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Abstract 

Climate change will alter turbulence intensity, motivating greater attention to mechanisms of 

turbulence effects on organisms.  Many analytic and analog models used to simulate and assess 

effects of turbulence on plankton rely on a one-dimensional simplification of the dissipative 

scales of turbulence, i.e., simple, steady, uniaxial shears, as produced in Couette vessels.  There 

shear rates are constant and spatially uniform, and hence so is vorticity.  Studies in such Couette 

flows have greatly informed, spotlighting stable orientations of nonspherical particles and 

predictable, periodic, rotational motions of steadily sheared particles in Jeffery orbits that steepen 

concentration gradients around nutrient-absorbing phytoplankton and other chemically (re)active 

particles.  Over the last decade, however, turbulence research within fluid dynamics has focused 

on the structure of dissipative vortices in space and time and on spatially and temporally varying 
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vorticity fields in particular.  Because steadily and spatially uniformly sheared flows are 

exceptional, so therefore are stable orientations for particles in turbulent flows.  Vorticity 

gradients, finite net diffusion of vorticity and small radii of curvature of streamlines are 

ubiquitous features of turbulent vortices at dissipation scales that are explicitly excluded from 

simple, steady Couette flows.  All of these flow components contribute instabilities that cause 

rotational motions of particles and so are important to simulate in future laboratory devices 

designed to assess effects of turbulence on nutrient uptake, particle coagulation and predator-

prey encounter in the plankton.  The Burgers vortex retains these signature features of turbulence 

and provides a simplified “cartoon” of vortex structure and dynamics that nevertheless obeys the 

Navier-Stokes equations.  Moreover, this idealization closely resembles many dissipative 

vortices observed in both the laboratory and the field as well as in direct numerical simulations 

of turbulence.  It is simple enough to allow both simulation in numerical models and fabrication 

of analog devices that selectively reproduce its features.  Exercise of such numerical and analog 

models promises additional insights into mechanisms of turbulence effects on passive trajectories 

and local accumulations of both living and nonliving particles, into solute exchange with living 

and nonliving particles and into more subtle influences on sensory processes and swimming 

trajectories of plankton, including demersal organisms and settling larvae in turbulent bottom 

boundary layers.  The literature on biological consequences of vortical turbulence has focused 

primarily on the smallest, Kolmogorov-scale vortices of length scale η.  Theoretical dissipation 

spectra and direct numerical simulation, however, indicate that typical dissipative vortices with 

radii of 7η to 8η, peak azimuthal speeds of order 1 cm s-1 and lifetimes of order 10 s as a 

minimum (and much longer for moderate pelagic turbulence intensities) deserve new attention in 

studies of biological effects of turbulence. 
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Dedicated to Ramon Margalef, 

who has aroused greater curiosity about how 

turbulence affects plankton than anyone else. 

Introduction 

Marine life concentrates in two turbulent boundary layers, one just under the sea surface and 

one just over the seabed.  How turbulence affects marine life is a key, basic research question 

that also has high relevance in predicting effects of climate change.  Global warming can be 

expected to increase mean upper-ocean stratification via temperature gradients and thereby 

suppress global-ocean, mean turbulence intensity.  At the same time, however, it will increase 

turbulence intensity locally and intermittently through more energetic storm events.  That 

turbulence has strong effects on marine community structure has not been doubted since 

Margalef’s seminal descriptions of its consequences for phytoplankton community structure 

(Margalef 1978; Margalef et al. 1979), but achieving better understanding of mechanisms 

underlying these effects has suddenly become more urgent.   

Turbulence in the upper ocean stems from shear stresses applied by wind; conversely, 

turbulence in the bottom boundary layer arises from friction with the seabed.  Turbulence spans 

broad size spectra, from the integral scale, with inertial eddies comparable in size to the 

“container” (e.g., mixed-layer depth or bottom boundary-layer thickness), to much smaller 

dissipative eddies of scales on the order of millimeters, where kinetic energy is lost quickly to 

friction in the form of viscosity.  Maximal turbulent velocities are associated with the largest 

eddies, and plankton by its definition moves along in them.  Under high surface wind stresses, 

the largest and fastest such eddies span the entire upper mixed layer and move phytoplankton 

cells across its full spectrum of light intensities.  One major consequence for phytoplankton is 

rapid, repeated transit through the full range of irradiances within the upper mixed layer.  On this 

macroscopic scale that extends from the largest, most energetic eddies to scales at which 

dissipation begins to become important, flow and particle interact very little, and advective 
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translation is the clear mechanism accounting for the large irradiance and pressure changes that 

the true plankton experiences.   

We treat the opposite end of the turbulence spectrum, the dissipation scales experienced by 

individual phytoplankton cells, other biota and suspended particles in general as relative motion 

of fluid and particle.  Large, high-kinetic-energy (integral) scales and dissipation scales of 

turbulence are reasonably distinct (e.g., Gargett 1997, her Fig. 8).  Concepts, models and 

measurements of turbulent motions at dissipative scales have evolved profoundly over the last 

two decades, particularly through attention to vorticity (Saffman 1992; Davidson 2004; Wu et al. 

2005).  Paradoxically, however, this substantial advance in understanding of the physics of 

turbulence—despite many convincing empirical demonstrations of turbulence effects on 

plankton—has resulted in a substantial lag in understanding of mechanisms, magnitudes and 

consequences of those effects.  The reason for the lag is that on the scale of an individual 

phytoplankter, flow and particle interact intimately, with abundant feedbacks, and mechanisms 

are subtle.  These mechanisms and feedbacks surely underlie some of the strong patterns on 

display in Margalef’s mandala (Margalef 1978; Margalef et al. 1979). 

We must make plain at the outset that we use the term “particle” to mean a small object in the 

solid phase.  No small mischief has been caused in the aquatic literature through ambiguity of 

fluid dynamicists’ shorthand in referring to an infinitesimally small parcel of fluid as a 

“particle.”  Confusion is further amplified by referring to the trajectories of such parcels as 

“particle paths” and by the fact that visualization of what are really parcel paths is often through 

multiple exposures or frames of small, neutrally buoyant particles seeded into the fluid. 

The train toward increased physical understanding of turbulence has moved along two 

complementary, parallel tracks, and analogous, parallel approaches have yielded greater 

understanding of the biological effects of turbulence.  One approach includes and dissects the 

full complexity of turbulence through statistical analysis and summary, whereas the other deals 

in idealized simplifications that illuminate signature processes or mechanisms of turbulence.  

Each has advantages and disadvantages, and progress is most rapid when both tracks are 
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followed, with frequent or at least occasional cross-fertilization.  If both approaches are working 

correctly, each must be compatible with the same, accurate direct numerical simulations (DNS) 

of turbulence.  The advantages of idealizations are succinctly encapsulated by Davidson (2004, 

p. 302) and underlie the title of our article:  “...one might speculate that, in the decades to come, 

deterministic cartoons will play an increasingly important role, if only because they allow us to 

tap into our highly developed intuition as to the behaviour of individual vortices.  We do not 

have the same intuitive relationship to the statistical theories, which in any event are plagued by 

the curse of the closure problem.”  In this paper we attempt to implement this advantage while in 

no way questioning the value of the parallel statistical approach.  Indeed we reach repeatedly 

onto the statistical track and especially into unifying DNS results to find realistic parameter 

values for our proposed cartoon.   

Analog simulations aimed at testing for biological effects have also followed these two tracks.  

Those who seek to reproduce statistical properties of turbulence rely primarily on tanks that use 

flow past (static or oscillating) grids or paddles to mimic field conditions over a selected range of 

scales, and carry out tests for biological effects by placing organisms in tanks very much like 

those used to study turbulence itself.  The flow history experienced by each cell in such a tank 

differs, but averaging over individual cells (that each integrate over both space and time) 

achieves empirical estimates of the magnitudes of turbulence effects at a population level.  

Laboratory flow tanks inevitably entail compromises in scaling of their representations of field 

conditions, and turbulence tanks are no exceptions (Nowell & Jumars 1987; Peters & Redondo 

1997; Sanford 1997).  Nevertheless, measurements in well simulated turbulence are probably the 

best experimental means to test for the existence and magnitude of ecologically important 

turbulence effects at population levels and have achieved notable elegance in experimental 

implementation (e.g., Warnaars & Hondzo 2006).   

