listed at the beginning of this section so that a neutral solution

‘/.
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| (F+2r?)
exists with a phase speed’ Cs-; e

and a neighboring

~unstable solution.alsp exists. )
We have tacitly assumed that Ye lies in the‘interval

of the flow. Ihis-is‘certainly true for an unbounded. flow,

However if the interval in.y 'is restricted twmy (say)l

-1<€ y <1, then it is necessary that
VFE+2ar® <« o™

for 3c' to-be in the interwval. ThiS'is'trﬁe‘for sharp jets

(r* large) but not for diffuse jets ( rz'small) so that sharp
-gaussian jets will be baroclinically unstable but it is not |
necessarily true for diffuse jets since they satisfy a necessary

-but not sufficient conditioh.for instability.
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Experiments in Thermal.Convection

‘Hans Thomas Rossby

Introduction

A fluid contained.betWeen two :infinite horizontal conductiﬁg
planes is capable éf tranepereing larger quantities of heat by con-
vection than by conduction alone. Theoretical analysis shows that
the heat eransport'is'a,function of,tw0'non-dimensiOnalzparameters,»
the Rayleigh number and the Prandtl number, There is however some
confusion about the importence of the latter. Two theories have
been developed for'the'fully-turbulent convection. One, the Malkus
theory, says that the Nusselt number;“H/Hb;'is‘independent of the
Prendtl nuﬁber,'d‘ . The other approach is a mixihgilength analy-
sis by k. Kraichnan in which he-distinguishes between low and high

6 . For high 6 > 0.1, the Nusselt number is independent of

6 , but for 0 < 0.1 it is proportional to G"l/3n' For large
Rayleigh numbers there is close agreement between the two as long
as Cf':>0.1. The’large ecatter of experimental data'allows'ho criti-
cal exemination.

‘This paper discusses the results of some experiments that were
done in an attempt to-get a better picture of thistrandtl'nuﬁber
influence on the heat traneport Both'at'Very low Ra (laminar con-

vection) and high Ra (turbulent convection). The results are compared

" with two other ‘experimental papers.




The experimental method.

The experimental apparétus is, with slight changes, a new

model of the one used'earlier by Malkus (1953). The fluidlis con-

tained between two aluminqm plates by a surrdunding,plastic ring,

‘which is‘also used for the veftical spacing.‘ Next to.each of the

plates arlarge aluminum block is glued with a thiﬁ ﬁormica sheet.

in between, See fig. 1. When the lowe;.slock is heated andvthe

' upper cooled symmetrically around,room temperature, thgy wiil act

as heat capacities and the difference in temperature‘will set up

a flow of heat through the fluid. Ciosé to both sides of'the formica‘

plates are four thermocouples of copper-constantan. These are electri-

cally isolated from the piétes, but by filling the drill holes with

mercury they are in‘goodlthermal,contact. All the constantan leads

are.connected and by correét‘switching one can measure the,temperéture

differgnce across ;he fluid, Iy - TZ’ or between-the-blocks T, - Ty
VAssuming that the_system is in a steady state, one can very

quickly compute the heat flqw if the cqnduqtivity‘of the formica plates.

is known. This is an important advantage, that is to say, thejeffectiye

) cqnductivity is_known simply by\éémparing_the tempe;ature«across the

fluid‘and the,férmica piates. (In,mo§t earlier‘experimgntsvthe heat

transpor;rhas been measured by thg’eleqtric‘energyuinput in a heating

coil,)j However, in this case, the blocks are slowly changing their

temperatures due to the heat flow and the steady state is never com-

pletely achieved. The basic condition is therefore that the logarithmic

L= L.

(_—

L=

L.

"]



rate of decay must be small compé}éd to the chéracteristic thermal
diffusion time of the system, Becaﬁse of the slight time-dependency
it becomes necéssary to establish how much the heat capacity of the
aluminum and formica plates, as well as that of the fluid, can change
the steady state estimate of the heat flow. JIn order to do this we

assume the distance between the boundary plates is d and that the

heat capacities per sq.cm. of the fluid, aluminum and formica plates

are (dPC)L s ((fC)Ae and (éfC)F . The vertical coéfdinate is
2 and the lower surface is z'= 0; the-upper z = d.

The one-dimensional heat equation is

T 4 &
pCET =4 Sk @

We assume that in a quasi~steady state the left side can be written:

-

PC3TEY- fc’aa’ GRS iz(f)j @
(2) in (1) and integrating in z gives:

"k(aT "k(aTL,;fczr‘aan 3T vE (T~ T) @

- Integrate once again from z = 0 to z = d and divide by d:

[T >T AT, rd3 s .
"?(7‘3)5‘_"(53);_‘::?0{ e L) @

For z = d we have from (3)

3T d 2
-k a;;)z_-—’? ?52:/2. *70 35 (BT (s)



(4). rewritten:

o (T, T EL 3T, f‘ﬁﬁ.é- /T -
—-fe@‘é)p: f ( 31 2 ')°'C2 S b A T S T"> (6)

(4) and (5) give:

TV < k(Bh AT d 2 -
kL), h(A)rsC T 2R et 2 (o) @
Add (6) and (7):
AT (a1 CE—T) - I
-k 732_)2__: 'ﬁ-)z:ﬂ =2k = T 5w (5 T) @)

Assuming that there are no gradients in the aluminum plates,

we have:
o
f’C )Ae at:p 32)2— 0l+k 22)-2 d+4 ‘A ®
(PCJAea‘;}? :ﬁ(%%) — *, > -1, o)

Subtract (9) from (10):