Nagging questions in experimental design, exacerbated by the intermittency of turbulence, 

however, are whether cells respond cumulatively or acutely to flow effects or to durations of 

effects above a threshold level.  Bulk assays alone cannot identify underlying mechanisms of 
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effects on individuals.  Also problematic in laboratory turbulence tanks are both strong gradients 

in dissipation rates with distance from the structure that sheds vortices (grid or paddle) and 

artifacts from direct physical contact of cells with that structure and with container walls.  

Nevertheless, individual particles now can be tracked long and frequently enough to generate 

useful statistics, e.g., on particle-particle encounter rates (Hill et al. 1992) and on net vertical 

velocities of slightly positively or negatively buoyant particles (Friedman & Katz 2002; Ruiz et 

al. 2004).  Results have important implications, respectively, for coagulative termination of 

phytoplankton blooms (e.g., Tisalius & Kuylenstierna 1996) and for the potential of slight, 

physiologically controlled buoyancy changes to greatly accelerate net vertical velocities of cells 

in turbulence beyond values expected from Stokes settling calculations—toward 25% of urms, the 

root mean square turbulent velocity (Friedman & Katz 2002).  Progress is clearly being made 

along this statistical track in understanding effects of turbulence on plankton and will 

undoubtedly continue. 

Here we focus on the parallel track of studies that attempt to look at simplified components or 

“cartoons” of turbulence.  Recent progress along this track in the physics of turbulence suggests 

new approaches in understanding biological effects, but we begin with a little background on 

development of the even more simplified models of turbulence in whose contexts biological 

oceanographers now study turbulence effects on plankton.  This brief review helps us to develop 

salient differences in the new cartoon. 

Background 

Roles that fluid motions play in transport of solutes to and away from cells and aggregates are 

fundamental issues in biological and chemical oceanography.  Various approaches dating back to 

Munk & Riley’s (1952) seminal assessment have indicated that passive sinking, active 

swimming and ambient fluid motions each enhance fluxes of solutes to or from cells in a 

turbulent sea when cells exceed a few tens of micrometers in radius.  The primary mechanism is 

erosion or distortion of the diffusive chemical boundary layer created by the cell’s uptake and 
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release of solutes.  Straining of the concentration field produces subregions of both steeper and 

shallower chemical gradients, but this straining typically increases net diffusive fluxes at the 

whole-cell scale (raises the Sherwood number; Karp-Boss et al. 1996).  Apt analogies, because 

they share identical governing equations, are with electrical conduction and “short circuits” 

(Murray & Jumars 2002). 

Two spatial scales have figured most prominently in analyses of potential effects of small-

scale motions on plankton, the Kolmogorov scale, η [L], and the Batchelor microscale, ηb [L] 

defined as: 

  and . (1, 2) 

Here  [L2 T-3] represents the spatially and temporally averaged rate of turbulent dissipation of 

kinetic energy, ν [L2 T-1] is the kinematic viscosity and D [L2 T-1] is the molecular diffusion 

coefficient of the solute molecule in question.  We employ the unusual notation (overbar) for 

mean dissipation rate because we will later argue that phytoplankton and other suspended and 

swimming organisms are most affected by larger, local dissipation rates (εloc) that we will 

attempt to quantify.  Because we rely in part on scaling arguments, upon first introduction of 

each parameter we use the physics convention of indicating its primary dimensions in square 

brackets.  The first parameter, η, estimates the diameter of the smallest vortices that turbulence 

can support in the face of viscosity, whereas ηb estimates the scale of the smallest solute 

concentration gradient that fluid motion will support in the face of molecular diffusion.  Both are 

scaling arguments, so the right side of each carries an implicit constant that has to be estimated 

from data (Gargett 1997), but the leading coefficients are often omitted (as above) for simplicity.   

Mixed-layer turbulent dissipation rates typically range between approximately 10-5 and 10-9 m2 

s-3, kinematic viscosity is within a factor of two of 10-6 m2 s-1, and D is generally one or two times 

10-9 m2 s-1 for small solute molecules such as nitrate, giving ranges of 0.6-6 mm for η and 18-180 

µm for ηb.  We extend the “typical” upper mixed layer range for dissipation rates an order of 

magnitude upward from our prior review (Karp-Boss et al. 1996) based on recent measurements 
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that succeed in dissecting wave from turbulent motions (Gerbi et al. 2008, 2009).  Diatoms are 

roughly 5-1000 µm long as individual cells and chains, and in still water at steady state have 

chemical boundary layers (concentration deviation of > 10% from background) extending (for a 

spherical cell), 10 cell radii from the cell’s center (Karp-Boss et al. 1996).  Thus, from Eq. 1 and 

2, large, individual cells and even longer chains and larger colonies clearly can experience 

consequences of shear- and vorticity-generated gradients in both relative velocity (cell vs. 

surrounding fluid) and dissolved nutrient concentration.  Large, motile dinoflagellates 

themselves can produce sufficient flow past their surfaces to enhance solute fluxes over 

magnitudes that would hold in the absence of their swimming, but the possibility exists that 

turbulent motions impede this process (Karp-Boss et al. 1996, 2000).  Colonial flagellates also 

can enhance net supply of nutrients by producing relative fluid motion when ambient flows are 

weak (Solari et al. 2006), but again turbulence may interfere, in this case by rapidly altering 

pressure distributions around the colony.   

We focus on phytoplankton because of its central role in biological oceanography, but 

turbulent dissipation is also of interest in many other contexts.  Those other contexts greatly 

expand the dissipation rates of potential interest (cf. Thorpe 2007), from the lowest values in mid 

waters of deep oceans (10-10 m2 s-3) to surf zones and tidal channels (10-1 m2 s-3).  We do not 

extend our analysis to these ranges, but the methods we present can be used to do so.  We do 

briefly touch upon bottom boundary layers because of their relative simplicity and rich history of 

study.  In shallow waters the upper mixed layer and bottom boundary layer can be one and the 

same, with surface or bottom effects dominating in inverse proportion to distance from those 

respective boundaries. 

Many experimental tests of flow effects on phytoplankton have been based on the seminal 

review and analysis by Lazier & Mann (1989), who noted that phytoplankton cells are generally 

smaller than the diameters of the smallest coherent vortices of dissipating turbulence, η.  They 

argued from a characteristic profile of velocity in one dimension that viscosity will rapidly 

produce a roughly linear velocity gradient (thus constant shear and vorticity) over the scale of ~ 
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1 mm, so that phytoplankton (and much smaller bacteria) spend most of their time in simple 

shear flows.  The basis of this argument is well founded for laminar flows whose velocities vary 

in a single dimension; just as concentration profiles in a single dimension approach linearity in 

steady state through diffusion of mass (governed in rate by the diffusion coefficient, D), velocity 

profiles in one dimension approach linearity in steady state through diffusion of momentum 

(governed in rate by the diffusion coefficient for momentum, or kinematic viscosity, ν).  This 

assessment or “cartoon” has formed the basis for numerous experimental studies of “turbulence” 

effects on plankton in simple Couette flows (e.g.: Thomas & Gibson 1990; Latz et al. 1994; 

Shimeta et al. 1995; Karp-Boss & Jumars 1998).  This linear gradient in velocity was coupled by 

Lazier & Mann (1989) with their more subtle assessments that the level of shear (steepness of the 

velocity gradient) varies randomly in time within a range specified by a universally observed 

spectrum of shear energy density and that the direction of the shear in homogeneous turbulence 

varies randomly over all three spatial dimensions.   

Perhaps the most useful measure of scientific understanding is the capacity to make and verify 

interesting alternative predictions (i.e., predictions not already generally accepted to be true or 

false).  Prediction has come through engineering models for simple, engineered flows, primarily 

steady, laminar shears that fit Lazier & Mann’s (1989) summary of the phytoplankter’s 

environment very well.  Predictions have used analytic models of trajectories and rotation rates 

(Jeffery 1922) and semi-empirical estimates of flux enhancements of nutrients, based on 

empirical relationships between Sherwood and Péclet numbers (reviewed by Karp-Boss et al. 

1996) and, sometimes, numerical models (Pahlow et al. 1997).  That important insights have 

been gained cannot be denied, yet some key aspects of turbulence have gone missing in the 

linear-shear cartoon.  It is time for the next step in complexity toward greater realism. 

Vortical motion 

Textbook-level understanding of millimeter to centimeter scales of turbulent flows has 

diverged rapidly from the suggestion that typical flow at the scale of a phytoplankter comprises 
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steady shear and constant vorticity.  Instead, the idea that a turbulent flow is a writhing tangle of 

vortex “worms” better describes results of observations and DNS (Fig. 1).  Fluid dynamicists 

now dare to define turbulence rather than continue to diagnose it from a syndrome of 

characteristics:  irregularity, diffusivity, large Reynolds numbers, three-dimensional vorticity 

fluctuations, dissipation, and adherence to continuum mechanics cf. Tennekes & Lumley (1977).  

Davidson (2004, p. 53) has defined hydrodynamic turbulence in an incompressible fluid as “a 

spatially complex distribution of vorticity which advects itself in a chaotic manner in accordance 

with (2.31) [reproduced below as Eq. 3].  The vorticity field is random in both space and time, 

and exhibits a wide and continuous distribution of length and time scales.”  Wu et al. (2006, p. 

106) attribute an even simpler definition of turbulence to Bradshaw:  “randomly stretched 

vortices.”  Vorticity, vortices and stretching (straining) are essential components of the new fluid 

dynamics “cartoon.”   

Reynolds numbers are dimensionless and have the general form of a speed (u) times a length 

scale (l) times a fluid density (ρ), all divided by a dynamic viscosity (µ).  The two fluid 

properties are often combined into a kinematic viscosity, ν = µ/ρ, reducing the number of terms 

to three: ul/ν.  Variety in Reynolds numbers (Re) is limitless and depends on choice of length 

and speed scales.  A generally useful body Re for particle motion chooses particle radius as the 

length scale and relative speed of the particle to that of the far-field surrounding fluid as the 

speed scale.  We later will also introduce two more kinds specific to vortices.  Re can be 

interpreted generally as the ratio between inertial and viscous forces within a specific flow.  

Higher Re implies greater turbulence intensity.   

Before we introduce additional equations, we should comment on notation.  Vorticity, ω, is a 

vector quantity, but only magnitude and not direction of rotation in isotropic turbulence is 

important to our arguments, and at dissipation scales in intense, isotropic turbulence there is no 

bias of one direction of rotation over the other.  Therefore, we largely avoid the added distraction 

of vector notation, with the single exception of Fig. 2, where direction determines sign.  There 
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and elsewhere, we completely arbitrarily show velocity profiles for counterclockwise-rotating 

vortices (looking at them from the top), which by the right-hand convention makes vorticity 

positive.  Half the vortices in isotropic turbulence will oppose that direction of rotation; we work 

far below the scale where Coriolis effects become significant. 

Evaluation of turbulence effects on organisms clearly has not reached the new, vorticity-

focused, textbook-level understanding of turbulence.  Steady, Couette flow by design is one 

dimensional, with constant shear orthogonal to the driving surface(s).  Toward the goal of 

simplicity in representation and analysis, vorticity is constrained to be parallel to the driving 

surface(s).  The vorticity equation (where both ω and u are vectors) can be written as 

 . (3) 

It is sound practice to start with a simplified mathematical basis, make sure that everything 

works, and interpret those results and their limitations before moving toward the realism and 

added complexity of fully 3D solutions and time variation.  For turbulence, however, the path 

must be followed into 3D because in 2D the first term on the right of Eq. 3 equals zero, so only 

viscous forces (through diffusion of vorticity via the second term on the right) can alter vorticity 

in a 2D flow.  In 2D, signature features of turbulence at dissipation scales thus are missing:  

Vortex stretching cannot occur, and any vorticity is confined to the axis orthogonal to the two 

dimensions of the system that are explicitly modeled.  In steady Couette flow, vorticity shows no 

net diffusion because it is constant throughout; both terms on the right are exactly zero.  In and 

near real vortices, however, vorticity diffuses down gradients.  Couette flow can produce realistic 

views neither of the deformations that vortical flows produce in both chemical boundary layers 

and plumes nor of translation, rotation and deformation of cells and chains that is caused by fluid 

motion in and near vortices.   

By definition, vortices are coherent fluid motions in the two dimensions perpendicular to their 

axes rather than random or chaotic fluctuations in all three spatial dimensions.  Vortical stirring 

can bring reactants together in ways that random fluctuations cannot (Crimaldi et al. 2006), with 
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abundant ecological consequences (e.g., Crimaldi & Browning 2004).  The high shear and 

diffusing vorticity between a dissipative eddy and its surrounding medium are likely to have 

profound effects.  The question that we pursue here is how to select and utilize a physical cartoon 

of dissipative-scale vortices to improve understanding of turbulence effects on organisms.   

Axial symmetry is appropriate for the simplest vortex cartoon.  The natural coordinate system 

is z for distance along axis, r for distance perpendicular to that axis and θ for angular (azimuthal) 

position about the axis (inset, Fig. 2).  Before we consider realistic vortex structures at 

dissipation scales, we work through a succession of vortex cartoons of increasing complexity, a 

line vortex, a Rankine combined vortex, the intuitive but complex “bathtub vortex” and one 

simplified viscous vortex.  The simplest vortices are inviscid.  In the absence of viscosity, the 

second term on the right of Eq. 3 equals zero, so only vortex stretching (or its opposite) can alter 

vorticity.  Inviscid vortices provide useful contrasts with vortices that are substantially affected 

by viscosity.   

Our first vortex cartoon is the idealized line vortex (e.g., Batchelor 1967), in which both axial 

and radial velocity components are zero, axial vorticity is concentrated in a singularity at the 

origin (r = 0), and azimuthal velocity, uθ (Fig. 2A), is given by Γ/(2πr), where Γ [L2 T-1] is vortex 

strength or circulation, defined formally as the line integral around a closed path surrounding the 

origin in the r-θ plane.  (Acheson [1990] provides a highly accessible introduction to the concept 

of circulation and its application.)  Viscous terms in the equation of motion are identically zero 

for r > 0 in the idealized line vortex.   

Our second vortex cartoon is the Rankine combined vortex, so named because the central core 

behaves very differently from the outer flow field (Fig. 2B, C).  Flow again is exclusively 

azimuthal.  Velocity increases linearly from the center of the vortex to a maximum, uθmax, at the 

outer edge of the core (defined as r = R).  The region r ≤ R lacks shear.  In this core, all motion is 

as though in solid-body rotation, i.e., as if the water and everything suspended in it were frozen 

and spinning literally like a top.  Vorticity in the core therefore is constant and falls abruptly to 
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zero beyond R, where azimuthal velocity falls off as uθmax/r.  Tornadoes and dust devils often 

approximate this structure.  As they left Kansas, Dorothy and Toto remained at constant distance 

from and in fixed orientation to each other, while each was spun around to face each compass 

point exactly once in each complete rotation of the tornado.  This kind of vortex also has 

relevance to plankton and the larger scales of turbulence, whose statistics generated by DNS can 

be surprisingly well simulated by invoking a spectrum of inertial-scale, randomly oriented, 

Rankine vortices (He et al. 2000).  The combined Rankine vortex requires that the fluid be 

inviscid, so that the second term on the right of Eq. 3 equals zero.  Inviscid vortices are useful as 

simpler end members to contrast with flows that are substantially affected by viscosity.  

Our third vortex cartoon, perhaps most familiar but also the most complex in this series of 

three, forms when a large tub of water drains through a relatively small opening in its bottom in 

the presence of system rotation at angular velocity Ω [T-1].  (If the tub is fixed to the rotating 

earth, then Ω is the local vertical component of the angular velocity of the earth; if the tub is 

fixed to a rotating laboratory table, then Ω is the angular velocity of the table).  At large scale 

( o/X  small compared with the water depth and tub radius), inward radial velocity toward the 

drain is confined primarily to a relatively thin “Ekman” layer of thickness o/X  over the tub 

bottom, and vertical velocity is confined primarily to the narrow core of the vortex (Andersen et 

al. 2003).  Outside of the vortex core and away from the tub boundaries, viscosity is again 

unimportant, and azimuthal velocity uθ is given approximately by Ω r + Γ/r, where the vortex 

strength Γ is given in this case by F X/o /r , with F [L3 T-1] the volume flow rate exiting the tub 

(Anderson et al. 2003).  Vertical flow produced by gravity is providing the vortex stretching.  