(f’c{) at(”’)' [“ j—k(a ( )A+£' 11

Using (8) and the equivalents of (6) and (7) for the two last

terms of (11) we have:




i
{

*37. L

+

- d
(Pl = =z (57%)- ’JVCEIE 20T 3w (BT

e ()54 (00,5 +0Y F -]

2 (-] 569, 22 4 £ (7). 22 ()61 oo

245 |

The heat flow is then

k(T T) ﬁ_ (ABT-AT)-A%(C\T)tB%:‘(ABT*-QAT)} (13)
F

where

‘n

(et )

de /c)
B = —s B d =
7 é(/’ F
4gT=Ty-T,  aT=T,-7,

The effective heet capacity of the fluid is the tptal
capacity divided by tﬁe Nusselt number, hence the factor Nu in A.
This formuiation‘gives the average of the heat flow in and out of
the fluid, 1If the system is changing its mean temperature very
slowly, due to some asymmetric heat loss, its effect on H will
be cancelled out.

As aluminum is only 25 times as conductive as mercury, it
is necessary to make corrections for gradients that are present

in the boundary plates when the latter is used.




If. the steady state heat flow can be written.

H =‘(_A_Z-;'_-2€.é€#’= (AT)AC’IE

'sss, dy A0 ‘{'(14)
and o o
(47) +(aT), - (67) s
(AT) ~ = measured Ty - T,
(AT)C = temperature drop across fluid
(AT&Z = temperature drop across aluminum
We get:

(47) = AT | ae)

+(5)(4),

This never involves more than a 4% correction and within limits of

error the ratio keﬁ i ‘can be considered as constant for

.1/3

%eg'/ﬁéqn¥:“f>N€“évvRa

The electric system consists of a Keithley microvolt ammeter

~~ d (turbulent convection)°

to which a Leeds-Northrup recorder is connected. The accuracy of
the microvolt meter is + 2% of full scale, which is a little large
when switching ranges and the scales do not overlap.  The linearity

of the recorder was kept to better than 1%.
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It is not obvious that at any arbitrary moment dUriﬁg the:
thermal decay, the system is a true representation of the stéady
state conveqtion. However, if there is some unspecified hysteresis
during the decay, it should have the opposite effect if the tempera-
ture across the fluid is inqreased instead. Assuming that this
would Be é‘géod tesﬁ of the validity of our results the folloWing .
was atteméted. Two additional cylindrical aluﬁinum,blocks weré |
added to Ehe/original system, one heated and the other cooled.
By’having formica blatés sanéWiched at the surfaces of contact,
one can regulate the heat flow and the rate of change in tempera-
ture acfosslfhe fluid. Since it is difficult to heat and cool
exactiy sjmmetrically and add the blocks at.exactly the same time,
the originai system is started in a reverse sﬁétg, e,g,; with
Ty > T,. Then, hopefully, by the time I3 > T, the total system
will.have found a symmetric temperature distribution, if the added
formica'piétes have exactly the same effective conductivity. The

results are discussed later.

Laminar convection

- The three fluids and their physical properties are given in

Table: #1.



Table #1. (at 25°C)
Meféury '.1.5-35; 1600 csor 1Alﬁminum Dim.
§il.oil.  Sil.oil.
o L0257 18 8500 -
B .001126 015 10 em?sec™l
X L0438 . .000847 .00118 8 cem?sec™t -
k .0197 .00025 00038 ~.5 |cal em 2sec”I(T cm™1y-1
£l 13.54 ..853 .972 2.70 . g.cm™3
C L0332 .346 .332 215 cal g-lr7l
¢ .1818.1073 .00134 .00096 -1
+ 1 23. 1200 850 1.25 sec cm™2
;ﬁi 3630 10340 80 a-3r-1 .

+y. . Mercury has a very low Prandtl niumber and its physical

. properties do not change very much with temperature: The region

. -around and above the critical Rayleigh number was studied for two

geometries

=1, 2 cm, see fig, 2.*

'Rac for different runs was small and was not studied.

The scatter in the apparent

d(cm) { AT(Ra.)| Initial Slope | Sec. Sec.SﬁolntérSecﬂ'Méx.rate  i
min. max. slope|with:Cond.Slope | of decay.| "dZ
1 | .475% |1.07 |1.16 | 1.46] R= 2360 <.04% |.o044
2 .059°¢ 11.03 |1.12 1.42] R = 2610 < .02% .011

*

Observe that the.axes are reversed. Nu Ra can be called the normal -

ized heat flow and is plotted as a function of Ra.
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- The recorded temperatures were corrected and re-plotted on
a log temperature vs. time curve. This compression makes it easier
to smooth out the wiggles in the data due to the limited conductivity

of the aluminum.. In spite of the large scatter from the wiggles, the

-agreement is satisfactory. The intersection of the second slope with

_the conduction line is not so well defined, but they overlap within

+ 5% which is legs-than the maximum variation due to the wiggles,

- The character of the wiggles is different in the two slopes. In the

second, they are very roughly periodic of 1-2 min. length, whereas

in the first they become several min. long and aperiodic suggesting

-a slow final readjustment to a linear temperature profile -in the

fluid as it approaches the critical Rayleigh number during the decay.*

Several attempts to .increase the temperature, as described
earlier, were done and the most successful one has a few points
plotted in fig. 2,

They do not lie on the line because the rate of increase is
too: large for the system to readjust iqﬁelf. As soon as the rate:of
change becomes small, then all points lie within the limits.indicated
and during.the rest,6f that run there waé no disfinguishable hystere%is.