Where Ωr is small, as in a common bathtub, uθ is approximately Γ/r, so its profile with r 

resembles that of a line vortex (Fig. 2A).  In a bathtub vortex, the radial pressure gradient is 

apparent as a depression of steeply increasing depth toward the vortex center.   
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We introduce this relatively complex vortex because it connects a commonly experienced flow 

with the otherwise abstract idea of vortex stretching.  It also visualizes the otherwise nearly 

invisible role of pressure in vortical flow at small scale.  Lower-than-ambient pressure along the 

axis is common to all small vortices but is blatantly obvious only in the bathtub vortex.  Whether 

its vorticity is positive or negative — even for a weakly spinning, viscous vortex — careful 

examination of the water surface will reveal a dimple where a vortex axis intersects the water 

surface.  Low pressure provides the centripetal forces that keep the fluid from following a 

straight path.  The spinning liquid itself exerts the centrifugal forces that dynamically maintain 

this same negative pressure, and the overall dynamic stability of net forces in the spinning fluid 

underlies the clear prevalence of vortices in turbulence (Fig. 1).   

The presence of viscosity 

Viscosity destroys singularities and local steepness in one-dimensional velocity gradients.  The 

simplest viscous vortex can be described as a desingularization of a line vortex (Lamb 1932; 

Batchelor 1967), and is termed the Lamb-Oseen vortex by Saffman (1992), who gives analytic 

solutions for the resultant, circular velocity and vorticity fields.  These solutions are consistent 

with the Navier-Stokes equations.  Viscous diffusion acts quickly on small scales to move uθ as a 

function of r toward Gaussian shape.  For an initial circulation, Γ0, concentrated at the origin 

(Saffman 1992, p. 253):  

 ui = 2rr
C = 2rr

C0 1 - e-r2/4ot^ h;~z = 4rrot
C0 e-r2/4ot; C = C0 1 - e-r

2/4ot^ h . (4, 5, 6) 

Here t is time.  To be perfectly clear, Lamb-Oseen and line vortices are identical and do have a 

singularity at r = 0, t = 0, before vorticity has had time to act, but viscosity will erase the 

singularity in less than a millisecond.  Small, axisymmetric vortices that lack any driving forces 

to keep them spinning differently will spin down toward this shape under the influence of 

viscosity no matter whether they begin as line vortices, Rankine vortices or something more 

complex.  Their characteristic Gaussian shape in radial velocity and vorticity profiles results 
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from the way that momentum and vorticity diffuse away from axial regions of high values in a 

cylindrical geometry.   

Two vortical structures have emerged repeatedly both from very accurate DNS of turbulence 

and from model simplifications.  Both are consistent with the Navier-Stokes equations.  The first 

is the Burgers (1948) vortex (Fig. 3) that accommodates extensional straining along its axis of 

vorticity and for realistic conditions satisfies the Navier-Stokes equations.  The opposite pattern 

of straining (one compressional strain rate and orthogonal extensional straining along the other 

two axes) appears even more common (Davidson 2004) and produces vortex sheets.  They are 

unstable, however (as evidenced by the dominance of vortices over sheets in Fig. 1), and tend to 

roll up and evolve into something approximating the second kind of vortex, the Lundgren (1982) 

stretched-spiral vortex, for which asymptotic solutions are available (Pullin & Saffman 1998).  

For diagrams of the bursting and folding steps, see Davidson (2004, p. 207).  Furthermore, the 

Lundgren stretched-spiral vortex decays asymptotically toward the structure of the Burgers 

vortex (Pullin & Saffman 1998), justifying our focus here on the latter as a simplifying cartoon.  

Fig. 1 clearly shows that prevailing structures in turbulence are elongate vortices (axial length >> 

radius).   

Views regarding applicability of the Burgers (1948) vortex have changed remarkably through 

DNS.  Not long ago (e.g., Acheson 1990) this Navier-Stokes solution was considered a curiosity 

because no obvious spatial and velocity scales emerged with it.  Hatakeyama & Kambe (1997), 

however, found that an ensemble of Burgers vortices with random orientations and strengths 

provides an accurate description of longitudinal structure functions observed in laboratory 

measurements and DNS of homogeneous, isotropic turbulence at dissipative scales, provided that 

a realistic probability density function for vortex strengths is incorporated in the calculation.  In 

spite of limitations pointed out by He et al. (1999), the random Burgers vortex model thus is a 

potentially useful idealization for studying interactions between turbulence and plankton at 

dissipative scales.   

In a steady Burgers vortex, viscous dissipation continuously removes kinetic energy from the 
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flow, but velocities remain constant because a constant, local, axial strain at rate, γloc [T-1], 

continuously accelerates the fluid azimuthally.  (Note that Davidson [2004] and some other 

authors use α /2 in place of γloc; we reserve α for the dimensionless Kolmogorov constant.)  

Through continuity, inward radial flow supports this axial straining.  Inward advection of 

vorticity and of azimuthal momentum by this flow balances their outward diffusion.  In a steady 

Burgers vortex,  

 rB = cloc
2o

; cloc =
rB
2

2o  (7, 8) 

(Davidson 2004).  Axial vorticity, tangential velocity and local dissipation rates show 

characteristic shapes as functions of nondimensional radius,  (He et al. 1999; Fig. 4 

herein): 

 ui = 2rrB
C

rT
1 - e-rV2c m;~z = rrB2

C e-rV2; ur =-cloc; uz = 2clocz . (9, 10, 11, 12) 

Local dissipation rate, ε loc, was calculated following Hatakeyama & Kambe (1997) as: 

 floc = o 12cloc2 +
rrB
2
C

c m
2

e-rV
2

-
rT2
1

1 - e-rV
2

^ h; E
2

' 1. (13) 

Both vorticity and azimuthal velocity as functions of radial distance in a Burgers vortex 

resemble smoothed versions of those in a Rankine combined vortex (Fig 4).  Local dissipation 

rate (zero for the Rankine), on the other hand, is large where the velocity difference between the 

combined Rankine and the Burgers is large, roughly in the region between rB and 2 rB (Fig 4).  

Thus the regions in which dissipation is substantial are three or more times the volume of the 

high-vorticity core regions visualized in the DNS of Fig. 1.  Note that the central core of high 

vorticity has low shear and approximates solid-body rotation.  A Burgers vortex may leave 

steady state through a various mechanisms, including changes in γloc.  If γloc increases, the vortex 

radius will shrink, and tangential velocities, accelerate, with time scale cloc-1 (Davidson 2004, p. 

250).  If γloc drops to zero, then the vortex decays, following the equations for the Lamb-Oseen 

vortex.  If γloc shifts from positive to negative, azimuthal velocities are decelerated, potentially 
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generating vortex sheets along an extensional plane orthogonal to the compressive straining. 

Characteristic scaling of a Burgers vortex 

To make the Burgers vortex cartoon useful, its parameters, rB, γloc and Γ, must be estimated.  

To estimate rB, following Gargett’s (1997) lead, we first ask the size of the vortices that account 

for the most dissipation, i.e., those at the peak of the dissipation spectrum.  Tennekes & Lumley 

(1972, their Eq. 8.4.7) give the viscous dissipation rate of kinetic energy, εν, based on the Pao 

model as a function of wavenumber, k: 

 fo(k) = 2aof2 3k1 3exp -2
3
a kh^ h

4 3: D. (14) 

Note that this equation uses mean dissipation rate, , to estimate scale-specific dissipation rates.  

Based on extensive DNS (Gotoh et al. 2002), we set α, known as the Kolmogorov constant, at 

1.64.  Taking the derivative of Eq. 14 with respect to k and finding where it is zero locates the 

wavenumber at which dissipation is maximal, i.e., kd = 0.18/η.  A wavenumber, k, is defined as 

2π /diameter, consistent with both circular geometry and Fourier transformation (cf. Tennekes & 

Lumley, p. 259).  The diameter at the peak in the dissipation spectrum becomes 

 . (15) 

The corresponding radius, a more useful measure of distance for our subsequent purposes, is 

18η.  By integrating Eq. 14 with respect to k, we also calculate that 90% of dissipation occurs in 

the eddy radius range of 2.7η to 58η.  One-half of the dissipation is associated with vortices > 

8.1η in radius.  Because Eq. 14 and most other distributions that we will treat are asymmetric, we 

choose to use median rather than mean values as being “typical”; although 8.1η is not a median 

radius, it applies a similarly tail-insensitive method to deal with the asymmetry of Eq. 14.  Once 

rB is determined (d/2), Eq. 8 reveals the local strain rate, γloc, required to maintain a Burgers 

vortex of that radius in steady state.  The path to estimating Γ is a bit more circuitous. 



  18 

Taylor (1921) introduced, λ, later named the Taylor microscale, as an intermediate spatial 

scale at which dissipation rate, kinetic energy of the flow, and viscosity all interact: 

 f = 15o
m2
urms
2

; m = f
15o urms  (16, 17) 

(e.g., Frisch 1995, Eq. 2.28 and 5.10).  It falls between dissipation and integral length scales.  To 

connect Taylor’s derivation with Eq. 16 and 17, we make use of the equality of  and , 

where ωi is the ith component of vorticity (e.g., Frisch 1995, p. 21), in Frisch’s expression for λ.  

The length and velocity scales, in turn, can be used to form a Taylor Reynolds number,  

 , (18) 

that further characterizes flow at this intermediate scale where inertial energy is spilling into the 

dissipation spectrum.  Kolmogorov (1941) hypothesized that small-scale turbulence statistics 

depend on  and ν alone, but — because of intermittency — these two parameters have proven 

insufficient to determine urms (Frisch 1995).  That is, the same  can result in flows that vary in 

intermittency and hence in urms.  We therefore need a way to choose an appropriate urms. 

DNS has revealed statistical regularities that aid in estimating the remaining Burgers vortex 

parameter and use the quantities in Eq. 16, 17 and 18.  Hatakeyama & Kambe (1997) sought to 

analyze the distribution of vortex Reynolds numbers, ReΓ, defined as 

 . (19) 

They assumed for isotropic turbulence that mean strain rate 

 c =
2m
urms , and (20) 

 C = 2rrB urms . (21) 

Consequently, the mean value for the fraction,  

 Rem
ReC = 4r . (22) 

Hatakeyama & Kambe (1997) found that Eq. 22 fits the central tendency for previously 

published DNS very well, supporting our use of Eq. 21 to estimate Γ.  They used DNS results 
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further to characterize the distribution of ReΓ about this mean tendency and proposed that the ReΓ 

has a probability density function, , given by 

 , (23) 

where, in order to conform to Eq. 22, 

 C = 4r Rem
3 . (24) 

The expression for C in note [21] of Hatakeyama & Kambe (1997) contains a typographical error 

that has been corrected here.  The expected or mean value of ReΓ based on the model distribution 

is 4πReλ
1/2, as per Eq. 22.  Ninety percent of ReΓ values would fall between 0.27 and 2.1 times 

that mean value, however, and the same proportional range from its mean would be expected for 

Γ (Eq. 19).  The most frequent (modal) ReΓ and Γ are 2/3 of their respective mean values, 

whereas the medians are 0.89 times the means. 

He et al. (1999) adopted the Hatakeyama & Kambe (1997) distribution of ReΓ and further 

proposed, based on previously published DNS, that the dimensionless Burgers radius, , 

has a probability density, , given by 

 . (25) 

E in turn is a normalization constant given by 

  E-1 = rJB
2

0

+3

# exp -rJB
0.7] gdrJB . (26) 

The expected value (mean) of rB based on this approach is approximately, 8.5η and the median is 

7.1η, both remarkably close to the median-like value of 8.1η obtained from the dissipation 

spectrum.  Good correspondence of these two approaches in identifying a “typical” Burgers 

vortex radius gives some confidence that the choice is a good one, and each approach also 

permits examination of the broader spectrum of dissipation-scale vortices.  Ninety percent of 
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Burgers vortex radii under Eq. 25 fall between 1.8η and 20η. 

We first estimate the parameters of the Burgers vortex in the simplest and longest-studied kind 

of boundary layer, i.e., the boundary layer produced by steady, horizontally uniform, 

unidirectional (in the mean) flow over wall or seafloor of uniform roughness, a so-called “wall 

layer.”  In a crude way, a bottom boundary layer is kinematically similar to an upside down 

upper mixed layer.  It is simpler in some ways because the geometry of the sediment-water 

interface evolves more slowly than the air-sea interface.  The presence of the more-or-less rigid 

wall, however, creates some important differences.  Following the normal convention, we use 

positive x for the downstream direction, y for the cross-stream dimension and z for the vertical 

dimension, and u, v and w for the respective velocity components.  Here we will use u, v and w 

explicitly to refer to the fluctuating components of velocity (elsewhere often denoted with an 

apostrophe).  We follow the usual convention of z being positive upward from seabed.  Vorticity 

is generated at the seabed in the y direction and has the same direction of rotation as would a 

bicycle tire rolling downstream over the seabed.  In proximity to the wall, turbulent vortices 

retain some of this bias toward rotating about a cross-stream axis, and vertical velocities are 

suppressed by the low-permeability wall. 

As a specific example, we consider the wall layer of an unstratified bottom boundary layer.  

The ensemble-averaged dissipation is approximately (e.g., Thorpe 2007, p. 86) 

 , (27) 

where u* is the shear velocity and κ ≃ 0.41 is von Kármán’s constant.  Shear velocity is 

estimated from vertical profiles of horizontal velocity (e.g., Gross & Nowell 1983).  Following 

Monin & Yaglom (1971, p. 280), standard deviations of the velocity components are 

 , (28) 

so that 

 . (29) 
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For ν = 10-6 m2 s-1, u* = 10-2 m s-1 (a value near the critical erosion threshold for many 

unconsolidated sediments) and z = 2.5 m, Eq. 27 yields  = 9.8 x 10-7 m2 s-3.  Further, η = 1.0 x 

10-3 m (Eq. 1), rB ≃ 7.1 mm (7.1η, median of Eq. 25), urms ≃ 1.7 x 10-2 m s-1 (Eq. 29), λ ≃ 6.7 x 

10-2 m (Eq. 17) and Reλ ≃ 1.1 x 103 (Eq. 18).  The remaining Burgers parameters become γloc = 

3.9 x 10-2 s-1 (Eq. 8) and Γ = 7.6 x 10-4 m2 s-1 (Eq. 21).  Using median values of the proposed 

distribution (Eq. 23), one finds ReΓ ≃ 3.8 x 102.  With these values, the Burgers vortex solution 

(Eq. 9-13) gives max (uθ) ≃ 1.1 cm s-1, max (εloc) ≃ 2.1  and max (ωz) ≃ 4.8 s-1. 

Estimation of the Burgers vortex parameters in an upper mixed layer can be complicated by 

the interaction of gravity waves and turbulent motions.  Such interactions have been the subject 

of extensive research.  Here we use simplified results based on recent field measurements and 

scaling arguments to provide quantitative estimates of the relevant scales; the results do not 

account explicitly for quasi-coherent processes such as Langmuir circulations (e.g., Thorpe 

2007) although these processes are likely incorporated in the empirical results.   

Significant wave height, Hs [m] is the vertical peak-to trough distance.  When waves break, 

motions within this region (with the interface z = 0 defined as the midpoint between peak and 

trough and increasing depth being considered positive z) are very time and location dependent.  

The region from the wave trough to of order 10Hs is called the wave-affected surface layer.  

Unlike the classic wall model where turbulent kinetic energy comes entirely from vertical shear, 

in this region turbulent kinetic energy derives primarily from downward transport of kinetic 

energy injected by waves breaking above (Gerbi et al. 2009, their Fig. 1).  In the wave-affected 

surface layer, mean dissipation rate can be written 

 f = 0.3
z2

Gtu)
3Hs , (30) 

where Hs is the significant wave height and Gt is a dimensionless parameter that expresses the 

ratio between u)
3 and the energy flux from the wind to the waves, which ranges between 

approximately 90 and 250 for all but extremely young seas (Terray et al. 1996).  Gerbi et al. 