Because of the difficulties and lack of time this technique was not

>repeatedﬂ

The initial slopes for the two silicéﬁé oils were also studied,
but lack of time did not allow any repeat runs to .check consistency.

Contrary to the studies with mercury, the time correcticns inveolved

,iTﬁeqfiﬁe;édnsﬁéﬁt”fof the electric system is <£ 2 sec.
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for computing the heat flux became very largé (10-15%). Another
very important correction was due to the heat transport parallel °

with the fluid through the container wall. ’To'simpiify“tﬁé data

- . processing the conductive slope was computed from the handbook value.

' The difference in the conductive slopes was assumed completely'atfri-

butable to the transport through the wall and prbportional”to-T3;T2°
The slope, 2.58, agrees very well with earlier experimental data
(Silveston). Strangely, thé‘éritical transition did noFkOCCuf at
the computed critical temperature, but at ~~ 50% higher”T3-T2}'

The physical properties, specially the viscosity, were checked and

agreed with handbook values. Dr. Melvin Stern suggested that the

‘fluid might be contaminated by some minute foreign particles which

by stratification could have a"stébilizing effect. This would not
necessarily affect the initial slopes.

The initial slope for the 1000 cs. fluid is less,; 2.23, but
it is not reliable for the rate of decay was .02% or less and

—5? = .0003,; which are comparable.

d (AT)Ra_ Slopeﬁ"Transient Slope'|Rate of X
R S Decay | d*
l1.5¢cs | .5cm| 0.2°C |2.58 £.03% .0035
103cs |2.cm | 2.66% |2.23 1.92 <.02% | .0003

*It is not possible to give limits of error of physical significance,

but <L +5% is a conservative estimate of the experimental errors if

"the corrections are correct.
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In both cases there is a "transition" slope. See fig. 3,4. This
P

- has:been observed by Malkus in his earlier experiments, but Sil-

veston does not mention it although his data does scatter somewhat
in a similar way. It would be particularly advantageous to go
through this transition while increasing the temperature to check

its consistency.

 Turbulent Convection

Mercury was studied extensively for.high Ra under varying
constraints.’ Two runs were done with d = 4 cm, one with. d = 8 cm,
and one ét d = 4 cm, but with a pla;tic divider that sectioned the
fluid into four vertical compartments. - In fig. 4, NuRa is plotted
against 'Ra. It is clear that as the ratio d to 4 (d;a@eter!) is
increased the heat tranéport becomes: larger. This is’verﬁ inter-
esting showing how a simple gebmetric coﬁstraint on thevfluid Will,
give rise to an increase in the heat transport. The best values are

for d = 4 cm without the divider. The original data was smoothed on

a logarithmic plot. .Then the heat transport was plotted against. the

‘Ra on a linear diagram. Corrections were made for gradients in the

plates and the'Nﬁsselt number’was computed at various Ra numbers.
These were plotted to give fig.S; It is not quite clear why the
slope ‘is not 4/3 as it should be. beobably as Ra decreased, the
effects from the poor geometfy of the syétem.became-more significant,
The line from Globe & :Dropkin. is plotted for comparison. -for these

Ra their geometry d/p was 0.26 which is somewhat better than.here,




- 12 -

0.4. ‘As the best data scatters. around .their llne,'but‘still'shows a
trend towards. smaller Nu, it is possible that the coefficient in the
linevequation,NuRa = 0a051°Ra4/3 is slightly large. Kraichnan's
mixing-length analysis predicts the coefficient to be 0.048.

. The results from the silicone oils are more difficult to

interpret. Nu
A
/. » - N\

o d Ra ours |[Globe &|Silveston|Mull & Kraichnan|Malkus | Rate of
Dropkin Reiher | - - | -} Decay
18| 8 |24.2:10° |21.5| 28.4 - - | 25.7 22.9 | <.02%
8500 | 8 E 395?10? 6.65 10.0 6.3 | ~6.3] 6.5 5.8 <.02%
8500 | 12 ‘l:l4°106 8.9 1 -14.0" - ~ 8.4 9.3 8.3 <.02%

- L (air)

' 0 =0.7

‘Unfortunately the correctlons for the heat transport 1n’the
contalner walls Were very large 20‘to 30% | Since these ualues are .
~from. s1ng1e runs it is not poss1ble to spec1fy the limits of error,
but + IOA for proce551ng errors is certalnly suff1c1ent How Globe
and Dropkln get such-large Nusselt numbers ie not clear They use
one=containerZWith d/e‘ = 4 and heat the 511lcone oils to large*
temperatures uhere'the fluids no longer are Bou351nesqu

For:the 1.5.cs° silicone oil, d’= 18, the.Nusselt number is.too
low,':It‘is possible that the ratio dﬁz is unfauorable,t Or, itimay be

that the 50% difference between the computed and observed (Ra) is

cr1t

s1gn1f1cant.‘ All this is speculatlon but it mlght be added that Globe

¢

and. Dropkln computed their Ra without maklng observatlons of RaCrlt




Also, they did not discuss what corrections they had to make, for
‘example, for losses from the heating,ﬁnit or, more likely, for
the heat‘conduction in. the container wall. Unless the gegmetry.
of the fluid container was a very serious constraint on. the tur-
bulent convection it seems difficult to understand their'highv

values. The values reported here seem ‘to lie rather close to

~Kraichnan's computed values, but they cannot be considered as

conclusive. It is nevertheless well established that there is

a strong ¢ _influence at low ¢~ at both low and high Ray-

leigh numbers.