(2009) found that a value of 168 provided the best fit of their observations to the scaling of 
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Terray et al. (1996).  Terray et al. (1996), Drennan et al. (1996), Feddersen et al. (2007), Jones 

& Monismith (2008), and Gerbi et al. (2009) showed that Eq. 30 describes near-surface 

dissipation in a variety of field measurements.  Burchard (2001) showed that an appropriately 

modified, two-equation turbulence model (Eq. 30 for the wave-affected layer and Eq. 27 for the 

layer below it) reproduces the observed dissipation structure.  Gerbi et al. (2009) found field 

measurements of velocity variance in the wave-affected surface layer to be consistent with  

 q3 = Kfz , (31) 
where q2 = 1 2_ i u2+ v2+ w2^ h is the turbulent kinetic energy per unit of mass and Λ is an 

empirical constant with a median value of approximately 1.34.  Measurements of w2 reported by 

Gerbi et al. (2009) are consistent with those of D’Asaro (2001) and Tseng & D’Asaro (2004).  It 

follows from the above expression and the definitions of q2 and urms that in the wave-affected 

surface layer 

 urms = 3
2b l

1 2

Kfz] g1 3. (32) 

Terray et al. (1996) estimated that the wave-affected surface layer is bounded by 

 0.6 # Hs
z

# 0.3lGt . (33) 

The upper bound is obtained by equating the expressions for dissipation in the wave-affected 

surface layer and wall layer.  Depth of the transition varies with time since onset of wind and 

peaks at intermediate wave age, when it can be as large as 25Hs (Terray et al. 1996, their Fig. 8). 

We use the Gerbi et al. (2009) results to produce a sample calculation.  We emphasize that these 

results are by no means extreme and are limited to significant wave heights of about 1 m or less 

at the Martha’s Vineyard Cabled Observatory (MVCO) off the coast of Massachusetts, U.S.A., 

during October 2003, in waters about 15 m deep.  Data are available online at 

http://www.whoi.edu/mvco/data/oceandata.html.  From the temperature and salinity, we estimate 

a kinematic viscosity of about 1.14 x 10-6 m2 s-1.  Gerbi et al. (2009, their Fig. 6) observed several 
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episodes when  in the wave-affected layer reached 10-5 m2 s-3.  From Eq. 32, we obtain an 

estimate of urms = 2.6 cm s-1.  Values of urms this large are supported by both the measurements of 

Gerbi et al. (2009) and estimates from float data by Tseng & D’Asaro (2004) for the open-ocean 

North Pacific in the same season (October-November, when kinematic viscosities, dominated by 

temperature, were also similar).  During this season, mixed-layer depth is gradually increasing, 

and stratification plays no large role in dynamics near the air-water interface.  We estimate 

median rB (7.1η from Eq. 1) to be 4.4 mm and λ (Eq. 17) to be 3.4 cm.  Strain rate (Eq. 8) for a 

steady Burgers vortex of this radius is 0.12 s-1 and circulation, Γ = 7.2 x 10-4 m2 s-1 (Eq. 21).  

With these values, the Burgers vortex solution (Eq. 9-13) gives max (uθ) ≃ 1.7 cm s-1, max (εloc) 

≃ 1.4  and max (ωz) ≃ 12 s-1. 

How long does this typical Burgers vortex last?  To gain some idea, we calculate its decay by 

noting that a vortex with identical azimuthal velocity and axial vorticity can be produced by 

viscous decay from a line vortex that has initial circulation, Γ0, equal to the steady value of Γ for 

the Burgers vortex in question (Davidson 2004, Problem 5.3, p. 291).  This equivalence is most 

easily demonstrated by noting that the Burgers equations for azimuthal velocity and axial 

vorticity can be recovered by substituting the quantity rB2 4o = cloc
-1 2 for t in Eq. 4 and 5 

(representing an e-folding time, i.e., the time to decay to 1/e or about 0.37 times the initial 

value).  This necessary correspondence allows calculation of decay dynamics under the scenario 

of a steady Burgers vortex for which strain rate, γloc, goes instantaneously to zero (Fig. 5A-C).  

We set initial (time-zero) circulation at Γ0 = 7.6 x 10-4 m2 s-1 and find (Eq. 4) that it takes 4.3 s to 

decay to the azimuthal velocity profile of our typical Burgers vortex.  We observe that a natural 

time scale for decay of a Burgers vortex, τd, once straining has stopped is the inverse of the strain 

rate that is needed to keep it in steady state, i.e., τd = 1/ γloc = 8.5 s for the upper mixed-layer 

example.  Because we have deliberately chosen very energetic upper mixed-layer turbulence, this 
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time is unusually short.  For the bottom boundary-layer example τd is substantially longer (26 s) 

because median rB is somewhat larger. 

All these values are remarkably larger than intuition might suggest from working at 

Kolmogorov scale (Eq. 1).  For explicit comparison, the Kolmogorov time scale, τη, and velocity 

scale, uη, for this upper mixed-layer example are: 

 xh = f
oa k

1 2

= 0.34 s; uh = of] g1 4 = 1.8 mm s-1 . (34, 35) 

Better intuition comes from inspection of Eq. 8.  The time scale for decay is proportional to the 

square of the vortex radius and inversely proportional to twice the kinematic viscosity.  This 

observation helps to explain why eddies of the size at the mode of Eq. 14 are substantially larger 

than the median or mean eddy size.  Larger dissipative eddies last much longer (Fig. 5D).  

Differences produced by kinematic viscosity in these time scales also increase with vortex radius 

(Fig. 5D).  Kinematic viscosities of seawater depend primarily on temperature and vary a little 

more than two fold from 0.85 x 10-6 to 1.84 x 10-6 m2 s-1 as temperature changes from 35˚C to 

0˚C.  The vortex size at the mode of the dissipation spectrum for the upper mixed-layer 

conditions above is 18η = 1.1 cm, and its time scale for decay is 55 s.  Moreover we have chosen 

a case of quite energetic turbulence, and typical eddy size would be larger under less energetic 

conditions.  At low mixed-layer turbulence intensities of 10-9 m2 s-3, for example, typical and 

modal eddy sizes would be 10 times larger (Eq. 1), and decay times consequently 100 times 

longer, than our upper mixed-layer example.   

For our calculations of dissipation rate in the decaying vortex we go backward a step in 

Hatakeyama & Kambe’s (1997) derivation of Eq. 13.  First we note that contributions to 

dissipation from straining have fallen to zero, so the first term inside parentheses in Eq. 13 also is 

zero.  All shear is radial when the axial straining stops.  We calculate εloc from uθ as 
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 floc = o dr
dui - r

uib l
2

. (36) 

For the Burgers cases we consider, strain directly (via the first term inside parentheses of Eq. 13) 

contributes an inconsequential fraction of the total dissipation.   

Similarly, Burgers velocities are dominated by their radial components (Fig. 6).  The small, 

inward radial flow of a steady Burgers vortex, however, combines with the larger azimuthal 

velocity to produce a tight, inward spiraling, with many rotations before the axis is reached.  The 

spiral becomes even tighter closer to the vortex axis (Fig. 6).  The smaller the vortex and the 

larger the strain, the larger becomes the inward component relative to the azimuthal.   