It is interesting, nevertheless, how the geometry of the
container will affect the heat transport for low and high O~
As d/¢ 1increases, the characteristic size of convective '"blobs"

becomes smaller. For high G~ this increases the viscous dissipa-

tion whereas at low (¢~ , the viscous dissipation being less signifi-

.cant,. the convection becomes more organized.
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On the Problem of Finite Amplitude Convection

P. Souffrin, TAP

Summary: A rapid review is given of different methods that can

apply to’the study of finite amplitude convection.

The situation under consideration is the so-called "thermal
instability". Roughly speaking, it is the instability illustrated
by a fluid heated from below. Due to the fact ‘that the fluid ex-
pands when heated, the situation is gravitationally unstable.
Viscosity may inhibit the onset of the motion, but clearly if a

sufficient upward gradient is maintained between two horizontal

layers of a fluid, some steady or statistically steady state of

motion will be reached.  That this motion results in a '"convective"
heat fqu.is understandable from the fact that, due to the very
nature of the instability, the average temperature of the fluid:
moving upwards is higher than the average temperature of the fluid
moving downwards.

In most theoretical or experimental studies, fluids are con-~
sidered which are - everywhere either stable or unstable, though in

nature the convection is generally "penetrative'", i.e. the average

~horizontal structure is thermally unstable only in a limited part

of the fluid. As the motion cannot be strictly confined in the

"unstable' part of the fluid, the convection is said to "penetrate'



in the "stable'" fluid. . The argﬁment referred ﬁo above as to the
direction,of the convective heat tfensoort is not relevant for
‘the motion in the stable region which may transport heat downwards.
This 1evsuggested by extrapolatlng to the stable reglon the:mlﬁing
length theory estlmatlon of the convectlve heat fluxe This extrapo-
- lation is of course questionable, but the idea receives some support
" -from a recent study of penetrative convection by Pr. George Veronis.
In the situation considered by Veronis, the fundamental mode. of
steady motion. does not transport heat in. the same .direction through
the entire volume of the: fluid.

In any case, the knowledge ‘of the convective conductivity
is .the main problem related to thermal instability, besides ‘the

extensively~studied conditions of stability.. This knowledge can

only ‘be -obtained through. the consideration of the mon-linear coupling

between the different modes of motion.  Though this problem is gen-

erally attacked by-introduction -of -phenomenological assumptions, a

more direct.approach has been developed by Malkus and Veronis -(1958).

-Following Malkus and Veronis, we will sketch different ways to .ob-

tain:formal solutions of the system of non-linear -equations describing

~the ‘finite amplltude convection in- the Boussinesq apprOX1matlonc
To. 1llustrate ‘the procedure, we will consider instead of the

-exact -system.of relevant equations, the following.system: . . ..

P
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6_ 2 _ |
(V X Vl )W —F;'(W/W/W)-FF‘;_ (W)W)
+ boundary conditions at g = 0 and z = 4.
where

2

!

>~ 3% -
Vl i;;— + %;51

)

/) and ¢~ are scalar parameters

F, and F3 are homogeneous functions of order 2 and 3 in W and the
derivatives of W.

The linear part of system I is identical to the linearized
equaﬁion»for~tﬁe vertical component of the velocity of the Bous-
sinesq system, if ,A is -the Rayleigh number and } the vertical

coordinate. The non-linear part is somehow suggestive of the way

";thejPrandtl number -occurs in the Boussinesq system, if o repre-

sents the -Prandtl number. As regards to the horizontal bbundary’

‘conditions, we will restrict to cellular-like patterns of given

- horizontal wave number & . .The eigen functions of the linear system

are then separable, and the set of eigen values is descrete. We have

@ (- g Vf)@,,,ﬁ =0

where




By (DY, (o)
(2) :

Ve - (990U, (o)

p,énd ﬁ being any mon-zZero postive integers.
The lowest eigen value, i.e. )W , is the critical Rayleigh
- number associated with &£ . We will admit that the q%‘ﬂ provide
a complete set:of. functions compatible with the boundary conditions.
The solution of I cannot be obtained explicitly, but clearly
in the vicinity of'marginalrstability,.i;eo for A = AN , the ampli-
tgdg‘of W willhbe small (disregarding the possibility of finite .
amplitude disturbances). The system I then becomes quasi-linear,
a situgtion well known in celestial mechanics. A,procedure then
consists in expanding formally W in powers of some function € of
the small paramgter, splitting the system into an infinite number
of 1inear non-homogeneous systems. .These systems generally have.no

solutions (i.e. no solutions compatible with the boundary conditions)

but the procedure introduces arbitrary constants: constants of integra-

tions, and_éonstants‘involvediin.the definition of e . Different
choices of these constants can be made so that all the systems have
solutions.

Let us write 1

S (T =X U)W = 6 AW+ Fy -—}‘_-Fz? TCw).

+ boundary conditions

I

I
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where 5)( A l,, is to be considered as small and is in fact the

‘sma-li parametef »of'physi‘cal interé-st. . The ’pﬁarameter of. the expan- v

sion will be some function of S‘/\ , and it is convenient to write

the relationship under the form

‘ - — o3
- 5l=5h(é)= o e +53,_E_‘°‘+w3€+...

the U, being coefficients to be definéd.

- Writing

@ WEWE W €W w e

Cin & , and equatlng to zero all the powers of 6 s one gets the

.,sys tems

(V“-?\,,\Z_")W,n ?( Meq? 'H-bz""fW')

On

L ‘boundary_, conditions

(5) Tn' 4, [w“WJ ‘g"—" WLJWU"P’Z F (W WWﬂ)

E+J+ =n,

- Since ?':l dépeﬁds oniy on Wr‘ and /I)-? for rb,q <n, S,n i’s a .ligear



homegeneous system depending on the solutions for S

P for ,7. 4%

For S”L !:o have a solution it is clea'r'ly pgcessary that ?‘% be ,

-orthogonal to CP" , that is:

©) fol_/_u,, ()7, {w(*_rn)} -0

C,D being the conjugate of (P .