Some caveats are in order.  Myopic focus on a single eddy diameter and velocity scale is 

unwise, which is why we present the spectral formula for dissipation and probability density 

functions for vortex radius and circulation.  Vortices also clearly interact with each other in 

important ways, as even casual examination of Fig. 1 attests.  Adjacent, counter-rotating vortices 

will translate together, and may join to form a single, toroidal vortex, analogous to a smoke ring 

in air (e.g., Thorpe 2007, his Fig. 1.9).  The pair will have lower shear between them than would 

exist at the same radius from a single vortex of comparable size and velocity, and they will pull 

water between them as they migrate.  Counter-rotating vortices move in orbits around each other 

and may coalesce to form a larger vortex, but—until they do—they will have greater shear 

between them than would exist at comparable radial distance from a single vortex of similar size 

and rotation rate.  Deformations of groups of smaller vortices by larger ones that entwine them 

are evident in Fig. 1; multiple-vortex interactions are present in much variety and will cause local 

and ephemeral extremes in strain rates, shear and dissipation.  Somewhat paradoxically, these 

complications remove some of the early objections to Burgers vortices as representations of 

realistic physical entities.  In the context of DNS, continued growth of velocity in the radial and 

axial directions implied by Eq. 11 and 12 is cut off by the action of instabilities in the form of 

higher velocities imposed by neighboring vortices (Fig. 1). 

All of these interactions will affect vortex lifetimes and create extensive variation in local 
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vorticities and dissipation rates.  The cartoon of a single vortex of a given size and velocity is 

simply a logical place to start to examine vortex interactions with plankton.  It should continue to 

be complemented by studies of building complexity and by studies along the statistical track. 

Planktonic interactions with the cartoon vortex 

Because we began with the simpler structure of a bottom boundary layer, we also begin with a 

brief interpretation of turbulence effects there.  Settling larvae of limited swimming capabilities 

are known to exploit suppressed vertical velocities by swimming downward upon detection of 

settling cues (e.g., Hadfield & Koehl 2004).  Here we suggest that they also exploit near-seabed 

vortices of characteristic scale and orientation.  Grünbaum & Strathmann (2003) have shown that 

changing offsets of centers of buoyancy and centers of gravity during development can bias 

larvae into either updrafts (favorable for dispersal in early larval states) or downdrafts (favorable 

for settlement).  Regions of vortices in particular orientations both in the pelagic realm and near 

the bottom are those updrafts and downdrafts, respectively.  Another possibility in interpreting 

benthic organism form and function is that scales of benthic suspension feeders or their feeding 

appendages may be matched to characteristic vortex radii and tuned to vortex velocities.   

In terms of phytoplankton in steady, uniaxial shear, elongate and discoidal cells spend most of 

their time aligned parallel to the velocity vectors.  They tumble with predictable frequency 

(Jeffery 1922), and these tumbles are key in shedding diffusive boundary layers and contributing 

to nutrient uptake (Pahlow et al. 1997).  Based on our prior experience with Jeffery orbits in 

Couette flow and in particular with our experience in unsteady Couette flows where there are 

diffusion gradients of shear and vorticity (Fig. 7), and thus where both velocity and vorticity 

change with time at any particular location, we predict that non-spherical particles in the region 

between one and two Burgers radii from the axis will tumble much more often than in a steady, 

linear shear.  Inward radial flow into steady Burgers vortices and into Burgers vortices whose 

axial strain rates are accelerating is also of relevance in moving the cells themselves into 

different portions of the vortex.  Clearly the Burgers vortex is a more accurate cartoon of natural 



  27 

turbulence than is Couette flow.   

In atmospheric sciences, it is generally accepted that isotropic turbulence can act size 

selectively to increase droplet-droplet collision rates, to increase droplet fall velocities and to 

produce particle distributions that are nonrandom in space (e.g., Ghosh et al. 2005).  A relevant 

criterion is the Stokes number, Stk, the nondimensional ratio of the time that it takes a particle to 

respond to a change in fluid flow velocity relative to the time scale over which fluid velocity 

itself changes, so Stk << 1 indicates that particles will follow streamlines closely; at small Stk, 

fluid motion controls particle motion.  Particle-flow interaction will be strongest for Stk near 

unity.  Stk >> 1, on the other hand, indicates that the particle will move through a vortex before it 

can respond to the local fluid motion; at large Stk, particle motion dominates over fluid motion.  

Centrifuging of negatively buoyant water droplets for Stk near unity increases their fall velocities 

and contributes to droplet growth (collision of smaller droplets) through two mechanisms.  It  

lowers particle abundance in vortices and raises particle concentrations outside them.  Because 

collision rates go up nonlinearly with droplet concentration (i.e., with concentration squared), 

locally increased concentrations raise encounter and coagulation rates.  Response of particles to 

turbulent fluctuations also generally increases particle relative velocities and thus encounter rates 

over those that would occur in still air from differential deposition alone (Vaillancourt & Yao 

2000; Bosse et al. 2006; Ghosh et al. 2008).  

In aquatic particle dynamics, where the ratio of particle to fluid densities is generally smaller, 

the contribution of isotropic turbulence to nonrandom particle redistribution has been more 

controversial since the spotlight put on this issue by Squires & Yamazaki (1995).  In a steady 

Burgers vortex, azimuthal velocity is so much larger than the inward radial flow (Fig. 6) that 

particles with Stk above a critical value will tend to find a stable radius at which to orbit the axis, 

although vortex orientation with respect to the gravitational vector matters when the particles are 

not neutrally buoyant (Marcu et al. 1995).  At even higher Stk, particles have sufficient inertia to 

be expelled from the vortex (Ijzermans & Hagmeijer 2006).  Particles with small Stokes 

numbers, on the other hand, concentrate in the strain-dominated regions of the flow (Bec et al. 



  28 

2006.  Even neutrally buoyant spheres of nonzero Stokes number apparently can move 

differentially from the surrounding flow (Tallapragada & Ross 2008), although this topic 

remains controversial.   

Much of the controversy stems from the oversimplification of particles in the modeling done 

for some of these studies that makes them so-called “point particles” that have finite mass but 

infinitesimal size and no explicit shape.  Rarely are all the unsteady terms, especially the wake 

history terms, included in calculating particle trajectories.  For large phytoplankton cells and 

chains, wake history terms can be particularly important, and their inclusion would increase Stk 

for the cells (Koehl et al. 2003).  The ultimate reason for these simplifications is computational; 

DNS is difficult, whereas realistic incorporation of particle material properties and geometries 

and interactions with the flow in DNS is still forbidding in terms of the numbers of computations 

needed for realistic simulation. 

Gopalan et al. (2008) put phytoplankton into isotropic turbulence.  They presented video 

during the 2008 Ocean Sciences Meeting in Orlando, Florida, U.S.A., of a vortex being stretched 

(-γ increasing in absolute value), with phytoplankton being concentrated along its axis in the 

process.  The underlying mechanism has not been clearly identified.  For positively buoyant 

cells, centripetal acceleration might account for this concentration, or it might be due to the strain 

mechanism identified by Bec et al. (2006), or both.  Shape effects also undoubtedly affect 

phytoplankton trajectories in and near vortices. 

Velocities of a centimeter per second and dimensions of a one to a few centimeters are also 

relevant to the swimming and settling dynamics of small plankton, at least up to the scales of 

fishes preying on copepods.  That is, the vortex radii we calculate are comparable to detection 

distances of copepods by fishes (e.g., Viitasalo et al. 1998), and azimuthal velocities are 

comparable to or larger than copepod cruising and sinking speeds but not as large as copepod 

escape velocities (Buskey et al. 2002; Kiørboe 1998).  Interaction with vortices is sure to affect 

the transition from ballistic to diffusive trajectories of plankton (Visser & Kiørboe 2005); 

swimming tracks cannot be independent of streamlines.  Vortices quite obviously prevent 
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organisms from swimming straight through their diameters or other secants unless swimming 

speeds greatly exceed flow speeds encountered in the vortex.  Turbulence affects encounter, even 

of inanimate particles (e.g., Hill et al. 1992) so it should not be surprising that dissipative 

vortices do. 

Feasibility of numerical and analog testing 

Although more complex than simple, linear shear, a Burgers vortex is well within current 

numerical modeling capabilities, so a logical way to proceed in testing effects on passive 

particles such as diatoms is to embed realistically shaped and mechanically behaved model 

diatoms and diatom chains in numerical models of a Burgers vortex.  Specifically, such objects 

can be embedded through immersed boundary methods (Peskin 2002) and seeded in various 

positions and orientations in and near the vortex.  Such numerical experiments can be used to 

isolate particular regions of the vortex and parameter combinations that lead to interesting 

tumbling behaviors, for example, or to local concentrations of phytoplankton. 