If (6) is verified, then

W, =C, ¢t f an, G(n/r.) 3,

is-solution of Sﬂ'l , where C,n_is an arbitrary constant of integra-

tion and where the Green's function G (’%’-o> is readily seen to .be

@:7 (n°> @ﬂﬁ (n.)
(90" <\) ‘?\p.q )

(§) G (%, ) =ﬂ%*l

n
solution. Once WP’ is found for | < )m < 4, , the two constants C'n

. Eq.(6) is then a necessary and sufficient condition for S ‘to have a

and w,n_ can be chosen so that SO'LH has a solution. Malkus and '
.. Veronis choose C =1, C = 0 for p ’F O, and can then determine
the U)' from (5) and (6). With a standard notation, they have:

<<p/w>=—§-_w¢<§0u/W>+ Z< /,:> Z: < /

Lkj=m H;; 2N C4i+R=n+)

Other choices of the CM. are possible which lead to other expan-

sions. -For instance, for the Rayleigh Boussinesq problem with free-free
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boundary conditions, it turns out that one 'can determine the 'Cht-

with the requirement Esﬁ = 0 for p.# 2. and tﬁi = A . W is then

: - !
. an expansion in powers :of (0(>\>’ :

@ WeW (0N T+ w, (82) +W3<J)|)%+

LI

‘No estimation of thg radius of convergence of the possible
expansion has*yet‘beén féundr :But'coﬁpagiﬁg'thé reéﬁltébcanrpro-w
vide some ‘informatiom, the different expansioﬁs?being eqﬁivalentn‘
if convergent iﬁ some vicinity. of g) = 0.

A more direct method can be.developed writing d; into the

“equivalent form

(Weecqt(d6hh) Ty

+ boundary conditions

C being a constant determined by the boundary conditions. One can .

substitute into the boundary conditions the equation:

_4@“ /?(w)> =0

%
so that S can be written:

Winys €O+ (A, 6 (nh,)F (W a0)
5 | |

Kk
(S can be iterated in a straightforward way:




¥ |
vd;” . ,W@ ;mtgaga;. :

-He‘ {W.’-cnq)u "“{df_‘i‘o G(E/@o)?:{WQ)
5 |
<G |F (W) =0

W =G @yt [ GRANF ()
L qﬁ{/ga:'C)AA”;'>';, =0

The author intends to examine the coefficients introduced at

each stepand to compafe4the‘different'methods of solution.
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Finite Amplitude Evolution of Large Scale Atmospheric -Disturbances

R. . T. Williams

JIntroduction’

Recently a number of studies have been made in ‘which more
complicated equations than the quasigeostrophic¢ ones are employed
(see; for example, Hinkelmann. (1959), who solved the hydrostatic
primi.ti}ve-equatibnsjnume‘r-"ically).° These studies have been stimu~-
lated in part by inadequaciesfin<opérétionalfquasigebStrophic
forecasts;' In this paper some of ‘the effects on-the:grdwth of
an atmospheric disturbance, which are not included in the quasi~
geostrophic approximation, will be studied. These effects are
essentially non-linear, and will be investigated with a finiteé
amplitudeiexpansioh, ‘To simplify the problem, only perturbations
which have no latitudinal variation will bé'consideredg”aﬁd.fiﬁité
differences will be used in the vertical to construct a two-level

model .

Governing Equations

As indicated above we areé only considering disturbahcés_which
have no northward variation. .That is, the velocity components and
the deviation from the zonal mean of the temperature and geopotential
are taken as-constant in latitude. Also, friction, heating, and the
~variation of theCoriolis parameter are neglected.
These réstrictions on the flow have several important conse-

quences. -Since £ (the Coriolis parameter) is constant, there can
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be nS‘Roésby waves, and the b;roclinic stability criterié“will
be modified. No convergence of the poleward fluxes of heat and
momentum can oceur as these quantities do not vary with latitude.
Thus, in this model. the latitudinal temperature gradient must
remain constant. In a bounded system. a convergence of this
poleward flux is expected, and this would reduce the poleward
temperature gradient, and tend to stabiiize the flow. The_latir
tudinally constant momentum. flux implies that no poleward varia-
ti§ns in the zonal .wind can deﬁelop, and thereforerthat horizontal
barotropic instability cannot occur. . The ﬁeglect of heating and
friction in the model will be important when longer time periods
are considered.

- However, the constant £ does not change.the gross baro-
clinic stability relationships, and it does .allow the unstable
disturbances to have a simpler, more symmetric vertical structure,
The exclusion of the flux convergence processes permits the isola-
tion of other physical effects.

We shall employ the two-level model used by Eliassen (1956).
..and Smagorinsky (1958). 1In this model pressure is used as a verti-
cal coordinate, and the'atmosphere is divided into four layers of
.1constant,pressure,differentialif.A P . The bounding pressure lévels
are numbered from 0 to 4, where level 0 corresponds to the top of
the atmosphere, where P = 0, and level 4 corresponds to the earth's

surface where P = 2 A P . Applying the equations of motion and the

S



continuity equation at 1evels 1l.and 3, approximating vertical

~derivatives with finite differences, and combining, we obtain:

éag‘::i'bu'aa%c3 %g‘@'-t>=‘%uﬂ;f-+§%ﬁ (2)
R A R

where: qb ‘is the geopetentiai. ‘Here the usﬁal\ﬁeteOrologieal
cartesian coordinates are employed, which means thaﬁ the terms
involving the inverse of the earth's radius heve been neglected.
The subscripts on the dependent vagiables indicate the appropriate
pressure levéls. | ) | |

‘In this model the vertically averaged continuity equation

takes the form:

.CU'+“3)= ° " (55,

'OX

This implies that the veftical.mean divergence is zero, aed results
from the assumption that the individual‘bressﬁre change at the earth's
surface vanishes.” This is a good approximation for all but the

planetary scale motions in.the atmosphere. Also, this assumption

filters external gravity waves out of the model.




¢, _ 9 - =
I - ﬁﬂ_. - -é—g- .-\--F(%“‘%;) and (’V,' + 'Vé) are zero, -then the
timegyariétion»of uw+lL3 must also vanish (the bar indicates the’

horizontal mean). We shall consider only such cases, and since the

frame of reference is arbitrary we shall take:

W, +Ug =0, PR )

When the thermodynamic energy equation.is applied at level
2 , and the hydrostatic equation and the continuity equation

are employed, we obtain:

MR B o o

where
R = gas constant,
© = potential temperature,
»Cp = specific heat at constant pressure,
,\K =. %; A
. D

The measure of the static stability in this model, (— ;a—e-> s 1s
ST P72
taken as horizontally constant, but will be allewed to vary in time.

. By horizontally averaging the equation:

EACONS

and applying finite differences an expression for this time variation
may - be found.

In order to separate out the mean fields, and simplify the.
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Now U 1V,

_equations we intreduce the following new variables:

W= =g = Ut U, (t)+U x"’) | (9
=-L 28 _ 1 3 | :
V=1 3'75%1 | (10)
+(,-15) = Vi o @D

R \ (12)
'&(¢u‘¢3)= ¢ . : a3

vn,lﬂ%)and ¢1._have“zero.horizontal averages.

'

Before rewriting the equations let us non-dimensionalize

with the following relations:
4

e fé_qb v-uv u-/uUu «a-ﬂW MO/AU% (14)

X
XT'R ,'t KU

The Rossby number is /LQ f s where K is a wave. number for the

flow. Another non~d1men51onal number is given by

% = Rf:( 3? }Z; /M(*) e

‘Thusf:K;,zis,the~product;of(a Richardson's number and the Rossby:

number squared.
On introducing the new dependent variables. and non~dimension--

alizing, the system.of equations may be written in the following.fotm:




Qtfm +31/' N ["ua?—?-%(uﬁﬂf‘/\’\, N o 1e)

KL 3
Y[ nFeouip g )y @
pr 3 % vy =0, : | o
_ii’r_;vmfng%%;%v%% =7, | | o
e oy, rGrh) = T, | (20)
if@ -% =0 W

-z s ufuifp]=q, e

where the primes have now been dropped. Notice that the left-hand
sides:.of the above equgtions contain all the linear terms, and.
 £ﬁat the right;haﬁd sides are’non-linear, and are deﬁéted By M; N;
P, T, and Q, respectively.
‘h'.‘ With the.séaliﬁg ﬁsed in this analysis all qu;ntities excep;

/L.and ?Q shouId~Be of.ofder éne for lérge scale atmospheric fioﬁ.
“For such motion y2s is-.usually of ordér‘.l, aﬁé 3; is one or less.
1f we neglecﬁfall terms of first'énd higher order in the Rossby
number,  we obtain the usual. quasigeostrophic system of equations.
‘ﬁotice that the quasigeostrophic equations in this case are com-
pletely linear.. A higher order approximation can be obtained by
~including: the terms of first order in /4 .. Such a formulation
-might be called a balanced'system since it includes non-geostrophic

effects, but does not allow gravitational-inertial motions. Note



]

that all the non-linear terms~in the above system are -of the first
order in the Rossby number.

In discussing the physical meaning of the terms in the above
equations, it is useful to note that since the'y variationwof the
velocity is zero, u} is the divergent part of the horlzontal
veloeity, ahd'mr ie the rotatienal part. Thus, the eon llnear

terms in equatlons (16) and (17) whlch do not 1nvolve u, s reprew

sent the vertleal advectton, and the horlzontal advectlon by the
divergent- part of the w1hd3 of‘the rotatlonal component of the
velocityo CAs will be seen later, these terms cause an»energy |
cascade whlch can draln k1net1c energy- fremithe energy produc1ng
modes of the system. Such a process cannet occur with the quasi-
geostrophic approximation, ih this case, becaﬁse.the governing
equations areflineat. With twe horizontal dimensions, a eascade
may occur in the quasigeostrophic model, but aevPhillips (1959)

has pointed out,‘this energy transfer appears to be small. Thus,

“one of the major differences between the quasigeostrophic equations

and the primitive equations,.may lie in the rate of energy transfer
to shorter wave lengths.

| The terms involving W, in equations (16) and (17) represent
the advection by the nonmgeostrophic part of the zonal mean wind.