With numerical predictions in hand, it becomes much more feasible to conduct experiments in 

analog devices.  Small devices already have been built to allow production of a vortex between 

two parallel and synchronously rotating, circular plates.  By drawing fluid through holes in the 

two respective centers of those plates, vortex stretching can be achieved (Petitjeans 2003).  With 

commercially available software (e.g., COMSOL, Burlington, Massachusetts, U.S.A.), it is also 

now feasible to design small chambers a few centimeters long in which particular combinations 

of shear, vorticity and streamline curvature duplicate selected components of vortical flow.  

Indeed such experiments have already been done at slightly smaller scale and lower Re (Marcos 

& Stocker 2006). 

Conclusions 

Our simple calculations in the context of the new cartoon have changed the way that we think 

about turbulence by expanding possibilities for what we conceive as mechanistic turbulence 

effects over what we could imagine with the Lazier & Mann (1989) simplification.  In a bottom 
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boundary-layer setting, fish that exceed vortex diameters in length can exploit vortices that they 

do not themselves generate to gain energetic advantage in swimming (Liao et al. 2003).  

Detecting a vortex, its axial orientation and its direction of rotation are more difficult tasks for 

organisms smaller than the vortex, but if resources, predators and prey are nonrandomly 

distributed with respect to vortex coordinates, selection is likely to have found cues that lead 

individuals toward enhanced resources and away from enhanced risks.  It would indeed be 

surprising if a copepod did not know its way around the ubiquitous features that are dissipative 

vortices (Fig. 1 herein; Fig. 4 of Yamazaki 1993). 
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Figure captions 

Fig. 1.   A writhing tangle of “vortex worms”: Isosurfaces of intense vorticity, showing regions 

where the absolute value of vorticity exceeds by over four standard deviations its mean value.  

The symbol η is the Kolmogorov length scale (Eq. 1) and the visualized depth (third Cartesian 

dimension) of the simulation is 1496η.  The Taylor Reynolds number, Reλ for this direct 

numerical simulation (DNS) is 732 (cf. Eq. 18).  Reproduced by permission of the authors and 

IEEE (© IEEE 2002) from p. 17 of Yokokawa et al. (2002, their Fig. 7).   

Fig. 2.  A. Scaled azimuthal velocity, uθ, versus distance, r, from the vortex center in a line 

vortex.  To get azimuthal velocity from the graph, one would need to multiply values on the 

ordinate by the circulation, Γ.  That velocity approaches - ∞ and + ∞, respectively from the left 

and the right of the origin as the vortex center is approached.  All of the line vortex’s vorticity 

exists at r = 0.  B. Azimuthal velocity versus distance, r, from the vortex center in a Rankine 

combined vortex.  The core of radius R rotates as a solid body, uθ = ruθmax/R, for r # R , 

whereas azimuthal velocity decreases beyond the core as uθ = Ruθmax/r for r > R .  C. Vorticity 

in a Rankine combined vortex versus distance, r, from the vortex center is constant for the 

core, r # R , and zero elsewhere.  The abscissa in B and C is nondimensionalized by dividing 

by the vortex radius, R.  Ordinates in B and C were nondimensionalized by dividing by their 

respective maximal magnitudes.  Idealized vortices of these sorts are inviscid, and all initial 

vorticity is conserved.  There are no velocity components in the radial or axial (z) directions.  

The inset (between B and C) illustrates the cylindrical coordinates that we use (r, θ, z) and the 

representation of an arbitrary point in both cylindrical and Cartesian coordinates.  Some 

authors use ϕ in place of θ and ρ in place of r.  We follow the usual convention that 

counterclockwise rotation is associated with positive vorticity (right-hand rule) but arbitrarily 

show velocity and vorticity for counterclockwise vortices (panel A and B having the 

perspective of looking at the vortex from above, i.e., from the positive z direction).  Analogous 

panels A-C for clockwise vortices can be generated by reflection of each illustrated curve 
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about its abscissa.  In isotropic turbulence, there is no bias toward vortices of positive or 

negative vorticity. 

Fig. 3.  Cartoon of a steady Burgers (1948) vortex.  Constant tensile straining at rate γloc would 

accelerate the rotation (conserving vorticity) by thinning the vortex (reducing its radius) if 

outward diffusion of vorticity did not counterbalance this effect.  Vorticity remains steady 

because its constant diffusion outward is counterbalanced exactly by the combination of 

inward advection and vortex stretching.  Modified from Acheson (1990, p. 188) and Davidson 

(2004, p. 249). 

Fig. 4.  Characteristic profiles of azimuthal velocity (uθ), vorticity (ωz), and local dissipation rate 

(εloc) as functions of nondimensional radial distance, , from the center of a steady Burgers 

vortex.  Each curve is nondimensionalized by dividing by its maximum value.  Note that 

azimuthal velocity of a Burgers vortex peaks at 1.12 .  The gray region on the graph marks the 

radial distance interval in which local dissipation rate is ≥ 50% of its maximum value.  For 

simplicity we have omitted values in the other half of the vortex (for negative values of ) in 

this and subsequent figures, but here we also show 3D visualizations of each variable 

(magnitude only, not direction) to emphasize the vortical structure.  Azimuthal velocity in this 

domain can be obtained by reflecting the graph shown here about both axes, whereas 

vorticity and local dissipation rate can be obtained by reflection about the ordinate alone. 

Fig. 5.  Decay of a Burgers vortex when axial straining stops abruptly.  For panels A-C, top 

black curves show the steady value and subsequent falloff after τd/2, τd, 2 τd, 3 τd and 4 τd, 

where decay time, τd, is defined as 1/γloc, and all curves are scaled to their maximum value for 

the steady Burgers vortex and plotted against nondimensionalized radial distance.  A.  

Azimuthal velocity.  The gray line shows velocity for the corresponding Lamb-Oseen vortex at 

time zero.  B.  Vorticity.  C.  Local dissipation rate.  D.  Decay time, τd, versus initial Burger’s 

radius, rB.  The top curve is for a kinematic viscosity, ν, of 0.85 x 10-6 m2 s-1, whereas the bottom 

curve is for ν = 1.84 x 10-6 m2 s-1.  Most seawater kinematic viscosities fall between them. 
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Fig. 6.  Ratio of azimuthal to inward radial flow speeds versus scaled (nondimensional) radial 

distance.  Both are for vortices under the upper mixed-layer conditions discussed in the text, 

but one is for a Burgers radius of median size (7.1η), whereas the other is chosen to match the 

vortex size scale of the mode in the dissipation spectrum (18 η, Eq. 14).  Net 2D motion forms 

a tight inward spiral. 

Fig. 7.  A. Alignment of diatom chains (Stephanopyxis turris, with chains approx. 250 µm long) 

perpendicular to shear in steady Couette flow.  In a laminar shear orthogonal to both rotating 

surfaces, elongate objects spend most of their time aligned with the velocity vectors but 

undergo periodic Jeffery (1922) orbits (e.g.: Pahlow et al. 1997; Karp-Boss & Jumars 1998).  B. 

The upper moving boundary recently has been accelerated, and unsteady diffusion of 

momentum and vorticity in the direction of the arrow has reached approximately to the 

dashed line.  Note the dramatic effect on trajectories of chains, with known effects on 

surrounding nutrient boundary layers and nutrient fluxes (Pahlow et al. 1997).  Similar 

tumbling can be expected in the near vicinity of dissipation-scale vortices.  The chains were 

illuminated with white light and visualized through a red filter via their autofluorescence.  The 

photographs were opened in Adobe Photoshop CS4 in RGB mode.  They were converted to 

grayscale through the Image>Adjustments>Black&White panel by setting reds to 100% and 

all other colors to zero.  The image was then inverted to make the brightest red 

autofluorescence the darkest black.  All pixels with detectable red autofluorescence are 

shown; darker pixels had higher fluorescence intensity, and only the longer objects are 

phytoplankton chains.  Long, dark-black objects are chains that are in focus.  Long, gray 

objects are chains that are somewhat out of focus.  Globular material comprises coagulated 

debris and chains.  Greater coagulation evident in B is partly a function of time (B being later 

than A) but also a function of greater coagulation with greater tumbling, elongate particles 

each sweeping out a larger volume as they tumble. 
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