In equatlon (19)D P 1nd1cates the change in the vertical advection
of potentlal temperature, due to a time van&atlon in the static
stability. The non-linear term in equation (20) shews the effect .en

the meridional circulation of a mean.vertical flux of 4 momentum,
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B
since -,5-)4—- is proportional to the vertical velocity. >Inﬂequation w
(22), the static stability varies according to the meridional g W‘
~circu1a£3:.on and the vertical heat flux. -
Solution _Procedure &

' EWevwill obtain approximate solutions to the above system (
of equations by using a‘finite‘ amplitucie éxpansion simiiar to -
that emiaibyed .by»’Malkus and Veronis (1958) .  However, they _J
szougvht steady stavte‘ solutions, while we are interested in the -
time évolutioﬁq | *—4‘

For convenience, we obtain the fol.flowing equation whose ?
“linear Part contains only 'lf:r | -

! 2 ) ) L
i(’u;)s[( Bt* 2’loa )z‘ "(’“ at"‘-?{ sxg. jx ]'VT , ;

' -_-_L: iE..{.‘/J_‘_?: P - )2 oM (23)

ST Tt < at*” °ax) ( at- a)a. I
~where i is - a linear operator and'L is a function of the non-
linear quantities P, N, and M. Similarly, with W, we obtain: — i

[ e s T @ =

Now we shall expand all dependent variables in terms of

a small constant parameter &€ , in the following manner:

/L/'='U'( (3) 3

e 1P, Py L,

a,(:) ‘_ ' (25)

=1l +7% e ¥l




e

o

o]

—
I H
i H
L

1 T
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with similar expressions for the other quantities. Substituting

these relations into equation (23), and equating the coefficients

“of like powers of & , we obtain the followingvsystemrof linear

‘equations:

LEF)=o
L) =L

Jﬁ(ﬂﬂfﬁ)

1

] >

(26)

1]

L—:11-L‘2l ?

I

J-
2 LRJ‘R

L) -2

?

v

: ; Gl : * e
where’(M“V?jK'means OiJ ¢F09)° Notice that the first equatien is

homogeneous, and that the higher equations are inhomogeneous. Pro-

ceeding in a like manner with equatien (24) vields:

Eu 1+quﬁ)? S

(@n

These expansions must alsc be substituted into equations (16), (17),

(18), (21), and (22). Now.the system of equations may be solved

by starting with the lowest order expressions;and an example of

 this procedure will be given in the next section.,

Solution for a Particular Case

To solve the time dependent problem, the initial conditions

‘must be specified. At this time we:will not give these ceonditiocns

exéctly, but will indicate the general structure of the fields
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initially. - For very small disturbance amplitude, we require that
the solution behave like the exponentially growing. linear solution.

.Also; we desire that le)U: and ¥ be of smaller order than the-

)
‘other variables at this time.

The first step in the solution procedure is to obtain a

solution to the equation

. L% L ND L urd gyt 57
2R [ ot Vi (Mt ] S0 s

For motions. of peried 2.Tr.h1 X equation (28) has solutions of

’ (AX+nt)
the form, /QEZ , where n satisfies the frequency equation:

[(#an"--t- X"+l>h'z"‘<,u-9"12+xo")_] -_-.o . _ (29)

When 'X; is less than oene, equatien (29) has two real roots and
two imaginary ones; the formér correspond to baroclinic meteorologi-
~cal modes and the latter to gravitationdl-inertial modes.

We choose the solution of (28):

N t
’”:r()‘=A cos X € o (30)

where ¥ £ | and N is the real positive root of equation (29)-

The corresponding solutions for the other field variables are:

\) ' T T
v = _/:, amx e” = Dpsn xe” (31)
O (n Ao xe™ 2 Cuemyen™ (32)

n
: { YA ‘ -L—
¢T)= [/,u(n +/)+I:}A9m><e_”t= DIV?’nxen : (33)
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-Also we will take zero solutions for U, I%g , and g .

The-initial amplitude for the first term in:the series for
¢§ with this solution is € A.  In the higher order equations,
wg‘will take only the inhemogeneous part of the solution, so
that the amplitude of each higher term.in the series will comn-
tgin EA to the corresponding power. Thus, it is natural to

take & equal to the amplitude of the first term in the series

for ’U} , and this makes A equal to one.

To obtain the second term in the expansion, we must

"solve the equation:

2 2 2 a ‘
2= L=+ (W5 ) -5 3 ,)2% o

3y ot EPA/AETS
, . ¢
In this case Ti vanishes since & =20,
037" X W - ant .

M= mW oy = [ T CaTp e hn e G3)
and

i) W _0) nt ’

/V‘.,"—”'Li?'(“ )= pCgsmzxe™™, 09

\ )

where the C:s and DS are defined in equations (31) through.(34).
Substituting these relations into equation (34), we obtain

the inhomogeneous selution:

| A by
@ 0, Ea(ﬂn‘*%)hﬂ,:*(ﬂ Ny y /)J cmlxe c w;ue (37)
TT 2 MM e n e (e nt4g-1)

)
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where the homogeneous~portion has been excluded. Also, the:
.following solutions may be obtained for the other space dependent

"variables:

ant 2rt ,
(2) : .
U, El- (z Cy tp C,3>5/n ax e® = _DZ:_,Sm 2% e, (38)
t anT B
M 27 s _
e (-ZY\C&\".Q‘DZ'Z”’ECI.B Dip Jom 20E™ =C),002XE (39)
D ' a0t o
¢§_ = —Y\/J/ ng += CL,>Sm 2X eZnT D-Z“* sinJaX 2 . (40)

It should be pointed out that the Cs and Ds employed above are

functions only of AL and b;

N .
.WTo~obtain u%?.we must selve the equation

Lo Y
EL = “"_] %u o>) c,3ﬂ,,~ 22T o

The desired'inhomogeneous solution is

L D 2nt
u_‘)_; -—.—?—l-i—l-;:——@_ hbs: T cznt-‘ (42)

'The other two dependent“variables are given by:

(2 T
V;; = Zn 3'_'2 c - - (43)

gnd

y® &Ufhj*jz Cn )e = ;e’%h' “4)

In . a similar'manner‘oné‘may show. that the third order

solutions have the following form:
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"VT(:)? (C.zt.s cos 3K + C;,lcos X) esét 3 - o - (45)
,U.'f - <D313 st 3X + Dy, St,n X) ea»’?t ) ,k o (46)
ue (Cass °°S‘3x + C”Icosx)esnt‘ > | (47)
, qbf): : (ngBSIn 3X + D‘;‘,,smk)ea’“t " | (48)
e 4P o906 . @

.Thus we see that our expansion is essentially a power series in

eﬁt ,-and for that reason it must diverge for sufficiently Iarge
t . Also.it can be seen that a solution of order Jr will include

2
spacial wave number J .and possibly some longer waves. In the next

section.a physical. discussion of the solutions will be given, -when

. the above:coefficients are computed for particular values of M

and KO

A Particular Example
The coeff1c1ents derived above are suff1c1ent1y compllcated

that it is dlfflcult to study the solutlons in general Therefore,

we w111 present the solutlons for partlcular values of‘pg and X

-which are reaSOnable for- large scale atmospherlc flow. We choose

X;’= 322 and /L 111 whlch correSpond to U = 10 6 meters per

second ‘EL = 6x106 meters, - EE% = 5° per 100 mllllbars, and

P

.f”= 10” 4(seconds) -1,

We shall dlsplay the solutlons in terms of 1/] and ’V},

instead. of 4!% ‘and 1&;, since the former quantities are the ones
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observed on weather maps. The first three terms in the spatially

varying part of v, are:

L ) t
'Uj--’U, =€ ot [l. 73 sm(X +35.4°) - 96 sin (2X -5'33")(/0 'éeh)

+(-.805in(3X +38°°) - 2.06 5 (R +86.5)(107e e“tfﬂ , (50

-Wheredh = ,712. Due to symmetry.the'ﬂéyypart-of the solution

will be of the same form, but the signslof the phase angles will
-be reversed. Notice that the expansion is in.fact in powers of
(10'16-6 ), which might be expected since the Rossby number is

the coefficient of the non-linear terms which determine the
"higher order effects. Thus the series should.converge for ‘at
least é~€nt = 1, and should diverge forV'G'emt > 10.  Equation

(50) implies-that the nonéliﬁear‘effects do not become'very,impor-'
tant until Gewt exceeds 1, or 10 meters per second.

The first term in equation (50) represents the infini~

tesimal amplitdde‘linear solution. The\second term . shoﬁs rhe.growth
_éf wave'number th due to non—linear interaction The dlstortlon
.of.the’flrst order solutlonrbyvthe second is of such a form as . to
\make the ﬁax1mum norrh‘w1nd.stronger than‘the max1mum south w1nd
at the upper level. The dletortlon also g1§es sharper troughs and
bflatter ridges. Grpwangvatﬁospﬁerle dlsturbancesloften-have these
proéertles, althouéhrother explaﬁatioas are posgiblei Iﬁe third
harmonlc whlch appears in . the th1rd order expression is a . distortion,

whlch is created by the interaction of wave numbers: one and two.

O

btk

[

S

H
-
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The other term in.the third order expression.represents' the
frf first feedback on wave number one, and is due to several physical
1 .

effects. The contributions:of the respective processes are:

: L : -1.69 sin (X-+»65°) - (static stability increase)-
j . : .82 sin (X - 11.8°) (mean zonal wind shear increase)
- .405 sin(X+ 67.5%) (interaction between different wave

. numbers)..

The static stability increase makes the largest contribution, and

cauges the overall growth rate of wave number one to be reduced.
érj This behavior might be expected‘fromzthe change in the linear
growth criteria, due to an increaseiin the static stability. The
zonal ‘wind shear change causes. wave number one to increase, which
is reasonable since the linear growth rate is proportional to the
‘zonal. wind shear. Finally, the interaction between different wave

I : ‘numbers tends to decrease the amplitude of wave number one; since

the amplitudes of the other waves are growing.

To  be consistant with the above discussion the solution' for

¥ must give an increase in.the static stability from the second
?{j order term. This is the case, and it should be expected since a

- vertical heat flux must accompany the energy conversion. in.the

first order solution. Also, the first order solution has the proper

form to give a vertical flux of V' momentum, which ultimately in-

creases the mean zonal wind shear through the Coriolis ferce. This

1

latteér process is not thought to be important in the actual atmosphere

]

S



since the meridional circulation would reduce the poleward tempera-

. ture gradient, and consequently the zonal wind shear.

.Conclﬁsion

The solutions obtained with:this eéxpansion technique, appear
to be valid until the disturbances reach a substantial amplitude.
The non-linear processes both distort the form of the infinitesimal
amplitude solution, and modify ité growth rate. The most important
stabilizing influence arises from.the time ‘variation of the sfatic
stability. The solutions also. indicate an energy cascade, which
could not ocecur in a quasigeostrophic moedel with no y variation.

A more complete discusgion of the physical processes should
be given, with special emphasis on the energetics. Some indication
of the effect of two horizontal dimensions is needed,’and’might be
obtained from a similar expansion. These studies could be general-
-ized by allowing f and the static stabili;y to vary. in the’horiZontai°
Also, heating and friction might be included, and steady .state solu-
. tions sought. .However, in considering the desirability ‘ef such. ex-
tensions, the increased complexity in. the procedure must be~ke§£ in

~mind.
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